
Simultaneous Evaluation of Viability and Bcl-2 in

Small-Cell Lung Cancer

A. Santos,1,2 A. B. Sarmento-Ribeiro,2,3 M. C. Pedroso de Lima,2,4 S. Simões,1,2 J. N. Moreira1,2*

� Abstract
When designing molecular targeted therapeutic strategies against cancer, it is important
to correlate protein expression and cell viability. However, such goal can be difficult if
performed in separate assays, especially when only a fraction of cells has been efficiently
transfected. Therefore, the aim of the present study was to establish a flow cytometry
procedure to assess simultaneously Bcl-2 protein level and viability in small-cell lung
cancer (SCLC) cells. Viability assessment was performed by staining cells with Annexin
V-fluorescein isothiocyanate (FITC) and 7-aminoactinomycin D (7-AAD). Intracellular
detection of Bcl-2 was carried out by immunodetection with monoclonal antibodies.
Regarding viability determination, the FSC/7-AAD plot identifies the same percentage
of viable cells as the FSC/Annexin V-FITC plot, although with greater sensitivity. The
procedures involving cells’ fixation with 1% paraformaldehyde and permeabilization
with digitonin, required for intracellular Bcl-2 immunostaining did not compromise
the association of 7-ADD (nor Annexin V-FITC) previously incubated with SCLC cells.
It was therefore possible to simultaneously assess cell viability and Bcl-2 protein in
SCLC cells. A simple, sensitive, and versatile procedure was established for the first time
for the simultaneous evaluation of cell viability and intracellular detection of Bcl-2 in
SCLC. ' 2008 International Society for Advancement of Cytometry
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ELUCIDATION of the human genome has provided a major impetus in identifying

human genes implicated in diseases, namely within cancer, leading to the develop-

ment of novel classes of pharmaceutical drugs, aiming at achieving higher specificity

and potency of action than conventional anticancer agents. Gene silencing agents

(such as antisense oligonucleotides, ODN, or siRNA) are one example of a novel class

of drugs that have shown efficacy in the selective inhibition of gene expression by

inhibiting the translation of the mRNA of the target gene (1–3). When designing a

therapeutic anticancer strategy, tumor cell death is the major ultimate goal. In this

context, the establishment of correlations between protein expression and viability

are important, but can be difficult, namely if performed in separate assays. Parame-

ters like the percentage of cells effectively transfected (4), the occurrence of unspecific

effects as a consequence of the transfection procedure, the possibility of distinct dif-

ferentiation states, or the regulation of protein expression and/or protein function

along the cell cycle, can make the cell populations in study extremely heterogeneous.

Real time PCR, Western blot, and cytotoxicity assays such as the MTT assay, are often

used to evaluate the impact of a gene silencing strategy on the mRNA level, protein

expression or cell viability, respectively (5,6). Nevertheless, it is important to point

out that the outcome of the mentioned techniques represents the summation of the

effects within the entire cell population. A true understanding of the impact of mo-

lecular targeted strategies, as gene silencing, against diseases like cancer, demands the

establishment of procedures that evaluate protein expression within several sub-

populations of a certain tumor type.
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Flow cytometry, whenever applicable, provides important

insights on the relation between the levels of protein expres-

sion and its function, by granting the possibility to study

several cell parameters at the same time, and to study hetero-

geneous cell populations with respect to each identifiable sub-

population. The technique has been extensively used in the

field of hematology, either in the clinical or in the fundamen-

tal research contexts. However, when adapting the procedures

to different applications, a careful evaluation of their suitabil-

ity to the cells in study is required. Previous examples have

proven this necessity, such as the one involving peripheral

blood mononuclear cells (PBMC) from AIDS patients, where

methods usually applied to the study of apoptosis in PBMC

from healthy donors were discordant among themselves or

simply inappropriate (7,8).

The BCL2 gene is frequently overexpressed in SCLC (9–

14), and has been proposed as a proto-oncogene with rele-

vance for the survival of these cells (15). SCLC cell lines are in

their majority suspension cells, and are characteristically diffi-

cult to transfect (authors’ unpublished observations). The

study of Bcl-2 silencing approaches in these cells, namely on

their viability, would therefore benefit from a simple method

like flow cytometry, capable of discriminating the Bcl-2 level

at the single cell level and the viability outcome of the effec-

tively transfected cells. Assessment of viability can be per-

formed, for example, with Annexin Vor 7-AAD. Double stain-

ing with fluorescently labeled Annexin V and propidium

iodide (PI) or 7-AAD has been extensively used to detect and

quantify apoptosis induction, although it should not be used

to characterize the mechanism of cell death because it also

stains oncotic cells (16). From previous reports, Annexin V

staining is expected to be compatible with cell fixation (8) and

cell permeabilization (17); however, there are no reports, to

the authors’ knowledge, of any procedure of staining cells con-

comitantly with Annexin V and an antibody against an intra-

cellular protein. The usefulness of 7-AAD alone to stain non-

viable cells or to distinguish early apoptotic cells from viable

and late apoptotic/necrotic cells, upon analysis in combination

with the forward side scatter (FSC) parameter, has been also

reported (18). However, concomitant cell staining with 7-

AAD for viability assessment and Bcl-2 immunodetection

with anti-Bcl-2 antibodies has also never been reported in

SCLC.

The main goal of the present study was to establish a flow

cytometry procedure to assess simultaneously Bcl-2 protein

level and viability in SCLC cells. Moreover, a comparison

between different viability markers (Annexin V-FITC versus

7-AAD) for SCLC cells was also performed.

MATERIALS AND METHODS

Materials

All salts and paraformaldehyde (PFA) were from Merck

(Darmstadt, Germany). 4-(2-hydroxyethyl)-1-piperazine-eth-

anesulfonic acid (HEPES), 2-amino-2-(hydroxymethyl)pro-

pane-1,3-diol (Tris), sodium azide (N3Na), actinomycin D

(AD), 7-AAD, bovine serum albumin (BSA), RPMI 1640 with

L-glutamine and without sodium bicarbonate (RPMI 1640),

penicillin–streptomycin solution (10,000 U/ml and 10 mg/ml,

respectively) and digitonin were SIGMA1 (Sigma-Aldrich

Chemie, Steinheim, Germany). Fetal Bovine Serum (FBS) was

Gibco1 (Invitrogen SA, Barcelona, Spain). The desalted and

full phosphorothioate form of G3139 ODN (50-TCT CCC

AGC GTG CGC CAT-30) and the mismatch control G4126

(50-TCT CCC AGC ATG TGC CAT-30) were purchased from

Microsynth (Balgach, Switzerland).

Cell Lines

The human variant and classic SCLC cell lines, respec-

tively SW2 and NCI-H69, were kindly provided by Drs. U.

Zangemeister-Wittke and R. Stahel (University Hospital of

Zurich, Switzerland). The human variant SCLC cell line NCI-

H82 SCLC cell line was purchased from the American Type

Culture Collection, whereas the K562 human leukemia cell

line was purchased from DMSZ GmbH. Cells were cultured

in RPMI 1640 supplemented with 10% (v/v) heat-inactivated

FBS, 100 U/ml penicillin, 0.1 mg/ml streptomycin, 10 mM

HEPES and 0.2% NaHCO3 at 378C in a humidified atmo-

sphere (90%), containing 5% CO2. Cells were maintained

within their exponential growth phase and periodically tested

for mycoplasma contamination with MycoAlert1 Myco-

plasma Detection kit (Cambrex Bio Science Verviers, Liege,

Belgium).

Selection of an Anti-Bcl-2 Monoclonal Antibody for

Flow Cytometry

In these experiments, three SCLC cell lines, known to

express different levels of Bcl-2 protein, as determined by Wes-

tern blot, were used: H82 (low), SW2 (intermediate) and H69

(high levels) (19). Cells were first fixed and permeabilized and

then submitted to three Bcl-2 immunostaining procedures,

aiming at assaying the Bcl-2 expression level by flow cytome-

try. With two of the immunostaining protocols tested, 106 tu-

mor cells in Dulbecco’s phosphate buffer saline (PBS) contain-

ing 1% BSA and 0.1% NaN3 were fixed and permeabilized

with the Fix and Perm kit (CaltagTM, Invitrogen, Barcelona,

Spain) according to the manufacturer procedure. Cells were

further incubated with 1 lg of fluorescein isothiocyanate

(FITC)-labeled mouse anti-human Bcl-2 monoclonal anti-

body, Bcl-2 mAb-FITC (IgG1, clone 100, Caltag, Invitrogen,

Spain), for 10 min. Alternatively, immunostaining was per-

formed by incubation with 1.3 lg of an anti-human Bcl-2

mouse monoclonal antibody (IgG1k, clone 124, Dako,

Glostrup, Denmark) for 10 min, followed by incubation with

2 lg of FITC-labeled secondary goat polyclonal anti-mouse

antibody (Dako, Glostrup, Denmark) for 20 min (indirect

staining). In these protocols, incubations with mAbs were per-

formed at room temperature in the dark. A third procedure

tested involved the fixation of 0.15 or 13106 tumor cells in

1% PFA in PBS containing 1% BSA and 0.1% NaN3 for 15

min at 48C. After washing with PBS containing 1% BSA and

0.1% NaN3, cells in 0.2 ml were incubated with 0.5 mg/ml dig-

itonin and 20 ll/106 cells of phycoerythrin (PE)-conjugated

mouse anti-human Bcl-2 mAb, Bcl-2 mAb-PE (IgG1k, clone
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Bcl-2/100, BD PharmingenTM, BD Biosciences, Erembodegem,

Belgium) or the same volume of the correspondent PE-conju-

gated isotype control (iso-PE) (IgG1k, clone MOPC-21, BD

Pharmingen, BD Biosciences), for 10 min at 48C. After all im-

munostaining procedures, cells were washed once with 1 ml of

PBS containing 1% BSA and 0.1% NaN3, resuspended in PBS,

and at least 10,000 events acquired in a flow cytometer (BD

FACSCaliburTM, BD Biosciences, Erembodegem, Belgium).

The CellQuestTM Pro software (version 0.3, BD Biosciences,

Erembodegem, Belgium) was used in both acquisition and

data analysis. Plotted events were gated in a region in SSC/

FSC of predominantly viable cells and then the geometric

mean values of the relative fluorescence units (RFU) of the

FL1 or FL2 channels were considered, depending on the anti-

body label.

Treatment of Tumor Cells with Etoposide or Imatinib

SW2 cells were plated at a cell density of 0.5 3 106 cells/

ml in culture medium, in a 6-well plate, and treated with 0.8

lM etoposide (solution for IV injection from FARMA-APS

kindly donated by the University Hospital of Coimbra) in a

final volume of 1 ml, aiming at inducing cell death (including

apoptosis) (20). Medium and treatment renewal was per-

formed every 24 h. Untreated cells were equally manipulated

but resuspended, when appropriate, in fresh medium. At 72 h

after the first treatment, cells were collected and prepared for

cytometry analysis as described in the following section. As a

control for FITC-conjugated Annexin V solution staining

(Annexin V-FITC), K562 cells were included in the study. To

guarantee the presence of apoptotic cells, K562 cells under

treatment with imatinib (kindly donated by Novartis, Basel,

Switzerland) for induction of resistance, collected at a random

point after the beginning of imatinib treatments, were used.

Transfection of SW2 SCLC Cells with

Oligodeoxynucleotides

Cells were plated in 12-well plates (at 0.25 3 106 cells/

well) in 0.4 ml of culture medium composed only by RPMI

1640 without phenol red, and 25 mM HEPES. Oligofect-

amineTM (Invitrogen, Barcelona, Spain), diluted 5 times in

HEPES buffer saline, HBS (25 mM HEPES, 140 mM NaCl, pH

7.4), was added to ODN solutions, prepared in HBS, at a ratio

of 15 ll Oligofectamine/nmol ODN, and further incubated for

20 min at room temperature. Complexes (0.1 ml) were incu-

bated with tumor cells at 200 nM of ODN. RPMI 1640 (0.25

ml) supplemented with 30% FCS was added 4 h after the addi-

tion of complexes. Culture medium was added every day to

maintain cells in exponential growth phase (2-fold dilution),

and Bcl-2 and cell viability were evaluated at 72 h.

Concomitant Detection of Viability and Bcl-2 Protein

Level by Flow Cytometry

In the present study, the procedure for fixation and per-

meabilization and further Bcl-2 immunostaining of SCLC cells

(already stained with Annexin V-FITC and 7-AAD), was

adapted from Gao et al. (17). Tumor cells (0.15 3 106) in 0.1

ml of binding buffer (10 mM HEPES, 140 mM NaCl, 2 mM

CaCl2, pH 7.4) were incubated either with 7-AAD solution

(20 lg/ml), or with both 7-AAD (at the concentration just

mentioned) and 2 ll of Annexin V-FITC (Pharmingen, BD

Biosciences, Erembodegem, Belgium), for 15 min at 48C. Cells
were then washed once with binding buffer, and fixed in 1%

PFA in binding buffer for 20 min at 48C. Afterwards, cells
were washed with 1 ml of binding buffer containing 1% BSA,

0.1% NaN3 and 20 lg/ml AD, and incubated for 15 min in 0.2

ml of the previous washing buffer containing 0.5 mg/ml digi-

tonin and 8 ll of the Bcl-2 mAb-PE or of the correspondent

control (iso-PE). After washing once, with binding buffer con-

taining BSA and NaN3, cells were analyzed by flow cytometry.

About 40000 events were acquired and Annexin V-FITC, PE-

labeled mAbs and 7-AAD were measured in FL1, FL2, and FL3

channels, respectively. The settings and compensations were

adjusted for this assay.

RESULTS AND DISCUSSION

Characterization of the 7-AAD and Annexin V-FITC

Staining of SCLC Cells for Viability Determination

Fluorescently-labeled Annexin V has proven to be a use-

ful tool (usually in combination with propidium iodide or 7-

AAD) to distinguish viable from apoptotic and oncotic cells

(16,21). The usefulness of 7-AAD alone to stain non-viable

cells has also been reported. This marker can only penetrate

the plasma membrane when membrane integrity is compro-

mised, as occurs in the later stages of apoptosis or necrosis,

binding stoichiometrically to nuclear DNA. 7-AAD analysis

performed in combination with the FSC parameter further

distinguishes early apoptotic cells from viable and late apopto-

tic/necrotic cells. With this method, the early apoptotic sub-

population was described as the 7-AADlow1/smaller size

population (8).

Etoposide-treated SW2 cells, as well as untreated SW2

cells, and imatinib-treated K562 cells, were stained with 7-

AAD and Annexin V-FITC as described in Materials and

Methods section. Aiming at identifying, within SW2 SCLC

cells, the sub-population of viable cells as well as the subset of

cells in early stages of death induction, the combined analysis

of 7-AAD/Annexin V-FITC was compared to the combined

analysis FSC/7-AAD and FSC/Annexin V-FITC (Fig. 1). Such

analysis was performed after gating the events according to

their light scatter properties (SSC/FSC) to exclude part of

debris (not shown).

Double staining with 7-AAD and Annexin V-FITC is usu-

ally analyzed in the 7-AAD/Annexin V-FITC plot by drawing

quadrants (Figs. 1A–1C). Three sub-populations could be eas-

ily distinguished on the imatinib-treated K562 cells 7-AAD/

Annexin V-FITC plot (Fig. 1C), corresponding to three dis-

tinct centers of density falling within different quadrants. Late

apoptotic/necrotic cells stained more strongly with both 7-

AAD and Annexin V-FITC (7-AAD1/Annexin V-FITC1) fall-

ing in the upper-right quadrant, whereas viable cells (7-

AAD2/Annexin V-FITC2) and early apoptotic/oncotic cells

(7-AAD2/Annexin V1) were located in the lower-left and

lower-right quadrants, respectively. In contrast, with the SW2
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cells, although late apoptotic/necrotic cells were easily distin-

guished by staining more strongly with 7-AAD, viable cells

and early apoptotic/oncotic cells sub-populations could not be

easily delimited from each other (Figs. 1A and 1B). As com-

pared to imatinib-treated K562 cells (Fig. 1C), viable SW2

cells displayed a higher basal intensity of Annexin V-FITC sig-

nal. This, together with dispersion in signal from doublets or

higher cell number events, makes positive and negative popu-

lations for Annexin V-FITC signal partially overlap and there-

fore difficult to distinguish, introducing uncertainty in the

quadrants positioning and subsequent quantification of

events. The same Annexin V-FITC and 7-AAD staining pat-

terns were observed with untreated SCLC H82 and H69 cells

(not shown), suggesting that the described features are gener-

ally applicable to SCLC cell lines, and are not exclusive of the

SW2 cell line.

Figure 1. Assessment of viability of SCLC and leukemia cells by multiparametric flow cytometry. Untreated and etoposide-treated SW2

SCLC cells and imatinib-treated K562 leukemia cells were stained with 7-AAD and Annexin V-FITC. Annexin V-FITC and 7-AAD fluorescence

were plotted in contour plots in combination with each other (A—C) and with the FSC parameter (D—I). Geometric regions labeled from

R2 to R6 delimit regions containing distinct sub-populations of events, based on the distinct properties of the parameters under analysis.
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Given the previous reported limitations, the analysis of the

7-AAD fluorescence in combination with FSC was carried out

(8). The lines defining the quadrants in Figures 1A–1C, were

positioned more accurately after gating FSC/7-AAD and FSC/

Annexin-V plots. In the FSC/7-AAD contour plot (Figs. 1D–

1F), three regions corresponding to distinct cellular sub-popu-

lations can be delimited: 7-AAD2 and normal sized events

(R2), 7-AADlow 1 and normal to small sized events (R3), and

7-AAD1 and normal to small sized events (R4). The events

within R2 and R4 correspond to viable cells and late apoptotic/

necrotic cells, respectively. The nature of the events within R3 is

less clear, although it might correspond to early apoptotic or

oncotic cells (8), as well as cell debris. Unstained cells already

present events within this region (not shown), indicating that

at least a fraction of the events within the R3 region exhibit not

true 7-AADlow1 signal but rather higher auto-fluorescence.

The FSC parameter revealed to be useful in viability discrimina-

tion not only when used together with 7-AAD fluorescence but

also when conjugated with the Annexin V-FITC signal. Com-

bining the FSC information with the Annexin V-FITC signal

(Figs. 1G and 1H), the region of viable cells (R5) is better discri-

minated from dying or late apoptotic/necrotic cells (R6) than

in the 7-AAD/Annexin V-FITC plots (Figs. 1A and 1B).

At this stage, it was therefore important to compare 7-

AAD and Annexin V-FITC (in conjunction with the FSC

parameter) in terms of the percentage of cells in different sub-

populations. The percentage of viable cells determined with

7-AAD (R2) (Figs. 1D–1F) or Annexin V-FITC (R5) (Figs. 1G–

1I), was equivalent in all three groups of cells tested (Fig. 2A),

indicating that both procedures are suitable to determine quan-

titatively the viable cell population. In addition, it might be im-

portant to assess the cells in early phases of death induction,

which, as previously referred for SW2 cells, is not determined

with precision through the establishment of quadrants in the 7-

AAD/Annexin V-FITC plot (Figs. 1A and 1B). This quantifica-

tion can be carried out by subtracting the number of events

within R4 region on the FSC/7-AAD plot (corresponding to

late apoptotic/necrotic cells) to the number of events within the

R6 region on the FSC/Annexin V-FITC plot (corresponding to

early and late apoptotic/necrotic cells), Figure 1. Alternatively,

determination can be based on the R3 region in the FSC/7-

AAD plot (Fig. 1). The percentage of events determined by each

procedure revealed to be similar (Fig. 2B).

Despite the previous finding, the methods do not discri-

minate exactly overlapping populations of viable cells and cells

in a phase of death induction. This was illustrated for etopo-

side-treated SW2 cells in Figures 2C and 2D, and was quantified

for all three conditions (Figs. 2E and 2F). In an FSC/Annexin

V-FITC plot of etoposide-treated cells gated in R2, the percent-

age of total events within R6 (10%) represents either the false

positive non-viable cells found by Annexin V-FITC or the false

negative non-viable cells determined in the FSC/7-AAD analy-

sis (Fig. 2C). This type of discrepancy was negligible (2%) in

untreated-SW2 and K562 cells (Fig. 2E). Furthermore, in an

FSC/Annexin V-FITC plot gated in R3, the percentage of cells

within R5 represents the false negative non-viable events found

by Annexin V-FITC or the false positive events determined in

the FSC/7-AAD analysis (Fig. 2D). This discrepancy was mini-

mal (1–2%) in untreated and etoposide-treated SW2 cells and

in the order of 6% in K562 leukemia cells (Fig. 2F). The use of

complementary methods like evaluation of caspase activation

and/or the terminal deoxynucleotidyl transferase-mediated

dUTP nick end labeling (TUNEL) assay are, therefore, required

to warrant a clear definition of apoptosis induction, if this is a

concern. Nevertheless, the percentages determined show that

the putative false positives or false negatives have little impact

in overall viability determination.

As the final goal is to analyze Bcl-2 levels in correlation

with viability, the compatibility of both Annexin V-FITC and

7-AAD with a PE-labeled antibody is, as well, of interest for

the discussion of viability analysis methods, and will be

addressed in the last section of Results and Discussion.

Selection of an Anti-Human Bcl-2 Monoclonal

Antibody to Evaluate Bcl-2 Levels and Heterogeneity

of Protein Expression in SCLC Cells

To establish a sensitive procedure to detect Bcl-2 in

SCLC, with good discrimination between different Bcl-2 levels,

aiming at providing a correlation between fluorescence signal

and Bcl-2 levels, three different procedures were evaluated.

H82, SW2, and H69 SCLC cell lines, expressing low, interme-

diate and high Bcl-2 levels, respectively, were used (19). The

Bcl-2 mAb-FITC did not discriminate between different Bcl-2

levels, namely within the range of intermediate and high levels

of Bcl-2 (Fig. 3). In contrast, the indirect staining procedure

(unlabeled anti-Bcl-2 plus FITC-labeled secondary Ab) and

the direct staining with Bcl-2 mAb-PE provided a good discri-

mination (positive correlation between fluorescent signal and

Bcl-2 levels). The correspondent unspecific iso-PE signal was

very low and equivalent for the three cell lines, demonstrating

the specificity of the signal (Fig. 3). A careful antibody selec-

tion is crucial for a correct evaluation of any gene silencing

strategy involving the downregulation of Bcl-2 in SCLC and

likely in any type of tumor. For example, the downregulation

of Bcl-2 from a high level to an intermediate level of expres-

sion (Fig. 3) would not be detected with the Bcl-2 mAb-FITC,

leading to misinterpretation of results. The simplicity, sensitiv-

ity and specificity of the use of the Bcl-2 mAb-PE led us to

select this mAb for further studies.

The evaluation of the Bcl-2 levels by flow cytometry evalu-

ates not only the mean protein levels, as shown in Figure 3 and

as provided by other quantification methods like Western blot

and enzyme-linked immunosorbent assays, but, in addition, it

also gives information about the heterogeneity of the protein

expression. It was possible to identify in Bcl-2-low expressing

H82 cells a small (around 2%), but reproducible, percentage of

viable cells with high Bcl-2 expression. The staining with the

isotype control mAb does not detect any events within this

region proving its specificity (data not shown). This is the type

of information that would not be detected by Western blot,

emphasizing the advantage of flow cytometry in detecting in-

tracellular proteins in cases of heterogeneous protein expres-

sion, as a result, for example, of a incomplete cell transfection

with a gene silencing molecule (4).
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Concomitant Measurement of Cell Viability and Bcl-2

Protein Level by Flow Cytometry

The simultaneous evaluation of cell viability and Bcl-2

protein level requires the establishment of procedures that

guarantee an accurate correlation. Bcl-2 being an intracellular

protein, its immunodetection requires cell fixation and perme-

abilization. The selection among the several available methods

to fix and permeabilize cells should consider their impact on

cell viability assessment. In the present study, cells fixed with

1% PFA and permeabilized with digitonin had the same

Annexin V-FITC and 7-AAD staining patterns and FCS distri-

bution than cells acquired in flow cytometry immediately after

Figure 2. Comparison of Annexin V-FITC and 7-AAD methods analyzed each one in combination with the FSC parameter. In all three

groups of cells studied, the percentage of viability (A) and the percentage of events in early phases of death induction (B) were quantified.

Events were also displayed in FSC/Annexin V-FITC contour plots gated in the R2 or R3 regions of FSC/7-AAD plots, as exemplified for eto-

poside-treated SW2 cells (C and D, respectively). The percentage of total events gated in R2 or R3 falling into each of the gated regions of

the Annexin V-FITC plot is presented for all three studied conditions (E and F). This percentage of events corresponds to the fraction of

false positives or false negatives with each stain.
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staining (not shown). Therefore, the selected fixation and per-

meabilization procedures revealed to be compatible with the

selected markers of viability, without compromising the mor-

phology of the cells, namely in respect to size.

The results presented in Figure 4, A and B, confirm the

applicability of the method here presented, aiming at the simul-

taneous assessment of SCLC viability and Bcl-2 protein.

Untreated SW2 cells were stained with 7-AAD and Bcl-2 mAb-

PE, and viability regions (R2, R3, and R4) selected as previously

described. The treatment with the sequence-specific G3139

ODN induces a reduction of the mean Bcl-2 signal in both viable

and dead cells sub-populations (30 and 41 RFU, respectively,

Fig. 4A) as compared with the treatment with G4126 ODN (49

and 65 RFU, respectively, Fig. 4B). The percentage of viable and

dead cells was not significantly different among the tested treat-

ments. Moreover, it was possible to observe that Bcl-2 silencing

was heterogeneous, as evidenced by the broader Bcl-2 signal fre-

quency histograms of the G3139 ODN-treated SW2 (viable)

cells (Fig. 4C, thick black line) as compared with the histogram

of untreated cells (Fig. 4C, dark gray histogram). In addition,

the histogram subtraction of the untreated SW2 (viable) cells to

the G3139-treated SW2 (viable) cells turned possible the deter-

mination of the percentage of Bcl-2-silenced cells as well as their

mean Bcl-2 signal (Fig. 4C, light gray histogram).

To our knowledge, the present results demonstrate for the

first time that both 7-AAD and Annexin V-FITC stains are

compatible with Bcl-2 intracellular protein immunostaining

using a PE-labeled antibody in SCLC cells. Moreover, when

analyzed in combination with the FSC parameter, this

approach provides a helpful and convenient method for the

simultaneous analysis of Bcl-2 level and cell viability in SCLC

cells. Surprisingly, results demonstrated that Annexin V-FITC

staining is less sensitive than 7-AAD alone in SCLC cells, as

well as than Annexin V-FITC staining in other cell lines (like

leukemia cells). It is therefore clear that 7-AAD is the best

choice to determine viability in SCLC cells. Furthermore, the

FSC/7-AAD method will allow the simultaneous study of

Figure 3. Correlation between fluorescence signal and Bcl-2 pro-

tein of levels in SCLC cell lines. Several SCLC cell lines expressing

different levels of Bcl-2 protein were submitted to three immuno-

staining procedures, corresponding to the incubation with differ-

ent monoclonal antibodies. The immunodetection comparison

among the mAb tested was based on the geometric mean values

of fluorescence.

Figure 4. Simultaneous evaluation of viability and Bcl-2 protein in

SW2 SCLC cells. Regions were created as in Figure 1D and then

the events were plotted in 7-AAD/Bcl-2-PE dot plots representative

of cells treated with G3139 ODN (A) or G4126 ODN (B). Events cor-

responding to R2, R3, or R4 regions are in black, light gray, or in

dark gray, respectively. Next to R2 or R4 regions, it is indicated

the percentage of gated events and the geometric mean of Bcl-2

signal intensity (RFU) in the correspondent region. The corre-

spondent overlayed frequency histograms of the viable popula-

tions of different treatment conditions are presented.

TECHNICAL NOTE

Cytometry Part A � 73A: 1165�1172, 2008 1171



other parameters, besides viability and Bcl-2 expression, even

in the simplest three-color flow cytometer. We have recently

observed the usefulness of this procedure to the evaluation of

Bcl-2 silencing in breast cancer cell lines.
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