
Masters Degree in Informatics Engineering
Dissertation

Final report

An Approach for Characterizing

HTML Defects

Joaquim José Agostinho Mendes
jjmendes@student.dei.uc.pt

Advisor:

Prof. Dr. Nuno Laranjeiro
cnl@dei.uc.pt

Coimbra, 8th September, 2017

FCTUC DEPARTAMENTO
DE ENGENHARIA INFORMÁTICA

FACULDADE DE CIÊNCIAS E TECNOLOGIA
UNIVERSIDADE DE COIMBRA

Masters Degree in Informatics Engineering
Dissertation

Final report

Joaquim José Agostinho Mendes
jjmendes@student.dei.uc.pt

Advisor:

Prof. Dr. Nuno Laranjeiro
cnl@dei.uc.pt

Jury

Main Opponent:

Prof. Dr. Tiago Cruz
tjcruz@dei.uc.pt

Opponent:

Prof. Dr. Raul Barbosa
rbarbosa@dei.uc.pt

Coimbra, 8th September, 2017

FCTUC DEPARTAMENTO
DE ENGENHARIA INFORMÁTICA

FACULDADE DE CIÊNCIAS E TECNOLOGIA
UNIVERSIDADE DE COIMBRA

iv

Abstract

Hypertext Markup Language (HTML) is nowadays being massively used as an interface
to provide services to users. Web developers are producing new sites and changing them
at high pace, while trying to support the latest HTML standards. In this context, it
is quite common to find websites that, due to small details, do not comply with the
standards and many times fail to be correctly processed by browsers. At the same time,
developers also tend to overlook compliance with standards, when their web pages are
visually rendered correctly, since current browsers are highly tolerant to mistakes. Errors
are also introduced by tools that generate HTML code, making files produced by them
automatically non compliant to the standards, as well as from a variety of other sources.
Considering this dynamic environment and the increasingly large diversity of browsers,
with frequent updates, the sporadic appearance of errors in web pages is a quite common,
sometimes severe, hard-to-track problem. In this project, we intended to decide upon a
set characteristics deemed important for an accurate portrayal of the HTML available on-
line. To obtain indicators of representative errors made by web developers. To determine
a group of metrics capable of representing the complexity of an HTML file. And, finally, to
create a tool that will be used to obtain large-scale and up-to-date information regarding
all of these properties. The information provided by the tool would then be used by
developers to build more reliable websites.

Keywords : HTML; Standards; Validation; Characterisation

v

vi

Acknowledgements

Whenever a significant chapter in life is about to be closed, we tend to look back and
reflect upon the events and people that brought us to where we are.

The biggest benefit of these last few years spent here, has certainly been the friendships
created between a close group of colleagues. They don’t require naming, as they know
perfectly who they are. Without these industrious folk, I would have never reached the
point where I am at. Certainly not as competently. From tutoring, to technical help,
to all sorts of assistance, car rides, time spent talking, to simply hanging out. For all of
these, my sincere thanks.

My appreciation must also be expressed towards everyone who has helped me go
through what can only be described as the most difficult period in my life.

Finally, words cannot convey the gratitude I feel towards my parents. If I have
accomplished anything so far, it has all been thanks to them.

vii

viii

Contents

Abstract v

Acknowledgements vii

List of Tables xi

List of Figures xiii

1 Introduction 1
1.1 Motivation . 1
1.2 Goals . 2
1.3 Report structure . 2

2 Background and related work 5
2.1 Hypertext Markup Language . 5
2.2 Related studies . 7

2.2.1 Standards compliance studies . 7
2.2.2 Validation as a secondary focus 12
2.2.3 Summary . 13

3 Methodology and approach overview 17
3.1 Proposed system overview . 17
3.2 Requirements . 18
3.3 URL selection . 18

3.3.1 Popularity based approach . 19
3.3.2 Mass quantity approach . 19

3.4 Web crawlers . 21
3.5 HTML validators . 24

4 Tool 27
4.1 Tool behaviour . 27
4.2 Dependencies . 28
4.3 Configuration . 29
4.4 Challenges . 29
4.5 Retrievable information . 31

5 Results 35
5.1 General findings . 35

5.1.1 HTML version . 35

ix

x CONTENTS

5.1.2 HTML elements . 38
5.1.3 Validation . 41
5.1.4 Sizes . 42
5.1.5 Servers used . 43
5.1.6 Average web page . 44

5.2 HTML 5 findings . 45
5.2.1 HTML elements . 45
5.2.2 Validation . 47
5.2.3 Sizes . 49
5.2.4 Servers used . 50
5.2.5 Average web page . 50

6 Conclusion 53

7 Work plan 55
7.1 First semester . 55
7.2 Second semester . 56

8 Future work 59

References 61

Appendices 65

A Requirements 67
A.1 Functional requirements . 67
A.2 Quality requirements . 68

B Short paper 71

List of Tables

2.1 Comparison between the analysed studies. 15

3.1 Functional and non-functional requirements list. 19
3.2 Comparison of features between analysed crawlers. 23
3.3 Comparison of features between analysed HTML validators. 24

4.1 Versions of all the software used. 28

5.1 Common HTML elements. 38
5.2 Protocols used in hyperlinks. 39
5.3 Types of images in use. 40
5.4 Most common validation errors. 41
5.5 Most common validation warnings. 42
5.6 Ratios between components and file size. 43
5.7 The average web page. 45
5.8 Common HTML elements in HTML 5 web pages. 46
5.9 Protocols used in hyperlinks in HTML 5 web pages. 46
5.10 Types of images in use for HTML 5 web pages. 47
5.11 Most common validation errors for HTML 5 web pages. 48
5.12 Most common validation warnings for HTML 5 web pages. 49
5.13 Ratios between components and file size for HTML 5 web pages. 50
5.14 The average HTML 5 web page. 51

A.1 FR01 - WARC file manipulation . 67
A.2 FR02 - HTML file manipulation . 67
A.3 FR03 - Validator integration . 67
A.4 FR04 - Valid results . 68
A.5 FR05 - DBMS integration . 68
A.6 NFR01 - Resume functionality. 68
A.7 NFR02 - Processing data times. 69
A.8 NFR03 - Hardware dependent performance 69
A.9 NFR04 - Ease of use . 69

xi

xii LIST OF TABLES

List of Figures

3.1 Overview of the proposed system. 18

4.1 Level 1 of the current implementation. 32
4.2 Level 2 of the current implementation. 33

5.1 Breakdown of the different types of HTML found in use. 36
5.2 Flavour for HTML 4.0 (on the left) and HTML 4.01 (on the right). . . . 37
5.3 Flavours for XHTML 1.0 (on the left) and XHTML 1.1 (on the right). . . 37
5.4 Different server types in use. 44
5.5 Different server types in use with HTML 5 web pages. 50

7.1 Work plan for the first semester. 55
7.2 Actual work performed on the first semester. 56
7.3 Work plan for the second semester. 57
7.4 Actual work performed on the second semester. 58

xiii

xiv LIST OF FIGURES

Acronyms

ASP Active Server Pages. 14

CSS Cascading Style Sheets. 5, 11, 24, 38

CSV Comma Separated Values. 28

DBMS Data Base Management System. 59

DMOZ The Directory of the Web. 9, 10, 13, 15, 19

DNS Domain Name System. 12

DTD Document Type Declaration. 6, 7, 8, 9, 10, 11, 12, 13, 15

FTP File Transfer Protocol. 9

GDP Gross Domestic Product. 8

GIF Graphics Interchange Format. 40

HTML Hypertext Markup Language. v, 1, 2, 5, 6, 7, 9, 10, 11, 12, 13, 14, 15, 17, 19,
24, 25, 27, 28, 29, 30, 31, 35, 36, 38, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 53,
55, 56, 59

HTTP Hypertext Transfer Protocol. 9, 15, 27, 28, 31, 39, 44, 46, 50

HTTPS HTTP Secure. 9, 15, 24, 25, 39, 46

IP Internet Protocol. 7, 8, 11, 12, 13, 15

IRC Internet Relay Chat. 9, 40

JAR Java ARchive. 28

JPEG Joint Photographic Experts Group. 40, 44, 50

MAMA Metadata Analysis and Mining Application. 9

PHP Personal Home Page. 14

PNG Portable Network Graphics. 40

xv

xvi Acronyms

PPP Purchasing Power Parity. 8

SGML Standard Generalized Markup Language. 6

SMS Short Message Service. 40

SVG Scalable Vector Graphics. 40

URL Uniform Resource Locator. 2, 7, 8, 9, 10, 11, 12, 13, 14, 15, 17, 18, 19, 20, 22, 27,
28, 29, 31, 35, 55, 57

VMM Virtual Machine Monitor. 30

W3C World Wide Web Consortium. 5, 7, 8, 9, 11, 12, 14, 15, 25, 27, 28, 35, 53, 55

WARC Web ARChive. 20, 27, 28, 53

WCAG Web Content Accessibility Guidelines. 7

WDG Web Design Group. 10, 11, 14, 15, 24

XHTML Extensible Hypertext Markup Language. 5, 9, 12, 35

XML Extensible Markup Language. 5

1. Introduction

This dissertation proposal was created as part of the discipline of Thesis/Internship for
the Master in Informatics Engineering of the Department of Informatics Engineering, a
section of the Faculty of Sciences and Technology of University of Coimbra. Apart from
the author, this work has received the supervision of Professor Nuno Laranjeiro, which
contributed with the role of advisor.

In the following sections we explain the circumstances that led to the initial motivation
for this project, how we believe it is a worthwhile endeavour, the goals we set out to
achieve and a description of this document’s structure.

1.1 Motivation

Hypertext Markup Language (HTML) has been under development since 1990 and, along
with other web technologies and languages, is nowadays being used to not only hold
information but also to support real businesses, that rely on the correctness of the HTML
documents to reach out to clients. Thus, this language is being used as an endpoint
interface, through which clients can have access to operations of all kinds, including
entertainment or business.

The usual aggressive time-to-market constraints of the global web environment, bring
in the need for fast development of new websites, but also the need for fast application
of changes to existing sites, so that new or different functionality can be accommodated.
Also, the creation of new versions of the HTML standards, is an extra factor, leading
developers to change their web applications, so that the latest standards are minimally
supported by at least some browsers. In this scenario, developers concentrate on assuring
correctness of the existing functionality and overlook the necessary time for verification
and validation activities.

As several studies have shown, web pages’ standards compliance success rate has been
known to be extremely low throughout the times. Nowadays it is quite common to find
websites that, due to small details, do not comply with the standards. This, coupled
with current browsers’ high fault tolerance leads to many web pages being displayed
differently than expected by their developers [1]. If a browser is tasked with rendering a
web page that does not meet the standards, it will first attempt to infer how it should
have been written. Since each browser has a different behaviour, the same web page may
be displayed differently on separate browsers [1]. This apparent functionality, despite
some times the existence of critical errors in their pages, has led developers to disregard
compliance with standards, from the moment that web pages are apparently rendered
correctly [2]. Considering the dynamism of the above-mentioned environment and also
the increasingly large diversity of browsers, with very frequent updates, it is common
to observe failures in web pages. These can be caused by residual HTML mistakes and

1

2 CHAPTER 1. INTRODUCTION

are a quite common, sometimes severe, hard-to-track problem [2]. Another reason for
perpetuating the existence of errors is the fact that validation is not a required step to
create a web page, thus, many developers simply opt out of performing it after perceiving
their pages’ apparent functionality. Pages built with legacy versions of HTML are not
often updated to the newest versions and, in some cases, even the tools used to build
them generate invalid code, unbeknown to the developers.

1.2 Goals

In this report, we present the initial design of a tool that should support our study by
gathering updated and large-scale information regarding characteristics of HTML pages
(e.g., type of HTML in use, number of outgoing links) and their conformance to the
standards. First, we analysed the current state of the art and decided on the necessary
tools between those available, as well as chose what metrics and characteristics to analyse.
Then, we built a proof-of-concept prototype in order to carry out an initial assessment
of a small set of web pages and identify an initial set of typical problems.

To the best of our knowledge and although similar studies have been carried out in
the past (e.g., a decade ago), there is currently no up-to-date information based on large-
scale data that can be used by developers or researchers, particularly when considering
information regarding HTML 5. Possessing this kind of information is vital in many
scenarios, in particular in aiding web developers in understanding the reliability of their
websites and also in helping building more reliable sites, that are prepared to identify the
presence of small common mistakes (e.g., introduced by an update or change to the site).
A set of metrics that can convey the complexity of an HTML file, something we wished
to make use of in our characterisation, is also seemingly lacking from current studies.

Our end goals can be summarised in three main points:

• Making a large-scale characterisation of the quality of the HTML currently available
on-line, as well as establishing a set of metrics to determine the complexity of an
HTML file.

• Through the analysis of common error indicators, producing a fault model for
HTML validation.

• Creating a tool that can be used to retrieve and process all the information men-
tioned in the previous points.

As an expected outcome of this work, we also intended to create an academic paper
with our findings and submit it to an international conference.

1.3 Report structure

This section intends to explain the organisation of the following chapters in this re-
port. Chapter 2 presents information gathered from the state of the art review that was
performed. A brief description of HTML, an explanation of the common methodology
extracted from the analysed studies, a detailing of the process and results obtained for
both types of research, as well as a short summary of our findings.

Chapter 3 proposes a system overview, detailing the architecture that we intended to
follow. We also find a listing of our tool’s functional and non-functional requirements, as

1.3. REPORT STRUCTURE 3

well as a short explanation of the prioritisation method employed. Next is an analysis
of the alternatives and explanation for our choices for Uniform Resource Locator (URL)
sources. The same type of details are given for the remaining external programs needed,
web crawlers and HTML validators.

Chapter 4 presents information regarding our tool’s way of functioning, a detailing of
the external dependencies it currently makes use of and a mention concerning some of
the configurations performed.

In Chapter 5, we detail and discuss the set of results that were collected with the use
of our tool.

Our final thoughts on the project are shown in Chapter 6, followed by Chapter 7,
which details our work plan for both semesters, as well as comparing them to what was
actually executed. Finally, in Chapter 8, we discuss what could be done to improve upon
this project.

4 CHAPTER 1. INTRODUCTION

2. Background and related work

Naturally, every study relies on work previously done by other researchers. This chapter
focuses on the meaningful studies and materials that approach the relevant subjects to
our own efforts. Its intention is to give the reader a current state of the art of the topics we
propose to address. First, we present a short description of Hypertext Markup Language
(HTML) and its many iterations. This is followed by a description of the methodology
employed and results obtained, by the studies that analysed the standards compliance
of HTML available on-line. A set of studies which, despite having their main focus on
another subject, still contain pertinent results and are included next. Finally, a summary
of this information is presented.

2.1 Hypertext Markup Language

Ever since the creation of the World Wide Web by Tim Berners-Lee [3], in 1990, that
HTML has been one of its crucial components. It is the basis of content delivery and
structure of the information currently available on-line. Providing means to access enter-
tainment, research, information and countless businesses.

HTML itself has been evolving throughout the last 27 years, adding new functionality
with each of the its multiple versions. The standard is currently defined by the World
Wide Web Consortium (W3C), which has also introduced Extensible Hypertext Markup
Language (XHTML) and its multiple versions. Initially, HTML could be used to imple-
ment all aspect of a web page, however, the web standards model has evolved into the
separation of three basic pillars. HTML provides structure and content, Cascading Style
Sheets (CSS) delivers style and presentation, while JavaScript grants functionality. The
main reasons for this model are code efficiency, ease of maintenance and compatibility
[4].

On its 4.0 version, HTML introduced small variations of the same standard, each with
its own differences, used mainly to ease transition from previous versions of HTML or
legacy applications. These different versions, also commonly referred to as flavors, are
Strict, Transitional and Frameset [5]. Strict corresponded to the full HTML standard, it
contained all up to date features. However it did not allow the use of style or presentation
elements, as these were already considered deprecated at the time. Framesets were also
not allowed to be used and will trigger a validation error if included in a document of
this type. The Transitional flavor, as its name makes apparent, was designed to serve
as a transition between older versions of HTML, thus, it allowed for the use of style and
other deprecated elements, with the exception of framesets. Finally, the Frameset flavor
supported all the elements of Transitional with the addition of framesets.

Between the release of HTML’s fourth and fifth version, XHTML was introduced. It
is a variant of HTML that shares the syntax of Extensible Markup Language (XML) and

5

6 CHAPTER 2. BACKGROUND AND RELATED WORK

is designed to be used by any XML tool [6]. Because of the stricter syntax, documents
must be well formed and tags explicitly closed, it also provides a better error handling.
XHTML also shares the same variations as HTML 4, Strict, Transitional and Frameset,
they are identical to the ones previously described, apart from their syntax.

HTML was originally a Standard Generalized Markup Language (SGML), as defined
by ISO 8879 [7]. An SGML is a language that produces structured documents that
are able to be read by both machines and humans. Its documents should able to be
read independently “of processing, system, or device dependencies”. They consist of
markup elements that detail how the software should render or display its content. One
of these elements, the Document Type Declaration (DTD), must contain the document
type definition identifier, which states the set of rules that must be followed in order to
present it correctly. HTML 5, however, has strayed a bit from its SGML roots, opting to
turn the document type definition identifier, among others, into optional fields. Thus, it
is no longer considered an SGML according to its standard.

2.2. RELATED STUDIES 7

2.2 Related studies

In literature, it is possible to find two distinct groups of studies that tackle the issue
of standards compliance of HTML on the Web. A group that focuses on evaluating
HTML and its quality regarding the standards and a second group that does this as a
byproduct of a different objective, accessibility being the most common. The studies
in the first group share the same goal, the validity of HTML available on-line and its
standards compliance. They make use of a similar method, gather a list of web pages,
parse and analyse them, usually producing an extensive set of results. Their main points
of variation are: the source of the studied web pages; how they were selected; methods
of filtering the Uniform Resource Locator (URL) list, if any; the tools used to extract
and parse the information and the amount of detail outputted. This set of studies closely
resembles what we wish to accomplish.

The second group is comprised of studies that approach HTML validity somewhat
superficially. Their main focus is usually the user accessibility level of the studied web
pages, taking into account the Web Content Accessibility Guidelines (WCAG) [8]. Some
study a particular feature of HTML, such as its DTD, or perform a broad characterisation
of web pages that include one, or a few, standards compliance features.

2.2.1 Standards compliance studies

Chen et al. [2] are among the first group of studies previously mentioned. Their process
involved gathering a list of web sites through the use of three different methods, random
Internet Protocol (IP) addresses, Alexa.com [9] and search engines’ URL search function.
First, a set of 1,100 IP addresses was obtained through the use of a custom built program
that generated random addresses and probed their port 80 in search of a Web server. In
case of a positive response, they would be added to the list. Second, they made use of the
top 10,000 most popular web sites list from Alexa.com [9]. Finally, in order to include a
number of inner pages in their study, they used the URL search function of three different
search engines, Google, Yahoo! and Teoma, to obtain 31,540 pages. The search strings
used to find this last set of web pages were randomly generated by a program, with sizes
of up to 8 characters. After a two month time period, a second random IP address list
was generated in order to further diversify the web sites analysed. This brought the total
number of web pages to 44,340.

A Java program was then developed to sequentially pick a URL from the gathered list,
put the web page through JTidy [10], so it could be parsed and its information gathered,
send the URL to the W3C validator [11] and analyse the results. The process would then
be repeated for the next web page on the list.

According to the results, only 5% of the web pages were considered standards compli-
ant. A set of ten most common problems were identified from all four groups of collected
URLs:

• Missing DOCTYPE specification

• Missing attribute alt within element IMG

• Missing encoding specification

• Missing attribute type with element SCRIPT or STYLE

8 CHAPTER 2. BACKGROUND AND RELATED WORK

• Invalid attributes height and width

• Margin problem: invalid extra attributes topmargin, leftmargin, marginheight , and
marginwidth in element BODY

• Missing quotation for attribute values

• Invalid attributes border

• Invalid attributes background

• Ampersands in URLs

This list of problems was consistent among the URLs collected using the different meth-
ods, differing slightly on the order. The issues that occurred the most were the absence
of the DTD, on 60% of the total number of pages, the omission of the ”alt” attribute,
affecting 40% of the pages, and the lack of ”type” attribute, which was detected on 30%
of the pages. The last two problems represented 99% of the total number of missing
attributes errors.

The study is lacking on some aspects, it could benefit from a more diverse information
collection and a higher number of analysed web sites. Apart from the use of home and
inner pages, no attempt at filtering or removing bias from the URL list seems to have
been made. The analysis was also solely focused on errors, validator warnings were not
included.

A study from Ofuonye et al. [1] expanded on [2] by increasing the web site pool to
100,000 and comparing the results with three additional of metrics. The Gross Domestic
Product (GDP) at Purchasing Power Parity (PPP) per capita [12], used to rate the wealth
and standard of living of a country, the e-readiness ranking [13], that measures a regions’
Internet and computer related technological status, as well as the geographic region of
each web page. The source for its web sites was the top 100,000 most popular web sites
from Alexa.com for which, according to the site, the chance of a typical Internet user
visiting a page outside of the ones listed was 0.00125%.

The W3C validator was used to assess the URLs’ standards compliance, the GDP
at PPP per capita was extracted from [14] and the e-readiness ranking was obtained
from [15]. Geographical location was determined by comparing a database purchased
from IP2Location, which maps IP addresses to its nation of origin, with the IP addresses
resolved from the Linux host program.

The conclusions seemed to corroborate the ones obtained by [2], showing that only
3% of the web pages result in a successful validation, a decrease from 5% after only five
years. Results revealed that there was a significant difference in the number of successfully
validated web pages when comparing between their country of origin, from 8% in the
United Kingdom to 0.5% in the Republic of Korea. There was also a continental trend,
with Oceanian and European countries displaying the highest percentage of validation,
6.6% and 5.7% respectively, and Asian and African territories on the opposite side of
the spectrum, with 1.7% and 0.4%. The validation rate increased proportionately to
the GDP at PPP per capita, this was also true when comparing with the e-readiness
ranking. This revealed a trend of better web page standards-compliance for richer and
more technologically advanced countries. The only exception to this trend was the United
States, which seemed to drag behind those numbers. Of the types of errors obtained
during validation, only three affected more than 1% of the web pages. The most common

2.2. RELATED STUDIES 9

were, the lack of a DTD, missing character set and a conflict between the character set
declaration and the ”meta” attribute. The most frequent fatal errors were the use of
characters from an unspecified character set, unreachable web pages and problems with
the character set. All the web pages that triggered these types of fatal errors prevented
the validator from completing its analysis.

Some weaknesses can be pinpointed to this study. The lists from Alexa.com can be
biased towards large, international sites with region specific alternatives, Google and its
regional variants represented more than 12% of the top 500 most popular sites at one
point in time [16]. At the time, this list was only representative of Internet Explorer
users that had Alexa’s toolbar installed, therefore neglecting a large user base from other
browsers. There were no inner pages included, only the home pages were analysed in
the study, using the assumption that the remainder of the site follows the same level of
quality. There is no description of any attempt at filtering or removing bias from the
URL list.

The Metadata Analysis and Mining Application (MAMA) [16] is an extensive study
on the meta data gathered using URLs from three different sources, The Directory of
the Web (DMOZ) [17], Alexa.com top 500 most popular web sites and a listing of W3C
member companies. A series of filtering techniques were used on the 4.5+ million URLs
obtained, resulting in the 3.5+ million that were analysed. In order not to skew the
results, several techniques were used on the list of obtained URLs. Each domain was
represented by a maximum of 30 web pages, so that the list’s content would be as diverse
as possible. There is a common practice for individuals and companies to buy domain
names as a speculative business move, waiting for the name to rise in value before selling
it. Most of these domains will also point to the same page or template in order to generate
additional revenue from advertisements This practice is called domain parking. There
was an attempt to remove as many of these cases as possible by filtering out links from
the most well known domain parking companies. Some web sites return a custom web
page whenever the user is faced with an error, such as a 404. These also tend to be
identical between them, as they are produced from the same template and only the error
message differs. There was also an attempt to remove these custom error pages as much
as possible. Links that used protocols apart from Hypertext Transfer Protocol (HTTP)
and HTTP Secure (HTTPS), such as File Transfer Protocol (FTP) and Internet Relay
Chat (IRC), were discarded. To increase the number of URLs, the DMOZ web directory
listing was scanned twice, one apart. The URL list from both scans was joined and
duplicates removed.

MAMA was written in Perl, a set of 4 to 8 machines running Linux distributions were
tasked of fetching the information from each of the URLs previously gathered and, after
analysing it, they passed that data to a separate machine that ran a MySQL database.
For the validation effort, the W3C validator was installed on two different machines,
MAMA retrieved a URL from the database, it would send it to one of the validator
machines, parse the result and store the information retrieved.

The results obtained were comprehensive. A thorough characterisation of the HTML
documents was produced, with a wide range of information, from the most to least used
attributes, types of encoding used, to the total number of hyperlinks and images, among
many others. The markup validation portion of the study revealed that only 4.13% of
the URLs tested were considered valid. Curiously, there was a very large difference when
considering the HTML editors used to create the pages tested, revealing that 81.91%
of pages created with Apple’s iWeb were valid. In contrast, the second most successful

10 CHAPTER 2. BACKGROUND AND RELATED WORK

editor was Microsoft FrontPage with only 0.55% success rate. Surprisingly, more than
50% of web pages that contained the W3C validation badge were in fact not valid at all,
however, the validation rate of W3C companies web sites was quite higher than the global
average, 20.15%. The amount of documents that included the DTD was 51%, with Strict
flavors displaying a higher validation rate when comparing to Transitional and Frameset,
with 17.5%, 8.4% and 7.2% respectively. XHTML flavor, with 13.4% validation, also
fared better than HTML, with 6.6%. MAMA also showed that the transitional version of
HTML 4.0 greatly outnumbered the other flavors (Strict and Frameset), at the time by 10
to 1. Of the 27 possible types of warnings, 14 were found in the study, of these, only five
occurred in more than 1% of the total web pages. These were, Unable to determine parse
mode (XML/SGML) (45.17%), No DOCTYPE found (39.12%), No character encoding
found (13.71%), Character encoding mismatch (HTTP header/META element) (3.25%)
and Namespace found in non-XML document (1.88%). The largest amount of warnings
per web page was five, with two being the most common. Of this last case, 92.84% were
combinations of the two most popular warnings, related to parse mode and lack of DTD.
Errors were more prevalent, the 17 most common errors occurred on more than 10% of
the total web pages. In order to avoid a long listing, only the first five are mentioned
here, There is no attribute X (64.23%), Required attribute X not specified (57.37%), No
document type declaration; implying X (39.09%), End tag for element X which is not
open (35.11%) and Document type does not allow element X here (35.03%). The average
number of errors per page was 46.70, the highest number of different errors in the same
page was 39 and the biggest amount of errors on a single page was 37,370.

Despite the large scale of the study, additional measures could be taken in order to
improve it. Limiting the number of URLs with sub domains in mind, instead of domain
based. Considering removing the limit of 30 web pages per domain for sites that have a
large amount of user generated content, as their quality varies greatly from page to page.
Balance the number of home and inner pages by including at least one of each for every
domain, as DMOZ is heavily biased in that regard, since 75% of its links are home pages.
Further filter domain name parking and custom error pages. The validation phase was
done roughly two months after the initial characterisation analysis, which means that
some URLs could have changed their content significantly, ideally this should be done at
the same time.

Dagfinn Parnas [18] used the Open Web Directory, the precursor of DMOZ, to gather
over 2.5 million URLs. These were further refined to 2.4 million by removing similar
URLs, those that were called by scripts which only differed in the parameters and URLs
that did not point to HTML documents. Of the remainder, roughly only 2 million were
put through validation, since a significant portion either could not be downloaded or had
an invalid / custom DTD.

The URL list was split into packets of 8000 links and a script with the following
behaviour was developed: acquire a packet, use Wget to download the HTML file from
the URL, parse it with the use of the Web Design Group (WDG) HTML validator [19],
repeat until all URLs are completed. Two instances of the script were simultaneously ran
by 30 different machines, each instance redirected its output to a unique file. Invalid DTDs
were not included in the group of invalid pages for two reasons. First, the difficulty in
distinguishing between incorrect and custom DTDs. Second, since the parser used would
stop after finding an incorrect or custom DTD, any errors beyond that point would not
be found.

Results included 0.71% of pages being valid, a number that rose to 2.58% if DTD was

2.2. RELATED STUDIES 11

not taken into account. The most frequent errors were No DTD declared, followed by
Non-standard attribute specified and Required attribute not specified. The most common
number of errors per page was 4, with an average of 5.2. No information regarding
validator warnings was supplied nor any other filtering techniques for the URL list were
specified.

Similarly, Rene Saarsoo [20] gathered 4.36 million pages from the Open Web Directory,
however, only 1.27 million ended up being analysed in his study. Filtering techniques used
included, removing duplicates, removing links to non HTML pages, excluding pages with
0 bytes in size and links that returned non 200 OK status codes. This further reduced
the number of pages to 1,002,350.

In order to automate the process of analysing the web sites, he created a program in
Perl, it made use of the HTML::Parser and CSS::AC libraries. This program was ran by
17 different machines, 5 instances on each, totalling 85. After separating the list into an
equal number, GNU Wget was used to download the content of the links, the file was
then put through the WDG HTML Validator and the W3C CSS Validator [21]. Finally,
the relevant data was passed to an 18th machine, that ran a MySQL database.

Results revealed that only 2.6% of the web pages were considered valid and that the
DTD was included in 39.08%. There was an average of 6 errors per page, with 3 being the
most frequent. The most common errors were, There is no attribute X, Required attribute
x not specified, Missing document type declaration, End tag for element x which is not
open and Element x not allowed here. About a quarter of the collected pages were left
out of the study as they were erroneously found to have 0 HTML elements. The WDG
HTML Validator was preferred over the W3C HTML Validator in order to more closely
compare to [18].

The focus of the work in [22] was the home page of Croatian top level domains. The
list of web pages contained within it was supplied by the Croatian Academic and Research
Network, a total of 75,357.

An automated program, dubbed Web Miner System, was written in Java to fetch a
URL from the list and, in case it was available, would download, validate the HTML file
and write the results in a database. The IP address and geographical location were also
added. If a web site was not available, the error would be written to the database and
the next URL would be processed.

Of the 55,089 web pages scanned, only 14% were considered valid, a higher number
when comparing with results obtained in global studies. However, when taking into
account only the most popular web pages from the study, this number would actually
lower to 9%. Transitional flavors of HTML continued having a higher rate of adoption
when compared to their strict versions.

Only the home page from the web sites was analysed. There was no mention of
sub domains or any filtering technique used for the web site list. Validation errors and
warnings were also not analyzed.

The authors in [23], collected a subset of approximately 92,000 HTML documents,
selected from a list of over 2,6 million that were gathered with the use of the Inktomi
web crawler. These pages were parsed by a modified version of weblint [24], written in
Perl, that included the errors in a file instead of line-by-line. All non HTML and binary
documents gathered were excluded.

A diverse set of properties was analysed, including, document size, tag / size ratio,
attribute usage, among others. Validation-wise, results revealed that over 40% of the
documents had at least one error. The top 12 most common errors detected occurred in

12 CHAPTER 2. BACKGROUND AND RELATED WORK

more than 10% of the analysed web pages. For brevity, only the first five are mentioned
here, Missing <HEAD>, Outer tags should be <HTML> . . </HTML>, Heading-only
tag found outside of heading, Netscape-specific tag and Missing <BODY>.

Due to the fast changing nature of the Internet, this study is obviously far from the
current state of the Web. No information regarding the selection of the studied web pages
is available, nor any attempts to remove bias from the URL list.

2.2.2 Validation as a secondary focus

In order to gather information regarding the prevalence of different types of HTML and
XHTML being used throughout the Web, the W3C HTML validator was used to in-
spect the top 100,000 web sites list from Alexa.com in [25]. Only the home pages were
put through validation and included in the study. IP2Location was used to match the
geographical origin of the web sites with their IP addresses.

The number of web sites that used Transitional flavors of the standards was concluded
to be overwhelmingly higher, 74.7%, when comparing to the total sum of the Strict and
Frameset flavors for all versions of HTML identified in the study, 2.5%. The amount of
web sites that did not even include the DTD (which is required for it to be considered
standard compliant) continued to be quite high, 22.0%. This absence of DTD fluctuated
between 14.1% to more than 40%, depending on the country being analysed. There was a
slight relation between popularity and web sites that included the DTD, with less popular
web sites being also less likely to include it. The version and flavor of HTML in use also
differed when analysing the results per country, but with a general tendency for a higher
percentage of use for the most recent Transitional version (HTML 4.01 at the time). This
is explained by the Transitional flavor providing a broader feature set and compatibility
without as many restrictions as the Strict version.

Apart from the DTD, no validation errors, warnings or any other type of standard
validation was performed. Inner pages were also not included, only the home pages were
analysed. There was also no indication of filtering or any other procedure to remove bias
from the list obtained from Alexa.com.

In [26], the main focus was the functionality and accessibility of web sites devoted to
an environmental information. In an attempt to include only well-established web sites,
as well as a geographically disperse sample, it collected 251 sites that shared the same
theme from the Google Directory. Of these, 226 were available at the time of the study.
Audit IT [27] and Alexa.com were used to calculate the traffic and popularity of each site
while the validation was performed by the WebXACT [28] HTML validator.

Despite the focus on accessibility, similar conclusions to previous studies were reached
regarding the low percentage of successful validation to standards. Only 4% of the total
web sites managed to do so with no errors. HTML 4.0 / 4.1, was found to be the most
popular of HTML variants, with a hefty 75%. Although it provides some relevant results,
the study suffers from a very limited sample, only 226 web sites with a single common
theme, environment, and a superficial validation analysis. There are no mentions of
filtering of the list of web sites, nor any error and warning studies.

Ganzeli et al. [29] had an initial goal of analysing all web sites under the .br domain,
which was later shifted to focus on a smaller subset, the .gov.br web sites. Despite not
being the only component of this study, it still gathered information regarding HTML
validity. The list was obtained by a series of Domain Name System (DNS) based queries
to the top level domain and by performing a walk through, which resulted in 18,229 web

2.2. RELATED STUDIES 13

sites. A program with modular architecture, ConNeCTOR, was developed to perform the
analysis required for this work, the HTML validation was performed with the help of the
W3C HTML Validator and accessibility evaluated by the ASES Web Sites Accessibility
Simulator and Validator [30].

Diverse metrics were gathered, such as the size of pages, time difference between the
servers’ internal clock and the UTC time zone, amount of websites that supported IPv6
and HTML validation rates. The study showed that the percentage of valid web pages
under the .gov.br domain were just over 6% in 2011, an increase from 5% in the previous
year. Although the number of web pages analysed was quite high, the sample could be
more diverse if it was not restricted to the Brazilian governmental domain. No apparent
filtering of the list of web sites was done.

Beckett [31] collected a total of 39,162 domains that were listed by recursively search-
ing through the records of the UK Domain Name System, with the help of the host
program. In order to remove bias from multiple domains pointing to the same page, their
HTTP headers were removed and their content was checksummed using MD5. This was
used to identify duplicates and remove them. Domains with no WWW sites were also
discarded.

While most of this study was focused on accessibility, of the 13,312 .co.uk web pages
remaining from the initial list, only 6.50% were considered valid by the standards. The
most used server was determined to be Apache, of which, version 1.1.1 was the most
popular. The most prevalent DTD was HTML2, whose total sum of variants reached
66.88%. If a DTD was not found, the study assumed a default for the then most recent
version, HTML3.2, which may have skewed its numbers slightly. There were no validation
errors or warnings detailed.

2.2.3 Summary

Table 2.1 presents the main characteristics from each study, such as the URL source,
type of domain and page being analysed, techniques used to remove bias from the list,
number of pages processed and presence of error and warning analysis. Whenever such
information was not specifically stated on the corresponding study, ”N/A” was used.
Each row represents a different characteristic, while its columns a separate study. It is
also organised by relevance, with the four further right columns displaying information
regarding the group of studies that have validation as a secondary focus and the remaining
to the ones dedicated to standards compliance.

The source of the URLs used varies from one to several different origins. Alexa.com
and DMOZ web directory seem to be a particularly popular choice, most likely due to
the popularity ranking of the first and due to the large, but humanly curated list of
the latter. Other URL gathering techniques such as random IP address and search
string generation seem to have been less successful in providing a large amount of re-
sults. Less than half of the studies specifically state that they analysed sub domains
and inner pages, focusing instead on top level domains and the home page, therefore
assuming it represents the quality of the remainder of the site.

Preprocessing techniques for removing bias from the URL lists used are not fre-
quently stated, removing duplicates is the most common. However, we still found a good
number of procedures mentioned such as: setting a limit of pages analysed per do-
main, removing cases of domain parking, filtering custom error pages, removing
non-HTML links, excluding pages with 0 bytes in size and non 200 OK status

14 CHAPTER 2. BACKGROUND AND RELATED WORK

codes.
None of the studies mentioned seems to analyse dynamically generated HTML

or non-indexed web pages, this is likely due to the higher complexity required to do
so. These pages may require authentication or the use of forms with a specific interaction
or value to be accessed / generated. According to [29], analysing static HTML is still
important, as using Active Server Pages (ASP), Personal Home Page (PHP) or other
dynamic generation methods are simply different techniques of producing HTML and
not a replacement.

There was also a single HTML validator in use per study, the tools mentioned
were the W3C, WDG and WebXACT HTML validators, NSGMLS and Weblint. Making
use of more than one may provide complementary information that would otherwise not
be obtained. The one most commonly used was the W3C HTML Validator.

Even though the nature of these studies prevents them from being completely repro-
duced, due to the changing nature of the URL lists based on popularity, the changes
on the analysed web pages or even the updates on HTML itself, most studies omit
many details either from their methodologies or regarding the tools that were used.
This severely limits their reproducibility.

2.2.
R
E
L
A
T
E
D

S
T
U
D
IE

S
15

Table 2.1: Comparison between the analysed studies.

Study [2] [1] [16] [20] [18] [23] [22] [25] [26] [29] [31]

URL Source(s)

Random IP
addresses,
Alexa.com,

random URL
searches

Alexa.com

DMOZ,
Alexa.com,

W3C member
companies

Open
Web

Directory

Open
Web

Directory

Inktomi
Web

Crawler

Croatian
Academic

and
Research
Network

Alexa.com

Google
Directory,

Yahoo,
DMOZ

DNS-based
queries

and
walkthrough

UK Domain
Name System

Top level domains Yes Yes Yes Yes Yes N/A Yes Yes Yes Yes Yes
Sub domains N/A N/A Yes Yes Yes N/A N/A No N/A N/A N/A
Homepage Yes Yes Yes Yes Yes N/A Yes Yes Yes Yes Yes
Inner page Yes No Yes Yes Yes N/A No No N/A Yes No
Duplicates removed N/A N/A N/A Yes Yes No N/A N/A N/A N/A Yes

Cap per domain N/A N/A
30 pages

per domain
N/A N/A N/A N/A N/A N/A N/A N/A

Domain parking N/A N/A Yes N/A N/A N/A N/A N/A N/A N/A N/A
Custom error pages removed N/A N/A Yes N/A N/A Yes N/A N/A N/A N/A N/A
Removed non HTML links N/A N/A N/A Yes Yes Yes N/A N/A N/A N/A N/A
Removed non HTTP / HTTPS protocols N/A N/A Yes N/A N/A No N/A N/A N/A N/A N/A
Removed 0 bytes in size N/A N/A N/A Yes N/A N/A N/A N/A N/A N/A N/A
Removed non 200 OK status codes N/A N/A N/A Yes N/A Yes N/A N/A N/A N/A N/A
Dynamic HTML No No No No No No No No No No No
Deep web analysed No No No No No No No No No No No

Common errors analysis Yes Yes Yes Yes Yes Yes No
DTD
only

No No
DTD
only

Common warnings analysis No Yes Yes No No No No No No No No
W3C Validator Yes Yes Yes No No No N/A Yes No Yes No
WDG Validator No No No Yes Yes No N/A No No No No
Weblint No No No No No Yes N/A No No No No
WebXACT No No No No No No N/A No Yes No No
NSGMLS No No No No No No No No No No Yes

Global study Yes Yes Yes Yes Yes Yes
”.hr” top

level domain
only

Yes
Environmental
themed only

”.gov.br” top
level domain

only

”.co.uk” top
level domain

only
Total pages analysed 44,340 100,000 4,700,000 1,270,000 2,500,000 2,600,000 75,357 100,000 251 13,206,182 39,162
Number of pages after filtering 44,340 100,000 3,509,180 1,002,350 2,049,351 92,000 55,089 100,000 226 13,206,182 13,312

16 CHAPTER 2. BACKGROUND AND RELATED WORK

3. Methodology and approach overview

In this chapter, based on our state of the art analysis, we show what we believe are the
main characteristics of a system that can achieve the results we are aiming for. In the
following sections we detail our process of choosing particular aspects of said system, the
sources for the Uniform Resource Locator (URL) list, the web crawler used for retrieval
of information and the Hypertext Markup Language (HTML) validator used to check for
standards compliance.

3.1 Proposed system overview

From the analysis of the previously mentioned studies, one can extract the general idea
that a similar research might employ. Figure 3.1 shows the overview of such a system. A
URL list is obtained by, ideally, using several different sources, popularity based, human
curated or whole Web crawls should be used in the interest of diversifying and better
representing the current state of the Web. After filtering said list in order to remove
bias, it is sent to a Web crawler that will fetch the raw HTML files and store them
in a file system or database. A script or some other program would then be used to
automate the process of retrieving each file, analysing and parsing its information, as
well as putting them through validation with one or more tools, process the results and
store them. After this task, a data analyser is used to process results, find patterns and
other relevant information.

Ideally, in order to process the largest amount of information in a smaller time period,
the crawling and validation tasks should be able to be run concurrently.

17

18 CHAPTER 3. METHODOLOGY AND APPROACH OVERVIEW

Figure 3.1: Overview of the proposed system.

3.2 Requirements

Based on the previous information, we reached to a set of functional and non-functional
requirements that are listed in Table 3.1. Functional requirements are identified with
FR##, non-functional requirements follow the NFR## pattern.

For prioritisation, we employed the MoSCoW method [32], which makes use of a sim-
ple four step scale of priorities. ”Must have” and ”Should have”, represent the highest
priorities, for features that must absolutely be included and important features, respec-
tively. On the lower end, ”Could have” is used for characteristics that would improve the
application but are not a necessity. Finally, ”Won’t have” is used for features that are
interesting but will not be included in this version of the project. The full description of
each requirement is present in Appendix A.

3.3 URL selection

In order to obtain a representative sample of the state of the Web, we aimed to collect
a mix of diverse and frequently accessed pages. This was achieved by making use of
two sources of URL, one based on popularity among users and the other on a large
quantity of diverse URLs. Very early on, we decided against doing our own Web crawl
for the purpose of collecting URLs, as it seemed to provide no extra benefit, thanks to

3.3. URL SELECTION 19

Table 3.1: Functional and non-functional requirements list.

Identifier Name Category Prioritisation
FR01 WARC file manipulation Data handling Must have
FR02 HTML file manipulation Data handling Must have
FR03 Validator integration Data handling Must have
FR04 Valid results Data handling Must have
FR05 DBMS integration Data handling Could have
NFR01 Resume functionality Recoverability Should have
NFR02 Processing data times Performance Must have
NFR03 Hardware dependent performance Scalability Should have
NFR04 Ease of use Usability Could have

the multiple, frequently updated sources available.

3.3.1 Popularity based approach

Of the pages that track web sites’ popularity, three were initially chosen due to being the
most prominent, SimilarWeb.com [33], Quantcast.com [34], and Alexa.com [9].

The first one was rejected because of the small amount of freely available information,
only the top 50 most popular web sites for each category and / or region do not require
a subscription.

Quantcast.com freely distributes the top one million most popular web sites list for a
variety of countries, however, only the United States’ list is easily available for processing.
The list is also partially censored by Quantcast, as information from clients that wish
to remain anonymous will be replaced with Hidden profile. Although, at the time of
writing1, the total number of removed profiles within the list was limited to 4,723 in one
million, or 0.473%, if narrowed down to the first one thousand results, that percentage
rises to 14.3%, which is a significant number of omissions among the most popular web
sites.

Alexa.com displayed none of the previous drawbacks, a list of the top one million
most popular web sites globally is available freely, uncensored and in an easy to process
format. Some of the disadvantages of using Alexa’s list, mentioned in [1], have also been
minimised. The toolbar that users install on their browsers, in order to gather Alexa’s
data, is now available for Mozilla Firefox and Google Chrome, in addition to Microsoft’s
Internet Explorer. Alexa.com also gathers information directly, through the use of a
crawler, as well as adding their own code to willing web sites. The list being comprised
of home pages only has also been taken into consideration. We configured Nutch to add
one of the inner pages for each site to the fetch list during the retrieval of their HTML
files.

3.3.2 Mass quantity approach

Concerning the gathering of a large amount of URLs, three sources were considered,
Majestic, CommonCrawl and The Directory of the Web (DMOZ).

120th October, 2016

20 CHAPTER 3. METHODOLOGY AND APPROACH OVERVIEW

Majestic [35] claims to be the world’s largest link index database, with more than 4
trillion unique URLs found to date. However, despite sporting an extremely vast data
set, it was rejected as its information is kept behind a paywall.

Common Crawl [36] is a project that aims to make large web crawls available to
the public, free of charge. CommonCrawl’s data is also very extensive, representing more
than seven years of monthly web crawls, each with over one billion URLs. Its information
is delivered in Web ARChive (WARC) format, which is shared by the crawler chosen to
gather data from the popularity list of URLs.

The Directory of the Web [17] states that it is the largest human-edited directory
available on-line, it was our choice for second source of URLs. Since it is curated by
humans, its’ URLs are organised in categories related to their content. This extra infor-
mation was considered potentially useful for our study. It has also been used in several of
the previous studies in this area. Dead links are also routinely removed from the listing.
This causes its total number of available URLs to fluctuate between three, to four and a
half million.

3.4. WEB CRAWLERS 21

3.4 Web crawlers

Web crawlers, also known as spiders or bots, are computer programs that traverse the
World Wide Web and retrieve and store information from it. This can range from a
certain type of file to whole web sites. The retrieved information can then be used for
statistical analysis, indexed so it’s employed in a search engine, used as an on-line / offline
mirror, for archival purposes, maintenance tasks, among many others [37].

Most web crawlers begin crawling with a seed of one or more web sites, the desired
information is retrieved from these sites and any existing links are added to the fetch
list so that they also get processed and analysed. This general behaviour usually repeats
until a certain condition, such as maximum depth or number of pages is reached [38].
They can behave in many different ways, some of which detailed in [39]:

• Breadth-first. Try to cover as many pages as possible by crawling web pages and
following their outgoing links first. This is usually the case for search engines and
other applications that require large amounts of data from diverse locations.

• Re-crawling pages for updates. Go through a list of previously scanned pages
and fetch the ones that have been updated since the last scan.

• Focused crawling. Instead of attempting to be as broad as possible, crawl only a
particular subset of web pages, or the ones dedicated to a specific subject.

• Random walking and sampling. A path of random steps through the Web,
used for estimations. The Web can be represented as a graph, with pages taking
the role of vertices and hyperlinks acting as edges. A random walk will start in a
set group of pages and follow one of the existing links to another page. This process
is then repeated [40].

• Crawling the hidden web. Focus on non indexed data that, despite being avail-
able, requires certain parameters, inputs or credentials to be retrieved.

Since crawling web pages is an easily distributable task, crawlers usually process
several web pages concurrently. The author in [37] details the reasons that can make web
crawlers harmful, these include their recursive nature, the multitude of requests that one
can make in a short time, their ability to run in a continuous mode and inefficient and
bad implementations that download file types that they cannot process. Reduced network
resources and high server load are problems caused by from their use. To counter this,
some websites intentionally developed spider traps, also known as black holes, directories
with infinite depth or other similar technique, that can make a crawler continuously try
to reach its end, effectively trapping it and reducing its performance, output or crashing
it [38].

The Robots Exclusion Standard [41] was created as a way to minimise these problems
and has seen widespread adoption. A file named robots.txt, that describes the files and
directories which should or should not be targeted by crawlers is placed in the root
directory of a web site. Access can be fine tuned from a single file or directory, to the
whole web site, different rules for specific web crawlers can also be set. The permissions
described in robots.txt are not binding, they are simply guidelines for polite crawlers to
know how to behave. Another politeness metric, not detailed in the standard, is the
amount of time between two consecutive requests to the same server. Some web crawlers

22 CHAPTER 3. METHODOLOGY AND APPROACH OVERVIEW

have adopted to follow the Crawl-delay directive [42] which, despite being a nonstandard
extension, can be added to the robots.txt file in order to specify the amount of time
between different accesses.

As expected, there are various web crawlers available, both commercially and open
source. As any other application, they sport a variety of features that should be taken
into consideration when choosing the one that best suits ones’ needs. According to [43],
the main properties that must be fulfilled are:

• Robustness. Ability to avoid or withstand spider traps, as well as enduring inter-
action with badly implemented web sites.

• Politeness. Following the guidelines set by each web site, using the Robots Exclu-
sion Standard, and avoid causing a high server load for the targeted pages.

• Distributed. Ability to be run from multiple machines in a coordinated manner.

• Scalable. Capable of increasing its throughput when provided with additional
resources.

• Performance and efficiency. Make good use of its provided resources.

• Quality. When faced with a choice between multiple pages, the crawler should be
able to choose the most important or relevant to the task.

• Freshness. The crawler is able to fetch newly updated pages in an acceptable time
frame.

• Extensibility. Its architecture is modular enough to enable the development of
added features or the change of existing ones.

In our study’s case, the Quality and Freshness features are not particularly relevant
as it will be based on a single crawl, from a previously gathered URL list. The amount
of data expected to be processed is also an important factor, [44] defines three categories,
mirroring, medium and large collections. Due to the expected amount of pages to be
processed by this study, and considering possible future work, it should fall into the
medium to large categories.

Table 3.2 shows a comparison between the analysed crawlers for this study, each
column represents a feature, while each row is representative of a single crawler. Whenever
a feature is not immediately apparent, either through documentation or its code, N/A is
used2.

As previously mentioned, there is a wide variety of open source web crawlers, [44] and
[43] were used as the basis of our search. As shown in the previous chapter, Table 3.2
displays a comparison between the features of the crawlers analysed for this study.

Of the various tools analyzed, Ebot, Heritrix, Ht://Dig, Pavuk, Selenium, Web-
SPHINX and WIRE were discarded due to not being updated within the last two years.
Crawler4j and Scrapy cannot be used in a distributed environment, which was deemed a
beneficial feature in case our crawling scope were to increase. DataparkSearch, HTTrack
and Norconex make no mention of this feature either and were thus not considered as
well. Coupled with more than a year without being updated, Bixo seems to lack the

2Last updated as of 7th of November, 2016

3.4. WEB CRAWLERS 23

Table 3.2: Comparison of features between analysed crawlers.

Last updated Multi thread Distributed
Supports
robots.txt

Can crawl
pages that

require
authentication

Language

Bixo 10/2015 Yes Hadoop Yes N/A Java
Crawler4J 09/2016 Yes No Yes Yes Java

DataparkSearch 11/2016 N/A N/A Yes Yes C
Ebot 04/2011 Yes Yes N/A N/A Erlang

Heritrix 01/2014 Yes Hadoop Yes Yes Java
Ht://Dig 06/2004 N/A N/A Yes Yes C++
HTTrack 09/2016 Yes N/A Yes Yes C

mnoGoSearch 12/2015 Yes Yes Yes Yes C
Norconex 08/2016 Yes N/A Yes Yes Java

Nutch 10/2016 Yes Hadoop Yes Yes Java
Open Search Server 10/2016 Yes Yes Yes Yes Java

Pavuk 02/2007 Yes N/A Yes Yes C
Scrapy 01/2016 Yes No Yes Yes Python

Selenium 04/2013 N/A N/A N/A N/A Python
WebSPHINX 03/2007 Yes No Yes Yes Java

WIRE 02/2010 No N/A Yes N/A C++

ability to crawl through secure pages that require authentication and was felt as a dis-
advantage since including them in our study was a possibility that was being considered.
Despite sporting all of the considered features, mnoGoSearch was also discarded due to
being built in C language, as Java alternatives would be easier to modify in case such
need ever arose. The final two alternatives, Nutch and OpenSearchServer, share all of
the analysed features, programming language and even the date of their last update.

As [44] describes, “the range of open-source tools available to make a choice is broad
and there is no clear software that is more suitable than others”. Ultimately, Apache
Nutch was our choice. It is a feature rich implementation, easier configuration, has
a big community, good support and very active development, due to being a top tier
Apache project. In terms of performance, it is multi threaded by default, “highly scalable
and also dynamically scalable through Hadoop” and “can be run on a cluster of up
to 100 machines” [43]. It is one of the choices of Serrão [44] for large scale crawls,
which also adds that “to provide reliable, fast and scalable computing” it is “the best
answer”. This is backed by high profile users such as Wikia Search, Creative Commons
and Common Crawl, among others. Additional features include support for the Robot
Exclusion Standard, the ability to crawl web pages locked behind authentication when
supplied with the correct credentials and extensive configuration options.

As for the choice between the 1.x and 2.x branches of Nutch, we opted for the first
one, the stable version, due to its higher number of features, plug-ins, bug fixes and better
performance versus a higher storage flexibility and a more complex configuration for 2.x.
In a comparison between both branches, Klaussner [45] determined that version 1.x beat
2.x on all tasks, performance wise, by a considerable margin.

24 CHAPTER 3. METHODOLOGY AND APPROACH OVERVIEW

3.5 HTML validators

HTML validators are tools that compare HTML contained within a file with its stan-
dards. Mirroring the functionality of a compiler, they will warn the user where errors and
warnings are found, if any. Unlike a compiler, however, neither their use is mandatory,
nor the absence of errors is required to produce a functional HTML file. Thus, it is very
common for HTML files available on-line to contain a significant amount of errors and
deviations from the standard.

Table 3.3 shows a comparison between open source HTML validators and their most
relevant features. Each column represents a feature, each line a single validator. When-
ever a feature was not able to be determined, N/A was used. Apart from HTML Validator
Firefox Add-on and Total Validator, only the on-line versions of the crawlers were tested.
In order to cover as many web pages as possible, support for HTML 5 and HTTP Secure
(HTTPS) were considered important features. As a method of comparing their output,
the same test web page (http://www.google.pt) was validated with each one and the
number of errors and warnings registered.

Table 3.3: Comparison of features between analysed HTML validators.

Last updated Supports HTML5
File size

limit
Can parse

secure pages
Maximum number

of errors / warnings
Control web page
errors / warnings

Anybrowser Weblint
Gateway

1997 Up to HTML 3.2 97Kb No N/A N/A

CSE HTML
Validator

09/2016 Yes 292Kb Yes
26 errors

25 warnings
19 errors (1 CSS related)

4 warnings

Dr. Watson 07/2016 Yes 70Kb No N/A
0 errors

0 warnings

HTML Tidy 04/2016 Yes >1Mb Yes N/A
0 errors

36 warnings
HTML Validator
Firefox Add-on

06/2016 Yes >1Mb Yes N/A
16 errors

0 warnings
HTML Validator

Pro
N/A Yes >1Mb Yes N/A

27 errors
0 warnings

Total Validator 08/2016 Yes >1Mb Yes N/A
19 errors (1 parsing related)

1 warning
Validome N/A N/A N/A N/A N/A N/A
Web Page
Purifier

09/2016 Up to HTML 4.0 N/A No N/A N/A

WGD HTML
Validator

02/2012 Up to HTML 4.01 >1Mb Yes 50 errors
46 errors

0 warnings
W3C HTML

Validator
11/2016 Yes >1Mb Yes N/A

20 errors
2 warnings

Validome [46] was the first of the group to be excluded as its home page was inaccessi-
ble at the time of writing and was thus unable to be tested. Anybrowser Weblint Gateway
[47] is based on very old technology, only allowing for HTML up to version 3.2 and non
secure pages to be tested. Despite this, it did include an interesting feature, allowing
to perform validation against the standard or including browser specific tags (Internet
Explorer and Netscape Navigator). Web page Purifier [48] also suffered from the same
problems, with the added difficulty of needing full control of the web pages being tested,
requiring a specific file in their root directory for it to work. Web Design Group (WDG)
HTML Validator [19] also dragged behind the current version of HTML, supporting up
to version 4.01 only, as well as featuring a maximum error limit, ignoring any occurrence
past the 50th detection. The high number of errors detected on the test page seems to
have been caused by lack of HTML 5 support. As for Dr. Watson [49], although it sup-
ports validation of HTML 5, it detected no errors on the test web page, despite several
being present. It also did not support the validation of pages delivered through HTTPS

3.5. HTML VALIDATORS 25

and had a maximum size limit of 70Kb. CSE HTML Validator [50] displayed a somewhat
short page size and error limits, 292Kb and 26 errors and 25 warnings. It was the only
validator to specify if an error was Cascading Style Sheets (CSS) related.

The remaining five tools all supported pages made with HTML 5 and delivered
through HTTPS, their maximum size limit was over 1Mb and there did not appear
to be a maximum number of errors and warnings. HTML Tidy [51] did not appear
to distinguish between errors and warnings, opting to classify all occurrences as errors.
HTML Validator Firefox Add-on [52] required every frame to be validated separately and
appeared to not be able to be used in an automated way. Total Validator’s Basic ver-
sion [53], the only one available for free, did not include the ability to test multiple web
pages. Finally, HTML Validator Pro [54] incorrectly flagged unambiguous ampersands
[55] found within hyperlinks as errors, thus totalling 27 on the test page. The World Wide
Web Consortium (W3C) HTML Validator [11] displayed none of these drawbacks and a
few additional features. It is possible to select a default document type and character
encoding, automatically detect them or specify a choice in case they are not mentioned.
A listing of all images and their textual alternatives can be outputted, as well as display-
ing heading-level and structural outlines for the page. Cleaning up the errors from the
HTML being analysed is also possible. The simultaneous use of multiple validators was
initially considered, but as this was determined not to be beneficial, our choice was to
make sole use of the W3C HTML Validator.

26 CHAPTER 3. METHODOLOGY AND APPROACH OVERVIEW

4. Tool

The following chapter presents the state of the current tool implementation. First, we give
an explanation of its behaviour and how it processes information. Next is a description of
the external tools and libraries that are necessary for the tool to obtain results. Following
is a brief discussion and listing of the information currently obtainable by the tool.

4.1 Tool behaviour

Figure 4.1, at the end of this chapter, shows the overview of the current tool implemen-
tation. In short, an external web crawler, in our case Apache Nutch, is used to gather
web page data from our chosen source and export it into Web ARChive (WARC) files.
Our tool will then read through them and parse and store all the relevant meta data
and Hypertext Markup Language (HTML) information. Next, it will put the web pages’
HTML code through validation, with the use of an external tool, process the results and
add them to the previously collected information. Finally, all the data is outputted and
is ready to be analysed.

As previously mentioned, Uniform Resource Locator (URL)s are gathered from the
chosen source and crawled with the use of Apache Nutch, their information is outputted
and stored in WARC files. This is a separate step and is done without direct involvement
of our application. The tool starts by reading the contents of a specific folder and making
a first pass through all the WARC files, connecting original URLs to their redirection
targets. As shown in Figure 4.2, also present at the end of this chapter, the main class
will then distribute work through all of the available threads. Each one will then begin
processing web page information, retrieving their useful meta data, in case it is available
for the files in question, such as the URL being processed, content type, Hypertext
Transfer Protocol (HTTP) code, type of server the page is being hosted at and its raw
HTML code. Remaining meta data is discarded.

Next, the HTML code is parsed with the use of Jsoup and a series of HTML related
information is extracted and stored with the previously collected data. Examples of this
information are the type of HTML in use, total number of HTML elements, among others
listed in the section 4.5. While retrieving information from its HTML elements, the size
of the web page’s textual content, HTML elements, among others, are fetches and a series
of related ratios are calculated.

Afterwards, an HTTP connection is established with the local installation of the World
Wide Web Consortium (W3C) HTML validator and the HTML code of the web page
being currently processed is sent for validation. If said web page is made with HTML 5,
the validator will send it to a second, HTML 5 specific validator. The results are received
by the original thread and deserialized with the help of Gson, the number and type of
errors and warnings are stored. All of the information retrieved from the web page is

27

28 CHAPTER 4. TOOL

then added to the output file and the process repeats until all WARC files are processed.
Finally, the main class will generate the all the totals based on the information retrieved.

For reference, this is performed on a virtual machine with a 4 core, 2Ghz processor,
with 8Gb of RAM memory and 200Gb of hard disk space. Table 4.1 details the versions
of all of the software involved.

Table 4.1: Versions of all the software used.

Software Version
Ubuntu 16.04.1 LTS 64bit
Java OpenJDK 1.8.0 111
Apache Nutch 1.12
Apache2 Web Server 2.4.18
W3C Validator 1.3
W3C HTML5 Validator vnu.jar 17.2.1
Gson 2.0.0-beta3
Retrofit 2.1.0
Jsoup 1.10.1
Commons-CSV 1.1

4.2 Dependencies

The current version of the tool is dependant on a few external tools. The selected web
crawler, Apache Nutch, is tasked with crawling through the URL list and output the
retrieved data, which includes the HTTP headers, into WARC format. The W3C HTML
validator available on-line is actually made up of two different validators that are used
depending on the type of file in need to be analysed. One exclusively validates files made
with HTML 5, it is available in Java ARchive (JAR) format and was simply run through
a command on the terminal that specifies its listening port. The other validator processes
HTML files of all remaining types and required a more extensive configuration. It is run
through the use of Apache web server. In order to obtain consistent results throughout
the whole duration of this study, both versions of the validators were installed and ran
locally.

There are also four Java libraries currently in use by the prototype. Retrofit [56], a
type-safe HTTP client, is used to simplify connections established between the tool and
the web server running our local version of the HTML validator. Jsoup [57], an HTML
parser, is used for extracting information from the HTML code of the target web pages,
such as number and occurrence of the different tags. In order to simplify the process
of reading and writing information onto Comma Separated Values (CSV) files, Apache
Commons-CSV [58] was used. Finally, Gson “a serialization/deserialization library that
can convert Java Objects into JSON and back” [59] is used to ease the task of processing
results sent by the validators.

4.3. CONFIGURATION 29

4.3 Configuration

Some configuration steps were made, particularly in regards to the used crawler, Apache
Nutch. Its Java max heap size was increased to 6Gb to increase performance. It was
made to store HTTP headers and requests, as well as to not impose any size limits on
HTTP content retrieved. It was configured to include parsing during the fetching step
and to follow up to five redirections. This number was chosen as to not significantly
increase the time spent on the fetching phase. In order to follow a bigger number of
redirections, the crawler’s filtering rules were relaxed slightly, allowing for the fetching of
web pages with the characters ? and = in them. Some URLs from our chosen sources
pointed directly to non-HTML files, in order to further increase the filtering done by the
crawler, the following file types were added to its ignore list:

– .mp4, .rar, .swf, .pdf, .owl, .xls, .ppt, .doc, .docx, .dmg

Finally, an additional 5Gb of memory were added to the operating system’s swap.

4.4 Challenges

Every project has its set of challenges that need to be overcome in order for it to come
into fruition. Naturally, this work was not an exception. While some had straightforward
solutions, a few of them required a large time investment.

Some of the URLs from our sources did not point directly to the desired web pages,
instead making use of redirections to reach them. Each redirection caught by the crawler
produces a separate output file with a usually empty web page with the next step of this
path. Since our goal was to only include the target destination web page in our analysis
and not the remainder, a pre-processing step was added. This was done so it is possible to
connect the original URL to its final redirection target, as well as removing the undesired
files.

Most of the data collection tasks were reached through an iterative process. An ex-
tremely simple web page, which contained the feature being collected, would be manually
created and put through our tool’s analysis. After a successful result, the page would
be modified with more instances or different uses of said feature and tested again. Ver-
ification would then evolve into using actual randomly selected web pages of varying
complexity through the tool and manually comparing the results with their HTML code.
The same technique was used to verify the HTML validation information returned by
our application, simple pages with a single error were manually created and tested. The
next step was to use pages with multiple errors of the same type, errors of more than one
type and, finally, actual randomly selected web pages. Our tool’s HTML validation error
and warning counts and types were then compared to the output produced by manually
validating them with the W3C HTML validation tool [11] installed locally.

Handling the HTML validation error and warning messages was a time consuming
process. The majority of said messages include up to six different text variables that
are usually reserved for the HTML element or attribute that triggered the problem,
among many other possibilities. As an example, ”Duplicate attribute id.” and ”Duplicate
attribute href.” are obviously referring to the same error type. Thus, the usage of a regex
was deemed an appropriate solution. The full list of error and warning messages for the
validation of HTML older than version 5 was easily accessible within the source code of

30 CHAPTER 4. TOOL

its validator. It was a simple process of creating a regex rule for every one of the 447
messages that included any type of variable text. The messages reserved for validation
errors and warnings for HTML 5 however, were not such an easy task, they were not
easily discernible in its validator source code. Therefore, the process of creating their
rules required us to run our tool with a set of pages created with HTML 5, waiting for
the output and using it to identify messages related to the same type of problem and
creating their respective regex rules. Naturally, on the first pass, most error messages
were considered unique as no regex rules had been created for them yet. With each pass,
the number of web pages included in the processed sets was increased in order to obtain
the highest number of different messages as possible, which in turn, also increased the
time spent processing them. Gradually, the set of regex rules reserved for validation error
and warning messages for HTML 5 grew more robust.

Due to the limited resources of the virtual machines tasked with running our tool,
several performance considerations were taken. It would not be possible to keep all the
gathered data in memory, particularly due to the sheer size of the intended web page set.
Thus, after fully processing a web page, its information is, instead, added to temporary
files on the hard drive. This option has two side effects, on the one hand, it requires a
separate step on the output data in order to generate the totals. On the other hand,
it facilitates the implementation of a resume feature, so the processing does not have to
restart in case it is stopped before it is finished, due to an unforeseen problem such as
a power failure. In order to speed up the processing of web pages, the tool was changed
from its initial linear processing to a configurable number of threads, each processing its
own web page. This change significantly increased the performance of the application.

When the time came to abandon the testing grounds of a local virtual machine and
create a fresh installation of the work environment, with crawler, validators and our tool,
on a remote machine, things stopped working. None of the HTML 5 web pages were
able to get through the validation process. This ended up revealing itself as a major
problem and one of the main causes for missing the planned schedule. The first attempts
to fix the problem revolved at looking at our tool’s code, debugging the areas where the
problem might arise from, but it persisted. Fresh installations were attempted, double
checking each step, configurations for all the applications involved were confirmed and
new ones were attempted, but to no avail. All error messages pointed to a character
encoding problem. A version mismatch was noticed between the validators being used,
a more recent version having been released since the installation on the testing area.
The problem continued after using the same version on both machines. All remaining
software versions were checked, Java in use, crawler, operating system and its language
settings, as well as script and library dependencies for the validators, all were identical.
Yet, the same behaviour lingered. The only apparent difference between machines now
seemed related to the Virtual Machine Monitor (VMM), the original installation using
Oracle VM VirtualBox [60], the remote one employing Xen Project [61]. A third party
cloud solution with a different virtualization environment was used to repeat the process
of fresh installations, which still lead to the same outcome. Ultimately, the problem was
bypassed by making a clone of the original virtual machine and importing it to our remote
one.

4.5. RETRIEVABLE INFORMATION 31

4.5 Retrievable information

Currently, data gathered by our tool can be arranged into four different categories: meta
data, information regarding HTML elements, data related to HTML validation and file
size information.

The first category, meta data, includes the analysed web page’s URL, as well as the
original URL, in case there were any redirections. Whenever included, the HTTP code is
also retrieved. The content type header, information that describes the type of content
sent by the server reply, is stored. Server type and version, although not guaranteed to
be available, is also collected when possible. Finally, the charset for the included data is
stored.

Regarding HTML elements, the following information is saved. The type of HTML
declared to be in use, or the absence of its declaration. The total number of HTML ele-
ments present in the analysed page, as well as a list containing their names and number
of times each one of them occurs. Going down a level, for every HTML element encoun-
tered, the list of every attribute and number of times they occur is also stored. The total
number of hyperlinks in the page, discerning between bookmarks, internal and external
links. Hyperlinks that point to a place within the same page, to a place in the same
domain and to a place outside the domain, respectively. The total number of images, as
well as a list of their types and number of times each one is detected. Lastly, the total
number of comments found in the HTML code is also accounted for.

HTML validation of the analysed web pages also produces important information. Of
note, the total number of validation errors and warnings for each page is stored. Likewise,
a list of all the different types of errors, warnings and the number of times each one occurs
is also kept. Finally, a list of the message variables is gathered for each error and warning
type so it is possible to detect the frequency with which element or attribute is responsible
for a particular problem.

A series of file and element sizes are tracked in order to understand how much of an
HTML file is taken by each one. Naturally, the file size is collected. The size taken by
text content, HTML elements and comments is gathered s well. This information is then
used to extract the text content to HTML elements, HTML elements to file size, text
content to file size and HTML comments to file size ratios.

All this information is outputted to two separate sets. The first, a general information,
includes all the gathered data and is meant to provide a global view of the web pages
analysed. The second group, contains all the characteristics and attributes collected
previously, but is restricted to data originated from web pages constructed with HTML
5.

32 CHAPTER 4. TOOL

Figure 4.1: Level 1 of the current implementation.

4.5. RETRIEVABLE INFORMATION 33

Figure 4.2: Level 2 of the current implementation.

34 CHAPTER 4. TOOL

5. Results

In this chapter, we present our most relevant results gathered from the output of our
tool. First, this is done for all the pages analysed and, then, to pages made specifically
with Hypertext Markup Language (HTML) 5.

The source of Uniform Resource Locator (URL)s used was the top 50,000 most popular
web pages list, according to Alexa.com, collected on the 30th of August, 2017. Of the
original 50,000 URLs, only 46,682 web pages were successfully crawled due to connection
timeouts, temporarily being down for maintenance or other assorted reasons. The list
was further shrunken as the files crawled from 1539 of them were discarded for having
0 bytes. The external validator failed to successfully analyse a total of 1399, leading
them to also be excluded. Finally, 2 web pages were eliminated from the list due to their
HTML failing to be parsed. This produced a final count of 43742 web pages.

5.1 General findings

First, we detail information from web pages made with all versions of HTML, from a
variety of different aspects, document types, HTML elements, validation data, file size
information and a short summary of what the average web page consists of.

5.1.1 HTML version

As can be seen in Figure 5.1, the overwhelming majority of web pages analysed were
made with the use of HTML 5. This comes as no surprise, as the World Wide Web
Consortium (W3C) [62] upgraded the HTML 5 Draft to Recommendation on the 28th

of October, 2014 [63], giving Web and IDE developers plenty of time to start using it.
Extensible Hypertext Markup Language (XHTML) 1.0, with its different variants, is
also a popular choice, comprising 14.58% of gathered web pages. Due to the source of
our URLs being based on user popularity, there is a certain level of quality expected
from the web pages contained there. This doesn’t prevent a significant number, 4115,
from still not making use of the document type declaration in order to state the type
of HTML in use on their files. It is, however, a much lower figure when compared to
previous studies such as [1], staying under 9.5%. With each, newer version of HTML,
comes an increased percentage of web pages that make use of it. Two exceptions are
clear though. A surprising number of pages powered by HTML 2, 1097, continues to
hold its ground despite the constant advances on the Web, perhaps, still made popular
by their unwillingness to change. XHTML 1.1, on the other hand, seems to have seen its
older version, XHTML 1.0, preferred by developers. An indication that the small set of
differences between both of them as not been sufficient to entice developers into using it.

35

36 CHAPTER 5. RESULTS

Finally, the group entitled Other gathers mixed types such as XHTML+RDFa, mobile
oriented, custom type declarations and erroneous ones.

Figure 5.1: Breakdown of the different types of HTML found in use.

According to a previous study [25], when faced with a choice between Strict, Tran-
sitional and Frameset variants of HTML, developers will opt to make use of the more
relaxed set of rules, transitional flavour. This seems to be confirmed when looking at
Figure 5.2, which presents a more detailed description of their proportions for HTML 4.0
and 4.01. Version 4.0 had an 87% occurrence of its Transitional variant and a mere 1%
of the Strict version. No pages making use of the Frameset variant were detected. For
document type declarations that did not explicitly state their variant in use, 12%, they
were simply labelled HTML 4.0. Still on Figure, 5.2, the same trend occurs for HTML
4.01. Transitional is used on slightly more than three quarters, followed by Strict with
21% and a few pages make use of the Frameset variant. Again, pages with no explicit
variant were labelled simply as HTML 4.01.

5.1. GENERAL FINDINGS 37

Figure 5.2: Flavour for HTML 4.0 (on the left) and HTML 4.01 (on the right).

Looking at Figure 5.3, the same trend continues with XHTML 1.0 variants. Tran-
sitional, once again, dominates the chart, followed by Strict. No web page made use of
XHTML 1.0 Frameset and a single case of non explicit variant was present. XHTML 1.1,
however, turned things around, non explicit variant declarations comprised the major-
ity of cases detected, while Strict and Transitional were residual, with a mere 1% each.
Frameset continued to be the least used variant.

Figure 5.3: Flavours for XHTML 1.0 (on the left) and XHTML 1.1 (on the right).

38 CHAPTER 5. RESULTS

5.1.2 HTML elements

Table 5.1 lists all HTML elements found, with a percentage of occurrence higher than
1%. The most recognisable feature of a web page is also its most common element, the
hyperlink. Further information regarding this element is detailed further in this section.
The second most common element, <div>, is invisible to the regular user. It is used by
developers to group multiple elements together and create sections that can be formatted
at the same time through the use of Cascading Style Sheets (CSS). With the current
paradigm of using HTML as base, CSS for presentation and JavaScript for functionality,
it is only normal to see it thoroughly used, closely following the first spot. The element
, in the 4th position is also used for the same effect and thus remains away from
public scrutiny. Several elements are commonly used due to their nature, , and
<option>are all used to represent single items on a list. This means that anytime a list is
created, multiple occurrences of these elements will be spotted, inflating their numbers.
The same can be said of element <td>, which represents a single table cell.

A group of text manipulation elements, <p>, <i>and
, are expected to be
frequently used as even a small amount of text can contain multiple occurrences of them
all.

Table 5.1: Common HTML elements.

Element Quantity Percentage
<a> 9242300 22.37%
<div> 9117367 22.07%
 4812468 11.65%
 4037096 9.77%
 2069446 5.01%
<p> 1134487 2.75%
<script> 865273 2.09%
<td> 854573 2.07%
 793052 1.92%
<option> 708678 1.72%
<i> 701897 1.70%

 620273 1.50%
<meta> 561510 1.36%
<link> 468476 1.13%
<h3> 421333 1.02%

A brief mention regarding HTML comments, the average number found in our data
set was 32 per page. Several pages displayed no comments of any type, but one of them
managed to reach the hefty sum of 6692.

Hyperlinks

In order to sustain its status of world wide web of information, the Web heavily relies on
hyperlinks. As noted on Table 5.1, it was the most common HTML element found on
all of the analysed pages in our study, a total of more than 9.25 million. Naturally this
brings the average number of hyperlinks per page to 211, a confirmation of the connected
nature of the Web. One page, http://www.sarkarinaukriblog.com/, went above its call of

5.1. GENERAL FINDINGS 39

duty by producing 15322 hyperlinks, while there were multiple cases of pages with no
connections whatsoever.

We also made the distinction between internal and external links, as well as book-
marks. We considered internal links as hyperlinks that pointed to a place within the
same domain as the page it was place in. External links were considered as any hyperlink
that pointed to a domain outside the page it originated from. Finally, any hyperlink that
pointed to a place within the same page it originated from, besides being labelled as an
internal link, was considered a bookmark.

The average internal links per page was 188, while the average external links per
page was a much smaller number of 23. When compared to the general average number
of hyperlinks per page, 211 as mentioned above, this means that most pages contain a
majority of same domain links versus a small number external ones. This seems in line
with what can be gathered through the average user experience, with most pages linking
thoroughly to their own content and finishing with a handful of referrals to outside areas.
A high percentage of external links seems reserved to content aggregators or other similar
web pages. Bookmarks are seemingly uncommon, with a mere average of 6 occurrences
per page. Finally, the highest numbers encountered on a single page were 12138, 7442
and 2872 for internal, external and bookmark hyperlinks, respectively. All of them had
pages without a single occurrence.

Table 5.2: Protocols used in hyperlinks.

Protocol Quantity Percentage
http 5751284 66.70%
https 2701250 31.32%
javascript 149253 1.73%
mailto 8823 0.10%
magnet 6187 0.07%
tel 4115 0.05%
other 2053 0.03%

In regards to the protocols used within hyperlinks themselves, they are mostly split
between Hypertext Transfer Protocol (HTTP) and HTTP Secure (HTTPS), with 66.70%
and 31.32%, respectively. Table 5.2 shows these results in more detail. This is obviously
expected, as they are the protocols on which the Web most relies on. Though not really
a protocol, JavaScript appears at a distant 3rd place, with 1.73%, but it is a testament to
the frequency with which developers rely on this technology to build their web pages. Cu-
riously, JavaScript seems to deserve the award for most misspelled hyperlink destination.
Apart from the correct spelling, an, impressive 28 different erroneously typed attempts
were found. Half of them were present in hyperlinks multiple times, totalling 209, or
0.14% of the total. One might wonder, how many different ways of spelling JavaScript
there are. Although the most common protocols, HTTP and HTTPS, also sported a few
miss typed variants, they were nowhere near the amount encountered with JavaScript,
especially considering their staggering percentage of use. This may be indicative of the
way developers construct their creations, copying and pasting their content when their
hyperlinks point to other pages and typing them out instead, when they lead to JavaScript
content. Thus leading to the occurrence of more mistakes. This also serves as further
proof that developers don’t properly test their web pages, as a single click would make

40 CHAPTER 5. RESULTS

their errors apparent. Perhaps further hyperlink study is required, including a dead link
analysis.

The remainder of protocols in use can be seen as a popularity snapshot of current
times, email links are still very common, bit torrent magnet links also make their appear-
ance. New or relatively recent forms of communication such as WhatsApp [64], Tencent
QQ Messenger [65] or even Skype [66] are among the top 10 most used protocols, al-
though representing a very minor percentage. While older messaging means, such as
Short Message Service (SMS) or Internet Relay Chat (IRC), still make their presence,
they have certainly been left behind by most users.

Images

Images are a common element for most web pages. Used to quickly convey information,
employed as decoration or, in older HTML standards, even as a means of aligning other
elements in your page. It comes as no surprise that more than 2 million images were
found in our selection of 43472 web pages. The average number of images per page
was slightly above 47. On both ends of the spectrum, several pages revealed themselves
completely void of pictures, while https://www.buy123.com.tw/, managed to boast an
impressive number of 3829.

Table 5.3: Types of images in use.

Image Quantity Percentage
.jpg 889333 42.97%
.png 550475 26.60%
.gif 301470 14.57%
empty 134834 6.52%
hyperlink 134369 6.49%
.svg 37098 1.79%
.jpeg 20452 0.99%
other 1415 0.07%

As shown in table 5.3, the results of our study of image formats used in web pages are
somewhat expected. The podium is occupied by three well known names. Although it
sports multiple versions of its file extension, Joint Photographic Experts Group (JPEG)
shows up in first place with its Jpg variant, with almost 43%, followed by Portable
Network Graphics (PNG) with 26.6% and Graphics Interchange Format (GIF) follows
suite with 14.57%.

Their use can be explained through their image properties. JPEG is a lossy format,
which produces images that trade their quality for their smaller file size, thus leading
to shorter web page load times. A feature, apparently, highly sought out by developers.
PNG, on the other hand, is a loss-less format, which means the opposite, no reduction
in image quality and a, usually, larger file size. So developers might use them more
sparingly, saving them exclusively for the areas on their pages where that they want to
stand out, leading to less overall usage. Finally, GIF images are known for their ability
to be used as means to provide short animated content.

A somewhat large percentage, 6.52%, of HTML tags were surprisingly empty,
for no apparent reason. A similar proportion, 6.49%, pointed to web locations with no
discernible image types from their hyperlinks. Apart from a brief mention of Scalable

5.1. GENERAL FINDINGS 41

Vector Graphics (SVG), for their vector style pictures, the remainder of image types are
underused when compared to the ones previously mentioned.

5.1.3 Validation

When it comes to HTML validation, the results are not optimistic. There is an average
of 81 errors and 26 warnings for each web page. The highest number of errors found on
a single page was 5961, while the biggest amount of warnings amounted to 3981. Of all
the web pages analysed, 29.34% do not trigger any kind of validation warning, 6.05% are
error free and a mere 2268, 5.18% successfully go through validation without revealing
any errors or warnings.

Table 5.4 displays all validation errors with an occurrence above 1%. The column
labelled HTML 5 has an asterisk (*) if the error in question is specifically related to
HTML 5.

Table 5.4: Most common validation errors.

Error Percentage HTML5
Attribute X not allowed on element Y at this point. 10.44% *
Reference to entity X for which no system identifier
could be generated.

10.33%

Required attribute X not specified. 7.62%
An img element must have an alt attribute, except under
certain conditions.

6.92% *

End tag for X omitted, but omittag no was specified. 6.58%
Document type does not allow element X here; Missing
one of Y start-tag.

5..91%

Element X not allowed as child of element Y in this
context.

4.37% *

Element X undefined. 3.95%
The X attribute on the Y element is obsolete. Use CSS
instead.

3.36% *

There is no attribute X. 3.14%
Document type does not allow element X here. 2.76%
Duplicate id X. 2.68% *
Element X is missing required attribute Y. 2.34% *
An attribute value specification must be an attribute
value literal unless SHORTTAG YES is specified.

2.05%

End tag for element X which is not open. 1.81%
General entity X not defined and no default entity. 1.64%
X is not a member of a group specified for any attribute. 1.53%
End tag X. 1.49% *
Id X already defined. 1.42%
Bad value X for attribute Y on element Z. 1.39% *
An attribute value must be a literal unless it contains
only name characters.

1.14%

42 CHAPTER 5. RESULTS

The most commonly found error, with 10.44%, is triggered when developers attempt
to use an attribute that is not defined for the accompanying element. Moving on to the
second most common mistake, with 10.33%, the error Reference to entity X for which no
system identifier could be generated. is returned by the validator whenever unencoded
special characters or undefined entities are used [67]. To finish the top 3, with 7.62%,
Required attribute X is not specified is self explanatory, a required attribute for the element
in question was omitted.

Table 5.5 contains the most common HTML validation warnings found with percent-
age higher than 1%. Again, the column labelled as HTML 5 has an asterisk (*) if the
warning is specific for HTML 5.

Table 5.5: Most common validation warnings.

Warning Percentage HTML 5
Reference not terminated by REFC delimiter 17.95%
NET-enabling start-tag requires SHORTTAG YES 17.16%
Reference to external entity in attribute value 14.28%
Character X is the first character of a delimiter but oc-
curred as data.

13.88%

The first occurrence of id X was here. 8.54% *
Cannot generate system identifier for general entity X. 5.23%
The border attribute is obsolete. Consider specifying
img { border: 0; } in CSS instead.

3.37% *

Section lacks heading. Consider using h2-h6 elements to
add identifying headings to all sections.

3.34% *

Attribute X is not serializable as XML 1.0. 2.41% *
Article lacks heading. Consider using h2-h6 elements to
add identifying headings to all articles.

1.92% *

The name attribute is obsolete. Consider putting an id
attribute on the nearest container instead.

1.84% *

Consider using the h1 element as a top-level heading
only.

1.49% *

Multiple comments in comment declaration. 1.23%
The X role is unnecessary for element Y. 1.16% *

With 17.95%, the most frequent validation warning is mostly caused by the lack of
a semi-colon, in order to terminate an open special character. NET-enabling start-tag
requires SHORTTAG YES, with 17.16%, is caused by the use of self closing tags in
HTML documents that don’t expect them. For the third most common warning, an non
terminated special character placed inside an attribute is the most likely cause. Of note,
the top four most frequent warnings are not HTML 5 specific.

5.1.4 Sizes

File sizes are important for web pages that want to be delivered quickly to its user. In
spite of other types of content being mostly responsible for the total download size, such
as video, image, sound or other types of media, HTML files can also help to increase it.
The average file size found on our data set was revealed to be 101.176 Kb. The biggest

5.1. GENERAL FINDINGS 43

one was found to be 5287 Kb, over 5 Mb. The smallest file had 9 bytes, most likely the
product of a problematic redirection.

Their HTML elements accounted for the bulk of the file size, with an average of 92.715
Kb per page. This means that the time when pages conveyed information mostly through
the use of text may be somewhat in the past. The page with the heaviest set of HTML
elements managed to reach 5.156 Mb. The smallest amount used by its elements was 9
bytes, which points back to the previously mentioned page.

Text content was, as noted, much lighter when compared to the amount spent by
HTML elements, an average of 8.460 Kb per page. Some pages revealed no text content
at all, while others managed to pack almost 2.5 Mb of text information.

Looking at comments is also an interesting proposition, as it allows one to peer into
the habits of developers. The average size taken by HTML comments was 1.81 Kb. While
some may see the largest amount of space taken by comments in a single page, over 2.5
Mb, as excessive, the number of pages with no comments at all revealed itself quite large,
7496, over 17% of the total. Documentation, as in programming, reveals itself a tricky
subject for web developers.

Table 5.6: Ratios between components and file size.

Elements to Size Text to Size Comments to Size
Average 90% 10% 2%
Maximum 100% 98% 95%
Minimum 2% 0% 0%

We now point to Table 5.6 for a set of ratios between the previous values, they also
reveal interesting information. While all other components can be non existent in an
HTML file, obviously, its HTML elements are never completely absent, or you would not
have a web page. This analysis also reveals that one page had text content worthy of
98% of its total file size. The same feat was also matched, this time by a page with 95%
of its content reserved for HTML comments.

5.1.5 Servers used

We were unable to detect the type of server most of our web pages were hosted with,
70.33%. Of the remainder, Figure 5.4 presents a detailed account of the servers found.
Clearly, nginx is the most popular option, with 46.62%. Its adoption rate is almost as
large as every other server combined. In terms of popularity, different versions of Apache
and Microsoft-IIS close the top 3. All other entries were residual at best.

44 CHAPTER 5. RESULTS

Figure 5.4: Different server types in use.

5.1.6 Average web page

Finally, based on the information gathered from the previous sections, one might con-
struct the average page from our data set. It is a page made with the use of HTML 5, it
has close to 950 HTML elements, of which <a> is the most common one. It sports more
than 200 hyperlinks, of which the majority point towards its own domain and to content
delivered through HTTP. It is decorated with almost 50 images, close to half of them
belonging to the JPEG format. Its HTML code contains over 30 different comments and
information on its server is unannounced. Its HTML validation report comes back with
83 different errors and 26 separate warnings. Finally, its size spans just over 100 Kb,
most of it due to its HTML elements, while its text content represents only 10% of its
total. HTML comments take their slice of the file size, but dont go over 2.30% the total
amount.

5.2. HTML 5 FINDINGS 45

Table 5.7: The average web page.

Characteristic Value
HTML version used HTML 5 (68.83%)
Number of HTML elements 944
Most frequent HTML element <a>(22.37%)
Number of hyperlinks 211
Number of internal hyperlinks 188
Number of bookmarks 6
Number of external hyperlinks 23
Most common protocol used in hyperlinks http (62.12%)
Number of images 47
Most common image type used .jpg (42.97%)
Number of HTML comments 32
Server Not declared (70.33%)
Number of HTML validation errors 83
Number of HTML validation warnings 26
HTML file size 101.176 Kb
Size of text content 8.460 Kb
Size of HTML elements 92.715 Kb
Size of HTML comments 1.810 Kb
Text to HTML elements ratio 13.52%
HTML elements to file size ratio 89.61%
Text to file size ratio 10.39%
HTML comments to file size ratio 2.30%

5.2 HTML 5 findings

In this section, we repeat the previous analysis with information specific to web pages
made with HTML 5. From the final 43742 web pages that got processed, our tool managed
to find 30109 that were constructed with HTML 5.

5.2.1 HTML elements

While glancing at Table 5.8, one might think it is identical to the one in the previous
section, but it is not. The previous number one most common element, the <a>tag, has
traded places with the former number two, <div>. While all the HTML elements that
are found with a percentage bigger than 1% are exactly the same as in the list presented
in the general findings, the order in the second half of the table is completely different.
Since a significant part of all the web pages analysed is made with HTML 5, it is normal
for them to present similarities.

Regarding the number of HTML comments, as in our general findings, several pages
did not contain a single one. The highest number of comments in a single page reached
6692, while the average was 35.

46 CHAPTER 5. RESULTS

Table 5.8: Common HTML elements in HTML 5 web pages.

Element Quantity Percentage
<div> 6945490 23.23%
<a> 6513336 21.79%
 3541961 11.85%
 3023289 10.11%
 1417142 4.74%
<p> 815604 2.73%
<script> 639166 2.14%
<i> 596541 2.00%
 589797 1.97%
<option> 486285 1.63%
<meta> 454553 1.52%
<link> 380853 1.27%
<td> 366833 1.23%
<h3> 336303 1.12%

 326813 1.09%

Hyperlinks

On the HTML 5 side of hyperlinks, the average number per page as gone up slightly,
from 211 to 216. Again, several pages show up with no links whatsoever, as well as the
maximum number of hyperlinks in a single page remains 15322.

Table 5.9: Protocols used in hyperlinks in HTML 5 web pages.

Protocol Quantity Percentage
http 3792320 61.49%
https 2258977 36.63%
javascript 103145 1.67%
mailto 6668 0.11%
tel 3647 0.06%
other 2182 0.04%

Table 5.9 displays, once again, the list of most common protocols used in the hyper-
links found on our data set. When comparing to the general HTML results, they prove
to be similar. HTTP and HTTPS continue to dominate hyperlink destinations, although
HTTPS manages to steal 5% from its non secure version. JavaScript continues to be
heavily miss typed, with 19 different attempts for a total of 180 occurrences. Magnet
links dropped off the radar with a smaller amount of 546 appearances.

5.2. HTML 5 FINDINGS 47

Images

The average number of images, present in HTML 5 web pages only, remained the same as
in the general findings, 47. The minimum amount of images found on a page was 0, while
the maximum remained 3829. The total number of images gathered from this particular
set was 1417142.

Table 5.10: Types of images in use for HTML 5 web pages.

Image Quantity Percentage
.jpg 627580 44.29%
.png 388571 27.42%
.gif 137554 9.71%
empty 104283 7.64%
hyperlink 104538 7.38%
.svg 33142 2.34%
.jpeg 16245 1.15%
other 1129 0.07%

Apart from a small fluctuation of percentages, the order of the list shown in Table
5.10 remains the same as the one shown in Table 5.3. It is easy to understand why, the
reasons previously detailed for the use of the top 3 most common image formats remain
valid independently of the type of HTML in use.

5.2.2 Validation

HTML validation results for HTML 5 web pages are a mixed result. On the one hand,
the average number of errors and warnings is lower, 54 and 11, respectively. The highest
number of errors on a single page is almost one sixth of the result obtained in the general
findings, 1001. The highest number of warnings on a single page was also significantly
lower, from 3981 to 878. The total number of pages that do not have a single validation
warning is also slightly higher, up to 30.22% from 29.34% previously. On the other hand,
in regards to errors, the amount of pages that do not sport a single error dropped down
to 4.29% and, most importantly, pages which successfully go through validation without
any error or warning message reached a low of 3.06%. The result obtained on the general
findings being 5.18%.

A listing of all the error types that occurred more than in 1% of cases is shown on
Table 5.11. The most frequent validation error found on the previous data set is also
the most common for HTML 5 web pages. Attribute X not allowed on element Y at this
point, with 22.63%, caused by using an attribute for an element that does not have such
a definition. On the second spot of most frequent errors, An IMG element must have
an alt attribute, except under certain conditions is pretty clear, developers chose not to
include a required attribute for an tag, 15.05%. Finally, with 9.53%, the Element
X not allowed as child of element Y in this context error is triggered when an erroneous
nesting of elements is placed withing the HTML code.

48 CHAPTER 5. RESULTS

Table 5.11: Most common validation errors for HTML 5 web pages.

Error Percentage
Attribute X not allowed on element Y at this point. 22.63%
An img element must have an alt attribute, except under certain
conditions.

15.05%

Element X not allowed as child of element Y in this context. 9.53%
The X attribute on the Y element is obsolete. Use CSS instead. 7.00%
Duplicate id X. 5.87%
Element X is missing required attribute Y. 5.13%
End tag X. 3.22%
Bad value X for attribute Y on element Z. 3.04%
Bad value X for attribute Y on element Z: expected a digit but saw
A instead.

2.05%

The X attribute was specified, but the element is not a property of
any item.

1.89%

No space between attributes. 1.69%
Bad value X for attribute Y on element Z: The string A is not a
registered keyword.

1.54%

The X element is obsolete. Use CSS instead. 1.54%
Bad value X for attribute Y on element Z: Browsing context name
must be at least one character long.

1.27%

Duplicate attribute X. 1.22%
Bad value X for attribute Y on element Z: Illegal character in query:
A is not allowed.

1.14%

Unclosed element X. 1.05%

Table 5.12 contains the list of the most frequent HTML 5 validation warnings, with a
percentage higher than 1%. The most relevant warning, The first occurrence of id X was
here with 28.68%, relates to the usage of the same id on multiple locations. The warning
will point out the place where said id was first used. The cause of the second highest
problem, sporting 11.25%, is simple, there are no heading elements in use in at least one
page section. Finally, with 11.21%, another warning with an obvious cause, the obsolete
border attribute was used within an element.

5.2. HTML 5 FINDINGS 49

Table 5.12: Most common validation warnings for HTML 5 web pages.

Warning Percentage
The first occurrence of id X was here. 28.68%
Section lacks heading. Consider using h2-h6 elements to add iden-
tifying headings to all sections.

11.25%

The border attribute is obsolete. Consider specifying img { border:
0; } in CSS instead.

11.21%

Attribute X is not serializable as XML 1.0. 8.08%
Article lacks heading. Consider using h2-h6 elements to add iden-
tifying headings to all articles.

6.46%

The name attribute is obsolete. Consider putting an id attribute
on the nearest container instead.

5.88%

Consider using the h1 element as a top-level heading only. 4.95%
The X role is unnecessary for element Y. 3.90%
The X attribute on the Y element is obsolete. You can safely omit
it.

2.55%

Empty heading. 2.47%
Element X does not need a Y attribute. 2.36%
The document is not mappable to XML 1.0 due to two consecutive
hyphens in a comment.

2.30%

Attribute with the local name X is not serializable as XML 1.0. 2.14%
Element X cannot be represented as XML 1.0. 1.44%
Text run is not in Unicode Normalization Form C. 1.38%
The value of attribute X on element Y from namespace Z is not in
Unicode Normalization Form C.

1.14%

5.2.3 Sizes

The average file size increased slightly when compared to the general findings, from
101.176 Kb to 112.666 Kb. The previously identified web page with the biggest file size,
was an HTML 5 one, as the same value is found here, 5287 Kb. The smallest file however,
had was comprised of only 94 bytes.

The size of HTML elements averaged at 104.084 Kb, also an increase when compared
to the previous value. The largest amount of space taken by a pages’ elements was indeed
the same one identified on the previous set of pages, 5.156 Mb, while the smallest only
required 64 bytes for its elements.

Text content remained, on average, pretty much the same, 8.583 Kb when compared
to 8.460 Kb. Regarding the highs and lows of text content, it was identical to the previous
analysis. Some pages had no text content whatsoever, while the highest one went almost
to 2.5 Mb.

The average size of HTML comments was reduced by a small amount, down to 1.775
Kb, from 1.81 Kb. The largest file size reserved for comments was reduced to 386 Kb,
but the number of web pages with no comments shrank to 12.46%. A good improvement
when compared to the previous 17%.

Looking at the ratios present in Table 5.13, we notice that the trend of the previous
analysis continues. Only a few decimal points have changed between the general findings

50 CHAPTER 5. RESULTS

Table 5.13: Ratios between components and file size for HTML 5 web pages.

Elements to Size Text to Size Comments to Size
Average 90.93% 9.07% 2.14%
Maximum 100% 98.24% 95.02%
Minimum 1.76% 0% 0%

and the HTML 5 specific values. HTML elements continue to take roughly 90% of the
total web page file size.

5.2.4 Servers used

Uncovering the server type with which most of the HTML 5 web pages were delivered
remained a difficult task, 72.04% of them did not share this information. As we can see on
Figure 5.5, the list remains mostly unchanged, with a single difference, Google Frontend
is now ahead of Tengine. Nginx also increased its lead by a slight amount, from 46.62%
to 53.02%.

Figure 5.5: Different server types in use with HTML 5 web pages.

5.2.5 Average web page

Gathering all of the previous information, we can once again construct the average web
page, this time specifically for one based on HTML 5. It is one composed of close to 1000
HTML elements, of which the <div>is the most common one. 195 of its 216 hyperlinks
point towards its domain, while only 20 aim outwards. More than half of them make use
of the HTTP protocol. Among its content, 47 images with JPEG format are present.
Its server continues to be unannounced. There are 54 HTML validation errors, while

5.2. HTML 5 FINDINGS 51

validation warnings are few, only 11. The file size for our web page is 112 Kb, of which
90.93% is taken by its HTML elements, text content represents a much smaller slice,
9.07%.

Table 5.14: The average HTML 5 web page.

Characteristic Value
Number of HTML elements 992
Most frequent HTML element <div>(29.89%)
Number of hyperlinks 216
Number of internal hyperlinks 195
Number of bookmarks 6
Number of external hyperlinks 20
Most common protocol used in hyperlinks http (58.15%)
Number of images 47
Most common image type used .jpg (44.28%)
Number of HTML comments 35
Server Not declared (72.04%)
Number of HTML validation errors 54
Number of HTML validation warnings 11
HTML file size 112.666 Kb
Size of text content 8.583 Kb
Size of HTML elements 104.083 Kb
Size of HTML comments 1.775 Kb
Text to HTML elements ratio 11.35%
HTML elements to file size ratio 90.93%
Text to file size ratio 9.07%
HTML comments to file size ratio 2.14%

52 CHAPTER 5. RESULTS

6. Conclusion

While there have been previous ventures that performed similar studies, most of them
have been done in a somewhat distant time. The rate with which the Internet and the
World Wide Web continue to advance and evolve is staggering. Web developers, as well
as researchers are thus continually in need of up to date information, that is not always
available. Creating a tool that can provide this information is certainly a worthwhile
endeavour.

Not surprisingly, much like the variety of content found on the Web itself, so do the
problems that might occur in such an enterprise seem infinitely diverse. Our initial goals
spanned more than simply creating a tool capable of analysing web pages, their Hypertext
Markup Language (HTML) and producing a set of statistics. But this one has been mostly
accomplished. Web ARChive (WARC) files are read and used as a source of information,
HTML files parsed and their elements analysed. Integration with the external World
Wide Web Consortium (W3C) HTML validator has been accomplished and requests are
successfully made, answers received and processed. Data is handled within an appropriate
time frame, it has some degree of scalability and the resume function provides partial
recoverability.

Much more could be done and, despite our best efforts, our tool is not perfect. It has
some faults and can certainly be improved in other areas as well. It is, in our opinion, an
adequate beginning for a, hopefully, more fully fledged tool that can be used to perform
the large scale study that we originally set to perform. The results we present in this
report are somewhat superficial, as they mostly represent the average web page. They
are also meagre when compared to the initial plan of analysing several million web pages
and performing an in-depth study. In spite of our setbacks and limitations and, although
simpler when compared to what we originally envisioned, our tool and analysis still
produced a considerable amount of information regarding HTML found online. Perhaps
a mere stepping stone on the way to a much larger study.

Finally, the source code for our tool is available online at the following location:

– https://github.com/Joca64/HTMLTool/

53

54 CHAPTER 6. CONCLUSION

7. Work plan

This chapter details the original work plans initially set for the project and compares
them to what was actually executed, as well as discussing the reasons behind changes
and delays.

7.1 First semester

The initial work plan devised for the first semester is presented in Figure 7.1. It consisted
of a two month period of reviewing the state of the art regarding Hypertext Markup
Language (HTML), web crawlers and HTML validators and APIs. This would be followed
by a month long requirements survey for the study approach, which would coincide with
the start of a two month task of designing the preliminary system architecture. During the
fourth month a small proof-of-concept prototype would also be implemented. Finally, the
last month of the semester would be dedicated to the writing of the intermediate report.

Writing	the	intermediate	report

Implementation	of	proof-of-concept	prototype

Design	of	the	preliminary	tool	architecture

Approach	requirements	survey

State	of	the	art	review
19 26

Sep	2016
03 10 17 24 31

Oct	2016
07 14 21 28

Nov	2016
05 12 19 26

Dec	2016
02 09 16 23 30

Jan	2017
06 13 20 27

Feb	2017
06 13 20 27

Mar	2017
03 10 17

Apr	2017

Figure 7.1: Work plan for the first semester.

The state of the art review went according to plan but development was different
from what was initially expected. It was decided early on that, due to the nature of
the project being a research focused one, there would be no need for a formal definition
of the project requirements. Both the requirements survey for the study approach and
the preliminary tool architecture design were also mostly done during the state of the art
review. Several tasks were added, such as the installation and configuration of the selected
crawler, followed by a set of test crawls for roughly 1500 Uniform Resource Locator

55

56 CHAPTER 7. WORK PLAN

(URL)s each, the choice of URL sources, as well as the installation and configuration
of local versions of both World Wide Web Consortium (W3C) HTML validators. The
writing of the intermediate report was also spread along the whole semester instead of
reserving the final month for that task. Weekly meetings with the advisor, Prof. Nuno
Laranjeiro, are also not accounted for in Image 7.2.

Writing	the	intermediate	report

Implementation	of	proof-of-concept	prototype

Configure	local	versions	of	both	validators

Choice	of	URL	sources

Configure	crawler	and	perform	test	crawls

Design	of	the	preliminary	tool	architecture

Approach	requirements	survey

State	of	the	art	review
19 26

Sep	2016
03 10 17 24 31

Oct	2016
07 14 21 28

Nov	2016
05 12 19 26

Dec	2016
02 09 16 23 30

Jan	2017
06 13 20 27

Feb	2017
06 13 20 27

Mar	2017
03 10 17 24

Apr	2017

Figure 7.2: Actual work performed on the first semester.

7.2 Second semester

The work planned for the second half of the project is shown on Figure 7.3. The sec-
ond semester was intended to begin with the creation of the intermediate presentation,
alongside with the writing of a short paper, detailing our intention of building a tool for
analysing HTML in depth. Deciding upon the characteristics and attributes that our tool
should extract was the following task. Finishing our tool’s implementation was slated
to begin mid February and extend until the end of March. Halfway through this last
task, the crawling of the selected web pages should begin so that they could be readily
processed once the tool implementation was completed. The month of April would be
reserved for the writing of a paper detailing our findings specifically regarding pages built
with HTML 5, while the next month would see a similar task, writing a paper detailing
our general findings. Writing the final report would be undertaken during the whole
duration of the project. Finally, the semester would conclude with the creation of the
final presentation.

In contrast, the work actually performed during the second semester is shown in Fig-
ure 7.4. The first three tasks, creating the intermediate presentation, writing a short
paper and finalising the set of metrics and indicators to be retrieved by the tool went
according to plan. Despite the initial time frame proposal for completing the tool imple-
mentation being somewhat short, with a moderate amount of delay expected, it extended
well beyond what was planned. As discussed in chapter 4, section 4.4, the biggest set-
back was caused by the move from the development virtual machine to the production
equivalent. This change caused the HTML validation of all HTML 5 web pages to fail.

7.2. SECOND SEMESTER 57

Creating	final	presentation

Writing	the	final	report

Writing	paper	regarding	general	findings

Writing	paper	regarding	HTML	5	findings

Extracting	data	and	analysing	information

Finishing	tool	implementation

Final	set	of	metrics	and	indicators	to	be	retrieved

Writing	short	paper

Creating	intermediate	presentation
23 30

Jan	2017
06 13 20 27

Feb	2017
06 13 20 27

Mar	2017
03 10 17 24 01

Apr	2017
08 15 22 29

May	2017
05 12 19 26

Jun	2017
03 10 17 24 31

Jul	2017
07 14 21 28

Aug	2017
04

Figure 7.3: Work plan for the second semester.

Subsequently, as previously detailed, several attempts were made in order to fix the prob-
lem, from code changes, to program re-installations, configurations checked and new ones
attempted, versions of all software confirmed, to using completely different virtualiza-
tion environments. Finally, the solution employed, making a clone of the development
environment and importing it to the production machine, managed to go around the
problem and making our setup functional. It is however, somewhat unsatisfactory as it
does not address the underlying problem, but time constraints forced us to proceed with
this option.

Once the tool was up and running and it began processing actual batches of crawled
web pages, another problem surfaced. An exception was being raised and preventing
the tool from generating the totals for the information gathered. An apparent rogue
character was interfering with our parsing and splitting strings in an unintended way,
producing erroneous results. This behaviour was also never detected in the development
environment, despite the tool being tested with sets of thousands of web pages, it was
obviously not subjected to the same degree of variability as a group of one million pages.
Attempts at resolving this problem were made, the set of web pages being tested was
reduced to 250,000 in order to accelerate the debugging process, but still lead to a some-
what lengthy wait time between attempts. The pages were made sure to be read in the
appropriate character encoding so as to not lead to charset problems while parsing them.
The strings causing the problem were filtered and any characters that might incorrectly
lead to strings being split, such as line breaks or rogue string terminators were removed.
Ultimately, despite our best efforts, the problem still persists.

Due to unfortunate, personal and external circumstances, development for the project
was halted during roughly two and a half months, the dates marked on Figure 7.4 in blue.
This made it impossible to successfully complete both tasks regarding the writing of pa-
pers detailing our findings. Despite the crawling of web pages having been performed in
the initially planned time frame, due to these delays, said information was deemed obso-
lete and a new, much smaller, set of web pages was retrieved. Due to being more relevant
in emulating the average user experience, the URLs used, were limited to Alexa.com.
The remainder of the time left was spent analysing said information, writing the final
version of this report and creating the final presentation.

58 CHAPTER 7. WORK PLAN

Creating	final	presentation

Writing	the	final	report

Extracting	data	and	analysing	information

Finishing	tool	implementation

Final	set	of	metrics	and	indicators	to	be	retrieved

Writing	short	paper

Creating	intermediate	presentation
23 30

Jan	2017
06 13 20 27

Feb	2017
06 13 20 27

Mar	2017
03 10 17 24 01

Apr	2017
08 15 22 29

May	2017
05 12 19 26

Jun	2017
03 10 17 24 31

Jul	2017
07 14 21 28

Aug	2017
04 11 18 25

Sep	2017
02 09 16 23 30

Oct	2017
06 13 20 27

Nov	2017
04

Figure 7.4: Actual work performed on the second semester.

8. Future work

Naturally, every project’s conclusion brings with it a few ideas that seem worthy of
expanding upon in the future, ways for it to be improved as well as, in hindsight, different
ways of accomplishing the same goals. This is particularly apparent in projects that did
not meet all of its originally intended goals.

A few options seem obvious to develop upon in future work. Naturally, the in-
tended large-scale study focusing on the quality and state of Hypertext Markup Lan-
guage (HTML) currently available online is the most evident. This is backed by the lack
of recent data regarding this subject, particularly concerning HTML5, and can surely be
of use by researchers and developers alike. The subject of HTML complexity may also
require a more extended look into it. Making use of additional techniques in order to
closer resemble the average online user experience seems a possibility. As shown by pre-
vious studies [68], following the directions contained in the Robots Exclusion Standard
can askew one’s results. This happens because many web pages favour only the most
popular search engines, white-listing Google, while blocking access to any other crawlers.
Evidently, this leads to an ethical problem, should one ignore the Robots Exclusion Stan-
dard in an attempt to obtain the best data possible while disregarding the wishes of the
web page creators? Or adhere to it and try to work around data that does not accurately
represent the subject being studied. Further thought is needed regarding this matter.
This, however, is just one example of the way the gathering of data can lead to a biased
set of results.

In regards to improvements for the tool itself, as may be expected, a fix for the
occasional problem that prevents generating the files containing the totals, for attributes
and characteristics gathered, should be the top priority. Beyond this, cleaning up the
output for certain attributes would improve ease of use by the tool’s users. Assuredly, the
amount of information gathered by the program can also be increased. Integrating a Data
Base Management System (DBMS) would most likely enhance the process of analysing
all the information collected, again, improving its ease of use. Finally, an increase in
performance can certainly be achieved if further optimisation is attempted.

59

60 CHAPTER 8. FUTURE WORK

References

[1] Ejike Ofuonye et al. “Prevalence and classification of web page defects”. In: Online
Information Review 34.1 (2010), pp. 160–174.

[2] Shan Chen, Dan Hong, and Vincent Y Shen. “An experimental study on validation
problems with existing html webpages”. In: Proceedings of the 2005 International
Conference on Internet Computing, ICOMP’05. 2005, p. 373.

[3] Tim J Berners-Lee. “The world-wide web”. In: Computer networks and ISDN sys-
tems 25.4 (1992), pp. 454–459.

[4] World Wide Web Consortium. The web standards model - HTML CSS and JavaScript.
url: https://www.w3.org/wiki/The_web_standards_model_-_HTML_CSS_and_
JavaScript.

[5] World Wide Web Consortium. HTML doctype declaration. url: http://www.

w3schools.com/tags/tag_doctype.asp.

[6] World Wide Web Consortium. HTML & CSS. url: https : / / www . w3 . org /

standards/webdesign/htmlcss.

[7] International Organization for Standardization. Standard Generalized Markup Lan-
guage (SGML). url: https://www.iso.org/obp/ui/#iso:std:iso:8879:ed-1:
v1:en.

[8] W3C. Web Content Accessibility Guidelines (WCAG) 2.0. url: https://www.w3.
org/TR/WCAG20/.

[9] Alexa.com. Alexa Top 500 Global Sites. url: http://www.alexa.com/topsites.

[10] Fabrizio Giustina. JTidy. url: http://jtidy.sourceforge.net/.

[11] World Wide Web Consortium. The W3C Markup Validation Service. url: https:
//validator.w3.org/.

[12] The World Bank. GDP per capita, PPP (current international $). url: http:

//data.worldbank.org/indicator/NY.GDP.PCAP.PP.CD.

[13] Economist Intelligence Unit. “E-readiness rankings 2009: The usage imperative”.
In: The Economist. A report from the Economist Intelligence Unit written in coop-
eration with the IBM Institute for Business Value (2009).

[14] International Monetary Fund. World Economic Outlook database for 2005. url:
http://www.imf.org/external/pubs/ft/weo/2005/01/data/.

[15] Economist Intelligence Unit. The 2005 e-readiness rankings. url: http://graphics.
eiu.com/files/ad_pdfs/2005Ereadiness_Ranking_WP.pdf.

61

https://www.w3.org/wiki/The_web_standards_model_-_HTML_CSS_and_JavaScript
https://www.w3.org/wiki/The_web_standards_model_-_HTML_CSS_and_JavaScript
http://www.w3schools.com/tags/tag_doctype.asp
http://www.w3schools.com/tags/tag_doctype.asp
https://www.w3.org/standards/webdesign/htmlcss
https://www.w3.org/standards/webdesign/htmlcss
https://www.iso.org/obp/ui/#iso:std:iso:8879:ed-1:v1:en
https://www.iso.org/obp/ui/#iso:std:iso:8879:ed-1:v1:en
https://www.w3.org/TR/WCAG20/
https://www.w3.org/TR/WCAG20/
http://www.alexa.com/topsites
http://jtidy.sourceforge.net/
https://validator.w3.org/
https://validator.w3.org/
http://data.worldbank.org/indicator/NY.GDP.PCAP.PP.CD
http://data.worldbank.org/indicator/NY.GDP.PCAP.PP.CD
http://www.imf.org/external/pubs/ft/weo/2005/01/data/
http://graphics.eiu.com/files/ad_pdfs/2005Ereadiness_Ranking_WP.pdf
http://graphics.eiu.com/files/ad_pdfs/2005Ereadiness_Ranking_WP.pdf

62 REFERENCES

[16] Bryan Wilson. MAMA - Metadata Analysis and Mining Application. url: http:
//maqentaer.github.io/devopera-static-backup/http/dev.opera.com/

articles/view/mama/index.html.

[17] DMOZ. The Directory of the Web. url: http://www.dmoz.org/.

[18] Dagfinn Parnas. “How to cope with incorrect HTML”. In: (2001).

[19] Liam Quinn. WDG HTML Validator. url: http://www.htmlhelp.com/tools/
validator/.

[20] Rene Saarsoo. Coding practices of web pages. url: http://triin.net/2006/06/
12/Coding_practices_of_web_pages.

[21] W3C. The W3C CSS Validation Service. url: https://jigsaw.w3.org/css-
validator/.

[22] Tomislav Jakopec, Anita Papić, and Josipa Selthofer. “Inside Croatian national
top-level domain: Analysis of technical quality according to W3C standards”. In:
Information Technology Interfaces (ITI), Proceedings of the ITI 2011 33rd Inter-
national Conference on. IEEE. 2011, pp. 471–476.

[23] Allison Woodruff et al. “An investigation of documents from the World Wide Web”.
In: Computer Networks and ISDN Systems 28.7 (1996), pp. 963–980.

[24] N. Bowers. Weblint Home Page (version 1.013). url: http://www.khoral.com/
staff/neilb/weblint.html.

[25] Patricia Beatty, Scott Dick, and James Miller. “Is HTML in a race to the bottom?
A large-scale survey and analysis of conformance to W3C standards”. In: IEEE
Internet Computing 12.2 (2008), pp. 76–80.

[26] Andreas Pinterits, Horst Treiblmaier, and Irene Pollach. “Environmental websites:
an empirical investigation of functionality and accessibility”. In: International Jour-
nal of Technology, Policy and Management 6.1 (2006), pp. 103–119.

[27] Audit IT. Web site evaluation. url: http://www.audit- it.com/web_site_

evaluation.php.

[28] Watchfire. Watchfire WebXACT. url: http://www.w3c.hu/talks/2006/wai_de/
mate/watchfire.html.

[29] Heitor de Souza Ganzeli, Graça Bressan, and Antônio Marcos Moreiras. “ICT web:
analysis of the Brazilian governmental web”. In: Proceedings of the 18th Brazilian
symposium on Multimedia and the web. ACM. 2012, pp. 383–386.

[30] Governo Federal. ASES Avaliador e Simulador de Acessibilidade em Śıtios. url:
http://asesweb.governoeletronico.gov.br/ases/.

[31] Dave J Beckett. “30% accessible – a survey of the UK Wide Web”. In: Computer
Networks and ISDN Systems 29.8 (1997), pp. 1367–1375.

[32] Kelly Waters. “Prioritization using moscow”. In: Agile Planning 12 (2009), p. 31.

[33] SimilarWeb. SimilarWeb. url: http://www.similarweb.com/.

[34] Quantcast. Quantcast. url: http://www.quantcast.com/.

[35] Majestic. Majestic. url: https://majestic.com/.

[36] Common Crawl. Common Crawl. url: http://http://commoncrawl.org/.

http://maqentaer.github.io/devopera-static-backup/http/dev.opera.com/articles/view/mama/index.html
http://maqentaer.github.io/devopera-static-backup/http/dev.opera.com/articles/view/mama/index.html
http://maqentaer.github.io/devopera-static-backup/http/dev.opera.com/articles/view/mama/index.html
http://www.dmoz.org/
http://www.htmlhelp.com/tools/validator/
http://www.htmlhelp.com/tools/validator/
http://triin.net/2006/06/12/Coding_practices_of_web_pages
http://triin.net/2006/06/12/Coding_practices_of_web_pages
https://jigsaw.w3.org/css-validator/
https://jigsaw.w3.org/css-validator/
http://www.khoral.com/staff/neilb/weblint.html
http://www.khoral.com/staff/neilb/weblint.html
http://www.audit-it.com/web_site_evaluation.php
http://www.audit-it.com/web_site_evaluation.php
http://www.w3c.hu/talks/2006/wai_de/mate/watchfire.html
http://www.w3c.hu/talks/2006/wai_de/mate/watchfire.html
http://asesweb.governoeletronico.gov.br/ases/
http://www.similarweb.com/
http://www.quantcast.com/
https://majestic.com/
http://http://commoncrawl.org/

REFERENCES 63

[37] Martijn Koster. Robots in the Web: threat or treat? url: http://www.robotstxt.
org/threat-or-treat.html.

[38] Gautam Pant, Padmini Srinivasan, and Filippo Menczer. “Crawling the web”. In:
Web Dynamics. Springer, 2004, pp. 153–177.

[39] Vladislav Shkapenyuk and Torsten Suel. “Design and implementation of a high-
performance distributed web crawler”. In: Data Engineering, 2002. Proceedings.
18th International Conference on. IEEE. 2002, pp. 357–368.

[40] Ziv Bar-YossefÝ et al. “Approximating aggregate queries about web pages via ran-
dom walks”. In: (2000).

[41] Martijn Koster. A Standard for Robot Exclusion. url: http://www.robotstxt.
org/orig.html.

[42] Yang Sun, Ziming Zhuang, and C Lee Giles. “A large-scale study of robots.txt”. In:
Proceedings of the 16th international conference on World Wide Web. ACM. 2007,
pp. 1123–1124.

[43] Monika Yadav and Neha Goyal. Comparison of Open Source Crawlers - A Review.
url: http://www.ijser.org/researchpaper%5CComparison-of-Open-Source-
Crawlers--A-Review.pdf.

[44] C Serrão, A Ricardo, et al. “Comparison of existing open-source tools for Web crawl-
ing and indexing of free music”. In: Journal of Telecommunications 18.1 (2013).

[45] Carmen Klaussner. NUTCH FIGHT! 1.7 vs 2.2.1. url: http://digitalpebble.
blogspot.pt/2013/09/nutch-fight-17-vs-221.html.

[46] Validome. Validome. url: http://www.validome.org.

[47] Ed Kubaitis. Anybrowser Weblint Gateway. url: http://www.anybrowser.com/
cgi-bin/lint/weblint.cgi.

[48] DJ Delorie. Web Page Purifier. url: http://www.delorie.com/web/purify.
html.

[49] Dr. Watson. Dr. Watson. url: http://watson.addy.com/.

[50] Online Web Check. CSE HTML Validator Pro. url: http://watson.addy.com/.

[51] Jonathan Hedley. HTML Tidy Online. url: https://infohound.net/tidy/.

[52] Marc Gueury. Html Validator. url: https://addons.mozilla.org/en/firefox/
addon/html-validator/.

[53] Total Validator. Total Validator. url: https://www.totalvalidator.com/.

[54] HTML Validator Pro. HTML Validator Pro. url: http://app.validator.pro/.

[55] Mathias Bynens. Ambiguous ampersands. url: https : / / mathiasbynens . be /

notes/ambiguous-ampersands.

[56] Squareup. Retrofit - A type-safe HTTP client for Android and Java. url: https:
//square.github.io/retrofit/.

[57] Jonathan Hedley. jsoup Java HTML Parser, with best DOM, CSS and jquery. url:
https://jsoup.org/.

[58] Apache Software Foundation. Commons CSV. url: https://commons.apache.
org/proper/commons-csv/.

http://www.robotstxt.org/threat-or-treat.html
http://www.robotstxt.org/threat-or-treat.html
http://www.robotstxt.org/orig.html
http://www.robotstxt.org/orig.html
http://www.ijser.org/researchpaper%5CComparison-of-Open-Source-Crawlers--A-Review.pdf
http://www.ijser.org/researchpaper%5CComparison-of-Open-Source-Crawlers--A-Review.pdf
http://digitalpebble.blogspot.pt/2013/09/nutch-fight-17-vs-221.html
http://digitalpebble.blogspot.pt/2013/09/nutch-fight-17-vs-221.html
http://www.validome.org
http://www.anybrowser.com/cgi-bin/lint/weblint.cgi
http://www.anybrowser.com/cgi-bin/lint/weblint.cgi
http://www.delorie.com/web/purify.html
http://www.delorie.com/web/purify.html
http://watson.addy.com/
http://watson.addy.com/
https://infohound.net/tidy/
https://addons.mozilla.org/en/firefox/addon/html-validator/
https://addons.mozilla.org/en/firefox/addon/html-validator/
https://www.totalvalidator.com/
http://app.validator.pro/
https://mathiasbynens.be/notes/ambiguous-ampersands
https://mathiasbynens.be/notes/ambiguous-ampersands
https://square.github.io/retrofit/
https://square.github.io/retrofit/
https://jsoup.org/
https://commons.apache.org/proper/commons-csv/
https://commons.apache.org/proper/commons-csv/

64 REFERENCES

[59] Google. Gson: A Java serialization/deserialization library that can convert Java
objects into JSON and back. url: https://github.com/google/gson.

[60] Oracle. Oracle VM VirtualBox. url: https://www.virtualbox.org/.

[61] Linux Foundation. The Xen Project, the powerful open source industry standard for
virtualization. url: https://www.xenproject.org/.

[62] W3C. World Wide Web Consortium. url: https://www.w3.org/.

[63] W3C. HTML5. url: https://www.w3.org/TR/html5/.

[64] WhatsApp Inc. WhatsApp. url: https://www.whatsapp.com/.

[65] Tencent. QQ. url: https://im.qq.com/index.shtml.

[66] Microsoft. Skype. url: https://www.skype.com/en/.

[67] W3C. Error Explanations for The W3C Markup Validation Service. url: https:
//validator.w3.org/docs/errors.html.

[68] Yang Sun. “A comprehensive study of the regulation and behavior of web crawlers”.
PhD thesis. The Pennsylvania State University, 2008.

[69] John Wiley & Sons Ltd. Software: Practice and Experience. url: http://onlinelibrary.
wiley.com/journal/10.1002/(ISSN)1097-024X.

https://github.com/google/gson
https://www.virtualbox.org/
https://www.xenproject.org/
https://www.w3.org/
https://www.w3.org/TR/html5/
https://www.whatsapp.com/
https://im.qq.com/index.shtml
https://www.skype.com/en/
https://validator.w3.org/docs/errors.html
https://validator.w3.org/docs/errors.html
http://onlinelibrary.wiley.com/journal/10.1002/(ISSN)1097-024X
http://onlinelibrary.wiley.com/journal/10.1002/(ISSN)1097-024X

Appendices

65

A. Requirements

A.1 Functional requirements

Table A.1: FR01 - WARC file manipulation

Identifier FR01
Category Data handling
Name WARC file manipulation
Prioritisation Must have
Description The tool must be able to successfully parse WARC files

generated by the crawler and correctly process their in-
formation.

Table A.2: FR02 - HTML file manipulation

Identifier FR02
Category Data handling
Name HTML file manipulation
Prioritisation Must have
Description The tool must be able to successfully parse web pages

created with HTML and correctly process their infor-
mation.

Table A.3: FR03 - Validator integration

Identifier FR03
Category Data handling
Name Validator integration
Prioritisation Must have
Description Must be able to send requests to the HTML validator,

receive its answer and correctly process their informa-
tion.

67

68 APPENDIX A. REQUIREMENTS

Table A.4: FR04 - Valid results

Identifier FR04
Category Data handling
Name Valid results
Prioritisation Must have
Description Information produced by the tool must accurately rep-

resent the original data sources.

Table A.5: FR05 - DBMS integration

Identifier FR05
Category Data handling
Name DBMS integration
Prioritisation Could have
Description The tool can be integrated with a Database Manage-

ment System for easier data manipulation.

A.2 Quality requirements

Table A.6: NFR01 - Resume functionality.

Identifier NFR01
Category Recoverability
Name Resume functionality
Prioritisation Should have
Description Due to the large amounts of data expected to be gath-

ered and their anticipated processing times, the tool
should have a way for users to resume their work from
the point they stopped. This interruption can be caused
by many different factors such as, power failure, hard-
ware malfunction, user or software error.

A.2. QUALITY REQUIREMENTS 69

Table A.7: NFR02 - Processing data times.

Identifier NFR02
Category Performance
Name Processing data times
Prioritisation Must have
Description The tool must be able to process the desired information

within an acceptable time frame.

Table A.8: NFR03 - Hardware dependent performance

Identifier NFR03
Category Scalability
Name Hardware dependent performance
Prioritisation Should have
Description Time spent by the tool processing data should be able

to be improved if it is run on more powerful hardware.

Table A.9: NFR04 - Ease of use

Identifier NFR04
Category Usability
Name Ease of use
Prioritisation Could have
Description Installing and running the tool should not require too

many steps or constant user supervision.

70 APPENDIX A. REQUIREMENTS

B. Short paper

As of the 28th of August, 2017, a version of the following short paper has been accepted
for publication by the Software: Practice and Experience journal [69].

71

Towards Characterizing HTML Defects on the Web
Short Paper

Joaquim Mendes, Nuno Laranjeiro, Marco Vieira
CISUC, Department of Informatics Engineering,

University of Coimbra, Portugal

Abstract
HTML is being massively used as an interface to pro-
vide services to users. Web developers are producing
and changing sites at high pace, while trying to support
the latest HTML standards. In this context, it is com-
mon to find websites that do not comply with the stand-
ards and fail to be correctly processed by browsers.
Considering this dynamic environment and the increas-
ingly large diversity of browsers, with frequent updates,
the appearance of problems in web pages is a common,
sometimes severe, hard-to-track problem. In this short
paper, we describe the initial design of an approach that
will be used to obtain large-scale information regarding
the characteristics of HTML documents on the Web and
to extract indicators of representative errors made by
their developers. Preliminary results show nearly 90%
of the pages analyzed having at least one type of error
and the prevalence of a small number of error types.
The information that the tool will provide can be used
by developers to build more reliable websites.

1. Introduction
HTML is nowadays being used to not only hold infor-
mation but also to support businesses, that rely on the
correctness of the HTML documents to reach clients.
Thus, this language is being used as an endpoint inter-
face with clients, through which they access operations
of all kinds, including entertainment or business. This
became particularly true with the advent of HTML5,
which adds complex features to the standard, including
multimedia, device access, or even semantics [1].

The typical time-to-market constraints of web applica-
tion development, bring in the need for fast develop-
ment of new websites and for fast application of chang-
es to existing sites, so that new or different functionality
can be accommodated. The creation of new HTML
standards also leads developers to change their web
applications, to benefit from the latest features and to be
up to date with the latest trends. In any case, developers
mostly concentrate on assuring correctness of existing
functionality and overlook the necessary time for veri-
fication and validation activities [2].

Nowadays it is common to find websites that, due to
small details, do not comply with the standards and fail
to be correctly processed by browsers [3]. Sometimes
developers are just trying to take advantage of browser-

specific features and overlook standards compliance in
return of some benefit, while some other times they just
make mistakes, leaving residual defects on the pages.

Browsers gradually became tolerant to small mistakes,
which actually leads developers to further disregard
compliance with standards, from the moment that web
pages are apparently rendered correctly [3]. The prob-
lem is that the Web environment is hugely dynamic and
browsers are increasingly diverse, being very frequently
updated. In this environment, there is no guarantee that
a page holding (or prone to hold) residual defects will
still work in the next version of a given browser. This is
a hard-to-track problem that can have serious conse-
quences on the service being delivered [2].

In this paper, we present the initial design of an ap-
proach for: i) analyzing HTML document characteris-
tics (e.g., size, complexity, number of outgoing links),
ii) validating their conformance to the standards, in-
cluding obtaining detailed information regarding errors
or bad practices in each document, and iii) analyzing
the data to extract meaningful problem indicators (e.g.,
frequent errors, errors occurring in documents holding
specific characteristics).

We used our approach to carry out an initial assessment
of a small set of 1344 web pages, collected their charac-
teristics and identified an initial set of frequent prob-
lems. Despite the reduced size of the experiments, re-
sults tend to agree with previous research in this area,
with nearly 90% of the analyzed pages showing at least
one type of error. We also observed the prevalence of a
reduced number of error types, with just 14 different
types accounting for 76.91% of all errors found.

Our end goal is to extend the characterization and ana-
lytics steps of our approach and carry out a large-scale
experiment to characterize the HTML contents of a
large set (at the million scale) of popular websites. We
will also gather information regarding representative
mistakes made by developers and will use it to build a
model of the typical faults (i.e., the defects) introduced
by developers in HTML documents.

Although this kind of work is quite well-known in the
dependability community [4], it is far less common in
the Web research community. In fact, the work that is
closer to ours (although with different goals) has been

72

carried out about a decade ago, according standards that
are in disuse now. Thus, there is currently no up-to-date
characterization information or a reusable HTML fault
model based on large-scale data that can be used by
developers or researchers. This kind of information is
vital for web developers to understand the reliability of
their websites and also to help building more reliable
sites, that can accommodate the presence of small mis-
takes (e.g., introduced by some change to the site).

This paper is organized as follows. Section 2 presents
related work and Section 3 overviews our approach to
analyze HTML. Section 4 discusses preliminary results
and Section 5 concludes this paper.

2. Related Work
More than a decade ago, the authors in [2] used the
W3C validator [5] against 44,340 web sites composed
of random sites, popular sites, and sites found using
three search engines. Only 5% of the web pages ana-
lyzed were standards compliant. Top problems included
Missing DOCTYPE, the omission of the alt attribute,
and the lack of type attribute. Apart from the use of
home and inner pages, no filtering (e.g., removing 404
error pages) or removing bias (e.g., same-source pages)
from the URL list appears to have been made.

The work in [3] used Alexa.com as source of 100,000
URLs to find only 3% of valid pages, with the analysis
per geographical origin showing significant differences.
The top problems found were, the lack of a DOCTYPE
declaration, missing character set and a conflict be-
tween the character set declaration and the meta attrib-
ute. The URL list was built by Internet Explorer users
with Alexa’s toolbar and could be also biased to re-
gional variants of some sites (e.g., Google). There is no
description of filtering or removing bias from the list.

The Metadata Analysis and Mining Application (MA-
MA) [6] analysed ~3.5 million URLs from DMOZ,
Alexa.com top 500, and a set of W3C member compa-
nies. Domain parking sites, error pages, and non-http(s)
links were filtered out. Characterization included the
most and least used attributes, types of encoding, the
total number of hyperlinks and images, among others.

Only 4.13% of the URLs were found to be W3C valid
in [6]. 51% of the documents included the DOCTYPE
declaration, with Strict flavors displaying higher valida-
tion rates when compared to Transitional and Frameset.
XHTML, with 13.4% validation, also fared better than
HTML, with 6.6%. Of the 27 possible types of warn-
ings, 14 were signaled. The largest amount of warnings
per web page was 5, with 2 being the most common.
The 17 most common errors occurred on more than
10% of the total web pages and included: a wrong at-

tribute; the absence of a required attribute; missing
document type; or a close tag for a not open element.
There is much space for improvement at the level of
techniques such as bias removal and filtering, but espe-
cially on the richness of the results, including the analy-
sis of the HTML documents defects.

The authors in [7] used the WDG HTML validator [8]
over 2.5 million URLs gathered from the Open Web
Directory. Only 0.71% of pages were found to be valid.
The most frequent errors were No DTD declared, fol-
lowed by Non-standard attribute specified and Re-
quired attribute not specified. The most common num-
ber of errors per page was 4, with an average of 5.2.

The work in [9] analysed 1 million pages from the
Open Web Directory. Filtering techniques included
removing duplicates, empty pages, and URLs not re-
turning 200 OK status codes. The WDG HTML Valida-
tor and the W3C CSS Validator [10] revealed only
2.6\% of valid web pages (with an average of 6 errors
per page, with 3 being the most frequent). The top er-
rors included non-existent attributes, missing required
attributes, missing document type declaration, closing
not open elements, or elements in a wrong location. In
[11] Transitional flavors of HTML were found to be
more frequent than their Strict versions. [12] also con-
firmed the low percentage of successful validation. The
authors in [13] analyzed gov.br websites and obtained
slightly higher values regarding standards compliance.

The above works have the large problem of being at
many years of distance, with none focusing on HTML5,
leaving researchers with no updated information of the
current state of the Web, regarding the characteristics,
validity of modern HTML documents, and typical mis-
takes done by developers.

3. Approach for Characterizing HTML Defects
In this section, we describe the main steps of our ap-
proach, which we summarize as follows:

1) Define an initial set of URLs that point to HTML
documents that will be the target of analysis;

2) Perform a crawl of the HTML files specified by the
initial URL set and store the files;

3) Analyze the HTML document characteristics (e.g.,
size, complexity, number of outgoing links);

4) Use state of the art HTML validators to check the
HTML code compliance against the standards, in-
cluding detailed information regarding errors or
warnings (i.e., bad practices) in each document;

5) Analyze the data to extract meaningful problem
indicators (e.g., frequent errors, errors occurring in
documents holding specific characteristics).

73

The approach steps are currently supported by a proto-
type tool, which we depict in Figure 1, and that is based
on the combined use of free existent tools and custom
code. The whole solution is open-source and will be
freely available, for use and adaptation by other re-
searchers once completed. The next paragraphs explain
our approach, mapping its 5 steps to the tool compo-
nents.

Apache
Nutch

W3C	html	
Validators

http://
Analytics

Report

Metrics
Analyzer

html
html
html

HtmlAnalyzer

Figure 1 – Tool overview.

The input for our tool is a set of URLs (step 1), provid-
ed by the user, which are crawled by Apache Nutch
[14] in our prototype, the HTML code is extracted and
stored locally (step 2). The tool then triggers a metrics
analysis (step 3) and a validity analysis (step 4) over the
stored HTML files. The metrics analysis involves ana-
lyzing the HTML documents for characteristics such as
document size, number of HTML tags present, text/
HTML ratio, among others. To define this set of met-
rics, we collected the HTML metrics used by several
authors in this domain [2], [6], [9]. The idea of defining
a set of HTML metrics is that, by the end of the pro-
cess, we have the ability of correlating HTML problems
with some of the characteristics of the document (e.g.,
document complexity with a wrong tag structure). This
is actually ongoing work, and we intend to extend and
refine this set in the future. Table I presents the current
set of metrics being used.

The second type of analysis is directed to the valida-
tion of the HTML code. With the purpose of selecting
one or more HTML validators for integration in our
approach and tool, we analyzed 11 different validators,
including the most well-known CSE HTML validator,
Total Validator, WGD HTML, and the W3C validator,

against key features such as the ability to analyze
HTML5, validating pages served through HTTPS, max-
imum file size and error limits. We opted for using the
W3C validators [5] (which consist of essentially two
tools, one for HTML5 and another one for other ver-
sions of the language) due to compliance with the key
features and their overall recognition in the industry.

The first task at this validation step is to understand the
type of document being handled (e.g., an HTML5 doc-
ument, a XHTML 1.0 document), which should be pre-
sent at the beginning of each file. The next step is to
understand if the document is syntactically valid (i.e.,
no error is found by the validator) or not. If HTML er-
rors are detected (i.e., if syntactic rules are broken, such
as not closing a <div> tag, or having a wrong name in a
tag), we collect detailed information regarding the er-
rors. The W3C validators also produce warnings for
less serious mistakes found in the web page (e.g., using
attributes that are not supported by all browsers, or us-
ing attributes that can be safely omitted for particular
elements).

As the validators produce errors and warnings that are
specific for the code being analyzed, our tool is then
responsible for identifying the generic type of issue
being identified (i.e., not closing a <div> tag or a <ta-
ble> tag should be reported as the same type of error).
The identification of generic errors has been manually
verified in our prototype tool (for the errors obtained
during the experiments described in the next section).

Finally, we analyze the data collected to extract rele-
vant indicators regarding the defects introduced by de-
velopers (step 5). Currently we are considering the pre-
liminary indicators displayed in Table II, mostly based
on empirical evaluation and on what was used in previ-
ous work [3], [6].

Table II – Defect indicators for individual pages.

Defect
Indicator

Description

errorCount Nr. of HTML errors according to the standard
errorTypes Nr. of occurrences per type of HTML error
warningCount Nr. of HTML warnings according to the stand-

ard warningTypes Nr. of occurrences per type of HTML warning

Again, our intention to enrich this set of indicators, and
further use the data to obtain a fault model for HTML
that holds representative web page defects. Such model
can be helpful for verification and validation activities,
especially considering that nowadays HTML is being
generated at runtime, which makes it more difficult for
developers to assure that it will be correct.

Table I – Preliminary HTML metrics for individual pages.

Metric Description
fileSize HTML file size
textSize Size of textual content
elemSize Size of HTML elements
textHtmlR Ratio of text to HTML elements
version Version of HTML in use
elemCount Total number of HTML elements
elemFreq List of HTML elements and the number of times

each of them occurs
linkCount Total number of hyperlinks
protLFreq Types of protocols used in hyperlinks and the

number of times each of them occurs

74

4. Preliminary results
In this section, we discuss the results obtained during a
preliminary experimental evaluation carried out using
our tool and using a total of 1344 URLs as input. The
URLs were randomly selected from the Directory of the
Web (as in [6]). In the future, we intend to complement
this information with data gathered from known popu-
lar web sites. We first analyze the global results, and
then discuss the results for HTML5, the latest standard.

4.1 Global Dataset Analysis
Table III highlights the overall characteristics of the
dataset, as reported by our tool.

Table III – Overview of the HTML dataset characteristics.

Characteristic Value
Average file size 33.73 KB
Average size of text content 3.71 KB
Average size of HTML elements 30.02 KB
Average ratio of text to HTML elements 12.36%
Most common HTML version HTML5 (30.43%)
Average number of HTML elements 342
Most frequent HTML element <a> (17.56%)
Average number of hyperlinks 60
Most common protocol used in hyperlinks HTTP (72.35%)

As we can see in Table III, the average size of text con-
tent in a page is about ten times lower than the size of
used by the HTML elements themselves, which sug-
gests the presence of other types of elements (e.g., mul-
timedia content). HTML5 is the most popular version,
with the average number of elements used per page
being quite high (342). The <a> tag defines hyperlinks
and is the most frequent element in the dataset. The
next paragraphs detail these latter three characteristics.

Figure 2 shows the frequency of each version and fla-
vor of HTML found in the global dataset.

Figure 2 – Frequency of HTML versions and flavors

As we can see in Figure 2, 28% of web pages omit the
version information, leaving this task up to the brows-
ers. HTML 5 is the most common version present in
our dataset (30% of the pages), followed by XHTML
1.0 (22% of the pages). We can also see (also as in
[11]) that the Transitional flavors of HTML are more
popular than their strict counterparts, which is under-
standable from an ease of development perspective.

It is interesting to observe that the average number of
elements per page generally increases with the HTML
version, this trend is shown in Figure 3. The low num-
ber observed for XHTML 1.1 is likely due to the small
number (8) of XHTML web pages in the dataset.

Figure 3 – Average number of HTML element per version

Finally, regarding the most common elements, it comes
with little surprise that the <a> tag is the most used
(17.56%), as a web page with no hyperlinks defeats the
purpose of the interconnected information of the web. It
was followed by the <div> tag (17.12%) which is a
generic container for data or other elements, many
times used to group elements and apply the same Cas-
cading Style Sheet (CSS) styles to the whole group. The
remainder of the most frequent tags were (8.99%),
which represents a list item, (6.70%), which is
a generic inline container, and (5.30%) the tag
for representing an image.

Table IV summarizes the overall results for HTML
validation of the documents in the dataset, in particular
in what concerns detected errors. In accordance with
previous studies, the rate of compliance with the stand-
ards is very low, with only 11.09% of pages managing
to pass validation with no errors. The common web
page seems to be plagued with errors, an average of 41
per page. If we consider only the pages with errors, this
number rises to 47. A reduced number of error types
(14 different error types) accounts for about 77% of all
56257 validation errors found.

Table IV – Common errors present in the global dataset.

Error Frequency
Incorrectly encoded character 13.14%
Absence of a required attribute 9.88%
Omission of a close tag 7.89%
Attribute that does not belong to the standard in use 6.58%
An attribute value not contained in double quotes 6.45%

Regarding validation warnings, the five most frequent
validation warnings represent almost 88% of the total
19569 detected. The use of self-closing tags on docu-
ment types that do not allow it was the most frequent
case. The remaining top warnings were related with the
use of incorrectly encoded characters in a variety of
ways. Table V summarizes these results.

75

Table V – Top validation warnings in the global dataset.

Warnings Frequency
Using a self-closing tag on a non HTML5 /XHTML file 31.97%
Entity name with a badly encoded special character 18.25%
Attribute name with a badly encoded special character 15.24%
Attribute value with a badly encoded special character 13.56%
Incorrectly encoded character on the page content 8.67%

4.2 HTML5 results
Regarding the HTML5 documents characteristics, it
is interesting to observe that all the metrics show higher
values, with the exception of the text / HTML elements
ratio. Table VI summarizes this information.

Table VI – HTML5 documents characteristics.

Characteristic Value
Average file size 53.31 KB
Average size of text content 4.50 KB
Average size of HTML elements 48.80 KB
Average ratio of text to HTML elements 9.22%
Average number of HTML elements 487
Most frequent HTML element <div> (22.38%)
Average number of hyperlinks 91
Most common protocol used in hyperlinks HTTP (76.94%)

We observed that the top HTML5 elements used are the
same as the ones previously reported for the overall
dataset. Thus, we again find <div> (22,38%), <a>
(18.55%), (11.56%), (8.75%), and
(4.16%).

Regarding the validation of the HTML5 documents,
we found that 93.6% of the HTML5 pages had at least
one error. The average number of errors that we can
expect to find in an HTML5 page in our dataset is 22,
raising to 24 if we consider only the pages with errors.
The top five errors represent more than 60% of the total
number of errors (9250). The top ten errors would allow
us to reach the same value observed for the global da-
taset. Table VII summarizes the top problems observed.

Table VII – HTML5 documents top errors.

Error Frequency
Inclusion of an attribute not allowed for an element 17.41%
Deprecated attributes related to style 16.86%
Absence of the alt attribute for elements 12.26%
Element nested in a wrong element type 8.86%
Use of an itemprop attribute with no parent 5.23%

We can see that 4 out of the top 5 problems involve the
improper usage of attributes. It is important to note that
the errors shown in Table VII are specific for this ver-
sion of the standard and are not shared by the previous
versions. However, it is our intention to further under-
stand the similarities, causes, and effects of the errors
that are currently reported as different by the W3C val-
idators.

Regarding warnings, a total of 1978 were uncovered.
The following five, listed in Table VIII, refer to about
69% of all occurrences.

Almost 21% of the warnings were related to the use of
the deprecated border attribute, followed by duplicate
IDs (17.64%), the absence of headers (17.59%), an in-
correctly described attribute that, thus, cannot be serial-
izable (6.83%) and the use of an unnecessary attribute,
which can be omitted (5.92%).

HTML5 further reduced (when compared to the previ-
ous versions) the number of style and presentation ele-
ments, delegating that type of task for Cascading Style
Sheets. It is interesting to observe that the second most
common error and the top warning both refer to the use
of deprecated elements and attributes, which means
their use is still quite high among developers. This can
attributed to many factors, including lack of knowledge
regarding the new standard, or indifference regarding
HTML validation, among other causes [3].

Regarding the overall results and the HTML5 results, it
is interesting to note that most of the problems are re-
lated with attributes, suggesting that the use of HTML
elements is less error prone. It is our intention to further
analyze the gathered data and also run specialized data
analytics tools, so that we can get further insights over
the data (which are extremely difficult to obtain) as
they involve complex analysis and correlations.

5. Conclusion
In this paper, we present the initial design of an ap-
proach and tool for characterizing and analyzing the
syntactic validity of HTML documents. Preliminary
results show interesting insights regarding the charac-
teristics of HTML documents and their overall low
compliance with standards. It was interesting to observe
that this low compliance trend continues with HTML5
documents, which also appear to be more complex.

As the first step of a larger experiment, besides enlarg-
ing the dataset to the million scale, we intend to enrich
the HTML documents characteristics and run a wider
set of analysis over the data. Besides providing an up-
to-date vision of the use of HTML on top websites, we
intend to further understand the root causes of the er-
rors, and actually use errors for understanding how reli-
able, in the presence of changes, a particular website is.
Such information is relevant for website developers (for
training, or applying website changes), but might also
be helpful for browser development and optimization.

Table VIII – HTML5 documents top warnings.

Warning Frequency
Use of the deprecated border attribute 20.98%
Duplicate IDs 17.64%
Absence of headers 17.59%
Incorrectly described attribute that is not serializable 6.83%
Use of an unnecessary attribute, which can be omitted 5.92%

76

References
[1] World Wide Web Consortium, “HTML5.”

[Online]. Available:
https://www.w3.org/TR/html5/.

[2] S. Chen, D. Hong, and V. Y. Shen, “An experi-
mental study on validation problems with existing
html webpages,” in Proceedings of the 2005 Inter-
national Conference on Internet Computing,
ICOMP’05, 2005, p. 373.

[3] E. Ofuonye, P. Beatty, S. Dick, and J. Miller,
“Prevalence and classification of web page de-
fects,” Online Information Review, vol. 34, no. 1,
pp. 160–174, 2010.

[4] J. Durães and H. Madeira, “Emulation of Software
Faults: A Field Data Study and a Practical Ap-
proach,” IEEE Transactions on Software Engi-
neering, vol. 32, no. 11, pp. 849–867, Nov. 2006.

[5] World Wide Web Consortium, “The W3C Markup
Validation Service,” 2017. [Online]. Available:
https://validator.w3.org/.

[6] B. Wilson, “MAMA - Metadata Analysis and Min-
ing Application,” 2008. [Online]. Available:
http://maqentaer.github.io/devopera-static-
back-
up/http/dev.opera.com/articles/view/mama/index.h
tml.

[7] D. Parnas, “How to cope with incorrect HTML,”
2001.

[8] L. Quinn, “WDG HTML Validator,” 2007.
[Online]. Available:
http://www.htmlhelp.com/tools/validator/.

[9] R. Saarsoo, “Coding practices of web pages,”
2006. [Online]. Available:
http://triin.net/2006/06/12/Coding_practices_of_w
eb_pages.

[10] World Wide Web Consortium, “The W3C CSS
Validation Service,” 2009. [Online]. Available:
https://jigsaw.w3.org/css-validator/.

[11] P. Beatty, S. Dick, and J. Miller, “Is HTML in a
race to the bottom? A large-scale survey and anal-
ysis of conformance to W3C standards,” IEEE In-
ternet Computing, vol. 12, no. 2, pp. 76–80, 2008.

[12] A. Pinterits, H. Treiblmaier, and I. Pollach, “Envi-
ronmental websites: an empirical investigation of
functionality and accessibility,” International
Journal of Technology, Policy and Management,
vol. 6, no. 1, pp. 103–119, 2006.

[13] H. de S. Ganzeli, G. Bressan, and A. M. Moreiras,
“ICT web: analysis of the Brazilian governmental
web,” in Proceedings of the 18th Brazilian sympo-
sium on Multimedia and the web, 2012, pp. 383–
386.

[14] Apache, “Apache Nutch.” [Online]. Available:
http://nutch.apache.org/.

77

	Abstract
	Acknowledgements
	List of Tables
	List of Figures
	Introduction
	Motivation
	Goals
	Report structure

	Background and related work
	Hypertext Markup Language
	Related studies
	Standards compliance studies
	Validation as a secondary focus
	Summary

	Methodology and approach overview
	Proposed system overview
	Requirements
	URL selection
	Popularity based approach
	Mass quantity approach

	Web crawlers
	HTML validators

	Tool
	Tool behaviour
	Dependencies
	Configuration
	Challenges
	Retrievable information

	Results
	General findings
	HTML version
	HTML elements
	Validation
	Sizes
	Servers used
	Average web page

	HTML 5 findings
	HTML elements
	Validation
	Sizes
	Servers used
	Average web page

	Conclusion
	Work plan
	First semester
	Second semester

	Future work
	References
	Appendices
	Requirements
	Functional requirements
	Quality requirements

	Short paper

