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Abstract

Context awareness is very important for services provided by digital platforms of ubiqui-

tous computing, being localization one of the fundamental dimensions in defining the context.

There are currently more than 2.3 billion smartphone users. With the growing trend of so-

cial sharing, there are more internet users using mobile devices than personal computers.

The massification of smartphone adoption has created the emerging need to acquire their

users localization information. Whether it is to deliver cured content to users or to create

surveillance systems, there is a new market to explore.

Being able to estimate the position of a device was the main motivation behind the

development of GPS - Global Positioning System - which is the mainstream localization

technology in outdoor environments used for navigation, of both cars and airplanes. How-

ever, in indoor environments, this method lack of accuracy has led to the development of

alternative localization solutions. There is already a vast infrastructure of Wi-Fi network

points available across the globe, which coupled with recent developments in the quality of

embedded sensors on mobile devices, make these platforms a focus of pervasive computing.

The SmartLocator system offers a way to localize humans using a smartphone, in envi-

ronments where a Wi-Fi infrastructure already exists. An algorithm based on the fusion of

data provided by the Wi-Fi network and by the inertial sensors available on the mobile device

is proposed. It is possible to estimate the position of a smartphone using a pre-populated

database of received signal strength from the existing access points. This technique is called

Fingerprinting. However, the variability of the Wi-Fi infrastructure and in received signals

strength, due to common propagation issues, influence the precision of this method. By

using data obtained from the embedded inertial sensors it is possible to continuously track

displacements from a known initial position, possibly with high cumulative errors. This

technique is known as Dead Reckoning. The fusion of these two sources of data improves

the localization accuracy.

Keywords: Indoor localization, Inertial sensors, Wi-Fi based localization, Fingerprinting,
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Resumo

A sensibilidade ao contexto é de elevada importância para serviços prestados por platafor-

mas digitais de computação ubíqua, onde a localização é uma das dimensões fundamentais

desse contexto. Há mais de 2.3 mil milhões de utilizadores de smartphones. Juntamente

com a crescente onda de partilha social, há mais utilizadores da internet que usam dispos-

itivos móveis do que computadores pessoais. A massificação do uso do smartphone criou a

necessidade emergente de adquirir informação de localização nestes dispositivos. Seja para

fornecer conteúdos curados aos utilizadores ou para sistemas de alerta/monitorização, há um

novo mercado por explorar.

Conseguir estimar a localização de um dispositivo foi a grande motivação para a criação

do GPS - Global Positioning System - que é a principal tecnologia de localização em am-

bientes exteriores utilizada para navegação, tanto de automóveis como de aviões. Porém,

em locais interiores, a falta de precisão deste método tem favorecido o aparecimento de

soluções de localização alternativas. Por todo o mundo há já uma enorme infraestrutura de

pontos de rede Wi-Fi disponíveis, o que aliado aos recentes avanços na qualidade dos sen-

sores embebidos em dispositivos móveis, faz desta plataforma o foco actual da computação

pervasiva.

O SmartLocator procura localizar humanos através de um smartphone, em ambientes

onde exista uma infraestrutura Wi-Fi. É proposto um algoritmo de localização indoor

baseado na fusão de dados fornecidos pela rede Wi-Fi e pelos sensores inerciais disponíveis

no dispositivo móvel. A criação a priori de um mapa de potência de sinais de rádio emitidos

pelos access points existentes, permite numa fase a posteriori a estimação da posição geográ-

fica de um smartphone. Esta técnica chama-se Fingerprinting. Contudo, a variabilidade da

infraestrutura Wi-Fi e da potência dos sinais recebida, devido a problemas de propagação

comuns, influenciam a precisão deste método. Usando dados provenientes dos sensores in-

erciais é possível estimar deslocações relativas a um ponto cuja localização seja conhecida,

ainda que com erros cumulativos elevados. Esta técnica é conhecida por Dead Reckoning.
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A fusão destas duas fontes de informação aumenta a precisão de localização.

Palavras-Chave: Localização indoor, Sensores inerciais, Localização baseada em Wi-Fi,

Fingerprinting, Dead reckoning, Localização de smartphone, Fusão de dados
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"Our greatest weakness lies in giving up. The most certain way to

succeed is always to try just one more time."
— Thomas A. Edison
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1 Introduction

1.1 Context

Localization solutions are extensively used every day in navigation systems, such as in

planes, boats or vehicles. The most used technology to provide absolute localization is the

Global Positioning System - GPS. Its capability of providing latitude, longitude, and altitude

information has also enabled other types of applications to enhance their knowledge about

their user or context. For instance, compasses that use true heading as opposed to the

traditional magnetic field approach.

The Global Positioning System is able to localize a user with an accuracy of 5 meters

when outside and line of sight to at least four GPS satellites is available. However, large

objects such as tall buildings can impair its accuracy. Furthermore, GPS is not accurate in

indoor environments. As a result, applications that rely on this type of localization will not

perform accurately in these conditions.

As people tend to spend more time at home, malls, museums and airports it is of great

interest to overcome this accuracy challenge. Also, the advent of ubiquitous computing

applications demands for new and improved ways to obtain information about their user

and the surrounding context, with localization being one of the fundamental dimensions in

defining it.

Smartphones gained huge popularity in a world where communication is becoming more

and more fundamental. Their massive adoption presents an opportunity to use them as the

substitute candidate in indoor positioning systems. Using smartphones may help to localize

elderly people in disaster situations, as a guidance while visiting a museum or even as direct

replacement for GPS in situations where it fails . Therefore, researchers have put much effort

in this topic, presenting increasingly accurate indoor localization algorithms.
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1.2. MOTIVATION

1.2 Motivation

The mainstream localization method GPS is not capable of acceptable accuracy in indoor

environments, as it requires line of sight to at least four GPS satellites. Using smartphones for

accurate indoor localization creates a new topic in mobile services, allowing new opportunities

to enhance the user experience in such environments.

There are currently more than 2.3 billion smartphone users, and the mobile applications

market is continuously growing. Across the globe, there is already a vast infrastructure of

Wi-Fi network points available that, coupled with recent developments in the quality of

embedded sensors on mobile devices (smartphones and tablets), makes these platforms a

focus of ubiquitous computing.

Available indoor localization solutions rely on different types of sensors, such as Wi-Fi

network cards, GSM antennas or inertial sensors such as accelerometers and gyroscopes.

Solutions based on Wi-Fi have proved great accuracy given its simple implementation. How-

ever, location estimation is not available instantaneously, taking a couple of seconds. The

opposite happens with solutions based on inertial sensors. It is an interesting topic to ex-

plore the complementarity of Wi-Fi based algorithms with the instant availability of the ones

based on inertial sensors.

1.3 Objectives

This work addresses the localization problem with a hybrid approach. Both Wi-Fi and

inertial sensor data can be collected from the user’s smartphone. Estimating the user’s

location using only Wi-Fi measurements or just inertial sensors readings, individually, does

not achieve the desired accuracy.

The main goal is to develop an Android application capable of locating the user in

environments where a Wi-Fi infrastructure exists. The core algorithm fuses both Wi-Fi and

inertial sensor data in order to improve the overall indoor localization accuracy, using only

the smartphone capabilities and its computation power. The resulting Android application

should be able to display an indoor layout map representing the area of interest overlaid by

the user estimated location. Also, there is one sub goal: the algorithm should be suitable for

mobile use, such that the device’s computation power and battery consumption limitations

are taken into account.

2



CHAPTER 1. INTRODUCTION

1.4 Outline of the document

This document is divided into 5 chapters. In chapter 1, the context and motivation

that led to this research work are introduced and the main objectives are presented. In

chapter 2, a literature review regarding indoor localization using smartphones can be found.

Chapter 3 begins by outlining the overall system architecture and further describes the

proposed approach in detail. The results are presented and discussed in chapter 4. Finally,

conclusions and future work are available in chapter 5.
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2 Related Work

This chapter reviews the main techniques used to address the indoor localization problem

throughout the literature: fingerprinting, range-based, motion sensing and vision-based.

Hybrid approaches, where two or more single techniques are combined to achieve better

results, are also reviewed, in the end.

2.1 Fingerprinting

Fingerprinting or scene analysis is a technique which uses the received signal strength

(RSS) in order to estimate user’s location. This solution is divided into two phases: training

and runtime. During the training or off-line phase the site is scanned with a Wi-Fi enabled

device, recording in each position the Wi-Fi signal strength from multiple access points

(APs), possibly in different channels, as proposed in [1]. These readings are then stored

in a radio map database. Usually, in each position several measurements are taken and

averaged, per access point. Later, during the runtime or on-line phase, the current signal

reception measurements are matched against all the readings available in the radio map.

The most identical stored readings yield the user estimated position. Some approaches use

the smartphone to store the radio map database and run localization algorithms locally,

other use an external server. In [2] the localization algorithm is implemented using a best

matching approach, where the provided RSS measurement is used to compute the distance

to each one in the radio map using an Euclidean metric. The position associated with

the stored measurement that is closest to the provided measurement is chosen. In [1] the

Sparse Bayesian Learning paradigm is used during the runtime phase to enhance localization

precision, instead. Support Vector Classification (SVC) of multiple classes and Support

Vector Regression (SVR) have been used in [3] with success. Support Vector Machine (SVM)

algorithms also have been used in [4].

The training phase plays an important role on this type of technique. It can be a labour-

4



CHAPTER 2. RELATED WORK

intensive process and its thoroughness can have nearly direct impact on the final accuracy.

Some authors have presented solutions to reduce the training time by applying completion

algorithms to the collected data. This way, instead of scanning the whole interest area, one

can scan it partially. In [4], using the bilinear median interpolation method (BMIM), the

radio map is completed while retaining the accuracy of user localization. In [1] another map

completion algorithm is proposed, using Matrix Completion.

Traditional APs use a single channel for communication. In recent years, AP designers

introduced Dynamic Channel Assignment (DCA) strategies to improve network capacity [5].

These strategies introduce a new feature where APs change their operating channel over

time. An AP operating channel affects the RSS measurements, as stated in [6]. Building

a fingerprint radio map using only one channel would render the training data not useful,

as a smartphone during the runtime phase could be assigned a different channel, and the

localization accuracy would drop significantly. The influence of channel selection is taken into

account in [1] and confirms that radio maps collected with only one channel communications

are not as accurate.

Several other research groups have explored the use of RSS coupled with fingerprinting

techniques: RADAR [7], which is one of the first systems to ever implement this approach,

capable of locating the user with accuracies of 2 to 3 meters; Horus [8], an improvement

of the RADAR system, making use of probabilistic analysis; Compass [9], which leverage

object orientation to improve localization precision.

Besides Wi-Fi technologies, other radio-frequency technologies have been utilized with

RSS fingerprinting techniques. In [10] Bluetooth LE is used. The author implemented a

deterministic distance estimation approach based on the K-Nearest Neighbors (KNN) [11]

method and K-means clustering algorithm, and a probabilistic approach using the Naive

Bayes classifier. Also, using Zigbee technology [12], a fingerprinting technique merged with

other algorithms such as gradient-based search, the linear least squares (LLS) approximation

and multidimensional scaling (MDS) methods, was applied, claiming accuracies under 1.25m.

5



2.2. RANGE-BASED

Table 2.1 compares all these techniques based on their accuracy.

Table 2.1: Fingerprinting techniques accuracy comparison.

Authors Technique Accuracy

Sofia Nikitaki et al. [1]
Multi-Channel fingerprinting,
matrix completion and Bayesian
Sparse Learning

2-3 m

Eladio Martin et al. [2] Fingerprinting using only a
smartphone 1.5 m

Mauro Brunato et al. [3] Fingerprinting with SVM 3 m
Yu Feng et al. [4] Fingerprinting with SVM 1.5 m
Paramvir Bahl et al. [7] RADAR 2-3 m
Moustafa Youssef et al. [8] Horus 1-3 m
Thomas King et al. [9] Compass 1.65 m
Disha Adalja et al. [10] Fingerprint with Bluetooth 1.5-2 m
Shih-Hau Fang et al. [12] Fingerprint with ZigBee 1.25 m

Fingerprinting techniques, besides requiring a labour-intensive training phase, require a

particular infrastructure. APs may have to be deployed in order to be used as RSS sources.

However, nowadays almost all buildings have an existing Wi-Fi infrastructure. Hence the

popularity of this type of localization methods.

2.2 Range-based

Range-based techniques use location metrics such as received signal strength (RSS), time

of arrival (TOA), time difference of arrival (TDOA), and angle of arrival (AoA) to estimate

the distance between two nodes. Different algorithms implement this technique to estimate

the user location, such as the trilateration and triangulation methods.

2.2.1 Trilateration

Trilateration uses the RSS metric to estimate the user’s position by computing the dis-

tance to at least three reference points. GPS implements this principle where the reference

points are satellites, instead of terrestrial beacons. The distance is obtained by applying

path-loss models which account for signal strength loss due to free-space loss, multi-path

fading, reflection and refraction, such as the mainstream logarithm distance path-loss model

or the International Telecommunication Union (ITU) model. The ITU’s P.1238 recommen-

dation [13] presents the model as shown in 2.1.
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L = 20 log f +N log d+ Lf (n)− 28 (2.1)

L denotes the path loss, in decibel units (dB), f the frequency of transmission, in mega-

hertz (MHz), N the distance power loss coefficient, d the distance, in meters, n the number

of floors between the transmitter and receiver, and Lf the floor loss penetration factor. Both

N and Lf are empirical values. N expresses the loss of signal power due to travel distance.

Lf depends on the number of floors the signal has to penetrate, and models the loss of power

signal due to floor penetration. Tables A.1 and A.2 express different values for these factors

in various environments and for different transmission frequencies.

For example, using GSM-900 signals (900 MHz), in an office with 1 floor, n = 1, the

power loss factor, N , is 33 and the floor penetration factor, Lf , is 9 dB, the distance can be

obtained by: d = 10
L−40
33 . The path loss, L, is the difference between the transmitted power

and the received power.

Instead of using RSS measurements, time of arrival (TOA) or time difference of arrival

(TDOA) measurements are often used, too. The distance is then obtained by multiplying

the signal propagation velocity and the travel time. Some systems use the roundtrip time of

flight (RTOF) or the received signal phase method metric.

By computing the distance to at least three reference points, circles can be drawn centred

in each point with radius equal to the distance between that point and the user. The

intersection point of the three circles is the user estimated position. Figure 2.1 represents

this technique.

Figure 2.1: Estimating user’s position based on trilateration.

The SmartLOCUS system created by HP [14] uses ultrasound RTOF measurements to

estimate the relative location between several interconnected nodes. This system has accu-

racies from 2 to 15 centimeters, although not suitable for user localization.
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2.2.2 Triangulation

Triangulation estimates user’s position by computing angles relative to multiple reference

points, as illustrated in Fig. 2.2.

Figure 2.2: Estimating user’s position based on triangulation.

Different antenna technologies exist to compute the angle between the receiving sensor

and the emitter, θA and θB. Mechanically-agile directional antennas are able to adjust to

the point of highest signal strength. Other technology uses antenna arrays, where TDOA

measurements in each element of the array can be converted to an AOA measurement. This

technique has the advantage of only needing two reference points to estimate 2D positions.

However, it does not perform well on non line of sight (NLOS) situations, such as indoor

environments. Another disadvantage is the use of complex hardware, making it not suitable

for a mobile application.

The Ubisense system [15] considers the Ultra Wide Band (UWB) technology and the use

of angle of arrival to estimate user’s position. This system claims accuracies between 0.15-1

meters, even under complicated construction environments.

In [16] the teleoperation of Unmanned Ground Vehicles (UGVs) is aided by a graphi-

cal representation of the RSS gradient at the UGV location. The gradient estimation is

computed by using multiple receivers with directional antennas. With this information the

UGV operator is aware of low wireless connectivity areas and is able to adjust its trajectory

accordingly.

2.3 Motion Sensing

Inertial measurement units (IMUs) such as motion sensors (accelerometers) and rotation

sensors (gyroscopes) provide useful data capable of tracking a user by continuously estimating

displacement from a known initial position. Some approaches based on inertial sensors are

proposed in [17–20], using the so-called pedestrian navigation systems (PNS). These have the
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added value of not relying on infrastructure assistance, as no access points or off-line/training

phase are required.

These solutions do not generally achieve the desired meter-level accuracy, because they

rely on temporal integration of linear acceleration and/or angular velocity which induce

high cumulative errors. Drift errors can exceed 150 meters after just 60 seconds of opera-

tion [21]. However, in short time intervals, accelerometers and gyroscopes provide accurate

measurements.

Typically, external accelerometers and gyroscopes are carried by the user, in these dead

reckoning approaches. In [18], a 6 degrees of freedom (DoF) inertial sensor suite is equipped

in user’s foot. To reduce cumulative errors, this approach implements an indirect Kalman

filter and a zero velocity updates (ZUPT) detection algorithm. Using the zero velocity

updates, the known acceleration direction due to gravity is used to correct the previous

accumulated drift errors. Another foot-mounted approach [20] also uses ZUPT to reduce

drift errors. However, a particle filter is utilized to accommodate building map constraints.

Moreover, this building map is a 2.5D representation, which accounts for walls and steps,

where each object has its height recorded.

Nowadays smartphone sensors are capable of acceptable accuracy, since IMUs can now

be packed into small circuits thanks to micro-electro-mechanical systems (MEMS) tech-

nology improvements. The fusion of accelerometer and magnetometer data highly reduces

drift errors [21]. Magnetometers operate with almost no drift, however quick changes in

orientation are not accurately sensed. In [22] a new approach to step detection and user

heading inference is proposed, achieving meter-level positioning accuracy. Using the de-

vice’s accelerometer, magnetometer and gyroscope, this system can detect steps and their

length through a personalized step model derived from the last taken step, estimate the user

heading, and compute the overall position with a particle filter algorithm.

The step detection algorithm is fundamental in these approaches. Accelerometers have

been widely used for this purpose. However, due to gravity, accelerometer data has to be

compensated. It is also common to filter the data using finite impulse response (FIR) or

or infinite impulse response (IIR) filters. In [17] the acceleration signal vector magnitude is

filtered using a FIR averaging filter with a history of 8 samples. After analyzing data from

a few steps, the author presents an algorithm based on signal vector magnitude thresholds

that is capable of detecting steps. Also, in [22], a low pass FIR filter with cut-off frequency

set to 3 Hz is used to remove high frequency noise and spikes from raw accelerometer data.

Using two thresholds, almost every false peak caused by acceleration jitters that are either
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too small in magnitude or to short in time duration can be filtered out. This algorithm fur-

ther improves the detection accuracy using heuristic constraints and dynamic time warping

(DTW) validation. In addition to this, in [23] the building map constraints are fused into

inertial measurements to filter out the impossible motion trends. Here, the fusion technique

uses a particle filter.

Table 2.2 compares these motion sensing techniques based on their accuracy.

Table 2.2: Motion sensing techniques accuracy comparison.

Authors Technique Accuracy

Lasse Klingbeil et al. [17] WSN with mobile nodes
worn by the user 3.5 m

Oliver Woodman et al. [20] 6-DOF foot-mounted IMU,
ZUPT 1 m

Fan Li et al. [22] PSN using smartphone 2-4 m

2.4 Vision-based

Vision-based techniques make use of computer vision techniques to localize a user by using

data acquired from cameras. There are several types of cameras and different algorithms

to take advantage of each one. As mobile devices cameras are getting better and consumer

level 3D cameras becoming cheaper, a majority of the existing techniques rely on 2D images

or 3D RGB-D (color and depth) data.

In [24] a single 2D monocular camera is used to estimate the position and orientation for

vehicle navigation. This system requires a training phase to pre-populate a database that

correlates physical location with image holistic features and 3D landmarks along the course.

To estimate the position, in runtime, the current frame holistic feature vector is computed

and matched with every feature vector present on the database. The most suitable one

determines the initial global position. Then, 3D landmarks are used to estimate the camera

pose (position and orientation – 6 DoF) with high precision.

Several solutions rely on available or pre-populated databases that contain 3D landmark

data or building models such as facade image features/layout [24] [25]. Another approach

to this method is the Simultaneous Localization and Mapping (SLAM) technique aided by

vision. In [26] the object recognition algorithm (SIFT) [27] is used to continuously maintain

a database of unique visual landmarks. Using a particle filter to perform localization this

system presents good accuracy and can recover from "kidnapping" scenarios (situations
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where the robot position is changed by external mechanisms, for instance being lifted up

and moved by a person).

Recent progress in Structure-from-Motion (SfM) algorithms allow impressive localization

performance, but rely on powerful and memory intensive local image descriptors such as

SIFT [27] to establish 2D-3D matches between image features and scene points. In [28],

a solution to localize users carrying smartphones and take advantage of their camera is

proposed. By using an in-device map (database) that is constantly updated using keyframe-

based SLAM [29], the system tracks the camera locally. SfM algorithms running on external

and powerful servers provide global position estimates for the local keyframes. Then, the

local and global estimates are aligned to provide the best 6 DoF estimate possible.

2.5 Hybrid

Although single technique solutions already have accuracies of few meters and even in the

centimeters range, researchers have explored fusion techniques that merge multiple sources

of data to address the localization problem. The main goal is to improve the overall accuracy,

but also to increase each system robustness by making them not so dependent on a certain

type of localization method.

This technique is used in [23] to increase the algorithm convergence rate, using site finger-

prints and motion sensing. Only few training readings are recorded: one per room/corridor.

In an initial phase, Wi-Fi is used to achieve room-level localization, matching the nearest

training location in signal space. Afterwards, inertial sensors data is used to detect steps

and heading angle. Along with a particle filter, it is possible to estimate the user’s location,

merging accelerometer, compass and Wi-Fi RSS measurements. In some situations, where

the user experiences a narrow turn, multi-clustered particles may appear. In this case, an

on-line room-level localization algorithm can filter out undesired clusters.

In [30] another hybrid solution is presented, where robots know their position based on

an off-line created map (fingerprint) and estimate user’s position through acoustic relative

ranging. The robots are equipped with Kinect vision sensors and are able to follow humans.

Each user carries a smartphone that plays a pre-designed beep file in a known manner,

and simultaneously records the received beep files. Then, the files are sent to the robot for

relative position estimation by applying a ranging algorithm, such as time of arrival (TOA).

Also, visual-inertial systems (VINS) explore the fusion between SLAM algorithms and

PNS based on motion sensors. In [31] the presented algorithm is capable of global localization
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for an autonomous aerial robot. By using offline-generated 3D models of buildings, in runtime

images from one fisheye camera can be used to match them. Using IMUs to stabilize the

image allows the use of just one camera with a large field of view (FOV).

Another hybrid system [25] fuses data from vision, GPS and odometry to achieve better

results. This is an expansion to the AVENUE [25] system by integrating vision in the pipeline.

Vision is used to estimate the robot pose whenever the confidence in pose estimation based

only on GPS and odometry is low. Using the Canny edge detector [32] and a RANSAC [33]

approach the system is able to match a certain building model against a pre-populated

database and query its current location.

A hybrid approach was followed in this work in order to take advantage of the Finger-

printing and Motion Sensing techniques. Fingerprinting is a popular technique and its low

complexity absolute position estimation algorithm is ideal for low computationally power

smartphones. The recent developments in the quality of embedded sensors of mobile devices

also enable motion sensing techniques to be further explored. On the other hand, range-based

techniques may require external hardware other than the handheld device to deliver high

accuracy estimations. And vision-based techniques perform complex and computationally

expensive algorithms that would fail in low cost smartphones.
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3 SmartLocator system

The SmartLocator is a localization system for the Android platform and was developed

using the Java language. It is able to estimate the user location in indoor environments by

acquiring and fusing data provided by the Wi-Fi network, using the smartphone embedded

network card, and by the IMUs, using the embedded accelerometer, magnetometer and

gyroscope.

From the user perspective, the SmartLocator application only has two main interactive

screens. The initial and main screen displays a layout of the area of interest (museum, school,

airport, etc) and a virtual indicator representing the user estimated position. Fig. 3.1 shows

the main screen of the system user interface (UI) while localizing its user in the AP4ISR

laboratory.

Figure 3.1: The SmartLocator application main screen displaying the area of interest overlaid
by the user estimated position.
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The other screen is the settings one, which is accessible through the common menu

available on Android applications. In this screen the user is able to fine tune several aspects

of the SmartLocator localization system layer, as can be seen in Fig. 3.2.

Figure 3.2: The SmartLocator application settings screen show casing some fine tunable
variables.

By using the Android platform the development of the SmartLocator application is eased,

as the SDK1 is extremely well documented and offers already created APIs to access em-

bedded sensors and extract data from them. This way, one can focus on the design and

implementation of the inner algorithms, rather than complex data acquisition.

Also, the Android SDK offers a wide range of UI components, called Widgets. The

SmartLocator application makes extensive use of these components in its UI layer, in order

to display the area of interest layout overlaid by the user estimated position.

The remainder of this chapter describes the overall system design and architecture, using

a top down approach. The several layers that compose the SmartLocator application are

presented and discussed in section 3.1. In section 3.2 each component of the localization

system layer is further detailed.

1https://developer.android.com/sdk/
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3.1 Design

In order to achieve the desired goal of displaying the area of interest layout overlaid

by the estimated position, as well as allowing different users (with different smartphones)

to take advantage of the system, the interest areas layouts need to be available online.

By centralizing this information, different users can navigate the same area using different

smartphones. With that in mind the system was designed with two different tiers: the back-

end tier and the front-end tier. Fig. 3.3 represents the top-level layout of the SmartLocator

system. The back-end tier is powered by a Node.js2 server and a MongoDB3 database. Its

main purpose is to serve the front-end tier with the different interest areas available and also

to store relevant fingerprinting data. The front-end tier runs in smartphones and is where

all the localization logic is implemented.

Server Back-end

Front-end

Figure 3.3: SmartLocator two-tier design layout.

Some solutions use cloud-computing power to perform complex and computationally

expensive localization algorithms [1] [10]. The SmartLocator systems is able to estimate its

user position using only the device capabilities. Therefore, the back-end tier only provides

support for the front-end tier in terms of image assets and shared information among different

devices/users.

2https://nodejs.org
3https://www.mongodb.com
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The front-end tier is composed by four layers: data acquisition, localization, communi-

cation and UI. Each layer has a different purpose:

Data acquisition Is capable of extracting sensor data in a meaningful way.

Localization Is the core of the system and contains all algorithms responsible for the

user localization.

Communication Is responsible for Wi-Fi data transactions between the front-end and

back-end tiers.

UI Is the user interface of the system.

The four layers are carefully integrated with each other, as shown in Fig. 3.4.

Data acquision

Communication Localization

UI

Figure 3.4: SmartLocator front-end layers and their relationship.

Data acquisition provides both IMUs and Wi-Fi readings to the upper level layers: lo-

calization and communication. The communication layer also uses data acquisition as it

implements a socket connection which when active is used for debugging purposes. Other

than that the communication layer is responsible for retrieving/storing data or assets from/to

the back-end tier, which is tied to the UI layer. Position estimation is performed in the lo-

calization layer. As it only implements mathematical algorithms, its implementation does

not depend on the Android SDK. It is a design option that allows this layer to be used in

other devices other than Android powered smartphones, as long as they support Java.

3.2 Localization Estimation Architecture

The desired estimated position is obtained by fusing two types of localization techniques:

fingerprinting and dead reckoning. As explained in chapter 2 these techniques differ a lot.
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Fingerprinting solutions generally achieve better accuracy and deliver absolute positioning,

but can take a few seconds to estimate a new position. On the other hand, dead reckoning

systems are much more dynamic, but can drift over time.

The proposed localization solution is able to take advantage of the best features of each

technique. Dead reckoning instant availability is preserved, as well as fingerprinting absolute

positioning. So, after fusing, the SmartLocator application can localize its user in a dynamic

drift-free manner. Fig. 3.5 represents the top level architecture of this solution.

Wi-Fi

Motion
sensors

Data
fusion

Absolute
positionFingerprinting

Step detected

Heading
direction

Step lengthDead
Reckoning

Input

Algorithm

Estimated position

Ground truth position

Figure 3.5: SmartLocator localization estimation architecture.

Dead reckoning techniques are based on IMUs, also known as motion sensors, namely

accelerometers, magnetometers and gyroscopes. Those are also the sensors used by this

solution. The dead reckoning component is capable of detecting steps, their length and the

user heading direction (angle). In section 3.4 its implementation is further detailed.

Fingerprinting techniques operate in two distinct phases. An initial phase allows the

population of a radio map (database) to be later used, in the runtime phase, to localize

the user. In the training phase both Wi-Fi RSS values and ground truth user positions are

stored in the database. Later, in the runtime phase, only Wi-Fi is used to estimate the user

position. Both phases implementations are discussed in the subsections 3.3.1 and 3.3.2.

Lastly, in order to benefit from the two techniques, the data fusion component implements

an opportunistic fusion algorithm further detailed in section 3.5.

3.3 Fingerprinting

Fingerprinting is a technique that correlates the RSS value from various available Wi-Fi

access points with the physical position of the Wi-Fi receiver sensor. In this case, the sensor
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is embedded in a smartphone and thus also corresponds to the user physical position.

In order for the smartphone to be able to estimate its position using this technique, there

must be a radio map of the area of interest. The radio map is a database with only one

table that in each entry stores a physical position and a vector of RSS values. Having a

populated radio map, the estimated position can then be obtained by matching a query set

of RSS values with the ones available. The query RSS values correspond to the Wi-Fi APs

that are sensed in the user unknown position. Fig. 3.6 represents the architecture of this

technique and how the training and runtime phases take place.

Query
Wi-Fi
RSS

Training
phase

Radio map

Training
phase

Runtime
phase

Matcher

Input

Algorithm

Database

Estimated position
Ground truth position

Figure 3.6: Fingerprinting architecture.

3.3.1 Training phase

The process in which the radio map database is populated is often called training phase.

In this phase, the user carrying a smartphone with a Wi-Fi sensor can thoroughly survey

the area of interest and in each position scan for the sensed Wi-Fi APs. Each scan, i, in

each position, pi, will produce a set of n Wi-Fi RSS values (one for each sensed AP), ri, that

are related to that physical position. The set of RSS readings, ri, is called fingerprint and

different physical positions have different fingerprints. For each scan a tuple in the form of

(pi, ri) is recorded in the radio map.

Depending on the physical position its fingerprint vector may vary in length, as a result

of defective signal propagation such as a wall attenuating the signal strength of a certain

AP. Also, in the case of sensing only one or two different APs there may be locations within

the area of interest that have similar fingerprints, potentially leading to incorrect position

estimation. Fig. 3.7 shows an example room with three existing APs in which these situations

may occur.
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Figure 3.7: Fingerprinting layout example with three access points.

Points A and B may have similar fingerprints even though they do not share the same

physical location. On the other hand, this area of interest has three access points, but point

C only senses one of them. In order to overcome these issues each fingerprint data was

extended to also include the user orientation, namely the smartphone orientation against

the magnetic north. Subsection 3.4.3 of the Dead Reckoning chapter further details how the

orientation is obtained. The heading angle between the magnetic north and the smartphone

orientation is classified into four categories, it can either be: north, east, south or west. Fig.

3.8 summarizes how the heading angle categorization is performed. The area labeled by 1

corresponds to north, by 2 to east, by 3 to south and by 4 to west.

1

3

24

-45º 45º

135º-135º

N

S

EW

Figure 3.8: Fingerprinting heading categorization intervals.

Each fingerprint acts as a feature of that physical location, so the more information

they have the more unique each might be. Having unique fingerprints is the main goal

in fingerprinting techniques as they directly relate to their physical location counterpart.

With the addition of smartphone orientation to the fingerprint data, each radio map entry,

i, is now of the form (pi, θi, ri) where θi represents the orientation category in which that

position was scanned. Another important information regarding each RSS value, rij, is what

AP originated it. So, each RSS value is now extended to also include the basic service
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set identifier (BSSID) [34] of its AP which is unique: rij = {RSS,BSSID}. In summary,

each radio map entry, rmi, includes the physical position in which it was scanned, pi, the

orientation category of the smartphone, θi, and a vector of n tupples with the RSS value

and the BSSID of the AP that originated it, ri, regarding the n sensed APs in that physical

position:

rmi = {pi, θi, [{RSS1, BSSID1}, {RSS2, BSSID2}, . . . , {RSSn, BSSIDn}]}

The training phase is crucial in the overall performance of this technique. Several solu-

tions [1] [4] use completion algorithms to further populate the radio map without scanning

the entire area of interest. These algorithms are useful in situations where fingerprinting is

the only localization technique used and thus the radio map points density should be bigger.

In this work, as it is not only based on fingerprinting, these algorithms were not implemented

in order to explore the use of dead reckoning in between fingerprints.

3.3.2 Runtime phase

The runtime phase is where the actual position estimation is performed. After training

the system, estimating the user position is a matter of matching the most up-to-date finger-

print and smartphone orientation with the entries available in the radio map database. The

most up-to-date fingerprint and smartphone orientation are called the query reading. It is a

set of RSS values and corresponding BSSID sensed from the available APs, rq, in the current

unknown location and the smartphone orientation category, θq. Given that each radio map

entry, i, is of the form (pi, θi, ri), the estimated position can be obtained by matching the

query reading (θq, rq) with every radio map entry fingerprint data (θi, ri). The physical po-

sition, pi, associated with the fingerprint (θi, ri) that is most identical with the query (θq, rq)

is the estimated position.

An important aspect regarding Wi-Fi RSS data acquisition is that the Android SDK is

not instantaneous while delivering new RSS values from the Wi-Fi network card. Knowing

that users will be potentially moving around in the area of interest and the collected finger-

prints available on the radio map were recorded in a static manner, the RSS values are first

processed before matching. The query RSS vector is the result of a three time arithmetic

average. Given that a new set of RSS values is only available after a few milliseconds, the

resulting averaged query vector is only available after a second or two, depending on the

Android operating system.
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Several fingerprinting solutions rely on classification algorithms such as KNN or SVM to

effectively match a query against the whole radio map. In this work the KNN classification

algorithm is used. The reason behind this choice is that KNN is computationally lightweight

and yet it has proven high accuracy [2] [35]. The KNN algorithm further enhances position

estimation by regression fitting the K most suitable positions instead of selecting just the

most identical one. K is a constant that controls how many possibilities from the radio map

will be used to estimate the final position.

In order to match the query reading with the ones available in the radio map, it is first

computed the distance in signal space between the query RSS values, rqRSS
, and each one in

the radio map riRSS
. The distance, di, is obtained by using the L2 (Euclidean) metric:

di =
√

(rqRSS
− riRSS

) · (rqRSS
− riRSS

) (3.1)

Special care is needed to handle the subtraction of the two vectors, rqRSS
and riRSS

, because

first they need to be sorted by AP BSSID, so that only RSS values corresponding to the

same AP are subtracted from each other.

After having the distances between the query and radio map values, the estimated posi-

tion is obtained by averaging the K most suited positions. To select the K most appropriate

positions, the distances are sorted in ascending order. Let D = [d2, d4, d7, d1, . . . , d3]n be the

vector containing the n ordered distances and DK = [d3, . . . , d5]K the subset of D corre-

sponding to the first K values: the K most appropriate positions are the ones corresponding

to those distances, PK = [p3, . . . , p5]K . Finally, the estimated position, pe, is obtained by

computing the centroid of the positions in PK :

pe =
(∑K

i=1 PKix

K
,

∑K
i=1 PKiy

K

)
(3.2)

Different and distinct points can have identical fingerprints, depending on the Wi-Fi

infrastructure. By selecting K as 1 the algorithm works as a lookup table, returning the most

identical position in signal space, meaning that estimated positions coincide with available

training points. Small variations in RSS values can change the estimated position to other

distant training point, depending on the radio map density. In order to take advantage of

the regression feature, it is popular to either select K as 2 or 3. This way estimated positions

are still close to the user real position, but mispredictions have less impact in estimation

accuracy.

To better understand the geometry involved, Fig. 3.9 shows an example with four train
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points available in the radio map.

A

B

C

D

Physical position
Estimated position
Closest train point
Train point

Figure 3.9: Fingerprinting runtime regression example.

Points A, B, C and D represent the trained positions available on the radio map. By

selecting K as 2, from those 4 train points the KNN algorithm will estimate the position

based on 2. Points A and B are the ones closest to the user real position, so the estimated

position is the centroid point between A and B.

This is how the KNN algorithm is able to estimate the position, however it is clear that

the centroid of the closest training points is not that close to the user real position. An

improvement to this algorithm is the Weighted K Nearest Neighbors (WKNN) algorithm.

The WKNN differs from the KNN in the regression phase: instead of computing the centroid

of the K closest points, the regression is weighted. By using the inverse of the distance, in

signal space, between the query RSS values and the K closest train points RSS values as the

weight, the estimated position will be closer to the train point that has the most identical

fingerprint. LetWK be the vector of the inverse distances present inDK ,WK = [ 1
d3
, . . . , 1

d5
]K ,

the estimated position, pew, can be computed as the following weighted average:

pew =
(∑K

i=1WKi
PKix

τ
,

∑K
i=1WKi

PKiy

τ

)
(3.3)

where τ is the sum of all distances, τ =
∑K

j=1WKj
.

Geometrically, Fig. 3.10 represents the new estimated position using the WKNN algo-

rithm.

By comparing the previous estimated position (the one with lower opacity) with the new

one, it is clear that the estimated position using the WKNN algorithm is closer to point B

which is closer to the real position.

The position estimation can be even improved by taking advantage of the orientation

category also present on each radio map entry. This addition is simple yet it allows faster

position estimation and with better accuracy. While using KNN or WKNN the query RSS
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Figure 3.10: Fingerprinting runtime regression example using WKNN.

values are compared to all the existing ones in the radio map, using the orientation category

it is possible to reduce the number of computations. By filtering out the radio map entries

that do not match in orientation category, it is possible to only estimate the position using

train points that are oriented in the same direction as the user, reducing the amount of

distance computations performed.

In summary, the fingerprinting technique is able to estimate the position based on infor-

mation previously recorded in a radio map. In this implementation, there are 3 variables that

can be used to tweak the system behavior: either use KNN or WKNN matching algorithm,

select the K number of possibilities to estimate the position and either use the orientation

category while matching or not. These variables allow for finer control of the SmartLocator

fingerprinting component and can be defined in the application settings.

3.4 Dead Reckoning

Dead reckoning is a localization technique that uses IMUs such as accelerometers, gyro-

scopes and magnetometers to infer meaningful information regarding the user motion. Unlike

fingerprinting, this technique is not capable of estimating an absolute position. Its type of

localization is relative, which means that an initial position must be known before hand.

By continuously analyzing inertial sensors data, it is possible to track a user from an

initial position. Some existing solutions [18] [36] rely on numerical integration to perform

the tracking. Using linear acceleration obtained from accelerometers, the relative position

can be obtained by double integrating it. However, poor data acquisition may lead to

accumulated errors that degrade the estimation quality.

In this work, instead, another approach is followed. Being able to detect the user steps,

their length and the user heading direction also allows for tracking. If each time a step is

detected, its length, r, and heading direction, θ, can be computed, the new user position can
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be obtained by summing the step displacement vector to the last known position. Fig. 3.11

represents the basis of this technique.

θ

r

Pf

Pi

Figure 3.11: Dead reckoning tracking basis.

The displacement vector, ~δ, can be represented in polar coordinates as (r, θ). Therefore

the new user position, Pf , can be easily computed by summing the displacement vector to

the initial known position, Pi, as Pf = Pi+ ~δ.

To successfully use inertial sensors data, there is the need to understand the working

principle of each sensor. Accelerometers measure acceleration along the x, y and z axes in

its own inertial frame. Gyroscopes measure the rate of rotation or angular velocity along

each axis: roll, pitch and yaw. And magnetometers measure the ambient geomagnetic field

also for all the three axes. Fig. 3.12 represents the inertial frame of these 3 types of sensors.

z

yaw

Ypitch

X

roll

Figure 3.12: IMUs intertial frame.

Thanks to MEMS technology, in most modern smartphones, both accelerometer, gyro-

scope and magnetometer are packed as a single integrated circuit. And, as it is soldered flat

in the smartphone motherboard, the device inertial frame is the same as the sensors inertial

frame. However, the user may not align the mobile device with its own inertial frame while

using it. Smartphones are most likely to be handled with arbitrary orientation, as shown in

Fig. 3.13.

This impacts the way steps are detected and most importantly the overall accuracy of

the system. To overcome this issue, the inertial frames should be aligned. As the user can

be positioned and oriented according to any world frame, it was made the decision to use the

East-North-Up (ENU) frame as the reference frame. The ENU frame, as the name suggests,
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Figure 3.13: User handling smartphone with arbitrary orientation.

has an axis pointing east, another pointing north, defining a plane parallel to the ground,

and has an axis pointing outwards the center of the earth (up), as represented in Fig. 3.14.

UN

E

Figure 3.14: East-North-Up frame explanation.

In order to align the smartphone frame with the ENU one, a rotation matrix can be

estimated and further used to project accelerometer and gyroscope readings coordinates

into world space coordinates. Fig. 3.15 represents the architecture of the SmartLocator

dead reckoning component and where this projection takes place.

Acceleration obtained from the accelerometer also contains a term corresponding to grav-

ity. The linear acceleration, on the other hand, is the acceleration with gravity removed and

is the input required for both step detection and step length estimation algorithms. The

relationship between linear acceleration, al, raw acceleration obtained from the accelerome-

ter, ar, and gravity, g, is thus the following: ~al = ~ar − ~g. This way, gravity and magnetic

field vectors can be used to project the linear acceleration in the ENU world space frame,

as gravity points the opposite direction of the Up axis and the magnetic field vector points

the North direction.

Instead of feeding the projected linear acceleration to the step detection and step length

25



3.4. DEAD RECKONING

Acceleration

Step
length

Gravity

Magnetic field

U

E

N
IIR 

Low-pass
Filter
(3Hz)

N

U

E
Project acceleration

in world space 
(East-North-Up)

Step length
estimation

Threshold Step
detected

Input

Algorithm

Output
Gyroscope

Compass
fusion

Heading
direction

Figure 3.15: Dead reckoning architecture.

estimation algorithms, it is first filtered. The raw acceleration has a lot of noise. Given the

nature of user walking motion, it was selected experimentally 3 Hz as the cut off frequency of

the low-pass filter implemented to reduce the undesired peaks. Also, several other solutions

employ cut off frequencies similar to this.

The next subsections further detail how the step detection is performed and its length

estimated, based on filtered acceleration present on the Up axis and also how the user heading

direction is estimated.

3.4.1 Step detection

For the step detection, a simple relative threshold algorithm is implemented. The walk-

ing motion follows a certain pattern and so does the vertical acceleration sensed in the

smartphone accelerometer. By using the projected linear acceleration in the ENU frame,

the vertical component (relative to the Up axis) becomes independent of the mobile device

attitude. So, regardless of the smartphone orientation the algorithm is able to detect steps.

While walking, before taking a new step, our heel strikes the ground. When that happens,

a negative peak can be sensed in the vertical linear acceleration. Furthermore, in between

steps, during the swing phase, a positive peak can be detected. Knowing these two facts that

describe the two top-level phases of our walking mechanics (stance and swing phases), a step

can be considered as detected when two consecutive negative-positive peaks are detected. In

Fig. 3.16 the linear acceleration along the Up axis from 5 steps is shown.

During the swing phase the peaks are identified as red, and during the stance phase as

green. In order to computationally consider a step as detected, two thresholds are taken into

account. First, only sufficiently close consecutive peaks in time are allowed. As the algorithm
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Figure 3.16: Vertical linear acceleration sensed on the Up axis while walking.

looks for consecutive peaks in the specific order of first a negative one and in second a positive

one, if a negative peak is detected as a result of high magnitude noise or smartphone erroneous

handling, after a short period of time, ∆max, it is able to detect a negative peak again. If this

was not account for, some steps would fail to be detected. The other threshold determines

the minimum magnitude difference between the consecutive peaks, Amin, for the step to

be detected. This second threshold can be regulated by performing a set of experimental

calibrations. Two consecutive steps, taken at times t−1 and t0, with magnitudes of A−1 and

A0, respectively, are detected if the following conditions are met:

 t0 − t−1 <= ∆max

A0 − A−1 >= Amin

(3.4)

In Fig. 3.16, the steps that are considered as detected according to conditions 3.4 are

marked with a vertical green line in the positive peak. The Amin threshold is selected

as 1 m/s2 and ∆max is 0.8 seconds. These values were selected after performing a set of

calibrations and highly depends on the person using the system.

3.4.2 Step length estimation

When humans take steps, their hip experiences a displacement along the Up axis. In a

stationary phase the hip is in its most higher position. Contrary, while in between steps,

during the swing phase, the hip reaches its lower position. Harvey Weinberg demonstrated

that the step length is related to the distance between the hip positions, d, during the

step [37]. Fig. 3.17 represents the hip displacement experienced while walking:
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} d

Figure 3.17: Hip vertical displacement in different walking phases.

Furthermore, Weinberg demonstrated that the step length, Sl, can be computed using the

maximum and minimum acceleration sensed during the step, Amax and Amin, respectively,

as following:

Sl = K · 4
√
Amax − Amin (3.5)

Where K is a constant used for unit conversion.

3.4.3 Heading direction estimation

Some approaches [38] [39] infer motion heading by analyzing acceleration over the hori-

zontal east-north, EN, plane. However, this specific technique requires high sampling rates

and IMUs available on mobile devices are only capable of outputting at 20-25 Hz.

In order to estimate the user heading angle, it is assumed that the user walks with the

smartphone aligned with his movement. More precisely, that the yaw of the smartphone is

the same as the yaw of the user. Figures 3.12 and 3.13 help in understanding how the yaw

axes are assumed to be aligned. This way the smartphone magnetometer can be used as

a compass to effectively estimate the user motion heading angle, but at the same time the

other axes remain free.

Magnetometers output a vector with the sensed ambient magnetic field strength in each

axis. It is possible to compute the heading angle between that vector and the magnetic

north. The magnetic north vector can be seen as parallel to the EN plane and with a yaw

of 0º. The heading angle, θ, is thus the angle along the z-axis between the magnetic north

vector and the vector obtained from the magnetometer, as shown in Fig. 3.18.

Where the magnetic north vector is represented in blue and an arbitrary vector obtained

from the magnetometer in orange.
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θ

Figure 3.18: Heading angle representation.

However, magnetometers accuracy is directly influenced by the presence of other magnetic

fields other than the earth’s. To compensate these external influences, the gyroscope is

used. Gyroscopes can be used to obtain the rate of rotation along a certain axis. By

numerical integrating the angular velocity, rotation deltas can be computed and fused with

the magnetometer heading to improve the estimation. The fusion is implemented using a

complementary filter, as proposed by Shane Colton [40]. This filter fuses two sources of

data by filtering both inputs and summing them to obtain the final result. The first input

is low-pass filtered and the second high-pass filtered, which in this case corresponds to the

magnetometer heading angle and the orientation obtained from the gyroscope, respectively.

Fig. 3.19 represents the fusion using the complementary filter.

Low-pass
filter

High-pass
filter

Σ

Numerical
integration

Magnetomer
heading

Gyroscope
angular velocity

Fused
heading angle

Input

Algorithm

Output

Figure 3.19: Complementary filter architecture.

By filtering the inputs this way, the high frequencies of the orientation from the gyro-

scope are preserved, resulting in a dynamic fused orientation and the low frequencies of the

magnetometer preserve the long-term changes.

In the scope of this work the complementary filter implementation is based on the library

created by Paul Lawitzki [41].

Besides the actual heading estimation, this component of the SmartLocator system can

also account for a heading offset. Given that the heading angle is relative to the mag-
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netic north, there might be cases where the natural heading of the area of interest is not

aligned with the magnetic north. However, the representation of the area of interest in the

smartphone is always along the natural heading. Fig. 3.20 helps understanding this issue.
na
tur
al 
he
ad
ing

na
tur
al 
he
ad
ing

35º

Physical position
Estimated position

smartphone

A C
B

B

Figure 3.20: Natural heading offset problematic representation.

As shown, if the user walked along the north direction it would reach point A in the area

of interest, as the heading angle is reported as being 0º, the SmartLocator would estimate

the position as being in point B. To accommodate this, the SmartLocator application allows

for the offset to be defined in the settings. This offset will be subtracted from the fused

orientation every time a new step is detected. In this case, the natural heading of the area

of interest is about 35º from the magnetic north. This way, if the user walked north it would

reach point A, but the reported heading angle would be -35º, allowing the SmartLocator to

correctly estimate the user position as being in point C.

3.5 Fusion

The last, yet most important component of the SmartLocator localization estimation

system is data fusion. As shown in Fig. 3.5 both fingerprinting and dead reckoning compo-

nents produce output that is further processed in the data fusion component. By combining

the absolute position estimation based on the fingerprinting technique with the instanta-

neously available step displacement vectors from the dead reckoning technique, the data

fusion component is able to achieve better estimation accuracy.

As presented in detail in section 3.3, the fingerprinting component is able to output a new

absolute position at every one or two seconds, depending on the Android operating system.
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On the other hand, the dead reckoning component works in a reactive manner. As soon as a

step is detected, it outputs the information regarding the new step: its length and heading

angle.

Some approaches [22] [23] use particle filters to perform the fusion between these two

sources of data. In this work, an opportunistic approach is implemented, instead. Given

that the two types of localization differ a lot, it is interesting to analyze how they might

complement one another. Estimated fingerprinting positions are absolute in respect to the

area of interest frame. In contrast, estimated dead reckoning positions are relative to a

known initial position. This is the main difference between the two. To take advantage of

these individual features, the fingerprinting component will be responsible for the long term

changes, as to reduce the drift imposed by the dead reckoning. The dead reckoning compo-

nent can deliver fast updates and so it can provide dynamic position estimation in between

fingerprints, being responsible for the high frequency variations in short time intervals. The

philosophy behind this approach is based on the complementary filter [40]. Fig. 3.21 shows

a finite state machine (FSM) that further details the fusion logic.

1. INIT
2. UPDATE

FUSED
POSITION

waiting first 
fingerprint

!waiting first 
fingerprint

3. DEAD
RECKONING

FUSED_POS = NEW_POS FUSED_POS += δ

waiting fingerprint
update

!waiting fingerprint
update

4. ACCEPT
(OR NOT)
UPDATE

!D

5. AVERAGE
FUSED

POSITION
D

NEW_POS = NEW_POS + FUSED_POS
2

Figure 3.21: Data fusion basic FSM.

The fusion algorithm can be expressed as five different states. Beginning a new posi-

tion estimation demands an absolute position, because using dead reckoning requires an

initial known position. The first state (INIT) represents this behavior by waiting for the

fingerprinting component to output an absolute position. After having an absolute position

the fusion system transitions to a state where the current fused position (FUSED_POS)

is updated to the just acquired absolute position. This state also triggers an UI update,
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which means that the virtual indicator that represents the user location moves to the fused

position. Unconditionally after this state the system transitions to a new state where it

takes advantage of dead reckoning component. In this state, every time a step is detected,

its displacement vector, δ, is added to the fused position. Fig. 3.22 shows how the system

works so far.

Initial absolute position
Estimated position
Steps

Figure 3.22: Data fusion example using just the dead reckoning technique.

During this state, as it is only based on dead reckoning, the fused position can drift.

This is where the long term updates from the fingerprinting component help. Every time

the system transitions to this state, a new absolute position is requested. While it is not

available, dead reckoning is used, as shown. When it becomes available, its absolute nature is

used to correct the drift and the overall fused position. To this extent, the system transitions

to the fourth state where the quality of the absolute position is assessed. The position is

accepted or not based on a distance condition, D, between the current fused position and

the new absolute position. Given the fact that a person can not be in two different places

at the same time, D condition models this restriction:

D =

 1, dist(FUSED_POS,NEW_POS) <= D_MAX

0, dist(FUSED_POS,NEW_POS) > D_MAX

By selecting D_MAX as an appropriate threshold, new absolute positions might be

discarded if they are far enough from the current fused position, as represented in Fig. 3.23.

In the case of rejection, the system returns to the third state, and no drift correction is

applied. If the absolute position is accepted, the fusion algorithm averages the current fused

position with the new absolute position, in the fifth state. By using an arithmetic average,

instead of a direct replacement of the fused position for the new absolute position, the

system stills converge to the absolute position, but the virtual indicator movement becomes

smoother. After which, unconditionally, the system updates the UI and the fused position,
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Discarded absolute position
Accepted absolute position
Current fused position
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Figure 3.23: Absolute position rejection based on a distance threshold.

back in the second state. Fig. 3.24 shows how the system handles the drift correction, by

taking on the example presented previously.

Dead reckoning estimated 
position

Accepted absolute position
Fused position

Figure 3.24: Data fusion drift correction example.

This is the basis of how the fusion algorithm operates. However, there is a flaw in this

FSM that may lead to only using the dead reckoning component. This happens when the D

condition is not satisfied, as shown in Fig. 3.23. When the new absolute position is rejected,

the system returns to the dead reckoning state, and the drift is thus not corrected. This

can lead to a situation where further new absolute positions will always fail according to D.

As of right now, the fusion algorithm is not stable. In order to stabilize the system so that

it always converges to absolute positions, correctly eliminating drift, a confidence system is

implemented. Fig. 3.25 represents the extended FSM of the fusion algorithm.

The confidence system is represented as the sixth state. It determines the confidence that

the fusion algorithm has in positions based only on the dead reckoning component. Each

time a new absolute position is rejected, in the fourth state, by failing according to D, the

system decrements its confidence about the dead reckoning component. The C condition
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Figure 3.25: Data fusion extended FSM with confidence system.

represents whether the confidence, CONF , is above zero or not:

C =

 0, CONF <= 0

1, CONF > 0

In the case of CONF reaching zero, a new absolute position is accepted regardless of the

D condition. Every time the system transitions to the second state, the maximum confidence

is restored. This addition allows the system to always converge to absolute positions and

at the same time preserves the dynamics in position estimation obtained by using dead

reckoning. Also, by regulating the MAX_CONF , representing the maximum confidence,

the system can be fine tuned as to favor the fingerprinting component over the dead reckoning

component or vice-versa.

In terms of the visual representation, the virtual indicator that represents the user loca-

tion in the area of interest reflects the fused position. States two and three trigger an UI

update each time the system transitions to one of them. However, instead of directly repo-

sitioning the virtual indicator to the fused position, it is implemented a linear interpolator

that translates the position over time, from the last position to the new one. This acts as an

animation, but improves the overall aspect and experience of the SmartLocator application.
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The SmartLocator system has the ability to allow the fine tuning of each localization

component by varying certain algorithm variables. Several experiments were conducted in

order to validate and gain a better understanding of how these parameters help in estimating

the user position.

In the following sections it is first explained which experiments were conducted and

how each one was performed. Later, it is presented and further discussed the localization

estimation results of each experiment.

4.1 Setup and method

A different set of experiments was performed for each of the three main components of

the SmartLocator localization system: fingerprinting, dead reckoning and data fusion.

The fingerprinting component allows the definition of several parameters of its algorithm.

Namely, it allows the position estimation to: either be weighted, by using the WKNN clas-

sification algorithm, or not, by using the KNN classification algorithm; use the smartphone

orientation category, or not, while performing the radio map matching; and perform the

regression of either two (K = 2) or three (K = 3) radio map entries. These 6 variants of the

fingerprinting algorithm were tested and their results presented in section 4.2.

The dead reckoning component was first tested in terms of step detection accuracy, as it

is crucial for the algorithm overall performance. By establishing a pre-defined initial position

in which the user must start the experiment, the component was also put to test regarding

position estimation. Section 4.3 presents the results obtained while using only the dead

reckoning component.

Lastly, the data fusion component which leverages both the fingerprinting and dead

reckoning strengths was tested according to two sets of experiments. First, the influence of

the number of radio map entries used for regression, K, is analyzed. In second, as the system
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is able to use the dead reckoning in between fingerprints, the influence of the density of the

training points is taken into account. Both experiments are detailed in section. 4.4.

In order to extract meaningful information from each of these experiments, a metric

must be defined to evaluate each experiment performance. The metric used is the distance

between an estimated position and its correspondent real position, called error from now on.

This metric allows the estimation of the average, maximum and standard deviation of the

error in position estimation of each component.

Each experiment was conducted in the same controlled area room available in the Insti-

tute of Systems and Robotics (ISR) of the University of Coimbra. And a common walking

path pattern was used throughout all tests, as shown in Fig. 4.1.

Figure 4.1: Experiments common walking pattern.

The green point indicates both the initial and final points of each experiment, and the

arrows indicate the walking direction.

Six runs of the presented path were performed per experiment, while the SmartLoca-

tor application was logging each estimated position along with a timestamp into the device

storage. Given the fact that different mobile devices have screens with potentially different

resolutions, in pixels, each estimated position is normalized before being stored. The nor-

malization is a simple process that allows the coordinates to be independent of the device

screen resolution. Let w be the width of the device screen and h its height, an estimated

position in the device screen coordinates, (x, y), can be normalized as shown:

normalized position = (
x

w
,
y

h
)

So that each component of the normalized position belongs to the interval [0, 1]. Each
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log entry has the following format:

{time stamp, normalized position}

This way, a simple Matlab script was developed with the purpose of easily represent

estimated positions throughout each experiment, as shown in Fig. 4.2.

Figure 4.2: Plot of an experiment estimated positions.

In order to compute the distance between an estimated position and the corresponding

real position, each experiment was recorded using a Nikon DSLR D5300 camera. Having

the video footage of each experiment allowed the ground truth data to be collected by

inspection. The camera was mounted on the bottom of the room, above a cabinet. The

snapshot represented in Fig. 4.1 was captured from that perspective.

As each log entry contains the timestamp at which that estimated position was obtained,
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the experiment video frame corresponding to that exact moment can be obtained and further

used to collect the corresponding real position. Another Matlab script was developed that

iteratively represents each estimated position available in an experiment log and asks the

user to input the corresponding real location by showing the corresponding video frame, as

show in Fig. 4.3.

Figure 4.3: Matlab application developed to inspect experiments recorded videos.

Points represented in red are estimated positions and green points are the corresponding

real positions input by the user. The output of this Matlab script is two vectors. One rep-

resents all the estimated positions and the other the corresponding real ones. By computing

the Euclidean distance between each corresponding estimated and real position in the vectors

allows the average, maximum and standard deviation of the error to be obtained.

The collected ground truth data accuracy obtained by inspecting the video highly depends

on the accuracy of the inspector. To reduce the inspection error a criteria was defined: the

user must walk with the smartphone aligned with its waist and thus the real position can be

considered as the point in the ground plane corresponding to the vertical projection of the

mobile device position, as represented in Fig. 4.4.

This way, the projection point on the ground plane is close to the center point between

the user’s feet, which is easier to inspect in the video.

However, while this criteria works flawlessly, this manual inspection consumes a lot of

time. To this extent, a computer vision approach was developed to aid the video inspection.

Using four control points, whose coordinates in both the layout representation and physical

room are known, a homography matrix was estimated. Fig. 4.5 represents the used control
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(a) Front view. (b) Side view.

Figure 4.4: Smartphone holding criteria for improved inspection accuracy.

points in both the video frame and the layout.

(a) The control points in the
layout image.

(b) The corresponding control points in the physical room.

Figure 4.5: Homography matrix estimation between the layout image and the physical room.

This matrix can then be used to project a point in the video frame into the corresponding

point in the layout image. This way, the Matlab script that was developed for the video

inspection was updated to allow the user to click on the video frame, instead of asking the

point coordinates. The position, in pixels, associated with the click is then projected into

the layout image using the homography matrix.

Using this technique turned out to be a great improvement in the consumed time to

inspect all the data and in the accuracy of the ground truth data collected.
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4.2 Fingerprinting

To provide a common baseline between all fingerprinting experiments the same radio map

was used across them. The radio map was trained in 6 different positions, where in each one

four orientations were recorded (north, east, south and west), as show in Fig. 4.6.

Figure 4.6: Localization of the train points used in fingerprinting experiments.

The layout image was specifically designed to include the rounded corner rectangle that

is also present on the real room floor, as can be seen in Fig. 4.1, using the rectangle real

coordinates and dimension. The training points are distributed as a 2x3 grid and span across

all the room area.

4.2.1 Weighting influence

In order to assess the influence in position estimation between using the WKNN or the

KNN algorithm, the system was tested in each situation using K as 2. In Fig. 4.7a the

estimated positions can be seen, while performing the walking pattern previously presented,

using the KNN algorithm, in Fig. 4.7b the corresponding real positions and in Fig. 4.7c the

error between the estimated and real positions. The raw results are presented in appendix

B.3, from which the average error in position estimation was computed and is 2.1613 meters,

the maximum error 4.6194 meters and the standard deviation (Std), σ, is 0.9692 meters.
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(a) Fingerprinting non weighted
experiment estimated positions.

(b) Fingerprinting non weighted
experiment real positions.

(c) Fingerprinting non weighted
experiment error.

Figure 4.7: Fingerprinting non weighted experiment results.

Using the WKNN algorithm, the estimated positions are shown in Fig. 4.8a, the corre-

sponding real positions in Fig. 4.8b and the error in Fig. 4.8c. In this case the reported

average error is 2.2458 meters, the maximum error 3.9699 meters and the standard deviation

1.1457 meters.

Table 4.1 summarizes the influence in position estimation when using the KNN algorithm

or the WKNN algorithm.

Table 4.1: KNN vs WKNN performance comparison summary.

KNN WKNN
Average error (m) 2.1613 2.2458
Maximum error (m) 4.6194 3.9699

Std (σ) (m) 0.9692 1.1457

These results were not expected, as the weighted algorithm, WKNN, was implemented

using a better regression approach. It is a fact that the average error difference is only 8, 45

centimeters. Also, the maximum error of the WKNN algorithm is 65 centimeters lower than

the KNN’s. However, in terms of standard deviation, it is again higher in the WKNN case.

Overall, is does not outperform the KNN algorithm.

Although both the WKNN and the KNN algorithms have low implementation complexity,

the WKNN is still more complex. This result proves that the added complexity is not worth
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4.2. FINGERPRINTING

(a) Fingerprinting weighted ex-
periment estimated positions.

(b) Fingerprinting weighted ex-
periment real positions.

(c) Fingerprinting weighted ex-
periment error.

Figure 4.8: Fingerprinting weighted experiment results.

it, both in implementation time and in computation time.

4.2.2 Orientation influence

Another feature of the fingerprinting component is the ability to complement the match-

ing of fingerprints with the orientation category (see Fig. 3.8) in which they were trained.

To this extent, two experiments were conducted: one without using the orientation category;

the other using it. Both experiments using the WKNN algorithm.

The experiment conducted without orientation category matching yields the same results

as the previous experiment using only the WKNN algorithm. Figs. 4.8a, 4.8b and 4.8c show

case the estimated points, their corresponding real positions and the associated error between

them, respectively.

With orientation category matching, Fig. 4.9a presents the experiment estimated points,

Fig. 4.9b the corresponding real positions and Fig. 4.9c the error. The average error,

obtained using orientation category matching, is 2.1523 meters, the maximum error is 4.6843

meters and the standard deviation is 1.8620 meters.

The comparison between using orientation category matching or not is presented in table

4.2.
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(a) Fingerprinting with orienta-
tion category matching experi-
ment estimated positions.

(b) Fingerprinting with orienta-
tion category matching experi-
ment real positions.

(c) Fingerprinting with orienta-
tion category matching experi-
ment error.

Figure 4.9: Fingerprinting with orientation category matching experiment results.

Table 4.2: Orientation matching vs Without orientation matching performance comparison
summary.

Using orientation matching Without using orientation matching
Average error (m) 2.1523 2.2458
Maximum error (m) 4.6843 3.9699

Std (σ) (m) 1.1183 1.1457

Using orientation category matching slightly improves the average estimation error, while

having a higher maximum error than without using it. The improvement is about 9, 35

centimeters in average.

Regarding the previous best setup (using KNN without orientation) its average error is

about 1 centimeter higher than the WKNN algorithm with orientation (2.1613 meters vs

2.1523 meters). Making these two possibilities the best performant so far.

4.2.3 K influence

The previous experiments were conducted using K as 2. However, how does K influence

the overall performance of position estimation? To answer this question two experimental

tests were made using the most common K constant values: 2 and 3.

The experiment conducted with K as 2 yields the same results as the previous experiment
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4.2. FINGERPRINTING

using the WKNN algorithm with orientation category matching. Figs. 4.9a, 4.9b and 4.9c

show case the estimated points, their corresponding real positions and the associated error

between them, respectively.

By selecting K as 3, the results are presented in Figs. 4.10a, 4.10b and 4.10c in the

same manner. Yielding an interesting result, with an average error of 1.8602 meters, max-

imum error of 4.1502 meters and a standard deviation of 0.7676 meters. Which is a great

improvement from the previous experiment: 13,5% better.

(a) Fingerprinting using K as 3
experiment estimated positions.

(b) Fingerprinting using K as 3
experiment real positions.

(c) Fingerprinting using K as 3
experiment error.

Figure 4.10: Fingerprinting using K as 3 experiment results.

Table 4.3 compares the previous best results with this one.

Table 4.3: K=2 vs K=3 performance comparison summary.

Using K as 2 Using K as 3
Average error (m) 2.1523 1.8602
Maximum error (m) 4.6843 4.1502

Std (σ) (m) 1.1183 0.7676

Both the average and maximum errors are greatly improved. Resulting in the best

combination of the fingerprinting component parameters: using K as 3, using orientation

category matching and weighting the regression by using the WKNN algorithm.
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4.3 Dead reckoning

The dead reckoning component wast tested regarding its accuracy in detecting steps and

position estimation. The same approach of video recording several turns while logging data

to the smartphone was used. Fig. 4.1 represents the walking pattern and the initial position

used for dead reckoning (green point).

4.3.1 Step detection

Assessing the step detection accuracy is a matter of comparing the estimated step count

of each run and manually inspect the corresponding video footage. In this experiment the

walking pattern was not used. The user walked freely in the area.

Three different types of experiments were performed. In the first type the user walked

slowly, in the second the user walked at regular speed and in the third the user walked in

an accelerated pace. In each type were performed 6 runs where in each the user walked 10

steps. Table 4.4 shows the results of each experiment.

Table 4.4: Step detection results.

Slower speed Regular speed Accelerated speed
Estimated steps 61 61 61

Real steps 60 60 60
Mispredicted steps 1 1 1

The algorithm predicted the same number of steps in each run, interestingly. Having

estimated one step more than what the user took in each experiment. One misprediction in

a total of 60 steps yields an accuracy in step estimation of 98, (3)%.

4.3.2 Accuracy

Regarding the overall position estimation accuracy, six experiments were conducted in

which the user started from the same initial position and completed the circuit, as in previous

experiments. The estimated positions were then compared with the ground truth location

obtained from inspecting the video footage of each test.

Figs. 4.11a, 4.11b and 4.11c, respectively, represent the estimated points, their corre-

sponding real positions and the associated error between them. The raw data is presented

in B.5.
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4.3. DEAD RECKONING

(a) Dead reckoning estimated
positions.

(b) Dead reckoning real posi-
tions.

(c) Dead reckoning error.

Figure 4.11: Dead reckoning results.

Using only the dead reckoning component, the average error obtained is 1.6607 meters,

the maximum error is 4.1616 meters and the standard deviation is 1.0632 meters. Which is

more accurate than using only the fingerprinting component. It was not expected that the

dead reckoning component was this accurate. In table 4.5, the dead reckoning component

accuracy is compared against the best performing fingerprinting setup.

Table 4.5: Dead reckoning vs Best fingerprinting setup comparison.

Dead reckoning Fingerprinting with K as 3, WKNN and orientation
Average error (m) 1.6607 1.8602
Maximum error (m) 4.1616 4.1502

Std (σ) (m) 1.0632 0.7676

The dead reckoning component is 10.72% more accurate than the best fingerprinting

setup. However, given the nature of the type of localization obtained while using dead

reckoning, if the tests were longer, the drift effect would be more noticeable. Impairing this

method accuracy.
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4.4 Fusion

Sections 4.2 and 4.3 discuss the accuracy in position estimation while using the finger-

printing technique or the dead reckoning technique individually, respectively. These are the

two techniques used in the data fusion component. Having well performant individual com-

ponents improves the overall system accuracy. The fusion algorithm uses fingerprinting with

WKNN and orientation category matching.

In this section performance gains obtained by integrating these two different types of

localization technique are presented and further discussed.

4.4.1 K influence

Similarly to the experiment conducted in the fingerprinting component, this experiment

evaluates the influence that the number of radio map entries used for regression may have

on the final accuracy. To this extent, six turns over the pre-defined path (see Fig. 4.1) were

performed while using K as 2 and K as 3.

The estimated positions while using K as 2 are represented in Fig. 4.12a, their corre-

sponding real positions in Fig. 4.12b and the error between them in Fig. 4.12c.

(a) Fusion using K as 2 esti-
mated positions.

(b) Fusion using K as 2 real po-
sitions.

(c) Fusion using K as 2 error.

Figure 4.12: Fusion using K as 2 results.
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The fusion algorithm using K as 2 is capable of an average error of 1.3955 meters, a

maximum error of 2.9191 meters and a standard deviation of 0.6557 meters. It provides

a great improvement over using only one type of localization method. Particularly, it is

24, 98% more performant than using only fingerprinting and 15, 97% better than using only

dead reckoning. Table 4.6 compares the fusion against both the fingerprinting and dead

reckoning techniques when used individually.

Table 4.6: Fusion using K as 2 vs Dead reckoning vs Best fingerprinting setup comparison.

Fusion (K=2) Dead reckoning Fingerprinting
Average error (m) 1.3955 1.6607 1.8602
Maximum error (m) 2.9191 4.1616 4.1502

Std (σ) (m) 0.6557 1.0632 0.7676

The standard deviation improvement reflects the elimination of the dead reckoning drift

by using the absolute position updates from the fingerprinting component. It can be seen

in Fig. 4.12a that the estimated points almost do not reach the room boundaries, which,

on the contrary, is common in the dead reckoning case (see Fig. 4.11a). Which, naturally,

presents an improvement over 1 meter in maximum error.

Previously, fingerprinting (individually) saw an improvement when used with K as 3,

instead of 2. In Fig. 4.13a the estimated positions while using the fusion algorithm with K

as 3 is represented, their corresponding real positions in Fig. 4.13b and the error between

them in Fig. 4.13c.

Just by analyzing Fig. 4.13c it is clear that using K as 2 yields better results. In fact, the

average error is 2.0191 meters, the maximum 4.602 meters and the standard deviation 1.0564

meters. Also, by comparing these results with the results available in table 4.6, using fusion

with K as 3 even performs worse than using fingerprinting or dead reckoning individually.
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(a) Fusion using K as 3 esti-
mated positions.

(b) Fusion using K as 3 real po-
sitions.

(c) Fusion using K as 3 error.

Figure 4.13: Fusion using K as 3 results.

4.4.2 Training points density influence

As can be seen in Fig. 4.6, all experiments were carried while using a radio map with 6

points. To better understand the influence of the amount of training points in the overall

accuracy, the fusion algorithm was tested using 2 different radio maps. One map with fewer

training points, 4, and the other with more training points, 8, as shown in Fig. 4.14. The

experiments were performed using K as 3.

While using the radio map with lower density with only 4 training points, the average

error was 2.1703 meters, the maximum error 5.0684 meters and the standard deviation 1.0997

meters. On the other hand, using the more dense radio map with 8 points, the average error

was 1.9593 meters, the maximum error 5.2504 meters and the standard deviation 1.0664

meters.

The results regarding the use of each radio map (4 points, 6 points and 8 points) is

summarized in table 4.7.
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4.4. FUSION

(a) Lower density map with 4 training points. (b) Higher density map with 8 training points.

Figure 4.14: Radio maps with different densities.

Table 4.7: Fusion using a lower density radio map vs Fusion using regular density radio map
vs Fusion using higher density radio map comparison.

Low density Regular density High density
Average error (m) 2.1703 2.0191 1.9593
Maximum error (m) 5.0684 4.602 5.2504

Std (σ) (m) 1.0997 1.0564 1.0664

Increasing the density yields best results, with the highest density map achieving 9, 72%

better accuracy than the lower density one. However, the improvement is not significative.

The main conclusion of this experiment is that there is no need to create radio maps with

large amounts of training points requiring labour intensive work. A simple, low density radio

map, can perform almost identical.
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5 Conclusion and Future Work

5.1 Conclusion

Nowadays ubiquitous computing applications are a popular topic. Besides rich UIs,

applications developers start to gather context information in order to provide better user

experiences. One of the fundamental dimensions of the surrounding context is localization.

To that extent, GPS has been used, but fails in indoor environments.

Using alternative localization methods can enhance the data quality regarding the con-

text, so that developers can take advantage of it. Several types of localization solutions

already exist, including, but not limited to: fingerprinting, motion sensing, range-based and

vision-based. Each having its pros and cons.

This work focuses on a hybrid approach that fuses two localization techniques: fin-

gerprinting and motion sensing. By using two techniques, estimation quality was greatly

improved, as the fusion algorithm takes advantage of the best features of each technique yet

minimizing their negative aspects. The proposed algorithm is stable and always converges to

absolute positions inside the area of interest, successfully eliminating drift over time. Also,

by analyzing the algorithm performance while using radio maps with different densities, it

was concluded that a lower density map can perform almost identical to a higher density

map. Yielding a great result that reduces the training effort regarding the fingerprinting

technique.

Several parameters of the fusion algorithm are fine tunable, making it flexible to its

user and area of interest independent. The best setup result, in terms of average error in

position estimation, was achieved using K as 2, orientation category matching and weighted

regression. Interestingly and unexpected, dead reckoning estimated positions were more

accurate than fingerprinting ones, when using each localization technique individually.
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5.2 Future work

Independently of GPS lower accuracy it would be interesting to incorporate this source

of data into the fusion algorithm, to be used in situations where Wi-Fi is not available and

the user is outside.

Besides representing user’s estimated location the SmartLocator application could make

use of that information to present curated information in the form of pop-ups, regarding

specific locations in the area of interest. Real applications include points of interest in

museums, stores branding in malls, an assistant in navigation systems and advertisement

which has great commercial interest.

A negative aspect of the solution is requiring the user to walk with the smartphone aligned

with its motion heading. It would be interesting to explore alternative solutions that allow

the mobile device to be in the pocket or wallet. That way, the SmartLocator application

could run as a background service and take advantage of the Android OS notifications to

present relevant information regarding the context without requiring interaction.
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A ITU Recommendation factors

Table A.1: Power loss coefficients, N, for indoor transmission loss calculation.

Frequency Residential Office Commercial
900 MHz - 33 20

1.2-1.3 GHz - 32 22
1.8-2.0 GHz 28 30 22

4 GHz - 28 22
60 GHz1 - 22 17

160 GHz values assume propagation within a single room or space, and do not include

any allowance for transmission through walls. Gaseous absorption around 60 GHz is also

significant for distances greater than about 100 m which may influence frequency re-use

distances. (See Recommendation ITU-R P.676.)

Table A.2: Floor penetration loss factors, Lf (dB) with n being the number of floors pene-
trated, for indoor transmission loss calculation.

Frequency Residential Office Commercial

900 MHz -
9 (1 floor)
19 (2 floors)
24 (3 floors)

-

1.8-2.0 GHz 4n 15 + 4 (n – 1) 6 + 3 (n – 1)
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B Raw results

The following sections include tables with raw estimated positions, real positions and

their corresponding error. The coordinates frame of the room used during the experiments

is shown in Fig. B.1.

Figure B.1: Experiments room coordinates frame.

The width, w, is 518 centimeters and the height, h, is 1321 centimeters.

B.1 Fingerprinting results

Table B.1: KNN error results (cm).

Estimated position Real position Error

(245.6495, 581.2756) (131, 720) 179.9693

(380.9347, 582.1658) (380.9761, 725.8911) 143.7253

(380.9347, 582.1658) (389.8937, 439.9019) 142.5457

(380.9347, 582.1658) (385.9083, 449.2181) 133.0406

(380.9347, 582.1658) (131.4894, 458.2348) 278.5352

(380.9347, 582.1658) (136.2347, 452.1196) 277.1103
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APPENDIX B. RAW RESULTS

Estimated position Real position Error

(404.0756, 441.5202) (136.3185, 455.0117) 268.0968

(404.0756, 441.5202) (369.1559, 730.5622) 291.1437

(243.8694, 721.031) (362.719, 730.6072) 119.2347

(357.7938, 722.8113) (142.5919, 1044.3485) 386.9083

(357.7938, 722.8113) (133.9052, 1046.5824) 393.6418

(129.055, 762.8686) (132.6517, 1046.1014) 283.2557

(245.6495, 581.2756) (140.4565, 720.4437) 174.4515

(243.8694, 721.031) (131, 720) 112.8741

(245.6495, 581.2756) (357.6804, 728.25) 184.8037

(268.7904, 440.6301) (390.4349, 448.054) 121.8708

(131.7251, 579.4953) (137.1487, 446.5922) 133.0137

(245.6495, 581.2756) (356.157, 735.7643) 189.9439

(131.7251, 579.4953) (142.2454, 1041.3168) 461.9413

(243.8694, 721.031) (125.2899, 1040.7018) 340.9553

(243.8694, 721.031) (135.9368, 720.919) 107.9327

(243.8694, 721.031) (135.2777, 719.4211) 108.6036

(243.8694, 721.031) (135.875, 719.4242) 108.0064

(245.6495, 581.2756) (131, 720) 179.9693

(268.7904, 440.6301) (360.2319, 724.4965) 298.231

(380.9347, 582.1658) (393.9565, 443.4683) 139.3074

(404.0756, 441.5202) (137.0516, 451.673) 267.2169

(245.6495, 581.2756) (358.671, 727.605) 184.895

(373.8144, 904.4043) (131.3847, 1044.771) 280.1338

(267.0103, 580.3854) (132.695, 718.4603) 192.6273

Table B.2: WKNN error results (cm).

Estimated position Real position Error

(382.5779, 572.1787) (131, 720) 291.792

(382.2829, 573.9715) (357.8201, 727.6045) 155.5684

(381.3879, 579.4111) (357.8201, 727.6045) 150.0558

(265.7591, 581.6531) (359.1089, 727.5946) 173.2429

(379.6955, 589.6975) (394.8471, 445.603) 144.8889

(380.8047, 582.9559) (133.3914, 440.5594) 285.4648
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Estimated position Real position Error

(379.9469, 588.1694) (135.8943, 440.3716) 285.3171

(357.7938, 722.8113) (331.4355, 652.1764) 75.3927

(381.3925, 579.3836) (241.6915, 946.8131) 393.0914

(357.7938, 722.8113) (132.6517, 1046.1014) 393.9612

(357.7938, 722.8113) (129.9469, 1043.1135) 393.0747

(127.3236, 899.2821) (130.2538, 1043.1336) 143.8814

(260.628, 760.2414) (131.3934, 716.0408) 136.5844

(272.5121, 721.4786) (131, 720) 141.5198

(257.6805, 596.4597) (356.6104, 729.7611) 166.0012

(404.0756, 441.5202) (386.8325, 448.1985) 18.4912

(382.7509, 571.1278) (132.5781, 434.8861) 284.8652

(357.7938, 722.8113) (357.0434, 728.2459) 5.4862

(357.7938, 722.8113) (145.2736, 1038.9795) 380.9556

(357.7938, 722.8113) (125.6062, 1037.7929) 391.3112

(227.3276, 720.7725) (124.612, 1037.3107) 332.7866

(357.7938, 722.8113) (131.6253, 717.9025) 226.2217

(382.7554, 571.1) (133.8178, 713.3716) 286.7248

(382.1304, 574.8987) (131, 720) 290.036

(252.1862, 589.5255) (363.5184, 724.4352) 174.9156

(381.2567, 580.2088) (394.8883, 443.3764) 137.5097

(382.3719, 573.431) (134.6958, 454.8145) 274.6149

(244.1337, 579.3626) (136.8911, 445.8382) 171.2593

(381.2314, 580.3623) (357.125, 730.6839) 152.2422

(357.7938, 722.8113) (125.4436, 1044.6972) 396.9851

(248.6051, 721.105) (141.0134, 722.7335) 107.604

Table B.3: Using orientation category while matching results (cm).

Estimated position Real position Error

(127.4963, 887.4205) (131, 720) 167.4571

(246.3593, 582.1715) (359.4025, 732.5424) 188.1228

(385.3417, 555.3812) (396.2394, 448.5781) 107.3576

(249.0022, 892.2515) (132.9535, 447.174) 459.9579

(379.8444, 588.792) (356.7107, 737.0779) 150.0796
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Estimated position Real position Error

(131.8505, 569.6488) (128.1353, 1038.0661) 468.4321

(261.5897, 762.6659) (128.5227, 1033.4782) 301.7386

(127.2091, 907.1434) (140.7027, 720.5746) 187.0561

(284.7307, 562.4324) (131, 720) 220.1378

(245.5732, 581.1793) (359.3372, 737.1025) 193.0137

(301.4946, 440.8453) (401.6766, 441.9521) 100.1882

(383.0053, 569.5813) (130.2203, 441.3696) 283.4404

(378.1366, 599.1722) (356.7582, 732.5211) 135.0517

(258.3633, 1085.9973) (132.9041, 1035.4793) 135.2481

(237.8673, 720.9372) (137.2262, 722.0334) 100.647

(272.5788, 574.7439) (131, 720) 202.8396

(251.4656, 588.6161) (363.9474, 726.3933) 177.8615

(290.8711, 440.7753) (398.1507, 448.4396) 107.5531

(382.8463, 570.548) (128.6582, 444.5137) 283.7186

(382.6354, 571.8291) (356.7107, 737.0779) 167.27

(248.4812, 893.063) (355.156, 740.0663) 186.514

(131.7133, 580.4238) (130.3751, 1034.056) 453.6342

(127.3481, 897.5999) (136.1819, 724.9588) 172.8669

Table B.4: K = 3 results (cm).

Estimated position Real position Error

(199.9409, 836.612) (131, 720) 135.4666

(304.0139, 549.0499) (363.6883, 734.0933) 194.4277

(309.4154, 527.0507) (394.6488, 451.2944) 114.034

(301.7419, 536.9309) (127.992, 444.0669) 197.0096

(204.1358, 757.5659) (360.5333, 740.052) 157.3751

(214.6521, 747.2996) (130.3552, 1033.5721) 298.4257

(206.2462, 970.849) (130.2236, 1035.0974) 99.5354

(194.0169, 825.7796) (135.0933, 712.8846) 127.3471

(302.4709, 609.3146) (131, 720) 204.092

(300.3554, 532.2097) (360.2218, 732.4666) 209.0139

(307.5552, 521.4911) (396.6971, 454.3009) 111.6279

(306.204, 537.0086) (131.9866, 437.8168) 200.4763
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Estimated position Real position Error

(302.4517, 736.0159) (358.5287, 744.4551) 56.7084

(202.3844, 621.9409) (133.1055, 1031.133) 415.0153

(216.5999, 852.7449) (131.7036, 1032.1607) 198.4879

(297.9812, 750.2296) (138.9465, 718.9722) 162.0773

(298.2578, 624.985) (131, 720) 192.3617

(206.5214, 628.3366) (362.7548, 737.1061) 190.3672

(234.2878, 523.3245) (394.2124, 460.5087) 171.8188

(308.192, 610.6182) (129.4361, 437.9327) 248.5437

(304.0435, 541.0842) (354.2983, 736.8615) 202.1245

(208.6718, 732.8405) (127.3865, 1028.555) 306.6828

(216.9099, 880.4534) (128.2597, 1028.2485) 172.3434

(205.6357, 634.8626) (144.6965, 713.1193) 99.1851
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B.2 Dead reckoning results

Table B.5: Dead reckoning results (cm).

Estimated position Real position Error

(189.4867, 718.8524) (131, 720) 58.498

(249.9174, 714.4319) (283.1587, 708.3963) 33.7848

(308.1217, 695.2885) (344.6702, 696.2517) 36.5612

(348.9006, 648.0972) (385.2412, 628.7035) 41.1917

(377.5724, 586.732) (412.1585, 540.4799) 57.7534

(395.1215, 521.6718) (417.16, 478.3278) 48.625

(393.0401, 455.1236) (401.387, 427.2562) 29.0907

(348.2339, 408.6869) (370.3089, 368.5986) 45.7644

(284.764, 392.2461) (303.3033, 360.599) 36.6776

(229.1234, 400.7152) (244.5725, 355.37) 47.9047

(176.3376, 409.9197) (239.9351, 355.7773) 83.5226

(118.2218, 443.9409) (180.2436, 371.1379) 95.6399

(103.1702, 497.832) (153.6776, 414.892) 97.1084

(95.9136, 550.2602) (155.4047, 438.7074) 126.4248

(114.1708, 599.2901) (169.8783, 474.3739) 136.7749

(134.0688, 643.116) (176.8375, 487.3537) 161.5273

(168.5759, 694.7723) (211.4264, 547.5411) 153.3401

(199.8243, 750.2514) (265.1662, 589.7446) 173.2974

(222.9099, 804.4818) (306.6241, 638.6362) 185.7763

(212.0334, 871.6466) (354.1767, 697.7589) 224.5922

(166.7932, 911.8571) (359.9004, 755.4998) 248.4713

(118.2152, 941.532) (342.6608, 821.4822) 254.5345

(76.7784, 965.5829) (340.2276, 829.3867) 296.5718

(22.9789, 998.5684) (303.987, 886.3365) 302.5913

(0, 1025.6742) (263.5499, 960.5397) 271.4794

(0, 1049.0925) (227.9069, 1011.192) 231.0368

(0, 1038.366) (179.0394, 1050.4926) 179.4497

(0, 985.0229) (133.7108, 1019.9475) 138.1966

(0, 921.9554) (127.2921, 954.3131) 131.3404

(0, 859.1596) (125.1931, 868.3609) 125.5308
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Estimated position Real position Error

(0, 790.2399) (120.4572, 811.2336) 122.2729

(27.2039, 742.0327) (121.4542, 762.7248) 96.495

(81.1622, 729.9548) (167.8793, 740.8133) 87.3944

(130.544, 722.3405) (181.1111, 727.7595) 50.8567

(191.6765, 730.3399) (231.2081, 724.3438) 39.9837

(246.903, 742.9024) (289.7697, 723.7998) 46.9305

(295.2343, 749.0745) (303.5408, 723.6718) 26.7263

(344.5919, 725.4984) (352.1776, 707.5298) 19.5041

(394.0091, 694.0979) (373.5516, 671.8588) 30.2174

(431.9349, 637.6225) (405.8879, 616.0803) 33.8011

(450.6439, 577.5737) (406.0776, 564.271) 46.5093

(457.5706, 512.2576) (418.2406, 483.7401) 48.5809

(423.3531, 455.9447) (413.3187, 426.4188) 31.1844

(362.0852, 430.4893) (373.4772, 385.0453) 46.8501

(299.3603, 440.4747) (311.8032, 359.871) 81.5584

(244.3555, 459.8529) (253.5443, 368.2433) 92.0693

(220.6633, 518.1318) (180.0201, 381.0849) 142.9466

(239.0037, 576.2851) (152.0606, 433.0706) 167.5395

(276.6189, 629.1064) (181.4736, 492.3417) 166.605

(310.1705, 688.2482) (224.8912, 558.4263) 155.3264

(333.7753, 748.0704) (275.359, 610.142) 149.7889

(334.141, 816.0944) (324.9189, 651.2731) 165.0792

(303.7327, 871.7592) (356.2538, 718.5408) 161.9702

(250.3964, 912.4385) (358.4199, 779.9128) 170.9741

(196.3108, 943.0772) (343.132, 842.575) 177.9246

(138.6935, 973.1356) (319.5286, 896.6302) 196.3528

(83.8513, 1009.2354) (278.3649, 958.4112) 201.0438

(19.5529, 1020.0378) (236.6685, 1005.6852) 217.5895

(0, 991.6796) (176.5946, 1054.1562) 187.3205

(0, 945.2748) (135.6799, 1037.8299) 164.2422

(0, 894.0949) (126.7578, 975.6941) 150.7514

(0, 845.2309) (119.5904, 964.9344) 169.2063

(0, 782.3119) (118.235, 905.2219) 170.5473

68



APPENDIX B. RAW RESULTS

Estimated position Real position Error

(2.2255, 719.3118) (119.9996, 828.6861) 160.728

(62.4619, 697.2373) (122.687, 765.3326) 90.9068

(123.7801, 705.5828) (180.7214, 721.8378) 59.2159

(188.0611, 728.3237) (246.0198, 718.1468) 58.8453

(254.6055, 721.8927) (313.4008, 735.5679) 60.3646

(302.3606, 685.5948) (369.8514, 700.8177) 69.1863

(335.3261, 632.0561) (400.0688, 630.2463) 64.768

(364.7337, 571.0048) (412.9274, 557.0491) 50.1736

(369.2638, 504.6715) (410.6624, 489.5898) 44.0602

(337.5007, 448.5186) (415.3921, 432.3401) 79.5539

(273.3459, 434.8857) (380.094, 384.5204) 118.0331

(208.7878, 447.8317) (324.9353, 365.5934) 142.3143

(152.1113, 485.1236) (259.8105, 350.5572) 172.3578

(137.4793, 546.9416) (188.2083, 373.7918) 180.428

(156.7095, 598.2747) (161.3069, 420.4104) 177.9237

(177.3023, 644.5091) (162.7577, 458.2568) 186.8193

(209.5611, 699.9639) (183.134, 489.6149) 212.0026

(237.3123, 760.378) (225.4349, 551.5245) 209.1909

(249.9801, 825.1187) (270.8975, 595.865) 230.206

(249.2714, 881.0996) (306.6241, 638.6362) 249.1543

(241.1876, 936.7598) (320.3524, 653.2244) 294.3797

(193.432, 979.6796) (355.9862, 691.0903) 331.2215

(136.41, 1016.5728) (353.9792, 752.696) 342.0048

(80.1448, 1051.9968) (330.7624, 822.4923) 339.8257

(30.3994, 1090.6826) (298.1234, 880.6607) 340.2725

(0, 1118.1258) (266.8258, 948.1528) 316.365

(0, 1094.6259) (226.3799, 1015.8594) 239.6915

(0, 1036.3859) (177.7454, 1038.947) 177.7639

(0, 974.4553) (138.9585, 1000.19) 141.3214

(0, 909.7536) (133.9763, 955.2451) 141.4889

(0, 841.9318) (124.4288, 871.1019) 127.8022

(43.67, 797.2232) (125.6662, 792.7428) 82.1185

(106.7227, 782.8714) (141.5368, 720.7428) 71.2179
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Estimated position Real position Error

(172.7074, 793.1471) (192.7477, 696.9187) 98.293

(231.5723, 793.2211) (245.2743, 704.1404) 90.1284

(282.7556, 791.1299) (256.6362, 703.9863) 90.9738

(336.6618, 761.7831) (317.67, 711.1318) 54.0947

(370.5766, 708.1634) (373.0377, 705.6547) 3.5144

(399.7725, 648.7253) (404.9871, 626.1548) 23.165

(405.2519, 583.2626) (420.1748, 535.2412) 50.2867

(376.1227, 525.4218) (415.5204, 481.1697) 59.2488

(313.4794, 504.7064) (413.3187, 426.4188) 126.8733

(247.0853, 505.5605) (370.3089, 368.5986) 184.2352

(185.4416, 526.4617) (299.5457, 367.7314) 195.4866

(161.81, 580.4278) (230.2106, 363.4712) 227.4836

(188.7967, 637.2841) (169.3708, 385.2346) 252.797

(216.0867, 695.7896) (153.737, 435.8964) 267.2676

(241.7597, 757.4158) (188.956, 504.8357) 258.0405

(257.8599, 822.0315) (228.6476, 549.0578) 274.5323

(259.3136, 876.1587) (270.0333, 602.1386) 274.2296

(255.9878, 924.0048) (277.4729, 595.6255) 329.0813

(213.456, 974.2693) (320.774, 664.0788) 328.2306

(158.8029, 1005.9604) (355.7162, 699.3789) 364.3721

(96.3991, 1035.653) (347.3204, 769.2746) 365.9494

(38.5279, 1070.4705) (312.5274, 847.3814) 353.3334

(0, 1097.9838) (283.647, 893.9) 349.4364

(0, 1103.5999) (250.7368, 951.769) 293.1238

(0, 1085.6677) (245.2444, 967.1018) 272.4017

(0, 1024.5502) (208.6054, 1016.9851) 208.7425

(0, 958.2982) (151.8431, 1036.978) 171.0171

(0, 889.1271) (137.02, 988.4549) 169.2351

(0, 822.1262) (133.5035, 919.0259) 164.9628

(38.3155, 777.9685) (129.1924, 845.3266) 113.1181

(76.0563, 743.0587) (130.3831, 816.9052) 91.6772

(136.2526, 738.1871) (128.1692, 765.3296) 28.3206

(199.726, 753.3864) (173.3395, 730.7475) 34.7673
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Estimated position Real position Error

(264.527, 740.3029) (242.0096, 725.7411) 26.8157

(314.673, 700.3743) (316.4131, 725.0737) 24.7606

(348.0449, 646.1465) (371.7599, 712.0807) 70.0694

(375.0143, 583.1863) (403.9887, 634.0492) 58.5367

(372.9626, 516.712) (412.1976, 575.3379) 70.5435

(330.6747, 467.0071) (411.1454, 500.201) 87.0481

(265.4785, 458.2032) (414.4768, 432.4032) 151.2155

(198.4943, 465.7037) (380.8158, 381.1575) 200.9706

(149.9309, 511.443) (315.8329, 376.4517) 213.8834

(157.187, 572.9194) (251.6993, 347.7848) 244.1683

(179.284, 616.963) (201.1956, 362.5891) 255.3159

(209.0169, 663.6865) (177.3632, 381.3067) 284.1484

(239.5351, 724.4235) (162.9247, 432.2806) 302.0208

(260.4832, 787.2867) (189.6922, 483.9133) 311.5233

(270.525, 854.5962) (230.9904, 529.9477) 327.0469

(272.7348, 912.0255) (269.5194, 567.7615) 344.2791

(270.6244, 963.7402) (280.1904, 601.7822) 362.0844

(231.9379, 1009.1348) (312.6831, 632.7246) 384.9733

(174.9948, 1038.5477) (369.1667, 682.3881) 405.6506

(113.8145, 1068.7739) (374.0242, 744.002) 416.1561

(57.3426, 1102.6967) (347.7258, 805.0279) 415.8475

(2.5736, 1134.0203) (315.271, 863.7413) 413.3164

(0, 1137.4629) (277.2133, 909.168) 359.118

(0, 1078.4631) (230.0245, 987.6352) 247.3075

(0, 1015.828) (177.2162, 1030.0886) 177.7891

(0, 951.5929) (141.489, 1011.3593) 153.5942

(0, 885.1454) (132.1724, 950.5152) 147.4543

(16.0873, 823.028) (128.1475, 862.8221) 118.9161

(60.9909, 802.5853) (125.7821, 795.1224) 65.2196
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B.3 Fusion results

Table B.6: Fusion using K as 2 results (cm).

Estimated position Real position Error

(127.3433, 897.9277) (131, 720) 177.9653

(169.6195, 904.1707) (175.3871, 747.0524) 157.2241

(212.2924, 908.8152) (239.4703, 741.7753) 169.2365

(258.2772, 902.5896) (308.7525, 747.67) 162.9351

(299.4482, 877.1455) (362.8695, 707.5228) 181.0915

(299.4482, 877.1455) (385.0024, 672.475) 221.8322

(327.046, 839.5736) (405.6406, 631.7922) 222.1492

(347.2356, 796.7934) (417.8381, 582.7564) 225.381

(367.249, 755.6094) (423.003, 491.9564) 269.4837

(387.0855, 706.5361) (421.8095, 419.9396) 288.6924

(402.113, 664.7528) (413.7411, 395.8668) 269.1373

(415.6452, 619.3486) (408.7276, 376.9144) 242.5329

(421.7503, 579.5008) (396.5805, 362.0316) 218.9209

(399.148, 542.1147) (372.479, 355.9836) 188.032

(357.7091, 524.8788) (317.6493, 355.6495) 173.9061

(312.44, 520.1617) (256.1612, 349.8561) 179.3635

(266.948, 528.7069) (194.0476, 365.2539) 178.973

(231.4694, 555.7246) (155.1949, 392.3844) 180.2715

(218.8473, 589.5871) (121.6553, 443.9926) 175.0543

(210.4286, 625.2455) (126.0052, 474.1222) 173.1057

(232.8312, 661.0878) (152.8569, 504.4031) 175.9147

(232.8312, 661.0878) (192.3863, 559.3724) 109.4615

(262.6641, 692.9763) (207.8688, 571.0309) 133.6907

(294.3496, 724.7768) (252.1459, 608.8354) 123.3838

(318.6647, 764.019) (300.629, 624.5358) 140.6444

(332.4381, 805.5494) (356.0183, 672.5486) 135.0749

(316.5682, 846.974) (377.9506, 746.6261) 117.6329

(295.0054, 873.5788) (394.0912, 787.3472) 131.3541

(271.0591, 897.8484) (385.4609, 808.8062) 144.97

(233.7262, 918.0264) (354.0413, 863.9996) 131.8886
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Estimated position Real position Error

(193.6067, 932.5569) (312.7932, 918.2029) 120.0477

(149.0614, 939.9554) (275.9213, 956.2489) 127.902

(149.0614, 939.9554) (224.2644, 985.737) 88.0423

(114.3571, 937.2128) (224.2644, 985.737) 120.1425

(83.2518, 929.2771) (206.0592, 996.481) 139.9929

(62.7662, 891.0244) (159.2605, 978.5869) 130.301

(64.4131, 855.3259) (133.3101, 939.9971) 109.1605

(68.2337, 822.7389) (130.9153, 920.2709) 115.9374

(77.9441, 782.0321) (129.6094, 863.9248) 96.8283

(100.6107, 747.3832) (126.704, 797.3812) 56.3973

(142.7916, 740.8893) (144.1855, 749.5973) 8.8188

(183.9529, 745.277) (194.4917, 727.8844) 20.3364

(228.2321, 752.5224) (257.5794, 718.9716) 44.5748

(265.2612, 752.5073) (321.2329, 720.5538) 64.4504

(306.2823, 751.1295) (335.2742, 721.4464) 41.4924

(335.7827, 726.4291) (382.481, 689.9565) 59.2536

(354.6327, 686.7557) (414.3056, 633.0881) 80.2562

(372.6776, 643.6201) (419.1585, 559.9439) 95.7193

(382.5018, 597.878) (420.9823, 467.4163) 136.0184

(373.6143, 554.2596) (415.2599, 427.1065) 133.7994

(340.8998, 522.3431) (385.6277, 380.8897) 148.3565

(300.4943, 502.6628) (328.5786, 370.7925) 134.8277

(291.5775, 471.6921) (264.8914, 365.4757) 109.5174

(244.6303, 471.681) (249.2441, 354.6755) 117.0964

(211.3618, 489.6527) (208.8421, 355.5386) 134.1378

(181.9689, 511.6858) (199.3352, 367.6343) 145.0946

(168.895, 553.8558) (159.466, 385.1112) 169.0078

(182.6342, 589.9638) (148.6261, 473.4149) 121.4092

(212.8373, 621.8265) (172.5557, 519.3051) 110.151

(241.3725, 653.5971) (220.1932, 571.9034) 84.3944

(269.9512, 687.6723) (275.0792, 598.4834) 89.3362

(286.09, 728.2648) (333.2724, 627.7295) 111.0564

(290.1295, 772.2215) (372.6963, 685.4139) 119.8033
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(270.4626, 812.6498) (389.3311, 741.82) 138.3711

(236.789, 840.3771) (388.3654, 802.6449) 156.2021

(236.789, 840.3771) (383.2104, 814.8349) 148.6326

(198.9408, 858.927) (351.2762, 854.8196) 152.3907

(161.1488, 876.7075) (327.6273, 915.3602) 170.9068

(120.4263, 888.7999) (284.4768, 957.9969) 178.0472

(76.547, 894.2777) (242.7962, 1010.6129) 202.9105

(46.9824, 876.6752) (203.5447, 1038.1013) 224.878

(19.0871, 855.6357) (194.246, 1050.1565) 261.7613

(7.8864, 824.5897) (152.7319, 1037.5364) 257.5393

(0.62082, 790.4637) (145.2885, 1029.5783) 279.4718

(7.0663, 750.0545) (130.3983, 988.5853) 268.5288

(17.1447, 710.4365) (120.1644, 934.0446) 246.1984

(35.2864, 671.1048) (120.7447, 876.2627) 222.2451

(60.558, 644.2671) (123.6901, 805.3718) 173.0329

(87.6086, 622.677) (123.329, 774.7987) 156.2593

(119.6803, 618.9892) (130.7101, 754.0992) 135.5594

(153.5144, 629.121) (160.2036, 736.5626) 107.6496

(191.817, 635.2677) (176.8009, 734.4321) 100.2949

(191.817, 635.2677) (180.3031, 732.8524) 98.2617

(127.3117, 900.1) (131, 720) 180.1378

(156.1537, 884.7353) (125.0947, 719.5305) 168.099

(197.801, 880.1699) (169.4472, 724.6745) 158.0594

(243.1069, 883.3726) (240.6374, 721.2929) 162.0985

(290.0345, 880.1713) (315.1121, 716.2046) 165.8733

(290.0345, 880.1713) (368.2754, 712.0585) 185.428

(329.3552, 853.6949) (382.8335, 686.5329) 175.5081

(351.0589, 811.9791) (400.5235, 645.7179) 173.4634

(366.0845, 769.3203) (412.0917, 569.8668) 204.6909

(381.9555, 730.466) (418.8176, 518.6278) 215.0215

(403.1689, 684.1233) (423.8017, 489.156) 196.0561

(419.8588, 649.0376) (422.2858, 475.6461) 173.4085

(435.7161, 612.1375) (421.1646, 450.1443) 162.6455
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(445.6933, 571.7606) (417.4668, 411.2457) 162.9778

(440.833, 527.1555) (408.7276, 376.9144) 153.6331

(406.6671, 498.4669) (357.0688, 355.3199) 151.4961

(361.856, 488.771) (297.5646, 334.6939) 166.9525

(317.7582, 495.2649) (241.6099, 345.6493) 167.8791

(279.6667, 521.7517) (183.0848, 377.405) 173.678

(266.7792, 563.9453) (147.2151, 430.9318) 178.8524

(264.2654, 596.2078) (145.3058, 462.9092) 178.6614

(274.8445, 640.5906) (144.9554, 487.3687) 200.8684

(285.6081, 673.2233) (152.124, 507.0425) 213.1527

(310.944, 709.1477) (173.1844, 528.9904) 226.7915

(341.2756, 739.8607) (216.392, 595.8149) 190.6439

(294.5317, 661.9176) (243.964, 605.5275) 75.7425

(326.6139, 693.9665) (268.5832, 634.9085) 82.7974

(341.9639, 736.3307) (318.9812, 664.3484) 75.5623

(334.2256, 781.6908) (366.628, 699.1838) 88.6415

(307.3516, 815.5851) (377.0953, 760.8813) 88.6379

(268.7051, 837.2963) (348.5419, 839.9971) 79.8825

(228.3662, 855.7052) (307.9831, 893.5118) 88.1373

(187.2828, 871.6294) (284.0931, 916.5557) 106.7268

(148.2347, 892.5022) (241.2588, 968.4287) 120.0763

(105.0942, 897.761) (197.8499, 1018.1423) 151.9713

(117.2156, 820.075) (178.2069, 1045.507) 233.537

(86.0765, 790.0894) (154.7087, 1043.5663) 262.6041

(82.086, 746.1141) (134.8137, 1017.9081) 276.8613

(86.7168, 704.1133) (125.9983, 968.0399) 266.8338

(100.2462, 661.8454) (118.8892, 890.5525) 229.4657

(132.9563, 634.1759) (119.0286, 822.7841) 189.1218

(178.8832, 627.9893) (142.5717, 769.241) 145.8443

(220.922, 637.5067) (189.4858, 735.3084) 102.7299

(263.589, 653.2588) (251.3433, 719.2715) 67.1389

(302.0935, 651.4067) (312.8429, 714.7576) 64.2564

(338.5838, 647.6398) (328.2517, 715.5726) 68.7141
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(372.769, 620.9631) (374.852, 703.6691) 82.7322

(394.937, 584.214) (402.4773, 651.2436) 67.4525

(416.3518, 543.5481) (414.4099, 580.8703) 37.3727

(428.8505, 501.2264) (417.4156, 508.5171) 13.5614

(421.8104, 456.2335) (417.2236, 447.7848) 9.6135

(391.9237, 424.1067) (395.3247, 405.3033) 19.1085

(349.8334, 406.6794) (341.0433, 375.3058) 32.5817

(311.1026, 423.6665) (310.3104, 360.4716) 63.1999

(264.8863, 424.8129) (278.8409, 373.053) 53.608

(234.2358, 442.4137) (235.1665, 371.012) 71.4078

(204.5347, 465.0116) (219.6545, 373.9011) 92.3566

(195.8581, 509.1848) (176.3007, 419.9721) 91.3313

(207.8625, 548.7421) (161.2371, 487.653) 76.8492

(230.5833, 578.0875) (177.5127, 538.0141) 66.5009

(252.5075, 604.4839) (183.0666, 553.6302) 86.0706

(280.0746, 638.4104) (219.5467, 591.3244) 76.6858

(306.6238, 675.1927) (266.6331, 623.4847) 65.3679

(322.4245, 718.9514) (332.2232, 658.0302) 61.7042

(319.6513, 761.9671) (370.0382, 715.1464) 68.7824

(296.7666, 801.6007) (389.048, 775.5916) 95.8767

(258.54, 825.628) (390.3236, 844.3461) 133.1063

(258.54, 825.628) (378.4579, 868.2278) 127.2597

(211.7381, 833.907) (362.8847, 892.7936) 162.2126

(168.7269, 841.4341) (328.0948, 921.0868) 178.1648

(126.0492, 854.7422) (275.3246, 963.6124) 184.7589

(82.2771, 853.67) (233.5203, 998.7359) 209.5677

(56.1177, 819.0197) (189.8293, 1037.8994) 256.4901

(50.3482, 784.7653) (145.4211, 1032.6552) 265.4963

(47.6227, 749.3234) (134.8759, 1027.8931) 291.9147

(54.099, 711.1958) (130.6375, 991.8021) 290.8573

(63.013, 669.9585) (115.0758, 944.5395) 279.4732

(85.6715, 631.9861) (114.9272, 883.8447) 253.5521

(121.7372, 616.6279) (118.1916, 797.5367) 180.9436
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(157.3463, 618.7586) (140.2133, 745.6888) 128.0813

(192.6196, 622.8642) (194.7763, 721.9921) 99.1514

(159.9994, 759.1616) (191.2132, 722.1635) 48.4062

(254.2009, 721.1925) (131, 720) 123.2066

(293.5047, 720.7972) (175.0449, 735.9269) 119.4221

(337.7362, 720.3083) (245.15, 734.3772) 93.649

(380.2701, 702.9384) (318.7417, 714.4704) 62.5998

(412.0348, 673.2846) (381.7158, 661.913) 32.3814

(412.0348, 673.2846) (398.1867, 606.0472) 68.6487

(433.5159, 630.8057) (400.9176, 588.7451) 53.2141

(450.7685, 587.5024) (403.2329, 537.8593) 68.7318

(461.4698, 543.2742) (408.5533, 463.4736) 95.7512

(464.6261, 497.6086) (406.771, 397.0152) 116.0442

(437.0158, 463.3053) (361.0434, 364.9588) 124.2733

(396.4133, 445.3331) (303.0196, 344.3695) 137.5356

(350.5493, 440.4757) (239.3047, 338.9992) 150.575

(305.1729, 451.3536) (169.1754, 359.8312) 163.9258

(278.9196, 488.3353) (138.9869, 429.3414) 151.8599

(264.5892, 517.984) (137.2085, 423.6406) 158.5135

(269.3085, 562.0724) (141.285, 495.7468) 144.1842

(294.8918, 601.6046) (165.7602, 520.1939) 152.6521

(323.0805, 638.9094) (213.2164, 554.7232) 138.4104

(353.5554, 673.5861) (269.4567, 596.9314) 113.7916

(373.5165, 715.1874) (325.5765, 639.9249) 89.2339

(373.7449, 761.6574) (372.3903, 688.8372) 72.8328

(378.5612, 664.4884) (370.9936, 700.5967) 36.8928

(354.8452, 705.8239) (372.7814, 771.9707) 68.5355

(322.2777, 732.7032) (363.0832, 822.0398) 98.2147

(280.7372, 747.4243) (333.2879, 868.7564) 132.2235

(238.7876, 762.4994) (288.5097, 924.6127) 169.5671

(197.0347, 780.3901) (243.4277, 969.8044) 195.013

(168.913, 794.8166) (227.1653, 991.6455) 205.2679

(130.7006, 815.1787) (205.5916, 1023.053) 220.9534
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(90.7311, 806.6804) (163.915, 1046.7954) 251.0201

(75.4575, 769.4278) (131.0708, 1034.5289) 270.8716

(75.4575, 769.4278) (123.9248, 984.9485) 220.9032

(81.4912, 724.3179) (126.7024, 963.2949) 243.2161

(88.6446, 682.2503) (123.2515, 919.2922) 239.5548

(102.4649, 638.6045) (119.8705, 846.9781) 209.0993

(134.3703, 609.9089) (122.2728, 766.0538) 156.6128

(182.0394, 610.3481) (151.7634, 739.717) 132.8644

(226.0167, 618.114) (206.4354, 725.8709) 109.5216

(271.4853, 624.6803) (276.4727, 718.0629) 93.5157

(315.4041, 611.294) (348.7287, 700.1426) 94.8926

(346.5081, 579.4903) (389.5366, 650.2864) 82.8465

(366.7549, 537.3738) (407.7137, 592.4469) 68.6343

(382.2482, 496.4733) (421.0015, 508.0762) 40.453

(381.1171, 451.4101) (418.7239, 438.6752) 39.7045

(353.9122, 416.5005) (397.8364, 382.1223) 55.7782

(312.6997, 399.4942) (349.1453, 367.0968) 48.7635

(268.2576, 395.5966) (281.6674, 372.5377) 26.6746

(226.1207, 411.5356) (215.8359, 361.0782) 51.4949

(226.1207, 411.5356) (172.5637, 376.0642) 64.2383

(203.2847, 436.2819) (172.5637, 376.0642) 67.6014

(181.3339, 469.1723) (165.4307, 409.5336) 61.7226

(192.8022, 513.107) (148.1971, 442.5348) 83.4868

(206.717, 546.1915) (154.232, 486.02) 79.8454

(235.7181, 584.4091) (168.057, 514.9385) 96.9752

(267.6443, 618.5721) (206.4915, 541.5782) 98.3246

(295.752, 658.2204) (255.2621, 587.7649) 81.2613

(319.8954, 699.5141) (306.1004, 629.9433) 70.9254

(329.5569, 745.8741) (362.295, 659.5891) 92.2869

(312.2096, 790.1688) (391.6819, 725.1052) 102.7088

(270.9425, 811.9863) (396.5343, 774.0603) 131.1932

(228.3642, 827.2108) (373.0234, 834.4634) 144.8409

(183.5469, 841.0075) (317.642, 880.9642) 139.9215
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(143.207, 863.9789) (278.483, 914.7834) 144.5015

(143.207, 863.9789) (269.4243, 926.3127) 140.7704

(103.9224, 889.2361) (237.5852, 959.196) 150.8646

(61.0844, 909.9807) (208.8515, 1015.9574) 181.841

(28.2144, 901.5165) (193.9898, 1038.6673) 215.1553

(0, 873.4855) (180.6849, 1046.1283) 249.9051

(0, 831.8695) (136.3003, 1039.5714) 248.4308

(8.7505, 788.5459) (131.8534, 989.7471) 235.8734

(16.8074, 744.473) (129.7216, 932.3379) 219.1867

(26.3943, 700.7258) (127.7728, 877.2315) 203.5482

(44.1337, 660.9859) (119.1465, 810.9708) 167.6974

(84.3908, 642.8877) (119.3592, 745.1587) 108.084

(117.4544, 641.474) (136.181, 726.2546) 86.8241

(150.5957, 648.6412) (145.233, 724.3749) 75.9233

(183.976, 656.961) (148.0926, 724.2374) 76.2478

(227.244, 616.8995) (145.8044, 724.3474) 134.8238

(234.125, 668.9429) (145.233, 724.3749) 104.7592

Table B.7: Fusion using K as 3 results (cm).

Estimated position Real position Error

(297.9272, 619.7776) (131, 720) 194.7029

(350.8269, 641.8755) (192.5835, 720.2797) 176.6018

(409.2763, 656.9376) (259.4778, 732.4395) 167.7501

(468.002, 643.6615) (333.4167, 717.4001) 153.462

(518, 607.6817) (374.7063, 653.466) 150.4304

(518, 564.2943) (404.5204, 567.7073) 113.5309

(518, 514.5006) (407.0873, 514.2566) 110.913

(518, 453.4803) (406.0792, 450.6199) 111.9574

(518, 453.4803) (392.5865, 412.6422) 131.895

(504.728, 401.7147) (368.6532, 407.1741) 136.1843

(483.5044, 351.0489) (358.4018, 390.6388) 131.2175

(425.2486, 325.8989) (311.6398, 379.3635) 125.5605

(364.6366, 337.4159) (245.5141, 354.7666) 120.3795
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(305.3099, 365.1495) (176.5531, 359.401) 128.885

(280.6117, 424.4761) (144.4635, 425.275) 136.1506

(305.1336, 482.6143) (159.8946, 502.5939) 146.6068

(336.9715, 531.1726) (210.2892, 532.1411) 126.686

(364.1072, 590.2782) (260.3662, 589.9327) 103.7415

(377.8529, 653.9407) (310.2347, 629.6504) 71.8487

(374.8031, 711.9197) (344.6541, 684.2816) 40.9002

(369.2269, 762.4562) (351.3974, 693.0376) 71.6717

(340.4429, 819.0032) (367.7632, 764.465) 60.9985

(295.4886, 859.581) (365.6454, 821.4958) 79.8277

(243.8488, 895.5725) (340.8499, 882.914) 97.8236

(191.1537, 924.6954) (311.7663, 923.6594) 120.617

(138.3193, 956.7807) (271.5378, 971.458) 134.0246

(83.0238, 981.7099) (228.5212, 1015.8112) 149.4403

(106.2394, 861.3267) (207.0706, 1037.984) 203.4078

(54.1769, 862.6104) (190.8498, 1041.0636) 224.7777

(7.2143, 852.928) (177.5011, 1039.2674) 252.4282

(0, 809.568) (139.7508, 1031.7714) 262.4969

(0, 754.1479) (129.6755, 990.9388) 269.9735

(3.7998, 695.289) (127.6411, 920.8633) 257.3333

(17.9777, 632.5712) (123.2115, 870.0833) 259.7809

(64.9409, 588.2156) (123.4188, 795.4184) 215.2966

(115.3162, 592.1019) (161.2631, 743.9426) 158.6402

(167.0583, 617.3848) (211.419, 732.6109) 123.4704

(217.2654, 641.118) (266.1045, 734.0983) 105.0266

(261.0815, 662.7594) (278.3051, 743.2044) 82.2682

(322.8373, 677.1097) (339.2724, 737.5896) 62.6732

(268.9517, 751.1673) (379.3657, 702.0137) 120.8608

(326.052, 733.4628) (386.6502, 681.3407) 79.9303

(382.777, 704.0878) (406.2839, 631.8239) 75.9912

(436.1802, 660.9602) (417.5518, 557.8246) 104.8045

(480.3602, 614.0232) (421.0831, 505.6752) 123.5033

(498.6852, 551.1157) (413.9086, 456.4619) 127.0686
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(467.6155, 494.0839) (393.0176, 402.4972) 118.1226

(408.3805, 470.0154) (327.1243, 367.6928) 130.6617

(341.1261, 473.7619) (256.2659, 364.9758) 137.9699

(285.3042, 507.7953) (193.3803, 365.4695) 169.4303

(265.682, 560.5303) (144.0078, 406.0698) 196.6283

(256.5037, 617.2404) (143.2779, 446.8138) 204.6101

(291.8531, 669.6269) (137.5574, 478.8667) 245.35

(333.0928, 718.5262) (175.8355, 517.798) 254.9935

(372.4146, 766.4208) (228.1547, 579.1642) 236.3809

(392.3911, 828.5127) (282.6871, 613.3191) 241.5435

(385.7303, 880.5995) (326.7095, 680.5191) 208.604

(374.7986, 928.2135) (329.5129, 689.2531) 243.2136

(334.2607, 980.3609) (362.4346, 709.9733) 271.8514

(334.2607, 980.3609) (355.9781, 751.3159) 230.0722

(283.3418, 1021.6564) (348.7118, 804.1066) 227.1589

(227.0119, 1058.4688) (328.4564, 857.2478) 225.3462

(175.2882, 1095.7233) (299.6344, 911.0275) 222.6533

(121.6691, 1130.2502) (261.2951, 961.3471) 219.1431

(72.8249, 1145.9409) (225.518, 1008.3831) 205.5172

(23.9611, 1150.4672) (213.0908, 1016.6102) 231.7061

(0, 1115.8377) (177.2032, 1038.8443) 193.207

(0, 1060.8997) (141.5202, 1009.1056) 150.7004

(0, 997.721) (136.8704, 958.7143) 142.3201

(0, 997.721) (131.7655, 894.5344) 167.3607

(0.92847, 935.2233) (132.2846, 889.8147) 138.9833

(13.2529, 867.7681) (126.053, 842.8635) 115.5167

(40.1691, 821.1394) (119.7888, 768.883) 95.2367

(76.157, 779.3796) (123.7797, 756.2) 52.9642

(129.161, 768.3053) (135.1075, 726.2171) 42.5062

(189.2515, 784.2285) (191.5173, 732.0696) 52.208

(252.8127, 807.0276) (262.8997, 721.9823) 85.6413

(320.599, 803.0456) (321.9512, 737.1121) 65.9474

(375.6378, 769.8552) (374.0102, 710.2132) 59.6642
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(407.5908, 734.0899) (397.6375, 674.2623) 60.65

(450.0727, 686.7686) (407.7212, 629.7758) 71.0059

(497.7542, 634.8879) (416.4936, 574.6794) 101.1353

(518, 582.5547) (418.741, 516.6521) 119.1449

(512.4499, 521.5113) (423.4695, 421.0649) 134.1902

(495.7983, 473.4578) (419.1427, 407.9173) 100.8545

(447.4224, 431.5368) (397.9786, 402.2326) 57.4754

(381.5199, 417.5294) (352.5045, 380.4608) 47.0741

(323.333, 435.0972) (288.7126, 377.2192) 67.4421

(278.5851, 479.2681) (290.0362, 366.4209) 113.4267

(230.5022, 525.3194) (235.5185, 373.4371) 151.9651

(230.2833, 583.6563) (160.6816, 371.1398) 223.6239

(258.4511, 635.5708) (145.7521, 443.6914) 222.5281

(295.1763, 684.5141) (169.583, 488.7854) 232.5583

(322.8633, 742.3318) (207.6667, 537.1707) 235.2899

(342.1553, 801.5756) (262.1505, 587.7144) 228.3361

(336.7015, 864.6123) (312.6415, 643.4651) 222.4522

(301.204, 916.3147) (352.747, 703.1825) 219.2761

(249.4025, 958.6287) (365.205, 738.3044) 248.9036

(198.098, 998.8627) (351.6138, 811.4586) 242.2548

(198.098, 998.8627) (338.459, 849.6524) 204.8533

(154.5102, 1030.8203) (330.154, 865.2552) 241.3764

(106.6622, 1067.759) (294.5061, 922.393) 237.5218

(46.2678, 1089.0202) (255.6401, 968.2801) 241.6918

(0, 1075.5528) (230.6478, 1001.4497) 242.2595

(0, 1054.3941) (222.2322, 1017.9707) 225.1973

(0, 1000.293) (167.3038, 1031.8304) 170.2503

(0, 946.2511) (139.3593, 1010.6911) 153.5367

(0, 898.1453) (131.7219, 983.5546) 156.9886

(1.7397, 837.1975) (130.7431, 956.424) 175.6611

(9.3553, 773.0472) (126.0237, 907.0871) 177.7026

(9.3553, 773.0472) (128.0932, 817.6924) 126.8538

(72.1312, 781.5522) (154.7959, 738.1752) 93.3542
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(134.3567, 796.9874) (218.5504, 719.3906) 114.4983

(186.5515, 802.113) (270.5139, 722.1667) 115.9357

(241.1557, 802.4371) (286.9645, 716.3465) 97.5194

(285.1379, 774.3425) (333.4167, 717.4001) 74.6544

(333.6426, 741.4426) (351.5988, 709.7488) 36.427

(380.5341, 696.6685) (390.9477, 681.3996) 18.4819

(420.6801, 644.7317) (413.0523, 627.7186) 18.6448

(452.0796, 585.3) (410.7759, 557.9324) 49.5477

(443.3701, 524.3091) (420.3157, 480.1466) 49.818

(397.8469, 481.7687) (411.6749, 421.6372) 61.7009

(334.714, 464.3599) (368.6814, 368.7285) 101.4847

(269.3861, 477.0822) (312.3585, 353.9953) 130.3726

(226.5315, 529.5047) (231.3821, 333.2761) 196.2886

(270.0873, 568.3249) (210.5774, 360.7426) 215.944

(282.1504, 631.7007) (169.8793, 391.2762) 265.3465

(313.0914, 681.9725) (144.1251, 446.7753) 289.5985

(343.7678, 739.8194) (163.1167, 505.1418) 296.1561

(363.7348, 795.394) (207.7282, 551.7319) 289.3255

(363.0434, 856.7954) (260.335, 596.4672) 279.8568

(340.3607, 905.9256) (311.1484, 647.3122) 260.258

(315.9515, 948.3026) (315.2295, 662.3808) 285.9227

(264.1453, 986.4764) (359.3584, 684.4957) 316.6352

(208.4036, 1023.0101) (362.3813, 761.4881) 303.4846

(155.7207, 1057.2338) (348.1559, 811.3016) 312.2723

(109.0375, 1095.7648) (322.7709, 868.684) 311.8455

(109.0375, 1095.7648) (294.8236, 927.6972) 250.5258

(53.473, 1124.3312) (290.3128, 933.9718) 303.8582

(6.171, 1127.9337) (268.1995, 971.7733) 305.0328

(0, 1124.7446) (261.3065, 983.418) 297.0762

(0, 1093.4091) (241.2791, 1023.9549) 251.0767

(0, 1039.9693) (192.6829, 1037.6918) 192.6963

(0, 974.4725) (146.3165, 1018.4069) 152.7702

(2.4456, 911.2413) (136.5222, 953.9351) 140.71
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(44.8999, 869.8981) (127.8673, 835.1331) 89.9566

(108.107, 869.8893) (123.3231, 772.7581) 98.3159

(169.5765, 887.056) (140.2177, 721.9673) 167.6789

(233.6787, 897.3476) (191.4616, 733.5152) 169.1844

(286.2801, 884.2837) (238.0184, 724.4095) 166.9999

(339.0937, 867.7362) (262.4912, 720.4379) 166.0264

(393.8219, 833.2159) (316.5794, 718.595) 138.2185

(441.4186, 788.8396) (375.7583, 686.4932) 121.598

(489.679, 744.7974) (406.621, 623.5593) 146.9602

(518, 686.9948) (417.814, 565.1206) 157.7674

(506.9083, 628.0433) (414.1627, 489.02) 167.1204

(506.9083, 628.0433) (421.4965, 456.1571) 191.9376

(457.2211, 588.2789) (415.8146, 427.9784) 165.5619

(390.8017, 578.0499) (390.0466, 402.6557) 175.3958

(333.2706, 600.5272) (333.0823, 385.1225) 215.4047

(289.1213, 647.7746) (273.3777, 349.1822) 299.0072

(286.955, 695.4565) (227.0829, 356.0052) 344.6909

(289.7217, 753.1585) (192.621, 358.3212) 406.6018

(319.0708, 807.9746) (158.2173, 405.2764) 433.6354

(351.2761, 859.3131) (146.1571, 461.445) 447.6302

(369.5707, 916.7459) (169.5419, 502.2947) 460.197

(368.6389, 979.1654) (211.2154, 558.7682) 448.9052

(343.8257, 1039.4624) (263.3433, 596.4463) 450.2673

(316.0253, 1084.5967) (305.4495, 627.6334) 457.0857

(316.0253, 1084.5967) (311.5311, 645.3921) 439.2277

(268.8095, 1128.4546) (339.2264, 707.8619) 426.4467

(221.8507, 1166.6848) (351.0831, 769.4022) 417.7733

(167.8958, 1198.4522) (348.9855, 836.394) 404.8204

(111.4136, 1228.1495) (336.7488, 879.8956) 414.7972

(49.9315, 1234.498) (309.6596, 942.612) 390.7123

(0.46126, 1208.4799) (278.6517, 980.9478) 359.3894

(0, 1161.1603) (244.0176, 1017.7975) 283.015

(0, 1117.7069) (231.155, 1033.4276) 246.0399
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(0, 1054.862) (180.6363, 1038.812) 181.3479

(2.2961, 991.5317) (136.8484, 1007.7403) 135.525

(2.7576, 926.518) (131.2397, 966.2738) 134.4923

(22.3446, 865.3644) (125.1717, 911.4259) 112.6725

(78.2848, 835.3217) (125.1577, 849.4739) 48.9628

(140.4753, 833.0169) (123.0132, 822.6852) 20.2896

(195.5484, 841.7828) (118.5892, 787.0744) 94.4231

(248.7323, 851.5301) (126.9918, 745.6287) 161.3563

(297.963, 859.76) (137.6547, 730.6046) 205.8637

(358.312, 848.4321) (177.9893, 718.4239) 222.3025

(411.2754, 818.0337) (237.33, 707.3809) 206.1578

(460.2428, 782.3132) (307.815, 710.452) 168.5178

(505.2836, 737.9998) (362.8069, 701.7037) 147.0273

(518, 687.7973) (405.0451, 608.6743) 137.9103

(518, 624.8578) (421.2536, 540.2219) 128.5422

(488.6067, 570.2614) (416.7736, 511.2828) 92.9434

(428.8923, 542.7973) (414.6402, 450.2633) 93.6251

(367.395, 542.4855) (386.9125, 416.2557) 127.7298

(301.1984, 543.3766) (391.4956, 374.5655) 191.4439

(246.1646, 575.5916) (346.1073, 355.4832) 241.7359

(222.1542, 634.172) (278.5155, 356.2388) 283.5903

(237.9834, 685.0474) (216.422, 338.159) 347.5578

(270.097, 733.9501) (160.7251, 378.1272) 372.2528

(303.2723, 787.5091) (134.4053, 435.0926) 390.7856

(327.6328, 847.188) (146.9222, 494.988) 395.855

(333.9387, 910.1428) (190.4093, 537.5495) 399.2824

(307.6459, 965.6815) (238.4135, 574.5321) 397.2292

(260.5085, 1008.3329) (289.6038, 625.6073) 383.83

(207.3027, 1044.0505) (326.4197, 678.7518) 384.2291

(162.9665, 1079.578) (343.2769, 730.1188) 393.2348

(125.2491, 1109.7394) (346.0092, 748.1138) 423.684

(76.8177, 1147.901) (327.831, 803.1949) 426.4153

(29.6849, 1182.3718) (305.2162, 856.9219) 426.4214

85



B.3. FUSION RESULTS

Estimated position Real position Error

(0, 1187.0771) (273.0873, 920.0614) 381.9347

(0, 1146.1325) (245.797, 965.0046) 305.3252

(0, 1146.1325) (239.7763, 988.1399) 287.1486

(0, 1088.3864) (222.2848, 1008.5559) 236.1851

(0.036364, 1018.3296) (182.4688, 1032.9935) 183.0208

(3.1957, 952.8454) (140.2017, 1025.7718) 155.206

(7.8233, 892.6495) (127.7729, 971.5165) 143.5545

(16.3793, 843.7345) (128.8642, 952.0862) 156.1825

(62.9122, 795.6857) (128.2864, 904.2672) 126.7428

(128.2892, 814.1195) (128.4703, 793.3348) 20.7855

(195.7508, 826.9199) (145.1606, 744.8264) 96.4298

(261.5234, 810.4828) (193.4388, 729.2067) 106.0251

(308.5042, 766.3846) (251.1372, 724.737) 70.8907

(348.3134, 716.4953) (322.5901, 737.1297) 32.9768

(348.3134, 716.4953) (372.6625, 716.6842) 24.3499

(381.3766, 661.5272) (395.6377, 686.7912) 29.0112

(411.5516, 601.2576) (406.9139, 657.5376) 56.4707

(413.7355, 533.243) (415.4764, 590.8792) 57.6625

(367.7796, 487.2309) (411.6377, 516.835) 52.9144

(311.4448, 474.0146) (422.9074, 437.3152) 117.3489

(244.9226, 484.9116) (401.1195, 405.4687) 175.2388

(193.6565, 527.9511) (368.5987, 354.0126) 246.697

(187.4838, 578.27) (309.8755, 350.4412) 258.6226

(187.7003, 626.3991) (292.3074, 347.8927) 297.5037

(217.5213, 681.4705) (239.2286, 347.8018) 334.3741

(250.3236, 735.727) (184.7873, 373.1142) 368.4875

(285.1367, 794.6544) (150.49, 421.8119) 396.4105

(297.9727, 860.9403) (168.7705, 486.0618) 396.5187

(303.4597, 734.704) (197.0938, 547.1413) 215.6234

(291.2099, 796.4423) (220.3109, 549.1022) 257.3009

(253.4819, 844.286) (249.2027, 581.171) 263.1497

(213.5543, 880.6111) (295.0159, 615.3666) 277.4719

(163.7495, 918.0394) (332.8463, 675.2789) 295.8486
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(118.5154, 959.2381) (359.2649, 727.4371) 334.2036

(67.1607, 1000.9329) (343.0094, 797.714) 342.6229

(12.4072, 1035.0841) (323.137, 851.8902) 360.7118

(0, 1034.6291) (292.8578, 908.1353) 319.0085

(0, 1003.2541) (261.0691, 943.645) 267.7878

(0, 967.1328) (253.9492, 951.103) 254.4546

(0, 900.0377) (221.4244, 992.345) 239.8946

(0, 834.5986) (188.3925, 1030.3065) 271.6493

(0, 834.5986) (170.0301, 1043.1035) 269.0438

(5.4207, 771.0009) (137.427, 1029.539) 290.2889

(22.1455, 711.1077) (124.4292, 992.4114) 299.3221

(82.6835, 697.3193) (122.3129, 946.6627) 252.473

(144.4064, 709.3553) (124.1632, 890.8544) 182.6245

(204.062, 731.4332) (119.7807, 807.5858) 113.5894

(268.7979, 735.5419) (127.0377, 737.3699) 141.772

(326.5607, 717.5307) (167.0645, 739.9375) 161.0624

(376.2635, 676.6689) (215.9381, 737.0823) 171.3301

(421.0723, 632.7786) (291.8555, 737.7596) 166.4872

(453.0988, 585.968) (340.8617, 743.5732) 193.4853

(481.2046, 544.7912) (353.9841, 727.3052) 222.4779

(489.0086, 484.0514) (392.6951, 676.0215) 214.7762

(453.2046, 428.0858) (406.2839, 631.8239) 209.0712

(393.3766, 399.913) (418.3143, 555.3509) 157.4256

(340.5473, 396.7174) (414.1964, 514.0689) 138.5481

(281.4677, 400.7418) (413.6271, 474.5132) 151.355

(224.938, 432.0158) (402.049, 425.3753) 177.2355

(214.5267, 495.0136) (353.1209, 397.8283) 169.273

(262.5184, 551.9296) (323.4152, 402.8476) 161.0399

(286.2985, 592.7467) (282.351, 398.346) 194.4408

(323.4644, 640.9355) (210.7547, 399.0059) 266.8959

(353.0161, 698.3192) (161.8204, 411.6011) 344.6202

(364.138, 758.9145) (147.1182, 467.1795) 363.6027

(342.6087, 820.1364) (167.1184, 530.6618) 338.515
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(296.9429, 863.0226) (215.6179, 574.8159) 299.4609

(240.9756, 889.3774) (266.1208, 615.4309) 275.0981

(187.6619, 923.4531) (313.593, 653.0373) 298.3008

(136.7163, 959.9743) (352.2878, 704.8327) 334.0185

(94.6716, 1006.8291) (344.0286, 782.4825) 335.4255

(94.6716, 1006.8291) (338.6078, 802.448) 318.2397

(34.6959, 1028.7406) (317.6433, 829.3147) 346.1646

(30.0941, 970.5749) (220.7179, 972.9661) 190.6388

(32.2848, 906.7876) (195.0377, 1020.2346) 198.3903

(33.9383, 844.1916) (152.8133, 1028.2981) 219.1495

(55.5515, 784.6926) (133.48, 967.0328) 198.2948

(104.2031, 769.094) (131.2991, 921.1417) 154.4432

(159.3189, 768.2496) (122.9196, 876.8852) 114.5714

(159.3189, 768.2496) (149.2078, 725.1273) 44.2919

Table B.8: Fusion using low density radio map results (cm).

Estimated position Real position Error

(288.5788, 707.863) (131, 720) 158.0455

(337.5317, 716.5297) (194.0251, 712.3232) 143.5683

(397.0177, 726.0621) (255.8365, 721.353) 141.2598

(460.262, 722.0908) (324.6881, 716.6604) 135.6826

(517.2036, 692.2746) (365.1264, 687.7743) 152.1438

(518, 647.5884) (387.3721, 628.2371) 132.0535

(518, 595.5143) (388.2739, 567.1365) 132.7937

(518, 595.5143) (403.4315, 514.5185) 140.3078

(518, 536.9006) (402.9417, 487.1608) 125.3493

(518, 470.9975) (389.2808, 452.3904) 130.0572

(481.8969, 419.0299) (346.2008, 385.8688) 139.6893

(417.7001, 403.2367) (289.483, 367.0226) 133.2332

(353.7343, 412.1741) (218.4559, 359.1983) 145.2814

(305.5268, 423.4026) (197.032, 377.619) 117.7593

(249.6534, 457.1408) (168.3468, 388.9023) 106.1473

(237.872, 511.8446) (147.3723, 431.3671) 121.1067
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(233.9987, 561.5257) (147.7709, 452.3944) 139.0858

(268.45, 612.166) (171.2351, 504.7112) 144.9043

(303.7336, 668.4162) (216.4166, 549.2451) 147.7363

(334.7133, 725.5407) (273.9541, 587.8937) 150.4606

(355.8174, 786.0477) (323.3964, 639.6913) 149.9044

(348.2464, 846.0381) (364.5457, 694.5928) 152.3199

(305.7201, 896.6445) (358.1186, 770.0653) 136.996

(265.3061, 931.2645) (337.0654, 815.7033) 136.0286

(226.3272, 961.0175) (329.4327, 830.1051) 166.6397

(174.9252, 999.2867) (307.4803, 870.0318) 185.1423

(174.9252, 999.2867) (298.0141, 895.7009) 160.8754

(132.4126, 1044.2239) (271.4842, 935.0938) 176.7775

(85.2923, 1087.4457) (244.3625, 978.2376) 192.95

(30.6485, 1104.0003) (216.2377, 1013.0481) 206.6776

(0, 1068.4549) (163.9301, 1035.136) 167.2819

(0, 1008.7989) (133.465, 982.4533) 136.0404

(1.0272, 944.2746) (125.1906, 933.9398) 124.5927

(4.2004, 883.2017) (119.5156, 875.257) 115.5885

(13.66, 817.4756) (121.3254, 809.6229) 107.9514

(42.4427, 770.7801) (123.2979, 745.5575) 84.698

(92.8968, 763.0499) (157.2354, 732.3777) 71.2757

(140.8352, 759.4697) (178.0234, 705.7641) 65.3243

(140.8352, 759.4697) (191.9189, 718.4026) 65.5443

(194.5784, 766.6409) (216.8029, 724.9961) 47.2039

(253.202, 786.6968) (293.2392, 728.2888) 70.8129

(314.9421, 782.8784) (348.6296, 724.9875) 66.9791

(361.8375, 761.5092) (393.8405, 655.6793) 110.5629

(401.3241, 734.1572) (397.7755, 638.316) 95.9069

(447.0687, 691.0991) (405.6776, 605.3486) 95.2175

(488.202, 649.2105) (402.1163, 583.2581) 108.4457

(518, 597.9794) (404.2925, 514.5069) 141.057

(518, 536.0471) (409.9285, 439.5814) 144.8623

(471.9731, 491.8721) (389.4101, 391.2113) 130.1892
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(411.4409, 476.5216) (321.8576, 376.3493) 134.3861

(347.8641, 488.3284) (258.1008, 353.9379) 161.6114

(301.4468, 533.3907) (210.6894, 363.0836) 192.9803

(301.6045, 597.0342) (154.1237, 415.5346) 233.8648

(311.1882, 646.6254) (153.0514, 466.7427) 239.51

(338.594, 702.8193) (163.1703, 496.8974) 270.5131

(307.233, 719.9925) (188.2653, 532.5109) 222.042

(341.9101, 774.9825) (200.4447, 542.171) 272.4218

(372.5481, 832.0392) (248.5733, 585.7275) 275.7521

(387.2822, 884.2022) (289.92, 611.3886) 289.6664

(396.1264, 930.8987) (301.479, 637.5748) 308.2159

(377.9096, 989.1821) (338.6201, 669.7724) 321.8171

(337.6127, 1034.985) (360.5028, 726.8027) 309.0313

(287.8283, 1069.8121) (347.3432, 789.3743) 286.6834

(240.4743, 1106.3655) (319.2073, 864.8324) 254.0416

(192.952, 1143.6003) (288.9064, 915.7484) 247.2321

(150.3855, 1177.6328) (261.9465, 961.654) 243.0898

(87.6073, 1199.0634) (229.9403, 1005.6114) 240.1715

(87.6073, 1199.0634) (201.3693, 1031.2428) 202.745

(30.7941, 1171.314) (181.3382, 1042.269) 198.283

(9.3676, 1113.5244) (133.7762, 1026.8535) 151.6223

(0, 1053.9366) (129.2175, 983.238) 147.2938

(3.0835, 990.3989) (124.069, 930.4477) 135.0245

(11.6733, 928.4827) (119.4598, 853.5319) 131.2843

(49.9019, 883.3507) (112.5924, 780.2006) 120.7064

(109.2743, 875.4951) (134.3476, 736.0891) 141.6429

(166.3641, 894.7432) (186.9501, 719.8047) 176.1456

(226.4342, 909.7154) (250.4709, 728.7777) 182.5273

(290.225, 904.5063) (308.7248, 730.1643) 175.3209

(335.5827, 889.3263) (333.5227, 723.099) 166.2401

(385.2711, 853.5066) (369.6785, 698.0514) 156.2352

(427.1087, 811.8008) (392.1117, 651.864) 163.7209

(466.2616, 762.6277) (403.1109, 601.0197) 173.5084
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(497.4305, 707.474) (401.953, 535.2976) 196.8773

(477.0667, 653.8866) (418.444, 442.4684) 219.3953

(477.0667, 653.8866) (409.6782, 433.3157) 230.6355

(426.5638, 619.75) (385.4683, 421.2435) 202.7158

(367.4132, 615.2756) (326.9485, 386.5597) 232.2678

(302.7085, 636.1436) (265.9404, 381.9109) 256.8777

(301.5319, 689.6212) (201.7435, 401.0266) 305.3597

(305.935, 738.2808) (192.6678, 401.3363) 355.4731

(331.7145, 778.7064) (167.3548, 430.7873) 384.7881

(359.9409, 819.9569) (170.5044, 491.3897) 379.2658

(391.5669, 874.0887) (200.5704, 519.8154) 402.4789

(407.7175, 938.3238) (243.9637, 563.1761) 409.3301

(397.9496, 998.9236) (287.3782, 613.4501) 401.0185

(357.4076, 1052.3729) (337.8901, 655.0818) 397.7703

(312.258, 1095.0153) (355.7318, 729.7599) 367.8335

(312.258, 1095.0153) (346.6609, 750.2397) 346.4878

(259.9492, 1135.8603) (336.7149, 785.1903) 358.9741

(214.5378, 1182.8994) (305.5366, 848.2331) 346.8174

(165.447, 1223.5198) (284.0502, 889.7834) 354.1846

(113.9159, 1258.1949) (253.5293, 958.5438) 330.5793

(55.3053, 1266.5042) (223.756, 1012.6318) 304.675

(2.9125, 1264.0961) (210.1052, 1036.2373) 307.9747

(0, 1230.8652) (180.0633, 1049.6882) 255.4367

(0, 1173.4655) (140.5692, 1041.009) 193.1435

(0, 1112.3361) (128.1591, 1012.1568) 162.6673

(0.86771, 1047.5111) (128.5863, 972.1109) 148.3146

(2.8526, 984.8336) (122.7035, 915.3988) 138.5115

(40.4383, 935.4222) (120.8872, 864.6913) 107.1209

(103.0761, 919.8432) (120.8091, 802.8736) 118.3062

(163.894, 937.2875) (140.2673, 737.6563) 201.0245

(221.9419, 948.69) (198.4735, 723.0743) 226.833

(269.8503, 959.4603) (207.5413, 715.693) 251.6047

(319.232, 962.3747) (247.5579, 727.2135) 245.8414
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(379.8205, 955.3958) (267.6534, 730.6801) 251.1546

(128.1378, 829.4642) (269.133, 729.2219) 172.9976

(177.8468, 795.6364) (322.4868, 725.9279) 160.5616

(216.6116, 764.9673) (361.8842, 706.1864) 156.7142

(257.2087, 732.3597) (374.5793, 686.1979) 126.122

(300.4953, 687.1236) (391.9704, 649.95) 98.7398

(334.8739, 631.5856) (399.6056, 594.4468) 74.6289

(331.7338, 569.1454) (398.5394, 503.8418) 93.4213

(288.4258, 523.6579) (401.6849, 442.9004) 139.1022

(226.7742, 510.4787) (382.6015, 391.4476) 196.0881

(159.652, 519.198) (319.3875, 379.9287) 211.923

(114.9348, 539.2728) (308.437, 355.4718) 266.8818

(86.4297, 595.2112) (252.0387, 368.503) 280.7542

(90.0065, 645.786) (208.9481, 359.5921) 309.9259

(109.6905, 692.7275) (195.8951, 384.5087) 320.047

(124.0434, 741.6151) (191.3744, 381.2676) 366.584

(144.6286, 786.1965) (185.7663, 384.8843) 403.4151

(173.5515, 834.587) (168.2446, 424.5521) 410.0693

(204.1303, 891.4856) (191.0174, 491.0165) 400.6837

(221.797, 951.4878) (230.0252, 544.3281) 407.2428

(222.5567, 1014.7173) (275.4706, 598.7218) 419.3472

(204.4813, 1075.4008) (315.9254, 633.7656) 455.4793

(160.9656, 1119.2771) (355.7486, 689.3383) 472.004

(110.9742, 1156.5338) (377.048, 748.1695) 487.3978

(53.0244, 1183.0846) (378.9672, 804.1755) 499.8108

(5.5343, 1207.791) (367.2116, 858.1404) 503.0567

(0, 1230.4263) (362.7932, 876.4995) 506.8364

(0, 1252.237) (337.8044, 921.6599) 472.6447

(0, 1265.0835) (304.5806, 964.4091) 427.9888

(0, 1245.1132) (258.9587, 1016.2195) 345.6182

(0, 1198.7992) (212.5565, 1049.5794) 259.7053

(0, 1198.7992) (138.644, 1040.0586) 210.7622

(0, 1137.5257) (130.8877, 1030.025) 169.3753
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(2.7769, 1080.8533) (129.3819, 1007.5538) 146.293

(2.8236, 1022.0314) (129.6485, 962.8612) 139.9489

(21.0204, 967.4686) (127.094, 890.8137) 130.8724

(72.5392, 940.2044) (125.9166, 816.3819) 134.8375

(100.497, 873.3259) (149.8339, 720.4661) 160.6246

Table B.9: Fusion using high density radio map results (cm).

Estimated position Real position Error

(333.9744, 502.5261) (131, 720) 297.4786

(393.9494, 515.9401) (189.1361, 727.3177) 294.328

(393.9494, 515.9401) (195.6832, 716.9646) 282.3479

(440.8207, 526.0434) (213.6558, 717.3589) 296.994

(503.1917, 540.9718) (254.7846, 719.7987) 306.0803

(518, 542.2847) (318.85, 716.5355) 264.6207

(518, 513.0277) (364.5457, 694.5928) 237.727

(518, 466.3353) (390.8075, 644.1446) 218.6185

(518, 411.4746) (401.3012, 596.6489) 218.8792

(518, 352.5713) (412.5949, 506.3421) 186.4288

(503.9366, 290.9154) (380.1375, 452.6117) 203.6465

(450.0707, 254.4569) (334.0248, 406.5194) 191.2843

(385.4924, 245.3681) (263.1308, 428.008) 219.8402

(321.5933, 257.9905) (202.2113, 435.9428) 214.2873

(280.3734, 306.9472) (163.8796, 437.0131) 174.608

(281.2511, 358.5195) (152.0077, 507.6258) 197.3234

(287.9995, 409.619) (153.6735, 512.7765) 169.3663

(306.4267, 456.4419) (163.27, 535.2343) 163.4077

(334.0939, 499.5207) (177.1648, 542.3826) 162.6773

(361.6859, 538.9726) (187.0442, 549.4746) 174.9572

(353.5693, 515.7548) (203.3657, 563.3921) 157.5768

(381.2808, 568.7921) (234.512, 583.5494) 147.5089

(398.6367, 624.9858) (283.6994, 627.6171) 114.9674

(407.2261, 685.1002) (330.3745, 656.8659) 81.874

(352.9775, 707.5509) (342.6598, 802.8597) 95.8656
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(294.2592, 733.4237) (308.4204, 877.5612) 144.8315

(242.7537, 772.8832) (276.1908, 915.0326) 146.029

(196.6621, 820.1401) (242.1911, 959.7399) 146.8367

(162.0581, 871.7963) (211.1122, 996.4914) 133.9969

(162.0581, 871.7963) (181.0943, 1040.6232) 169.8967

(117.987, 918.0575) (181.0943, 1040.6232) 137.8582

(96.6821, 871.7489) (126.2341, 1024.9772) 156.052

(84.8924, 815.243) (121.3942, 993.1753) 181.6378

(81.8305, 751.6453) (120.3386, 933.6427) 186.0267

(85.4421, 689.046) (120.4208, 864.6685) 179.072

(110.9104, 629.0875) (112.6055, 767.72) 138.6429

(163.9825, 596.2678) (128.8406, 731.6723) 139.8904

(217.9799, 599.896) (166.7849, 722.3451) 132.7205

(263.7837, 612.3438) (217.1527, 720.4835) 117.7652

(308.8924, 626.6078) (241.1027, 707.0264) 105.1789

(370.1875, 645.8392) (302.3901, 723.9358) 103.4194

(433.5261, 633.369) (351.4345, 717.2326) 117.3547

(486.8048, 599.4855) (392.2524, 653.7686) 109.0267

(518, 566.3957) (404.7121, 615.9618) 123.6565

(518, 518.0319) (404.8618, 590.0061) 134.0915

(518, 518.0319) (413.2115, 542.7416) 107.6624

(518, 460.7719) (410.9658, 509.0656) 117.4249

(518, 407.0229) (411.7093, 484.1694) 131.3366

(518, 359.4446) (410.6607, 457.9132) 145.6633

(507.9539, 304.4503) (405.504, 423.8767) 157.3488

(490.525, 259.9264) (405.4679, 400.8513) 164.6042

(434.75, 235.1063) (375.0842, 395.1124) 170.7687

(370.4192, 238.5855) (313.7461, 366.0634) 139.5079

(321.7086, 261.5646) (259.6796, 368.2009) 123.3649

(275.6381, 286.8905) (249.4704, 365.0655) 82.4383

(244.2081, 337.8491) (188.6035, 381.3721) 70.6125

(231.3198, 387.3359) (182.661, 404.9471) 51.7477

(238.5945, 438.122) (170.7428, 448.8538) 68.6952

94



APPENDIX B. RAW RESULTS

Estimated position Real position Error

(249.9778, 486.8298) (159.7227, 463.7279) 93.1648

(284.975, 535.3448) (166.4226, 488.7509) 127.38

(306.3953, 521.6152) (255.8149, 560.7833) 63.9728

(330.8071, 575.6714) (300.6283, 605.1339) 42.1758

(338.9074, 634.6177) (332.2123, 655.0211) 21.4738

(320.768, 692.3991) (368.5091, 699.7028) 48.2965

(277.2925, 737.918) (381.8603, 758.3272) 106.5409

(228.2156, 773.392) (369.9693, 801.4018) 144.4945

(175.5133, 808.5323) (332.2689, 849.4194) 162.0003

(126.2579, 847.7589) (297.5384, 895.6759) 177.8568

(77.3161, 888.4826) (255.796, 941.2396) 186.1139

(32.3445, 921.7523) (221.8824, 990.8215) 201.7305

(0, 927.6617) (185.738, 1032.1906) 213.1312

(0, 927.6617) (144.1016, 1038.0836) 181.5441

(0, 880.5476) (133.1586, 1030.6232) 200.6337

(0, 816.4484) (125.3203, 997.5016) 220.194

(0, 753.6847) (120.0782, 938.9935) 220.8124

(2.2131, 689.2217) (117.2701, 880.2946) 223.0402

(17.193, 640.3531) (117.677, 802.7555) 190.9753

(74.7953, 623.2468) (122.0398, 752.3084) 137.437

(133.3642, 632.6341) (173.2834, 737.0863) 111.8204

(193.434, 653.7641) (230.6988, 728.307) 83.3385

(254.5482, 665.3424) (287.9236, 742.9223) 84.4544

(220.9179, 732.2911) (287.9236, 742.9223) 67.8438

(275.5092, 723.2734) (342.226, 729.442) 67.0014

(313.5793, 689.7473) (374.9578, 716.1443) 66.8141

(348.0168, 655.3542) (392.318, 682.9852) 52.2117

(384.5809, 604.1742) (403.4852, 634.3799) 35.6337

(416.3321, 550.9419) (408.8804, 557.5004) 9.9268

(429.6529, 491.0511) (408.6334, 495.4467) 21.4742

(391.282, 439.9819) (404.1877, 436.6092) 13.3392

(330.8301, 415.3354) (366.5273, 408.777) 36.2947

(268.5021, 422.8253) (314.6473, 373.114) 67.8277
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(217.7579, 458.1348) (244.1362, 396.253) 67.2694

(220.0971, 509.8225) (179.9626, 405.0376) 112.2081

(232.1519, 559.2092) (176.9995, 427.4079) 142.8753

(255.5459, 607.6191) (162.1919, 449.0742) 183.9877

(279.2235, 653.7069) (163.9899, 502.1941) 190.3547

(294.0794, 547.3006) (179.5117, 491.2259) 127.5544

(320.088, 601.4396) (201.308, 501.5863) 155.1753

(335.1027, 651.7455) (235.795, 511.5921) 171.7702

(348.3366, 702.1203) (245.3125, 549.0194) 184.5369

(352.9771, 759.8488) (286.4178, 585.6764) 186.4569

(326.6546, 818.4467) (330.774, 645.5429) 172.9528

(281.8009, 859.1591) (352.7695, 702.7272) 171.7775

(234.9497, 891.9208) (360.6507, 747.733) 191.2874

(188.0331, 934.1594) (332.8205, 810.8644) 190.1711

(143.2278, 983.3984) (306.0428, 852.3319) 209.0147

(143.2278, 983.3984) (285.2964, 884.5587) 173.0687

(105.0038, 1034.9579) (274.0518, 897.8285) 217.6733

(57.9064, 1075.5441) (241.288, 953.204) 220.4448

(3.2692, 1085.2776) (219.7978, 986.8235) 237.8609

(0, 1080.3843) (215.9384, 1004.5929) 228.8531

(0, 1033.4928) (178.3065, 1046.8137) 178.8034

(0, 976.5248) (131.6859, 1031.7617) 142.8016

(3.1565, 916.2793) (125.1614, 985.6299) 140.3379

(6.7257, 852.555) (128.8904, 934.8453) 147.2953

(33.7013, 793.3139) (117.5059, 858.1169) 105.937

(80.1537, 767.2653) (120.3642, 790.0998) 46.2417

(144.3946, 768.3492) (136.6291, 734.7265) 34.5078

(197.2899, 780.6526) (169.1932, 725.3688) 62.0139

(245.8684, 795.9084) (184.9356, 725.7394) 92.9327

(295.3784, 809.6902) (231.6125, 725.3409) 105.7398

(351.6008, 821.1355) (241.8037, 728.5714) 143.609

(402.9727, 800.2329) (297.686, 731.4028) 125.789

(452.9191, 762.2885) (357.4644, 728.2701) 101.3353
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(452.9191, 762.2885) (366.6504, 712.7685) 99.4712

(494.5741, 714.3271) (392.778, 670.4885) 110.8344

(518, 659.423) (402.3825, 628.3268) 119.7262

(518, 604.2631) (409.9209, 562.2929) 115.9422

(496.3716, 543.6523) (420.5568, 481.1508) 98.2564

(467.4172, 505.902) (422.3514, 448.5351) 72.9512

(417.3675, 483.3242) (405.2624, 439.7041) 45.2686

(352.731, 477.1312) (367.0593, 415.3164) 63.4537

(303.7588, 500.106) (318.8281, 351.3844) 149.4831

(263.4299, 525.3474) (292.462, 373.9638) 154.1424

(250.8435, 576.0942) (261.8788, 375.1352) 201.2618

(256.9941, 625.0037) (238.6506, 382.923) 242.7747

(286.589, 675.877) (176.6275, 381.8235) 313.9411

(318.9735, 731.8092) (165.6107, 436.9648) 332.3452

(329.7718, 614.2976) (172.2838, 471.9939) 212.2565

(354.2809, 672.0463) (188.0685, 509.6841) 232.3532

(359.5478, 733.7486) (240.6838, 539.361) 227.8491

(342.0662, 791.6211) (284.6872, 576.7399) 222.4101

(301.1027, 838.9366) (320.2773, 633.7962) 206.0346

(256.0669, 879.3277) (345.1333, 695.9356) 203.8762

(213.5224, 914.3817) (350.6123, 751.778) 212.6819

(170.0649, 961.7987) (329.5743, 814.2536) 217.2851

(127.715, 1011.4834) (304.2158, 878.2734) 221.1276

(92.3972, 1054.8312) (278.1892, 914.3573) 232.9198

(27.3, 1069.3502) (245.0252, 959.9228) 243.6773

(0, 1038.7742) (211.8722, 1008.3087) 214.0513

(0, 1002.6489) (205.9104, 1020.3427) 206.6692

(0, 944.0228) (176.9167, 1041.5109) 201.9986

(0, 883.5335) (131.1397, 1035.8348) 200.9809

(2.1705, 817.8284) (124.1701, 982.8845) 205.2497

(8.8352, 760.9511) (121.2028, 946.237) 216.6965

(8.8352, 760.9511) (115.1329, 902.8892) 177.3291

(57.7345, 723.3196) (114.5647, 861.6566) 149.5554
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(116.5449, 721.0347) (112.1498, 810.3706) 89.444

(180.1418, 739.8347) (118.4017, 741.2843) 61.7571

(231.6363, 751.7742) (152.6524, 740.7957) 79.7432

(285.4786, 762.6772) (171.1055, 713.3748) 124.5469

(347.7303, 755.5254) (230.4924, 717.7282) 123.1801

(394.2007, 738.9664) (255.8202, 712.0622) 140.9716

(443.5645, 707.226) (292.6586, 731.2818) 152.8112

(488.7975, 667.301) (348.8516, 726.5346) 151.9654

(518, 618.8676) (388.5429, 679.4001) 142.9102

(518, 566.2146) (411.6037, 615.9884) 117.4632

(518, 504.5271) (410.9502, 567.0342) 123.9628

(518, 504.5271) (411.1895, 514.4137) 107.2671

(476.2248, 457.1879) (415.4839, 489.7493) 68.9181

(416.1672, 443.4993) (409.4974, 451.901) 10.7273

(352.203, 451.5571) (379.6885, 391.5487) 66.0034

(302.5108, 492.385) (322.7905, 351.2177) 142.6165

(294.5221, 539.3347) (270.7275, 353.407) 187.4441

(294.4186, 593.0633) (252.5523, 339.4568) 257.0389

(319.3927, 635.8169) (201.4901, 356.3184) 303.3487

(343.852, 678.1505) (189.943, 363.9298) 349.8896

(372.4677, 730.2645) (147.8988, 412.5472) 389.07

(394.6375, 788.6594) (158.9239, 469.4551) 396.8025

(403.5967, 852.4298) (201.3703, 519.8049) 389.2747

(401.6675, 900.9013) (240.0364, 546.6578) 389.3752

(391.0264, 954.0962) (253.7621, 565.4399) 412.1835

(354.0252, 1003.8303) (289.9614, 592.256) 416.5304

(311.9972, 1039.863) (336.7969, 647.5109) 393.1351

(262.0639, 1080.6553) (368.9371, 691.269) 403.7866

(214.5271, 1126.0213) (355.9111, 767.2817) 385.595

(214.5271, 1126.0213) (343.028, 787.9573) 361.6625

(164.051, 1169.738) (329.5025, 822.2863) 384.8336

(119.1393, 1211.1118) (305.2072, 876.4787) 382.8846

(57.5717, 1234.6892) (281.2798, 922.3003) 384.2293
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APPENDIX B. RAW RESULTS

Estimated position Real position Error

(10.6599, 1245.5224) (272.5442, 938.0257) 403.903

(0, 1225.3362) (250.0153, 959.6044) 364.8576

(0, 1171.1536) (218.805, 1004.8014) 274.8612

(0, 1116.3628) (172.5, 1040.3464) 188.5066

(2.3149, 1053.1906) (127.389, 1020.6992) 129.2255

(13.0145, 990.8417) (118.686, 965.6716) 108.6278

(265.0068, 771.2812) (120.9428, 939.7091) 221.6358

(297.5535, 727.1961) (118.6769, 908.4475) 254.6546

(339.4403, 704.8317) (121.2767, 863.8037) 269.9397

(399.3257, 711.9375) (122.5855, 791.3618) 287.9121

(455.8572, 713.2729) (134.4828, 738.9147) 322.3957

(508.9969, 699.3402) (170.548, 705.6145) 338.5071

(518, 684.1522) (189.6218, 713.771) 329.7112

(518, 651.1835) (238.8802, 727.0092) 289.2359

(518, 614.1345) (300.2518, 740.3381) 251.6776

(518, 571.5288) (358.7011, 712.605) 212.7877

(518, 514.1753) (388.4537, 642.174) 182.1151

(508.5557, 452.8331) (401.3012, 596.6489) 179.406

(458.5146, 408.0112) (410.997, 530.0996) 131.0096

(396.545, 401.7993) (417.3822, 466.6885) 68.1527

(367.546, 450.173) (414.1116, 451.7893) 46.5936

(306.4269, 469.9239) (394.218, 407.896) 107.4929

(265.4733, 522.6037) (353.6635, 360.8814) 184.2053

(258.2364, 570.5148) (305.4683, 369.9402) 206.0607

(270.4601, 625.157) (276.7618, 360.389) 264.843

(303.0142, 674.0524) (206.7626, 366.7805) 321.9944

(332.3208, 730.5974) (162.0843, 418.454) 355.5474

(349.9989, 787.9683) (149.7128, 466.8183) 378.4862

(350.4697, 853.5018) (190.1928, 519.9508) 370.0607

(326.3688, 910.4365) (239.9671, 556.1886) 364.6324

(326.3688, 910.4365) (261.9142, 581.2821) 335.4058

(289.4221, 949.9146) (268.0112, 598.7149) 351.8518

(244.422, 990.9785) (322.2684, 641.6199) 357.9267
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B.3. FUSION RESULTS

Estimated position Real position Error

(191.7701, 1035.7731) (348.6747, 682.3145) 386.7196

(146.4825, 1080.3693) (354.3506, 751.8803) 388.734

(100.3764, 1123.4435) (333.5109, 802.5281) 396.659

(51.4471, 1158.2642) (302.4459, 862.0988) 388.2195

(0, 1160.8118) (270.173, 902.6204) 373.7061

(0, 1120.1118) (239.8338, 954.4223) 291.5017

(0, 1057.3402) (210.2632, 997.4818) 218.6175

(0, 1057.3402) (204.7983, 1011.2277) 209.9255

(0, 999.5785) (173.9576, 1032.5531) 177.0553

(4.5328, 932.3506) (130.3485, 1034.1374) 161.8337

(23.1448, 876.1747) (123.4422, 992.8113) 153.83

(78.1727, 839.9333) (118.9164, 931.5097) 100.2312

(138.2295, 836.783) (118.5795, 869.9494) 38.5504

(198.3885, 856.1204) (111.5327, 809.242) 98.6991

(253.9632, 865.6082) (120.6181, 748.2151) 177.6571

(302.5973, 872.9641) (127.4093, 737.3238) 221.5606

(362.6975, 852.121) (158.3778, 728.0504) 239.0398

(402.1779, 814.7837) (211.5717, 729.3305) 208.885

(443.2072, 768.747) (279.6551, 726.4591) 168.9306

(473.6094, 728.6209) (345.436, 729.5175) 128.1765

(505.5864, 686.2891) (356.4745, 715.754) 151.9952

(518, 625.2834) (387.2897, 681.149) 142.1484

(506.114, 566.4235) (403.3691, 632.3739) 122.0901

(506.114, 566.4235) (410.1373, 567.0379) 95.9787

(454.7384, 525.7058) (411.856, 550.1799) 49.3749

(407.4895, 503.0495) (409.9775, 545.2583) 42.2821

(343.1267, 490.0714) (412.269, 519.689) 75.2187

(280.7463, 514.1752) (415.855, 448.6958) 150.1396

(242.5992, 543.8624) (408.4791, 426.9969) 202.913

(212.6372, 599.6273) (388.8598, 414.6474) 255.4837

(234.1715, 653.729) (328.4029, 365.484) 303.2569

(261.359, 696.3437) (298.6608, 363.0901) 335.3348

(291.0053, 735.5004) (261.593, 368.1253) 368.5507

100



APPENDIX B. RAW RESULTS

Estimated position Real position Error

(323.423, 777.3277) (243.7388, 365.2956) 419.6666

(358.0055, 831.7189) (197.359, 367.1581) 491.5527

(382.0115, 888.3481) (150.7424, 425.0793) 517.787

(382.2793, 952.9504) (161.4653, 477.8345) 523.9217

(357.4531, 1015.5667) (199.9737, 514.6954) 525.0446

(336.951, 667.0224) (242.3945, 546.6384) 153.0792

(300.0837, 710.9152) (242.3945, 546.6384) 174.1118

(252.3472, 750.7429) (292.7605, 603.0024) 153.1682

(207.7873, 791.5182) (334.4669, 660.6149) 182.1632

(167.1905, 837.437) (352.7614, 707.6386) 226.4601

(125.4954, 887.2367) (355.1286, 761.7572) 261.6802

(84.2686, 935.7599) (329.4741, 816.5679) 272.6398

(19.8049, 952.065) (305.2394, 863.2034) 298.9469

(0, 914.5797) (264.5051, 928.8397) 264.8892

(0, 855.3899) (231.2443, 984.2525) 264.7253

(0, 792.5382) (203.4638, 1017.353) 303.2148

(0, 727.3555) (163.0446, 1045.5813) 357.5629

(2.7786, 663.8318) (121.3477, 1024.1666) 379.3412

(30.8401, 618.9093) (123.7302, 985.5289) 378.2043

(67.5966, 585.5491) (121.5753, 957.5104) 375.8575

(117.0943, 567.1091) (119.1967, 934.2506) 367.1476

(157.939, 603.3908) (119.3967, 911.4983) 310.5089

(157.939, 603.3908) (147.4607, 721.9005) 118.972
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