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Resumo

Esta dissertação estuda o problema da assimilação de informação em ambientes �ui-

dos, com resultados experimentais para a dispersão de odor no ar. Problemas relativos a

assimilação de informação em �uidos são utilizados frequentemente em meteorologia e na

monitorização de poluição ambiental. Mas nesta dissertação, o objetivo foi inferir medidas

experimentais num mapa de concentração de odor, unidimensional.

Com vista a resolver este problema, foram realizadas em laboratório, algumas exper-

iências em condições semelhantes às de um ambiente real, com sensores esparsos, e essas

mesmas condições foram simuladas num computador. Com isto, os resultados experimentais

foram usados para corrigir as simulações, o que levou a algoritmos capazes de estimar os val-

ores para as variáveis de interesse ao longo de uma malha �na de pontos, com precisão. As

bases para as simulações e algoritmos desenvolvidos foram métodos de diferenças �nitas para

equações com derivadas parciais, modelando os fenómenos físicos associados. A implemen-

tação dos métodos de diferenças �nitas foram feitos usando matrizes esparsas, o que permite

tornar mais e�ciente o cálculo das variáveis desejadas. O trabalho desenvolvido incluiu a

construção e teste dos anemómetros, tal como os módulos unidimensionais de compasso de

odor utilizados para as medições �nais, que são usadas para os resultados apresentados. Por

último, são apresentadas comparações entre o método estudado neste trabalho e outros que

podem ser utilizados para o mesmo objetivo, tais como interpolação linear e ajuste poli-

nomial. É de realçar que uma das maiores vantagens deste método é o facto de envolver

modelos matemáticos capazes de descrever os fenómenos físicos envolvidos.

Palavras Chave: Assimilação de informação, Diferenças �nitas, Equações de advecção-

difusão, Monitorização de poluição, Medição de odor
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Abstract

This dissertation addresses the problem of data assimilation in �uid environments, with

experimental results for odour dispersion in air. Problems regarding data assimilation in

�uids are often used for weather forecasting and ambient pollution monitoring. But in this

dissertation, the objective was to infer experimental measurements in a, one-dimensional,

odour concentration map.

To tackle this problem, some experiments were assembled in a laboratory to mimic the

conditions of a physical environment with sparse sensors, and similar conditions were sim-

ulated in a computer. Then the experimental results were used to rectify the simulations,

which lead to algorithms capable of estimating the values for the variables of interest across

a �ne mesh of points, accurately. The bases for the developed simulations and algorithms

were �nite di�erences methods for partial di�erential equations, which model the real phys-

ical phenomenons. The implementation of the �nite di�erences methods was done using

sparse matrices, which results in a more e�cient computation of the required variables.

The used anemometers were built and tested as part of the work done, as well as the one-

dimensional odour compass modules used to get the �nal measurements, that are used for

the shown results. Lastly, one presents the comparison between the method studied in this

work and some others that can be used for the same objective, like linear interpolation and

polynomial �tting. Note that one of the biggest advantages of this method is the fact that

it involves mathematical models, that describe the real physical phenomenons involved.

Keywords: Data Assimilation, Finite Di�erences, Advection-di�usion equations, Pollution

monitoring, Odour sensing
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�It is trite to regard turbulence as the last unsolved problem in classical

physics and to cite many books and authorities to justify the opinion. It

is likewise a cliché to list great physicists and mathematicians, such as

Werner Heisenberg, Richard Feynman, and Andrei Kolmogorov, who

�failed� to solve the problem despite much e�ort. Horace Lamb and

others have been credited with wishing to seek heavenly wisdom on the

subject when they arrived in heaven. With such lists and stories,

youngsters are cautioned, directly and indirectly, that turbulence is

beyond reasonable grasp."

� Gregory Falkovich and Katepalli R. Sreenivasan,

Lessons from Hydrodynamic Turbulence
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1 Introduction

A single sensor can only acquire data for a single point in space at a given time instance.

So the problem is how one is able to estimate the distribution of a variable, that varies in space

and time, from a limited set of sparse sensors. This is important because spreading enough

sensors along a �eld to create a good map is rather impractical and often very expensive. The

goal is then to develop an algorithm capable of integrating a smaller amount of measurements

into a detailed map. Problems like this are usually found in weather prediction, pollution

analysis, and other �elds not necessarily related to �uid dynamics. In this regard, there are

already some solutions to such problems which may involve interpolation [1], probabilistic

methods [2, 3, 4], or numerical methods [5] that approximate solutions to the mathematical

models. The idea of using observations of the actual system to incorporate them into the

mathematical model is referred to as data assimilation [6, 7, 5].

That said, this dissertation has as objective the development and implementation of

a method capable of measuring and integrating a wind �eld like usually done in weather

prediction, and an odour �eld to estimate the concentration of a given chemical across a

space interval. But in this case, the end goal is not to study the dynamics of air, but rather

the behaviour of a gaseous plume. Or maybe even to estimate the size and position of

new obstacles that may, in some way, interfere with the �ow. To achieve this goal, a �nite

di�erence method was used to model the Navier-Stokes equations and an advection-di�usion

equation (Chapter 3). To test the concept, an easier test model was considered, consisting

in the use of a di�usion equation in one dimension, and a solid material to measure the

dissipation of heat by conduction. After achieving the expected results, the goal was to

model the Navier-Stokes equations for one dimension and use a wind tunnel to measure the

wind speed in multiple points in order to use those measurements to infer on the numerical

model. The �nal model refers to an advection-di�usion equation and was also tested on a

single dimension, using a wind tunnel with a dispenser of high concentrations of a measurable

gas. The measurements were introduced in the solution as known values, which means that
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at the measured points, the output of the algorithm is equal to the measurements. And for

every non-measured point, its value is calculated with respect to the closest measured values

and the considered mathematical models.

In order to expose this work in an understandable way, this dissertation begins with a

brief explanation of some of the work that has been done by other research projects in this

�eld of study (Chapter 2). Then a short theoretical background (Chapter 3) is provided.

After listing the used methods (Section 4.1) and hardware components (Section 4.2), it was

important to explain what was done in this work in a detailed and reproducible way (Chap-

ter 5). With all the gathered data, the results were then plotted and analysed (Chapter 6).

Finally, this document draws some conclusions (Chapter 7) about the work done and the

obtained results.

With the work done it was possible to develop an algorithm capable of integrating one-

dimensional values for odour concentrations, in the mathematical model of the dissipation

of a gas through moving air. The results have potential, and adding to the usefulness of the

developed algorithm in one dimension, it can be extrapolated to a two-dimensional space and

serve as a mapping algorithm for multiple situations of environmental sensing through sensor

networks. That said, the results also showed that the use of the Navier-Stokes equations for

this one-dimensional study is not relevant, because in a narrow tube the air behaves like a

very sti� elastic and the velocity is almost always constant along that dimension. However,

the developed algorithm for advection-di�usion problems can be used in its current form to

map the concentration of chemical substances in constrained �uid channels like ventilation

ducts, water pipelines and rivers, which all behave like one dimensional problems. In these

cases there are some factors that can introduce error, such as a river's irregular margin

and tributaries which may induce vortices in the �ow that need to be accounted for in the

algorithm to maintain a low regional error.

2



2 Transport Mapping Solutions

In a macroscale, mathematical models such as the Navier-Stokes equations and advection-

di�usion equations or Euler-Lagrange equations are often used to map and predict the �ow

speed patterns and the transport of particles, chemicals or heat in �uids. Models like these

are often used to help predict the weather or study the concentration of chemicals like carbon

dioxide in the atmosphere [8], which involves estimating their sources and sinks. Another

very important �eld of study that uses mathematical models like these is oceanography [5],

where complex methods are needed to model the maritime currents and some very impor-

tant things that they can carry, like some chemical compounds or heat. These very common

applications require some, of a wide range of deeply studied methods, like Bayesian esti-

mations, Green's functions, the Kalman �lter or least-squares �tting by explicit solution of

extremal conditions. An increasingly more important application for these methods that can

be modelled by said equations, is the study and control of air pollution [9], where adding

to the referred methods, the Gaussian plume is also very commonly used. One application

example would be the use of autonomous vehicles as mobile sensors [10] for optimal data

collection in the ocean, meaning that a bigger area can be monitored with great accuracy

by combining measurements taken at di�erent positions and instances by the same sensor.

On smaller scales, like an urban environment, the method's precision can be greater,

what allows for more intensive studies regarding pollution, like the toxic gases emitted by

vehicles on the streets, which can also be done using a log-linear regression model or a

Probabilistic Graphical Model (PGM) [2]. Some times, it may be advantageous to use a

simple method that still follows the standard behaviour of a substance in a �uid, which is

done by considering the odour cloud as being a Gaussian plume and estimating the plume

that best �ts the taken measurements, but that is in some cases not applicable, because the

air can behave in more complex patterns as in turbulent �ow, and the source of odour can

be inconsistent and/or moving through space, which requires methods capable of modelling

more complex situations. In terms of past work, several methods have been studied and

3



tested to solve these problems. Therefore, it is possible to �nd some scienti�c documents

about such studies.

One of the possible ways of mapping a plume of odour is to use hidden Markov methods

as done in [3] where the aim was to map the possible locations of a source of a given

substance using an autonomous vehicle operating in a �uid �ow and hidden Markov methods

as the mathematical tools to reach that goal. These are statistical methods that rely on the

use of Markov chains with unobserved states, since the process is not visible, but only its

output. To put this in the perspective of the odour mapping problem, the model that guides

the dispersion of the odour through the air is considered as unknown and the only usable

information is that of the taken measurements, so the states of the Markov chains that lead

to the measured values are unknown, but these methods focus on the estimation of the

probability related to which state leading to the measurement. This dissertation focused

only on the mapping problem, which is the main problem that is going to be addressed in

this dissertation, but despite that, it is impractical to compare the two projects because

one uses a mobile sensor in a two dimensional area and the other uses �xed sensors in a

one-and-a-half-dimensional region.

Another statistical approach is to consider Bayesian inference methods like was done

in [4] which aimed to estimate a likelihood map for the location of a source of a chemical

plume using an autonomous vehicle as a mobile sensor, and Bayesian inference methods to

process the data and estimate de map. These methods consist in the use of Bayes' theorem to

update the probability of a considered hypothesis as more measurements are taken and more

information is considered. Bayesian inference methods were used to estimate, by continuous

updates, the probabilities of the odour source being in the considered regions of the area of

interest. Regardless of also using a mobile robot to take the measurements, this does not

imply that the robot must reach the source and can more easily be tweaked to use multiple

�xed sensor instead of a mobile one. This could also be implemented in one dimension but

without much bene�ts, since it was developed to only estimate the most likely sources of

odour and not to estimate the full odour concentration map.

All the referred methods can be used for smaller scales, but once considering enclosed

environments, the physical obstacles to the �ow become a dominant factor, and it becomes

important to take them into account. One of the simplest ways to do that is to previously

measure all the known obstacles and to introduce them into the used method as boundary

conditions or some sort of assumptions, like in [11], where an interpolation and extrapola-

tion method is used with the objective of locating a chemical source in a �eld with a small

4



number of sensors scattered around an area using eight assumptions related to the propaga-

tion of chemical particles in air and the position of eventual obstacles for the air�ow. The

applied method is extensive, but simpler to understand and could achieve good results non

the less. The downside of this method is that for each added assumption the method be-

comes more and more restrictive, and that may result in an algorithm that cannot deal with

unexpected conditions. However, this two-dimensional method can be adapted to consider

each streamline of �owing gas as a one dimensional problem that can be solved with the

method developed in this dissertation.
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3 Theoretical Background

To fully understand the tools required for this work to be implemented, a theoretical

introduction is needed in what regards some �uid dynamics concepts, the Navier-Stokes and

advection-di�usion equations. So, in what concerns �uid dynamics, some key concepts are

going to be explained as they are very important to fully understand the physics behind

what was done in this work and what is that we want to achieve, as well as the fact that

�uid dynamics is not a well debated theme around standard electrical engineering courses.

Despite the fact that this work is going to focus on gases in particular, this theoretical

background is general enough to be considered in a liquid study around the same problems

that are tackled in this one, as the di�erence in density is not relevant to the formulation

of the �uid motion and behaviour since it only has in�uence over the magnitudes of forces

required to produce given accelerations. The largest di�erence between the properties that

can in�uence the motion of gases and liquids is their capacity to be compressed, but since

the velocities in study are quite low (below a third of the velocity of sound [12, 13]), the

impact of the di�erences in density through space is very small and can be ignored [14].

To accurately model the behaviour of a �uid, some basic assumptions and principles about

�uid dynamics are needed. These assumptions and principles are turned into equations that

must be satis�ed if the assumptions are to be held true. The �rst assumption being that

the �uid can be regarded as a continuum substance, and not as a large group of individual

particles. For this to still result in an accurate model, the representative physical length scale

needs to be much larger than the molecular mean free path, meaning, the areas through which

the �uid �ows must be much wider than the mean space that each particle moves between

consecutive collisions [13]. To the ratio of mean free path representative of the physical

length scale we call the Knudsen number (Kn) (named after the Danish physicist Martin

Knudsen),

Kn =
λ

L
,
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where λ represents the mean free path and L the representative physical length scale.

For this work, the smallest bounded space considered where air can move has a diam-

eter of 10.5 centimetres. Considering the mean free path to be 68 · 10−9, we get a Kn of

6.476 · 10−7. Given that this number is much lower than 0.01, the �uid can be regarded as

a continuum [15, 16].

The second assumption is that the curves for pressure, velocity, density and temperature

are, at least, weakly di�erentiable [12]. And the basic principles from which the needed

equations can be derived are the conservation of mass, momentum, and energy.

One way to derive the conservation laws would be to consider a given quantity of matter

or a control mass and its respective proprieties. But to study the dinamics of �uids this is

not a practical method because it is di�cult to track a blob of matter trough a free �owing

environment. It is, then, more convenient to consider a given control volume �xed in space

trough which the matter �ows [12, 17].

First, let us start with the mass equation, which can neither be created nor destroyed, so

for any amount of matter its mass is always constant. However, that is not true for any given

volume, since mass can enter and exit said volume, so one needs to consider both the mass

inside the volume and the mass entering or exiting that space. To do that, let us consider

the Equation 3.1:
∂

∂t

∫
Ω

ρdΩ +

∫
S

ρν · ndS = 0, (3.1)

where ρ is the �uid density, ν kinematic viscosity, Ω is an arbitrary domain and S its

boundary. Also ∂
∂t

∫
Ω
ρdΩ is the rate of change of mass inside de considered volume and∫

S
ρν · ndS is the in�ow of mass through the frontier of the considered volume.

This equation can �nally be transformed into the following di�erential Equation 3.2:

∂ρ

∂t
+ D(ρν) = 0, (3.2)

where D is the material derivative. This equation is also known as the continuity equation.

The next conservation law to consider is the momentum equation [12, 17], which can

only be changed in the presence of external forces. So, according to Newton's second law of

motion:
d(mv)

dt
= F,

where t stands for time, m for mass, v for velocity, and F the resultant of the external forces.

8



Note that if the system if isolated, then F must be zero and the momentum is time invariant.

Using the control volume in a way analogue to the Equation 3.1, the momentum conser-

vation equation can be written as

∂

∂t

∫
Ω

ρνdΩ +

∫
S

ρνν · ndS = Fo,

where Ω represents the control volume, S its surface, and Fo the sum of other forces acting

on the �uid. Those forces can also be considered, being those the forces acting in the �uid

as a whole, like gravity, viscous forces, and pressure forces. The �rst can be considered as∫
Ω
ρfdΩ, the second as

∫
S
τ · ndS and the last as

∫
S
pndS. The stress tensor is represented

by τ and can be obtained through the following expression:

τ = (−p+ λ∇ · v)I + 2µD̂,

where µ is the dynamic viscosity, D̂ is the deformation tensor and D̂ = 1
2
(∇v + ∇vT ).

However, for incompressible �ows like the considered in this study, ∇ · v = 0, which results

in

τ = −pI + 2µD̂.

Then the momentum equation 3.3 is considered.

∂ρv

∂t
= ρf +∇ · (τ − ρvv), (3.3)

which, using the conservation of mass, can be written as

ρ
Dv

Dt
= ρf +∇ · τ,

where

ρ
Dv

Dt
= ρ

(
∂v

∂t
+ v · ∇v

)
.

So, adding the convection terms and the di�usion terms together, one will reach the

Equation 3.4.

ρ

(
∂v

∂t
+ v · ∇v

)
= −∇p+∇ · (µ(∇v +∇vT )) + F. (3.4)

9



The Navier-Stokes equations are only valid for non-compressible �uids, since the term

∇·v was considered as negligible, but one can easily get the full Navier-Stokes equations that

can model the behaviour of any Newtonian �uid in a large enough space for the equations

to be relevant. So although gases are quite able to deform under pressure, high velocity

gradients are needed to create considerable deformations in the gas, because gases very low

viscosity and fairly low density. So, we can consider that for velocities lower than Mach 0.3,

the present deformations are negligible.

A limitation of the Navier-Stokes equations is turbulent �ow, because the increasingly

smaller vortices would require an increasingly �ner mesh. Turbulence is a chaotic �ow regime

characterized by the presence of very small vortices that change the overall behaviour of the

�uid on that speci�c region [18, 19]. The higher the velocity of the �uid in respect to its

viscosity, the more turbulent it is, because the viscosity is what works against shear forces

in the �uid, and therefore is what mitigates turbulence [20]. To help distinguish between

a laminar from a turbulent �ow region one can calculate the Reynolds number (Re) [20],

which characterizes the ratio of inertial forces to viscous forces and, therefore, can be used

to predict if the �ow will behave in a laminar or turbulent way. The equation that gives the

Reynolds number is:

Re =
ρvL

µ
,

for which ρ is the density of the �uid, v is the characteristic velocity of the �uid, L is the

characteristic linear dimension and µ the dynamic viscosity of the �uid.

On top of these equations, when the study of how a substance disperses in a �uid is im-

portant, then advection-di�usion equations are needed. These are simpler than the Navier-

Stokes equations and can be understood by thinking of the way that the substance concen-

tration changes depending on a natural di�usion term, and a convective term that depends

on the velocity of the �uid in each point, which can be estimated using the Navier-Stokes

equations. So we have the Equation 3.5:

∂c

∂t
= ∇ · (D∇c)−∇ · (~vc), (3.5)

where c is the concentration of the substance, D is the di�usion coe�cient and ~v the velocity

of the �uid. Note that c could also be a temperature if the study was about thermodynamics.

So the term ∇ · (D∇c) describes di�usion and the term −∇ · (~vc) is the one that describes

advection.
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4 Resources

4.1 Methods

4.1.1 Fluid Behaviour Modelling

In what concerns gas dispersion modelling, the most popular approach is to consider the

Gaussian plume, which considers a chemical plume as having a Gaussian distribution [11]

and that makes it very simple to use. However, this method fails once turbulent or irregular

�ow is considered and cannot be used to model the behaviour of the �uid itself, but rather

of an intruder plume that spreads through the �uid. For this particular work, the Gaussian

plume option was dismissed because the main objective was to model the speed of air and

the dispersion of a gaseous plume from some measured values rather than a know source,

which makes for a more complex problem that would lose some versatility. So, to model the

behaviour of the air and the dispersion of a gas through moving air, the direct mathematical

models were used for being the most accurate way despite the added problems concerning

grids and convergence associated with the use of some numerical method. Being the most

wildly used numerical methods, �nite di�erences, �nite volume and �nite elements.

Finite di�erences methods [12, 21] are the simplest ones to implement, since they are

based on �nite intervals along the axis of reference to compute approximations for the given

equations on all the considered points in space, and can archive accurate results if �ne meshes

are used.

Finite volume methods [12, 21] are good at preserving memory, allow for fast compu-

tational speeds, and can have unstructured meshes, what allows for higher accuracy with

coarser meshes. This is because, instead of considering the neighbouring points to compute

each point, they consider the neighbouring volumes to compute the value of each volume,

this means that at most, the same number of points are going to be considered and this can

work with any adjacent shapes and distances.
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Finite elements methods [21] are more stable and accurate but are also slower to com-

pute and use more memory than the �nite volume methods. These methods are harder

to implement and require special care to ensure a convergent solution. Di�erently to the

other referred methods, these consider elements constituted from multiple points and asso-

ciate matrices to those elements, which makes these methods, both more accurate and more

computational demanding.

These numerical methods can easily be used to both compute the dynamic �ow of air,

using the Navier-Stokes equations (Chapter 3), and the dispersion of a gas through air,

using advection di�usion equations. Or if one were to consider a turbulent �ow at higher

Reynolds numbers, other models would be needed, like Reynolds-averaged Navier-Stokes

(RANS) [22, 23] for �uid �ow problems or the introduction of the eddy di�usivity concept.

Mathematical models like these tend to be di�cult to implement, but are still very useful.

And in what concerns prediction applications, they are used mainly in Numerical Weather

Prediction (NWP), like said before.

For this work in question a �nite di�erence method was used in its implicit form with

the backward di�erence and a regular linear grid. This method was chosen because it is

simple to implement and the other referred numerical methods don't o�er great advantages

for one-dimensional problems such as this. A regular grid was considered since an irregular

one would only increase the overhaul accuracy of the method if the grid was adaptive and

followed the higher gradients of the output, which would involve very complex algorithms.

So to achieve good accuracy a �ner grid was used at the expense of more memory and more

computational e�ort.

4.1.2 Methods for Inverse Problems Regarding Fluid Flow

To compute the air velocity �eld and the odour concentration map one needs to develop

an inverse model able to go from a limited set of measurements to a complete �eld of values.

It is called an inverse problem because it starts with the results and then calculates the

causes.

Among several other known methods to solve this problem there are the two-dimensional

splines [1], which allow for a smooth curve that resembles a true �eld of values and can

also compute changes in time if another dimension is added. Kriging (or Gaussian process

regression), which is the best method for spacial interpolation of �eld values, because it gives

the best linear unbiased prediction (BLUP) [24, 25]. And the best method to predict new
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iterations for dynamic problems, which is the Kalman �lter (or linear quadratic estimation).

However, these models have limitations that make them either hard to adapt to the

problem studied here or very computational demanding. In the case of the Kriging method,

it is insu�cient on its own to predict values along the time dimension, so it needs to be

paired with some dynamic model that can estimate a new Kriging �eld of values from the

current one, that propagates in the right way according to the Navier-Stokes model of a

�owing �uid. And the problem with the Kalman �lter is that it is too slow for the amount of

variables that must be considered for the prediction to be accurate through the whole area

of interest.

So, the method that was tested in this work was the use of the direct model with the

di�erential equations in question to estimate a possible �eld that could lead to the measured

values, either by propagating the values in space and time or by iteratively alter the bound-

ary equations until a possible �eld is achieved. This method also involves some problems,

like it cannot make any distinction between an error in the measurement of the sensor and

an error cause by a bad prediction of the inversion method.

4.1.3 Communication

To make the �nal setup work, a communication protocol was needed to control the micro-

controller associated with the turbines and for receiving the data from the microcontrollers

associated with the sensors. For that purpose, a RS485 network was put together connecting

a computer and three microcontrollers that needed to exchange one 64-bit unsigned integer

and eleven 32-bit integers that can be used, depending on the microcontroller that has to

interpret the message, for the data read by the sensors and to set the PWM signals for the

turbines. Although there are no �ags to distinguish the type of data sent, however, there

are two bytes designated to characterize the sender and address the receiver. The sender

is designated on the �rst byte of the message with a letter from `a' to `d', and the receiver

is speci�ed on the last useful byte of the message also with a letter from `a' to `d'. The

Figure 4.1 represents the structure of a message with the types of variables that are used by

the nodes to read the messages.

Figure 4.1: RS485 message structure
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4.2 Materials

4.2.1 Electronics

The most common components used to build the test ambiances were resistors, capaci-

tors, NTC thermistors, MOX sensors, BJT and MOSFET transistors, operational ampli�ers,

voltage regulators, LED's, di�erent types of cable and connectors. The used resistors all have

a 5% tolerance and enough power rating to withstand the used currents. The capacitors were

used to �lter noise from the voltage sources and regulators and to keep it constant at the

terminals of the sensors and integrated circuits, and the capacitance was always high enough

to keep the system stable. The thermistors were used to measure the wind velocity through

a self-heating process (Section 5.2), every used NTC Thermistor has 2 kohm resistance with

1% tolerance, a β value of 3800 and a glass encapsulation with 2*4 millimetres. The BJT

transistors were used to supply the needed voltage to the thermistors in order to reach the

wanted temperature. The operational ampli�ers (UA741CN) were used to control the BJT

transistors. The MOSFET transistors were used to control the speed of the turbines through

a PWM signal. The MOX sensors (MiCS-5521) were used to measure the concentration of

oxidizable gases in the air. The voltage regulators (L78505CV) were used to reduce the

voltage from 12V to 5V for the microcontrollers and for the MOX sensor circuits. The LEDs

were just used as a visual feedback for the communication circuits.

Regarding the microcontrollers, the most important was the PIC24FV16KM202, as it was

used most of the time for tasks such as read analogic voltage values and output PWM signals.

To program it, a PicKit3 was used and the code was compiled using the MPLAB X IDE

version 3.35. The other microcontroller used was an ATmega328P with an Arduino Uno for

minor tasks. Other integrated circuits were needed for the microcontrollers to communicate

with each other in grids larger than two nodes, so some RS485 transducers (SN75176A) were

used to set up a RS485 network. Also, to communicate with a computer, a FTDI232 was

used.

4.2.2 Prepared Physical Environments

In order to execute the intended practical tests, some hardware setups were put together,

being the �rst for testing an idea using a 40 cm stainless steel rod as a heat conductor. Six

NTC thermistors were coupled to the rod using thermal conductive paste and the resulting
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(a) Heat dissipation setup

(b) Wind behaviour setup

(c) Odour dispersion setup

(d) Odour sensor calibration setup

Figure 4.2: Experimental setups assembled throughout this work

bundle was wrapped with packing foam wrap to help isolating it from the air temperature.

Then on unwrapped tip of the rod was taped a foil cone opening towards the rest of the rod

to de�ect hot air convention currents and that tip was dipped in boiling water to maintain

a constant temperature of 100 °C. This setup is represented in Figure 4.2a.

The next one was intended to measure the airspeed at di�erent points along a tube.

For that, a one meter long tube with a diameter of 10.5 cm was used together with a 12

centimetre DC brush-less fan to draw air trough the tube. A small cardboard adapter was

cut to help coupling the fan to the tube. Self heating NTC thermistors were mounted inside

the tube through tiny holes in the plastic, and honeycomb �lters were placed inside the tube

to straighten the �ow. The circuit board was glued on top of the tube to be close to the

thermistors. This setup is represented in Figure 4.2b.

The most important setup has some similarities to the prior but in a bigger scale, this

time a square section tunnel was built out of a rectangular section wind tunnel with the use of

particle board walls and an acrylic top, being the bottom the laboratory's �oor. The section

has a size of 0.5 meters and the whole tunnel is 4 meters long. The turbines are positioned at

the end of the tunnel not to introduce turbulence in the wind, and are controlled simultaneous

by the PWM channels of the used microcontroller through a MOSFET transistor. Every
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microcontroller in the tunnel and sensor network was connected with a RS485 network to a

main computer. And the sensors were individual circuits capable of measuring wind speed

and odour concentration. This setup is represented in Figure 4.2c.

The last assemble was not a test but was also important since it was meant to help

calibrating the odour sensors. An hermetic sealed glass container with a plastic top was

perforated to �t a connector to power the needed circuits inside and a syringe was used

to inject a known quantity of 96% ethanol alcohol. A small fan was also placed inside the

container to mix the air-ethanol mixture. This setup is represented in Figure 4.2d.
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5 Developed Work

To develop and test the algorithms that were used to map the wind and odour �elds,

a simulator in Matlab was coded and examples of possible wind and odour �elds in one

dimension started to be run. Then, to test the various algorithms, some setups (Section 4.2.2)

were assembled to extract real data from the anemometers and gas sensors. Then, the

acquired data was used to estimate a possible realistic �eld of values across the considered

domain.

5.1 Simulators

The simulators are similar Matlab programs that apply the di�erential equations to a

�eld of initial values and given boundary conditions. The result is a �eld of values that is

coherent with the physical model and the given boundary conditions. Simulators were used

to model the di�usion of heat in a steel rod, to model the �ow of air trough a pipe, and

to model the spread of a gas through moving air. The objective of these simulations was

to have a good point of reference for what should be the real measurements and areas in

between the sensors. The reason for rods and tubes is that those are very close to what

can be considered as a one-dimensional structure. With these simulations run, visual marks

were set to be the best performances possible of the inversion algorithm. And with those

results one could start to program a way to invert the experimented results in a way that

would result in the full map of the variable of interest across the medium.

As a proof of concept, the �rst test model to be simulated was the di�usion of temper-

ature in a steel rod, which may seem too distant from the purpose of this work, but it is

a model that is very easy to test in a real environment with very high reliability and the

modelled behaviour is fairly similar to that of a gas dissipating trough still air. To test this,

the simulator was programmed based on a simple heat equation with thermodynamic losses.
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Also, an apparatus was set up to gather real data for the inversion. A thin steel rod was

dipped in boiling water in one end and isolated in the rest to minimise losses, six thermistors

were thermally coupled to the rod as the Figure 5.1a shows represented by thermometers,

and a piece of foil was placed around the beginning of the rod to de�ect the hot convecting

air (Section 4.2.2).

(a) Assembled temperature measuring sys-

tem diagram
(b) Temperature sensing circuit

Figure 5.1: Temperature di�usion experimental setup

The electrical resistance of the thermistors was measured using simple tension dividers

and an ATmega328P microcontroller to read and send to a computer the analogic signals

(10 bit resolution) from the tension dividers. The raw data was logged for later processing.

Before considering the measurements taken with the setup represented in Figure 5.1, a

simulation was run, considering the di�usion of heat in the rod with boundary conditions

related to the actual real conditions of the test. It is important to compare the simulation

to the measurements, to analyse the di�erences and look for factors that are not being

considered and compromise the accuracy of the inversion.

Since the physical rod has 0.4 meters, the considered domain was [0, 0.4] and the time

domain [0, 3600] seconds, because the experiment lasted one hour. To keep the conditions

similar, one end of the rod was considered to be at a constant 100 °C and the other end as be-

ing well isolated. The initial temperature across the medium is of 20 °C, and for any instance

beyond that, the temperature is de�ned by a simple di�usion equation (Equation 5.1) with

a loss term, that was necessary because of the present thermal losses trough the isolation.
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With this, the considered mathematical model is de�ned by

∂T

∂t
(x, t) = D

∂2T

∂x2
(x, t)−K (T (x, t)− Ta) , (5.1)

for x ∈ (0, 0.4) and t ∈ (0, 3600), where Ta is the ambient temperature and K is the thermal

loss coe�cient. And it has the boundary conditions

T (0, t) = 100, ∀ t ∈ [0, 3600],

∂T

∂x
(1, t) = 0, ∀ t ∈ [0, 3600].

Since the exact analytical solution of partial di�erential equations is in general very

complex to calculate accurately, the solution needs to be approximated in a set of considered

points. For those points, a uniform mesh was considered with N + 1 points with a stepsize

of h = 0.005, which means that 0 = x0 < x1 < ... < xN = 0.4 where xi = ih. Regarding the

time domain, the time-step is ∆t = 1 s and tm = m ·∆t with m = 0, ...,M . It is then possible

to calculate Tmi ≈ T (xi, t
m), for i = 0, ..., N , m = 0, ...,M . Now, in order to discretize the

equation 5.2, the backward di�erence method was used for the time derivative and a centred

second order approximation was used for the spatial derivative [21].

Tm+1
i − Tmi

∆t
= D

Tm+1
i−1 − 2Tm+1

i + Tm+1
i+1

h2
−K(Tmi − Ta). (5.2)

From this form, it is possible to solve the equation as a matrix system 5.3

ATm+1 = Tm −K(Tm − Ta)

⇓ (5.3)

1 + 2D∆t
h2

−D∆t
h2

0

. . . . . . . . .

−D∆t
h2

1 + 2D∆t
h2

−D∆t
h2

. . . . . . . . .

0 −2D∆t
h2

1 + 2D∆t
h2





Tm+1
1

...

Tm+1
i−1

Tm+1
i

Tm+1
i+1

...

Tm+1
N


=



Tm1
...

Tmi−1

Tmi

Tmi+1

...

TmN



1

−K



Tm1 − Ta
...

Tmi−1 − Ta
Tmi − Ta
Tmi+1 − Ta

...

TmN − Ta


.

1For Tm
1 , the boundary condition needs to be summed like so, Tm

1 + D∆t
h2 ∗ T (0, tm)
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Now, after the experimental test and the simulation, one can use the measured values

obtained with the setup from Figure 5.1 to rectify the simulation. This allows the simu-

lation to be approximated to the reality, since the mathematical models always have some

di�erences from the real phenomena. To do this, the spatial domain was divided in equal

portions separated by the points where the sensors are (where the values are known). In

those smaller domains, the same numerical method (see Equation 5.3) is applied with two

boundary conditions equal to the nearest measured values. So the considered boundary

conditions were

T (10s, t) = Ts(t), ∀ t ∈ [0, 3600],

∂T

∂x
(10s, t) = 0, ∀ t ∈ [0, 3600],

where Ts(t) with s ∈ {1, ..., 6} is the measured temperature by the s sensor at the instant t,

and the number 10 means that there is a sensor at each 10 length steps.

To introduce these conditions to the system, matrix A needs to be tweaked to allow for the

boundary conditions to be implemented. So the Tms points coincident with the positions of

the sensors were overwritten by the measured Ts(t) values. And in order for this substitution

to take e�ect, the Tms should not be computed. So the A(s, s) points were set to 1 and the

values A(s, s − 1) and A(s, s + 1) were set to zero. Also the loss term was ignored for the

measured values.

5.2 Simulation and Testing

After testing the method with the temperature dissipation model, a more complex set

up was tried, and this time the aim was to model the Navier-Stokes equations 3.4 for a

non-compressible (negligible compressibility) �uid in a laminar �ow regime. To test this, a

tube was used as a wind tunnel, with honeycomb �lters and a DC brush-less turbine. The

wind speed sensors were seven self-heating thermistors and were placed at 10 cm intervals.

Also another thermistor was used to measure the temperature of the air as it entered the

tube. This setup is shown in Figure 5.2.

To measure the air speed around the thermistors, each thermistor was heated such that

an increase in air speed would result in a high enough unbalance to the heating circuit for

it to be easily measured. To do this, two approaches were tried. The �rst one was to use

a current mirror to supply the each thermistor with a constant current, which means that

with an increase in resistance on a thermistor results in an increase in supplied voltage, so it
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(a) Assembled wind speed measuring system

diagram

(b) Anemometer circuit

Figure 5.2: Experimental setup for air movement behaviour

is self-balanced and easy to measure. But the response times were poor, given the fact that

the thermistor had to cool down and heat up to keep up with the di�erent balance points.

To work around that problem a second circuit was designed and tested (see Figure 5.2b), but

this time the thermistor was part of a Wheatstone bridge, where the output of the bridge

was compared by a operational ampli�er and fed to the transistor that feeds the bridge.

This way the bridge would self-balance by providing more power to the bridge, and therefore

heating it up and lowering its resistance.

This one-dimensional wind test did not achieve the expected results because a pressure

or velocity gradient in one dimension propagates at the speed of sound and the sampling

time of 0.15 s was not small enough to characterise any wave moving at such a speed. In

an unconstrained environment air can move more freely and velocity gradients can move at

speeds closer to the velocity in question. But inside a narrow tube, air only moves in one

dimension and pressure di�erences cannot escape trough open space. That said, the response

of a �uid to a force in a constrained tunnel di�ers from the response to the same force in an

open environment.

To better understand the mechanics in question, one can see the �uid as a long and narrow

mass of particles that is going to be pulled or pushed in one end. Those particles are held

together with pressure (atmospheric pressure) and any force acting on the system will act on

the particles as to reach the new point of equilibrium. This system is then analogue to a chain

21



of springs and masses and the speed at which a pressure disturbance propagates through the

medium is the acoustic speed in that medium [26] [27]. This means that the Navier-Stokes

equations for this problem are only relevant for two or three-dimensional analysis or for long

enough one-dimensional cases. Nonetheless, the tests were done and results were plotted so

that this problem may be worked around better in future research.

In what concerns the simulation of the behaviour of air across the one-meter tube, the

air was considered to be stationary until 0.5 seconds after the simulation had started. At

that point the speed at one end of the tube was considered to be 3 m/s, as if a turbine was

turned on, and then the speed in the same point was considered as being zero again 0.5

seconds after, as if the turbine had stopped. For the rest of the domain of [0, 1]m the air

velocity is de�ned by the equation 3.4. The time domain was [0, 20]s, and the considered

boundary conditions are

V (0, t) = 0, ∀ t ∈ [0, 0.5[, ]1, 20],

V (0, t) = 3, ∀ t ∈ [0.5, 1],

∂V

∂x
(1, t) = 0, ∀ t ∈ [0, 20].

The solution for this equation was then approximated in the set of N+1 points 0 = x0 <

x1 < ... < xN = 1 where xi = ih with h = 0.001. The time domain was considered to have

a �nite number of times instances spaced by ∆t = 0.01 and tm = m ∗∆t with m = 0, ...,M .

Now it is possible to calculate V m
i ≈ V (xi, t

m), for i = 0, ..., N , m = 0, ...,M . So to discretize

the equation 3.4, the backward di�erence method was used for the �rst-order derivatives and

a centred second-order approximation was used for the second-order spatial derivative.

V m+1
i − V m

i

∆t
+V m

i

V m+1
i+1 − V m+1

i−1

h
= −

pm+1
i+1 − pm+1

i−1

hρ
+ν

 Vm+1
i+1 −Vm+1

i

h
− Vm+1

i −Vm+1
i−1

h

h

 , (5.4)

where x ∈ (0, 1), t ∈ (0, 20) and ν = µ/ρ.

From this form, it is possible to solve the equation as a matrix system 5.5
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AV m+1 = BV m + F

⇓ (5.5)

− 1
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− 1
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0
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h2
− 1
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N
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=
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Pm
1 −Pm

0

ρh
...

Pm
i−1−Pm
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i −Pm

i−1
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...
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
,

where instead of changing the values of the matrix A to isolate the last point, the value of the

point V m
N was overwritten by the value of the point V m

N−2, which has the same mathematical

result and is faster to compute.

One of the biggest problems this time is that there is some error associated to the use

of the elements . The solution was then to use the last computed version of those elements,

which would result in a substantial error, so the idea was to use the newly computed values

and feed them back in the same equation in order to recalculate them more accurately. This

was done until the di�erence between two computations of the same value was smaller than

1%. Other problem is the calculation of the F pressure component of the matrix, which was

basically done by using F = AV m+1 −BV m.

The next model to be tested was the dispersion of a gas through air, and the mathematical

model needed was an advection-di�usion equation. For this, a longer and wider tube was

used. This tube had honeycomb �lters on each side and multiple turbines in the sink end.

2For V m
1 , the boundary condition needs to be summed like so, V m

1 + (
V m+1
1

h + v
h2 ) ∗ V (0, tm)
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The turbines were controlled by a PWM pulse generated by a PIC microcontroller and

the measurements were taken with the use of ten small identical circuits containing an

anemometer similar to the ones used before and a MOX odour sensor. To control the

turbines and log the measured data with the same computer, a RS485 network was put

together and it involved 3 PIC microcontrollers and one computer. One PIC received the

PWM values to set the turbines, the other two read the analogic values from the sensors and

sent them to the computer, and the computer logged the data and sent the PWM values

through the network.

(a) Odour sensing in a wind tunnel diagram

(b) Anemometer and odour sensor circuit

(c) Experimental setup communication and functioning diagram

Figure 5.3: Experimental setup for odour dissipation in a working wind tunnel

The circuit for the anemometer is the same that was used previously, it consists of a

Wheatstone bridge with an ampli�er and a transistor as a feed back loop such that the

circuit reaches an equilibrium when the thermistor has a speci�c resistance, which happens

only if the thermistor reaches the right temperature. If more air �ows around the thermistor,

more power is going to be needed to reach the needed temperature, and so, the velocity of

the �uid can be extrapolated from the power that is being applied to the circuit. The MOX

sensor is powered with 2.4 Volts and it's resistive component is measured with a simple

voltage divider.
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Concerning the functioning of the experimental setup 5.3c, the nodes send their messages

in turns, following the shown sequence of Main Computer, PIC 3, PIC 1, PIC 2, Main Com-

puter. The �Data� arrows contain the measured values from the sensors, and the �Control�

arrow contains the PWM values for the turbines, any uncharacterised arrow represents the

message that gives the turn to the next node, as well as �Data� and �Control� arrows.

Regarding the Simulation, this test was done considering that the odour concentration at

the �rst point of the tube is equal to the odour concentration measured by the �rst sensor of

the framework in Figure 5.3. This is because the simulation needs to meet close conditions

to those of the measuring setup, in order for the extracted curves to be comparable. Also,

the last point of the simulation is an isolated point. The considered spatial domain is then

[0, 4]m and the time domain [0, 30]s. The initial conditions are of 0µg/L for the entire

domain at t = 0, and for t > 0 the concentration of alcohol vapour is estimated with respect

to the equation 3.5, and the considered boundary conditions were

C(0, t) = C1(t), ∀ t ∈]0, 30],

∂C

∂x
(1, t) = 0, ∀ t ∈ [0, 30],

where C1(t) is the value measured by the �rst odour sensor in the network.

To approximate the solution for the equation 3.5, the set of N + 1 points 0 = x0 < x1 <

... < xN = 1 was considered, where xi = ih with h = 0.01. The time domain was considered

to have a �nite number of times instances spaced by ∆t = 0.02 and tm = m ∗ ∆t with

m = 0, ...,M . Now it is possible to calculate Cm
i ≈ C(xi, t

m), for i = 0, ..., N , m = 0, ...,M .

For the discretization, the backward di�erence method was used for the �rst-order derivatives

and a centred second-order approximation was used for the second-order spatial derivative.

Cm+1
i − Cm

i

∆t
+

(V C)m+1
i+1 − (V C)m+1

i−1

2h
= D

 Cm+1
i+1 −Cm+1

i

h
− Cm+1

i −Cm+1
i−1

h

2h

 . (5.6)

The V m+1 terms refer to the velocity of the �uid and needs to be input to the system by

other means, which means that the ideal method would be to use the Navier-Stokes equations

to estimate V m+1 �rst, and that would be the course of this work if a two dimensional system

were to be considered. But as seen before, the Navier-Stokes equations are irrelevant in a

small one dimensional problems like this one. So to get a reliable value for V m+1 the direct

measures from the anemometers were considered, and since the �ow velocity is constant in
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the whole length of the tunnel, the measures were averaged.

From the form 5.6, it is possible to solve the equation as a matrix system 5.7:

ACm+1 = BCm −KCm

⇓ (5.7)
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where similarly to what was done in the previous simulation, the value of the point Cm
N was

overwritten by the value of the point Cm
N−2. Also, a loss term was added, where K is the

loss coe�cient.

After the experimental test and simulation, one can use the measured values obtained

with the setup from Figure 5.3 to rectify the simulation. This allows the simulation to be

approximated to the reality, since the mathematical models don't consider everything from

the real phenomenons. To do this, the spatial domain was divided in equal portions separated

by the points where the values are known from the sensors. In those smaller domains, the

same numerical method (see Equation 5.7) is applied with two boundary conditions equal

to the nearest measured values. The considered boundary conditions were then,

C(33s, t) = Cs(t), ∀ t ∈ [0, 30],

3For Cm
1 , the boundary condition needs to be summed like so, Cm

1 − ( D
2h2 + V m+1

2h ) ∗ C(0, tm)
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∂C

∂x
(33s, t) = 0, ∀ t ∈ [0, 30],

where Cs(t) with s ∈ {1, ..., 10} is the measured temperature by the s sensor at the instant

t, and the number 33 means that there is a sensor at each 33 length steps.

To introduce this conditions to the system, the matrix A needs to be tweaked to allow

for the boundary conditions to be implemented. So the Cm
s points coincident with the

positions of the sensors were overwritten by the measured Cs(t) values. And in order for

this substitution to take e�ect, the Cm
s should not be computed. So the A(s, s) points were

set to 1 and the values A(s, s− 1) and A(s, s + 1) were set to zero. Also the loss term was

ignored for the measured values.

5.2.1 Sensor Calibration

To calibrate the anemometer component of the sensor, the turbines were set to a �xed

speed and the real �ow speed was measured with an accurate hot-wire anemometer. This

step was repeated for 10 di�erent speeds between 0 and 1 m/s. The measured values were

then normalized and the exponential curves were plotted according to the real wind speed

values, as shown in the example of Figure 5.4, that shows the calibration curve for one of

the anemometers.

Figure 5.4: Calibration curve for an anemometer

To calibrate the odour sensors, the �rst sensor was sealed in a 1.65 litre glass container

with one small fan to mix the air (see Figure 5.5a), where a small amount of evaporated

ethanol (96%) was introduced, and the values acquired by the ADC were logged and averaged

to set the value for actual concentration of ethanol. The method to dilute the ethanol was

to inject 78.9 mg of liquid ethanol in a 1 L bag full of air and wait for it to evaporate, next

a millilitre of that air was removed from the bag and injected in the calibration container

resulting in a concentration of 47.81 ng/L. this procedure was then repeated for increasingly
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concentrations of alcohol, such as 0.43 µg, 2.39 µg and 4.78 µg.

The next step was then to enclose all of the sensors in the container and inject small

amounts of alcohol, the calibration value was given by the previously calibrated sensor (see

Figure 5.5b). The reason for the sensors not to be calibrated all at the same time is because

it would take a lot of space inside the container and the total volume of gas would be very

di�erent from the total capacity of the container. So the �rst sensor had to be calibrated

alone with all the other circuitry outside the container, and after the �rst calibration it

becomes irrelevant the amount of space used inside the box, because there is one sensor that

can measure the actual concentration of ethanol in the air.

The resistive component of the odour sensor changed in a logarithmic way, so the mea-

sured value for the voltage divider describes a curve similar to Y = a
−log(b∗X)+c

, and the value

ranges that the sensor reaches in normal conditions are present in the linear portion of the

curve and therefore the voltage curve measured can be approximated as being linear.

(a) First sensor calibration diagram (b) All sensors calibration diagram

Figure 5.5: Calibration method for odour sensors inside a sealed container

The data acquisition circuits are the same used before minus the microcontroller that

controlled the fan. Since there is a small fan inside the container but its power is constant,

given its simple task of keeping the air mixed for the sensors to be in the presence of a

uniform concentration of ethanol.

After the calibration points were measured, the calibration curves were plotted, using

linear regression for the odour concentration, as shown in the example of the Figure 5.6,

that is the calibration curve for one of the odour sensors.

As can be extracted from this curve, a linear regression method �ts the measured values

with enough accuracy. The reason why there are a lot more points for the lowest values is

because the majority of the measured values by the sensors are going to be very small, so it
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Figure 5.6: Odour sensor calibration linear regression �t

is important to have good accuracy for the lowest concentrations measured.

5.3 Inversion Algorithm

First of all, as said before (Section 5.2), the Navier-Sokes equations for one-directional

�ows are not relevant for the dimensions of the experimental setup, because any perturba-

tion in the turbines travels near the speed of sound, and therefore, any gradients concerning

the �ow of air in space are negligible and very hard to detect. But regarding the advection-

di�usion equation for the gas sensing, the results were quite promising. The speed of the

�ow in the tube apparatus can be set to any value between 0.2 and 1 m/s at any given time,

which is quite slow and allows for simulations in which the di�usion term of the equation is

meaningful. That said, the di�usion coe�cient of the sensed gas is really far from the one

that can be calculated as the molecular di�usion coe�cient. That is because in real condi-

tions, the gases di�usion is in its majority carried out by small eddy currents and vortices,

even when the �ow is considered as laminar. So, to counter that, the di�usivity coe�cient

was chosen based on the acquired data and not on the molecular di�usion coe�cient, which

would be 1.6 · 10−5m2/s. In future work, this coe�cient should be calculated or estimated

in order to minimize the error of a representative experimental test.

So, to extrapolate the odour di�usion map from the acquired data, the idea is that in

each measured point the error is considered as negligible and those points are directly passed

on to the �nal map. As an example, in the case of the odour propagation experiment, the

theoretical model is considered for the spaces in between measurements and the concentration

of alcohol is given by the advection-di�usion equation parametrized as said before. This

means that for any point of the plot, its value is determined by the two nearest known
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values and the propagation from those values in space and time regarding the considered

advection-di�usion equation for the known velocity and rate of di�usion. To simulate the

explained method, the boundary conditions were set in a way that takes the measured points

as sources of odour concentration to the direction to which the wind is moving and sinks

to the direction from which the wind came, and their values were accounted as accurate.

In the numerical method, this means that for the Cm
i values at the same positions as of

the mounted sensors, the Cm+1
i values were set to the measures and not computed by the

system. To avoid computing the values for those points, the A matrix was tweaked in such

a way that i values corresponding to those Cm
i is equal to 1 and all the values in the same

row are zero, as well as all i values of any matrix that is summed in the system.
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6 Experimental Results

From what was made to achieve these frameworks and algorithms, some results were

taken, plotted and analysed. From those results, these algorithms can follow the dissipation

of a �uid in a much more coherent way, regarding the physics of particle �ow, and it is clear

that the subsequent error is smaller in average than that of some interpolation methods.

Also all the graphs plotted in this chapter were obtained using Matlab.

6.1 Di�usion

Starting with the simple case for heat di�usion, the simulation was run for a 40 cm

long material with a thermal di�usivity of 4.2 · 10−6 m2/s which is the thermal di�usivity of

stainless steel. The considered ambient temperature was of 20°C, the left boundary condition

was set to 100°C and the other boundary was set as isolated, the �rst guess for the rest of

the space was 20°C as it was the ambient temperature.

(a) Simulation for t = 300s (b) Simulation for t = 900s (c) Simulation for t = 1800s

Figure 6.1: Simulation of temperature di�usion in stainless steel

For this simulation, the step in space was of 5 mm and the step in time of 1 s since the

dynamics in question are quite slow.

As can be easily seen in the plots from Figure 6.1, the thermal energy quickly gets dis-

persed form the hottest points to the coldest, behaving like a negative exponential curve.

If thermal losses were not considered, the steady state would be a constant temperature of
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100°C.

The next step was then to replicate this curves using the experimental setup as explained

before. And as shown in Figure 6.2, there is some deviation that occurs in consequence of

non simulated phenomenons, like �uctuations on air temperature around de system.

(a) Temperatures at t = 300s (b) Temperatures at t = 900s (c) Temperatures at t = 1800s

Figure 6.2: Measured values of temperature in six points along the material

This deviation consists in an early increase in temperature in the furthest measuring

points and resulting in a much quicker steady-state condition, as can be seen in the negligi-

ble di�erence between the plots of the Figures 6.2b and 6.2c. This happens because the air

around the steel rod heats up, despite of the foil de�ecting the convecting currents, and that

increase in air temperature is transferred to the steel, despite of the isolating foam layer.

This heat management failure always happens to some extent but can be diminished with

better setups and accounted for in the simulator by setting up a dynamic ambient temper-

ature value. The reason this was not made here was because it has little relevance for the

inversion method and the accuracy for this �rst case test only needed to be su�cient for the

work to move forward with a tested concept.

With all the needed data gathered it was time to test the inversion algorithm, with the

results shown in Figure 6.3.

Since the measured points are considered in the simulation as being heat sources, the

highest temperature on the model is always the highest measured temperature, because

there is no assumed direction for the propagation of temperature, and so there is no way of

knowing if there is a hotter heat source than the highest value measured. It is possible to

estimate the real heat source if a location is considered, randomly selected or guessed with

some criteria, but those ideas result in more constraint solution and would not work for more

complex problems and heat distributions.
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(a) Inversion at t = 300s (b) Inversion at t = 900s (c) Inversion at t = 1800s

Figure 6.3: Inversion algorithm to estimate the temperature across the medium

One can further note that this method is very dependent of how accurately is the mathe-

matical model being implemented, which means that the error associated with this inversion

of information will grow very fast with some details and assumptions regarding the simulated

model, so this means that extra care is needed for the simulation to take into account the

most important phenomenons that rule the dynamics in question.

To understand how closely a method can �t a curve representative of real world condi-

tions, the analysis has to pass through some form of error accounting or estimation. Without

knowing the exact shape of the real curve it is not possible to know the absolute error in

every point of the curve, but it can be approximated trough estimation. One way to do it is

to compare the computed curve to the optimal �t to the values in question. But since the

exact solution is not studied in this work and the best �t possible is the actual aim for this

dissertation, that method is not applicable. Alternatively, what is going to be studied is the

error related to an increase in distance from the nearest known value. To do that the idea is

to stop considering some of the known values along the curve, and study how the estimation

for those otherwise known points compares to the real data.

Let us consider tree points �tted with a trapezoidal interpolation for simplicity as can

be seen in Figure 6.4. The idea is to stop considering the midpoint and directly interpolate

the other two points together. And as can be seen in Figure 6.4a, there is a gap between the

ignored point and the line that links the other two points together, that gap is going to be

considered as the error that would exist at that point.

At this point, the explained idea is not yet very useful to analyse the accuracy of the

methods, so to implement it in a useful way the choice was to interpolate all the even points

and all the odd points separately like the Figure 6.4b suggests, and to consider all the gaps
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(a) Relative error for a measurement point (b) Error estimation technique

Figure 6.4: Error estimation demonstration schemes

between the known points and the lines that connect its neighbours. The values for the

estimated error are then not representative of the error of the full interpolation, but rather,

an error representative of a di�erent condition with less known points in a given area, which

may not be closely related to the real error, but it is related with the error of the interpolation

method and can be used to evaluate it. The error values are then going to be connected

using trapezoidal interpolation regardless of the interpolation curve that is being analysed,

to guarantee fairness in the comparison of two di�erent methods for estimating the curve of

values. The number that is then going to be compared between methods is the mean value

of the error plotted in Figure 6.4b.

The plots shown in Figure 6.5 display the mean absolute error values for the sensor posi-

tions computed as explained before for both trapezoidal interpolation 6.5a and the developed

inversion method 6.5b.

As shown in Figure 6.5, the estimated error for the numerical inversion is not a lot better

than the simplest interpolation possible. This means that for this very simple case it may

be better to use some interpolation method, but more complex heat distributions could have

di�erent results. However, the rest of the work was to be done with more complex systems,

like odour dissipation, so this setup was not used to run further tests.
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(a) Error for the linear interpolation

(average = 1.92 °C)

(b) Error for the inversion method

(average = 1.857 °C)

Figure 6.5: Estimated error curves for temperature di�usion

6.2 Navier-Stokes

The �rst test towards using environmental data was set around the motion of air as a

�uid and the Navier-Stokes equations. The simulation was run for a one meter long path

with a �uid viscosity of µ = 1.81 ·10−5 kg/m ·s and a initial null speed. After the simulation

had begun, a boundary condition was set to 3 m/s, as if a turbine was turned on in the

system, and the opposite boundary condition was set as a boundary with null derivative.

(a) Simulation for t = 0 s (b) Simulation for t = 0.2 s (c) Simulation for t = 0.4 s

Figure 6.6: Air wave propagation simulation

As represented in Figure 6.6, the speed at which the velocity gradient moves is greater

than that of the air for the reasons detailed in (Section 5.2). However, in this simulation

the velocity gradient does not travel at the speed of sound because of the limitations of

the implementation of the numerical method and the simpli�cations to the Navier-Stokes

equations. But despite that, the measured data suggests that there is some phenomenon

that is not accounted for in the simulation, and what it is the delay that is imposed by the
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turbines mechanical angular inertia. What this means is that the slower speed up of the

turbine and the thermal inertia of the sensors eliminates any characteristic from the curve

that could help to detect the front wave.

(a) Measurements for t = 0 s
(b) Measurements for t = 0.75 s

(c) Measurements for t = 1.4 s

Figure 6.7: Measured wind speed across one meter

This means that one must chose between creating a pressure wave similar to that of an

explosion in order to be able get measurements similar of the ones predicted in the simula-

tion, or tweaking the simulation as of having a slow raise in velocity like the one pushed by

a turbine. Both choices are impractical, the �rst one is di�cult to get right and needs ultra

sensitive anemometers, and the second would dis-characterise the wave just like it can be

seen from the measurements in Figure 6.7.

To work around this problem, the only valid solution would be to re-design both the

simulator and the physical setup to be used as two-dimensional tunnels, but the plan for

this dissertation did not reach the point where all the tests would be redone for one more

dimension, and it did not make much sense to try adding a dimension just for the case of

�uid behaviour, since the main focus would be to study the dissipation of odour through air.

Regardless of the air velocity through the tube being approximately constant in space, it

is still useful to measure it. And although it is not analogue to a two-dimensional situation,

averaging all the values measured for wind velocity at a given instant is a very good estima-

tion for the speed of the �ow of air along every point of the tube. This is the way that the

air velocity is acquired to be input on the advection-di�usion model studied ahead.
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6.3 Advection-Di�usion

The �nal setup was meant to test the di�usion of gases through moving air. For the

simulation, a four meter long path was considered, and the di�usion coe�cient had an ex-

perimental value of 0.08 m2/s. Furthermore, the air velocity to consider was measured using

the method described above. For this simulation, the step in space was of 1 cm and the step

in time of 0.02 s.

(a) Simulation for t = 6.4 s (b) Simulation for t = 12.8 s

(c) Simulation for t = 16.5 s (d) Simulation for t = 21 s

Figure 6.8: Simulation for odour dispersion in a 4 m domain

As plotted in Figure 6.8, a wave was reproduced by changing the �rst boundary condition

to a �xed value and returning it to zero shortly afterwards. As the wave propagates at the

same velocity as the air, its shape changes because of the di�usion component of the equation.

This change in shape would occur at the same rate if there was no air movement, but in a

real world environment the rate of dissipation goes up along the velocity of the air, because

an increase in velocity also increases the probability of small vortices forming, but for this

test that e�ect was considered as negligible.

For the environmental gas propagation test, the four meter long tube was used with ten

sensors (Section 4.2.2) evenly spread across 3 meters of that tube. The odour was introduced

as a cloud of alcohol vapour which was created by bubbling air through a 96% alcohol solution

and storing the contaminated air inside a large closed cylinder near the entrance of the wind

tunnel. To release the mixture of air and alcohol vapour, the cylinder was opened on both
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sides and the air was slowly aspirated into the tunnel.

(a) Measurements for t = 6.4 s (b) Measurements for t = 12.8 s

(c) Measurements for t = 16.5 s (d) Measurements for t = 21 s

Figure 6.9: Odour sensing for ethanol concentration in a wind tunnel

Similarly to what was simulated, a wave measured in Figure 6.9 propagates at the same

speed as the air that carries it. Although there is some apparently random deviation in the

measured values that is caused by the uniformities of the gaseous cloud. Also, the reason

behind the consideration of a loss term in the mathematical model is because the gaseous

cloud is not as wide as the tunnel, which means that some of the gas will disperse in the

directions perpendicular to the direction of the tunnel, which e�ectively results in lost gas

to the measured dimension. If the tunnel was long enough, the gas would reach all the walls

and this e�ect would slow down, so, if this test gets redone in a longer tunnel it becomes

important to release the gas in such a way that it is evenly spread across the cross-section

of the tunnel at the beginning.

With all the needed data gathered it was then possible to test the developed inversion

algorithm as explained before (Section 5.3).
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(a) Inversion at t = 6.4 s (b) Inversion at t = 12.8 s

(c) Inversion at t = 16.5 s (d) Inversion at t = 21 s

Figure 6.10: Ethanol concentration data assimilation algorithm in a wind tunnel

The extracted curves 6.10 roughly describe what is the expected behaviour from the

gas cloud dispersing trough moving air, but some measured values di�er from the predicted

with the mathematical model which is the cause for the characteristic texture of this curve.

Those errors in prediction are caused by small and slow vortices that spread the gas in a

inconsistent way. So this problem can only be solved or mitigated by changing the physical

methods used in these tests. Although some of the values may �uctuate away from the

expected, this integration is a very good approximation of the real world model. In fact the

estimated error is quite low given all the unaccounted disturbances in the behaviour of the

gas. The averaged estimated error for this method was plotted in Figure 6.11a compared to

a simple trapezoidal interpolation 6.11b. The respective standard deviations can be found

in 6.11c and 6.11d.

From this simple comparison, it can be noted that the overall estimated error for the

developed algorithm is better than a trapezoidal interpolation, but it still has a considerable

error which can compromise its usefulness for some applications in this form. To con�rm

these results, the data was also �tted with third degree polynomial curves 6.12 and the error

was estimated in the same way as before.
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(a) Trapezoidal interpolation mean values

(average = 0.154 µg/L)
(b) Inversion algorithm mean values

(average = 0.151 µg/L)

(c) Trapezoidal interpolation standard deviation

(average = 0.28 µg/L)
(d) Inversion algorithm standard deviation

(average = 0.227 µg/L)

Figure 6.11: Trapezoidal interpolation and inversion algorithm error statistics comparison

As this result shows, the polynomial �tting generates an even higher error when estimated

in the described way, the �tting could be done with a higher order polynomial equation, but

that was tried and the results were worse, so it was kept out of this document for lack of

relevance.

Although the estimated error of the developed method is fairly good, it can still be

improved. For that propose, came the idea of correcting the velocity term based on the lag

or advance of the odour propagation between sensors, which is an indicator of an incorrect

wind speed term. To adjust the velocity term, the �rst idea was to change the velocity only

in the time dimension, since we know that the wind speed is constant along the length of

the tube.

The resulting error from this additional correction to the velocity term is much lower

than before, so it may be worth the extra computational e�ort required.

Another idea in the same frame of though was to also adjust the velocity term in the
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(a) Polynomial �tting mean values

(average = 0.276 µg/L)

(b) Polynomial �tting standard deviation

(average = 0.499 µg/L)

Figure 6.12: Polynomial �t error statistics

spatial dimension, which would automatically lose its equivalence to the actual air speed,

but the gas particles can, sometimes, change their position relatively to the air�ow because

of the vortices created by small imperfections in the tunnel. This makes for an even more

accurate algorithm, although it may not be the best choice in some applications because the

velocity term can diverge from reality and this method would be not practical to implement

on a real-time system.

These are the best results archived in this work, and can still be further improved both

by improving the algorithm and the quality of the environmental framework and sensors.

Also, the resulting velocity term is more inconsistent across the spatial dimension in the

presence of turbulence, which means that this can be further analysed in order to detect and

quantify the presence of chaotic vortices or turbulent regions in the �ow.
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(a) Inversion algorithm mean values

(average = 0.151 µg/L)
(b) Adjusted velocity method mean values

(average = 0.147 µg/L)

(c) Inversion algorithm standard deviation

(average = 0.227 µg/L)
(d) Adjusted velocity method standard deviation

(average = 0.226 µg/L)

Figure 6.13: Improved velocity term method error statistics
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(a) Inversion algorithm mean values

(average = 0.151 µg/L)
(b) Adjusted velocity method mean values

(average = 0.109 µg/L)

(c) Inversion algorithm standard deviation

(average = 0.227 µg/L)
(d) Adjusted velocity method standard deviation

(average = 0.1535 µg/L)

Figure 6.14: Improved velocity term method error statistics assuming non constant �ow
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7 Conclusion

Given the achieved results, it is reasonable to conclude that the developed method as

interesting potential in mapping odour concentrations, and with the adaptive velocity term,

it can even be useful to determine the velocity of the �uid without the use of anemometers.

This is a method that focus on being coherent with the physical phenomena involved,

which means that it can be more reliable without losing any generality which is the most

common issue around this kind of problems. Usually, the accuracy of a method and its

generality diverge, which forces researches to choose a good balance between the two for

one speci�c problem, but by directly using an adequate mathematical model, it is possible

to work around that trade-o� and get an accurate method capable of solving more general

problems. This method can also be very useful to predict the behaviour of a �uid in a larger

scale with very few correction points, because although the error increases with distance, it

increases at a slower rate than other methods. In regard to the Gaussian plume method, the

developed algorithm can replace it in almost every application that does not require very high

computational speeds, because the Gaussian plume is equivalent to a simple or averaged case

for an advection di�usion equation. The developed method has the particularity of following

the physical model for the behaviour of the considered �uid mechanics, which has valuable

prediction features while keeping a low enough estimated error to still be useful in a wide

range of applications.

In a choice between this method and some of the others referred, one can face some facts

that may, in some cases, lead to circumstances where this method is not the best choice. One

of those facts is the computational power demand, which is higher than that of some of the

other methods, and although a matrix was used instead of a loop, the algorithm is still quite

heavy to compute. Also, to use this algorithm correctly and in a way that minimizes its

error, some care is needed. The initial and the boundary conditions need to be set, a useful

di�usion coe�cient needs to be estimated, since the molecular di�usion coe�cient does not

represent the true behaviour of the �uid. Also all losses due to the chemical exiting the
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system trough processes like oxidation or deposition need to be considered. Every physical

factor that can in�uence the behaviour of the gases can be considered and will decrease the

error of the method.

7.1 Future Work

Although this study produced promising results, there are several aspects that can be

further developed to improve upon this work, such as the implementation of a more robust

algorithm for velocity feedback, di�usion coe�cient and loss coe�cient estimation. Overall,

almost every constant or variable can be tweaked in a dynamic way in order to improve the

prediction capability of the algorithm. At a later stage it may even be possible to estimate

the error of each sensor and adjust the respective calibration curve.

The best improvement that can be made to the current algorithm is to add one more

spatial dimension, this easily enables the study of most two-dimensional areas with the excep-

tion of very uneven surfaces like mountains and valleys. Although this work was developed

to study and solve one-dimensional problems, it can be adapted or combined with another

method like the one used by [11] where a number of assumptions are considered regarding

the behaviour of air and the chemicals that can be spread by it. The idea to merge the two

distinct methods would be to draw the path of the �uid with close �ow lines in which line

can be considered as a one dimensional problem and there is a transfer process between lines

trough di�usion. Although this idea might work, it is quite complex to implement and the

true mathematical models are likely to be the best path to chose.

Among the known problems, there is one that can become more evident after the addic-

tion of a second spacial dimension, which is turbulence. The greater the characteristic length

of the objects, the higher the Reynolds number, and that comes with a more chaotic �ow.

One idea to solve this is to replace the Navier-Stokes equations for the RANS equations, and

maybe to use a dynamic map for gas di�usivity in which the di�usion coe�cient can change

according to the turbulence of the �ow.

A possible application of a method that is coherent with the physical model of the problem

is to di�erentiate between the errors caused by noise-full measurements and by uncounted

factors, such as compromised sensors or changes in the environment. This may enable the

development of an algorithm capable of adapting to changes in the environment and estimate

the positions and some characteristics of new obstacles to the �ow or substances capable of

neutralising some airborne chemicals.
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Lastly, a possible improvement to one of the two-dimensional methods just described

would be to add the third spatial dimension, making it a method that can fully describe any

problem with Newtonian �uids and suspended or diluted chemicals that disperse according

to their di�usivity and the movement of the �uid.
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