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RESUMO

Apesar de serem cada vez mais usados em vérios campos da engenharia, as provisoes para
prever a resisténcia de painéis curvos sio maioritariamente empiricas ¢ com reduzida
gama de aplicagio. Consequentemente, o principal objetivo desta tese ¢ prever o
comportamento nao-linear e carga tltima de painéis curvos cilindricos nao reforcados e
reforcados com base numa abordagem fisicamente robusta, através de métodos semi-
analiticos (MSA). A principal vantagem desta abordagem, comparativamente as
abordagens usuais, como o método dos elementos finitos (MEF), ¢ permitir identificar os
parAmetros-chave que influenciam o comportamento dos painéis curvos e desenvolver
expressoes puramente baseadas no contexto fisico do problema, as quais tém um enorme
interesse pratico. Contudo, o MEF ¢ também usado por duas razdes: 7) para caracterizar
detalhada e realisticamente o comportamento dos painéis curvos através de um estudo
paramétrico alargado; neste caso, ¢ desenvolvida uma forma inovadora de modelar as
imperfei¢oes, sendo esta mais desfavordvel, numa grande parte dos casos, que a abordagem
padrao utilizada em estruturas de casca; ¢ 77) para validar a formulagio semi-analitica

desenvolvida para os painéis curvos.



Resumo

Os pariAmetros analisados mostram-se capazes de alterar drasticamente o comportamento
dos painéis, os quais, em alguns casos, podem conduzir a resultados inesperados. Por
exemplo, pode ser bastante inseguro dimensionar um painel curvo como se fosse uma
placa plana. Contrariamente, em outros casos, sio obtidos ganhos significativos da
resisténcia com o aumento da curvatura. Isto mostra que o dimensionamento de painéis
curvos deve ser realizado com um profundo conhecimento deste complexo

comportamento.

Embora apenas compressio uniaxial no plano (o especto-chave na estabilidade de
estruturas de parede fina) ¢ pressiao fora do plano sejam estudadas, a formulagio ¢
desenvolvida para ter em conta carregamento generalizado. E implementada uma
formula¢io de grandes deslocamentos com uma solu¢io de multi-graus de liberdade
(MGDL) ¢ imperfei¢coes. Adicionalmente, 0 MSA tem em conta condi¢oes de fronteira
simplesmente apoiadas restringidas e nao restringidas no plano. Isto requer uma solugao
rigorosa do problema de valor de fronteira das equagées diferenciais parciais ndo-lineares

de quarta ordem.

Apesar do complexo comportamento identificado para os painéis curvos, 0 MSA ¢ capaz
de ter em conta, de forma precisa, todos os parimetros geométricos, condicoes de
fronteira e carregamento. Embora os painéis com maiores curvaturas beneficiem da
solugito MGDL implementada, expressdes de forma fechada, basecadas numa
aproximagao de um tnico grau de liberdade (UGDL), sao capazes de fornecer resultados
precisos para as trajetdrias de equilibrio de painéis curvos nao reforgados e reforcados com

significAncia pratica, sob carregamento no plano e fora do plano.

O MSA ¢ seguidamente usado com um critério de cedéncia para prever a resisténcia de
painéis curvos nio reforcados sob compressio. Sao derivadas expressoes para calcular a

carga tltima destes painéis, mostrando bom acordo com o MEF.

Palavras-Chave

Painéis curvos nio reforcados e reforcados | Comportamento de grandes deslocamentos

| Carga tiltima | MEF | Método semi-analitico | Expressoes de forma fechada.
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ABSTRACT

Despite being increasingly used in several engineering fields, design provisions to predict
the strength of steel curved panels are mostly empirical and with a small range of
application. Consequently, the main aim of this thesis is to predict the nonlinear
behaviour and ultimate strength of stiffened and unstiffened cylindrically curved steel
panels under in-plane and out-of-plane loading based on a physically robust approach,
through semi-analytical methods (SAM). The main advantage of this approach, in
comparison to the usual approaches, like the Finite Element Method (FEM), is allowing
to identify the key parameters that influence the behaviour of the curved panels and to
develop expressions purely based on the physical background of the problem, which have
alarge practical interest. However, the FEM is also used for two reasons: 7) to characterize
thoroughly and realistically the behaviour of the panels through a wide parametric study;
in this case, an innovative way to model imperfections is developed, being more
unfavourable than the default approach in shell structures, in a large part of the cases; and

iz) to validate the semi-analytical formulation developed for the curved panels.

The analysed parameters are found to change dramatically the behaviour of the panels,



Abstract

which, in some cases, may lead to unexpected results. For example, it may be quite unsafe
to design a curved panel as if it was a flat plate. In contrast, in other cases, significant gains
in resistance are obtained with the increase in curvature. This shows that the design of

curved panels has to be performed with a deep knowledge of this complex behaviour.

Although only uniaxial in-plane compression (the key aspect in the stability of thin
walled structures) and out-of-plane pressure are studied in this thesis, the formulation is
developed to account for generalized loading. A large deflection formulation with a multi
degree-of-freedom (MDOF) solution and imperfections is implemented. Additionally,
the SAM accounts for in-plane constrained and unconstrained simply supported
boundary conditions. This requires a rigorous solution of boundary value problem of the

fourth order nonlinear partial differential equations.

Despite the complex behaviour identified for the curved panels, the SAM is able to
account accurately for all the geometric parameters, boundary and loading conditions.
Although the panels with larger curvatures benefit from the implemented MDOF
solution, closed-form expressions, based on a SDOF approximation, are able to provide
accurate results for the equilibrium paths of unstiffened and stiffened curved panels with

practical significance under in-plane and out-of-plane loading,

The SAM is then used, with a yield criterion, to predict the resistance of unstiffened
curved panels under compression. Expressions are derived to calculate the ultimate load

of these panels, showing good agreement with the FEM.

Keywords

Unstiffened and stiffened curved panels | Large deflection behaviour | Ultimate load |
FEM | Semi-analytical method | Closed-form expressions.
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1 INTRODUCTION

1.1 PROBLEM DESCRIPTION AND MOTIVATION

The interest in curved panels, both unstiffened and stiffened, has recently increased in
several engineering fields (e.g. civil, naval, offshore and acronautics). While in acronautics
the application of curved panels is not particularly new due to the intrinsic need to use
them, other fields such as civil engineering have progressively adopted this type of
structural elements. The main reasons for this are: 7) its geometry — the curvature brings
not only aesthetical but also functional advantages; for example, curved panels allow the
design of bridge decks which are better integrated on the landscape and with improved
aerodynamics behaviour; i7) besides performing a structural function, curved panels
provide complete enclosure, particularly important in naval, offshore and aeronautics;
and 7i7) the structural efficiency of these elements leads to improved load bearing capacity
to weight ratios. However, like all thin structures, curved panels are very susceptible to
local and global instabilities because they are much stiffer in-plane than out-of-plane.

This implies the need for a deep knowledge of their behaviour. With this in mind, these
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elements if properly designed can present good overall structural efficiency.

To obviate the potential instability issues, curved panels are, in many cases, fitted with
stiffeners which allow them to improve substantially their bearing capacity. Naturally,
this aspect increases the complexity of the analysis and the influence of these additional

elements must be understood.

Compared to the more classical case of flat plates, curved panels have the particularity of
its curvature, which leads to dramatic changes in behaviour. Significant gains in resistance
can be obtained with the introduction of curvature. However, as shown in this thesis and
perhaps in contrast to common belief, curvature does not always lead to an increase in
resistance. In particular conditions, a curved panel may withstand a lower load than the
corresponding flat plate. Consequently, it may not be safe to design a curved panel as a

flat plate.

In contrast to flat plates, robust and physically consistent design formulations able to deal
with all the specific features inherent to curved panels are generally not available in
various engineering fields. For example, in the construction sector, these elements fall
clearly outside the scope of EN 1993-1-5 [1], which gives provisions for plates (and panels
with very low curvatures, i.e. Z=a?/(Rb)<1, where a is the width, R is the radius and / is
the thickness of the panel), and EN 1993-1-6 [2], which deals with shells of revolution.
As it will be shown later, neither of the two standards is able to provide adequate

provisions for the ultimate load of curved panels.

On the other hand, offshore standards like DNVGL-RP-C202 [3], DNVGL-CG-0128
(4] and ABS - Guide for Buckling and Ultimate Strength Assessment for Offshore
Structures [5] account for cylindrical curved panels but for very specific conditions. They
do not provide a holistic and adequate alternative to deal with the whole range of
parameters relevant to curved panels, and, consequently, they provide unsafe provisions

for some situations, as recently shown by Martins ez al. [6].

The solution currently carried out by engineers to obviate this lack of design provisions
for curved panels is the use of the Finite Element Method (FEM). Despite this tool is able
to address the problem correctly, it requires experienced users and it is time-consuming;
consequently, simpler provisions in the form of design equations provided in standards

are preferable. However, in order to derive reliable and robust design equations, the use

2
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of physical models and analytical methods are the desirable approach. The reasons to
develop an analytical model and design equations based on it are twofold: 7) analytical
models have the advantage of identifying the key parameters that influence the non-linear
behaviour of curved steel panels and clearly establishing the range of validity of the
developed formulation. Advanced FEM models are not able to do this and require skilled
users and large parametric studies in order to cover a specific range of geometries, load
cases and boundary conditions. Design equations based on advanced FEM results will
necessarily involve more empirical coefficients based on statistical assessment, leading to
worse adjustment to reality; secondly, ) design equations based on analytical methods
have the potential of leading to closed-form equations that will significantly improve
productivity by allowing designers to perform their work faster and more reliably. This is

the main motivation for this thesis.

The application of curved panels in offshore structures is usual. In general, these elements
are reinforced by longitudinal stiffeners and associated to longitudinal and transversal
girders. While the stiffeners rigidly connected to the panel provide resistance to local
buckling (if the buckling of the stiffener is prevented), the girders at the boundaries of
the panel provide support and consequently they prescribe the boundary conditions of

the panels.

In Figure 1.1 2) is possible to see the construction of one of these panels to be applied in

a Spar offshore structure. These panels are then connected to other adjacent similar

Figure 1.1:  Spar offshore platform: a) construction of a stiffened curved panel [7]; b) final

cross-section composed by adjacent stiffened curved panels [8]
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Figure 1.2:  Examples of curved panels in naval construction [9]

panels to compose a cylindrical section of the Spar offshore platform as the one shown in

Figure 1.1 4).

The use of curved panels is also usual in naval construction. In Figure 1.2, examples of a
ship hull are presented. Similarly to offshore construction, these elements are generally

longitudinally stiffened and supported by longitudinal and transversal girders.

The classical application of curved panels in aeronautics is in the fuselage of airplanes.
Although they are, nowadays, often composed by more innovative materials due to the
need for lighter materials (e.¢. high performance alloys and composites), the behaviour of
these elements follows the same principles. In Figure 1.3, the stiffened curved panels for

the fuselage of a Boeing 777 are presented.

More recently, the application of curved panels in bridges has gained momentum. These

elements, besides greater resistance due to curvature, provide aesthetical advantages not

Figure 1.3:  Fuselage stiffened curved panel of a Boeing 777 [10]
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Figure 1.4:  Curved cross-section of: 2) Renault bridge (Boulogne-Billancourt) [11]; and b)

bridge over the river Deba in Guipuzcoa [12]

possible to reach with the more conventional flat plates. Among many examples, the
Renault bridge in Boulogne-Billancourt , France (Figure 1.4 2)) and the bridge over the
river Deba in Guipuzcoa, Spain (Figure 1.4 4)) may be highlighted. In Figure 1.4 it is
possible to verify that the bottom flange of the cross-section of both bridges is mainly

composed by a single stiffened curved panel transversely.

Besides in-plane loads acting on the curved panels, in most cases of offshore and naval
structures, these elements are generally also subject to out-of-plane loads (e.g. hydrostatic

pressure).

Taking into account the way curved panels are connected to the adjacent structure, the
boundary conditions may be considerably distinct. For example, in offshore and naval
construction, the panels are generally supported by stiff girders in the longitudinal and
transverse directions, and the panels may be considered with the edges remaining straight.
The consideration of this condition provides additional strength which is useful in
practical design. On the other hand, in bridges, the curved panels are often isolated,
without adjacent panels in the transverse direction. This means that the panels do not
have much restraint in the transverse direction, and consequently, it is safer to consider

the longitudinal edges as free to wave.

Similarly, the way as the edges of the panels are supported influences the kind of supports
to consider. If the longitudinal supports are vertically oriented, they restrain vertical

displacements, however if radially oriented they restrain radial displacements.




1. Introduction

These particularities have practical significance and are also addressed in this thesis.

1.2 OBJECTIVES AND APPROACH

In practical terms, the current available design formulations are insufficient if a robust
and physically consistent description of the structural behaviour is intended.
Consequently, this thesis is focused on the analytical derivation of a large deflection
formulation for unstiffened and stiffened curved panels subjected to different loading
conditions and the implementation of a semi-analytical solution procedure. Special
emphasis is given to compressive stresses which represent the key aspect in the stability of
thin walled structures and also out-of-plane pressure. Other loading conditions are not
the object of study in this thesis; however, the semi-analytical method is formulated to
cover wider load situations, namely biaxial compression and shear forces. So, if intended,
the proposed semi-analytical procedure should be able to account properly for a generic

combination of loading cases.

The prediction of the nonlinear behaviour and ultimate strength of stiffened and
unstiffened curved steel panels based on a physically robust approach is one of the main
ambitions of this thesis. The objective is not only to formulate a semi-analytical method
to predict the behaviour and ultimate strength of curved panels but also to propose
closed-form design expressions for practical use. In order to accomplish this objective,

others contributions are also produced in this work, namely:

i) The proposed semi-analytical formulation is based on nonlinear stability

models with large deflection theory incorporating initial imperfections and
geometric nonlinearity. The equilibrium paths are obtained using the Rayleigh-
Ritz method with a multi degree-of-freedom (MDOF) displacement field. The
ability to deal with a MDOF solution is shown to be crucial for a good

agreement with Finite Element results;

i7) The appropriate treatment of simply supported boundary conditions for
curved panels. Three distinct boundary conditions are distinguished taking into
account the way the edges are constrained. Two of them are assessed with the

semi-analytical formulation: with edges free to deflect or forced to remain
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iii)

vi)

vii)

straight. The semi-analytical procedure addresses this by only assuming
displacement function for the out-of-plane displacements and initial
imperfections, while the remainder of the solution is obtained by solving
directly the differential compatibility equation for the respective boundary

conditions, z.e. the displacement are not assumed for the in-plane directions;

The derivation of a consistent energy formulation for the elastic post-buckling
behaviour of cylindrically-curved isotropic and orthotropic panels compatible
with a semi-analytical method. Due to the presence of stiffeners, the problem
exhibits structural anisotropy. Noting that the stiffeners are asymmetrically
placed (towards the concave side of the panel) an equivalent orthotropic
approach is applied following available results in the literature for stiffened flat
plates. The proposed formulation is thus able to incorporate the elastic

properties of the equivalent orthotropic curved panel;

The behaviour of unstiffened and stiffened curved panels is deeply
characterized based on numerical parametric studies. The key parameters are
identified and important conclusions are drawn about the non-linear behaviour

and ultimate load of the panels;

An extensive study on the influence of initial imperfections is performed and
important conclusions on the subject are drawn. For example, it is shown that
the default approach of assuming an imperfection pattern given by the
eigenmodes of linear buckling analyses, usually the default approach in Finite
Element Analyses, is compared with other other perfectly reasonable

imperfection patterns;

The validity of the developed formulation is assessed with the results of
advanced finite element analyses for unstiffened and stiffened panels for a wide
range of curvatures, aspect ratios and configurations of stiffeners for different

boundary conditions under different loading conditions, yielding good results;

Analytical closed-form equations are derived for the non-linear load-deflection

paths of both unstiffened and stiffened curved panels under in-plane

compression and out-of-plane pressure;
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viii) Strength criteria are employed in the semi-analytical model to predict the
ultimate load of unstiffened curved panels. Good predictions are obtained in
comparison with numerical results. Expressions to predict the ultimate load of

these panels are provided;

1.3 THESISLAYOUT

The thesis is organized as follows.

In this Chapter 1, Introduction, a brief presentation of the subject was presented. The

motivation and the scope of the work were described and objectives of the research were

identified.

Chapter 2, State of the art, is intended to provide a detailed state of the art of curved
panels, presenting the most important literature regarding semi-analytical and numerical
studies. The most important advances in flat plates and cylindrical shells are presented.
Despite having characteristics that distinguish them from the curved panels, the
knowledge of flat plates is currently much more detailed and its background is useful. The
studies about curved panels are separated into critical and large deflection behaviours.
Some advances in laminated, sandwich and functionally graded curved panels are
referred. Despite similar in geometry these elements have characteristics that require
distinct approaches. The main differences are identified. The validity and limitations of
the existing standards dealing with curved panels will be discussed and framed in the

present research.

Some important concepts indispensable to understand the next chapters are briefly
described in Chapter 3, Fundamentals of curved panels. The differences between the
several existing shell theories are identified. Justification is given to the choice of the
theory used in this thesis. The geometry, the boundary and loading conditions are
described. Some basic concepts of stability are presented and the differentiation of the
behaviour of flat and curved panels is discussed. The theoretical aspects of the different
methods of analysis of shells are briefly described with particular attention for the

Rayleigh-Ritz method and finite element method.

Chapter 4, Formulation of large deflection theory for curved panels, is devoted to the
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formulation of a large deflection theory for isotropic and orthotropic curved panels. This
is the core of the proposed semi-analytical method. The energy formulation is derived for
the potential energy components and the Rayleigh-Ritz method is employed as the

method of solution for a MDQF solution.

All assumptions used to model the panels in finite element analyses are explained in
Chapter 5, Modelling curved panels by the Finite Element Method. Here, the types of
analysis, the boundary and loading conditions, material and modelling of the

imperfections used in the ABAQUS software are described.

In Chapter 6, Characterization of the behaviour and ultimate load of unstiffened and
stiffened curved panels under compression and out-of-plane loading, a detailed
characterization of the behaviour of the curved panels is presented. A discussion is first
presented about the critical behaviour of the panels, which is fundamental to explain
some aspects in the following sections. A preliminary analysis is carried out to define the
importance of some parameters and assess the need for its consideration in the further
analyses. A thorough parametric study is carried out with the Finite Element Method, to
characterize the non-linear behaviour and ultimate load of unstiffened and stiffened

panels, both under in-plane and out-of-plane load.

In Chapter 7, Validation of the Semi-Analytical Model for curved panels under in-plane
compression and out-of-plane pressure, the objective is to validate the semi-analytical
formulation with the results of Finite Element analyses. For validation purposes, the
critical load of the panels is calculated with the semi-analytical method for some cases.
Then, the nonlinear load-deflection behaviour is presented and discussed in more detail.
Here the results of the semi-analytical behaviour are compared with the ones from FE

analyses in terms of the equilibrium paths through a wide parametric range.

Chapter 8, Design oriented closed-form equations for the elastic large displacement
bebaviour and ultimate resistance of curved panels, presents proposals to calculate the
clastic large deflection behaviour and the ultimate load of curved panels, based on the
semi-analytical method. Firstly, expressions for the non-linear equilibrium paths of
unstiffened and stiffened curved panels under combined in-plane and out-of-plane

loading are presented. Then, the ultimate load of unstiffened curved panels is calculated
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by the semi-analytical method using a strength criterion and compared with the results
from Finite Element analyses. For validation purposes, besides the geometry, the
influence of aspects like initial imperfections are also assessed. Based on this, expressions

are then proposed to predict the ultimate strength of the unstiffened curved panels.

Finally, Chapter 9, Conclusions and outlook, concludes about the main findings of the
thesis and summarizes the main contributions. Recommendations for further works are

proposed.

10



2 STATE OF THE ART

2.1 INTRODUCTION

The interest in structural curved panels is not new. In 1934, Redshaw [13] published a
paper about the elastic stability of curved panels under compression. Although the study
of curved panels was never forgotten by the scientific community, curved panels were
never so scrutinized as flat plates. With the appearance of new applications, the study of
curved panels seems to have gained a new enthusiasm, as shown in recent research and

PhD theses on the topic (e.¢. Tran [14] and Martins [15]).

The objective of this chapter is to present an outlook of the studies carried out by the
scientific community about thin curved panels in structural applications. Because of the
scarcity of studies of curved panels in some areas, it is relevant to present some studies on
the more classical cases of flat plates and shells of revolution (closed tubes/cylinders). In
these cases, the amount of existing studies is much larger and some advances found in the
literature are also useful for the study of curved panels and therefore they deserve to be

mentioned.



2. State of the art

Consequently, the advances in flat plates, where the knowledge level is, currently, at a
more advanced stage, are described next and, in comparison, the main limitations found
on the current knowledge of curved panels are identified. For this, the latest research on

both areas is useful to set the starting point of the work.

However, despite the approaches for the analysis of flat plates and shells of revolution
being established on similar general principles, both for analytical or numerical
formulations, they have particularities that distinguish them very markedly and not all
conclusions for one type of element may necessarily be valid for the other, reason why
their studies have to be performed independently. In this particular topic, the original

contributions of the work will be defined in next sections.

The literature review in section 2.2 is organized as follows: 7) firstly, some historical
references on the early analytical studies and the most recent advances in flat plates and
cylindrical tubes are identified; 77) secondly, the most important studies about the critical
and large deflection of both unstiffened and stiffened curved panels under in-plane and
out-of-plane loading are presented; 77z) thirdly, laminated, sandwich and functionally
graded panels are briefly introduced. The associated differences are identified and
explained why they are of limited relevance for the present study; and 7v) finally, the
references dealing with the ultimate resistance of both unstiffened and stiffened curved
panels are presented. In section 2.3, the standards applicable to the design of curved

panels are addressed and their applications and limitations are discussed.

Although all references are considered important, they are either analytical, numerical or
experimental, larger emphasis is given on analytical references due to the main focus of
the thesis. Some relevant studies excluding analytical procedures are also relevant
especially for the ultimate load, where most results were exclusively achieved with

numerical methodologies.

2.2 LITERATURE REVIEW

2.2.1 Flacplaces

The critical stress of a flat plate was first obtained by Bryan [16], still before the 20

century. From the geometry of the plate, the elastic properties of the material and the
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number of half waves of the buckling modes, it was then possible to estimate the critical

stress, g, of a simply supported flat plate under in-plane compression as follows:

7%E h)?
oo =K, m(gj (2.1)

where 4 is the width of the panel, / is the thickness, E is the modulus of elasticity of the
material, v is the Poisson’s ratio and £, is the elastic buckling coefficient, which for plates

is given by £.piaze as follows:

2
n m?
ka,plate = {;"'T“] (22)

where 72 and 7 are the number of transversal and longitudinal half waves, respectively,
and « is the plate aspect ratio which is given by the ratio between the length and width,

b/a. The minimum value of k... is 4.0.

Since then, many developments were proposed by several authors on the critical
behaviour of flat plates, accounting for different boundary and loading conditions,

stiffeners, etc., a thorough review being found in Allen and Bulson [17].

Of greater practical interest is the study of the large deflection behaviour, which is able to
account for the postbuckling resistance, characteristic of flat plates. The historical
references are very extensive, so only key contributions are mentioned, complemented by
developments of larger practical significance for this work, especially when related to the

use of semi-analytical methods.

Since the classical contributions of e.g. von Kdrmén [18], Marguerre [19] and Levy [20]
on the large deflection theory of plates, many developments were made using semi-
analytical methods, with more sophisticated implementations with regard to the
incorporation of different boundary conditions, loading conditions, imperfections and

methods of resolution, both for unstiffened and stiffened plates.

Yamaki [21] studied the postbuckling behaviour of imperfect unstiffened plates under
compression for a wide range of combinations of simply supported and clamped
boundary conditions. The author solved the differential equations under the assumed

boundary conditions, applying the Galerkin’s method to solve the differential equations.

13
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The author also studied the ultimate load of those plates based on the Tresca’s criterion.
Magquoi and Massonnet [22] studied the postbuckling resistance of stiffened box girders
using the non-linear theory of orthotropic plates. The authors replaced a stiffened plate
by an equivalent orthotropic plate using the von Karman equations with imperfections.
The authors used the method of Bubnov-Galerkin to integrate the equilibrium equation.
Prabhakara and Chia [23] were among the first to study the post-buckling behaviour of
perfect orthotropic plates subjected to edge loading. The authors used von Kérmén large
deflection theory using a double Fourier series for the displacement field. Jetteur [24],
based on the study of Maquoi and Massonnet, proposed a design method for stiffened
plates under longitudinal compression. The author’s approach substitutes a stiffened
plate by an isotropic plate and an orthotropic plate idealizing the stiffeners. The solutions
are derived using a variational formulation and an assumed stress and displacement field.
The results of this approach were adopted by Eurocode 3, part 1-5 [1] to assess the

resistance of flat stiffened compressed plates.

Paik ez al. [25] presented a semi-analytical method to deal with the post-buckling
behaviour and ultimate strength of unstiffened plates under in-plane and out-of-plane
loading. The Galerkin’s method was used to solve the system of the governing differential
equations. As usual, in structures with naval and offshore applications, simply supported
boundary conditions with all edges considered to remain straight were assumed. An
incremental version of the governing differential equations was applied to obviate the
difficulty to solve the resulting set of third order simultaneous equations when the non-
incremental differential equations are used, especially when the number of variables
becomes large. This approach leads to a simpler set of linearized simultaneous equations
which results in computational advantages. Besides that, in this way, the three admissible
solutions for the displacements unknowns are reduced to single solutions. However, with
this incremental approach, the possibility to obtain analytical closed-form solutions is
lost. A strength formulation was developed numerically, assuming that the plate is
subdivided in several regions, their contributions being progressively removed once yield

is reached for the von Mises’ stresses in those regions.

Later, Paik ez al. [26] extended the previous study to stiffened plates under combined
biaxial loading and lateral pressure, developing a procedure to account properly for the

elastic orthotropic properties of asymmetrically placed stiffened plates. Thus, the authors
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were able to study the post-buckling behaviour of stiffened plates exhibiting a global
buckling failure. Contrarily to their previous study, the incremental Galerkin approach
was abandoned and the governing equations were solved analytically assuming a single
degree of freedom for the displacement function. Additionally, the ultimate load is
assumed to be reached when first yield occurs, leading to the possibility to obtain closed-

forms expressions.

Paik and Lee [27] re-implemented their incremental approach with the Galerkin’s
method to stiffened plates (with local buckling of stiffeners prevented) under generalised
loading. Plasticity was dealt numerically by subdividing the plate in a meshed region.
When the average membrane stress in each region meets the yield criterion, the

membrane action at that region is removed, as before.

Paik ez al. [28] extended the previous formulation to account for non-uniform lateral
pressure in unstiffened plates. It was concluded that the simplified consideration of an
average uniform pressure may underestimate the lateral deflection in comparison with

the real non-uniform pressure.

Also in the context of flat stiffened plates, Byklum and Amdahl [29] used energy
principles with the Rayleigh-Ritz’s method and perturbation theory to develop an
incremental arc-length scheme able to deal with snap-through and snap-back problems.
The interaction between global and local buckling of the stiffened plate was accounted
for through the coupling between plate and stiffener components. The ultimate load was
estimated through the implementation of a first yield criterion. Comparison with FE

analyses were provided. However, closed-form expressions were not proposed.

Ferreira and Virtuoso [30] studied the influence of distinct simply supported boundary
conditions with regard to in-plane restraints on the post-buckling behaviour and
ultimate strength of orthotropic flat plates. The authors extended the original work of
Coan [31] to orthotropic plates, where the exact solution for isotropic plates with in-
plane displacements had been derived considering the loaded and unloaded edges

remaining straight and free to deflect, respectively.

Further details of the implementation of strength prediction techniques in semi-

analytical methods will be given in section 8.3.3.
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Although it can be considered that the implementation of semi-analytical methods is at
an advanced stage for flat plates and little innovation can be incorporated, for example
with respect to non-linearity, imperfections, methods of analysis, etc., the same is not true
regarding curved panels that exhibit particularities which do not appear in flat plates.
These differences, mainly due to the curvature, are found to differentiate flat and curved

panels very markedly, and distinct outcomes are achieved.

222 Cylindrical tubes

In parallel to the study of flat plates, an extensive amount of work has been performed in
thin tubes (closed cylindrical shells). Similarly to the case of flat plates, cylindrical tubes
have particularities that distinguish their behaviour from curved panels. However, some
developments carried out on these elements are useful for the study of curved panels and

some of the main advancements deserve to be presented.

The study of a large-displacement theory for cylindrical shells started with Donnell [32]
and von Kdrmén and Tsien [33]. The authors concluded that the classical theory of thin
shells of perfect elements (e.g. Southwell [34]) is inadequate to explain the intricate
behaviour of cylindrical shells (the calculated buckling load can be several times higher
than the maximum load found by experiments). Various authors, as Leggett [35],
Michielsen [36] and Almroth [37], extended those studies by incorporating more terms
in the displacement function to improve the agreement of the theoretical solutions with
experimental results. Donnell and Wan [38] addressed the problem of initial
imperfections of thin cylinders under compression, and later Hutchinson [39], for
pressurized cylindrical shells under axial compression, explicitly incorporated initial

imperfections, which were found to have an important influence.

The first studies regarding stiffened curved elements started with circular cylindrical
shells. In this context, Jones [40] studied the buckling of circular cylindrical shells with
multiple orthotropic layers and eccentric stiffeners. Sheinman and Simitses [41] analysed
the buckling of imperfect stiffened cylinders under compression incorporating the effect

of the stiffeners based on the “smearing” technique.

Regarding the study of out-of-plane pressure on stiffened shells, the study of Yamada and
Croll [42] may be highlighted. The elastic buckling and post-buckling behaviour of
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pressure loaded cylinders was tackled. Analysing the energy of the system, the authors
were able to use a reduced stiffness model which is claimed to provide a safer extension

to the classical analysis of pressure loaded cylinders.

2.2.3  Critical behaviour of curved panels

Only after the critical behaviour of flat plates had been understood, the study of the
critical behaviour of curved panels was initiated. To account for the non-negligible effect
of the curvature on the buckling resistance of these clements, expression (2.1) was
modified by adjusting the buckling coefficient, £z, as a function of curvature. Among
various authors, Redshaw [13], Timoshenko [43], Stowell [44] and Batdorf [45] are

highlighted. One of the most known is Stowell’s formula, given by:

k 48(1-v°
k,, =—2P )14 1+—( S 4)22 (2.3)
Y 2 ka,plate 7

where Z is the parameter of curvature given by:

2
a
Z=—- 2.4
T (24)
and R is the radius of curvature.
The parameter defined in equation (2.4) is based on the simplification of a similar

parameter first defined by Batdorf, Zpuanys as:

a’ >

z =——-1-v 2.5
Batdorf Rh ( )
Nowadays, the parameter of curvature exclusively defined with the geometrical

properties, Z, is usually preferred and it is the one used throughout this work.

Equation (2.3) for Z=0 converges to the theory of flat plates, £,,=4.0, the minimum
elastic buckling coefficient for simply supported plates. However, it has been shown by
more recent studies that the expression present non-negligible errors, as it will be

posteriorly discussed.

Based on a modified form of Donnell’s equations, Batdorf [45] studied the buckling
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stresses of simply supported and clamped perfect cylindrically curved panels using
trigonometric series to approximate the displacements. The author claimed that these
modified equations were better adapted to solutions by Fourier series for both boundary

conditions.

Batdorfand Schildrout [46] carried out one of the first studies on stiffened curved panels.
They derived the theoretical critical stress of a simply supported curved rectangular panel
with one middle transverse stiffener under axial compression. Later, Schildrout and Stein

[47] carried out a similar study with one longitudinal stiffener.

Already during the 1950, the differences between the theoretical critical load and
experimental data of curved panels under compression had been identified. Gerard and
Becker [48] verified the disagreement between theory and experimental data for curved
panels under compression. This discrepancy was found to be much more evident than for
flat plates. It was identified that the theoretical critical buckling load may not be reached
by a curved element and large deflection theory should be used. Imperfections were also
identified as much more important for curved panels than for flat plates. This is due to
the fact that while flat plates have a stable post-buckling path, curved panels have an
unstable one. This will be explained in further detail in Section 3.6. Becker [49]
continued the work, this time for stiffened curved panels, comparing existing

experimental data with empirical solutions.

Despite the fact that the critical buckling load is unable to provide a reliable estimate of
the resistance of curved panels and, consequently, possesses less practical importance, the
critical load has still some interest to be studied because it can be used indirectly in design
methodologies to calculate the slenderness as a step to estimate the ultimate load of the
element. With this in mind, some authors continued to study the critical buckling of

curved panels.

Many years later, Domb and Leigh [50] proposed improvements to earlier expressions
for the unstiffened cases using Finite Element analyses. Wilde ez 4/ [51] studied the
buckling stresses of cylindrical curved panels with three edges simply supported and one

free subjected to axial compression.

Eipakchi and Shariati [52] compared with FE analyses the critical stresses of curved

panels obtained by a perturbation technique in Donnell’s linear theory. The authors
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applied a correction factor as a function of the curvature to the formula for the critical
stress of cylindrical shells. Recently, Martins e 4/ [53] showed that the formulas of
Stowell and Domb and Leigh present non-negligible errors. The author, based on Finite
Element analyses, proposed expressions to calculate the critical stress of simply supported
cylindrical curved panels with edge constraints. Trying to improve the fact that previous
solutions had been derived only through calibration of numerical results, and they lacked
mechanical meaning, Martins ez 4l [54] addressed the same problem with energy
methods, proposing expressions to predict the critical buckling stresses of unstiffened
curved panels under in-plane stresses. Simply supported panels considering the non-
loaded longitudinal edges restrained and free to wave were considered. Displacement
functions were assumed for each direction obviating the resolution of the differential
equations. The number of degrees of freedom (DOFs) was found to be important for the
accuracy of the results. For long panels a larger number of DOFs would have been
required and a numerically calibrated correction was applied to the results of shorter
panels. A thorough review of the critical behaviour of cylindrically curved panels is

presented in Martins ez 4/. [6] with larger emphasis on numerical studies.
224 Largedeflection behaviour of curved panels with semi-analytical methods

2.2.4.1 Unstiffened curved panels under compression

Only after being applied to cylindrical tubes, the large deflection theory was extended to
curved panels (a part of a cylindrical shell). The interest in these panels was driven by the
application to the fuselage of airplanes. Around the 1940’s, the study of a large deflection
theory of curved panels was started by Levy [55] by adapting the large-deflection theory
of flat plates for panels with an initial curvature. Through a simplified consideration of
the curvature, the author assumed a curved strip plate with an initial sinusoidal
displacement in one direction only. The panels were considered free from imperfections
and simply supported along the edges parallel to the generator. The author concluded
that curvature may cause an important increase in the buckling load. A nonnegligible
effect on the effective width due to the curvature was also found. Volmir [56], adopting
the Galerkin’s method, proposed an approximate solution for the post-buckling

behaviour of perfect thin curved panels. However, the boundary conditions were not
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fully satisfied and good accuracy could not be achieved. To deal with this problem,
Tamate and Sekine [57] proposed an improved solution for the post-buckling behaviour
of simply supported perfect thin curved panels with all edges simply supported and free
to wave. Recognizing that imperfections might not be the only reason for discrepancy
with experimental tests, some authors also started including the effect of edge restraints
in compressed curved panels. One of the first studies dealing with this aspect in curved
panels is by Chia [58]. Although he was mostly interested in aspects like vibration and
applications to laminated panels, the author investigated the post-buckling behaviour of

imperfect curved shallow panels with edges elastically restrained against rotation.

Breivik [59] investigated the post-buckling behaviour of unstiffened curved composite
panels subjected to combinations of thermal and mechanical end-shortening loading.
The author used the Rayleigh-Ritz method assuming the displacement functions for all
directions, avoiding to solve the fourth-order von Kirmdin-Donnell differential

equations.

Magnucka-Blandzi and Magnucki [60] studied the buckling and post-buckling of
cylindrical curved panels under compression using the Galerkin method. The
imperfections were not considered and the boundary conditions were assumed as simply

supported but once again the in-plane restraints at the edges were not taken into account.

A larger number of studies are found for laminated, sandwich and functionally graded
composite curved panels. As will be discussed posteriorly in section 2.2.5, these type of
materials introduce particularities which in some cases have to be tackled with specific
theories (e.g. shear deformation theory). This signifies that in these cases the applicability

to the panels studied in this thesis is reduced.

2.2.4.2 Stiffened curved panels under compression

The analytical study of stiffened elements started with flat plates and a large number of

studies has been carried out on that topic since then.

Very few contributions about the large deflection of curved panels were identified in the
literature. For orthotropic curved panels, it is possible to highlight the following study.
White ez al. [61], based on Koiter’s [62] original theory and using the differential

quadrature method, investigated the initial post-buckling behaviour of variable-stiffness
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curved panels and compared the results with FE analyses in the vicinity of the buckling

load.

2.2.4.3 Unstiffened and stiffened panels under combined uniaxial compression and

out-of-plane pressure

In several engineering fields, like acronautics, naval and offshore engineering, in some of
their applications, besides in-plane loading, curved panels are also subjected to out-of-
plane pressure. Examples of structures with these applications are airplanes, silos, tanks,
ships and offshore structures. However, classically the problem of flat plates and closed
cylindrical shells under out-plane loading has received greater attention by researchers

and engineers.

The study of curved panels under lateral pressure was tackled by Singer ez al. [63]
studying the structural stability of cylindrical panels using linear theory. The authors
concluded that cylindrical panels may buckle at lower pressure than the corresponding
cylindrical tubes. Yamada and Croll [64] performed a classical bifurcation analysis and
applied a non-linear Ritz procedure to study pressure loaded isotropic cylindrical panels.
In this study it was shown that curved panels present a very complex behaviour and it was
concluded that the classical linear theory is not able to provide reliable estimates for the
buckling of pressure loaded imperfect curved panels. To obviate this problem, the same
authors suggested an extension of the classical theory by using a reduced stiffness
occurring in the post-buckling phase to provide a lower bound to the imperfection
sensitivity of the elastic buckling pressure. Dennis ez a/. [65] studied the bifurcation and
the non-linear behaviour of clamped cylindrical panels under normal pressure applyinga

finite element solution.

van Campen ez al. [66], using the Partitioned Solution Method (PSM), studied the post-
buckling solutions of perfect doubly-curved orthotropic shallow panels under lateral

pressure. The authors also compared the bifurcations loads with the PSM and the
Adjacent Equilibrium Method (AEM).

Some studies are found regarding the large deflection of curved panels for composite
materials, particularly relevant in aeronautics. However, these panels have some

particularities that hinder somewhat its applicability to the present case, as discussed in
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section 2.2.5.

2.2.5 Laminated, sandwich and functionally graded panels

In parallel to the study of homogeneous panels, substantial work has been performed on
laminated (or multi-layered) and sandwich panels widely used in acronautics, for
example. However, these panels have particularities that distinguish them from the
previous elements and, consequently, with few exceptions, their approaches of analysis
are, generally, difficult to be directly applicable to the study of homogeneous panels, like

the ones considered in this thesis. Taking this into account, they will be only briefly

described.

Laminated panels, being generally composed by several layers of different materials, either
isotropic or orthotropic, or composed by the same orthotropic material arranged in
different directions, have their global properties calculated by the contribution of each
individual layer. However, several simplifications are usually assumed to allow an easier
implementation of the problem, for example, that the relative displacement between
layers is null. Simplifications of this type allow to deal with the problem in a more similar
way to homogeneous materials. As an example of this implementation, the study of Shen
and Williams [67] may be highlighted. The authors used a perturbation technique to
study the buckling and post-buckling behaviour of laminated stiffened plates in
compression. Effect of stiffeners was considered “smeared out” and the classical
laminated theory was employed with some refinements for better accounting of the effect

of the stiffeners on the plate.

Zhang and Matthews [68] studied the behaviour of shallow cylindrical curved panels of
layered composite materials under compression using the principle of virtual
displacements. The results of their approach were compared with available data for flat
plates but imperfections were not considered. Sheinman and Yeoshua [69] presented an
analytical solution with a modified Galerkin’s method to deal with the postbuckling of
stiffened laminated curved panels. Positive and negative signs were considered for the
curvature of the panels and comparisons with Finite Element analyses were provided. In
a series of studies on laminated curved panels by Kasuya and Watamori [70], Watamori
and Kasuya [71] and Kasuya ez al. [72] the post-buckling behaviour of laminated perfect

and imperfect unstiffened curved panels under uniaxial and biaxial compression was
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assessed. The equivalent laminated properties were used and the behaviour under axial

compression was assessed with the second variation of the potential energy.

Sandwich panels are generally composed by two thin layers of higher resistance separated
by a thicker intermediate layer with lower stiffness and resistance [73]. In the case of
sandwich panels, it is generally assumed that only the exterior layers contribute to the
bending and twisting resistance. However, in this case, neglecting the transverse shear
stiffness of the intermediate layer is not acceptable, contrary to the homogeneous cases.
This led to the need to employ shear deformation theories (SDT). This theory is relevant
for thick and composite structures where the effect of transverse shear deformation is
non-negligible. So, contrarily to the classical theory based on the Kirchhoff’s hypotheses
(see section 3.2) one must resorts to the Reddy’s theory [74] which is a high order shear
deformation theory (HSDT). This theory, contrary to the first order shear deformation
theory (FSDT), e.g. Mindlin [75], is able to account for null shear stresses at the faces of

the panel obviating the use of a shear correction factor used on the FSDT.

The panels studied in this thesis are outside the scope of the SDT and, consequently, the
relevance of this theory is reduced. However, an example of the application of this theory
to curved panels is given by Chang and Librescu [76]. The authors studied the post-
buckling of imperfect shear deformable doubly curved shallow panels under compressive
and lateral pressure using a shear deformation theory (SDT). The Galerkin’s method was
used. However, the solution was restricted to a single degree of freedom (SDOF) with a
half-wave in each direction and validation with the FEM was not performed. Shen [77]
used a higher order shear deformation theory (HSDT) for the governing equations with
a von Kirmdin-Donnell type of kinematic non-linearity for axially loaded shear-
deformable laminated curved panels. In order to obtain the post-buckling solutions a
perturbation technique was employed. Martins e# 4l [78] developed an energy
formulation for cylindrically curved sandwich panels subjected to uniaxial compression

using the Rayleigh-Ritz method and characterized the elastic critical stress behaviour.

Another relevant class of materials used in composites are Functionally Graded Materials
(FGMs) which have changes in properties along its volume. For example, the properties
may change along the thickness and each surface of the element exhibit different

properties. Duc and Tung [79] investigated functionally graded imperfect curved panels
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under axial compression using the Galerkin method. All edges were considered simply
supported but in-plane restraints were not considered. Later, the same authors [80]
extended the study to account for lateral pressure and temperature effects. The authors
sought to introduce the effect of a FGM in a simplified way in the von Kdrmén-Donnell
theory defining the modulus of elasticity varying along the thickness by a simple
expression. The authors limited the study to a single global buckling deformation mode
(with a half-wave in each direction) and despite all edges were considered simply

supported, in-plane restraints were not considered again.

The methods reviewed in this section are of special relevance for laminated and
composite materials, and not so much for homogeneous isotropic materials like steel
structures, and consequently the applicability of most of these approaches is somewhat

limited for the present thesis.

2.2.6 Ultimate load of curved panels

In section 2.2.1 the ultimate load for flat panels was already discussed. Some of the semi-
analytical formulation presented in that section led to the development of specific
software to predict the ultimate strength of stiffened flat plates. The work of Paik and his
co-authors culminated in the development of the ALPS/ULSAP software, while the
work of Byklum and his co-authors was implemented in the DNV/PULS software. At
the same time, the use of nonlinear FEM has gained force and it is particularly
advantageous, for example, in cases with complex geometries, loading conditions and
localized analyses of structures. However, contrarily to flat plates, methodologies to
predict the ultimate strength of curved panels based on semi-analytical were not found.
The existing proposals found in the bibliography for the ultimate load of curved panels

are based exclusively on FEM, which are presented in next paragraphs.

Featherson [81] assessed numerically the effect of imperfections in curved panels under
combined compression and shear loads. Boundary conditions were modelled to match an
experimental scenario and clamping was considered for some edges. The author
employed the eigenmodes of Linear Buckling Analyses (LBAs) as initial imperfections. It
was concluded that the initial pattern influences both the equilibrium paths and the
ultimate load. Besides that, the first eigenmode did not lead in all cases to the lowest

resistance.
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Tran [14] developed expressions to assess the ultimate strength of unstiffened curved
panels subjected to uniform axial compression based on an Ayrton-Perry methodology
calibrated, exclusively based on numerical results. The panels with curvatures up to
Z=100 were considered square and simply supported with the displacement along the
loaded edges forced to be remain constant. The author verified, as expected, that for Z<1
the curve from EN 1993-1-5 [1] fits accurately the numerical results. In a different range,
for larger curvature parameters, Z>40 and small values of normalized slenderness
parameter (A<1.0), the curve from EN 1993-1-6 [2] was the one which more accurately
fitted numerical results. Finally, for large values of the normalized slenderness parameter
(A23.0) the author concluded that numerical results could be adjusted to 1/A curve with
a proportionality factor accounting for curvature. The author proposed equation (2.6)
for the reduction factor p applied to the plastic resistance based on the design

methodology of EN 1993-1-5 [1].
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and 27 is a parameter calibrated for different values of curvature. It should be noted that
this methodology uses Stowell’s formula (equation (2.3)) to calculate the elastic critical
stress. This approach presents the shortcoming of being valid only for square curved

panels.

In the same work, the author extended the study to curved stiffened panels proposing
two equivalent approaches to calculate the reduction factor due to plate type buckling,
The first is given by equation (2.6)-(2.8) now with Z replaced by Z; which corresponds
to the curvature of the curved subpanel (between stiffeners). The second is based on the

formulation of EN 1993-1-6 [2]. The author claims that the accuracy of both approaches
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is equivalent. The relative slenderness A of the curved panel is calculated in function of

the elastic critical stress by Stowell’s equation in function of the global curvature (Z) of
the panel. The authors assumed a fixed width and thickness of 2=4.8 m and /=0.012 m,

respectively. A total of 8 stiffeners regularly spaced by a distance of 0.6 m was considered.

The reduction factor for column type behaviour y¢ is obtained from EN 1993-1-1 [82]
using the imperfection factor #=0.49. The corresponding equivalent column is composed

by the gross cross-section of the panel (shell and stiffeners).

The final reduction factor for global buckling, pc, relating the interaction of plate

buckling and column buckling is obtained as follows:

1
Pe=x+(P— 1)
0.054 204, 0'(2)1 (2.9)
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where 0., is the critical plate buckling stress and . is the critical column buckling stress.

The author found that the influence of the geometric imperfections on the ultimate
strength of curved stiffened panels is very important and verified the difficulty to identify
the most critical mode of imperfection without an exhaustive analysis of all eigenmodes.
Based on the observation that the global modes are dominant (despite admitting it is not
always the one leading to the minimum value for the ultimate strength) the author used

the first global pattern from eigenmodes for initial imperfections.

Later, Tran ez al. [83], in sequence of the previous work, presented the same formulation

for unstiffened curved with minor modifications for the parameters of equations (2.7)

and (2.8):

4y =0.2+0.473% 0,957 (2.11)
5 :% (2.12)

Tran et al. [84] studied a preliminary design formula to assess the ultimate strength of
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unstiffened and stiffened cylindrical steel panels using the design of experiment method,
consisting in the statistical calibration of the variables of the problem. The authors
proposed a second-order polynomial function of the most relevant parameters of the
problem. This formula, unlike the previous proposals, has the advantage of incorporating
different values of aspect ratios. However, the parametric range is considerably limited
for some variables. For example, the range of the aspect ratio (0.67<2<1.5) and the
inverse of the radius (0<//R<0.1) can be considered relatively narrow and this is valid
only for high number of stiffeners (5<7,<20). Furthermore, this approach is based purely
on numerical calibration and follows a rather distinct concept of most design guidelines

which hinders its application in conventional design.

Tran et al. [85] studied the behaviour of stiffened curved panels under longitudinal
compression and proposed a conservative design methodology based on the column-like
behaviour and on the adopted by EN 1993-1-1 [82]. The scope of this approach is
considered to be up to aspect ratios of #=1.25, once for larger values the method becomes
considerably conservative. The authors studied numerically the geometrical parameters
influencing the response of these elements. However, the parametric variation can be
considered relatively narrow which may limit some conclusions. Moreover, these results

were drawn based on numerical models with the same fixed geometry as the one used in

Tran [14].

Martins ez al. [86] studied the ultimate load resistance of unstiffened curved panels
subjected to biaxial loading and in-plane bending relying exclusively on finite element

analyses. The proposed formulation for short panels, <1.0 can be summarised as follows:

1 Jfor A<Ay,

p= %"’_zﬁzﬂij_%’z) or o, <A<ig, (2.13)
A —0.055¢, (3+ l//)

c,A°

+S;, for 424,

In Martins [15], a correction was proposed for long panels (#>1). The reduction factor

should be multiplied by a correction factor Ci, as shown in (2.14). This correction is
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calibrated in function of curvature, Z, assuming values of 1.0, 0.782 and 0.912 for Z=1,
Z=30 and Z from 70 to 100, respectively (intermediate values are obtained by

interpolation).

plong = Clongp (2-14)

Martins et al. [87] carried out a numerical parametric study on the imperfection
sensitivity of unstiffened cylindrically curved panels. The authors assessed the influence
of the shape of geometric imperfections, based on the first eigenmodes of the panels and
the respective amplitudes, on the ultimate load. It was concluded that the first eigenmode
does not lead always to the lowest value for the ultimate load. However, the authors did
not study imperfections other than those given by the eigenmodes of linear buckling
analysis, like, for example, perfect semi-waves. As will be concluded later, a semi-wave in
cach direction leads in some cases to ultimate loads much lower those given by

eigenmodes.

Park ez al. [88] performed numerical analyses to assess the ultimate strength of curved
panels. The influence of the curvature on the resistance of the panels was studied. The
authors drew attention to the existence of curvatures leading to lower resistances than
the corresponding flat plates. Empirical formulae based on the numerical analyses were
calibrated for the ultimate strength. The generic form of the expression is presented in
(2.15). Bis the slenderness and y=(§-d). The remaining variables are written as a function
of geometric parameters and calibrated constants.
. |AY+By+l ford<p
—= (2.15)
o, |Aeh ford>p
Later, the same authors [89] deepened the previous work for unstiffened and stiffened
panels, again through FEM. The influence of the aspect ratio was assessed in more detail
both for the critical stresses and the ultimate strength. It was found that for unstiffened
panels, the critical stress increases with curvature and for aspect ratios larger than 1.0 the
critical stress increases as the aspect ratio increases. The same is not true for the ultimate
load, where a very intricate behaviour with ups and downs was verified with the increase
in aspect ratio. The influence of the shape of stiffeners was assessed for stiffened panels.

It was found that angle and T stiffeners are more effective than flat stiffeners increasing
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the strength of the stiffened panels due to the buckling of the stiffeners.

Seo ez al. [90] studied through the FEM the behaviour of stiffened curved panels under
compression. The post-buckling behaviour and ultimate strength was analysed and the
effect of parameters like curvature, slenderness and shape and dimensions of the stiffeners
was investigated. The type of stiffeners was found to affect the collapse pattern, despite
the influence on the resistance being less notorious. Flat stiffeners led generally to failure
induced by stiffeners. An intricate behaviour of the system panel-stiffeners was verified.
It was found that the increase in curvature did not lead always to an increase in strength.
An empirical design formula for predicting the ultimate load of curved panels with T
stiffeners was calibrated. Two distinct expressions were provided for central angles of the
panels: 6<5% and 6 >5°, where it was found that the ultimate load could be better
represented if two domains were considered, see equation (2.16). For application of this
formula, the calculation of the elastic buckling strength of the curved panel and of the
corresponding flat plate are required for the calculation of the slenderness parameter, 5.
However, despite providing numerically calibrated expressions for the elastic buckling
strength of the curved panels, the authors did not provide expressions for the

corresponding flat plate.

1

\/ = for 6 <5°
0.0683+0.994 3"+ 0.0065 3"
o _ p p (2.16)

Oveq L for §>5°
J1.1339-0.12914"+ 0.03928”

Regarding experimental tests, many references may be found in literature since 1930’s
especially related with the advent of aviation. Consequently, many of them were
performed on materials other than mild steel usually used in the construction sector.
Some relevant references deserving be mentioned are given next as example. By topic: 7)
axial compression of unstiffened panels: Ljubinkovic ez 4/ [91] compared the
experimental behaviour of two unstiffened curved panels under compression with FEA
and a Digital Image Correlation (DIC) system. Good agreement was obtained between
experimental and DIC. The initial imperfections considered on numerical models were
found to influence significantly the comparison with the experimental results; 77) axial

compression of stiffened panels: Cho ez al. [92] performed experimental tests on a series
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of curved stiffened panels and comparisons with FEA were given. The authors compared
the differences obtained with flat elements and concluded that the effect of curvature
cannot be neglected; 7i7) circumferential compression: Guo e al. [93] the authors
compared the resistance of two curved panels under circumferential compression.
Through numerical analyses the authors extended the range of curvatures of the
experimental specimens and found a linear reduction of the ultimate strength with
curvature; out-of-plane pressure: Yang and Guralnick [94] carried out experimental
investigations on curved panels under out-of-plane pressure. Comparisons of the

buckling loads with analytical predictions based on the linear theory were done.

An extensive list of experimental research carried out about curved panels may be found
in Christian [95] and in a recent review paper by Martins [6]. The latter includes also

references on numerical studies also for circumferential compression and shear loads.

From the previous literature review it was found that the existing expressions to predict
the ultimate load of curved panels cover only partially the presented parametric variation
in this study. Additionally, all the proposed formulae are based only on calibrated
numerical results and robust provisions with mechanical meaning to predict the ultimate
strength of curved stiffened panels are inexistent. The objective of this work is to fill this
gap covering simultaneously a broad range of aspects like the geometry, boundary

conditions, imperfections and load situations.

Further details about the methodologies to predict the ultimate strength in semi-
analytical methods will be given in section 8.3.3, when they will be applied in the current

formulation.

2.3 APPLICABLE STANDARDS

Nowadays, even when the FEM is in vogue, the advantages of simplified design formulae
are unquestionable. They give to the engineers the possibility to know easily the resistance

of an element, obviating the implementation of complex and time-consuming FEA.

Construction standards, like the Eurocode 3, lack provisions for curved panels. These
elements fall clearly outside the scope of EN 1993-1-5 [1], which is devoted to flat plates
(and panels with very low curvatures, Z<1.0), and EN 1993-1-6 [2], which deals with
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shells of revolution. Consequently, none of the two standards is able to provide adequate

provisions for the panels in study.

On the other hand, recent offshore standards already provide simplified design formulae
for curved panels. In this case standards like DNVGL-RP-C202 - Buckling strength of
shells [3], DNVGL-CG-0128 - Buckling [4] and ABS - Guide for buckling and Ultimate
strength Assessment for Offshore Structures [5] are identified. However, besides applied

only to specific conditions their validity has been called in question (e.g. Martins ez 4/.
[6]).
DNVGL-RP-C202 [3] provides formulae to calculate the critical stresses for axial,

circumferential and shear loading of unstiffened curved panels considered between
stiffeners of a cylindrical shell. The critical stress is calculated through equation (2.1) with

the buckling coefficient, £, for axial in-plane stresses given by:

2

R

-0.5
0.5[1+ 150h) 0.702 Z 5 10r
k, =4 1+

; (2.17)

with Zgadny given by equation (2.5).

Similar formulae are provided for circumferential compression and shear stresses. These
critical stresses are then used to calculate the corresponding slenderness which is

introduced in the following expression to calculate the normalized strength, y:

1

where, A, is the slenderness calculated based on the critical stress. If other loads exist the

buckling coefficient for those loads should be calculated and introduced in A which is

formulated to account for other loads.

DNVGL-CG-0128 [4] makes use of an interaction formula to deal with curved panels
with R/h<2500 (i.e. Z=(a/h)*/2500) under in-plane longitudinal loading stresses, in-
plane circumferential loading, out-of-plane loading and shear stresses. For each case

buckling coefficients are proposed. For axial compression the buckling coefficient, £, is
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given by:
3
1+gb— , for Bg 0.5\/E
‘ 3 Rh R h (2.19)
o = 3 2 .
0.267b— 3—B H > 0.4b— , for B >0.5 E
Rh RVR Rh R h

The accuracy of DNVGL-RP-C202 and DNVGL-CG-0128 was assessed with numerical
results by Martins e al. [6] for curvatures up to Z=100 and different aspect ratios, 2=1.0,
1.5 and 3.0 for the buckling coefficient and ultimate strength. The authors verified that:
i) for the buckling coefficients, DNVGL-RP-C202 provides more accurate results than
DNVGL-CG-0128. In fact, the latter fails to give valid results in most cases providing
estimates for the buckling coefficient much larger than the numerical results; i7) both
standards are unable to provide, for all cases, safe estimates for the ultimate load,
especially for larger curvatures. Additionally, in the cases were safe values are given they

may bC too conservative, even fOI' small curvatures.

ABS [5] provides specifications to assess the local buckling of curved panels composing
cylindrical shells between stiffeners. The standard refers the limit for cylindrical shells of
diameter to thickness up to 1000, meaning a limit for the curved panels composing the

shells of R/h<500, i.e. Z2(a/h)*/500. The buckling coefficient, £, for a curved panel

under axial compression is calculated by:

2

3ZBatdorf
K = 4+T Jfor  Zpaorr <114 (2.20)

k, =0.702 Zg 4ot » TOr  Zgorgorr >11.4
The corresponding critical stress calculated by equation (2.1) is then reduced by the
application of knock-down factors to account, for example, for imperfections and then

applied on an interaction formula.

2.4 SUMMARY

In this chapter, a state-of-the-art on curved panels for structural applications was
presented. The most important studies regarding flat plates and cylindrical shells were

highlighted. Despite presenting characteristics that differentiate these elements from
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curved panels in study, some of the advances are useful for application in the present

thesis.

Despite larger attention being, historically, given to flat plates and cylindrical shells, there
has been, recently, a growing interest in curved panels due to the appearance of new
applications in several engineering fields. In fact, the studies about some aspects of curved
panels, e.g. regarding semi-analytical methods, are rather scarce as identified in this
chapter. The objective of this thesis is to fill the main gaps identified in the state-of-the-

art.

Some historical references on the critical behaviour of curved panels were presented and
recent development about the topic were identified. Regarding the large deflection
behaviour of curved panels, the studies found on unstiffened and stiffened curved panels
under compression and out-of-plane pressure were described with main focus on semi-
analytical methods. Very few contributions about the large deflection of curved panels

were identified in the literature.

A distinct class of studies were identified in respect to composite materials namely
laminated, sandwich and FG materials. This type of materials is mainly used in the
aeronautics industry, which has been employing these materials in curved panels for quite
some time. However, as shown these materials have particularities that require usually

different theories, like the SDT, which hinders the applicability to the current study.

Construction standards, like Eurocode 3, do not provide design guidelines for curved
panels maybe due to the only recent application of these panels in civil engineering. On
the contrary, offshore standards, due to the older use of these panels already provide
simplified formulae for curved panels. However, these empirical expressions show a poor
accuracy and in some cases, as documented in the literature, they were proved to provide
unsafe estimates for the resistance. Consequently, an urgent need for more robust
standards was identified in this chapter, and, in this regard, the objective of this thesis is
to deepen the work of curved panels based on numerical and, mainly, on semi-analytical
methods. With this it is expected to contribute to the development of design provisions

with more mechanical meaning.

To the best of the author’s knowledge, the approach of the problem as presented in this

thesis is not available in the literature.
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3 FUNDAMENTALS OF CURVED

PANELS

3.1 INTRODUCTION

Some important concepts indispensable to understand the approach followed in this

thesis are described in this chapter.

In section 3.2 the concepts and assumptions underlying the various shell theories are
presented and the implications are discussed. Special attention is given to Donnell’s work
and the corresponding DMV theory, which is of particular interest in this study.
Comments are made about the interaction between the membrane and the bending
components. The accuracy and the limits of validity of the theory are discussed and

verified for the curvatures studied in this thesis.

The following sections (3.3 to 3.6) are devoted to describe aspects like the geometry,
boundary and loading conditions. These aspects are found to play an important role on

the behaviour of the panels and, consequently, they will be object of study in the
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following stages of the thesis.

Finally, in section 3.7, the existing analytical and numerical methods of analysis of shells
are described, with special emphasis for the Rayleigh-Ritz and Finite Element Method,

respectively, which will be extensively used in the following chapters.

3.2 SHELL THEORIES

3.2.1 Development of shell theories

The number of different theories in the study of shells is high. Several considerations have
been assumed and specialised theories have been developed for diverse cases. The
differences between most of these theories are related with the level of simplification

introduced.

Kirchhoff [96] introduced some important assumptions to the analysis of plates and
Love [97] later applied them to curved shells, which are commonly known as the

Kirchhoff-Love assumptions [98]:

i) Hypothesis of straight normals: a straight line normal to the middle surface
before deformation continues straight and normal after deformation and
having the same length, i.e. the cross-section remains plane and normal to the
middle surface after deformation;

i) Stresses normal to the middle surface (o:) may be neglected in comparison with

the ones acting in the direction of the surface.

Love [97], based on these assumptions and simplified constitutive relations, developed
the linear theory of shells, which is only applicable to very small deformations.
Subsequent authors, like Reissner, Sanders and Fligge sought to solve some
inconsistencies found in the original Love’s theory [99]. In particular, Fligge [100],
through less restrictive simplifications, developed one of the most general theories that is

usually used to assess more simplified formulations.

The accurate treatment of shells becomes, at some point, very complex (e.g. Fliigge’s
theory [100]) and simplifications must be introduced to allow the viable treatment of a

given problem.
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Donnell [101[97] started the study of the buckling of cylindrical shells. His theory makes
use of some approximations, namely the consideration of the shells as shallow. Shallow
shells assumptions are established based on the fact that the rise of the arc meets certain

limits in comparison with the dimensions of the shell, and may be stipulated as [98]:

i) In-plane displacements, # and v, are smaller in comparison with the out-of-
plane displacement, w, which is of the same order as the thickness, /;

ii) 'The squares and products of the derivatives of w are considered as the same
order of strains. The derivatives are considered small;

iii) Curvature changes may be represented by a linear function of w. The
contributions of # and v may be neglected. The curvatures of the bending

component may be regarded as the ones from shallow shells, equations (3.11)-

(3.13).

In the linear theory, rotations are not considered for the strains and in the equilibrium
equations. However, for many shell problems, the linear theory is not sufficient and large
deflection shell theory is required to accurately deal with the observed behaviour. Besides
the nonlinearity in the strain-displacement relations, when a shell undergoes large
deflections its deformed shape has to be considered. Consequently, the consideration of
the non-deformed configuration of the shell in the equilibrium equations has to be

abandoned and the deformed configuration has to be taken into account.

Marguerre [19] developed a nonlinear theory for plates. von Kdrmén and Tsien [102]
extended the Donnell’s theory for nonlinear large deflection behaviour. Mushtari [103]
and Vlassov [104] generalised the original theory of Donnell (based on the same
assumptions) for arbitrary curvature and nonlinear behaviour. The Donnell-Mushtari-
Vlassov (DMV) theory, as it is known, is a simplified theory based on the general theory
of thin shells, especially applicable to shallow shells. It considers the Kirchhoft-Love and

the shallow shells assumptions, plus some additional assumptions [99][105]:

i)  The geometry of the shell is cylindrical or almost cylindrical;

iz) The interaction between the membrane and bending surfaces of Figure 3.1 is
done at the expense of the normal force ps, i.e. the tangential forces ¢.5 and g,5
may be neglected;

i) There is no tangential surface traction on the shell (allowing the use of the Airy
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Figure 3.1:  Stress resultants on a thin shell: a)stretching and b)bending components

(adapted from Calladine [105])

stress function);

These assumptions are particularly valid for: 7) shallow shells and 77) non-shallow shells

with stresses varying rapidly along the shell [99].

Further developments were introduced by Sanders [106] using tensor form and Koiter

[107] which developed the study of nonlinear general thin shell theories.

In nonlinear theory the limitation to small displacements is not required and rotations
dw/dx, dw/dy are not neglected. Contrarily to linear theory, in nonlinear theory more

than one equilibrium configuration (stable and unstable) exists in the same conditions.

Lamé’s [108] work on curvilinear coordinates led to the development of the Lamé’s
coefficients which are useful to deal with the geometry of shells. The Lamé’s coefficients
provide a convenient way to deal with the transformation from a cartesian coordinate
system to a curvilinear coordinate system and vice-versa. They are recurrently used to

define shells theories in their more general forms.

Imperfections were found to be responsible for the differences between theoretical and
experimental loads verified at the beginning of the study of shell buckling. Because it has
been shown that imperfections can affect considerably the resistance of shells, their study
is still nowadays an area of intense research. The usual approach, as proposed by Koiter
[62], is to apply an equivalent initial geometric imperfection. These equivalent
imperfections should account for the remaining imperfections, like residual stresses, for
example. This approach has advantages in terms of ease of application, because it obviates

the introduction of the “real” geometric imperfection and residual stresses explicitly. In
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FEM, cigenmodes from linear buckling analyses (LBAs) are usually used for the sake of
convenience. However, this approach shows limitations when a more detailed modelling
of imperfections is required, as happens in stiffened panels. A solution for this will be

presented later.

Both geometric nonlinearity and imperfections aspects will be introduced in the semi-

analytical formulation and they will be discussed in further detail in Chapter 4.

Contrarily to the classical theory based on the Kirchhoff’s hypotheses, the shear
deformation theory (SDT) was developed to include the effect of transverse shear
deformation, which, as previously identified in section 2.2.5, is indispensable to study
laminated and composite materials. This group of theories is subdivided in first order
shear deformation theory (FSDT) and higher order shear deformation theories (HSDT).
The latter, developed by Reddy [74], corrects some gaps and extends the application of
the FSDT. Consequently, it is the more accurate theory to tackle problems with these
materials. Despite the fact that extensive work has been carried out in light of SDT for
more innovative materials, the relevance for thin steel panels is reduced and consequently

is not followed here.

When nonlinearity is of geometric origin the problem is said to be geometric nonlinear.
In cases when the material also contributes to the nonlinearity, the problem is said to be
geometrically and material nonlinear. Despite not being impossible to account for
material nonlinearities analytically, this turns out to be a very difficult task from the
mathematical point of view. Consequently, the problem is tackled analytically with

simplified methods or with numerical methods, like the finite element method.

3.2.2  Shallow shells

For cases with constant thickness, », the geometry of a thin shell may be represented by
its middle surface. A shell may be classified according the type of curvature (e.g

cylindrical, ellipsoidal, spherical, etc.) which leads to specific behaviour in each case [99].

In a simplified way, according to Novozhilov [109], a shell may be considered, in a
simplified way, as thin if the following condition is verified for the thickness, 4, to radius,

R, ratio, h/R:
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h 1
h 1 1
R~ 20 3.1

Most shells in practice meet this criterion.

For exemplification, using this condition and considering that 4/R may be written as a
function of the curvature parameter, Z=4?/(Rb) - considering the curvature along the
width of the panel, 4,- and the width to thickness ratio, /b, by equation (3.2), the
maximum values of Z to fulfil the classification of a shell as thin are calculated for
different values of 2/ in Table 3.1. The values of the ratio 4/h cover very stocky to very
slender panels. Despite the lowest value presented for a/h being used in very rare
occasions in practice, it is useful to conclude that even for that case curvatures of 31.25
allow to cover many cases of curvatures in real structures. For the remaining cases of 4/5,

the limiting curvatures to fulfil the thin shell criterion reach high values which cover

almost all cases in practice.

h 1Y

In problems with thin shells there are situations where membrane action is the main
responsible for carrying the load, and the bending action may be neglected. In these
situations, shells may be characterised by the membrane hypothesis with sufficient
accuracy (e.g. a closed cylindrical shell under uniform pressure). In other cases, bending
contributes significantly, carrying the load and the contribution of the interaction
between membrane and bending components should the accounted for to characterize

properly the behaviour of the shell. This relative contribution depends on the geometry
of the shell.

To better understand the influence of each component on the behaviour of a shell and to

assess the contributions resisting the loads applied to a shell, Calladine [105] developed

Table 3.1: Maximum values of the parameter of curvature, Z, according the condition of

Novozhilov [109] for classification of a shell as thin

a/h 25 50 100 200 300

Z 31.25 125 500 2000 4500
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the concept of two surfaces in the shell, one rendering the effect of stretching (i.e.
membrane) and the other the bending of the shell. The effect of each component may be
accounted for separately, provided that proper interaction forces are taken into account.
The author decomposed the stress components for the stretching and bending
components’, as shown in Figure 3.1 2) and 4), respectively. In order to account for the
interaction between the surfaces, the author considered that a part of the out-of-plane
force per unit area p, is carried by the bending surface, ps, and the remaining part p-p; is
carried by the stretching surface. The same happens for the tangential forces ¢.s and g,
which arise from the unbalanced forces Q due to curvature of the element. However,
using the approximation established in the shallow shell theory the tangential interaction

forces may be neglected.

Thin shells that satisfy the conditions in equations (3.3)-(3.4) may be considered as
shallow shells, according to Novozhilov [109]:

[%j <2_10 (3.3)

These conditions lead to a maximum admissible angle of tan"(v/(1/20))=12.6". They
arise from the simplification of considering the surface of a shell with curvilinear
coordinates # and j, represented by the projection of the coordinate system Oxy,
according to Figure 3.2. In the figure, ds; and ds are the sides of an element defined on
the shell’s middle surface and the corresponding rectangle formed by its projection on the
plane Oxy has sides dx and dy. The radii of curvature are represented by R; and R,

respectively, for coordinates ¢ and §.

If the arc lengths 4., and d.; are defined by the change in the coordinate line d,and dj, as

follows:

ds, = Ada (3.5)

! For convenience, the stretching and bending components are, here exceptionally, written by their
resultants on the respective infinitesimal face, i.e. they have, respectively, dimensions of force/length and

bending/length.
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Figure 3.2:  Correspondence between the curvilinear coordinate system and the projection

coordinate system Oxy (adapted from Ventsel and Kauthammer [99])
ds, = Bdg (3.6)
A and Bare called the Lamé’s coefficients which depend on the chosen coordinate system.

According to Figure 3.2, the value of sides ds; and ds, are approximately given by the

hypotenuse of the triangle formed with the projection plane Oxy:

oz Y’
ds, = 1+(&] dx (3.7)
o\
ds, =, [1+| — | d (3.8)
S +[6y] y

However, if the angle is relatively small as defined in equations (3.3)-(3.4), and the shell

may be considered a shallow shell, one may assume the following simplification:
ds, ~ dx (3.9)
ds, = dy (3.10)
and considering the system x, y as orthogonal, one can assume the Lamé parameters as

A=B=1. Consequently, the curvatures for a shallow shell may be written as follows:

1 &%z

Kl Zazy (311)
1
1 &%z

KZ ZR—zy (312)
2
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0%z
K, oxdy

(3.13)

Through kinematics and using the simplification in equations (3.11)-(3.13) with the
displacement w in the coordinate z, taking into account that the sign of the second
derivative 0’w/dx? is negative (and similarly for the y direction), i.e. convex side point in

the direction of the z axis, one may write:

82
K =— aXVZV (3.14)
62
K'z = —ay—\g/ (315)
o*w
1= oy (3.16)

Introducing Hooke’s law leads to the classical equation for an isotropic plate. In fact, this

surface is equivalent to a nearly flat plate in bending and shear [105].

DV*w=p, (3.17)

where D=EF?/(12(1-0%)) is the flexural stiffness and V* is the biharmonic operator.

3.2.3 Membrane and bending components

To better understand the interaction between membrane and bending action, Calladine
[105] proposed to analyse a long cylindrical shell under doubly-sinusoidal pressure. In
this case we can obtain a series of connected panels, of width, 4, and length, 4, with null
out-of-plane displacements along their edges. In this way, a doubly sinusoidal
displacement field may be considered for both the membrane and bending components.
Additionally, this theoretical case avoids conveniently the explicit consideration of the

boundary conditions allowing to draw more easily important conclusions.

Assuming a sinusoidal function both for the pressure load, ps, and for displacements, w,
with maximum amplitudes, p.s and bz, respectively, in equation (3.17) a value of 4,5 is

found to be:
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pnB a4b4
= 7Z'4D_(a2 +b2)2 (3.18)

nB

Similarly applying again a sinusoidal pressure with a maximum amplitude p.s (=p.-pas) in
equations of equilibrium and Hooke’s law and solving for w, the maximum amplitude for
the displacement b,s is:
Pos R’ 2
bnS =E—;?(a2 +b2) (319)
Making equal 4,5 and 4,5 from equations (3.18) and (3.19) and solving for é=p,s/p.s, the

ratio between the membrane and bending stiffness components, one obtains the ratio

between stretching and bending stiffnesses of the shell:

12a%p*
&= >
7*R%h? (a2 +b2)

(3.20)

Based on this equation, one can plot the graph of Figure 3.3 for several values of &
Assuming, according to Calladine [105], that a shell is dominated by membrane when
£>10 and contrarily a shells is dominated by bending when £<0.1, two different zones
may be defined as shown in the graph. At the zone between both limits, interaction
between membrane and bending has to be considered, and neglecting one or other

component is not realistic. The value of £=1.0 is also plotted for comparative purposes.

The graph is plotted for &/+/(Rb), in function of the parameter of curvature of the
subpanels, Z. Along with the curves of £, curves representing different aspect ratios of the

subpanels, z=b/a are also presented. In this case, values of 0.5, 1.0 and 2.0 are presented.

According with the same figure it is verified that as the aspect ratio, 2, increases, a smaller
change on & is required to pass from bending to membrane zone, or vice-versa.
Consequently, for large aspect ratios (2>2) the resistance from the bending component
comes mainly from the bending action on the smaller direction, the width, 4. For short
aspect ratios (2<0.5) the contours are practically constant, ie. the change in width, 4, has
no influence on the curve and consequently the influence in this zone of the graph comes
mainly from the change on the length, 4. In the case of the membrane action for short

panels it is possible to conclude that the practically constant values are mainly due to the
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Figure 3.3: Membrane and bending contributions of a cylindrical shell subjected to
sinusoidal loading applied on curved subpanels with width, a, length, b, radius, Rand
thickness, A.

stretching in the circumferential direction. For short panels (2<0.5), £ is relatively
independent of the value of Z. In fact, its value is practically constant whatever it is the
value of Z. In this case, maintaining all the variables the shell passes from bending to

membrane controlled if the length, 4, is increased.

324 Derivation of the Donnell’s equations

The approach of separating the shell in membrane and bending surfaces proves to be
convenient also to derive the Donnell’s equations for cylindrical shells, imposing that the

change of the Gaussian curvature is the same in both surfaces.

Along with the equation for the bending component in equation (3.17), doing the
equilibrium for the membrane component (Figure 3.1 4)) and introducing the Airy’s

stress function, F, leads to%:

1 &°F 1 &°F

__+__
R, ox? R, ayz

Putting together (3.17) and (3.21) one obtains the Donnell’s equilibrium equation as

=P—Ps (3.21)

* The Airy’s stress function means that N,=0°F/dy* and N,=0"F/0x".
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3. Fundamentals of curved panels

follows:

(3.22)

2 2
Dv“w{ia F 10 FJ:

+_
R, ox? Ry oy’
According to the approach of Calladine, to obtain the Donnell’s compatibility equation
one must make use of the change in Gaussian curvature, g, to make compatible the

membrane and bending surfaces [105].

_K K
g= R, + R, (3.23)

Based on equation (3.23) and making use of the curvatures in equations (3.14)-(3.16)
one may write the change in Gaussian curvature for the bending surface, gz, as:
10°w 1 0*w
—— - ——=p (3.24)
R, ox° R, oy
Analogously, to derive the change in Gaussian curvature for the stretching surface, gs,

equation (3.23), the Hooke’s law and Airy’s function must be used leading to:

1,
=——V°F 3.25
Os Eh ( )

Since the Calladine’s approach [105] stipulates that the change in Gaussian curvature

must be equal in both surfaces, we obtain the compatibility equation of the problem:

1 0°w 10°w) 1
Eh

R, ox* R, oy® (3.26)
Equations (3.22) and (3.26) constitute the Donnell’s equations, also known as the DMV
equations for small displacement behaviour and free of imperfections. They are nonlinear
fourth order differential equations coupled in w and F. Further developments to account

for the effect of nonlinearity and imperfections will be introduced in Chapter 4.

The accuracy of the existing shell theories, namely the one from Donnell, is related with
the different level of simplifications introduced, 7.e. with the terms neglected in the most
general expressions. The objective of these theories is to neglect terms that may facilitate
dealing with the problem but, at the same time, the associated error should be controlled
within limits considered tolerable. Obviously, simplifications considered valid for certain

type of problems may not be to other cases, and consequently the implications introduced
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3.2. Shell theories

with certain simplifications should be understood.

3.2.5 Accuracy of the Donnell’'s equations

Despite the simplifications of shallow shells, introduced in equations (3.11)-(3.13), they
are accurate enough for a very large cases of thin shells in practice, and particularly the
panels studied in this thesis. This simplification may be eliminated if more complete
expressions are used for the curvatures. If the simplifications of shallow shells were not

considered, the exact equations for the curvatures would be:

o'ww
o oW W 3.27
1 8X2 Rlz ( )
2
=W W (3.28)
N R

o'w 1ov 1au
oxdy R, x R oy

Ky =

(3.29)

i.e. the simplification in (3.11)-(3.13) occurs on the assumption that the radii, R; and R,
are sufficiently large to assume that the respective terms where R appears in the

denominator can be neglected.

Hoff [110] and Kempner [111] assessed the accuracy of Donnell’s equations compared
with the more general Fliigge’s theory. The first author, comparing the characteristic
roots of Donnell’s equation, provided a range of parameters where both theories are
comparable and where discrepancies become important. It was found that the error of
the Donnell’s equations increases as the circumferential wavelength increases, 7.e. when

the length is much greater than the radius.

With the objective of maintaining the same simplicity of the Donnell’s equations, Morley
[112] modified the original equations with an additional term accounting for the radius
of cylindrical shells on the bending curvatures. In this way, equation (3.17) becomes

affected by the radius as follows:

2
1
D[V2 +?J W= pg (3.30)

2

Morley compared the roots of this equation with the ones of Donnell and the more
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3. Fundamentals of curved panels

general theory of Fliigge, which is usually used as reference for comparison purposes. The
author showed that some differences may appear for long shells in Donnell’s theory when
the number of circumferential waves is reduced. However, according the author, the
proposed improvement is able to provide closer results with the ones from Fliigge, even
for long shells with a reduced number of circumferential waves, where the Donnell’s

theory fails.

Houghton and Johns [113] compared the characteristic roots from several theories,
including the one from Donnell and less approximate theories. The authors concluded
than when the number of circumferential waves, 7, is less than 4, non-negligible errors
may arise for long cylinders. In these cases, the magnitude of in-plane displacements is of
the same order than the out-of-plane displacements and Donnell’s theory starts to
provide non-negligible errors. However, the authors highlight application advantages in
using the Donnell’s equations in comparison with more less approximate theories.

Yamaki [98] reached the same conclusion about the accuracy of Donnell’s equations.

In order to assess the error of the Donnell’s assumption the previous example of a
cylindrical shell under a sinusoidal pressure is used next [105]. Following a similar
procedure to obtain the maximum displacement by the equation of Morley, b,z instead

of equation (3.18) the following expression is obtained:

_ Pn,m a*b*m*
‘D (azm2 +b? (—1+ mz))2

nB,M (3.31)
where m=7R/a is the integer number of circumferential waves, if 2 corresponds to half

wavelength.

Rewriting the previous equation in a more convenient form, in terms of .5, one obtains
the following relation between the amplitude of the pressure and the amplitude of the

displacement:

1
1-—

1
Prv =Bhg 7' D b_2+—a2n (3.32)

where taking 7->c0 leads to the original Donnell’s solution. Consequently, the differences
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3.2. Shell theories

between both theories increase as 72 decreases.

The magnitude of this error was assessed by Calladine [105]. He found that the influence
of the correction introduced in the circumferential bending is negligible when: 7) the
behaviour is controlled by bending in the longitudinal direction and stretching in the
circumferential direction; 77) when the stretching effects are negligible. The correction
has only relevance for cases dominated by stretching in the longitudinal direction and
bending in the circumferential direction. In this case the error is non-negligible and the
previous correction should be applied when 72<4.5 (calculated for a difference of 10%),

or more conveniently:

Z> 0.49% (3.33)

Calculating the ratio R/b for different values of curvatures and assuming different 4//
ratios one obtains the limiting values for curvature, Z, in Table 3.2 for which inequality
(3.33) is verified. These values show that for the values of Z and 4// considered in the
analytical study of this work there is no need for the correction for long shells in Donnell’s

equation. Even, for uncommonly small values of 2/h=>50, it is necessary to account for the
correction, only if Z>35. For a typical value of 2/h=100 the correction should be applied
only for Z>70.

Table 3.2: Values of Z for various a/Aratios from which correction must be considered
a/h 50 75 100 125 150 175 200
zZ> 35 52.5 70 87.5 105 122.5 140

A more in-depth analysis of the analytical approach employed in this work will be
presented posteriorly for the specific boundary and loading conditions. The nonlinear
behaviour of the panels with imperfections included will be studied in detail and the

influence of every parameter will be properly analysed.

49



3. Fundamentals of curved panels

3.3 GEOMETRY OF THE CURVED PANELS

3.3.1 Unstiffened panels

Given a thin unstiffened cylindrical curved panel with uniform thickness (%), radius (R),

width (2) and length (&), one can define the non-dimensional curvature parameter, Z, as:
2
a
Z=—-o 3.34
T (3.34)
and the aspect ratio, ¢, as:

a=l (3.35)
a

The y axis is considered parallel to the generator of the cylindrical panel and the x axis is
perpendicular. The z axis is orthogonal and radially inward. The origin of the coordinate
system is at the centre of the surface. The components of the displacements in each axis

are respectively #, v and w for x, y and z (see Figure 3.4).

Figure 3.4: Geometry and coordinate system of a curved panel

3.3.2 Stiffened panels

In addition to the geometric variables defined for unstiffened panels, a thin asymmetrical
stiffened cylindrical curved panel may have the geometry of its flat eccentric stiffeners
represented by the thickness (4,) and depth (4,) (see Figure 3.5). Assuming that the panel
is composed by 7, number of stiffeners, the width of the #+1 sub-panels is represented
by 4.. The distance from the middle surface of the panel to the neutral axis (V. 4.) of the

stiffener with the associated part of the panel with width . is zo (see Figure 3.5 ¢)).
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Figure 3.5: Geometry and coordinate system of a stiffened curved panel: a) Perspective

view; b) top view; and ¢) geometry of a stiffener

Besides the non-dimensional global curvature parameter Z and aspect ratio o of the full
stiffened panel, given by equations (3.34) and (3.35), respectively, one can define the
effective properties of the subpanels between stiffeners. Thus, the geometrical properties
of the subpanels namely the local curvature (Z,.) and the local aspect ratio (o) are given,
respectively, by equations (3.36) and (3.37).

a2 _(a/(ns+1))2 7

Z = = = 3.36
loc Rh Rh (ns +1)2 ( )

b
ioc :a_:a (ns +1) (337)

3.4 BOUNDARY CONDITIONS

In all cases, the panels are considered as simply supported at all edges. These boundary
conditions reproduce better the boundary conditions of the panels in real scenarios.
Besides that, these boundary conditions provide results on the safe side where a certain

degree of rotational restrain exists (partially or totally clamped).

However, depending on how the supports are oriented and how the edges are restrained
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3. Fundamentals of curved panels

Figure 3.6:  Supports at longitudinal edges for: a) rectangular coordinate system; and b)

rectangular coordinate system

in-plane, different cases of simply supported boundary conditions may be distinguished.
Firstly, the supports may follow a rectangular or a cylindrical coordinate system (CS). For
a curved panel, a rectangular coordinate system means that at the longitudinal edges the
supports are vertically oriented and, consequently, they restrain vertical displacements,
see Figure 3.6 2). On the other hand, supports following a cylindrical coordinate system
restrain radial displacements at the longitudinal edges, see Figure 3.6 4). The angle
between the z axis of the rectangular and the cylindrical coordinate system is given by 6/2,

where 6 is the central angle given by 4/R.

a
0=— 3.38
: (339)

Additionally, for each of these coordinate systems, it is possible to distinguish distinct
simply supported boundary conditions depending on how the edges are restrained in-
plane. These boundary conditions are named as follows. If an edge is considered to be
constrained and, consequently, to remain straight, the edge is represented by the letter C.
If on the other hand, an edge is considered to be unconstrained and, consequently, free
to wave, the edge is represented by the letter U. Thus it is possible to assume a
nomenclature for boundary conditions with 3 letters being the first “B” from boundary,
the second “C” or “U” for the transversal edges (y=+6/2) and the third “C” or “U” for
the longitudinal edges (x=+4/2). For example, a boundary condition BCU has its
transversal edges forced to remain straight while its longitudinal edges are free to wave.
Three types of these boundary conditions are considered from now on: BUU, BCU and
BCC, which are schematically represented from Figure 3.7 to Figure 3.9, respectively.
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3.4. Boundary conditions

Figure 3.7:  Boundary conditions for BUU for: a) rectangular; and 5) cylindrical coordinate

system

I
Q""—Z:iziz:zi ———

a) b)

Figure 3.8: Boundary conditions for BCU for: a)rectangular; and b) cylindrical coordinate

system

Iz
a) )
Figure 3.9: Boundary conditions for BCC for: a)rectangular and 5) cylindrical coordinate

system

The objective of this distinction is to simulate the cases of straight and stress-free edges
which represent the limits of real situations. In the same figures both rectangular and

cylindrical CS are considered in 2) and 4), respectively.

Despite being idealized boundary conditions, they seck to represent real scenarios. BCU
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3. Fundamentals of curved panels

and BCC have clearly more practical applicability. While BCU corresponds to cases
where the panel is supported by rigid supports (e.g. stiff girders) only in the longitudinal
direction, BCC corresponds to cases in which the panel is supported by rigid supports in
both the longitudinal and transversal directions. For example, a box-girder bridge with a
curve bottom flange with two vertical webs bordering the longitudinal edges may be
represented by BCU using a rectangular coordinate system. In this case, the in-plane
restraint at the longitudinal edges is very small and the panel should be considered as
unconstrained in-plane along these edges. On the other hand, a series of contiguous
curved panels with radial transversal and longitudinal girders in an offshore structure may
be represented by BCC using a cylindrical coordinate system. BUU conditions may have
less applicability in real cases but it can represent an isolated panel or a panel with reduced
constraints and, consequently, it is useful to compare it with the more restrained cases,

assessing the differences in its behaviour.

The impact of the constraint of boundary conditions and the coordinate system for the

supports on the behaviour of the curved panels will be discussed posteriorly.

3.5 LOADING CONDITIONS

Although the formulation developed in this thesis is able to account for several loading
conditions (e.g. biaxial compression, out-of-plane pressure and shear) only the most
relevant ones are deeply studied: 7) longitudinal uniform in-plane load distributed along
the sides y=+4/2 (Figure 3.10 )); and i7) uniform out-of-plane pressure p. normal to the
curved surface (z=0) (Figure 3.10 b)).

Depending on the location considered for the load application, in stiffened panels, two
situations may be distinguished: 7) the load is applied on the total cross-sectional area
(stiffeners and panel); or 77) the load is applied only on the panel. The differences between
both situations are assessed posteriorly in section 6.3.7 but unless otherwise stated the
load is assumed acting on the total cross-sectional area (stiffeners included). This
situation reproduces better real cases and, furthermore, it is better described by the

orthotropic model.

In the same way, unless otherwise stated, the out-of-plane pressure is considered as
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3.6. Stability behaviour of curved panels

Figure 3.10: Load application: a) in-plane compression and b) out-of-plane pressure

centripetal, which corresponds to most real situations (e.g. hydrostatic pressure).
However, in order to assess the applicability of the semi-analytical procedure for

centrifugal pressures this load is also considered for some cases.

The in-plane load is defined positive in compression and out-of-plane pressure is defined

positive when centripetal.

3.6 STABILITY BEHAVIOUR OF CURVED PANELS

For an ideally perfect panel, the critical buckling stress, o, corresponds to the point of
intersection between the fundamental path and the post-critical path. More than one
point of intersection exists on the fundamental path corresponding to different load
levels (and buckling modes). The most relevant one is, naturally, the minimum. As the
out-of-plane displacements, w, begin to develop, second order effects take place and
secondary stresses grow. For the flat plate, the load increases as the displacement increases
and consequently the postbuckling path is stable. The same is not necessarily true for a
curved panel. In this case the load can decrease as w increases, which means an unstable
postbuckling path. This depends considerably of the boundary conditions and its effect
is more evident the larger the curvature. Consequently, the effect of curvature on the
post-buckling behaviour of thin panels is very important. As will be discussed in Chapter
6, curvature is not the only influencing factor, the boundary conditions can also affect

substantially the postbuckling paths.

In real panels out-of-plane imperfections, wy, are always present. These imperfections

force the panel to deform right from the beginning of the loading. Generally, the first
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oA (o

elasttc\‘l’l, elastic-plastic

postbuckling N
path (sta\bie) O postbuckling

A/path (unstable)

Oyf------ox

fundamental fundamental
path (stable) = path (stable)
\q imperfect \Q imperfect
= =
— 37, w — 37, w
a) b)

Figure 3.11: Schematic post-buckling behaviour of a)a flat plate and b)a curved panel

deformation follows the initial shape of imperfections; however, the deformation pattern

can change with the development of the displacements.

Even if the panel does not fail by instability (the value of this maximum corresponds to
the ultimate stress, o,) and larger loads are able to developed, for large displacements

plastification takes place and the panel can fail by excessive deformation or fracture.

In order to illustrate what has been said, the equilibrium paths of perfect and imperfect
flat and curved panels are schematically plotted in Figure 3.11 2) and 4), respectively. It
is easily seen that the critical buckling stress is clearly conservative for flat panels but non-
conservative for curved panels, as explained by Koiter in 1945 [62]. In the first case, the
critical buckling stress does not take into account the stable post-buckling resistance
while in the second case it does not account for the high imperfection-sensitivity of
curved panels, which may be on the unsafe side (s,>,). This justifies the importance of

studying the post-buckling behaviour of such elements through its large deflection range.

When the deformation “jumps” suddenly from one unstable equilibrium to a stable one,
an instability phenomenon called “snap-through” takes place. This phenomenon can
imply a substantial decrease in load which may be detrimental for the structural capacity

of the panel.

Because it has been found that imperfections affect drastically the stability of shells, the
assessment of the imperfections is still nowadays one of the most studied subjects in this
area. The application of "real" imperfections in the finite element analysis is difficult to
implement and they are hardly available for practical design. Thus, the usual alternative,

following studies of authors such as Koiter [62], is to applying a pattern of equivalent
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3.7. Methods of analysis of shells

imperfections in the form of initial deflections perpendicular to the middle surface of the
shell. These imperfections, being “equivalent”, must cover the effects of other
imperfections like load eccentricities, residual stresses, etc. One hypothesis recurrently
used in thin-walled elements for these equivalent patterns is to use the eigenmodes of a
perfect element obtained by a linear buckling analysis (LBA). However, as will be shown
in Chapter 6 the initial imperfection from eigenmodes may lead to overestimation of the

ultimate load for curved panels.

In this research, for comparison purposes of the results between the semi-analytical
formulation and the FE analyses, a geometric equivalent imperfection is adopted. For the
study of the ultimate load, besides an initial geometric imperfection the effect of the

residual stresses will be assessed (section 6.5).

3.7 METHODS OF ANALYSIS OF SHELLS

3.7.1 Exactsolutions and approximate methods

Exact solutions for shell problems are practically non-existent, exception for some very
simple cases, boundary and loading conditions. For example, for circular plates with
symmetric lateral load and rotationally symmetric boundary conditions. Therefore, exact
analytical solutions do not cover most cases of practical significance. Consequently,
approximate analytical solutions are required and they are the only possible solution for
more complex problems. Even so, it is commonly assumed that the accurate calculation
of the post buckling behaviour of shells is complicated hindering generally the
obtainment of closed-form expression [114]. The complexity of the problem derives
from the difficulties to obtain analytical solutions for the differential equations, for which
only in some cases approximate solutions can be obtained. This is because the verification

of the boundary conditions leads in most cases to mathematical difficulties.

3.7.2  Equilibrium methods and energy methods

The equilibrium method is formulated through Newton’s law of equilibrium of forces
from which one can derive the differential equations for shells. This is the Newtonian
approach of the problem. The solution is then sought in terms of the displacements, w,

which must satisfy the differential equations and the boundary conditions. However, the
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exact solution may be obtained only for some rare cases, for example for circular plates
and rectangular plates under specific conditions. For other cases, this approach is found

to be less effective.

However, a more adequate approach to the problem is through energy methods using
Bernoulli’s principles of virtual work, the problem is approached in terms of its potential
energy and work. This is the Lagrangian approach of the problem. When a deformable
body is subjected to external loads, deformation occurs. The corresponding internal
forces produce internal work which allow the application of energy methods to study the
response of the element. One of the advantages of energy methods is the potential to get
approximate analytical solutions. Two of the main methods are the Rayleigh-Ritz and the

Galerkin.

3.7.3 Variational methods

The variational methods deal with the stationary values of functionals (definite
integrals). If assumed solutions with variable parameters are substituted into the
functional, the determination of the stationary (or the extreme) conditions for these
parameters constitute the direct methods for variational calculus. In this case, the
assumed solution is substituted into the energy principle equivalent to the governing

equations.

These methods are considered as approximated because in this case a field of
displacements in a form of a finite linear combination of coefficients and functions has
to be assumed. Consequently, the accuracy of the methods depends on this selection. It
should be noted that, if the assumed field of displacements coincides with the exact one,
the solution will be the correct. It is also because of this assumption that approaches based

on these methods are generally described as “semi-“analytical.

3.7.4 Rayleigh-Ritz method

Rayleigh’s method is based on the principle of energy conservation. However, only one
term for the displacements may be used with this method, implying the use of sufficiently
accurate function. The Ritz method based on the principle of the minimum potential
energy overcomes this limitation allowing to write the deformed shape of the shell as a

sum of functions, preferably orthogonal ones. The basic principle of both method is the
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3.7. Methods of analysis of shells

same and consequently the Ritz method is usually called as Rayleigh-Ritz method.

The Rayleigh-Ritz method can be generally formulated as follows. Given a set of 7 of
linearly independent functions @; with i=1,2,...,%, one can define the approximate

function w, as a sum given by:

W, (X,Y)=Ci®; (X, ¥)+C @, (X, ¥)+...+C, Dy (X,Y) (3.39)

where C;are the undetermined coefficients and each of the functions @; has to satisfy the

geometric boundary conditions of the problem. The functions @; are chosen in advance.

The quantity which is to be extremised /(w) becomes a function of a finite number of

coefficients Ci. Consequently:

< _0 ,i=12,..n (3.40)

This condition leads to a set of 7 simultaneous algebraic equations where the constants

C; are the unknowns to be determined.

The Rayleigh-Ritz method will be the method employed in the present semi-analytical

formulation.

3.7.5 Alternative methods

Although only the Rayleigh-Ritz will be used in this thesis, there are other viable
alternative methods which could be employed and, consequently, they deserve to be

mentioned for reference. The most reasonable alternative is the Galerkin method.

The Galerkin method uses the differential equation directly without the need to use a
functional. The Galerkin method, instead of formulating the problem directly in terms
of the energy components of the system, uses the equilibrium equation to consider total

potential energy.

Given a linear differential equation containing a linear operator, for example, the
harmonic (V?) or the biharmonic operator (V*), with homogeneous boundary conditions,

one may write:

L[W(x, y)] =f(xy) (3.41)
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or more conveniently:

L[W(X, y)]— f(xy)=0 (3.42)

If we write w(x,y) as a set of independent continuous functions:

w(xy)=

. C P, (xy) (3.43)

1

N8

we may formulate, considering the orthogonality of the left side of equation (3.42) with

every term of equation (3.43):

jjA{L[W(x, y)]-f(x y)} @, (xy)dxdy=0 ,k=12,... (3.44)

If we truncate equation (3.43), to a finite number of terms 7, equation (3.44) becomes:

UAHgC@k(X'y)}—f(x,y)}®i(x,y)dxdy=o =120 (3.45)

which provides a set of 7 algebraic equations in the unknowns C.

The method belongs with other techniques to a broader method named as Method of
Weighted Residuals (MWR).

While the Rayleigh-Ritz method needs only to satisty the geometric boundary
conditions, the Galerkin needs to satisfy geometric and forced boundary conditions.
Additionally, while the approximation functions must be differentiable in Rayleigh-Ritz,

in Galerkin method they must have the same differentiability as the differential equation.

3.7.6 Numerical methods and Finite Element Method (FEM)

To overcome the mathematical difficulties of analytical approaches, numerical methods
were developed like the Finite Difference Method (FDM) and the Finite Element
Method (FEM) that are based on the discretization of the shell, avoiding to solve the

partial differential equations for the continuous element.

Numerical methods are more flexible since they allow the application to more complex
problems than the analytical approaches. To achieve this, the surface is discretised, and a
mesh of points is created on the surface of the shell. Based on these points, simultaneous

algebraic equations are obtained and solved.

60



3.8. Summary

The FEM was developed in the 1960s and it has become an essential tool in several
engineering fields. In this method the surface is divided in a number of smaller adjacent
finite elements connected at their nodes and along their boundaries, where equilibrium

and compatibility must be satisfied.

This method is easily automatized which facilitates its implementation in computational

methods.

The considerations assumed in the implementation of the Finite Element Method will

be the subject of Chapter 5.

3.8 SUMMARY

In this chapter, the basic concepts to understand the theory supporting the study of
curved panels were presented. A brief review of the different shells theories available to
tackle the problem was carried out. The DMV theory based on the Donnell’s theory and
derived for shallow shells was shown to be the most adequate theory for application to
the curved panels studied in this work. This theory combines simplicity and accuracy if
certain limits are fulfilled. The hypotheses on the basis of the theory and the
consequences on the simplifications underlying the shallow shells assumption were

discussed.

Besides some basic concepts related with the geometry, boundary and loading conditions
of curved panels, the general differences in the stability of curved panels was discussed in
comparison with the classical case of flat plates. The curvature was found to influence

considerably the post-buckling behaviour of the panels.

The methods of analysis of shells were presented and the advantages and drawbacks of
cach approach are discussed. The approaches employed in this work, namely, the
Rayleigh-Ritz and the FEM for the analytical and numerical approach, respectively, are

described and compared with concurrent procedures.
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4 FORMULATION OF LARGE
DEFLECTION THEORY FOR
CURVED PANELS

4.1 INTRODUCTION

Comparatively to a flat plate, a curved panel presents curvature in the unloaded state.
Despite curvature does not affecting significantly the response of the element in bending,
it changes significantly the behaviour of the element under membrane actions due to in-
plane forces. The in-plane forces are divided in primary effects from edge loads, and
secondary effects from flexural deformations. For an initial flat plate, the effect of
secondary forces may be neglected for small displacements (in comparison with its
thickness) without a substantial error, and one may analyse the panel with small
deflection theory. However, when large deflections are present, the secondary forces

become important and they should also be considered through the large deflection



4. Formulation of large deflection theory for curved panels

theory. In the case of a curved panel, secondary forces should be considered whether the

magnitude of the flexural deformations is large or not [115].

In order to account for this effect, the theory presented in section 3.2 is now extended in
this chapter to account for large deflections. Besides the introduction of the nonlinear
terms in the kinematic relations, initial imperfections are also taken into account. In this

way, different patterns and amplitudes may be given to initial geometric imperfections.

In this way, in large deflection theory, the contribution of edge restraints in the plane of
the panel becomes important, reason why two distinct cases of boundary conditions are
considered in the semi-analytical study. Both are simply supported with the transversal
loaded edges kept straight. However, in one case the longitudinal unloaded edges are kept
straight (BCC) and in the other they are free to displace in-plane (BCU), as seen in
section 3.4. As previously discussed these are the most common situations in real
scenarios. Besides different boundary conditions, the energy formulation is derived to

take in account different load conditions.

The aim of this chapter is to propose a formulation for unstiffened and stiffened panels
based on the classical shell theory with large deflection theory and geometric nonlinearity
(von Kdrmdn-Donnell kinematic nonlinearity) incorporating initial imperfections. The

formulation is derived for a multi degree of freedom (MDOF) displacement field.

The formulation is first developed for isotropic curved panels under uniaxial in-plane
compression in section 4.2. This is the reference case. The formulation is then extended
for orthotropic curved panels under generalized loading in section 4.3. Although,
uniaxial in-plane compression and out-of-plane pressure are the only loads studied in this
thesis, the formulation is perfectly applicable to generalized loading and, consequently,
for the sake of generalization in-plane compression in the transversal direction and shear
load will be also accounted for. It should be noted that the most general orthotropic

formulation can be used to obtain the simpler cases by simplification.

The orthotropic model is formulated to account properly for the number and geometry
of the asymmetrical stiffeners (relatively to the middle surface of the panel) in one
direction. Finally, in section 4.4, the Rayleigh-Ritz method is presented as the method of

solution.
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4.2 FORMULATION FOR ISOTROPIC CURVED PANELS UNDER
UNIAXIAL IN-PLANE COMPRESSION

4.2.1 Introduction

The analytical formulation to deal with isotropic curved panels is derived in this section.
It is able to deal with unstiffened curved panels constituted by a homogenous and elastic
material under uniaxial in-plane compression in the longitudinal direction. The

formulation follows the assumptions of the DMV shell theory described in section 3.2.
4.2.2  Basic equations

4.2.2.1 Kinematicand constitutive relations

For a thin curved panel with radius, R, according to Figure 3.4, the normal and shear
stresses in the z direction are negligible (5:=7,:=7..=0). Therefore, taking into account
the initial out-of-plane imperfections, wy, the normal in-plane strains, ¢, ¢,, and the shear

strain, &, the following kinematic relations are defined:

2

g oW owowy 1fow (4.1)

ox R ox ox 2\ ox
2

5 0V DWW, 1(@} (4.2)
oy oy oy 2(0oy

é‘xy:l a_u+@+awawo +@8W0 +@@ (43)
2loy ox oy ox oOx oy Ox oy

The bending curvatures, x,, and x, and the twisting curvature, x,, may be written,

accounting with the simplifications of shallow shells, see section 3.2.2, as:

o*w
i (4.4)
2
g, =W (45)
oy
o*w
Ky == oy (4.6)
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4. Formulation of large deflection theory for curved panels

The material is linear isotropic and the modulus of elasticity and the Poisson’s ratio are
denoted by E and v, respectively. Therefore, it is possible to define the constitutive

relations using Hooke’s law with the stress-strain relations written as:

1
&, :E(GX -v ay) (4.7)
1 4
gy:E(Gy_UGX) ( 8)
Oy 1+v
€Xy = ZGy :?O'Xy (49)
with the shear modulus, G, given by:
E
G=
2(1+v) (4.10)

4.2.2.2 Equilibrium and compatibility equations

Using the Airy’s stress function, F, the membrane stresses, o; in the respective directions

can be written as:

2
o =2F (4.11)
o°F
o, = Ve (4.12)
o°F
Oy == (4.13)
oxoy

Through equilibrium of the membrane stresses and using equations (4.7) to (4.9) the

large deflection difterential equilibrium equation for isotropic curved panels is defined as:

o'w o'w o'w h|dF(1 &w  o’w,
T2t 2| T a2 T A | T
OoX ox°oy: oy D| oy { R ox OX

O°F [ &*w  d*w, | O*F [ d°w  d%w,
2 + +— >+—||=0
oxoy\ oxoy oxay ) ox* | ey? oy

where the flexural stiffness, D, is:

(4.14)
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4.2. Formulation for isotropic curved panels under uniaxial in-plane compression

Eh®

ZM (4.15)

Comparing this large deflection differential equation with the corresponding equation
(3.22) from linear theory, it is verified the additional inclusion of the nonlinear and

imperfection terms®.

From differentiation of equations (4.1) to (4.3) and using Airy’s stress function the

differential compatibility equation becomes:

0*F o'F  O'F
4 +2 2 2+ 4
OX oxcoy: oy

(4.16)

02w\ o o’w, o'w dPwotw  Pwotw, dPwadtw, 10°w
Xdy oxoy oxoy  ox* oy oy? ox* ox® oy R oy?

Comparing again with the equation obtained for linear theory (equation (3.26)), this

equation introduces the nonlinear and imperfection terms.

Equations (4.14) and (4.16) are fourth order nonlinear partial differential equations and
constitute the so-called von Karman-Donnell equations with imperfections. These is due
to the fact that when R-co, these equations lead to the von-Karmén equations for large

deflections of flat plates.
423 Encrgyformulation

4.2.3.1 Potential energy due to membrane strain

Making use of the constitutive relations, the potential energy due to membrane strain U,

is given by:
g b2 a2
Un=+= .[ J- {ngx+2ny8xy+Nygy} dxdy (4'17)
—bi2-a/2

where the membrane force components N,, N, and NN,, are expressed as:

NX:C(8X+05y) (4.18)

3 The explicit appearance of / in equation (4.14) contrarily to (3.22) is due to the fact that here the
Airy’s stress function was defined for stresses and not for force/length units (initially used for convenience).
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4. Formulation of large deflection theory for curved panels

Ny=C(8y+ugx) (4.19)
N, =C(1-v)e, (4.20)

with the extensional stiffness C given by:

C=

(4.21)

1-0°

Rearranging equation (4.17) in function of F'yields:

b/2 al2 2= \2 2 A2 2 )2 2 \2
u, :L J. 8_[2: _206 |2:8 E+ 0 '2: +2(1+v) o°F dxdy (4.22)
2E OX ox* oy oy Oxay

-b/2-al2

4.2.3.2 Porential energy due to bending strain

Similarly, from the bending components in equations (4.4) to (4.6) the expression for the

potential energy due to bending Uj is given by:

1 b/2 al2
Ub:EI [ (M +2M iy + M, | dxdy (4.23)

—b/2-al2

where the bending moment components M., M, and M,, are expressed by:

M, =D(K‘X+UK‘y) (4.24)
M, = D(K‘y -‘rUK‘X) (4.25)
M, =D(1-v)x, (4.26)

with D given by equation (4.15).
Making the respective substitutions gives:

b/2 al2 2 \2 2 A2 2. \2 2 \2
D oW O°WoW [ 0w oW
U =— -— 2 2(1- dxd .
) I I{@ﬁ} HadPe ay2+£ay2J +2( V)[axay]} d (4.27)

-b/2-a/2

4.2.3.3 Porential energy due to external in-plane load

The potential energy of the external in-plane load 7, is calculated as the constant

compressive force multiplied with the displacement v, which means:
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b/2

v
T,=pyah I —dy (4.28)

-b/2

4.2.3.4 Toral potential energy

The total potential energy U, is obtained by adding the three previous components:

Utot :Um +Ub +Tp (4-29)

42.4 Boundaryconditions

4.2.4.1 Natural boundary conditions (loading conditions)

The total force in the x direction P, at the unloaded edges (at x=—4/2 and x=4/2) is null
for boundary conditions BCC:

b/2

P =h j —dy 0 (4.30)

0
while for boundary conditions BCU the stress o is null in all points of those same edges,
SO:
O°F
GX = W
The tangential stresses along all edges (at x=—4/2, x=4/2, y=—b/2 and y=b/2) are null for
both BCC and BCU, so:

=0 (4.31)

o*F
=——=0 432
Py = oxay (432)
At the loaded edges (y=—6/2 and y=54/2) the total force in the y direction P, is given by,

both for BCC and BCU:

a/2

P,=h j —dx— —ahp, (4.33)

—a/2
For simply supported boundary conditions the bending moments A, and M,, for
unloaded edges (at x=—4/2 and x=4/2) and loaded edges (y=—6/2 and y=5/2),

respectively, are zero and must verify:
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4. Formulation of large deflection theory for curved panels

2 2
M, =W, TW g
OX oy
o (4.34)
hdy ::-——2T'+l)'——zr3: 0
oy OX

4.2.4.2 Kinematic boundary conditions

For simply supported boundary conditions all edges have null out-of-plane
displacements, so at x=—a/2, x=a/2, y=—b/2 and y=b/2 for both boundary conditions
BCC and BCU, leading to:

w=0 (4.35)
To force the non-loaded edges to remain straight, the variation of displacement in the x
direction (4ux) must be constant for each point along the longitudinal edges. Thus, for

x=-a/2 and x=a/2, the following condition is necessary to define BCC:

al2

(4.36)

CL(F PF) w owyow 1[ow
R ox ox 2

2
——V— — | dx=const.

oy OX X

On the other hand, for both boundary conditions (BCC and BCU) it is necessary to

force the variation of displacement in the y direction (4v) to be constant, so at y=—56/2

and y=6/2:
b/2

Av = J.@dy
-b/2

" 1[62F aZF]_awoaw 1{aw

2
v _Vayz o - Ej dy = const.

The in-plane edge restraints have a direct effect on the stress distribution at edges. For

(4.37)

-b/2 E

these boundary conditions the non-restrained edges in BCU have null o stresses while
for BCC their resultant is null although those stresses are not. Due to the edge restraint

at the loaded edges, o, stresses are not null for both boundary conditions.
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4.3 FORMULATION FOR ORTHOTROPIC CURVED PANELS
UNDER GENERALIZED LOADING

4.3.1 Introduction

Due to the presence of stiffeners, a curved panel exhibits structural anisotropy. The
stiffeners are usually laid down in a regular way, parallel to each other (see Figure 3.5),
usually welded to one side of the plate only. Hence, despite being made of an isotropic
material, stiffened panels show structural orthotropy. However, if a sufficient number of
stiffeners exists, these panels can be idealized as a homogeneous orthotropic panel, where
the stiffeners are “smeared” along the panel. When the stiffeners are relatively weak (do
not constitute nodal lines), the stiffeners generally buckle together with the panel (overall
buckling occurs) and the stiffened panel behaves as an orthotropic panel. In this case the
stiffened panel can be idealized and replaced by an equivalent orthotropic panel. This is

more realistic as the number of stiffeners increases.

For stiffened flat plates, Paik ez al. [26] established the equivalence between the geometric
properties of a stiffened flat plate and the elastic properties of the corresponding
orthotropic differential equation. This approach is followed in this section for the curved

panels.
4.3.2  Basic equations

4.3.2.1 Kinematicand constitutive relations

The kinematic relations for orthotropic panels follow the same principles and

assumptions previously referred and, consequently, strains and curvatures are given,
respectively, by equations (4.1)-(4.3) and (4.4)-(4.6).

Despite the material being linear isotropic, for stiffened panels, the anisotropy due to the
different geometry in the perpendicular directions x and y is accounted for with the
modulii of elasticity £, and E, in x and y direction, respectively, and with the Poisson’s
ratios v, and v, in x and y direction, respectively. Therefore, it is possible to define the

constitutive relations using Hooke’s law with the stress-strain relations written as:
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4. Formulation of large deflection theory for curved panels

g =—*-v,—~ (4.38)
E, 'E,
o} o
g, =——v,—* (4.39)
""E, *E,
Oy (4.40)
£y = .
726,

with the shear modulus G, given approximately by:

_ JEXEy E

S (4.41)

O 21+ o) 21+ o)

Following a procedure similar to the one of Paik ez al. [26] for stiffened flat plates

accounting explicitly with the properties of the stiffeners and determining the elastic
properties of the corresponding orthotropic plate, a procedure for curved panels with

eccentric stiffeners in one direction is derived next.

Taking into account the existence of stiffeners only in direction y, the moduli of elasticity

of the corresponding orthotropic panel in direction x and y, are respectively E, and E,

given by:
E,=E (4.42)
E,=E (1+ 5) (4.43)

with the relative cross sectional area, J, relating the total area of the stiffeners (A, is the
area of a single stiffener =4, 4,) and the area of the curved surface of the panel given by:

-t (4.44)

The flexural rigidities D, and D, in x and y direction for the orthotropic panel are,

respectively:

_ ER
D.=Crno -0,) (4.45)

3 2
5 __ EN Ehz’® EI

(o) ey (4.46)
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4.3. Formulation for orthotropic curved panels under generalized loading

with the elastic orthotropic constant v.,:

Dy = [0y (4.47)

I, (the inertia of a single stiffener) and zo are given by (see Figure 3.5 ¢)):

3 2
|S:h5d5 +hsds(d_s+E_ZOJ (448)
12 2 2
d. h
hodg| —=+—
oG] 4o

Z,=
a, h+hd,
The torsional rigidities components D,, and D, are given by:
ny = Uy DX (450)
Dyx = UX Dy (451)
Based on Betti’s reciprocity theorem [26] one can write:
v By =v, Ey (4.52)
v, D, =v, D, (4.53)

leading to the following expression for the Poisson’s ratio for the orthotropic panel in the

xan irections, respectively:
d y direct tively

a (E, —E, )h®+12E | +12a.E h z,2
v, = 19 s( X y) X's S X 0 (454)
243 E, I
3 2
S E, a,(E, —E, )h® +12E,1, +12aE,h 7, (455)
23 E, E, I,
4.3.2.2 Equilibrium and compatibility equations
Using the Airy’s stress function, F, the membrane stresses o can be written as:
o*F
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4. Formulation of large deflection theory for curved panels

o°F
oy =2 (4.57)
2
F
o, =-§Xay (4.58)

Through equilibrium of the membrane stresses and using equations (4.7) to (4.9), the
large deflection differential equilibrium equation for orthotropic curved panels is defined

(with the incorporation of the out-of-plane pressure, p:) as:

o'w o'w o'w | *F( 1 o*w  o%w,
Di—7+2H 5 +D,—7 - 2|t e T a2 |
OX OX“oy oy oy (R ox OX
(4.59)
O°F [ &°w  d*w, | O*F(o*w d*w, | p,
2 + +— >+t— |[+-*+|=0
OX0y | Oxoy  oxoy ox“ \ oy oy h

where H is related to the elastic orthotropic constants and can be written as follows:

1 h®
H =5 v,D, +0,D, +ny? (4.60)
Alternatively, rearranging equation (4.60), H may be expressed as

H=D, +2D;, (4.61)

using equations (4.50) and (4.51) and taking into account that
.-G 1. (4.62)
s Y12
From differentiation of equations (4.1) to (4.3) and using Airy’s stress function the

differential compatibility equation becomes:

L1F [ 1 _,wn|dF 10F

E, ox* (G, E,Joxoy* E, oy’

(2w o P Fwtw wdtw, Swotw, 15w
G oxoy oxay ox* oy®  oy? ox*  ox® oy R oy’

Equations (4.14) and (4.16) are fourth order nonlinear partial differential equations and

(4.63)

constitute the so-called von Kdrmén-Donnell equations with imperfections adapted for

orthotropic curved panels.
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4.3. Formulation for orthotropic curved panels under generalized loading

4.3.3 Energy formulation

4.3.3.1 Porential energy due to membrane strain

Using the previously defined constitutive relations, the potential energy due to

membrane strain U, is given by:

1 b/2 al2
U,== J. I {Nxex +2N, &, + Nyey} dxdy (4.64)

-b/2-al2

where the membrane force components N, N, and N,, are expressed as:

E. h
N, =—* g, +U, &
x 1_Uny( x %y y) (4.65)
E, h
_ 5y
y 1_Ux v, (gy T Uy gx) (466)
ny :ZhGXy Exy (4.67)

Rearranging equation (4.17) in function of F yields the following expression for the

membrane energy component:
ho2az| g r2eV 1 (g2 Y v, v, |0°F 8°F
bzl Eler) Elar) ETE Jarar
br2-arz | By L X \ Oy « Ey)ox° oy
N
+i{a FJ dxdy
G,, \ oxay

4.3.3.2 Porential energy due to bending strain

(4.68)

Similarly, from the bending components in equations (4.4) to (4.6), the expression for

the potential energy due to bending U is given by:

1 b2 a2
Ub:—j I{MXKX+2M K +My1cy}dxdy (4.69)

Xy Xy
-b/2-al2

where the bending moment components M., M, and M., are expressed by:

M, =Dy &, + Dy K, (4.70)
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M, =D, x, + Dk, (4.71)
M,, =2D; x,, (4.72)
with D given by equation (4.62).

Making the respective substitutions gives the following expression for the bending energy

component:
1°¢% %% ow Y o%w 0*w oow Y’
Uy =3 j j DXE?J +2Dy —F Dy(—zj
-b/2-al2 X X ay ay
2 (4.73)
o’w
+4 D, dxdy
OXoy

4.3.3.3 Porential energy due ro external in-plane loads in longitudinal and transversal

direction

The potential energy of the external in-plane loads, p, and p., respectively for longitudinal
and transversal directions, 7}, is calculated as the constant compressive forces multiplied

by the displacement v and #, which means:

b/ZaV al2 ou
T, =p,ah j ao|y+ p,bh j — & (4.74)

p
“br2 “ai2
In this thesis p. is always considered as null (only the longitudinal compression is

considered).

4.3.3.4 Potential energy due to external shear load

Although the applied tangential stress, p.,, is not considered in the study, the potential

energy of the external shear load, 7', is calculated by:

b/2 al2
ou ov
T=pyh | [—+&j dxdy (4.75)
-b/2 -al2

4.3.3.5 Porential energy due to external out-of-plane pressure

Analogously, the potential energy of the external out-of-plane pressure load 7,
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4.3. Formulation for orthotropic curved panels under generalized loading

corresponds to a uniform pressure, p., multiplied by the displacement w, integrated over
the surface area:

b/2 al2

To=—P, [ [ woxdy (4.76)

-b/2-al2

4.3.3.6 Toral potential energy

The total potential energy U., is obtained by adding the previous components:

Uy =U, +Ub+Tp+TS+TIp (4.77)

4.3.4 Boundaryconditions

4.3.4.1 Natural boundary conditions (loading conditions)

The boundary conditions for the orthotropic panels are defined similarly to the isotropic
case, in section 4.2.4, with the respective modification for the orthotropic properties.

BCC are presented next.

The total force in the x direction P, at the unloaded edges (at x=—4/2 and x=4/2) is null
because the panels are only loaded in y direction, consequently:

b/2
P =h j —dy 0 (4.78)

b2 O
On the other hand, at the loaded edges (y=—6/2 and y=5/2) the total force in the y
direction P, is given by:

al2

P,=h I —dx_ -ahp, (4.79)

—a/2
The tangential stresses in all edges are null, so at x=—4/2, x=4/2, y=—b/2 and y=b/2:
0°F
GX ==
Y oxoy
The bending moments M., and M, for simply supported boundary conditions are null for
both unloaded edges (at x=—4/2 and x=4/2) and loaded edges (y=—5/2 and y=b/2), and,

(4.80)
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consequently, must verify:

I .
M, =-|D, 2% ,p, Wi o

L v (4.81)

[ w o°w | '
My =Dy ——5+Dy—5|=0

G ox” |

4.3.4.2 Kinematic boundary conditions

For simply supported boundary conditions all edges have null out-of-plane

displacements, so at x=—a/2, x=a/2, y=—b/2 and y=b/2:

w=0 (4.82)
In order to force the edges of the orthotropic panels to remain straight in the x direction,
the variation of displacement (4#) must be constant for each point along the longitudinal
edges. Consequently, for x=—4/2 and x=a/2, it is necessary to define the following

condition:

Il
o
>

Au
(4.83)

(1 0%F 1 0%F LW owow 1(ow
R ox ox 2

2
— -V — | dx=const.
E, oy’ 'E, & j

-al2

Analogously, for the loaded edges, in the y direction, at y=—54/2 and y=56/2, Av has to
verify:
Av = bf il dy
b2
(1 0F 18F) ow,ow 1 ow
ErE s

(4.84)

—b/2

4.4 METHOD OF SOLUTION

4.4.1 Procedure

The out-of-plane deflections, w, and the out-of-plane imperfections, wy, are chosen in
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4.4. Method of solution

advance, respectively, by the following double trigonometric series:

w(x,y)=h i i bmnCos(mZXjCos(nzy) (4.85)

m=1,2,3,..n=1,23,...

Wy(x,y)=h i | imamnCos(mZX)Cos(nzy) (4.86)

These deflections may be considered with as many Degrees of Freedom (DOFs) as
desired. They satisfy the boundary conditions in equations (4.34) and (4.35).

The coefficients 4,,, and 4,.» are the amplitudes of the out-of-plane displacements and the
amplitude of the out-of-plane initial imperfections, respectively, while 7 and 7 are the

number of semi-waves in the transversal and longitudinal directions, respectively.

The general solution of equation (4.16) is given by the sum of the homogeneous solution

(Fv) with the particular solution (F;):

F=F+F (4.87)

consequently, £y has to satisfy the biharmonic equation:

v“|:0 =0 (4.88)

where V* is the biharmonic operator written as:

_ A 489
8X4 6X28y2 ay4 ( )

The homogeneous solution is in its most general form given by:

1 12
FOZ_EpyX +Xy pxy_pry +

> [(ClpCOShax+C2pSinhax)+x(C3p Coshax+C4pSinhax)JC03ay+ (4.90)
p=12,...

Y [(c5q Cosh By +Cq, Sinh By ) +y(Cyq Cosh By +C, Sinh ﬁy)]Cos Bx

gq=12,...

where Clp ,Czp ) Cgp 1C4p ) C5q ,Cﬁq ,C7q ,ng & and B are unknown constants.

The particular solution F; is obtained substituting equations (4.85) and (4.86) in

equation (4.16) and it is expressed by the following series:
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Fl:EhZ Z ¢qu032pﬂXC082qﬂy+
p=012...q=0L2... a b
(4.91)
ST X try
¢, COS——Cos——
szlzzzt:lzzl i a b

where ¢,, and ¢, , are determined satisfying equation (4.16) using, e.g., the method of
undetermined coefficients. ¢, are quadratic terms in b,,, and ¢, are linear terms in 4,,,

containing the radius R.

Imposing equation (4.87) to the respective boundary conditions, the following
expression for Fy* is obtained for BCC and BCU:

2
Eh’ ) {Cos p;ry Cosh pgx(Ap +B, xSinh%)} (4.92)

p=1,2...

F = +

En? Y {Cosqf:x(cq cosh Y 1 p, ySinh%ﬂ

gq=1,2... a

The expressions for A,, B,, C, and D, depend on the boundary conditions. They are

relatively extensive and are not presented here for brevity reasons.

4.4.2 Solution method

As previously seen in section 3.7, a hypothesis to study the post-critical behaviour of shells
is to use an approximate method with an analytical procedure such as the variational
Rayleigh-Ritz method or the Galerkin method to solve the governing differential
equations. Both methods are similar, working with the compatibility equation to relate
the Airy’s stress function, the out-of-plane displacements and the initial imperfections.
However, while the Rayleigh-Ritz method uses the total potential energy of the
conservative system, the Galerkin method uses the equilibrium equation (with no need

of a variational function) to stablish the algebraic equations for the equilibrium path.

As previously referred, the Rayleigh-Ritz method was chosen as method of solution

*It should be noted that, in some cases, a mathematical solution satisfying completely all boundary
conditions was not found (and it is maybe mathematically impossible for curved panels). However, the
differences from the idealized cases are very small and in no way compromise the obtained results.
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4.5. Summary

which was implemented through the software Mathematica [116]. In this method the
total potential energy U, is a function of a finite number of parameters b,.s (the
unknowns of the problems), leading to an extremum problem where the objective is to
find the stationary value of the function. This is the basis of the Rayleigh-Ritz method

and can be mathematically stated as:

ou

tot _
by, 0 (4.93)

4.4.3 Solution of the system of algcbraic equations with Ncwton-Raphson

method

This condition results in a set of 7% simultaneous non-linear third order algebraic
equations in which the parameters 4,,,’s are the unknowns of the problem. In order to

solve this system of equations an iterative process is required. The Newton-Raphson

method was used.

Snap-through phenomena in the analyses presented posteriorly were found to be very
rare or happening for high load levels. However, it should be noted that the semi-
analytical formulation should be able to account for them properly, provided that an
adequate method is chosen to solve the algebraic system of equations. For this the
Newton-Raphson in load-control fails to catch the equilibrium path when the tangent is
zero, therefore requiring a displacement-control incrementation strategy or using an arc-
length method. Due to the reasons previously presented the implementation of an arc-

length resolution method was considered not justifiable.

4,5 SUMMARY

A formulation based on the large deflection theory was derived for cylindrically curved

panels, which is the basis of the proposed semi-analytical method.

Provisions for isotropic panels under uniaxial compression were first presented. The
formulation was then generalized for orthotropic panels under different loading
conditions, namely: compression in both directions, shear loads and out-of-plane

pressure. The orthotropic properties were formulated to account explicitly for the
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4. Formulation of large deflection theory for curved panels

number and geometry of stiffeners in the concave side of the panels.

The method of solution is able to deal with a Multi Degree of Freedom (MDOF)
problem based on the Rayleigh-Ritz method.

Consequently, the semi-analytical model based on the presented formulation shows
potential to predict the elastic post-buckling behaviour of cylindrically unstiffened and
stiffened curved panels with different curvatures, aspect ratios, loading and boundary

conditions.
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S MODELLING CURVED PANELS BY
THE FINITE ELEMENT METHOD

5.1 INTRODUCTION

This chapter is devoted to the considerations assumed in the numerical modelling of the

panels. The analyses were carried out using the Finite Element software ABAQUS [117].

The aim of using the Finite Element Method (FEM) is twofold: 7) to characterize
systematically the behaviour of unstiffened and stiffened curved panels in the most realist
way possible (imperfections, plasticity, etc.); and #7) to validate the semi-analytical model

through comparison of the results.

The chapter begins, in section 5.2, with a brief introduction to the type of analyses used
in the current study with the FEA, namely LBA, GNIA and GMNIA. Sections 5.3 to 5.6
are devoted to explain the way boundary conditions, application of the loading, material

properties and mesh were considered in the FE software. Section 5.7 addresses the



5. Modelling curved panels by the Finite Element Method

detailed modelling of imperfections. Section 5.8 shows the way residual stresses are
generally incorporated in numerical models. A brief state-of-the-art about the topic is

presented. The numerical models are, finally, validated in section 5.9.

The procedure and the outcomes resulting from each numerical analysis are represented
in Figure 5.1. As it will be described in the following sections, several steps are carried out
to analyse properly the behaviour of the panels. In generic terms the procedure is as
follows: 7) the modelling of imperfections is done defining the coordinates of each node
of the panels. This provides freedom to model the imperfections as desired; 7) if
imperfections from eigenmodes are desired, a LBA analysis is required; 7i7) with the
equivalent geometric imperfections defined, they are introduced in the GNIA or
GMNIA analyses; 7v) the GNIA is performed to obtain the nonlinear equilibrium paths
using an elastic material. This is useful for comparison with the SAM (Chapter 7); v) if
the ultimate load is desired, a GMNIA has to be performed, considering the plasticity of
the material. The ultimate load can be compared with the SAM when a strength criterion
is employed (Chapter 8 ); and finally, v7) if the ultimate load is plotted in function of the

slenderness of the panels, this has to be calculated using the eigenvalues of the LBA.

7’ ~
// Modelling of
‘. _imperfections _/

- -

Equivalent Equivalent
geometric geometric
imperfections imperfections

Nonlinear
equilibrium
paths

Comparison
with the
SAM

Figure 5.1:  Procedure and outcomes of the different numerical analyses
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5.2 TYPES OF ANALYSES

5.2.1 Introduction

The design of steel shells in general can be done using different methodologies through a
single analysis or combining different types of analyses. When an element is subjected to
compression, the simplest approach is to use a Linear elastic Bifurcation Analysis (or
Linear Buckling Analysis) (LBA) to obtain the critical buckling load of a perfect element
and applying to it a reduction coefficient, known as “knockdown factor”, to take into
account the imperfections of the element, either geometric or material nonlinearities
[118]. This approach has important shortcomings since it does not allow introducing
accurately the problem of non-linearity and imperfections found in real cases. As
discussed in Chapter 2, this was the common practice in the beginnings of shell stability
studies. On the other hand, to deal with the large deflection behaviour a nonlinear
analysis is required. If geometric nonlinearities and imperfections are included, the
analysis is named Geometrically Nonlinear Analysis with Imperfections (GNIA). Finally,
if nonlinearity is considered for the material law, the analysis is called Geometrically and
Materially Nonlinear Analysis with Imperfections (GMNIA), which is the most

sophisticated approach.

These types of analysis are briefly discussed in the next paragraphs.

5.2.2 Linear elastic Bifurcation Analysis (LBA)

A LBA consists in the solution of a problem of eigenvalues and eigenvectors in which the

loads that make the stiffness matrix, K, singular are determined. This means that:

(K+A44K)v=0 (5.1)

where AK is the matrix of the initial stresses due to the incremental loading, 1 are the load
factors (cigenvalues) and v are the nodal displacements corresponding to the buckling

mode shapes (eigenvectors).

The solution of this problem was performed through the Subspace algorithm available in
ABAQUS.
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5. Modelling curved panels by the Finite Element Method

5.2.3 Geometrically Nonlinear elastic Analysis with Imperfections included

(GNIA)

When compression is presented in geometrically nonlinear problems involving energy
loss in the system (negative stiffness), characteristic of buckling problems, the
equilibrium path is not monotonic and as such, solution algorithms that can efficiently
follow this behaviour should be applied. For this, the Newton-Raphson in load-control
fails to catch the equilibrium path when the tangent is zero. This may be overcome using
the same method in displacement-control or using an arc-length method, like Riks [119].
In ABAQUS the Newton-Raphson is performed with the algorithm *Szatic, General and
the Riks with the algorithm *Stzatic, Riks. In the performed finite element analyses,

preference was given to the latter.

This type of analysis is directly compared with the proposed semi-analytical procedure

because a linear material is considered in both procedures.

5.2.4 Geometrically and Materially Nonlinear Analysis with Imperfections
included (GMNIA)

The GMNIA in comparison with GNIA accounts additionally with a nonlinear material.
This material is defined in section 5.5. The influence of the consideration of a linear or a

nonlinear material is discussed posteriorly in section 6.4.

This type of analysis will be used to study the ultimate load of the panels.

5.3 BOUNDARY CONDITIONS

As previously discussed in section 3.4, three different types of boundary conditions can
be distinguished in simply supported panels which are reproduced in the numerical study.
Taking into account what was previously referred, when existing, the in-plane constraints
of the boundary conditions were applied defining the relative displacements between the
points of a same edge as null. This condition forces the edges to remain straight. This was

done through keyword *EQUATION in ABAQUS.
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5.4 LOADING CONDITIONS

As previously referred, compression is only applied in the longitudinal direction. In the
stiffened panels, unless otherwise stated, the compression force was applied on the
transversal edges of the panel including stiffeners through a constant linear force

perpendicular to the edges as exemplified in Figure 5.2 2). The effect of applying the load
only on the shell as exemplified in Figure 5.2 4), is discussed in section 6.3.7.

The out-of-plane load was considered through a uniform distributed pressure acting
perpendicularly to the surface of the shells. Furthermore, the pressure was considered to

act inwards and outwards, see Figure 5.3 2) and 4), respectively.

Throughout this document, the centripetal (inward) pressure is represented with
positive values and the centrifugal (outward) pressure with negative values. Preference is

given to the first situation. However, for comparison purposes, some cases will be

a) b)

Figure 5.2:  Application of the in-plane compression a) on the panel and stiffeners b) only

on the panel

a) b)

Figure 5.3:  Application of the out-of-plane pressure a)inwards b) outwards
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5. Modelling curved panels by the Finite Element Method

considered with the latter.

5.5 MATERIAL PROPERTIES

Similarly to the semi-analytical procedure, in LBA and GNIA, the material is assumed to
be elastic with a modulus of elasticity (£) of 210 GPa and a Poisson’s coefficient (v) of

0.3.

For the study of the ultimate load in GMNIA, a simplified elastic-plastic material with
linear strain hardening is modelled as prescribed in EN 1993-1-5 [1]. The material is
assumed with a yield stress (f;) equal to 355 MPa (corresponding to a $355 steel). From
that point, linear strain hardening is considered adopting a slope of £/100 and neglecting
the yield plateau. Several references based on these assumptions are found in literature
(e.g. [14], [15]). A further refinement is considered, accounting for the ultimate stress
(1) equal to 470 MPa. This model is represented in Figure 5.4 and it is introduced in the

FE software as true stress-true strain [1].

}

r 1 ~
400 I E/IOO,_

300

200

Stress [MPa]

100

0
0.000 0.025 0.050 0.075 0.100 0.125 0.150

Strain

Figure 5.4:  Modelling of the material behaviour for GMNIA

In some cases (properly identified), for validation purposes of the ultimate load predicted
by the semi-analytical method, a different steel, corresponding to a $§235, is used. In this

case f, and f, are, respectively, assumed with 235 and 360 MPa.
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5.6 TYPE OF ELEMENT AND MESH CONVERGENCE STUDY

Taking into account the high value of the length/width to thickness ratios of the panels,
shell elements were chosen, specifically linear four node shell with reduced integration
(S4R). S4R is a robust general-purpose element suitable for shell instability problems
[120], which is appropriate for the current numerical models, taking into account the
mesh discretization and the relative low curvature of the panels in study, meaning that

shell elements with more nodes are not justified.

The mesh size of the panels was defined following some principles for the discretization.
The elements were assumed to have approximately the same dimensions in both
directions, ze. they are close to a square. The minimum number of elements along the
stiffener was assumed to be 4. To use an approximate dimension for the surface of the
panel and for geometric reasons, it was sought to maintain an integer number of elements
between stiffeners, to match the node of the stiffeners with the node of the panel. 96
verifies this condition because it is common multiple of (7+1). The number of elements
in the longitudinal direction varies respectively with the aspect ratio. This number of
elements was assessed through a mesh convergence study and it was concluded that these
number of elements coincides with the solution with more elements. This means that

increasing the number of elements practically does not affect the results.

5.7 MODELLING OF IMPERFECTIONS

5.7.1 Introduction

Due to the particular susceptibility of these structural elements to instability phenomena
and acknowledging the fact that initial geometric imperfections are of utmost
importance in the behaviour of thin-walled structures, a detailed modelling of the

imperfections is presented next.

The assessment of imperfections is, still nowadays, one of the most studied subjects in the
area of stability analysis of shells. The application of "real” imperfections in the finite
element analysis is difficult to implement and they are hardly available for practical

designs. Thus the alternative, following studies of authors such as Koiter [62] consists in
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5. Modelling curved panels by the Finite Element Method

applying a pattern of equivalent imperfections in the form of initial deflections
perpendicular to the middle surface of the shell. One of the most used hypothesis is to
assume this pattern given by the eigenmodes of a perfect element obtained by a linear
buckling analysis (LBA). These imperfections, being "equivalent”, must cover the effects
of other imperfections like load eccentricities, residual stresses, etc. Nowadays, in order
to obtain the most unfavourable situation, it is known that multiple eigenmodes and
different interactions corresponding to the desired deformation for local and global panel
imperfection and stiffeners imperfection should be considered. This is due to the fact
that the first buckling mode is not necessarily always the most disadvantageous one [121].
However, as will be discussed throughout this thesis, it was found that eigenmodes,
regardless their number, do not lead necessarily to the lowest ultimate loads in

comparison with other perfectly admissible imperfections.

However, for comparison purposes, the imperfection from the eigenmodes was analysed
for the unstiffened panels. This requires to perform firsta LBA, from which the deformed
shape of the eigenmodes (generally the first) will be used as an initial imperfection for the
subsequent GNIA or GMNIA. This is done in ABAQUS through the keyword
“IMPERFECTION.

Furthermore, with respect to stiffened panels, a clear distinction is made in the standards
regarding global and local imperfections of plated structures which requires to
differentiate between local, global and stiffener imperfections. However, for a large
number of analysis like the ones carried out in this study, the implementation of an
automatic process to treat imperfections is desirable. In stiffened panels, the global mode
appears sometimes only after tens of eigenmodes. Moreover, in the eigenmodes, the
deformation of the stiffeners is combined, in most cases, with the deformation of the
panel, which makes it impossible to define the correct amplitude for each type of
imperfection separately. Consequently, in this research, imperfections were modelled
defining directly the coordinates of the points composing the deformed panel. Although
secking to simulate in some cases the eigenmodes, imperfections were not set directly

from LBAs.

EN 1993-1-5 [1] states that an equivalent geometric imperfection may be used and its

direction should be the one leading to the lowest resistance. This standard specifies the
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5.7. Modelling of imperfections

Table 5.1:  Equivalent geometric imperfections from EN 1993-1-5[1]

im:zl'I;'Zcifon Component Shape Magnitude
global longitudinal stiffener with length a bow min(a/400;5/400)
local panel or subpanel with short span @ or b buckling shape ~ min(2/200;4/200)
local stiffener or flange subjected to twist bow twist 1/50

values for the equivalent geometric imperfections specified in Table 5.1. The same
standard also states that when several imperfections are combined, a leading imperfection
should be considered and the remaining ones may have their values reduced to 70%. This
possibility was not considered in the analyses. Similar values to the ones displayed in
Table 5.1 are given by DNV-RP-C208 [122] for the equivalent geometric imperfections.
These values for the amplitude of imperfections were used for the stiffened panels.
Besides that, both unstiffened and stiffened panels were considered in all cases with
positive and negative directions for the imperfection. As will be discussed later (in section
6.7 ), the direction of the imperfection that induces compression on stiffeners is more
detrimental in many situations. For reference, the direction of imperfections described
in this section is considered as positive when they induce tension on stiffeners and the

opposite direction as negative when they induce compression on stiffeners (see Figure

5.6).

Regarding unstiffened panels, besides the referred amplitude, a lower amplitude of
min(a/500;6/500) was also considered®. The objective is to mark the variation in the

ultimate load, taking into account reasonable values for the limits of local imperfections.

5.7.2  Stiffener imperfections

The amplitude for stiffener imperfections has its shape represented in Figure 5.5 and is

defined by equation (5.2).

> Despite standards usually denominate the imperfection of unstiffened panels as local, because they
are usually composing larger elements (e.g. a stiffened panel), in fact, if the panel is studied isolated, as
posteriorly, the imperfection may be denoted as global.
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5. Modelling curved panels by the Finite Element Method

Figure 5.5:  Stiffener imperfection and respective amplitude

X(Y,2)=eps cos(nEyJ (5.2)

where the amplitude of the stiffener imperfections, eq, is given by:

€ys =2/50 (5.3)
which corresponds to a bow twist of 1/50 and takes the maximum value at the top of the
stiffener:

Cos,max = hs /50 (5.4)

Conservatively and according to the indications of EN 1993-1-5 [1] a single semi-wave

was considered, i.e. =1 in equation (5.2).

This type of deformation is associated with the buckling of the stiffener and it occurs
generally when the stiffeners are slender. This imperfection pattern facilitates de

development of displacements at the stiffeners.

5.7.3 Global imperfections

The global imperfections correspond to a bow in all the extent of the panel represented

in Figure 5.6.

This type of deformation occurs generally when the stiffeners have low inertia (overall

buckling mode). The modelling of global imperfections is given by:

z(X,y)=¢pq COS{maﬂX]cos(nZyj (5:5)

y

where 72 and 7 are, respectively, the number of transversal and longitudinal semi-waves,
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5.7. Modelling of imperfections

Figure 5.6:  Global imperfection and respective amplitude

considered equal to 1, and 4, is the projected width on the x-axis. The amplitude of global

imperfections (ec) is given by:
€ys =Min(a/400;b/400) (5.6)

Equation (5.5) corresponds to equation (4.86) defined for the semi-analytical model.

5.7.4 Local imperfections

A subpanel corresponds to the part of the panel between stiffeners as represented in
Figure 5.7. The local dimensions which are function of the number of stiffeners are given

by equations (3.36) and (3.37).

Based on this, the geometrical properties of the subpanels may be represented by the local
aspect ratio, au., (function of the local length, .., and the local width, 4s.) and the local

curvature, Zy,., respectively, by equations (5.7) and (5.8).

a/ ( nst+1 )
<t

I |

3 | 7 AN \
b=aa 3

3 \ AN o 7 !
% -

\Y

subpanel stiffener

Figure 5.7:  Subpanel of a stiffened panel
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b, aa
:_OC == 1
Ajoe PRPYTEEY a(n,+1) (5.7)
g, - (B 2 (5.8)
loc — - - 2 .
Rh Rh (ns+1)

The local imperfections may be reproduced using: 7) perfect semi-waves; or iz) a sum of
sines. The latter, may be justified to simulate more complex buckling shapes of the
subpanels between stiffeners, for example, in stiffened panels with high curvatures and a
small number of stiffeners. These imperfections can be based on the eigenmodes of the
equivalent isolated subpanel and they are only possible to be simulated by a sum of sines.
Both situations were implemented in the modelling of imperfections and they will be
described in the next paragraphs. However, taking into account that stiffened panels
present usually large values of local aspect ratio, ., and low values of local curvature, Z,,
for the subpanels between stiffeners it is possible to conclude that, in most cases, the
deformation of the subpanels in the eigenmodes are very well reproduced by perfect semi-
waves. Additionally, based on what was concluded for the isolated unstiffened panels, the
perfect semi-waves lead, in a large part of the cases, to lower ultimate loads. Consequently,
the patterns for the local imperfections are reproduced by perfect semi-waves as the

default case.

This type of imperfections occurs when the stiffeners are sufficiently strong representing

nodal lines, as shown in Figure 5.8.

The modelling of the imperfections based on the eigenmodes of the equivalent subpanels

is described as follows. The eigenmodes depend significantly on the geometry of the

Figure 5.8: Local imperfection and respective amplitude
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Normalized displacement

-1.0 -0.5 0.0 0.5 1.0
Normalized longitudinal section

Figure 5.9: Longitudinal section of the first eigenmodes for different curvatures (¢=1.0,
BCC)

panels and for subpanels with high values of curvature, the eigenmodes cannot be defined
by simple sinusoidal functions (see Figure 5.9). In the graph, the central longitudinal
section for panel with #=1.0 and BCC is plotted for curvatures up to Z=150. It is seen
that while for the flat plate the eigenmode is well represented by a single longitudinal
semi-wave, as the curvature increases the maximum displacement approaches the edges
and the deformation becomes more complex. The high values of curvature Z=100 and
Z=150 are presented to show that for these curvatures, the eigenmodes tend to stabilize
for a similar shape. In fact, it was verified that the shape for Z=100 was the one better
suited to be used in the modelling of imperfections. For example, in general, for larger
aspect ratios, the pattern for Z=100 fits better the deformation of the subpanels than
Z=50, which leads to a depression at the centre of the panel not visible in the eigenmodes

of the stiffened panels. This will better explained in section 6.2.

Moreover, the pattern of the eigenmodes depends strongly of their aspect ratio as shown
in Figure 5.10, where the relative longitudinal displacements of the first eigenmodes are
plotted for several aspect ratios and a curvature Z=100. It is possible to verify that as the
aspect ratio increases, the deformation tends to be localized close to the edges. Except for
the case with 2=0.5, the displacements at the central zone of the panels are all very close.
This deformation may be considered approximately representative for all boundary

conditions.
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Figure 5.10: Longitudinal section of the first eigenmodes for aspect ratios (Z=100, BCC)

As shown, these complex shapes require the eigenmodes to be approximated by functions
given by sum of sines. The adopted procedure uses different equations taking into
account the local aspect ratio (of the subpanel between stiffeners). The expressions for

these imperfection patterns are presented in Annex A.

Regarding the modelling of the local imperfections by perfect semi-waves, they are

defined by:

Z(X,y):eoLCOS[maﬂXJCOS(nZyj (5.9)

y

The amplitude of local imperfections (en.) is given by:

&y =Min(a,,, / 200;b/200) (5.10)

In all the cases, the number of transversal semi-waves depends on the number of

stiffeners, as follows:
n=n,+1 (5.11)
With respect to the number of longitudinal semi-waves, they can be approximated by the

number of semi-waves occurring for the eigenmodes of flat plates (equation (2.2) with

the transversal semi-wave 7=1). Assuming that £, has to be equal for 7z and #+1 (point
where the curves intersect), the following expression is obtained for 2 at the intersection

point:
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5.7. Modelling of imperfections

a=~n1+n (5.12)

or more conveniently the number of longitudinal semi-waves, 7, as a function of a:

n=CeiIing[%(—l+ V1+4a? )} (5.13)

The function Ceiling gives the smallest integer greater than or equal to the argument.

The procedure of using a sum of sines was found to approximate reasonably well the
eigenmodes given by the LBA. On the other hand, as it will be discussed in Chapter 6,
the perfect semi-waves are fundamental because they lead, for a large part of the cases of
the corresponding unstiffened panels, to lower ultimate loads, both for short panels (with

a single semi-wave) and long panels (with multi semi-waves). Consequently, preference

Eigenmode imperfection Modelled imperfection (SS) Modelled imperfection (MPSW)
a)

Eigenmode imperfection Modelled imperfection (MPSW)
b)

Figure 5.11: Comparison of the modelled imperfection (SS and MPSW) with the respective
eigenmode: a) Z=100, n=1, 2=1.0 and BCC and b) Z=50, n=5S, 2=1.0 and BCC (unscaled)
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is given to the latter in the posterior parametric study.

In order to exemplify what has been said, in Figure 5.11 several stiffened panels are
modelled with different imperfection patterns: 2) Z=100 with z=1 and ) Z=50 with
n=5, both cases for #=1.0 and BCC. It is possible to verify that both the imperfection
from the eigenmode (EM) and the imperfection with a local pattern given by the sum of
sines (SS) are very similar in case 2). However, it should be noted that the eigenmode does
not contain the global imperfection, contrarily to the SS imperfection, reason why the
deformation of the stiffeners are slightly different. On the other hand, the multi perfect
semi-wave (MPSW) imperfection differs considerably from the previous cases on the
local imperfections. Additionally, in case &) it is visible that the EM is unable to provide
a reasonable deformation pattern for the panel because deformations are practically
existent only in the stiffeners. Contrarily, the local MPSW imperfection together with
the global and stiffener imperfections provides an efficient way to model realistic

imperfections in stiffened panels.

5.8 RESIDUAL STRESSES

Residual stresses are present in an unloaded element and they are due to manufacture and
fabrication processes. In curved panels, residual stresses are mainly due to the roll bending

process and welding.

The residual stresses due to the hot-rolling process are generally neglected in thin slender
panels like the one in study. However, they become important for thick, low slenderness
sections as shown by Alpsten [123] and Bjerhovde ez al. [124]. In these studies, the
minimum thickness considered is 12.7 mm but the corresponding width to thickness
ratio (a/h) is only 12. The distribution of the residual stresses across the width of the
studied plates was shown to be parabolic, with compression (o) at edges and tension
(7+:) at the centre. The results of both studies are shown in Table 5.2 where it is possible

to see a tendency of increasing magnitude of the residual stresses with the increasing of

¢ The figures are unscaled to facilitate the perception of the different components in the imperfection
patterns.
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Table 5.2:  Effect of hot rolling process in the residual stresses of thick plates based on
the studies by Alpsten [82] and Bjerhovde er al. [83]

thickness, » width, 2 " Grse Grss Tsclfy  rsilfy

foml  (mm] 7 [(MPal [MPa] (%] [%]
12.7 1524 120 -690 207 278 83
254 508 200 -89.6 138 361 56
Alpsten [123]
50.8 3048 60 1448 552 583 222
88.9 609.6 69 2137 621 861 250
50.8 3048 60 1103 586 444 236
88.9 3048 34 -1103 690 444 278
Bjmh[(ivzi‘; et al. 50.8 609.6 120 -131.0 552 528 222
88.9 609.6 69 -1586 862 639 347
1524 609.6 40 -1965 931 792 375

the thickness of the plates.

The fabrication operation to apply curvature in panels (which are generally obtained
from flat plates) through cold roll bending induce mainly circumferential residual stresses
varying along the thickness which may be important only for panels mainly loaded in
circumferential compression. The longitudinal component of the residual stresses has

generally low values and in most cases it is not relevant [125][126].

The welding stresses result from the heat generated that affects the properties of the
metal, which lead to differential thermal strains when the material cools. The tensile
stresses are due to the thermal contraction of the heated metal close to welds. Taking into
account the restraint against free thermal contraction, compression zones are also
generated away from the weld. These compression residual stresses are responsible for

decreasing the strength of a compressed element because the yielding process is modified.

In welded sections, only longitudinal stresses (parallel to the seam) are of practical
relevance, because in the transversal direction residual stresses due to welding have low
values and may be neglected [127][128]. Although the panels are usually welded along

the edges in both directions, the most relevant situation is the one leading to the residual
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Figure 5.13: Residual stresses configuration for unstiffened curved panels

stresses in the load direction. Taking into account that only uniaxial compression is

studied in detail, only the weld on the relevant direction are considered.

The real resulting residual stresses depend considerably on the welding process and input
parameters used (e.g. heat, size of weld, etc.). For design purposes, the real stress
distribution is usually represented by a simpler model with a parallel strip close to the
weld with width 7/ on each side for the tensile residual stresses with a constant value and
in the zone away a constant value for the compression residual stresses, as schematically
represented in Figure 5.12. The maximum value of the tensile residual stresses is
conservatively considered to be the yield stress of the metal and by equilibrium the value

of the residual stresses in the compression zone are determined as shown in Figure 5.13.
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nh nh

Figure 5.14: Residual stresses configuration for welding of stiffeners

From what has been said, the residual stresses configuration for unstiffened panels may
be assumed as presented in Figure 5.13. These residual stresses are parallel to the welds,
meaning that the longitudinal welds are the most unfavourable taking into account the

considered direction for compression.

In a similar way, when stiffeners are present welds induce tensile residual stresses in
parallel strips as represented in Figure 5.14, and compression residual stresses are

determined by equilibrium.

According to the bibliography, e.¢. Faulkner [129], Dubas and Gehri [130] and Ravn-
Jensen and Tvergaard [131], depending of the welding process, the value of 7, for the strip

width of the tensile residual stresses, varies generally between 2 and 6.

Braun [132] performed a thorough study on the stability of steel plates under combined
loading. The author considered a rectangular distribution for residual stresses with

n=2.25 for the tension stress value equal to f,.

For the case of stiffened plates, Chen and Guedes Soares [133] calibrated # in function
of the yield stress and geometry of the stiffeners and plate using numerical and

experimental results.

Consequently, whenever relevant residual stresses are considered in this work a value

n=2.25 is assumed.

5.9 FE MODEL VALIDATION

The Finite Element models were validated for LBAs and GMNIAs (with Riks

implementation).

Regarding the validation of the LBAs, the results from Martins [15] for unstiffened
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5. Modelling curved panels by the Finite Element Method

Table 5.3:  Validation of the numerical model for LBAs for unstiffened panels with
Martins [15] in terms of the elastic buckling coefficient, k,(¢=1.0, 2=1.0 m, A=0.01 m)

Z=0 Z=50 Z=100
Martins  Own Diff. Martins Own Diff. Martins Own Diff.
[15] FEA [%] [15] FEA [%] [15] FEA [%]
BUU 4.0 4.0 0.0% 16.3 16.32 0.1% 33.1 33.24 0.4%
BCU 4.0 4.0 0.0% 17.8 17.78 -0.1% 34.5 34.56 0.2%
BCC 4.0 4.0 0.0% 18.5 18.53 0.2% 35.1 35.12 0.1%

panels are used. The panels have aspect ratio ¢=1.0 with a width 2=1.0 m. The thickness
is considered with #=0.01 m and curvatures, Z, with 0, 50 and 100. The load is considered
as pure compression. The comparison of the results are presented in Table 5.3, in terms

of the elastic buckling coefficient, £..

In the case of stiffened panels, the elastic critical stresses, d,, obtained numerically were
compared with the results obtained by EBPlate software [134] for flat plates (Z=0) with
a=b=2.5 m, »=0.015 m and stiffeners with /=0.015 m and 4=0.15 m. Boundary

conditions BCU were considered. In Table 5.4 the results are presented for up to 3

stiffeners. The maximum difference is -4.19%.

The validation of the GMNIAs are done with the results of Martins [15] for unstiffened
and Tran [14] for stiffened panels. The same conditions of these numerical models were

replicated (geometry, imperfections, material, boundary conditions, etc.). Distinct

Table 5.4:  Validation of the numerical model for LBAs for stiffened plates with EBPlate
[134] in terms of the elastic critical stresses, o (Z=0, 2=1.0, 2=2.5 m, ~=0.015 m, A=0.015 m
and d=0.15 m, BCU)

Own FEA [MPa] EBPlate [134] [MPa] Diff. [%]

n=0 27.33 27.33 -0.01
n=1 112.31 113.64 -1.17
n=2 256.78 264.83 -3.04
n=3 412.83 430.88 -4.19
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5.9. FE model validation

Table 5.5:  Validation of the numerical model for GMNIA with unstiffened curved panels

from Martins [15] in terms of the reduction factor, ¥

Z=0 Z=50 Z=100
4=0.462 m 4=0.368 m 4=0.356 m
5=0.462 m 5=0.921 m 5=1.270 m
Martins Own Diff. Martins Own Diff. Martins Own Diff.
[15] FEA [%] [15] FEA [%] [15] FEA [%]

BUU 0.738 0.747 1.2% 0.412 0.423 2.7% 0.370 0.385 4.1%

BCU 0.752 0.759 0.9% 0.576 0.591 2.6% 0.512 0.539 5.3%

BCC 0.782 0.787 0.6% 0.580 0.590 1.7% 0.518 0.538 3.9%

boundary conditions were considered in both works: both considered simply supported

conditions but the in-plane restrictions along the edges are different.

Imperfections in Martins [15] were given by the first eigenmode with an amplitude of
min (2/200; £/200). The compression load is uniform across the width of the plate. The
panels have thickness #=0.01 m and curvatures Z= 0, 50 and 100. The width, 4, and the
length, b, were calculated for a corresponding slenderness, 4, equal to 1.0. The results are
compared in terms of the reduction factor, y, for the ultimate strength in Table 5.5. A

maximum difference of 5.3 % is obtained.

In Tran [14], the first global mode from eigenmodes was selected with an amplitude of
min (2/400;6/400). The direction of the imperfection chosen in the centrifugal direction

(compression induced on the stiffeners). The author considered stiffened panels

composed by 8 flat stiffeners with /,=0.016 m and 4,=0.15 m. The panels have /#=0.012

Table 5.6: Validation of the numerical model with stiffened curved panels from Tran [14]

in terms of the reduction factor, y (BCU)

Z=0 Z=192

Tran [14] Own FEA Diff. [%] Tran [14] Own FEA Diff. [%]

2=0.5 16.9 17.81 5% 21.9 20.64 -6%
2=1.0 8.2 7.80 -5% 18.0 17.68 2%
2=1.5 7.7 7.23 -6% 15.2 15.21 0%
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5. Modelling curved panels by the Finite Element Method

m, 2=b=4.8 m and #=0.5, 1.0 and 1.5. Two levels of curvatures were considered, Z=0

and Z=192. From Table 5.6 it is possible to verify that the maximum difference is -6%.

Taking into account the low values of the maximum differences verified for all cases, it is

possible to consider the present numerical models validated.

5.10 SUMMARY

This chapter addressed the numerical modelling of the curved panels.

The types of analyses were briefly described and the way they were employed was
explained. The assumed options regarding the boundary and loading conditions, the

material properties and the type of element and mesh were described.

The modelling of the imperfections and the reason why they were modelled in a thorough
manner (contrarily to the default approach of using the cigenmodes) were given.
According to the bibliography, it was possible to conclude that the residual stresses due
to the hot-rolling process may be neglected for these thin panels. Consequently, only the

influence of weld induced residual stresses will be assessed in the next Chapter.

The numerical models were validated allowing its use in the following sections.
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6 CHARACTERIZATION OF THE
BEHAVIOUR AND ULTIMATE LOAD
OF UNSTIFFENED AND STIFFENED
CURVED PANELS UNDER
COMPRESSION AND OUT-OEF-
PLANE LOADING

6.1 INTRODUCTION

In this chapter, the behaviour of both unstiffened and stiffened curved steel panels under

uniaxial compression and out-of-plane pressure is assessed. This assessment is carried out

using the Finite Element Method (FEM), through the ABAQUS software as described



6. Characterization of the behaviour and ultimate load of unstiffened and stiffened curved panels under
compression and out-of-plane loading

in the previous chapter. The objective is to characterize the “real” behaviour of these
panels accounting for a variety of imperfections and plasticity of the material, in the most
realistic way possible. Consequently, an extensive parametric variation is carried out for
all possible parameters, namely curvature, aspect ratio, boundary conditions, and
geometry and arrangement of stiffeners, in the case of stiffened panels. The important

effect of imperfections is studied in a very complete way.

The results are assessed in terms of the critical behaviour, nonlinear behaviour, through
the equilibrium paths and in terms of the ultimate load. With this, it is expected to take
useful conclusions in terms of the relevant parameters (curvatures, aspect ratios, level of
imperfections, etc.) and understand the way they affect the behaviour of the curved

panels.

Firstly, in section 6.2, a brief study on the impact of the geometric parameters on the
critical behaviour of the unstiffened and stiffened curved panels is presented. In section
6.3 a preliminary study for the definition of the limits and parameters required to be
incorporated in the parametric study is carried out using an elastic material. Next, in
section 6.4, the effect of the nonlinearity of the material is introduced and assessed in
comparison with an elastic material. The way this affects the equilibrium paths in
comparison with the ones using an elastic material is analysed. The effect of residual
stresses is addressed in the succeeding section. Its impact on the ultimate load is verified
and the need for its use in the numerical analyses is discussed. In sections 6.6 and 6.7, the
results of the parametric variation for the unstiffened and stiffened panels, respectively,
are discussed in terms of the large deflection behaviour and ultimate load under uniaxial
compression. Similar analyses are then performed for the unstiffened and stiffened panels

under out-of-plane pressure in sections 6.8 and 6.9, respectively.

The results of the numerical analyses performed in this chapter will be useful in Chapter

7, where the semi-analytical formulation is applied and validated.
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6.2. Critical behaviour of unstiffened and stiffened curved panels under uniaxial compression

6.2 CRITICAL BEHAVIOUR OF UNSTIFFENED AND STIFFENED

CURVED PANELS UNDER UNIAXIAL COMPRESSION

6.2.1 Introduction

The objective of this section is to present some basic results on the critical behaviour of
curved panels which are considered essential for the understanding of some concepts
presented in the following sections. As previously referred, the main focus of the thesis is
not on the critical behaviour of the curved panels. Consequently, the critical behaviour
of curved panels is only briefly described in next paragraphs. The elastic buckling
coefficient for unstiffened curved panels was studied in detail by Martins ez /. [53] [54].

However, unlike these studies, besides unstiffened panels, stiffened curved panels are also

addressed here.

The results presented in this section are obtained by FE analyses; however, for validation
purposes of the critical load, some comparisons with the semi-analytical model will be

presented posteriorly in Chapter 7.

6.2.2 Elastic buckling coefficient

The critical stress, g., of a curved panel may be characterized, similarly to flat plates, by:

)
k&= [0
O-cr o 12(1_02) a (6'1)
where £ is the elastic buckling coefficient, which for curved panels accounts with the

curvature. The remaining variables were previously defined.

In Figure 6.1 the buckling coefficients, £., are plotted for different curvatures and aspect
ratios for boundary conditions 2) BUU, /) BCU and ¢) BCC. Curvatures from Z=0 to
Z=50 with steps Z=1 and aspect ratios from 2=0.2 to 2=5.0 with steps 2=0.1 are

presented. Consequently, a total of 7497 LBAs were performed for the construction of

the graphs.

This range of parameters allows to cover most cases of unstiffened curved panels (even as

alocal panel between stiffeners) with practical significance.
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Figure 6.1:  Plotting of the buckling coefficients, k,, for different aspect ratios and
curvatures for boundary conditions 2)BUU, 5)BCU and ¢/BCC
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6.2. Critical behaviour of unstiffened and stiffened curved panels under uniaxial compression

The curvature is found to change dramatically the critical behaviour of the panels. It is
possible to verify that for flat plates (Z=0) the buckling coefficients, £, are not affected
by the boundary conditions. The same is not true for curved panels. When Z>0, the
surface given by the values of £ is relatively distinct for each type of boundary condition.
However, the same tendency is verified, in general: 7) low aspect ratios (« lower than ~
0.5) lead to considerably high values of k., which increase very fast as 2 approaches 0 iz)
as the aspect ratio increases, the buckling coefficient tends to stabilize, however local
minimums are found along 2. This effect vanishes the more restrained the boundary
conditions are; 777) k, increases as the curvature increases with an approximately constant
rate. This rate is larger the more restrained are the boundary conditions; and iv) £,
increases as more in-plane restraints are considered for the boundary conditions, i.e. in a

general way, one can say £, suv<ksscu<ksscc.

6.2.3 Effect of the boundary conditions

The influence of the three boundary conditions defined in section 3.4 are now assessed
in terms of the elastic buckling coefficients and eigenmodes. In Figure 6.2, the first
eigenmodes for unstiffened panels with curvatures Z=0 to Z=100 and aspect ratio 2=1.0
for boundary conditions BUU, BCU and BCC (for the rectangular coordinate system)
are presented. It is possible to verify that the curvature changes very considerably the first
eigenmodes. While for flat and very low curvatures the pattern is well adjusted with a
global semi-wave in each direction, for higher curvatures the complexity of the pattern
increases significantly. The type of boundary condition changes also the pattern of the
eigenmodes. For low curvatures, the differences are small but for Z=30 and Z=50, for

example, they are very noticeable.

Still in regard to the boundary conditions, in Table 6.2 the differences in considering the
boundary conditions defined in a rectangular or a cylindrical coordinate system (CS) are
presented. The values are shown in terms of the elastic buckling coefficient, £, for both
coordinate systems and all types of boundary conditions, considering unstiffened panels
with 2=1.0 (4=6=1.0 m), »=0.01 m and curvatures from Z=0 to Z=100. The difference
depends on the central angles which are in function of Z, b and 4 (6=Zh/a). The values

used for these variables are typical of real geometries and, consequently, the differences
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BUU BCU BCC

Z=0

Z=10

Z=30

Z=50

Z=100

Figure 6.2:  Effect of boundary conditions on the first eigenmode (2=1.0, n=0 and

rectangular CS)

may be considered representative of real curved panels.

The cylindrical CS leads to slightly lower values of 4, than the rectangular CS. As
expected, the differences have the minimum value for Z=0 and the maximum for Z=100.
It is verified that the maximum difference on the elastic buckling coefficient between
both cylindrical and rectangular coordinate systems is -1.4%, -1.1% and -1.0% for BUU,
BCU and BCC, respectively, for Z=100 (a large value of curvature) and a central angle
6=1.0. These values allow to conclude that the differences between both coordinate

systems may be neglected for the critical load and consequently conclusions may be drawn
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6.2. Critical behaviour of unstiffened and stiffened curved panels under uniaxial compression

Table 6.2:

rectangular and cylindrical coordinate systems (n,=0, 2=b=1.0 m, A=0.01 m)

Elastic buckling coefficients &,and differences for boundary conditions with

Z=0 Z=10 Z=20 Z=30 Z=40 Z=50 Z=60 Z=70 Z=80 Z=90 Z=100

(6=0) (6=0.1)(6=0.2) (6=0.3) (6=0.4) (6=0.5) (6=0.6) (6=0.7) (6=0.8) (6=0.9) (6=1.0)

ko 400 479 695 987 13.02 1629 19.64 23.03 26.42 29.80 33.18

BUU £,y 400 479 692 981 1292 1614 1944 2276 26.09 29.40 32.71
Diff[%] 0.0% -0.1% -0.4% -0.6% -0.8% -09% -1.0% -1.1% -12% -1.3% -1.4%

ko 400 S.10 794 1127 1449 1776 21.11 2447 27.83 31.17 3452

BCU k., 400 5.09 791 1121 1441 17.65 20.95 2427 2757 30.86 34.15
Diff[%] 0.0% -0.1% -0.3% -0.5% -0.5% -0.6% -0.7% -0.8% -0.9% -1.0% -1.1%

keree 400 570 921 1228 1531 1852 21.83 2515 2846 31.76 35.08

BCC k., 400 570 9.9 1224 1524 1842 21.69 24.96 2822 3147 34.72
Diff[%] 0.0% -0.1% -0.2% -0.3% -04% -0.6% -0.7% -0.8% -0.9% -0.9% -1.0%

for the critical behaviour

considered.

of curved panels without specifying the coordinate system

The differences in £, due to the type of boundary conditions (BUU, BCU and BCC) are

calculated in Table 6.1. Here, the differences are in some cases very important. The larger

differences are verified between BUU and BCC and the maximum values occur for

intermediate curvatures (Z=20). In this case, BCC shows a buckling coefficient 32.5%

larger than the corresponding case for BUU. For flat plates (Z=0), the type of boundary
conditions does not affect the value of £, (the differences are 0.0%) and for Z=100 the

maximum difference is only 5.7%.

Table 6.1:

BCU and BCC (n~0, a=b=1.0 m, ~=0.01 m , rectangular CS)

Differences in the elastic buckling coefficient &, for boundary conditions BUU,

Z=0 Z=10 Z=20 Z=30 Z=40 Z=50 Z=60 Z=70 Z=80 Z=90 Z=100
BUUand BCU  0.0% 6.3% 14.1% 14.1% 11.2% 9.0% 7.5% 6.3% 53% 4.6% 4.0%
BUUand BCC  0.0% 19.0% 32.5% 24.4% 17.6% 13.7% 11.1% 92% 7.7% 6.6% 5.7%
BCU and BCC 0.0% 11.8% 15.8% 8.6% 5.2% 37% 27% 2.0% 14% 0.9% 0.6%
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compression and out-of-plane loading

6.2.4 Effect of the aspect ratio

The effect of the aspect ratio both on the first eigenmodes and on the elastic critical
buckling coefficient, £, is very notorious. In Figure 6.3, the first eigenmodes for flat and
curved panels are presented for different aspect ratios from short (2=0.5) to long panels
(2=3.0). It is verified that for large aspect ratios, curved panels present more complex
eigenmodes. For the flat case the complexity is the same only the number of perfect semi-
waves increases. Consequently, if one wants to model this behaviour by semi-analytical
models, the required number of degrees of freedom (see equation (4.85)), is much larger

in curved panels than flat plates.

Regarding the influence of aspect ratio in k., it is seen that, in general, short panels (2<0.5)
show much higher values than a corresponding long panel. However, this tendency is not
monotonic, because it has local minimum and maximum values, as previously shown in
Figure 6.1. It is well known, that for flat plates the minimum value of £, is 4.0. For curved

panels this value depends considerably on the curvature.

In Table 6.3 some values of £, are presented for panels with different curvatures and

aspect ratios (BCC). It is possible to confirm with numerical values that the curvature

2=0.5 2=1.0 a=1.5 2=3.0
- m @
Z=30 @ Q
Z=50 0

Figure 6.3:  Effect of aspect ratio on first eigenmode (BCC, n=0 and rectangular CS)
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6.2. Critical behaviour of unstiffened and stiffened curved panels under uniaxial compression

Table 6.3: Elastic buckling coefficient &, for different aspect ratios (BCC, n=0, rectangular

CS)
2=0.3 2=0.5 2=1.0 2=1.5 2=3.0 2=5.0
Z=0 13.25 6.25 4.00 4.34 4.00 4.00
Z=10 13.43 6.74 5.70 6.64 7.13 7.67
Z=30 14.88 10.52 12.29 12.38 13.07 13.90
Z=50 17.74 17.27 18.53 18.79 19.36 20.09

shows a tendency to increase the values of &, for all the aspect ratios presented.

6.2.5 Effect of the curvature

The effect of curvature on the critical behaviour of curved panels has been presented
together with the influence of the other variables. As it has been seen, the curvature
changes drastically the critical load and the eigenmodes of the panels. Generally, the

greater the curvature the greater is the critical load of the panels.

Until now only the first eigenmodes have been discussed; however, despite not showing
a large practical interest, for comparison purposes the first 5 eigenmodes of a flat plate
and a curved panel (Z=30) are compared in Figure 6.4. As it is seen the eigenmodes can

be considerably changed with curvature.

1*eigenmode 2" eigenmode 3" eigenmode  4* eigenmode 5% eigenmode

Z=0

QR
S LLLLR

Figure 6.4:  First S eigenmodes (BCC, a=1.0 and rectangular CS)
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compression and out-of-plane loading

6.2.6 Effect of the stiffeners

The effect of the stiffeners is very important both in the values of £, and in the
eigenmodes. Depending on the second moment of area of the stiffeners, the critical
behaviour of these panels is completely changed. If the stiffeners have high second
moment of area such that they constitute nodal lines, the panel buckles locally between
stiffeners. On the other hand, if the stiffeners have a low second moment of area they will
buckle together with the panel. This global buckling is easier to happen the greater the
number of stiffeners because the panels approaches an orthotropic behaviour. This

phenomenon is shown in Figure 6.5, where the first eigenmode is shown for 1 and 5

n=1 n=5

n=0 low 274 high 2" moment Low 2™ moment high 2™ moment
moment of area of area of area of area

Z=0

Z=30

Figure 6.5:  Effect of the number and 2" moment of area of stiffeners on the first eigenmode

(BCC, a=1, n=0, and rectangular CS)

a) b)

Figure 6.6:  Effect of the load applied a) only on the shell; and b) the shell and stiffeners. on
the first eigenmode (BCC, a=1.0, Z=50 and n=5)
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6.2. Critical behaviour of unstiffened and stiffened curved panels under uniaxial compression

Table 6.4: Differences in the critical load, P,...», and in the elastic buckling coefficient, &,
when applying the load only on the shell or on the shell and stiffeners (2=b=1 m, ~=0.01 m,
h=0.01 m and d=0.1 m)

Load on the shell Load on the
shell and stiffeners

Z PNl k Ppu[kN] k. Dif[f; A)I])y"”" : ;i/i]

0 3249 17.12 3438 16.47 -5.5% 3.9%
n=1 30 4634 24.42 4913 23.53 -5.7% 3.8%

50 5603 29.52 6020 28.83 -6.9% 2.4%

0 14355 75.63 15073 61.09 -4.8% 23.8%
n=3 30 14683 77.36 15235 61.75 -3.6% 25.3%

50 15300 80.61 15584 63.16 -1.8% 27.6%

0 27902 147.01 20597 72.34 35.5% 103.2%
n=5 30 29429 155.05 20542 72.15 43.3% 114.9%

50 28077 147.93 20512 72.05 36.9% 105.3%

stiffeners with low and high second moment of area and compared with the respective
unstiffened panel. Flat and curved panels (Z=30) are used for comparison. The
differences between the flat and curved panels are only in curvature, Z.e. they have the
same dimensions including the stiffeners. It is found that curvature can change

significantly the buckling mode, especially for the case with less stiffeners.

Another import aspect is the way as the compression in-plane load is applied, if only on
the panel or on the panel and stiffeners simultaneously. Table 6.4 presents the
comparison of this aspect in terms of the critical load, P, and in the elastic buckling
coefficient, ,, for stiffened panels with 1, 3 and 5 stiffeners with 4=6=1 m, /=0.01 m,
h=0.01 m and 4.=0.1 m. Some conclusions may be drawn regarding this aspect. Firstly,
when the load is applied also on the stiffeners the critical load is higher for 1 and 3
stiffeners, but not for 5 stiffeners, with significant differences. This is explained by the
fact that in the first two cases the buckling occurs on the panel and stiffeners together

while on the latter it occurs only on the stiffeners, see Figure 6.6. Despite being an
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example, this case shows that the way the load is applied can change dramatically the
critical behaviour of the panels. Secondly, due to the difference in the load application
area in both cases, while for 7.=3, for example, while P, is smaller when the load is
applied only on the shell, £, is larger. For Z=50, the maximum difference in ), is -1.8%,
while in £, is 27.6%.

6.3 PRELIMINARY ANALYSIS FOR THE DEFINITION OF THE
PARAMETRIC STUDY

6.3.1 Introduction

The objective of this section is to carry out a preliminary study for the definition of the
limits and parameters to incorporate in the extensive parametric study that will be
performed in next sections. This will be the first contact with the effect of the parameters
on the large deflection of the panels and the aim is to understand the way they influence
its behaviour in order to conclude about the need of their consideration. For this
objective, unstiffened and stiffened under compression are considered. The parameters
evaluated are the effect of the coordinate system, boundary conditions, aspect ratio,
curvature and imperfections. The results are presented for some cases carefully chosen
with the aim to be representative of the remaining cases. Only axial compression and an

elastic material are considered in this phase.

6.3.2 Eftect of coordinate system used for the boundary conditions

The influence of the coordinate system (CS) used to define the supports is assessed next
in terms of the equilibrium paths. As previously discussed in section 3.4, the curvature of
the panel changes the orientation of the supports. This influence was evaluated in section
6.2.3 for the critical loads and a negligible effect of the coordinate system was found. The

objective is now to assess if the same is true for the post-critical behaviour of the panels.

From equation (3.34) and (3.38), it is possible to rewrite the central angle in function of

the curvature, Z, and width to thickness ratio, /5, as follows:
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_Z

N @ (6.2)

In fact, the parameter 0 is the main responsible for the differences in the results between

both coordinate systems (see Figure 3.6).

In Figure 6.7 2), b) and ¢), the equilibrium paths of the panels with curvatures from Z=0
to Z=100 composed by an elastic material are plotted using the FEM for boundary
conditions BUU, BCU and BCC, respectively, for rectangular and cylindrical coordinate

systems.

The width, 4, and thickness, 4, of the panels presented in the charts are, respectively, 1.0
m and 0.01 m (i.e. 2/h=100), which leads to the central angles presented in Table 6.5.
The equilibrium paths are obtained considering an initial global imperfection wo=4/500
(a perfect semi-wave in each direction) for aspect ratios, 2=1.0. The equilibrium paths are
plotted in function of the normalized out-of-plane displacement, 4, at the centre of the
panel for the load normalized to the equivalent plastic load, y, if a yield stress would be
used £y=355 MPa. It should be noted that no yield stress was used in the material law.

This value is used only to normalize the load.

From the observation of the results it is possible to draw the following conclusions: 7) the
coordinate system does not change the behaviour of the panels, 7.e. the equilibrium paths
show exactly the same development; 77) the effect of the coordinate system is noticeable
only on the final part of the curves. The curves obtained for the cylindrical CS are slightly
below the ones for the rectangular CS. This effect is only noticeable with the increase in
curvature. In fact, the differences for the flat plate (Z=0) are 0%, because both systems
are equivalent. In Table 6.5 the maximum differences obtained between both coordinate
systems are presented for all BCs. A very small difference is obtained for the worst case,
5.6%, for Z=100, which is already considered a very high value of curvatures. Besides that,
the differences for all BCs are very similar. Taking into account that this maximum
difference is obtained for a normalized load, y~2.0, one may conclude that in practice
(where y<1.0, neglecting strain hardening) the differences may be neglected and the

specification of the CS used to model the panels is unnecessary.
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Figure 6.7:  Comparison of equilibrium paths for boundary conditions 2)BUU; 5)BCU and
¢)BCC with rectangular and cylindrical coordinate systems (a=5=1.0 m, ~=0.01 m and
wy=a/500)
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6.3. Preliminary analysis for the definition of the parametric study

Table 6.5: Maximum differences for the normalized load % for boundary conditions BUU,

BCU and BCC with rectangular and cylindrical coordinate systems

Z=0 Z=10 Z=20 Z=30 Z=40 Z=50 Z=60 Z=70 Z=80 Z=90 Z=100

(6=0) (6=0.1) (=0.2) (6=0.3) (6=0.4) (6=0.5) (6=0.6) (6=0.7) (6=0.8) (6=0.9) (6=1.0)
BUU 0.0% 0.1% 04% 0.6% 08% 11% 15% 19% 25% 32%  3.9%

BCU 0.0% 00% 0.1% 04% 04% 1.0% 12% 24% 3.6% 43% 54%

BCC 00% 00% 00% 06% 06% 09% 1.7% 28% 35% 45% 5.6%

In conclusion, despite not being exclusively dependent of the curvature, but instead of
the central angle, the differences presented in Table 6.5, may be considered representative
of most cases in practice: 7) for isolated unstiffened panels, values of 4/ less than 50 are
not very common, even so, a value of 6=1.0 (for which the differences were assessed)
implies at maximum a value of Z=50 (see equation (6.2)), which covers most situations
in practice; 7) for stiffened panels, despite larger curvatures may be possible, larger a/h
ratios (of the global panel) are equally usual. Assuming a reasonable limit value for 2// of
150, a value of 6=1.0 leads to Z=150 which allows to cover equally a large part of curved

stiffened panel in real cases.

According to what has been discussed, unless otherwise stated a rectangular CS is used in

the analyses along the thesis.

6.3.3 Effect of the boundary conditions

Comparing the equilibrium paths in Figure 6.7 it is possible to conclude that the larger
differences are found between BUU and the remaining boundary conditions. In this
particular example, the equilibrium paths of the curved panels for BUU, unlike BCU and
BCC, are markedly unstable. On the other hand, the same panels show unstable
equilibrium paths under BCU and BCC only if smaller imperfections were considered,

as will be shown posteriorly in Figure 7.3.

This is justified by the fact that for BUU, due to the in-plane unrestrained edges the
equilibrium paths present generally more unstable equilibrium paths, even in situations

where larger imperfections are considered.
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Other conclusion is that in some cases, like the one in of Figure 6.7, the equilibrium paths
of a panel under BCU and BCC are very similar. Reason why in future, when the
objective is to draw conclusions about a certain behaviour which is similar in both
boundary conditions, the results will be presented in some cases only for one of these
boundary conditions. However, this similarity is not verified in all cases. For example, in
the same equilibrium paths, a considerable difference is shown for large deflections of the

flat plate (Z=0).

The differences between the three boundary conditions are, generally, not negligible and,
consequently, all of them would deserve to be studied independently. However, since the
practical applicability of BUU is much lower than BCU and BCC, the main focus will
be given on these latter ones. Even so, results for BUU will be given only for the sake of

comparison whenever relevant.

6.3.4 Eftect of the aspect ratio

In order to assess the influence of the aspect ratio, , a refined variation of the parameter
is required. For this, BCC is chosen. Values of 0.5, 0.75, 1.0, 1.25, 1.5, 2.0 and 3.0 are
given to , for curvatures, Z, 0, 10, 20 and 50. A global initial imperfection with a perfect
semi-wave in each direction and an amplitude wy=4/500 was considered. The width, 4,
and thickness, 4, of the panels are considered, similarly to the ones in Figure 6.7, with 1.0

and 0.01 m, respectively.

The equilibrium paths for these cases are plotted in Figure 6.8 in function of the
normalised out-of-plane displacements, 0+ These equilibrium paths are plotted for
larger displacements than the ones in Figure 6.7. Analysing the results when larger
displacements are considered, the out-of-plane displacement at the centre of the panel
starts to follow the inverse direction, 7.e. a dent starts to appear in the central zone of the
panel. This phenomenon is usually accompanied by a decrease in the load and, generally,
by the development of even larger displacements in the initial direction in other points
of the panel. For even larger displacements, in some cases (see Z=0), the system regains
stiffness and the load starts to rise again. This phenomenon is clarified in Figure 6.9,
where the equilibrium path in which this phenomenon is more visible (Z=0) is plotted.

The curve with 2=1.0 is selected. The deformation shapes are presented for several points
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Figure 6.8: Comparison of equilibrium paths in function of the out-of-plane displacement

for different aspect ratios (BCC and wy=2a/500)

along the curve: point A - y=0.5; point B - y=1.0; point C — maximum local for y; and
point D - minimum local for y. It is visible that the deformation shape passes progressively
from 1 semi-wave to 3 semi-waves in the longitudinal direction.
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Figure 6.9: Equilibrium path and deformation shapes of a panel with Z=0, =1.0 (BCC
and wy=a/500)
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Figure 6.10: Comparison of equilibrium paths in function of the in-plane displacement for

different aspect ratios (BCC and wy=2a/500)

However, this phenomenon happens more rarely in practice because when the plasticity
of the material is considered (unlike this case), as will be seen in section 6.4, the effect of

plasticity occurs first and the ultimate load is reached before, in a large percentage of the

cascs.

This phenomenon is more common in panels with large aspect ratios if a global initial
imperfection is considered. This is due to the fact the deformation tends to follow more
“natural” deformation shapes. This effect will be further explained in section 6.3.8, where

the different types of initial imperfections are addressed.

In general, as the curvature increases, this phenomenon disappears progressively. The

curvatures of Z=20 and Z=50 do not show this behaviour for the plotted displacement.

The same results are now plotted in terms of the end displacement normalised to
thickness, 7, in Figure 6.10. It is possible to verify that the stiffness of the panels decreases

as the aspect ratio increases. Besides that, the complexity of the equilibrium paths
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6.3. Preliminary analysis for the definition of the parametric study

decreases as the curvature increases.

6.3.5 Effect of curvature

A preliminary discussion on the effect of the curvature may be done based on the results
of Figure 6.7, Figure 6.8 and Figure 6.10. It is possible to verify that the curvature tends
to increase the stiffness of the panels, in the initial part of the equilibrium paths.
However, this is not verified for larger displacements of panels with lower curvatures. In
fact, for Z<30, many panels with larger curvatures show larger displacements for the same
load level. This is clearly seen, comparing the panels with curvature Z=0 and Z=10 for
BCC, where for y=0.5 the curved panel shows a displacement about 32% larger than the
flat panel.

In Figure 6.11 the normalized loads are plotted for two levels of displacements,
0+001,=0.5 and 0+95,,=2.0 for different curvatures. It is possible to verify that for the first
case, there is a monotonic increase of the normalized load with the curvature and this
increase is approximately linear from Z=20 up to Z=100. On the other hand, for
0+001,=2.0, there is a drop of the normalized load for Z=10 and Z=20 in comparison
with the flat plate. Only for Z=30 the normalized load exceeds the one of Z=0.

Although with less practical meaning, for BUU this decrease for larger displacements is

verified after a maximum load (with an elastic material) has been reached. In this case,
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Figure 6.11: Normalized load in function of the curvature for displacements 6+J,,,=0.5

and 2.0
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the panels show a negative stiffness crossing the curves of lower curvatures (see Figure

6.74)).

This brief analysis allowed to conclude in a simplified way that the effect of the curvature
is very important because it influences significantly the equilibrium paths of the panels.
Additionally, this influence is not always very obvious which obliges to study in depth

this parameter.

6.3.6 Effect of stiffeners

The effect of stiffeners was already discussed in section 6.2.6 in terms of the critical
behaviour. In the same way, besides the number of stiffeners which is a parameter of
utmost importance, it is expected that the ratio width to thickness of the local panels
between stiffeners (see Figure 3.5), /5, and the height to thickness ratio of the stiffeners,
d./h., influence significantly the post-critical behaviour of stiffened curved panels. The
objective is now to define the range of variation for these ratios based on a basic variation

of these parameters together with reasonable values of practical interest.

The effect of the local slenderness of the subpanels is assessed in Figure 6.12. In these
cases, limit values of 25 and 75 are chosen for the ratio /5. A curved panel with Z=50 is
chosen for comparison with the corresponding flat case; in all situations an aspect ratio
2=1.0 is assumed. The results are plotted for 1 and 3 stiffeners with d/h.=7.5 and a
thickness of 0.01 m is fixed both for the panels (b) and stiffeners (5;). A global

n=1,d,/h=75 n=3, d,/h,=7.5
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a) b)

Figure 6.12: Effect of the ratio a,/h of the subpanels for stiffened panels with a) 1 and b) 3
stiffeners (BCC, A=h~=0.01 m, 2=1.0, w,=min(a; b)/500)
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6.3. Preliminary analysis for the definition of the parametric study

imperfection with a single semi-wave in each direction with an amplitude
wo=min(a;6)/500 is assumed. This parameter is shown to influence quite significantly
the equilibrium paths. A ratio 3 times larger changes completely the stiffness of the
panels, thus providing reasonable limits for the assessment of the behaviour of the

stiffened panels. As shown, the curvature of the panel can increase significantly the load

for the same displacement.

In Figure 6.13 the equilibrium paths are compared for two values of d/h,, 7.5 and 10.0
for 1, 3 and 7 stiffeners and 4// ratios of 25 and 75, as identified in the figure. A curvature
of Z=50 is assumed for the curved panel and compared with the respective flat plate
(Z=0). It is verified that an increase of 2.38 in the second moment of area of the stiffeners
changes besides the equilibrium paths, the mode of deformation of the panels. This is
exemplified for the case with z=1. For the flat plate, while for the stiffeners with lower
second moment of area, a deformation shape close to a global mode occurs, for the

stiffeners with higher second moment of area local deformation of the subpanel is
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Figure 6.13: Effect of d/A;ratio on the equilibrium paths and deformation shapes for

different number of stiffeners and a,/Aratios
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verified, and the stiffeners induce a nodal line on the panel, i.e. there is a tendency to
decrease the out-of-plane displacement along the stiffener. This is especially true for Z=0.
With curvature this difference is not so obvious (see Point A and B for Z=0 and Point C

and D for Z=50).

For any number of stiffeners, the effect of the d./b; ratio is very notorious. In fact, this
ratio, along with /5, is responsible for the differentiation of global and local buckling in

stiffened panels.

Given the significant difference verified in the elastic behaviour, both 4// and d/b.
deserve an in-depth study in the posterior sections. In comparison with the traditional
flat stiffened plates, the effect of curvature is verified to play also an important role on

this subject which must be clarified.

6.3.7 Effectof the load applied on the stiffeners

The differences obtained with the application of the in-plane compression load only on
the panel and on the panels and also on stiffeners (as exemplified in Figure 5.2.) was found
to be significant and consequently some comments should be given. This subject was

already addressed for the critical behaviour in section 6.2.6.

The panels are loaded in compression by a stress corresponding to the yield stress,
considered £,=355 Mpa. However, as previously referred, two situations may be
distinguished depending where this load is applied: Z) only on the panel; and 7) on the
panel and on the stiffeners (see Figure 5.2). Consequently, the applied force, Fy, is given
by the multiplication of f; by the area of application. In Table 6.6, the critical load, £,
and the F,,/F,y ratio are presented for LBAs. Similarly, the ultimate load, F.i, and the
ratio Fu/F. are presented. All cases are for panels with #=1.0 and BCU. The
imperfections were considered as described in section 5.7, modelling the local
imperfections with a sum of sines. It is shown that the values of the critical load are always
higher when the load is applied also on the stiffeners with the exception of Z=0 and 7,=3.

This is explained by the fact that in this case a global eigenmode occurs unlike to the cases
with less stiffeners. On the other hand, the values of the ultimate load with the load

applied also on the stiffeners lead, in all the studied cases, to higher values for the ultimate
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Table 6.6: Comparison of the load applied on the panel with on the panel and stiffeners
(#=1.0, d=0.15 m and A=0.015 m, Positive Imperfections with local SS, BCU)

LBA GMNIA
Panel Panel+Stiffener Diff. Diff. Panel Panel+Stiffeners Diff. Diff.
s iff.
Fo/Fyt Fo Fun/ Fapt
F, F, Fu Fui Eu (%)
F./F, F./F, % %) Furl/F, F.x/F, %
pl [kN] ! [kN] (%) (%) FurlFapt [kN] 1t/ Fapl [kN] (%)

n=1 0323 4299.8 0316 44644 -2.0% 3.8% 0419 55727 0465 6561.1 11.1% 17.7%
Z=0 »~=2 0.758 100882 0.723 107847 -4.6% 6.9% 0.545 7252.1 0.629 9383.0 15.5% 29.4%
n=3 1399 18618.9 1.1637 18267.7 -16.9% -1.9% 0.667 8873.7 0.770 12091.1 15.5% 36.3%
n=1 0487 64858 0478 67394 -2.0% 3.9% 0479 6381.7 0486 68534 13% 7.4%
Z=50 »=2 0.854 11365.7 0.813 121202 -48% 6.6% 0.624 8309.8 0.632 94189 12% 13.3%
n=3 1458 19413.6 1345 21126.7 -7.8% 8.8% 0.735 97835 0.776 12189.6 5.6% 24.6%
n=1 0.819 10900.3 0.808 11404.6 -13% 4.6% 0.527 7020.5 0.533 75193 1.0% 7.1%
Z=100 »=2 1.115 14838.1 1.048 15621.2 -6.0% 53% 0.654 8704.7 0.647 9640.1 -1.1% 10.7%
n=3 1.660 22094.8 1.505 23644.8 -9.3% 7.0% 0.798 10622.8 0.809 127034 13% 19.6%
n=1 1.120 14908.7 1.114 157242 -05% 5.5% 0.575 76512 0.584 8241.7 1.6% 7.7%
Z=150 »=2 1.393 18540.3 1.319 19670.8 -53% 6.1% 0.714 95083 0.713 10637.9 -0.1% 11.9%
n=3 1929 25675.8 1737 272782 -10.0% 6.2% 0.843 11217.6 0.844 13251.8 0.1% 18.1%

load. The effect is more noticeable as the number of stiffeners increases. The maximum
observed difference in the ultimate load is 36.3% which shows that panels with the same
geometry are able to withstand significant different loads depending on whether the load

is applied only on the curved panel or also on the stiffeners.

This effect can be explained by the fact that when the load is applied only on the shell it
is applied with an eccentricity (relatively to geometric centre) which has naturally an
unfavourable effect. This means that considering the situation with the load applied also
on the stiffeners may not be conservative for the cases when the load is not applied on the
stiffeners. The case with the load applied also on the stiffeners corresponds to the
majority of the cases in real situations, reason why unless otherwise stated this is the

situation considered in further analyses of stiffened panels.

It should be noted that the differences between F; are generally higher than F./F.
Even when in some cases the differences in the ratio are negative, the resulting F is larger

due to the larger cross-sectional area. The same is true for the critical loads.

7 Corresponds to a global buckling mode, unlike to the cases with less stiffeners.
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6.3.8 Efftect ofimperfections

The effect of imperfections is known to be of utmost importance in the study of shells.
Hence, the objective is to assess the type of imperfections needed to be considered in the

parametric study.

From what was discussed in section 5.7, in an unstiffened panel only global imperfections
are required. The pattern given to this imperfection may be defined: 7) automatically,
from the cigenmodes of LBAs (the default approach in FEA); or 77) manually defining
the coordinates for every point composing the deformed panel. The first approach has
the advantage of being much easier to implement; however the second one provides more
flexibility to choose imperfections as desired. In fact, from what was previously seen in
section 6.2, some eigenmodes of curved panels present shapes which may be considered
as poorly suited for an initial imperfection. Therefore, these imperfections will be
compared with imperfections given by perfect semi-waves defined through the

coordinates of the panel.

In Figure 6.14 the equilibrium paths of unstiffened panel with Z=0, Z=30 and Z=50 and
2=1.0 are plotted for initial imperfections given by the first cigenmode (EM) and by a
single semi-wave in each direction (2:;). Not less important, is the direction chosen for

the imperfection. Additionally, both positive (P) and negative (N) directions are

P EMZ=30
— P EM Z=50

Normalized load, x

L""""""""""“‘“"‘G"Q'L. il
-40 -30 -20 -10 00 1.0 20 30 40 50 60 7.0 8.0
Normalized out-of-plane disp., 60+6
Figure 6.14: Comparison of the equilibrium paths for #=1.0 and different curvature using
initial imperfections given by the first eigenmode (EM), single perfect semi-wave in each

direction (a,;) with positive (P) and negative (N) directions (BCC)
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considered for both cases. An amplitude wy=min(2;6)/500 is assumed in all cases. It is
concluded that: 7) imperfection 4;; can lead in some situations to equilibrium paths below
(i.e. lower loads for the same displacement) the ones from EM (compare P 2;; Z=30 with
P EM Z=30 - for dp+9=1.7, a difference of -14.2% is obtained); and 77) the consideration
of the negative direction for imperfections changes completely the behaviour of the
panels. While for the flat case, the equilibrium paths are completely symmetrical (as

expected), in curved panels the development of the equilibrium paths is asymmetric.

In addition to the previous imperfections, an additional imperfection is necessary to be
considered for the study of panels with large aspect ratios. This pattern of imperfection

is given by multi perfect semi waves in the longitudinal direction.

In Figure 6.15, a flat and a curved panel (Z=30) with 2=3.0 are compared in terms of
their equilibrium paths for three different imperfections: 7) first eigenmode (EM); iz) a
single semi-wave in each direction (2,); and 7iz) three semi-waves in the longitudinal
direction and a single one in the transversal direction (4;3). Only the positive direction is
considered for the imperfections and an amplitude for wy=min(2;£)/200 is used in all
cases. These initial imperfections are also presented in the same figure. It is shown that
the initial pattern of imperfections affects significantly the response of the panels. As
expected, for Z=0, the imperfections from EM and 4,3 are equivalent for the most part of
the equilibrium path. However, while the imperfection EM, at do+0=-3.0, starts to
develop the displacement in the opposite direction, the imperfection 4,3 continues the
displacement in the initial negative direction® This positive variation of the displacement
(moving upwards) in EM is explained by a change in the deformation shape. While it
had, in the initial phase, 3 longitudinal semi-waves, from that point, it passes,
progressively, to show 5 (and eventually to present a positive deformation at the centre
of the panel). However, the importance of this phenomenon is reduced in practice,
because the yield of the material appears and the ultimate load is reached before.
Furthermore, for the curved panel, imperfection 4,3 leads to a rather distinct equilibrium

path from the one with EM. Especially relevant is the fact that in the first case the

8 It should be noted that in these cases (and for Z=30 with 4,3), positive imperfections lead to initial

out-of-plane positions, at the centre of the panels, with negative values.
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Figure 6.15: Comparison of the equilibrium paths and the respective imperfections for a=3.0

and curvatures Z=0 and Z=30 using initial imperfections given by the first eigenmode (EM),
single semi-wave in each direction (a;;) and three semi-waves in longitudinal direction and a

single one in transversal direction (a;3) (2=1.0 m, A=0.01 m, w,=min(a;5)/200 and BCC)

equilibrium path has a maximum (y=0.55), while for the second imperfection there is no
maximum and the equilibrium path exceeds the that value. This allows to claim that
imperfection 4,3 may lead to lower ultimate loads in curved panels, in comparison with

the default approach of using EM as imperfections. This will be analysed in detail in

section 6.6.

For stiffened panels, as discussed in section 5.7, for a thorough study of imperfections,
two additional imperfections must be introduced: local imperfections between stiffeners

and imperfections on the stiffeners. The only way to perform this in a systematic way is
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6.3. Preliminary analysis for the definition of the parametric study

using the second approach, defining the coordinates of the deformed panel.

In Figure 6.164) the equilibrium paths of a stiffened panels (%=1 with 2/h=75 and n.=3
with 2/h=25, both with d./h=10.0) are compared to study the effect of introducing
imperfections on the subpanels and stiffeners. Thus, a global imperfection (ImpG) is
compared with global, local and stiffeners imperfections (ImpGLS). The amplitudes are
considered as in section 5.7 with 1/400*min(a:6) for global, 1/200*min(a.:6) for local
and 1/50 for the bow twist on stiffeners. It is possible to conclude that ImpGLS leads to
equilibrium paths below the one with only a global imperfection. For the case with =1,
for ,4+9=0.6 using only the global imperfection leads to a value of y 29% larger than
considering also local and stiffeners imperfections. For the presented cases with 7=3 the

effect is the same, despite the differences not being so obvious.

In Figure 6.165) the objective is to compare the effect of changing the direction of the
imperfections. In this case, panels with 7.=5, 2/h=25 and d/h,=10.0 are considered. It is
possible to verify that changing the direction of the initial imperfection leads to the
developments of the out-of-plane displacements in the same direction, ze. the
displacements are amplified with the increase in load. Besides that, the equilibrium paths
are not completely symmetric which implies that the behaviour is modified. Despite the

differences in the elastic nonlinear behaviour are not very obvious for this particular case,
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Figure 6.16: Effect of imperfections on stiffened panels: 2) comparison of only global
(ImpG) imperfections with global, local and stiffeners imperfections (ImpGLS); b) effect
positive and negative directions for panel n=5, a,/h=25, d,/A=10.0 (2=1.0, ~=h=0.01 m and
BCC)
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6. Characterization of the behaviour and ultimate load of unstiffened and stiffened curved panels under
compression and out-of-plane loading

important differences are obtained for the ultimate load as will be discussed in section 6.6
(a reduction of about 24% is obtained in the ultimate load due to the consideration of

negative direction for the imperfections).

In conclusion, it is not possible to choose 4 priori the most unfavourable imperfections,
as neither of them can be 4 priori neglected. Hence, in the parametric study all of these

imperfection will be considered.

6.4 EFFECT OF THE NONLINEARITY OF THE MATERIAL

In Figure 6.17 and Figure 6.18 the equilibrium paths for unstiffened panels with BCU
and BCC, respectively, are plotted considering an elastic and an elastic-plastic material
(as described in section 5.5), allowing to assess the influence of the plasticity of the

material on the behaviour of the panels.

The panels are considered with aspect ratios, #, from 0.5 up to 3.0 and curvatures, Z, from
0 up to 50. The width, 4, and thickness, 5, are 1.0 and 0.01 m, respectively. A global
imperfection with a maximum amplitude w,=4/500, with one semi-wave in each
direction, 4,4, is considered. As it is possible to see, the models with elastic-plastic material
follow exactly the equilibrium paths of the corresponding elastic material up to certain
point where the plasticity starts to occurs. In most cases, the effect of the plasticity takes
place very “suddenly”, i.e. the increase in displacement since the beginning of plasticity
up to the point where the ultimate load is reached is usually small. This effect allows the
use of strength criteria in semi-analytical models with satisfactory accuracy. Only in very
rare cases, this displacement is large with a small increase in load, e.g. #=1.0 and Z=20 for
BCC (sce Figure 6.18). In these cases, the strength criteria in the semi-analytical method
should still be able to predict reasonably well the ultimate load although it may predict
smaller corresponding displacements, because it naturally does not account for stress

redistribution.
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6. Characterization of the behaviour and ultimate load of unstiffened and stiffened curved panels under
compression and out-of-plane loading

Moreover, it is possible to verify that the equilibrium paths for larger aspect ratios, mainly
for BCC, become more unstable. In some cases, the direction of the displacement changes
and the panel at that point (centre of the panel) deforms in the opposite direction. This
is explained by the fact that an initial global imperfection with one semi-wave in each
direction was considered and, as the deformation develops, a distinct deformation shape
is followed. In fact, it is for the larger aspect ratios that the boundary conditions lead to

larger differences in the equilibrium paths.

It is seen that the type of boundary condition may affect importantly the ultimate
behaviour of the panels, i.e. while in many cases the ultimate load is controlled by elastic
stability in BCU, in BCC they become controlled by plasticity. The cases of Z=30 with
2=1.25 and Z=40 with 2=1.25 are some examples.

6.5 EFFECT OF THE RESIDUAL STRESSES

The modelling of the residual stresses was already explained in section 5.8. Now, residual

stresses are applied and its effect is compared with panels without them.

The influence on the equilibrium paths is assessed in Figure 6.19 2) and 4) for unstiffened
panels with different curvatures (Z=0, 30 and 50) with 2=6=0.5 m and 1.0 m,
respectively. The objective is to compare curved panels with different levels of
slenderness, 2. Assuming a thickness /=0.01 m leads to panels with width to thickness
ratios 2/h=50 and 100, for 2=6=0.5 m and 1.0 m, respectively. This range of curvatures
and width to thickness ratios secks to cover panels with practical application. An
imperfection pattern from the first eigenmode is used for an amplitude wy=4/500. The
equilibrium paths are also plotted for the material without plasticity to comparison
proposes. As expected, the cases with material plasticity follow exactly the same
equilibrium paths up to plasticity begins to take place. In those points the ultimate load
is generally reached for small increases in load. The introduction of the residual stresses

leads to an earlier appearance of plasticity and slightly lower ultimate loads are obtained.
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6. Characterization of the behaviour and ultimate load of unstiffened and stiffened curved panels under
compression and out-of-plane loading

1.2 1.0
10 08
= =
Tos 3
< < 0.6
To.6 3
3 T 0.4
£0.4 £
(=} (=}
b 2

0.2 0.2

0.0 0.0

0.0 0.5 1.0 1.5 0.0 2.0 4.0 6.0
Normalised out-of-plane displ., §+6¢ Normalised out-of-plane displ., §+6¢
a) b)

Figure 6.19: Effect of the residual stresses in the equilibrium paths for unstiffened panels
with different curvatures: a) a=b6=0.5 m and b) a=b=1.0 m (h=0.01 m, w,=a/500 with

imperfection pattern from 1 eigenmode and BCC)

The corresponding ultimate load is compared in Table 6.7 for the case with wy=2/200
which may be used as an equivalent imperfection amplitude to obviate taking into
account explicitly residual stresses. The maximum difference between the ultimate load
obtained with and without residual stresses (with an amplitude w,=4/500) is 6.2% for
Z=50. For Z=30 the maximum difference is 5.0% for the panel 2=6=0.5 m which has a
low value of slenderness, 1=0.62. The values using an imperfection amplitude wy=2/200
lead in all cases to lower values of ultimate load than using wo=4/500 with residual
stresses, with the exception for Z=0 and 4=6=1.0 m. In this case, all values of ultimate
load are very close. In fact, the reduction obtained using an imperfection 2.5 times larger,
wo=a/200, in comparison with w,=4/500 is very small, y=0.536 vs y=0.540. For these
values of slenderness, the panels show low sensitivity to imperfections. If residual stresses
are incorporated y=0.530. As expected for a panel with this high slenderness value,

imperfections become less important.

In general, it is possible to conclude that for unstiffened panels the influence of residual
stresses is not relevant, even for large values of curvatures and relatively small width to
thickness ratios, and, consequently, the approach to use an equivalent imperfection to
account for geometric imperfections and residual stresses in a simplified manner, is
justifiable. The same conclusions have been obtained for flat plates by many authors,

where the equivalent imperfections have been considered as sufficient [132].
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6.6. Large deflection behaviour and ultimate load of unstiffened curved panels under uniaxial

compression
Table 6.7:  Effect of residual stresses on the ultimate load of unstiffened panels
(imperfection pattern from the 1* eigenmode from LBAs and BCC)
4=b=0.5m a=b=1.0m
7z 2 Ximp Kimp Kimp Dift. 2 Kimp Ximp Kimp Diff.
/200 /500 /500+RS [%] /200 4500 ass004rs (%]
0 1.08 0.750 0.797 0.787 1.3% 216 0536 0540 0530 1.7%
30 0.62 0712 0.846 0.805 5.0% 123 0497 0.549 0530 37%
50 0.50 0.858 0.942 0.903 4.4% 1.00 0575 0.665 0.626 6.2%

Consequently, residual stresses are only considered if their particular influence is to be

assessed and otherwise stated they are not taken into account for unstiffened panels.

Residual stresses in stiffened panels assume, generally, greater importance than in
unstiffened panels due to the larger quantity of welds (of the stiffeners) and because the
width to thickness ratio of the subpanels, 4./, take usually smaller values. However:
besides 7) the modelling of residual stresses for such a large number of cases as carried out
in next sections is more cumbersome in stiffened panels; 77) its benefit is not always
justifiable because equivalent geometric imperfections are a reasonable and more
practical alternative providing good predictions of the ultimate load. Reason why the
default approach in flat stiffened panels has been usually to incorporate the effect of the

residual stresses in the equivalent geometric imperfection.

6.6 LARGEDEFLECTION BEHAVIOUR AND ULTIMATE LOAD OF
UNSTIFFENED CURVED PANELS UNDER UNIAXIAL

COMPRESSION

6.6.1 Introduction

This section presents the parametric study carried out with FEM for the unstiffened
curved panels under compression. The objective is twofold: 7) to categorize the behaviour
of unstiffened curved panels and conclude through an extensive number of results about

the influence of geometric parameters, boundary conditions and imperfections; and 77)
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6. Characterization of the behaviour and ultimate load of unstiffened and stiffened curved panels under
compression and out-of-plane loading

to serve as basis for the validation of the semi-analytical method developed in Chapter 4.
The results will be analysed in terms of the large deflection behaviour and ultimate

strength.

The variation in geometry is done through the variation of curvature, Z, the aspect ratio,
2, and width to thickness ratio, a/h. The values of Z are varied from 0 to 50 with steps of
10. These curvatures allow to cover most cases of practical applicability both in isolated
unstiffened panels and local panels in stiffened panels (between stiffeners). For example,
for local unstiffened panels in bridges the average value for the maximum limit of
curvature is Z=15 [135]. In a similar way, the aspect ratio is varied to take into account
not only isolated unstiffened panels but also local panels composing stiffened panels.
Consequently, not only short panels with a low value of # (not unusual in isolated panels)
but also long panels with considerably large values of this parameter (typical of local panel
between stiffeners) are considered. The variation of the aspect ratio is 0.5, 1.0, 1.5, 2.0,
3.0,5.0 and 7.5. The width to thickness ratio, 4/, is also an important parameter since it
is the main responsible for defining the slenderness of the panel. In this case, this ratio is
varied from 50 to 150 with steps of 25, thus covering from relatively stocky to slender
panels. When performing the parametric variation for the stiffened panels, in section 6.7,
alower value of 25 will be given to the local width to thickness ratio of the panel between
stiffeners, 2./h, value which may be found in local panels between stiffeners but rarely in
isolated panels. The thickness of the panels, 4, can be fixed since 4/h is varied, i.e. the
change in slenderness is done with the change in the width of the panel. Consequently, »
is fixed in most cases with 0.01 m. However, in some additional cases, a value of #=0.016

m is used to spot possible differences arising from the use of thicker panels.

As previously seen in section 6.2, the effect of the in-plane restraint of boundary
conditions may be in some cases be very important. Consequently, all the three boundary
conditions BUU, BCU and BCC are considered in the parametric study. Their influence

will be further analysed together with a wider range of parameters.

The effect of imperfections is not only important for the elastic behaviour of the panels
(briefly discussed in section 6.3.8), but especially for the ultimate load. Consequently, the
consideration of different patterns of imperfections are of utmost importance in the

parametric study carried out. An in-depth imperfection sensitivity study is carried out for
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the curved panels. As previously explained in section 5.7, imperfections were modelled in
FE analyses calculating the coordinates of each point composing the deformed panel.
This approach allows to choose the desired imperfection and obviates the limitation to

use only patterns given by the eigenmodes, usually the default approach in FEM software.

Three main groups of imperfections were considered for the unstiffened panels. Besides
i) the default approach in FEA, i.e. the use of the pattern of the eigenmodes (named
“EM”) from LBAs, two additional groups of imperfections were considered: 77) a single
perfect semi-wave in each direction (named “SPSW”), which corresponds to the
geometrically simpler imperfection and secks to simulate a global imperfection; and 7iz)
multi perfect semi-wave in longitudinal direction (direction of the load) and a single
perfect semi-wave in transversal direction (named “MPSW?”), which seeks to introduce a

larger number of waves, especially important in panels with larger aspect ratios.

The reason to develop these imperfection shapes through the coordinates of each point
composing the mesh of the panels is related to the fact that as the curvature increases the
cigenmodes tend to present patterns similar to a “horse saddle” (see section 6.2) and they
cease to be in many cases the most unfavourable pattern for imperfections. This is even
more critical for stiffened panels, since, the eigenmodes of stiffened panels do not allow

to separate global, local and stiffeners imperfections.

Equally important, although often neglected, is the direction given to the imperfection.
Despite irrelevant in flat unstiffened plates, imperfections with centripetal and
centrifugal directions lead to distinct results in curved panel both whether they are
unstiffened or stiffened panels. Imperfections with centripetal direction are considered
as being positive (“POS”), while the ones with centrifugal direction are considered as

being negative (“NEG”).

Two amplitudes are considered for the imperfections: min(a;6)/200 and min(4;6)/500.

The first amplitude corresponds to the one defined for local flat plates according to EN
1993-1-5 [1]. The second presents a lower amplitude and it is introduced to define a

lower limit within which most amplitude imperfections in practice may be situated.
In conclusion, each panel is analysed with 12 distinct imperfections.

An elasto-plastic material, as described in section 5.5, is used in all analyses. This material
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compression and out-of-plane loading

Table 6.8: Parametric variation of unstiffened curved panels under compression
(GMNIA)
Panel . .
7 = b b [m] BC Imperfection Material
0 05 50 0.01 BUU POS(SPSW:min(a;6)/200) Elasto-Plastic (S355)
10 1.0 75 (0.016) BCU NEG(SPSW:min(a;6)/200)
20 1.5 100 BCC POS(MPSW:min(a;6)/200)
30 2.0 125 NEG(MPSW:min(a;6)/200)
40 3.0 150 POS(EM:min(a;5)/200)
50 5.0 NEG(EM:min(a;6)/200)
7.5 POS(SPSW:min(a;6)/500)
NEG(SPSW:min(a;6)/500)
POS(MPSW:min(a;6)/500)
NEG(MPSW:min(a;6)/500)
POS(EM:min(4;6)/500)

NEG(EM:min(z;6)/500)

secks to simulate a S355 steel and may be considered representative of a typical mild steel

used in construction.

The parametric variation just described is summarized in Table 6.8, totalizing 7560
GMNIAs (without the extra cases for #=0.016 m) and 630 LBAs (for the imperfections

of eigenmodes) performed for the unstiffened curved panels.

Given the huge amount of data generated with this parametric variation, it is convenient
to compile and group the results in order to show certain behaviours, trends and
characteristics of the curved panels. With this, it is pretended to obviate repetition and a
tedious presentation of results. Whenever relevant, the reader is referred to the annexes
present at the end of the thesis. The ultimate loads for all the geometries, using the
positive eigenmode imperfection and the worst imperfection, can be consulted in Annex

C.

6.6.2 Effect of the thickness

As already said, some of the cases of the parametric study were also considered with a
thickness of #=0.016 m to assess the differences in the results. In Figure 6.20, some of

those cases are compared in terms of the equilibrium paths with the out-of-plane
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Figure 6.20: Effect of the thickness, h, in the equilibrium paths (positive SPSW imperfection,
min(a;5)/200, 2=1.0, BCC)

displacement at the centre of the panel normalized to the thickness, §4+do;;. The same
curvatures (Z=0, 30 and 50), width to thickness ratio (2/h=100), aspect ratio (¢=1.0)
and boundary conditions (BCC) are assumed for both thicknesses. It is possible to see
that the (normalized) equilibrium paths for both thicknesses are precisely the same. This
confirms the adequacy of the parameter of curvature, Z, to deal with curved panels. In
fact, to assume the same 4/b ratio means a proportional change in the dimensions and,
consequently, in the imperfections, if they are defined as a function of z or b. If the panels
are also defined with the same parameter of curvature, Z, it is possible to conclude, using

equation (3.2), that the change in R should be proportional.

Consequently, in this section, only the results for /=0.01 m are presented, because once

Z and a/b are fixed, they are representative of panels with different thicknesses.

6.6.3 Effectof the aspect ratio

The influence of the nonlinearity of the material was already discussed in section 6.4. Its
effect was shown in terms of the equilibrium paths for curvatures from 0 to 50 and a wide
range of aspect ratios in Figure 6.17 and Figure 6.18, respectively for BCU and BCC. It
was found that the differences are greater for larger aspect ratios and lower curvatures.
Not less important is the effect of the width to thickness ratio, 2/h. The effect of this ratio

is compared through the equilibrium paths in terms of the normalized (to thickness) in-
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6. Characterization of the behaviour and ultimate load of unstiffened and stiffened curved panels under

compression and out-of-plane loading

plane displacement, , for 2/h=50, 100 and 150, as a function of the curvature and aspect
ratio in Figure 6.214) and b), respectively. In Figure 6.214) an aspect ratio 2=1.0 is
assumed and curvatures of Z=0, 20 and 50 are used. In Figure 6.215) a curvature of Z=20
is assumed and aspect ratios @=0.5, 2.0 and 5.0 are considered. It is shown that the
increase in 4/h has a very important effect decreasing the stiffness and the ultimate load.

Although it seems at first sight that an increase in the curvature leads to an increase in the
ultimate load, this is not true for all cases. As will be discussed later, cases with
intermediate curvatures may show local minimums for the ultimate load. On the other
hand, an increase in the aspect ratio leads generally to a decrease in the stiffness of the

panels.

The effect of the aspect ratio on the ultimate load is much less obvious. This conclusion
is sustained by Figure 6.22 which presents the ultimate load for more cases of 2/h, Z and
2, as described. It is possible to verify that while for BCU a change in the aspect ratio leads
to much more scattered values of ultimate load for Z=50 than for Z=0, this is not verified
in the same way for BCC. Additionally, for Z=0 while 2=0.5 leads generally to the
highest values of ultimate load for BCU, the same aspect ratio leads at most cases to the
lowest value of the ultimate load for BCC. For Z=50, while the lowest ultimate load for
BCU is generally obtained for 2=7.5, for BCC it is obtained, for most cases of 4/b ratio,

for an intermediate aspect ratio 2=3.0.
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Figure 6.21: Effect of the ratio a/Ain the equilibrium paths with 2) the curvature (for 2=1.0)

and b) the aspect ratio (for Z=20) (positive imperfection from EM, min(a;5)/200, BCC)

142



6.6. Large deflection behaviour and ultimate load of unstiffened curved panels under uniaxial
compression

=~

0.2

Norm. ultimate load, x
Norm. ultimate load, x

1.0 ¢

o
®

0.6

Norm. ultimate load, x
Norm. ultimate load, x

Figure 6.22: Normalized loads as a function of a/A for different aspect ratios (Z=0 and 50
and BCU and BCC, positive imperfection from EM; min(a;5)/200)

Taking into account that the results in Figure 6.22 may be considered representative of
the generality of the curved panels, it can be concluded that the effect of the aspect ratio
on the ultimate load is very dependent of the boundary conditions, curvature and a/h

ratio, showing the complex relation between the aspect ratio and the ultimate load.

6.6.4 Effect of the boundary conditions

The effect of the type of boundary conditions on the ultimate load of the curved panels
is assessed in Figure 6.23 for 2=1.0, for all values of /b and several values of curvature, as
described. As the curvature increases the ultimate loads of BCU and BCC become closer
and the differences for BUU become larger. However, for larger aspect ratios (2=5.0 in
Figure 6.24) this trend is not verified because: 7) the differences between BCU and BCC
remain considerable even for larger curvatures because the in-plane restraint along the
longitudinal edges becomes more important; and #7) the differences for BUU are not so

obvious; they depend more on the 4/ ratio and inclusively for lower values of 4/h the
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Figure 6.23: Normalized ultimate loads as a function of a/Afor different boundary

conditions (a=1.0, positive imperfection from EM; min(a;5)/200)
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Figure 6.24: Normalized ultimate loads as a function of a/Afor different boundary

conditions (¢=5.0, positive imperfection from EM; min(a;5)/200)

ultimate load of BUU can even exceed the one from BCU (for Z=50)

This is explained by the considerably distinct initial imperfection of the first eigenmode.
While for BUU the eigenmode has two longitudinal semi-waves, BCU has three

longitudinal semi-waves with very pronounced deformation closed to end edges which is
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6.6. Large deflection behaviour and ultimate load of unstiffened curved panels under uniaxial

compression

verified to be more detrimental for the ultimate load.

6.6.5 Eftect of the width to thickness ratio, 2/A

The effect of the width to thickness ratio, 4/h, on the ultimate load may be assessed
through Figure 6.22 to Figure 6.24. The increase of this ratio increases the slenderness of
the panel and, consequently, it leads necessarily to a decrease on the ultimate load. Panels
with higher slenderness are more prone to instabilities. In fact, from the results the
reduction on the ultimate load may be rather abrupt depending of the boundary
conditions, aspect ratio and curvature. As an example, the panel Z=20, @=1.0 and BUU
shows a reduction of 56% if a/h passes from 50 to 75. When plotted as a function of the

a/h ratio, the normalized ultimate loads show clear decreasing trends.

6.6.6 Effect of the imperfection pattern

An example of the effect of the imperfection pattern on the equilibrium path of a curved
panel (Z=30, 2=1.5, 2/h=100 and BUU) is shown in Figure 6.25. It is verified that both
the response and the ultimate load are completely changed with the initial imperfection
pattern. It is possible to conclude that: 7) the default approach in FEA of using the first
Eigenmode (EM) from LBAs may not be the most unfavourable in terms of the ultimate

load; 77) in this case, the most unfavourable pattern is the one with Multi Perfect Semi-
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Figure 6.25: Effect of the different imperfection patterns (amplitude min(a;5)/200) in the
equilibrium paths of a curved panel with Z=30, a=1.5, 2/A=100 and BUU
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Waves (MPSW) with negative (N) direction; i) in curved panels, a Single Perfect Semi-
Wave (SPSW) may lead to lower ultimate load than the first EM; 7v) in this case the EM
and the SPSW both with negative directions lead to very similar equilibrium paths; and
v) in this case it is seen that the negative direction for the imperfections lead, depending

of the pattern, to the lowest and the highest values for the ultimate load.
These results show how sensible to initial imperfections is the behaviour of curved panels.

The effect of the initial imperfection patterns in the equilibrium paths is shown in Figure
6.26: a) for different curvatures (2=1.0, 2/h=50 and BCC) and Figure 6.26; b) for
different aspect ratios (Z=40, 2/h=150 and BCU). In the first case, imperfections given
by the eigenmodes are compared with imperfection given by a single perfect semi-wave.
It is shown that the second imperfection may lead to important reduction on the ultimate
load in comparison with the EM, which proves that the default approach of considering
only imperfections given by eigenmodes is not on the safe side. The same conclusion is
taken from Figure 6.26 4) which shows equilibrium paths for several aspect ratios using
imperfections from eigenmodes and multi perfect semi-waves. In this case, not only the
ultimate load is greatly affected but also the nonlinear behaviour of the panels. As the
aspect ratio increases the tendency to the development of snap-through phenomena

increases. However, this phenomenon is inexistent with EM imperfections.
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Figure 6.26: Effect of the different imperfection patterns (amplitude min(a;5)/200) in the
equilibrium paths a)for different curvatures (a=1.0, 2/4=50 and BCC) and b) for different
aspect ratios (Z=40, a/h=150 and BCU)
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6.6. Large deflection behaviour and ultimate load of unstiffened curved panels under uniaxial
compression

Opverestimation of the ultimate load of the panels is verified with EM imperfection for all
the aspect ratios. For =1.0, if one uses the EM imperfection the strength of the panel is
overestimated by 23.5% in comparison with other perfectly reasonable imperfection

pattern’.

In Figure 6.27 the percentage of the imperfection patterns leading to the lowest ultimate
load is analysed as a function of the aspect ratio. The results are separated for flat and
curved panels (Z=10 to Z=50), because, as previously explained, the direction of the
imperfection in unstiffened flat plates is irrelevant, consequently only positive directions
are considered. For flat plates, it is seen that for the lowest aspect ratio (¢=0.5) the EM
imperfection is the most unfavourable in 100% of the cases. For 2=1.0, SPSW is the most
unfavourable imperfection in 100% of the cases for BUU and BCU and 80% for BCC.
As the aspect ratio increases the MPSW assume great importance. In BCU this
imperfection leads in most cases to the lowest ultimate load. For BUU the importance is
divided with EM and PMSW. Contrarily, for BCC, SPSW is important even for the
larger aspect ratios. Regarding the panels with Z=10 to Z=50, it is verified that: 7)) EM is
the most unfavourable imperfection for the lower aspect ratio (2=0.5) in all BC and in
many situations for BCC; and 7i) the negative imperfection SPSW is the most
unfavourable only for very few cases. Beyond this, a large variability is verified regarding
the most unfavourable pattern, being difficult to anticipate 4 priori the most adverse
imperfection for a certain case. This means that the prediction of the ultimate load of
curved panels must be done using all the imperfections patterns and the minimum

ultimate load must be selected among all the cases.

In Figure 6.28 the percentage of the imperfection patterns leading to the lowest ultimate
loads are grouped and compared for different /b ratios. Once again, it is verified that the
most unfavourable imperfection depends significantly of the case, despite the changing
of the 4/ ratio does not contribute so much for the changing in the worst pattern as the
aspect ratio. Even so, there are cases where the changing the 4/ ratio changes the pattern
leading to the minimum ultimate load. For example, for Z=0 with BCC, while for

a/h=50in 57% of the cases the worst pattern is the MPSW, for 2/h=150 the same pattern

? For ¢=1.0 the MPSW coincides with the SPSW imperfection because equation (5.13) gives #=1.
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Figure 6.27: Percentage of the imperfection patterns leading to the lowest ultimate load as a
function of the aspect ratio for Z=0 to Z=10 to Z=50 (for all cases with amplitudes
min(a;5)/200 and min(a;5)/500)

is the worst only in 7% of the cases. For the panels with Z=10 to Z=50 EM, (positive and
negative) imperfections led to the minimum ultimate load in only 51% of the cases.

Negative imperfections led to the lowest values for the ultimate load in 33% of the cases.
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Figure 6.28: Percentage of the imperfection patterns leading to the lowest ultimate load as a

function of a/h for Z=0 to Z=10 to Z=50 (for all cases with amplitudes min(a;5)/200 and
min(a;b)/500)

The chart shows clearly the most important imperfections. Positive EM and negative

MPSW are the imperfections patterns with more importance and the negative SPSW is

the one with less importance.

6.6.7 Effect of the curvature

Supported by some of the previous conclusions, it is now possible to assess more clearly
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the effect of curvature. As previously referred, the effect of curvature on the ultimate load

is not monotonic, i.e. it shows local minima for intermediate curvatures. In order to
clarify this aspect, in Figure 6.29, the minimum ultimate loads (i.e. the lowest obtained
from all imperfections) are plotted as a function of the curvature for several levels of /5.
The amplitude for imperfections has the value min(a;5)/200. In this particular case,

2=1.0 is chosen and all the three types of boundary conditions are studied.

The results show the existence of very pronounced local minimums for the ultimate load
when plotted in function of the curvature. These minima depend very significantly on
the a/h ratio regarding its value and positions (along Z). Generally, as 4/h increases, the
minimum is reached for larger values of Z. Depending of the /b ratio, the minimum is
generally reached for curvatures up to Z=30 or 40 (depending of the boundary
conditions). The decrease is generally higher for the lower 4/h ratios. The boundary

conditions play also an important role in this behaviour. show ve ronounce
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Figure 6.29: Minimum normalized loads as a function of curvature for different values of a/A

(imperfection with amplitude min(a;5)/200)
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compression

decreases in y while BCU show only slightly decreases. In this last case, y shows almost

constant values for the lower curvatures and then they start to increase from a certain

curvature.

In this example, the reduction of the ultimate load comparatively to the flat plates (Z=0)
reaches an extreme value of -41% for Z=40, 2/h=125 and BUU. For BCU and BCC the
maximum differences are -3% and -16%, respectively. For other aspect ratios, the
differences relatively to Z=0 are not very different comparatively to the plotted case
(2=1.0), see Annex C. The same is true for the amplitude min(4;6)/500, the maximum

differences are similar!®.

6.6.8 Ultimate load of unstiffened curved panels

To analyse the results of the ultimate load it is convenient to define the normalized
slenderness parameter, 2, which is defined as a function of the yield stress, f,, and critical

stress, ., as follows:

A= |+ (6.3)

GC r

The critical stresses of the panel are calculated from the LBAs and a value of 355 MPa is
considered for the yield stress. As an example, in Figure 6.30, the normalized slenderness
of the unstiffened panels for 2=0.5 and 2=1.0 for BCC are compared. The numerical
values of the normalized slenderness of the remaining unstiffened panels can be found in
Annex B. From the observation of these results, it is possible to draw the following
conclusions: 7) the curvature decreases the normalized slenderness of the panels; i7) the
width to thickness ratio, 2/h, increases significantly the normalized slenderness; 77z) the
influence of 4/h on the values of A tends to decrease as the curvature increases; 7v) the type
of boundary conditions do not affect very significantly the results; however, the
differences increase with the increase in curvature and /4 ratio; and v) lower aspect ratios

tend to lead to lower values in 4 for lower curvatures. This is not necessarily true for

19Tt should be noted that in the parametric study, steps of Z=10 were used for the curvature, which
means that even larger differences may be obtained for the local minima of the ultimate loads of curved
panels comparatively to the flat plates.
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Figure 6.30: Normalized slenderness of panels for different curvatures, Z, and a/hratios

(¢=0.5 and 1.0, BCC)

intermediate curvatures. Additionally, as the aspect ratio increases, the normalized

slenderness tends to stabilize approximately to the same values, similarly to the buckling

coefficient, £, (see section 6.2.2). In fact, 1 may be written as a function of 4, using

equation (6.1) and (6.3).

Plotting the ultimate load as a function of the slenderness, the effect of the pattern of

imperfection is easily seen. In Figure 6.31, the reduction factor, y, is plotted as a function

of the slenderness, 4, for the positive eigenmode imperfection and for the most

unfavourable imperfection pattern, for different levels of curvature and 2=1.5 and BUU.
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Figure 6.31:

Reduction factor as a function of the slenderness for different values Z using

positive EM imperfection and the most unfavourable imperfection (#=1.5, BUU and

amplitude min(a;5)/200)
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6.6. Large deflection behaviour and ultimate load of unstiffened curved panels under uniaxial
compression

This case was chosen to show the important effect that the imperfection pattern may
have in the reduction factor. The following conclusions may be drawn: 7) the slenderness
allows to define conveniently the reduction factor for the all the curvatures; i7) a clear
effect of the curvature in seen; 777) the effect of the imperfection pattern on the reduction
factor is very important. This effect is more visible for the intermediate slenderness,
where the effect of imperfections is higher. The effect is reduced for high values of
slenderness because the problem passes to be controlled by elastic instability and for small
values of slenderness where the resistance is controlled by plasticity; iv) the decrease of y

is more evident as the curvature increases (the slope of the curves is greater).

In order to compare the effect of the aspect ratio and boundary conditions in the
reduction curves, in Figure 6.32, they are plotted for 2=0.5, z=1.0 and BUU, BCU and
BCC. It is seen that the low value of # makes the reduction curves much less sensible to
the curvature, with exception for BUU, where the effect of the curvature is still clearly
seen. The differences between BCU and BCC are very small. On the other hand,
increasing the aspect ratio for #=1.0 changes completely the curves. Here, the differences
for different curvatures and boundary conditions are much larger. It is verified the
existence of intermediate curvatures leading to reduction curves below the ones of larger
curvatures, confirming what was previously said. This effect is amplified for the curves

with the minimum values (see, for example, Z=20, 2=1.0 and BCC).

As expected, the greater the amplitude of the imperfections, the lower is the ultimate load
of a panel; however, it is possible to verify in Figure 6.33 that this effect is generally greater
as the curvature increases. The reduction curves are plotted for two levels of amplitudes

min(;6)/200 and min(a;6)/500 for 2=1.0 and all the boundary conditions. The effects

of increasing the amplitudes are common to the three boundary conditions.

To assess the effect of the aspect ratio in the reduction curves, in Figure 6.34 flat and
curved panels (Z=50) are compared for BCU and BCC in terms of the reduction curves.
It is concluded that the effect of the aspect ratio is modified with the curvature, because
while 2=0.5 leads to the lowest values of y for Z=0, it leads to the highest values is the
curved panels in both boundary conditions. This effect is verified for both boundary

conditions. On the other hand, for Z=50 the panels with larger values of « lead to the
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Figure 6.33: Effect of the amplitude of imperfection in the reduction factors (amplitude
min(a;b)/200 vsmin(a;b)/500)

The normalized ultimate loads for all the analyses carried out with amplitude for
imperfections equal to min(4;6)/200 and BCU are plotted in Figure 6.35. The
imperfection patterns are distinguished. It is possible to verify a considerable variability
of values of y due to the several imperfection patterns. The minimum envelope changes

considerably with the curvature.

6.7 LARGEDEFLECTION BEHAVIOUR AND ULTIMATE LOAD OF
STIFFENED CURVED PANELS UNDER  UNIAXIAL
COMPRESSION

6.7.1 Introduction
This section is devoted to the study of the stiffened panels under uniaxial compression.

The curvatures, Z, are considered from 0 to 50 with steps of 10 and two additional cases

155



6. Characterization of the behaviour and ultimate load of unstiffened and stiffened curved panels under
compression and out-of-plane loading

7=0, BCU 7Z=50, BCU
1.0 i 10 p===r-=-=-7-=--a---a----=---r---,
| & 1 1 1 —— =0.5 1
1 1
S8 L Tos |
3 | 3 |
-~ 1 -~ 1
Q Q
S 0.6 L Sos |
< ! Qe !
) ! ) !
S04 F : : q - | T 04 |
S o 1 1 1 1 R 1 S 1
"S r 1 1 1 1 1 1 1 "8 :
€ 1 1 1 ] 1 1 1
moz :___T___T____I____I____I____I____I :coz 1
- 1 1 1 1 1 1 1 1
r 1 1 1 1 1 1 1 1
0.0 C 1 1 1 1 1 1 J 0.0 J
0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5
Slenderness, A Slenderness, A
7=0, BCC 7=50, BCC
1.0 1.0
0.8 =0.8
~ ~
S S
3 3
S 0.6 S 06
2 Q2
2 2
3 0.4 s 0.4
3 3
o] o]
& 0.2 & 0.2
0.0 0.0
0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5
Slenderness, A Slenderness, A

Figure 6.34: Effect of the aspect ratio in the reduction factors

with very large curvatures of 100 and 200 are considered for comparison. The aspect
ratios, 2, are varied from 0.5 to 1.5 with steps of 0.25. The thickness, 4, is maintained
constant with values of 0.01 m, however the local slenderness of the subpanels is varied
with the width of the subpanels to thickness ratio, /b, from 25 to 75 with steps of 25.
In this way, the width of the panels changes correspondingly (from 0.5 to 6.0 m). This

variation allows to assess the transition between local and global instability phenomena.

The stiffeners are considered flat with a constant thickness, 4., of 0.01 m. The depth of
the stiffeners are modelled with values of 0.075 m and 0.1 m. It should be noted that the
depths of the stiffeners in the FEM, due to the utilization of shell elements, are modelled
up to the middle surface of the panel and, consequently, they have to be explicitly

modelled with the increase of half of the thickness, /2. This means that, in comparison
with the free dimension for the depth of the stiffeners, d,, defined in Figure 3.5,
d,ren=d+h/2. However, for convenience in this Chapter 6, d, zzxis named simply as 4.

(thus, d./b; is defined in the same way, i.e. with values of 7.5 and 10.0). The proper
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Figure 6.35: Normalized ultimate loads for all the imperfection patterns and aspect ratios

(imperfection with amplitude min(a;5)/200 and BCU)

distinction between both depths will be done in the comparison with the results of the
SAM, in Chapter 7. Consequently, for #=0.01 m, the free dimension of the stiffeners are
respectively 0.07 m and 0.095 m, which have class 1 and 3, respectively, for a steel with

/=355 MPa. The number of stiffeners, 7, is considered as: 1, 2, 3, 5 and 7. In this way it

is possible to analyse the change in behaviour that a low and a large number of stiffeners

introduce to the panels.

The local curvature of the subpanels, Z,., defined by equation (5.8), varies between 0.16
(for Z=10 and 7=7) and 50.0 (for Z=200 and 7=1), values which were previously

covered in the study of unstiffened panels, in section 6.6.
BUU are excluded from the analyses due to reduced practical applicability.

As previously discussed, the eigenmodes of stiffened panels do not allow to separate
global, local and stiffeners imperfections, and consequently they are not a viable approach
to model adequately imperfections in stiffened panels. Hence, the imperfections were

separately considered for global, local and stiffeners through the definition of the

157



6. Characterization of the behaviour and ultimate load of unstiffened and stiffened curved panels under

compression and out-of-plane loading

deformed coordinates. The global imperfection is modelled with a single perfect semi-
wave (SPSW), and the local imperfection with multi perfect semi-waves (MPSW)
depending of the local geometry of the subpanels, as described in section 5.7. The
amplitudes for each component are considered as follows: min(a;6)/400 for the global
imperfection, min(;£)/200 for the local imperfection and 4/50 for the rotation of the
stiffeners. Additionally, positive and negative direction are considered for the

imperfections.

The parametric variation for the stiffened panels is summarised in Table 6.9,

corresponding to a total of 4800 GMNIAs.

The ultimate loads for the stiffened panels with 4,/h,=10 can be consulted in Annex C.

Table 6.9:  Parametric variation of stiffened curved panels under compression (GMNIA)

Panel Stiffeners
ZGlalml a ﬂs/b b [m] A ds/bs hs [m]
0 05 25 001 1 75 0.01 BCU POS(SPSW:min(a;6)/400+ Elasto-Plastic

BC Imperfection Material

10 075 SO 2 100 BCC MPSW:min(a:6)/200+Stf:h/50)  (S355)
20 10 75 3 NEG(SPSW:min(a:5)/400+

30 125 5 MPSW:min(a;b)/200+St£:5/50)

40 15 7

50

100

200

6.7.2 Effect of the width of the subpanel to thickness ratio

Figure 6.36 presents the normalized ultimate loads, y, as a function of the curvature for
different values of 4/h and number of stiffeners for panels with #=1.0 and BCU.
Imperfections were considered with positive and negative directions with amplitude
min(a;6)/200. As expected larger values of the /b ratio lead to lower values for the
normalized loads because the panels are more prone to local instabilities. The increase in
the number of stiffeners decreases also the values of y because the dimensions of the panel
increase correspondingly. Regarding the direction of imperfections, a great dependency

on Z, n,, and as/h is verified. However, it is possible to conclude that in general, negative
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6.7. Large deflection behaviour and ultimate load of stiffened curved panels under uniaxial compression

imperfections are the most conditioning for Z up to approximately 40 or 50, for 2/h=50
and 4/h=75, and, in general, for all curvatures for 2/h=25. Some exceptions are found
for #,=1, where the negative direction is only the most unfavourable for Z=0 to 20. In
some cases, the differences reach very significant values. For example, for #=7 with
a/h=50 for Z=0 the negative direction leads to an ultimate load 48% lower than for the
positive imperfection. In contrast, for Z=200, it is leads to the lowest ultimate load (25%

lower than the negative direction).
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Figure 6.36: Reduction factor as a function of curvature for different values of a,/, number

of stiffeners for positive and negative imperfections (2=1.0, d,/4=10 and BCU)

159



6. Characterization of the behaviour and ultimate load of unstiffened and stiffened curved panels under
compression and out-of-plane loading

6.7.3  Effect of the geometry of stiffeners

To assess the influence of the depth to thickness ratio, d/b., the reduction factors are
plotted, in Figure 6.37, for values of 7.5 and 10.0, as a function of the curvature for
different number of stiffeners and 4./ ratios. Panels with 2=1.0 with BCU and negative
imperfection were considered. The increase in the ultimate load obtained by increasing
the moment of inertia of the stiffeners depends on the curvature, 2/5 and the numbers
of stiffeners. The benefit of increasing the moment of inertia of the stiffeners in panels

with 7,<3 is almost negligible for Z=100 (exception for Z=100 and 2/h=75).

As the a/b ratio increases, larger moments of inertia of stiffeners increase significantly
the ultimate load for #z=1. For 2/h=75 the benefit is considerable for Z=0 (48.4%) and
Z=10 (62.1%). However, for Z=30 it is only 2.7%, and for larger curvatures larger than

that the gains are negligible. For 7,:=5 the benefit decreases for lower curvatures when a//
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Figure 6.37: Reduction factor as a function of curvature for different number of stiffeners,

d/h,;and of a,/Aratios (#=1.0, negative imperfection and BCU)
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6.7. Large deflection behaviour and ultimate load of stiffened curved panels under uniaxial compression

increases. For example, while for #2.=7 and Z=0 the gain for 2/h=25 is 51.8%, for a/h=75
it is only 15.6%.

6.7.4 Effect of the aspect ratio and boundary conditions

The Figure 6.38 analyses the effect of the aspect ratio and boundary conditions. For this,
panels with 2/h=50, d./h.=10.0 and negative imperfections were used. In general, while

Z=0 shows a decrease of the ultimate load with the increase in the aspect ratio, the panel
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Figure 6.38: Reduction factor as a function of the aspect ratio for different curvatures,

number of stiffeners and BCU and BCC (a,/=50, d/h~=10.0 and negative imperfection)
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compression and out-of-plane loading

with Z=200 is not very affected; in fact, a slight increase is verified.

For the larger number of stiffeners, as the aspect ratio increases, y seems to tend for an
approximately constant value within the plotted aspect ratios. The effect of boundary
conditions follows the same tendency as previously identified for the unstiffened panels,
i.e. the BCU leads in general to lower values of y than BCC and this difference has
tendency to increase as the aspect ratio also increases. While curved panels with BCU
tend to stable values of y, for BCC the aspect ratio seems to increase y, leading to some

cases to local minima.

The largest curvature (Z=200) is the least affected by the change in boundary conditions.
Asan example, with 2.=7, 4/h=50, 2=1.5 for Z=0 passing from BCU for BCC means an

increase in the reduction factor of 67%, while for Z=200 it is only 13%.

6.7.5 Effect of the curvature

The effect of curvature has been assessed through the results presented from Figure 6.36

to Figure 6.38. Generally, the increase in Z increases the resistance of the panels. From
observation of Figure 6.36, some exceptions are found, for example for 7=2 with
a/h=25. In this case, there is a reduction of y for lower curvatures in comparison with
Z=0, which is recovered with the increase in curvature (only for Z=40). The gain in y

with the curvature is larger for higher aspect ratios.

6.7.6 Imperfection sensitivity

The effect of the imperfection direction on the ultimate load in shown in Figure 6.39. It
is possible to verify that in general as the curvature increases, the higher is the percentage
of cases where the positive direction for the imperfection leads to the lowest ultimate
load. These effect also depends on the number of stiffeners. For example, for Z=40, while
for n=3 the lowest ultimate load is obtained with the negative direction in 55% of the

cases, for z=1 the same happens only in 3% of the cases.

This can be confirmed in Table 6.10 where the percentages for all the analyses performed

are presented only in function of the curvature. While for Z=0 the positive direction

leads to the lowest ultimate load in only 7% of the cases, for Z=200 it happens for 80%.
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Figure 6.39: Percentage of the direction of imperfections leading to the minimum ultimate

load as a function of the curvature for each number of stiffeners

Table 6.10: Percentage of the direction of imperfections leading to the lowest ultimate
load

Z=0 Z=10 Z=20 Z=30 Z=40 Z=50 Z=100 Z=200

POS 7% 17% 33% 53% 63% 70% 81% 80%

NEG 93% 83% 67% 47% 37% 30% 19% 20%

6.8 LARGEDEFLECTION BEHAVIOUR AND ULTIMATE LOAD OF
UNSTIFFENED CURVED PANELS UNDER OUT-OF-PLANE
PRESSURE

6.8.1 Introduction

In this section it is sought to study the behaviour of unstiffened curved panels under out-
of-plane pressure. Interaction with in-plane compression is also assessed leading to some

distinct load cases.

The geometric parameters are varied similarly to the previous case of in-plane
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compression and out-of-plane loading

compression but now with a more reduced sample size (steps are increased). Taking into
account that imperfections have less impact for out-of-plane pressure and its effect was
already studied in detail in section 6.6, only the imperfection given by a single perfect
semi-wave (SPSW) with positive direction and an amplitude of min(a;6)/200 is
considered now. Depending on the order of application of the loads, two situations may
be distinguished: ;) initial in-plane compression (axial force - AxF) followed by out-of-
plane pressure (P); and #) initial out-of-plane pressure followed by axial compression.
Furthermore, different levels of the initial preload are considered. For the initial in-plane
compression, 0, 10 and 25% of the plastic load are considered, AxF0, AxF10 and AxF25,
respectively. Depending on the direction for the out-of-plane pressure following this
initial compression, positive and negative directions may be considered, +P and -P,
respectively. For the initial out-of-plane pressure, 0 and 50 kPa are considered, PO and
P50, respectively. Additionally, the direction of the out-of-plane pressure. This

parametric variation leads to 1512 different cases as summarized in Table 6.11.

Table 6.11: Parametric variation of unstiffened curved panels under out-of-plane pressure

(GMNIA)
Panel
BC Imperfection Load case Material

Z a a/b h[m]

0 05 50 001 BUU  POS(SPSW:min(a:b)/200) AxFO+P  Elasto-Plastic (5355)
10 1.0 100 BCU AxF10+P

20 2.0 150 BCC AxF25+P

30 5.0 AxFO-P

40 AxF25-P

50 (PO+AxF)

P50+AxF

6.8.2 Eftect of the aspect ratio

The effect of the aspect ratio for panels loaded with positive (centripetal) out-of-plane
pressure is shown in Figure 6.40. Aspect ratios are varied from 0.5 to 5.0 and curvatures
from 0 to 50 as described. The panels are considered without initial axial preload
(AxF=0%) and with 2/h=100 for BCC. The aspect ratios are shown to change very

considerably the stiffness of the panels. It is verified that the stiffness of the panels
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pressure
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Figure 6.40: Effect of the aspect ratio for panels loaded with positive out-of-plane pressure
for different levels of curvature (a/A=100, BCC, AxF=0)

decreases with the increase in the aspect ratio. This effect persists for the different
curvatures despite larger curvatures increasing the initial stiffness of the panels. In fact,

the equilibrium paths are greatly affected by the curvature.

A very markedly change in the slope of the curves is shown in the majority of the cases.
This is due to the yielding which is propagated to the all section very quickly. In Z=50

this phenomenon is more gradual and the curves are smother.

It is verified that the equilibrium paths do not show maxima values, with the exception
of two cases (Z=50 for #=2.0 and 5.0), even for very high values of out-of-plane
displacements (0+0y=6.0). Supported on the results obtained from the remaining
analyses, this leads to the conclusion that, in general, under pure out-of-plane pressure,
ultimate loads are not reached within practical displacements. Because fracture was not
considered in the material law the displacements continue to develop up to unrealistic

values. At some point fracture would be determinant. However, this question is of
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reduced practical interest because that situation is not reached in practice. For these
reasons the analyses of the ultimate load of the panels under out-of-plane pressure is more

complex.

6.8.3 Effectof an initial in-plane compression

In Figure 6.41, the effect of the initial in-plane axial load (AxF=0% vs AxF=25%) is
assessed. Thus, the panels are firstly compressed and then subject to a positive out-of-
plane pressure. The results are compared for different levels of curvature and 4/5 ratios.
All the panels are considered with a=1.0. The following conclusions may be drawn: 7)
larger a/h ratios decrease very significantly the loads developed for the same
displacements; iz) the effect of the initial in-plane compression is very important. The in-
plane compression changes completely the response of the panels. The initial in-plane

compression induces instability phenomena that causes the appearance of ultimate loads,
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Figure 6.41: Effect of the initial in-plane axial load (AxF=0% vs AxXF=25%) for panels loaded

with positive out-of-plane pressure for different levels of curvature and a/ A ratios (2=1.0)
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pressure

contrarily to the panels without initial axial compression (AxF=0%). This effect is larger
for larger values of a/h ratios. While 2/h=50 does not practically deflect with the
application of the initial in-plane compression, for 2/h=150 a value of 0+d,=3.4 is
developed for Z=20; i) the curvature affects significantly the load-deflection behaviour,
which is relatively complex because of the intersection of the curves. For example, Z=0
for low values of p. develops considerably larger displacements that most of the curved
panels. However, as the load increases it becomes stiffer (see, for example, the panel

Z=40, within reasonable displacements (9+8,<3.0)).

The values of ultimate loads of the cases represented in Figure 6.41 are shown in Table
6.12. The values for 2/h=50 are not shown because they are not reached within the range
of admissible displacements. Besides the usual reduction of the ultimate loads with the
increase in 2/, it is observed that its evolution is not monotonic with curvature, showing

the additional complexity of the interaction between in-plane and out-of-plane loading.

Figure 6.42 shows the equilibrium paths of panels with and without the pre-compression
followed by negative (centrifugal) out-of-plane pressures. Once again, the panels without
initial compression have always the values of p. increasing with the displacements. Here,
the effect of the curvature is more “predictable”, i.e. the curvature increases the developed
load for the same displacement approximately in a constant way along the all range of
displacements and for all boundary conditions. In this case, the ultimate load obtained
when the pre-compression exists is peumscc>pauimscv>peumsuu. This effect is shown in

Table 6.13 where the values of the ultimate loads are compared.

The in-plane restraints along the edges become important when the behaviour is

controlled by the membrane component. This effect would become more important if

Table 6.12: Ultimate load for the positive p, in panels pre-compressed with AxF=25%,
2=1.0 and BCC [kPa]

=0 Z=10 Z=20 Z=30 Z=40 Z=50

alh=50 - - - - ! !

a/h=100  251.2 255.3 291.0 277.9 246.1 312.9

a/h=150 74.4 80.6 83.2 111.8 90.8 88.5
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Figure 6.42: Effect of the initial in-plane axial load (AxF=0% vs AxF=25%) for panels loaded
with negative out-of-plane pressure for different levels of curvature and different boundary

conditions (a/h=100, 2=1.0)

axial restraint existed along the edges, for example, in-plane fixed boundary conditions.
In this case, because boundary conditions are simply supported the in-plane displacement
are free, however there is a partial effect due to the relative displacement constraints

assumed for the edges in BCU and BCC. This influence is noticeable in the results.

The differences on the displacements due to the initial compression are quite significant,

especially between BUU and the remaining boundary conditions. In fact, it is verified

Table 6.13:  Ultimate load for the negative p, in panels pre-compressed with AxF=25%,
2=1.0 and a/h=100 [kPa]

Z=0 Z=10 Z=20 Z=30 Z=40 Z=50

BUU 979 -153.1 2083  (AxF=21.6%) -275.5 3174

BCU -1712 -210.2 -258.8 -301.0 -343.3 -387.4

BCC -253.6 -282.7 -320.1 -355.0 -391.5 -431.7
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Figure 6.43: Comparison of the equilibrium paths for Z=20 and Z=30 under uniaxial
compression for a/ ~=100, 2=1.0 and BUU

that one panel (Z=30) in BUU is even unable to sustain the initial pre-compression. This
is clarified in Figure 6.43 where the equilibrium path for Z=30 and Z=20 is plotted for
pure compression. It is verified that the panel Z=30 is unable to reach 25% of the plastic
load (21.6%), reason why the corresponding equilibrium path was not presented in
Figure 6.42. On the hand, for exemplification, the panel Z=20 reaches the predefined in-
plane load for 8+060=3.9, which matches the initial displacement in Figure 6.42.

6.8.4 Initial out-of-plane pressure followed by in-plane compression

Figure 6.44 shows the load-deflection curves of in-plane compressed panels initially
preloaded with a uniformly distributed out-of-plane pressure, p., of 50 kPa. The results
are compared with the results without out-of-plane pressure from section 6.6. Different
curvatures and aspect ratios are considered with BCC. It is verified that the behaviour is
considerably distinct depending on the aspect ratio. The behaviour of the panels becomes
much more unstable as the aspect ratio increases. This, in part, is explained by the initial
imperfection pattern used. As previously discussed in section 6.6, this type of
imperfection (SPSW) force this type of behaviour in panels with large aspect ratios.

Nevertheless, the effect of the initial p. is very noticeable and increases as the aspect ratio
increases. In the initial state, the initial p. can be seen as an amplification of the initial

imperfection. For 2=0.5 and 1.0, the behaviour follows approximately the same tendency
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Figure 6.44: Effect of the initial out-of-plane pressure (p,=0 kPa vs p,=50 kPa) for panels
loaded with in-plane compression for different levels of curvature and aspect ratios (a/h=100,

2=1.0 and BCC)

reaching the ultimate load for lower values. In some cases, for the larger aspect ratios, the
initial p. has a stabilizing effect. For example, where the panels only loaded in compression
changed the direction of deformation, they passed to deform only in one direction, e.g.

Z=0and 2=2.0. However, in other cases for example Z=30 it is not sufficient to eliminate

this effect.

The values of the ultimate load are compiled in Figure 6.45. The decrease in the ultimate
load may be rather significant especially for the larger aspect ratios with large curvatures.

The case with 2=5.0 and Z=50 shows a reduction of 50.4%. For 2=0.5 and #=1.0 the

reduction is approximately constant along all the curvatures.

The ultimate loads for panels with 2/h=100 subjected to an initial out-of-plane pressure

of 50 kPa followed by in-plane compression can be consulted in Annex C.
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Figure 6.45: Effect of the initial out-of-plane pressure (p,=0 kPa vs p,=50 kPa) in the
ultimate load for panels loaded with in-plane compression for different levels of curvature and
aspect ratios (a/h=100, #=1.0 and BCC)

6.9 LARGEDEFLECTION BEHAVIOUR AND ULTIMATE LOAD OF
STIFFENED CURVED PANELS UNDER OUT-OF-PLANE
PRESSURE

6.9.1 Introduction

Similarly to the previous section, out-of-plane pressure is addressed but now for stiffened
panels. The geometric variation is the same as in section 6.7, however with fewer
intermediate cases to avoid unnecessary analyses. The effect of parameters like the aspect
ratio, the curvature and boundary conditions is, in generic terms, similar to what has been
said in previous sections. Consequently, less quantity of results will be presented to avoid

repetition.

The objective is to characterize generically the behaviour of the stiffened panels under
this new load situation and present its distinctive behaviour in comparison with the

previous cases.

The load cases are similar to the ones defined in the previous section for the unstiffened

panels. Table 6.14 summarizes the 2160 different situations considered.
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compression and out-of-plane loading

Table 6.14: Parametric variation of stiffened curved panels under out-of-plane pressure

(GMNIA)
Panel Stiffeners
BC Imperfection Load case  Material
Zeivar ¢ a/b h[m] n, d/b, b [m]
0 05 25 001 1 75 0.01 BCC POS( AxFO+P  Elasto-Plastic
10 1.0 50 2 100 SPSW:min(a;6)/400  AxF25+P (8355)
30 15 3 +MPSW:min(2;6)/200  AxFO-P
50 5 +Stt:4/50) AxF25-P
100 7 (PO+AxF)
200 P50+AxF

6.9.2 Effectof the aspect ratio, a,/ hand d/ hyratios

The effect of the width of the subpanel to thickness ratio, ,/5, is shown in Figure 6.46
for different aspect ratios and curvatures for a panel with 3 stiffeners. As expected, the

slenderness of the subpanels affects significantly the loads reached. For example for 2=1.0
and Z=50, a panel with 4./h=50 develops -89.9% smaller loads than with 4./h=25 for
0=1.5 (discounting the effect of dy).

Smaller aspect ratios increase substantially the stiffness of the panels. For example, for
a;/h=25 and Z=50, the panel with ¢=1.5 develops a load 83.9% smaller than ¢=0.5 for
0400=2.0. For a,/h=25 and 2=1.0, a panel with Z=100 develops aload 157.3% larger than
Z=0 for §+9=1.0.

Figure 6.47 shows the effect of increasing d./h=7.5 to d,/h=10.0 (an increase of the
moment of inertia of the stiffeners of 2.37 times) for different number of stiffeners and
curvatures''. It is possible to conclude that the behaviour is not changed, only amplified
with the increase in the d./h; ratio. This increase is approximately constant along the
displacement, however its effect tends to increase with the slenderness of the panels (a/5
in this case proportional to the number of stiffeners) where the stiffeners are more

important.

"' The case with 7z=1 and Z=200 is not shown because this very high value of curvature for 4./h=25

generates a panel with a small radius of curvature showing little practical applicability.
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Figure 6.46: Effect of the aspect ratio and a4/ A ratio for panels loaded with positive out-of-

plane pressure for different levels of curvature (BCC, AxF=0)

The reason for the peculiar equilibrium paths for the highest curvatures (Z=100 and
Z=200) for a/h=50 in Figure 6.46 and 7,=7 in Figure 6.47 will be explained in the next

section.

6.9.3 Effectofaninitial in-plane compression

Figure 6.48 compares panels without initial in-plane compression with an initial in-plane
compression equivalent to 25% of f; (AxF25). Different number of stiffeners and

curvatures are compared.

For curvatures up to 50, the initial in-plane compression increases the initial
displacements and it lowers the equilibrium paths, 7.e. the load reached for a same
displacement is lower. The effect of the initial compression is found to be very important
for Z=100 and Z=200, especially for larger 2/h (proportional the number of stiffeners),
where the behaviour is very unstable. The reason is that these panels are very unstable and

prone to snap-through phenomena similarly to what has been shown in previous figures.

These snap-through phenomena occur in panels with very high curvatures Z>100 and
large slenderness (increasing with 7, and 4,/ ratio). Panels with very high curvatures
approach the classical case of snap-trough phenomena: an arch under pressure. They may
also occur in a small number of stiffeners with large /b ratios. In these cases, the
stiffeners are stiff in comparison with the panel and local instabilities are susceptible to

be developed. In these cases, the curvature may induce the development of larger
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Figure 6.47: Effect of the d/hratio for panels loaded with positive out-of-plane pressure for
different levels of curvature (a/h=25, 2=1.0, AXF=0 and BCC)

displacements in certain subpanels which due to the existence of stiffeners do not
propagate to the adjacent subpanels. However, due to the compatibility of rotations,

reverse displacements may be developed in the adjacent panels.

In order to exemplify this case, one of the most extreme cases found with this
phenomenon is represented in Figure 6.49, corresponding to #.=2, 4./h=50, Z=100,
2=1.0, AxF=0% and BCC. The equilibrium paths in function of the out-of-plane and
in-plane displacement are plotted with several points marked in the equilibrium paths
with the corresponding deformation shape. It is possible to confirm the development of
larger displacements at the outer subpanels. This is due to the existence of stiffeners
decreasing the displacements along them. By compatibility of rotations on the stiffeners,
the displacements at the central panel is reduced (Point C). From that point, the system

regains stiffness and the displacements increase again at the centre (Point D).
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Figure 6.48: Effect of the initial in-plane axial load (AxF=0% vs AxXF=25%) for panels loaded
with positive out-of-plane pressure for different levels of curvature and number of stiffeners
(a4 h=50, 2=1.0 and BCC)

Centrifugal (negative) pressures are applied in the panels of Figure 6.50. The effect of the
initial in-plane compression is also evaluated. Similarly to what was concluded for the
unstiffened panels, this centrifugal pressure induce more stable behaviours along the
curvatures. Furthermore, as expected, snap-through phenomena are inexistent for this

direction of the pressure.

The effect of the initial in-plane compression is approximately constant; however, a slight

increase in the difference between AxF0 and AxF25 is verified for larger curvatures.

6.9.4 Initial out-of-planc pressure followed by in-plane compression

In this case, the out-of-plane pressure is first applied and then followed by in-plane
compression. The equilibrium paths of the panels studied in section 6.7 (POAXF) are
compared with the ones with an initial pressure of 50 kPa. Two levels for the 4./ ratio

and 7, are considered as described in Figure 6.51.
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Figure 6.49: Evolution of the deformed shape for panels loaded with positive out-of-plane
pressure for different levels of curvature and number of stiffeners (n=2, a/ h=50, Z=100,

2=1.0, AxF=0% and BCC)

The reduction of the ultimate loads is larger for smaller curvatures. For example, for
a,/h=50 and 7.=3 while the pressure leads to a reduction of 29.5% for Z=0, for Z=200 is
only 7.7%.

The ultimate loads for panels with 2,/h=25 subjected to an initial out-of-plane pressure

of 50 kPa followed by in-plane compression can be consulted in Annex C.

6.10 SUMMARY

In this chapter, the behaviour of both unstiffened and stiffened panels was characterized
for in-plane compression, out-of-plane pressure and interaction between both loads. The

study was performed through FEA in the most realistic way possible for a wide range of
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panels loaded with in-plane compression for different levels of curvature: (#=1.0 and BCC)

situations (thousands of cases were analysed).

The chapter began with the analysis of the critical behaviour of the panels. This was

found to be useful to explain certain behaviours in the following sections. The

preliminary analysis on some of the parameters was found to be useful to analyse the

importance to study certain parameters and to define the parametric study. The effect of

the material nonlinearity was found to be very important on the large deflection

behaviour of the panels. A brief study on the impact of residual stresses allowed to
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compression and out-of-plane loading

conclude that the effect of residual stresses can be incorporated in a more convenient way

by equivalent geometric imperfections.

The large deflection behaviour was then thoroughly analysed. The nonlinear behaviour
and the ultimate load of unstiffened and stiffened curved panels subjected to in-plane
compression was evaluated. A very detailed analysis of imperfection was carried out
allowing to conclude about the utmost importance of the topic. For example, it was
concluded that the consideration of initial imperfection patterns given by the
cigenmodes from LBAs (usually assumed in many structural problems) may be non-

conservative for curved panel. The global imperfection pattern, 4;;, may lead, in some

cases, to considerably lower values for y.

The study was then extended to out-of-plane pressure and interaction with in-plane
compression. In this case, taking into account that ultimate loads are not reached within
displacements with practical significance more emphasis was given to the non-linear

behaviour of the panels.

The analysed parameters were found to change dramatically the behaviour of the panels,

which, in some cases, lead to unexpected results.
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7 VALIDATION OF THE SEMI-
ANALYTICAL MODEL FOR CURVED
PANELS UNDER IN-PLANE
COMPRESSION AND OUT-OF-
PLANE PRESSURE

7.1 INTRODUCTION

In this chapter, the large displacement behaviour of unstiffened and stiffened curved
panels are tackled with the Semi-Analytical Method (SAM) based on the formulation
presented in Chapter 4. The results from the semi-analytical method are compared with
the results of advanced finite element analyses. The objective is to validate the SAM for a

wide range of situations both for unstiffened and stiffened panels under in-plane



7. Validation of the Semi-Analytical Model for curved panels under in-plane compression and out-of-
plane pressure

compression and out-of-plane pressure. The results will be presented mainly in terms of

the nonlinear equilibrium paths which were thoroughly analysed in Chapter 6.

Despite the critical behaviour not being the main subject of this thesis (as discussed in
section 3.6, it is not able to characterize properly the behaviour of curved panels), the
subject will be briefly addressed with the SAM for validation purposes in section 7.2.
With regard to the post-buckling behaviour, the results are explored in greater detail and
thoroughly compared with advanced non-linear FE analyses (as described in Chapter 5)
in sections 7.3 and 7.4 for unstiffened and stiffened panels under in-plane compression,
respectively. Out-of-plane pressure and its interaction with in-plane compression will be

addressed in section 7.5.

As previously referred, an elastic material is considered in the analytical formulation and,
consequently, the equilibrium paths in this chapter reflect that assumption. The effect of
the plasticity of the material and the prediction of the ultimate load will be tackled in an

approximate way through the utilization of a strength criterion in Chapter 8.

Linear elastic Bifurcation Analyses (LBAs) and Geometrically Nonlinear elastic Analyses
with Imperfections included (GNIAs) were performed as described in detail in Chapter
5, for section 7.2 and sections 7.3 to 7.5, respectively. This means the use of a linear elastic
material law with a modulus of elasticity, £, of 210 GPa and a Poisson’s coefficient, v, of

0.3 both in the SAM and FEM.

Residual stresses are possible to be incorporated in semi-analytical methods. Paik ez al.
[138] showed it for flat plates, for the case of weld induced residual stresses. This stress
component is included in the stress function, F, simply as an initial stress field. However,
as discussed in section 6.5, the explicit consideration of residual stresses is not crucial and,
besides that, they may be conveniently accounted for through equivalent geometric

imperfections, reason why they were not considered in the SAM.

Snap-through phenomena were found to be nonexistent in the analyses carried out.
However, it should be noted that the semi-analytical formulation should be able to
account for them properly, provided that an adequate method is chosen to solve the
algebraic system of equations. The Newton-Raphson method in load-control fails to
catch the equilibrium path when the tangent is zero, therefore requiring a displacement-

control incrementation strategy or using an arc-length method.
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7.2. Critical behaviour of unstiffened curved panels under uniaxial compression

In the SAM it is intended to use the minimum number of Degrees of Freedom (DOFs)
possible to get a good approximation to the FEM results. This increases the efficiency of
the method and, as it will be seen, in the case of a single DOF, closed-form expressions

may be obtained, which is of enormous interest (subject to be studied in Chapter 8).

7.2 CRITICAL BEHAVIOUR OF UNSTIFFENED CURVED PANELS

UNDER UNIAXIAL COMPRESSION

In order to assess the capability of the semi-analytical model to predict the critical
behaviour, the elastic buckling coefficient of some unstiffened curved panels are

compared with the numerical results.

The critical and the initial post-critical load-deflection curve of panels with Z=0, 10 and
20 are presented in Figure 7.1. These panels are considered free of imperfections, with
boundary conditions BCC and an aspect ratio =1.0. Taking into account what has been
said, while the eigenmodes of panels with low curvatures are sufficiently well defined with
few degrees of freedoms (DOFs), the eigenmodes of panels with larger curvatures require
more degrees of freedom. For this particular case only 2 DOFs were used, b, and b.

Figure 7.1 corroborates what was schematically drawn previously in Figure 3.11. The
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Figure 7.1:  Critical and post-buckling behaviour in function of the out-of-plane

displacement at the centre of the panels (BCC, n=0, and #=1.0)
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plane pressure

equilibrium paths of a perfect plate (Z=0) and two perfect curved panels (Z=10 and
Z=20) are obtained and compared directly by the SAM. The curves are plotted as a
function of the normalized out-of-plane displacement at the centre of the panels, d=w/h.
The differences in the behaviour are very clear. While the flat plate shows a stable post-
critical equilibrium path, meaning that the load increases with the displacement, the
curved panels show unstable equilibrium paths because the load decreases as the
displacement increases. Additionally, the slope of the unstable equilibrium paths of
curved panels increases as the curvature increases. Besides that, the graph shows that the
curvature increases very significantly the elastic buckling coefficient, .. For example, the

panel with Z=20 has a value of £, 143% higher than the corresponding flat plate (£,.=4.0).

In Table 7.1 the values of the elastic buckling coefficient, £., obtained through SAM and
FEM are presented and the differences between both methods are calculated.
Corroborating what Martins ez al. [54] concluded, for long panels (¢21), it is very
difficult to get satisfactory results for the critical stresses of panels with large curvatures
when a small number of DOFs are employed. This is due to the fact that a large number
of DOFs is required to approximate the correct eigenmodes (see section 6.2). The
curvature increases very considerably the complexity of eigenmodes in comparison to flat
panels. To evidence this, in Table 7.1, the elastic buckling coefficient, £, is calculated only
with 2 DOFs (4, and 4,3) and compared with the finite element analyses for aspect ratios
2=0.5 and 2=1.0, for various levels of curvatures. It is possible to conclude that the values

of k. for 2=0.5 obtained by the semi-analytical methods match perfectly the values

Table7.1:  Comparison of the elastic buckling coefficient k. calculated through SAM and
FEM (BCC and n=0)

Z=0 Z=10 Z=20 Z=30 Z=40 Z=50
SAM 6.24 6.68 8.15 10.47 13.56 17.29
2=0.5 FEM 6.24 6.74 8.19 10.53 13.63 17.28
Diff. [%] 0.0 -0.8 -0.4 -0.6 -0.5 0.1
SAM 4.00 5.55 9.73 14.51 - -
2=1.0 FEM 4.00 5.70 9.21 12.28 15.31 18.52
Diff. [%] 0.0 2.6 5.6 18.1 - -
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Figure 7.2:  Elastic buckling coefficient &, calculated through SAM (b;;and b;;) and FEM
(BCC, n=0, and Z=30)

obtained by FEM. For longer panels, the values match well only for curvature up to Z=20.
This fact is explained with Figure 6.3, observing that only the eigenmodes of the shorter
panels and the ones of the longer panels with Z=0 can be well approximated with very
few DOFs. On the other hand, for long curved panels the complexity of the eigenmodes

increases significantly and a larger number of DOFs are required.

A reasonable solution is to determine the minimum critical stresses for a given curvature
which it is verified to occur for short aspect ratios (¢<1.0) which can easily be estimated
with only 1 or 2 DOF. For example, for a curvature Z=30 with 2 DOFs (4;; and b;3) the
elastic buckling coefficient, £, is perfectly matched up to aspect ratios a=0.7 which covers
perfectly the minimum value of ., as seen in Figure 7.2 where the SAM and FEM results

are compared.

7.3 LARGE DEFLECTION BEHAVIOUR OF UNSTIFFENED

CURVED PANELS UNDER IN-PLANE COMPRESSION

7.3.1 Introduction

In this section, the elastic non-linear load-deflection behaviour of unstiffened curved

panels under uniaxial in-plane compression is calculated through the semi-analytical
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model and compared with the non-linear FEA. The main objective is to assess the validity

of the semi-analytical method.

The panels are considered with initial imperfections which are considered the same in
both approaches for the sake of comparison. The influence of imperfections was
thoroughly assessed in Chapter 6 and it is not objective to introduce that variable again
in the results of the SAM. Consequently, imperfections will be considered given, for

convenience, simply by perfect semi-waves (the number depends of the aspect ratio).

The formulation with a MDOF solution is tested with square and long panels (2=3.0)
for curvatures up to Z=50, for boundary conditions BCU and BCC and two levels of
imperfections. The equilibrium paths are compared as a function of the in-plane and out-

of-plane displacements.

7.3.2  Equilibrium paths and validation of the semi-analytical procedure

The number of semi-waves with more relevance for the aspect ratios studied is generally
odd. Consequently, only symmetrical deflection modes with respect to both axes are
relevant. Hence, only odd numbers are used for the number of semi-waves in the

transversal and longitudinal directions, 7 and 7, respectively in equation (4.85).

In a first phase, numerical calculations were performed for curvatures up to Z=50 and
aspect ratios =1.0 and 3.0. The width, 4, and the thickness, 5, is fixed to 1.0 and 0.01 m,
respectively. Two imperfection amplitudes normalized to thickness, do=wo/h, were used:
00=0.2 (equivalent to 2/500) and 5y=0.5 (equivalent to 2/200). Depending on the aspect

ratio, the number of perfect longitudinal semi-waves for the pattern of imperfections was

chosen between 1 and 3.

It was found that only two degrees of freedom are enough for a reasonable
characterization of the post-buckling behaviour of the panels in study, taking into
account the range of curvatures with practical applicability. Therefore, for the MDOF
solution, in panels with aspect ratios equal to 1.0 the DOFs were used with 72=1 and =1
and 3 (b,; and b;3); for aspect ratios equal to 3.0 the DOFs were used with 7=1 and 3
and #=3 (b;; and bs5). On the other hand, it was found that a SDOF is not able to

accurately reproduce the post-buckling behaviour of panels with large curvatures because
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the need for a MDOF solution increases significantly as the curvature increases.

In order to facilitate the analysis of the results, a dimensionless load factor, Py ,is defined
as follows:

P = 7.1

y =Py E h (7.1)
To corroborate what has been said in the previous chapters, Figure 7.3 illustrates the
response, obtained with the SAM, of a flat plate (Z=0) and a curved panel with low

curvature (Z=10) without and with two levels of initial imperfections with one semi-
wave in each direction (9y,,=0.01 and 0.2). The normalized load Ey is computed in

function of the out-of-plane displacement normalized to the thickness, d=w/h, at the
centre of the panel (x=0and y=0, see Figure 3.4). The examination of the response of the
perfect cases clearly shows a stable post-buckling behaviour for the flat plate while the
curved panel exhibits an unstable post-buckling behaviour. For this case, this unstable
response is only visible for small imperfections because of the subsequent re-stiffening of
the curved panel. The unstable behaviour is significantly affected by curvature, boundary

conditions and imperfections, as previously explained.

Z=0vs Z=10, BOC

PO

— SAMZ-0 59171=0

— = SAMZ=0 6p;11=0.01
== SAMZ=00sp;1=0.2

— SAMZ=10 s11=0
== SAMZ=10 s5917=0.01
== SAMZ=100917=02

ISR U o e v vt

a0 05 10 15 720
0+0011

Figure 7.3:  Equilibrium paths for the out-of-plane displacements at the centre of a flat plate
(Z=0) and a low curvature panel (Z=10) without and with various levels of imperfections
(BCC and a=1.0)
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Figure 7.4:  Equilibrium paths for the out-of-plane displacements at the centre of the panels
(BCU and #=1.0)

The equilibrium paths obtained by the SAM are plotted up to: 7) numerical divergence

of the problem or 77) until a sufficient value for the load is reached.

The equilibrium paths of the panels previously described are computed in function of the
out-of-plane displacement normalized to the thickness in Figure 7.4 and Figure 7.5 for
2=1.0, respectively, for boundary conditions BCU and BCC. Comparison of the
equilibrium paths obtained by the SAM and the FEM is done. A good agreement is

verified for both boundary conditions as shown by the very good match for both

186



7.3. Large deflection behaviour of unstiffened curved panels under in-plane compression

Z=0, BOC Z=10, BCC
8 T 8 T
3 P S DS S 3 ]
S db T T B b T
. — SAMapy7=02 . — SAMipy7-02
[ S T . o ‘:/” e 2 PI="2
= = FEM1-02
= = FEMp1=05
0 £ ~ 0 -
Q0 Q05 10 15 20 Q0 Qa5 10 15 20
5+0011 6+0011
Z=20, BOC Z=30, BCC
8 T T T 12 T v

: - = FEM ‘,,1; 05 : :
Qo 5 10 15 50 00 5 10 15 20
0+0011 o+6011

Figure 7.5:  Equilibrium paths for the out-of-plane displacement at the centre of the panels
(BCC and #=1.0)

imperfections, even using only 2 DOFs. However, as the curvature increases, the modal
participation of higher modes is larger. Consequently, if larger curvatures were desired,
more DOFs would be required. Despite the maximum error for boundary conditions
BCU being still acceptable (=15% for Z=50), it is possible to verify that the differences
between the SAM and FEM results become larger from Z=40 onwards. For boundary
conditions BCC it was found that the same 2 DOF lead to larger errors for Z=40 and
Z=50 and the results are only shown for Z up to 30. Even so, it should be noted that a
curvature Z=30 is enough to cover most of the unstiffened curved panels used in real

bridges, for example, where the maximum values are approximately Z=15 [135].

The same load is also computed as a function of the in-plane displacement normalized to
thickness, #=v/, at the middle of the loaded edge (x=0 and y=—5/2, see Figure 3.4) in
Figure 7.6 and Figure 7.7, for aspect ratios equal to 1.0, respectively for boundary
conditions BCU and BCC. Again, a good agreement between the SAM and FEM results

is verified. For boundary conditions BCU the equilibrium paths very well match for the
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Figure 7.6:  Equilibrium paths for the in-plane displacements at the middle of the loaded
edges (BCU and #=1.0)

plotted range of in-plane displacements. For boundary conditions BCC, the initial
stiffness is perfectly obtained, but some differences become visible for large values of 7
when the panels start losing stiffness. However, this only happens for very high load

levels. In this case, even curvatures of Z=40 and Z=50 are reasonably assessed.

The validity of the semi-analytical model is also assessed for larger aspect ratios (2=3.0)
in Figure 7.8 for out-of-plane displacements and BCU assuming an imperfection dy;5=0.2

and in Figure 7.9 for in-plane displacements and BCC for an imperfection dp;3=0.5. In
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Figure 7.7:  Equilibrium paths for the in-plane displacements at the middle of the loaded
edges (BCC and 2=1.0)

both cases, a good agreement is obtained. It is verified that the in-plane stiffness decreases
as the aspect ratio increases. Comparing Figure 7.7 and Figure 7.9 it is possible to
conclude that for a same load level, a panel with a larger aspect ratio develops larger in-

plane displacements than one with a smaller aspect ratio.

It is clear that a good solution for generic aspect ratios and curvatures of the panels
requires a sufficient number of DOFs. This will impact the efficiency of the SAM in
terms of calculation times and convergence. Naturally, equally good solutions may be

obtained using a small number of DOFs, provided that the most relevant modes are
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appropriately chosen. For longer panels, the pattern of displacements (w) and initial
imperfections (wo) of the semi-analytical model needs to match the real behaviour,
obtained from the FEM analyses. Hence, for a panel with an aspect ratio #=3.0 and an
imperfection 4,3, the deformation shape has 3 longitudinal semi-waves which is mainly
represented by the mode ;3. This is shown in Figure 7.10 where the deformation shapes
are represented with the vertical displacements in z obtained from the FE analyses for

panels with boundary conditions BCU, Z=10 and 2=1.0 and 2=3.0 in 4) and 5),

respectively, for a load 1evelEy = 4. Figure 7.11 shows the corresponding out-of-plane

displacements (w) obtained with the semi-analytical model.

From the previous results it is possible to corroborate what was concluded in Chapter 6

about the curvature. In general, for most cases, greater curvatures lead to the development
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a) b)

Figure 7.10: Vertical displacements in zfrom the FEM for 2) 2=1.0 and b) 2=3.0 with BCU,
Z=10 and P, =4.0

Figure 7.11: Out-of-plane displacements (w) from the SAM for 2) 2=1.0 and b) #=3.0 with
BCU, Z=10 and P,'=4.0

of higher loads for the same displacement. However, this is not always the case for low
curvatures. For example, for boundary conditions BCC, the flat panel leads to higher
loads for the same out-of-plane displacement when compared to the corresponding

curved panel with Z=10 (see Figure 7.5).

The effect of the restraint of the longitudinal edges to remain straight was thoroughly
analysed in Chapter 6 with the FEM. The same general effect was now obtained with the
SAM. It is concluded that the in-plane restraint has a variable effect on the post-buckling
behaviour of curved panels. As expected, the most restrained boundary conditions BCC
lead generally to higher forces for the same displacement in the equivalent panel with
boundary conditions BCU. However, these differences are not so notorious, especially
for in-plane displacements of panels with aspect ratios equal to 1.0. The differences
between boundary conditions are generally larger for larger aspect ratios. Anyway, the

SAM was shown to be able to catch these effects quite well.
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Finally, as previously concluded, it was found that imperfections play a fundamental role
on the behaviour of curved panels under compression because they can decrease
significantly the development of force in the elements. In all cases the SAM predicted

very well the effect of the imperfections.

7.4 LARGE DEFLECTION BEHAVIOUR OF STIFFENED CURVED

PANELS UNDER IN-PLANE COMPRESSION

7.4.1 Introduction

In this section the validity of the orthotropic formulation developed in section 4.3 is
assessed for stiffened curved panels under in-plane compression. This approach is applied
to stiffened panels: 7) composed by stiffeners not too strong so they do not constitute
nodal lines; or 72) by a large number of stiffeners where the stiffeners buckle together with
the panel (overall buckling occurs). To assess the applicability of this approximation,
different configurations of stiffeners (in number and geometry) are considered. The
number of stiffeners is varied between 3 to 7 stiffeners. To better assess this, in this
section, the width of the panels are maintained fixed increasing the number of stiffeners.
Later, in Chapter 8, when validating the proposed closed-form expressions for the
equilibrium paths of stiffened curved panels, different geometric configurations (aspect

ratio, width, thicknesses of the stiffeners, etc.) will also be assessed.

Despite a MDOF being required in some cases, a SDOF solution is sufficient for most of
the analysed cases, where curvatures up to Z=50 and boundary conditions BCC are

considered.

Contrarily to Chapter 6, very high values of curvature (Z=100 and 200) are not
considered in the SAM for two reasons: ) a large number of DOFs are required, which
decreases the efficiency of the method; and 7i) the applicability of panels with so large

curvatures is more reduced, not deserving so much attention.

7.4.2 Equilibrium paths and validation of the semi-analyticai procedure

In a first phase, numerical calculations were performed for curvatures from Z=0 (flat
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panels for comparison purposes) up to Z=50 and aspect ratios a=5/2=1.0 and 3.0. Values
of 1.0 m and 0.01 m were assumed for the width (2) and thickness (/), respectively. In
order to obtain numerical values, three types of stiffeners were considered. Flat stiffeners
with three different geometries were considered. Stiffener types A, B and C were assumed
to have thicknesses (5;) of 0.01 m in all cases and depths (&) of 0.045, 0.07 and 0.095 m,
respectively'?. In order to assess the validity of the orthotropic model, the number of
stiffeners () are considered to be 3, 5 and 7. These stiffeners configurations induce
behaviours of overall collapse mode as assumed for the orthotropic model. Moreover, this
variation allows to assess the validity of the orthotropic model for a different number of
stiffeners and, additionally, it allows to assess the influence of the slenderness of the

stiffeners on the results, although class 4 stiffeners were not considered.

In real cases, these panels are not free from initial imperfections and residual stresses (due
to welding). Due to the extreme complexity to account for the real initial scenario, the
usual procedure is to assume an equivalent imperfection accounting for all the referred
effects and, consequently, a value of an equivalent initial geometric imperfection should
be given to 4,.. Two reasonable imperfection amplitudes normalized to thickness
(do=wa/h) were used: 9p=0.2 (equivalent to 2/500) and 95=0.5 (equivalent to 2/200). The
pattern for the initial imperfections was assumed to be given in all cases by a global mode

(a11: 1 perfect semi-wave in both directions).

It was found that a single degree of freedom (SDOF) is enough for a reasonable
characterization of the post-buckling behaviour of the panels with an aspect ratio 2=1.0.
This is due to the fact that for this aspect ratio (and for the range of displacements
considered) the first mode (4;) is dominant and higher modes can be neglected.
However, the same is not true for larger aspect ratios. In order to assess the validity of the
semi-analytical model for larger aspect ratios, panels with aspect ratios 2=3.0 are also

assessed. Despite being a relatively large value for stiffened panels this aspect ratio, unlike

12 Tt should be noted that the depths of the stiffeners in the SAM have discounted half of the thickness
of the panel, 4, in comparison with the values used in Chapter 6, although in practice they correspond to
the same stiffener (e.g. for /=0.01 m, 4, rz;=0.10 m > d;54=0.095 m). This is because in the FEM due to
the utilization of shell elements the height of the stiffeners has to be explicitly modelled with the increase
by /4/2. On the other hand, in the SAM 4 is the real free dimension, as described in Figure 3.5. In fact,

d,rev=ds+h/2, however for convenience in Chapter 6 d, zeprwas named simply as 4.
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a) b)

Figure 7.12: Out-of-plane deformation for a panel with Z=20, #=1.0 and S stiffeners of type

B for y=2.0, a) top view and b) perspective view

Figure 7.13: Out-of-plane deformation for a panel with Z=50, 2=3.0 and 7 stiffeners of type
A for ¥=2.0, a) top view and b) perspective view

panels with 2=1.0, allows to catch the interaction between different modes and,
consequently, more than one DOF is required. Comparing Figure 7.12 and Figure 7.13,
where the out-of-plane deformation of panels with 2=1.0 and #=3.0 are represented,
respectively, one can conclude that while a unique DOF is sufficient for the first case (1
longitudinal semi-wave, 4,,), at least 2 DOFs for the second case are needed (1
longitudinal semi-wave, 4,;, and 3 longitudinal semi-waves, 4,3). Therefore, for the
analyses with =3.0, a multiple degree of freedom displacement field (with 2 DOF) was

used.

As previously explained, the depths of the different types of stiffeners previously defined
are now increased by half of the thickness of the panel (for equivalence with the shell
elements in the FEM) leading to 0.05, 0.075 and 0.10 m for stiffeners A, B and C,

respectively.

In order to facilitate the analysis of the results, a normalized load factor y is defined using

the plastic load (corresponding to the total cross section of the stiffened panels) using a
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Figure 7.14: Equilibrium paths in function of the out-of-plane displacement at the centre of

the panel for panels with 2=1.0 and 3 stiffeners of type A

steel with a yield strength ;=355 MPa. It should be noted that this yield strength is used
only to normalize the value of the load because the material is in all cases considered
elastic. Hence, the load factor is y=1.0 when the stiffened cross-section is fully yielded.
The load factor y is calculated for the semi-analytical model as:

by (ah)
f, (ah+n,h.d;)

x= (7.2)

The load factor y from the semi-analytical method is computed in function of the out-of-
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Figure 7.15: Equilibrium paths in function of the out-of-plane displacement at the centre of

the panel for panels with 2=1.0 and 5 stiffeners of type A

plane displacement normalized to the thickness d=w/b at the centre of the panel (x=0

and y=0) and compared with the FEM results in the next graphs: Figure 7.14 to Figure

7.16 for stiffeners of type A and Figure 7.17 to Figure 7.19 for stiffeners of type B for

panels with 3, 5 and 7 stiffeners and aspect ratio 2=1.0. The comparison for stiffeners of

type C are presented in Annex D for brevity reasons. The curves of the SAM are plotted

at least up to y=1.0. In some cases, larger values of y are plotted to clarify the nonlinear

behaviour of the panels.
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Figure 7.16: Equilibrium paths in function of the out-of-plane displacement at the centre of

the panel for panels with 2=1.0 and 7 stiffeners of type A

From these results it is possible to verify that in general a good agreement is obtained. As

expected, the results are better the greater the number and the lower the slenderness of

the stiffeners. The greater the number of stiffeners, the more the stiffened panels

approach the orthotropic model. On the other hand, the greater the slenderness of the

stiffeners the greater is the possibility of the stiffeners showing instability phenomena.

With 7,=3 the results are in good agreement only for stiffeners of type A and are

acceptable for stiffeners of type B. However, it is important to mention that even for the
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Figure 7.17: Equilibrium paths in function of the out-of-plane displacement at the centre of

the panel for panels with 2=1.0 and 3 stiffeners of type B

stiffeners with the highest slenderness, the differences only become relevant for values of
the normalized load, y higher than 1. For values of y of practical interest (<1), the curves

given by the SAM are in good agreement with the ones given by the FE analyses.

For 7,=5 and #,=7 the results of the semi-analytical model are in excellent agreement with

the FEM analyses, for all types of stiffeners and even for larger curvatures.

In general, the panels with the larger initial imperfection amplitude (d5:,=0.5) show a

slightly better agreement than for the lower imperfection amplitude (d5:,=0.2).
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Figure 7.18: Equilibrium paths in function of the out-of-plane displacement at the centre of

the panel for panels with 2=1.0 and 5 stiffeners of type B

The level of normalized load achieved in the panels, for the range of displacements
considered, varies from about 1 for slightly stiffened panels and low curvatures to about
7 times the plastic load for heavy stiffened panels and high curvatures. Hence, the elastic

post-buckling solutions are able to reach and exceed all load levels of practical interest.

In Table 7.2 the results of the numerical models and the semi-analytical model are

compared in terms of y. The closest point to y=1.0 is chosen and the displacement in this

point is used to calculate y in the semi-analytical model using only a SDOF. In this way,
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Figure 7.19: Equilibrium paths in function of the out-of-plane displacement at the centre of

the panel for panels with 2=1.0 and 7 stiffeners of type B

the maxima possible errors are given for those panels (only values of y<1.0 have practical

significance). The results are given for imperfections d5,,=0.5.

As expected, the larger the number of stiffeners the smaller is the difference between the
FEM and the SAM. This corroborates the approximation to the orthotropic model. On
the other hand, the larger is the slenderness of the stiffeners, the larger are the
eccentricities and the possibility of instability phenomena. In these results this becomes

visible for the stiffeners with the larger slenderness (stiffeners of type C) and the smallest
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7.4. Large deflection behaviour of stiffened curved panels under in-plane compression

Table 7.2: Comparison of yat the closest point in the numerical models leading to y=1.0
fOl' 6‘011=0-5 (SDOF)

Stiff. A Stiff. B Stiff. C
FEM SAM FEM SAM FEM SAM

Z i ey x diff. [%]

t, FEM )

diff. [%] % é\tot,FEM( diff. [%] x stat,FEM(

stat, FEM, ) stat, FEM, )

0 0997 2042 0992 -0.6% 09838 0.854 1.058 7.1% 0951 0.633 1.071 12.5%
10 1.005 2398 0996 -09% 1.009 0.867 1.072 63% 1016 0.644 1.140 12.3%
20 1.002 2408 0987 -1.6% 1.006 0.828 1.059 53% 1.025 0.639 1144 11.5%
30 0999 1.677 0969  -3.0% 0.989 0.768 1.040 52% 0986 0.623 1.100 11.5%
40 1.005 1.097 1.014 0.9% 1.006 0.724 1.068 62% 1.005 0.614 1121 11.6%
50 0.999 0.863 1.068 6.9% 1015 0.686 1.109 9.2% 1.023 0.605 1.156  13.0%
0 1.001 1.648 0993 -08% 1.020 0.760 1.062 41% 1018 0.610 1.093 7.3%
10 1.001 1.807 0983 -1.7% 1.019 0.757 1.052 32% 1.020 0.610 1.095 7.4%
20 1.001 1.652 0974 -27% 1.000 0732 1.028 29% 1.026 0.607 1.098 7.0%
30 0998 1233 0976 -23% 0.990 0.702 1.021 31% 0973 0595 1.043 7.2%
40 0.997 0.955 1.006 0.9% 0981 0.672 1.025 45% 0983 0590 1.065 8.3%
50 1.003 0.813 1.081 7.8% 1019 0.654 1.087 67% 0994 0584 1.090 9.6%
0 1.001 1.393 0985 -1.6% 0.990 0.704 1.007 17% 0981 0591 1.021 4.1%
10 0.998 1451 0971 -28% 0991 0.702 1.000 09% 0982 0.590 1.013 3.2%
20 0998 1310 0965 -33% 1.006 0.694 1.013 0.7% 0986 0.588 1.017 3.2%
30 1.001 1.075 0979 -22% 0984 0.671 0.999 1.6% 0992 0.585 1.030 3.8%
40 0.996 0.892 1.006 1.0% 1.013 0.657 1.043 29% 1.000 0.581 1.049 4.8%
50 1.001 0.785 1.057 5.6% 0.990 0.634 1.048 59% 1.009 0.577 1.080 7.1%

number of stiffeners 7,=3 the average difference is 12.1%. On the other hand, for
stiffeners of type A and 7.=7 the average difference is 2.8%. The semi-analytical model is
thus able to deal accurately with a reduced number of stiffeners provided that they do not

induce local effects, i.e. an overall buckling collapse mode occurs.

In Figure 7.20 the equilibrium paths for the out-of-plane displacement of the panels with
2=3.0 are represented for low and high curvatures for different types of stiffeners (A and
B). For all cases, a global pattern for initial imperfections with an amplitude of 8,,,=0.5
was used and a solution with 2 DOFs was required. In all cases the semi-analytical model
shows a good agreement with the FEM analyses. The curvature Z=10 is compared with

Z=0 to show that for a same load level, the panel with Z=10 develops considerable larger
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Figure 7.20: Equilibrium paths in function of the out-of-plane displacement at the centre of

the panel for panels with #=3.0 and 7 stiffeners of type A and B for imperfections 8¢:;=0.5

out-of-plane displacements than the corresponding flat panel. This effect is even more
visible for 2=3.0 than for z=1.0. As for 2=1.0, this may be explained by the fact that a low
curvature may work like an imperfection and, consequently, it may lead to the
development of larger deformations. In these cases, the gains with the introduction of
curvature are not evident in comparison with the flat case. This aspect had already been

identified previously.

Based on the presented results the semi-analytical method was proven to be able to deal
with considerable high values of curvature (Z up to 50) and different aspect ratios of
stiffened panels, provided that the deformation modes are properly chosen and the

stiffened panels approach an orthotropic behaviour.

7.5 LARGE DEFLECTION BEHAVIOUR OF UNSTIFFENED AND
STIFFENED CURVED PANELS UNDER COMBINED UNIAXIAL

COMPRESSION AND OUT-OF-PLANE PRESSURE

7.5.1 Introduction

The main objective of this section is to show that the proposed methodology works well
in a different number of situations under combined compression and out-of-plane
loading. For all cases: 7) the boundary conditions are considered simply supported with

all edges forced to remain straight, BCC; 77) the aspect ratio is considered as a=b/2=1.0
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compression and out-of-plane pressure

(different aspect ratios will be considered for validation of the closed-form expressions in
Chapter 8); 7i7) the imperfection amplitude was normalized to thickness (do=wo/h) with
a value of §,=0.2 or Jy=-0.2 for centripetal and centrifugal out-of-plane pressure,
respectively, and assumed with a pattern given by a single semi-wave in both directions

(9011) which corresponds to a global imperfection mode.

Two distinct load cases were considered: 7) the panels are considered first pre-loaded with
one of three levels of in-plane compression and then subjected to increasing out-of-plane
pressure (p.); i) the panels are considered first pre-loaded with one of three levels of out-
of-plane pressure and then loaded with increasing in-plane compression (p,). The

equilibrium paths for both situations are compared by the semi-analytical method

(SAM) and the Finite Element Method (FEM), as described in the previous sections.

Taking into account the sequence of the loads acting on the panels, two consecutive steps
were defined for the FEM analyses. A first general static step was used for the first load
(either the in-plane or out-of-plane loading), and a subsequent second step with an arc-

length method of type Riks (see details in Chapter 5).
75.2 Equilibrium paths and validation of the semi-analyticai procedure

7.5.2.1 Introduction

Taking into account what was previously said, the study incorporates unstiffened and
stiffened panels, mainly for different curvatures and load cases. For the stiffened panels,
a number of 7 stiffeners was assumed, which have a thickness (5;) of 0.01 m and a depth
(d) 0£ 0.045 m (7.e. 0.05 m in FEA for the equivalence with the shell elements - increased
by half the thickness of the panel). Values of 1.0 m and 0.01 m were assumed for the width
() and thickness (b), respectively. The numerical calculations were performed,

depending of the cases, for curvatures from Z=0 (flat panels) up to Z=50.

For comparative purposes, a normalized load factor y is defined using the plastic load
(corresponding to the total cross section of the stiffened panels) using a steel with a yield
strength £,=355 MPa. The load factor y is calculated for the semi-analytical model as
previously defined by equation (7.2).
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plane pressure

The results are presented with the equilibrium paths in terms of the normalized out-of-

plane deformation 8+4dy; at the centre of the panels.

7.5.2.2 In-plane compression followed by out-of-plane pressure

In this situation, the panels are considered first pre-loaded with three levels of
compression for a load factor y=0% (case without compression), 10% or 25% and

subsequently subjected to an increasing out-of-plane pressure (p-).

It was attempted to use the minimum number of Degrees of Freedom (DOF) that are
able to provide a sufficiently good response. Depending on the analyses, the deformation
shapes can be more complex and a larger number of DOF is required. For example, in
Figure 7.21 and Figure 7.22, the deformation shapes are compared for an unstiffened and
a stiffened panel with the same curvature, respectively. Taking into account the

considerably different patterns of deformation, the participation of the degrees of

a)

Figure 7.21: Deformation for an unstiffened panel with Z=30 and #=1.0 (first loaded with

=0% and then loaded up to p,=50 kPa), a)top view and b) perspective view

a)

Figure 7.22: Deformation for a stiffened panel with 7 stiffeners, Z=30 and 2=1.0 (first loaded

with y=0% and then loaded up to p,=50 kPa), a) top view and b) perspective view
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freedom is expected to be different. While for the unstiffened panel the second most
important contribution (after the global mode 4,;) is mode &3, for the stiffened panel the
second most important contribution is mode b3,. It should be noted that in general with
the increase of the curvature the complexity of the deformation shape also increases and

more DOF are generally necessary.

The equilibrium paths for the unstiffened panels are plotted in Figure 7.23 with 2 DOF
(611 and b;3). It is verified that as the curvature increases the need for more degrees of
freedom is higher. However, for the lower curvatures (up to Z=20) 2 DOFs are sufficient
for a good characterization of the nonlinear behaviour. In this case the effect of the initial
in-plane compression is very notorious because the panels are not very stiff. Besides that,
it is interesting to compare the panels Z=0 and Z=10 with Z=20 and Z=30. A
considerable effect of the curvature is visible in the development of the curves and also
comparing, for example, the value of the out-of-plane displacement for p.=0. Despite this

very intricate behaviour, the semi-analytical formulation is able to predict it perfectly

well.
Z=0, ng=0, opp; =02 Z=10, ng=0, sp11 =02
200000 - - : 200000 . . .
. — SAM =0 .
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15000 1 15000 F
is) is)
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Figure 7.23: Equilibrium paths for unstiffened panels with 2=1.0 for load case with initial in-

plane compression and increasing out-of-plane pressure (2 DOFs: b;;and b;3)
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plane pressure

To evidence the need for a multi degree-of-freedom (MDOF) solution and to assess the
influence of the number of DOFs, the equilibrium paths for the same unstiffened panels
from Figure 7.23 for the load case without in-plane pre-compression (y=0) are presented
in Figure 7.24 for 1 DOF (4,;) and 4 DOFs (611, bi3, b3 and b33). For reference purposes
of the load level installed in the panels, the point where the first yield occurs (assuming
=355 MPa) is plotted. As expected, the deviation from the FEM results is much smaller
for the solution with 4 DOFs in comparison with 1 DOF and 2 DOF (shown in Figure
7.23) leading to the conclusion that the accuracy of the results increases as the number of
DOFs increases. A perfect agreement is verified for curvatures up to Z=20. An error of
0, 2% and -3% is verified for Z=0, 10 and 20, respectively. For the largest curvature,
Z=30, an error of =-8% is verified for 4 DOFs at the point corresponding to first yield,
in contrast with #~16% and ~-13% for 1 and 2 DOFs, respectively. For the case with
Z=30, despite being perfectly acceptable for such a complex deformation shape, the

difference indicates that for curvatures larger than Z=30 even more DOFs may be

needed.

Another expected evidence is related with the lower value of p. needed to reach the first
yield in the panel, as the initial level of y increases. It was found that the differences are
considerable. For example, for Z=30, while for y=0 the panel reaches the first yield only
for p.~173 kPa, for 7=0.25 it occurs only for ~87 kPa.

s e SAMZ-0I1DOF

- SAM Z- 10 IDOF
- SAM Z- 20 1IDOF'
SAM Z- 30 1DOF
— SAM Z- 0 4DOF
— SAM Z- 10 4D0OF
— SAM Z- 20 4D0OF
SAM Z- 30 4DOF
- FEMZ-0
= FEMZ-10
- FEMZ-20
- FEM Z-30

w  First yield

0+6 (11

Figure 7.24: Equilibrium paths for unstiffened panels with 2=1.0 for load case without initial
in-plane compression (¥=0) and increasing out-of-plane pressure for 1 DOF (b11) and 4 DOFs
(b1s b3 bsand bss) and comparison with FEM
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Figure 7.25: Equilibrium paths unstiffened panels with 2=1.0 for load case without initial in-
plane compression (y=0) and increasing centrifugal out-of-plane pressure (4 DOF: b;;, by, bs;

and b33)
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Figure 7.26: Equilibrium paths for stiffened panels with 7 stiffeners and #=1.0 for load case
with initial in-plane compression and increasing out-of-plane pressure (4 DOF: b,;, b;3, bs,

bs3)

The applicability of the semi-analytical formulation for centrifugal pressures is tested
next for unstiffened panels. The panels are now considered with a symmetric
imperfection do;;=-0.2 (initial imperfection towards the pressure). The equilibrium paths
of the unstiffened panels with in-plane compression y=0 and increasing centrifugal out-

of-plane pressure are plotted in Figure 7.25 with 4 DOF. It is possible to verify a very

good adjustment between the semi-analytical formulation and the FEM analyses.

For the stiffened panels, a solution with 4 DOFs was required (11, 613 b31 and b33) even
for smaller curvatures. The comparison of the equilibrium paths is presented in Figure

7.26, for y=0 and y=0.10. The agreement between the SAM and FEM is very good. As

expected, in general, with the presence of pre-compression, a lower value for p. is needed
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plane pressure

to reach the first yield. Consequently, for lower curvatures the first yield is reached for
relatively small values of p.. For example, for the case of y=0.10 for Z=0, the first yield
(assuming fy=355 MPa) occurs only for ~187 kPa (where the agreement with FEM is
very good) and consequently the relevance of very large pressures, presented in the chart
for this case, is reduced because plasticity begins to be important. On the other hand, for
the larger curvatures the pressures leading to the first yield are closer to the maximum

value presented in the graph, where the agreement is verified to be also very good.

7.5.2.3 Out-of-plane pressure followed by in-plane compression

In this load case, the panels are considered first pre-loaded with one of three levels of an
out-of-plane pressure p.=0 (case without out-of-plane pressure), 10 or 50 kPa and
subsequently loaded with increasing compression given in terms of the load factor y.
These are reasonable values for the initial out-of-plane pressure taking into account the

initial effect on the studied panels.

Similarly, to what was said for the previous load case, the deformation of unstiffened and
stiffened panels with the same curvature may also be considerably different. The
comparison is done in Figure 7.27 and Figure 7.28, respectively, for the unstiffened and
stiffened panel with Z=30. However, in this case, there is the particularity that the
deformation shape for the stiffened panel is closer to the global mode 4,5 hence, a single

DOF is able to characterize well the nonlinear behaviour of the stiffened panels.

The equilibrium paths for the unstiffened panels first loaded with the out-of-plane

pressure and then increasingly loaded with in-plane compression are presented in Figure

Figure 7.27: Deformation for an unstiffened panel with Z=30 and #=1.0 (for p,=50 kPa and

¥=50%), a)top view and b) perspective view

208



7.5. Large deflection behaviour of unstiffened and stiffened curved panels under combined uniaxial
compression and out-of-plane pressure

a)

Figure 7.28: Deformation for a panel with Z=30, 2=1.0 and 7 stiffeners (first loaded with

p~50KkPa and then loaded up to y=100%), 2) top view and b) perspective view

7.29. It is possible to verify that the 2 DOFs (4;; and b;3) for which the results were

calculated are able to describe accurately the nonlinear for the presented curvatures but
at the same time they let anticipate the need for more degrees of freedom if larger

curvatures are desired, especially with higher levels of initial out-of-plane pressure.

The equilibrium paths for the stiffened panels are presented in Figure 7.30. As previously
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Figure 7.29: Equilibrium paths for unstiffened panels with #2=1.0 for load case with initial

out-of-plane pressure and increasing in-plane compression (2 DOF: b,,and b;3)
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Figure 7.30: Equilibrium paths for stiffened panels with 7 stiffeners and #=1.0 for load case

with initial out-of-plane pressure and increasing in-plane compression (1 DOF: b,,)

explained, in this case only a single DOF (41,) is sufficient to reproduce the behaviour of

these panels with excellent accuracy for curvatures up to Z=50. It is observed that the

situation with or without out-of-plane pressure is correctly characterized in the semi-

analytical model.

In order to test the applicability of the semi-analytical formulation under centrifugal

pressures, the equilibrium paths for the stiffened panels first loaded with p.=-50 kPa and

then loaded in compression are presented in Figure 7.31. As previously explained, the
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P=-50000 R, ns=7, hs=001 m, ds=0.045 m, opp1 =-02

25 :
— SAM Z=0
— SAMZ=10
20+ — samz=20 .1
SAMZ=30 |+
== FEMZ-0
15k == FEMZ-10 .
== FEMZ=20 >
= == FEMZ-30 -
LO .................. K .
(00 T T P AR,
OOs =
-20 -15

0+0011

Figure 7.31: Equilibrium paths for stiffened panels with 7 stiffeners and #=1.0 for load case
with initial out-of-plane pressure p,=-50 kPa and increasing in-plane compression (1 DOF:

bu)

initial imperfection dy;; was defined with the value -0.2. The same single DOF as in the
previous graphs (b:;) was used. A single DOF is still able to provide a reasonable
characterization of the nonlinear behaviour of these panels up to relevant values of 3. For
reference purposes the first yield of Z=0 and Z=30 occurs for values of y=0.38 and
7=0.58, respectively.

7.6 SUMMARY

A very good agreement between the semi-analytical method and FE analyses was obtained
for the equilibrium paths in all the considered situations. It was found that, generally, as
the curvature is increased, the modal participation of higher modes is larger and,
consequently, the need for more DOFs is greater. Nonetheless, few DOFs are, generally,
able to characterize accurately the behaviour of most unstiffened curved panels of
practical interest. It is noted that for bridge applications, for example, the range of
curvatures (Z) of unstiffened curved panels varies from 0 to 15 [135]. Hence, the semi-

analytical method perfectly covers this range of curvatures.

In accordance with the conclusions drawn in Chapter 6, it was verified that even small
curvatures change dramatically the behaviour of the panels and consequently the effect
of the curvature needs to be deeply understood. The restraint of the longitudinal edges

has an impact on the post-buckling behaviour of curved panels. Imperfections play a
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7. Validation of the Semi-Analytical Model for curved panels under in-plane compression and out-of-
plane pressure

fundamental role on the post-buckling behaviour of these elements once they can
decrease significantly the load for a same displacement. In all cases, the SAM was perfectly

able to deal with these situations.
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8 DESIGN ORIENTED CLOSED-FORM
EQUATIONS FOR THE ELASTIC
LARGE DISPLACEMENT
BEHAVIOUR AND ULTIMATE

RESISTANCE OF CURVED PANELS

8.1 INTRODUCTION

The semi-analytical method has just been validated, in the previous chapter, for the elastic
large displacement behaviour. Closed-form expressions to predict this behaviour are
proposed in this chapter (section 8.2). They are derived based on a SDOF solution and
their validity is assessed for unstiffened and stiffened curved panels under in-plane and

out-of-plane loading,



8. Design oriented closed-form equations for the elastic large displacement behaviour and ultimate
resistance of curved panels

In chapter 6, the load-deflections curves of curved panels subjected to in-plane
compression and out-of-plane loading were assessed, in detail, considering an elastic and
a plastic material by FEM. The subject of section 8.3 is to assess the ultimate load of the
unstiffened curved panels under in-plane compression by the semi-analytical method
(SAM). The main outcome of this section is the derivation of closed-form expressions to
predict the ultimate load of unstiffened curved panels (subsection 8.3.6). The accuracy

of these expressions is shown to be very good.

Expressions of this type, have an obvious practical interest and, in the last section, they
are applied to predict the large displacement behaviour and ultimate load of real curved

panels.

8.2 CLOSED-FORM EQUATIONS FOR THE ELASTIC LARGE

DISPLACEMENT BEHAVIOUR OF CURVED PANELS

8.2.1 Introduction

A MDOF solution hinders the obtainment of a usable simple expression for the
equilibrium paths of the panels. Hence, a simple closed-form solutions was pursued by
solving analytically the SAM with SDOF approximations. It was found that, although
the SDOF solutions are not able to reproduce in absolute terms the exact (numerical)
results of panels with large curvatures, they approximate well the elastic non-linear large-

displacement behaviour of a large part of the panels with practical applicability.

The main advantage of using a SDOF is that it allows to obtain an exact explicit
expression for the load (p, or p.) as a function of the normalized displacement (1)
However, the resulting closed form expression, obtained using the software Mathematica
[116], is too long for practical interest. Consequently, in order to obtain a usable
expression that may be easily implemented in a spreadsheet, some higher order terms were
neglected. These terms were carefully selected and, consequently, the resulting expression
may be used without any correction because the differences between the simplified and

the original expression are negligible.

In the next subsections, closed-form expressions are derived for the curved panels. They

are first derived for the isotropic curved panels under in-plane compression, in subsection
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8.2. Closed-form equations for the elastic large displacement behaviour of curved panels

8.2.2. The validity of the expressions is assessed for several values of curvature, aspect ratio
and width to thickness ratio. From the simplification of the most general expressions,
simple expressions for flat plates are derived confirming established theoretical results. In
subsection 8.2.3, similar expressions are derived for the orthotropic curved panels under
in-plane compression. Finally, in subsection 8.2.4, the most general closed-form
expressions are given for the orthotropic curved panels under combined in-plane
compression and out-of-plane pressure. Different expressions are given depending of the

explicit load (for p. or p,).

8.2.2 Unstiffened curved panels under in-plane compression

The closed-form expression presented in equation (8.1) is applicable to isotropic curved
panels accounting for all the possible parameters, including the aspect ratio, a.
Imperfections are explicitly incorporated with the imperfection pattern a;;, being
included through the normalized imperfection doi1. Boundary conditions BCC were
selected. This expression can be easily calculated in a spreadsheet and it gives accurate
values for all cases where a global SDOF is appropriate to simulate the behaviour of the

panels.

4a 3 1
p,=- ) {511 (50112(:1 +C, +C; ) + 5112 (5501101 + C4] + 55113C1} (8.1)

7’ (5011 + 0y

with the following constants:

Eh’z* (1+ a4)
o 32a%°
h? (C167Z'4 +122%a* (-1+v)(1+ u)(—l—azu +at(1+ 41))))
C2= 48a°ct' @ (~1+0?)
C,= 1 enzeg chch{ T (8.2)
a’c’n 2

(72'(0!+0! )(Zaz(cl—u) ) (a+a3)(2+u+2a 1+u))

cosh[;za]+2( 3+a’+a'(-1+40)-a (5+4U))S|nh[7ra])

1

——— —Eh?Za
128a°c,°c,’

4=
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(4(256 ta’ (256(2 +a)-64¢20+36, 7 (2+ 0’ + u))) +3¢, 270

(—2(5 +3v+a’ (3+ U)) + 77(0! +a’ )(1+ v)coth [%Dcsch [%D
¢ =1+a’
c,=4+a’
A useful simplification is for the case #=1.0 which is given by equation (8.3).

4 3 1
- m[@l(&qu +C, +Cy)+8,,° (anncl +c4j+55113cl} (8.3)

_ Eh?z%
" 16a2

Eh? (167;4 +97%(-1+ 1)2))
2- 1928 (-1+0?)

Eh2z%csch| © 2 —7(4-3v+(4+3v)cosh|z]) +8sinh[z
i ] L s i

128a’x
_ EhZ
6400a°

(—4(2+U)+7r(1+u)coth [%Dcsch EDJ

For comparison purposes, the previous expression for p, is now even more simplified for

4

[—512(—4 +0)+ 757{6 +20+

the more traditional case of flat plates (Z=0). As shown in equation (8.5), for this case,

the expression simplifies significantly.

— 4 5| s 2Eh27r4+ Eh*z* N
’ r? (Sos1 + 1) Yl 162”122 (—1+1)2)

3Eh®z* ; Eh?7?
- 611

(8.5)

-5..25,
10 3952 32a’

The plotting of this expression is shown in Figure 8.1 for the perfect (d5:;=0) and an
imperfect plate with dy;;=0.2 along with numerical results for the three boundary

conditions. It is seen that the curve from the expression matches very well the numerical
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Figure 8.1:  Comparison of the equilibrium paths of a flat plate obtained by equation (8.5)
and FEM for the three boundary conditions

curve for BCC, for which it was developed. In fact, the differences between boundary
conditions are, for this case, significant. The perfect equilibrium path is shown to assess
the importance of imperfections. It is also pertinent to assess the critical stress of the panel
which is easily obtained using 8;,=0 (and dy;,=0) in equation (8.5). Doing this, equation
(8.6) is obtained for the critical stresses of flat plates, which is the same as equation (6.1)
using £,=4.0. For the panel with 2=1.0 m and /=0.01, a value of p,.+=75.92 MPa is

obtained, matching perfectly the value obtained by FEM for the same conditions.

os(1-0)\a (8.6)
Back to the behaviour of the curved panels, the validity of equation (8.1) is assessed for
several aspect ratios and 4/5 ratios. A flat plate and a curved panel with Z=20 are used for
comparison. It is seen that for the flat plate aspect ratios 2=1.5 are well adjusted for a
considerable part of the displacements. For the curved panel aspect ratios up to 2=1.25
are yet reasonably predicted while for 2=1.5 the SDOF approximation is scarce and the
agreement becomes worst. This effect tends to increase as the 4/5 ratio increases, because
more complex deformation shapes occur. To corroborate this, in Figure 8.3 the
equilibrium paths are compared for or =0.5 and 2/h=50 for a wide range of curvatures.
It is shown that equation (8.1) is able to predict perfectly well a very large value of

curvature, Z=75. This proves that the formulation is able to account for high values of
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Figure 8.2:  Comparison of the equilibrium paths of a flat and a curved panel obtained by

equation (8.1) and FEM for different aspect ratios and a/Aratios (BCC)
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Figure 8.3:  Comparison of the equilibrium paths for ®=0.5 and a2/A=50obtained by

equation (8.1) and FEM for several curvatures (BCC)

curvature provided that the displacement function approximates properly the real

deformation shapes of the panels.

A last series of results for 2/h=100 obtained by equation (8.1) is compared in Figure 8.4
for various aspect ratios and curvatures. Two amplitudes for the imperfections are used,
corresponding to wy=min(4,6)/500 and ws=min(4,6)/200. A good general agreement
between the SDOF solution and FEM analyses is obtained. Naturally, it is visible that for

large displacements, if larger curvatures and aspect ratios are considered, a MDOF

solution may be required.
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Figure 8.4: Comparison of the equilibrium paths for 2/A=100 obtained by equation (8.1)

and FEM for several curvatures, aspect ratios and amplitudes for imperfections (BCC)

The procedure adopted for the derivation of the closed-form expressions is general and it
can be used to derive similar closed-form solutions for other ranges of application,
provided that the SDOF is appropriately chosen. Naturally, for a longer panel (e.g. 2=3.0
with 4;3), the selected mode should match the controlling deformation mode (4,3 in this

particular case).

8.2.3 Stiffened curved panels under in-plane compression

As previously discussed, a SDOF model is sufficient to provide an accurate representation
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of the post buckling behaviour of stiffened panels approaching and overall deformation

mode. The panels are considered with a global imperfection pattern 4;; (included

through the normalized imperfection do11) and boundary conditions BCC.

Applying a similar procedure, the load-deflection of orthotropic curved panels (for any

aspect ratio, @) is given by the same equation as previously defined for the isotropic panels:

4a 3 1
) [511 (50112(:1 +Cy + C3) +3y° (E FonaCy + C4J + 55113(:1} (8.7)

py=——7T""~
! w’ (5011"‘511

but now the constants are as follows:

h*z* (Ey + Exa4)

C =

32a’a’
7*(D, +2(2Ds + D )a’ + D,a*
Co=- 2, 3 *
4a‘ha
E.E,G,h?Z%a 1, —5E,G,a* +E, (-1+4a°)(G,, + E,0’)
8a’ E, E,2

1 e |

C,=———————E E G, h?Z%a’csch| == | | —2¢, 7
° 384alcElr Y 2 “
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E (€, (-3 +2(3+ 77 )a? + (34470 + 2% -

G, (-3-330, +a? (2627 (1+0, ) +3(6+a* (5+0, ) + 8o, )))D -
ZClzra(—Enyy (39+9UX + o (3(6+% (L, ) +o7a? (L+ ux)))+

E(E, (33+0(6+677 ~3a%)) -G, (3+330, +
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20127r2(—1+a2—2’)y)+29”y+a (_45 o (B, ) o )))D
)
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o ]t o[ ]|

E,=EG,a' +E, (G, +Ea’-2G,a’y,)
C = (1+ at )
= (4 +a’ )
All the orthotropic properties are calculated as defined in section 4.3.

Simplifying the expression for =1.0, equation (8.9) is obtained.

4 3 1
& _m[511(50112q +Cy + Cs) +6,° [55011C1 + C4j + 55113C1} (8.9)
with
(E, +E, )n*z*
A
1 4 2EX2Ey2Gthszz
“aan| Vst DT Y (8.10)
2 4a2h[ ( S Xy y) Elz
E,E. G, h?Z? et
G —ﬁcsch[z} {EyGXy(—Zﬂ'B (1+v,)(2+cosh[z])+
1
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12ﬁ(_8+(_1+Ux)cosh[ﬁ])sinh[g #1277 (24, )sinh[ ] -
6(1+ 30, )(~1+cosh[z])sinh[z]) + E(2G,, (~° (1+0, )(2+ cosh [ z]) +

67z(4+( 1+v, cosh smh{ﬂ +67°0, sinh[z]-

9(—1+uy)( 1+cosh[7z])smh[7z]) ( ( (5—6cosh[z]+cosh[27])+
2;7( (2+cosh[z]) 65|nh[ﬂ]))+9 ~2sinh[z] +smh[27r]))))

E h’Z

*~ 1600a°E,

[Z(Ey (75E,7 - 2G,, (-512+ 64w, + 757, ) )+ E, G, (~1280, +
757 (1+0,)))+ 7SGXy7r(—8Ey ~4E,, +7(E, +Ew, )coth [%Dcsch [ﬂ +

2
150G,,7? (E,v, — E,v, )csch E} J
E,=E,(E, +G,)+E,G, (1-20,)

Neglecting the stiffeners, the equations for isotropic panels (7,=0) presented in the

previous subsection are obtained.

For validation purposes, the equilibrium paths of some randomly-selected panels with
2=1.0 are calculated by expression (8.9) and compared with those obtained by FEM
analyses in Figure 8.5. The geometry of some panels used in Chapter 6 are used for
comparison and new values for the geometric variables are also introduced, as the
thickness of the stiffeners, as described in the figure. To assess the validity of the
orthotropic expressions for unstiffened panels (with the corresponding simplifications)

the results for unstiffened panels are also assessed.

In Figure 8.6, the equilibrium paths of a curved stiffened panel with several aspect ratios

are plotted with equation (8.7) and compared with the FEM.

As shown, the agreement of the previous expressions with the FEM results is, in all cases,
very good, even for values of y larger than 1.0, showing the wide applicability of the

expressions for distinct situations.
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Figure 8.5: Comparison of the equilibrium paths for a=1.0 obtained by equation (8.9) and

FEM for several geometric configurations (BCC)
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Figure 8.6: Comparison of the equilibrium paths for several aspect ratios obtained by

equation (8.7) and FEM (w,=min(a;5)/500, BCC)
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8.2.4 Unstiffened and stiffened curved panels under combined in-plane

comprcssion and out—of—plane pressurc

The expressions provided in subsections 8.2.2 and 8.2.3 for isotropic and orthotropic
panels, respectively, are now extended to account for out-of-plane pressure, p.. This
extension is done through the introduction in the same expressions of only one additional
term Cyps, as shown in equation (8.11). This expression is directly applicable to the load

case with initial out-of-plane pressure followed by in-plane compression.

da

Py = _m[co P, + 511(50112(:1 +Cy + C3) +

8.11)
(3 1y (
0| 5 0muC +Cy |[+50C
2 2
where
c .4l (8.12)
0 h271'2

and the remaining constants are given in subsection 8.2.2 or 8.2.3 for isotropic or

orthotropic panels, respectively.

Solving equation (8.11) for the out-of-plane pressure, p., equation (8.13) corresponds to

the load case with initial in-plane compression followed by out-of-plane pressure.

1| =
P == _4_(5011 +031) Py - 511(50112(:1 +Cy + Cs) -
0 a
(8.13)

3 1
é‘112 (E 811Cy + C4j - 55113C1}

It is emphasized that these expressions, in its most general form, equations (8.11) and
(8.13), give accurate values for all cases where a global SDOF is appropriate to simulate
the behaviour of the panels therefore covering both unstiffened and stiffened curved

panels with any number and geometry of stiffeners for BCC boundary conditions.

The validation of the expressions (8.11) and (8.13) are shown in Figure 8.7 and Figure
8.8, respectively. In both cases unstiffened and stiffened panels with #=1.0 are considered.
The validation for several aspect ratios is shown in Figure 8.9 for panels initially loaded

with an out-of-plane pressure p.=50 kPa followed by in-plane compression (compare

224



8.2. Closed-form equations for the elastic large displacement behaviour of curved panels
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Figure 8.7:  Comparison of the equilibrium paths for 2=1.0 obtained by equation (8.11) and
FEM for several geometric configurations of panels initially loaded with out-of-plane pressure

followed by in-plane compression (2=1.0 m, BCC)
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Figure 8.8: Comparison of the equilibrium paths for #=1.0 obtained by equation (8.13) and
FEM for several geometric configurations of panels initially loaded with in-plane compression

followed by out-of-plane pressure (2=1.0 m, BCC)

with Figure 8.6 for the same panels without initial out-of-plane pressure).

A very good agreements is obtained in all cases under complex loading conditions and
geometric configurations, corroborating the excellent accuracy of the developed closed-

form expressions in any situation.
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ns=5, Z=20, Siff. B, a=15 m, h=00L m, p.=50 ki
20 i T T "
h : | — SAMo-05 == FEMo-05
! o SAM 0 =0.75 = = FEM o =0.75
Y — SAMo-10 == FEMao-10
$ — SAM =125 == FEMo=125
! — SAMs=15 == FEMo-15

0+0011

Figure 8.9:  Comparison of the equilibrium paths for several aspect ratios obtained by
equation (8.11) and FEM for panels initially loaded with out-of-plane pressure (p,=50 kPa)
followed by in-plane compression ( wo)=min(a;5)/500, BCC)

8.3 ULTIMATE RESISTANCE OF UNSTIFFENED CURVED PANELS

8.3.1 Introduction

The plasticity of the material, in the FEM, is taken into account as described previously
in section 5.5, considering an elastic-plastic material with strain hardening. However,
accounting for this complex material in a semi-analytical model is difficult to implement
and the efficiency of the procedure is greatly affected. Hence, the usual approach is to
account for the plasticity in a simplified manner, using strength criteria. In subsection
8.3.2, a brief review of the utilization of strength criteria in the literature is presented. In
subsection 8.3.3, the strength criterion adopted in the SAM is described and its
assumptions are discussed. The first yield criterion applied to the von Mises’ stresses using
the membrane stresses is found to be a good compromise between accuracy and safety.
Based on what was described in the previous chapters, subsection 8.3.4 discusses some
fundamental concepts with particular importance for the study of the ultimate load by

the semi-analytical model.

In subsection 8.3.5, the ultimate load of unstiffened curved panels under uniaxial
compression is calculated by the SAM for a wide parametric variation of geometries

considering different amplitudes and patterns of imperfections, boundary conditions and
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8.3. Ultimate resistance of unstiffened curved panels

even yield stresses. The influence of each of these parameters is calculated and validated
with the results of the FEM. In order to assess the influence of the geometry on the

resistance of the curved panels, the curvature parameter, Z, the aspect ratio, «, and the
width over thickness, /5, are varied with the objective to cover most cases of unstiffened

curved panels with practical applicability.

8.3.2  Utilization of strength criteria in the literature

It was shown by Byklum [136] that it is possible to include a non-linear (elastic-plastic)
material in semi-analytical methods for flat stiffened plates. However, this implies
increasing considerably the complexity of the computational model; for example,
analytical integration is lost, and besides that, the accuracy of the results decreases due to
the incorporation of additional simplifications. Due to these disadvantages, the author
opted to use a first yield criteria based on the von Mises stresses with an elastic material
to predict the results of his analyses. Further work was done on the subject by Byklum

and Amdahl [29] and Byklum ez a/. [137], which led to its implementation in the
computer program PULS (DNV), preserving the same yield criteria for design purposes.

Paik ez al. [138] and Paik and Lee [139] developed a semi-analytical method to predict
the strength of flat plates. The authors also referred the difficulty to include explicitly
material nonlinearity on the formulation. Therefore, they dealt numerically with the
progress of the plasticity subdividing the plate in mesh regions. The von Mises yield
criteria was then assessed for each region. If yield occurs the contribution of the yielded

regions is removed from the stiffness matrix.

Brubak and Hellesland [140] applied the first yield criterion to the von Mises’ membrane
stresses at critical points along the edges of arbitrarily stiffened plates. The authors proved
that this strength criterion is reasonable. However, it seems to indicate that for thick
arbitrarily stiffened plates bending stresses may become important and membrane
stresses may lead to non-conservative predictions for some cases. Later, Brubak and
Hellesland [141] reinforced the same idea and used the bending stresses at three quarters

of the plate thickness (2=35/8) because the authors found that accounting for the
bending stresses at the surface (z=54/2) may lead to too conservative results for those cases.

Based on the findings of the last study, Ferreira and Virtuoso [30] used the strength
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criterion at a quarter of the thickness (z=//4) on the study of stiffened plates.

8.3.3 Strength criterion for the semi-analytical method

In the present study, the need to account for the contribution of the stresses along the
thickness in the strength criterion was assessed. Using the membrane stresses instead of
the stresses at the surface of the panel allows the development of some additional
strength. The unstiffened panels studied are, generally, considered as thin and,
consequently, this criterion was found to lead to satisfactory results. As it will be
posteriorly identified, only for a very small part of the cases, this strength criterion
predicted larger resistances than the finite element method. However, taking into
account that this errors are small, in those cases, approximately less than 5%, it was not
considered relevant to use a more conservative strength criteria, Z.e. accounting for the

contribution of the bending stresses along the thickness of the panels.

Hence, the von Mises’ stresses, o, are calculated for the membrane stresses (z=0) by
equation (8.14) and the strength criterion is considered to be reached when they equal

the yield strength, ), at any point.

o = \/O'XZ +o2-o,0,+3r,° =1, (8.14)

Whenever relevant and unless otherwise stated, the yield strength is considered to be 355
MPa.

The location of the critical points has to be found for each case taking into account that
its location is not fixed and it may change depending on geometrical parameters such as
the curvature, Z. It was found that curvature changes completely the distribution of the
von Mises stresses at first yield. To illustrate this, the distribution of the von Mises’
stresses at the bottom extreme surface (z=-h/2) corresponding to the first yield are
plotted in Figure 8.10 2) and 4), for Z=0 and Z=30, respectively. While, for Z=0 the von
Mises’ stresses are larger along the longitudinal edges, for Z=30 the location of the larger
stresses is along the transversal edges. Increasing the loading, yielding propagates to other
points of the panel up to the ultimate load, as shown in Figure 8.11 2) and 4), for Z=0
and Z=30, respectively. It is possible to see that the flat panel shows a larger area yielded

in comparison with the curved panel, meaning in general that the increase in
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a) b)

Figure 8.10: Distribution of the von Mises’ stresses at first yield for a panel with a=1.0
(a=b=1.0 m) and A=0.01 m (BCC) obtained by FEM for a)Z=0 and b)Z=30
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Figure 8.11: Distribution of the von Mises’ stresses at the ultimate load for a panel with

a=1.0 (a=b=1.0 m) and A=0.01 m (BCC) obtained by FEM for 2)Z=0 and b)Z=30

displacements between the first yield and the ultimate load is larger.

The location of the critical points obtained by the SAM, are analysed later; however, they

were found to be in good agreement with those obtained by FEM.

8.3.4 Ultimate load of unstiffened curved panels under uniaxial compression

The effect of imperfections was already thoroughly discussed in Chapter 6; however,
some concepts are discussed again with particular interest for application in the semi-
analytical model. As previously shown, the initial imperfection pattern is able to

influence significantly the development of the equilibrium paths.

In Figure 8.12, the equilibrium paths using three different imperfection patterns, 4,1, 4.3
and 1* eigenmode from LBA, are plotted for unstiffened panels with 2=3.0 and
curvatures Z=0, Z=10 and Z=30 assuming the material with plasticity (contrarily to the

figures of subsection 6.3.8, where an elastic material was used). The amplitudes of the
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Figure 8.12: Effect of the initial imperfection for unstiffened panels with 2=3.0 and

imperfection patterns a;;, a;;and 1° eigenmode from LBA with amplitudes w,=min(a;b)/500

(BCU)

imperfections are wo=min(4;6)/500 and BCU are assumed. This aspect ratio is
considered to assess the influence of taking into account a different number of semi-
waves in the initial imperfection pattern and how they compare with the 1* eigenmode
from LBA. It is seen that imperfection 4, leads to considerably distinct equilibrium paths
in comparison with the remaining imperfection patterns, ;3 and 1* eigenmode, which
lead to very similar behaviours. When 4,; is used, the displacement at the point at the
centre of the panel may follow different directions comparatively to the remaining
patterns and consequently different behaviours are obtained. In fact, only for the flat
panel, Z=0, the displacement changes direction approaching the behaviour of the

imperfection patterns 4;3 and 1* eigenmode.

In terms of the ultimate load, the results are very similar for all the three patterns, with
the exception of Z=30, where 4;; leads to a slightly larger value (y=0.530) than 4,3
(y=0.473) and 1* eigenmode (y=0.476). In fact, the initial imperfection pattern can
influence significantly the ultimate load value, even for panels with not so large aspect
ratios. In order to exemplify this, in Figure 8.13 the reduction factors, y, of unstiffened
panels are compared using the initial imperfection pattern given by the first eigenmode
obtained from linear buckling analyses (LBAs) and the global mode with one semi wave

in each direction, 4,;, for an aspect ratios 2=1.0 and different curvatures. Values of

wo=min(a;6)/500 are considered for the amplitudes of imperfections and BCU are
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Figure 8.13: Effect of the initial imperfection pattern (eigenmode from LBA vsglobal mode
ay;) on the reduction factor, 4, of unstiffened panels with amplitudes wy=min(a;b)/500 (2=1.0

and BCU)

assumed. The ultimate load is plotted for tight intervals of the slenderness parameter, 2,

as previously defined by equation (6.3). For comparison purposes, the reduction curves
from EN1993-1-5 and EN1993-1-6, for flat plates and closed cylindrical shells,

respectively, are plotted.

The following conclusions may be drawn: 7) as expected, the curve from EN1993-1-5 is
well adjusted to the results for flat panels (Z=0), since this curve is best obtained using a
similar equivalent imperfection value (wo=min(a/420; b/420), according to Zizza
[142]); ii) the curves from EN1993-1-6 are too conservative for the curvatures
considered, even considering the element with the best quality fabrication class (class A);
and 777) the imperfection pattern corresponding to the first eigenmode of LBAs may not
lead to the lowest value of y for all curvatures. For larger slenderness, the global

imperfection pattern, 4;;, may lead to considerably lower values for y.

The differences on the reduction factors obtained using both initial imperfection
patterns are presented in Table 8.1, where a maximum difference of 25.7% is found for
Z=40 and 1=1.85. As already concluded in Chapter 6, but now for lower increments in
slenderness, this fact allows to claim that the consideration of initial imperfection
patterns given by the ecigenmodes from LBAs, which is usually assumed in many

structural problems, may be non-conservative for curved panels and, consequently, the
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Table 8.1:  Difference of the initial imperfection pattern (eigenmode from LBA vsglobal

mode a;;) on the reduction factor, y; of unstiffened panels for Z=0 and Z=40 (#=1.0 and BCU)

a=b[m] 0.25 0.375 0.5 0.625 0.75 0.875 1.0 1.125 1.25 1.375 1.5 1.625 1.75 1.875 2.0

p— 054 081 1.08 135 162 189 216 243 270 297 324 351 378 4.05 432

Xmpre4  1.009 0.959 0.771 0.623 0.539 0.480 0.436 0.398 0.366 0.339 0.314 0.293 0.273 0.257 0.242
Z=0

Jmparr - 1.041 0.995 0.801 0.632 0.541 0.481 0.436 0.398 0.366 0.338 0.313 0.291 0.271 0.254 0.241

Diff. [%] -3.1% -3.5% -3.8% -1.3% -0.5% -0.2% 0.0% 0.1% 02% 0.3% 0.3% 0.4% 0.7% 1.1% 0.6%

p - 028 043 057 071 085 099 1.14 128 142 156 170 185 199 213 227

xmprea 1,068 0.983 0.936 0.877 0.799 0.709 0.622 0.549 0.489 0.439 0.398 0.365 0.337 0.313 0.292
Z=40

Jmparr - 1.091 1.004 0.988 0.960 0.898 0.786 0.665 0.572 0.500 0.413 0.331 0.290 0.271 0.255 0.242

Diff. [%] -2.2% -2.1% -5.2% -8.6% -11.0% -9.8% -6.5% -4.1% -2.3% 6.2% 20.4% 25.7% 24.5% 22.6% 20.7%

minimum value of y using imperfection patterns from eigenmodes and perfect global

modes should be considered.

Despite the implications of the imperfection pattern, for validation purposes of the SAM,
the use of the perfect semi-waves with global imperfection mode, 41, is assumed (the
pattern 43 is also used in some cases for larger aspect ratios). The justifications for this
assumption are: Z) this initial imperfection mode is preferable because it is easily defined
the same in the SAM (and in the FEM with the developed approach). In order to match
exactly the eigenmode from LBAs for curved panels in the SAM, a large number of semi-
waves in equation (4.86) would be required; 77) the analysis of the effect of imperfections

was already carried out in Chapter 6 and it is not the objective of this chapter.

8.3.5 Validation of the SAM for the ultimate load

The semi-analytical formulation of Chapter 4 was formulated to account for multi
degrees of freedom (MDOF) and, consequently, the number of DOFs incorporated in
the model may be as large as desired. However, for computational efficiency reasons, it is
desirable to keep the number of DOFs as low as possible. As previously discussed in
Chapter 7, for the equilibrium paths, in cases with more complex geometries, a MDOF
may be required to characterise the elastic behaviour of the panels with an acceptable

error. The same is true for the ultimate load of the panels. As will be seen next, the
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8.3. Ultimate resistance of unstiffened curved panels

number of DOFs has in some cases a large influence on the calculated values of the
ultimate load of curved panels. This influence is usually higher the greater the curvature
of the panels. However, it is shown that only 1 or 2 DOFs, provided that they are properly
chosen, are enough to characterise reasonably well the behaviour of most panels with
practical relevance. Consequently, 1 or 2 DOFs show the best “cost-benefit” and are used

to calculate the results in the following paragraphs.

Two distinct boundary conditions were formulated in Chapter 4 and assessed in Chapter
7 for the equilibrium paths. In next paragraphs, the ultimate load is also assessed for both
boundary conditions and comparison between the results of the SAM and FEM are
provided. However, when the objective is, for example, to show certain trends and
behaviours, the results are provided for BCU or BCC indistinctly to avoid repetition,

since, in general, the same conclusion may be drawn for the two boundary conditions.

The differences of using an elastic material to simulate the behaviour of the panels, in
comparison with the non-linear material law used in the FEM, were discussed in section
6.4. The SAM is now applied to plot the equilibrium path and to predict the ultimate
load of one of those panels (Z=10, 2=1.0) with the equilibrium paths presented in Figure
6.18. In Figure 8.14, the load-deflection curve obtained with the SAM is compared with
two curves obtained with the FEM, one considering the material as elastic and the other

as elastic-plastic. The equilibrium path obtained with the SAM is represented up to the

Z=10, a=b=10 m, h=0.01 m, BOC

T s T s st s s T m T s s e s T s b P eTe sV o

35 x 10% — SAM : : : : T
20 x 108} == FEM Hastic S e e s il
| = = FEM Flastic Plastic |- . s . [4
25 x 108} : : :
& 20 x 108
X 15 x 108}
1.0 x 108
50 x 107k
0 1 2 3 4

Figure 8.14: Comparison of the ultimate load by the SAM (2 DOF) and FEM (Z=10, a=b=1
m, h=0.01 m, imperfection w,=min(a;b)/500 with a,,and BCC)
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predicted ultimate load of the panel (pyursi), which is 166 MPa assuming that the
strength criterion is reached when 0,,=355 MPa. Up to this point, the curve follows
exactly the two load-deflection curves of the FEM for the elastic and the elastic-plastic
material. However, after the first yield, stress redistribution takes place and the curve
deviates from the one with the elastic material, resulting in the maximum load point
occurring for a slightly larger displacement, 8490;=2.90 (against 8+d0:,=2.54 in the
SAM) but for a very similar value of the maximum load, 171 MPa (which is, in fact, has
much more practical relevance). This leads to reduction factors, y=p,../f,, of 0.468 and
0.481, respectively for the SAM and FEM, which corresponds to an error in the SAM of
-2.9%. However, it should be noted that these differences in the displacement are more
prevailing in panels with lower curvatures. As seen in section 6.4, in the panels with larger
curvatures, the point of the ultimate load occurs, in general, along the elastic equilibrium

paths, i.e. the increase in displacement is lower.

If this procedure is followed for panels with different values of slenderness, A, curves in
terms of the reduction factor, y, can be obtained as shown in Figure 8.15 and Figure 8.16,
respectively for BCU and BCC. These curves are plotted for an aspect ratio 2=1.0 and
curvatures from Z=0 to Z=30, using only 2 DOFs. From the observation of these figures,
it is possible to notice a good agreement between both approaches for the full range of
slenderness. The maximum differences, despite perfectly acceptable, occur approximately
for 0.5<2<1.0 when the ultimate load begins to be influenced not only by yielding of the
material but by elastic-plastic interaction. For BCU, the curve from EN1993-1-5 is
shown and the curves for larger curvatures (Z=30 and Z=40) are plotted for comparison.

It is shown that the larger curvatures can be calculated with 2 DOF provided that the
slenderness of the panels is not too high, because more complex deformation shapes occur

and more DOFs are required.

The fact that the results from FEM may attain values of y larger than 1.0 is explained by
the consideration of hardening of the material and stresses larger than the yield stress may

be developed, as previously explained. Naturally, this effect is not taken into account in

the SAM.

An important aspect is the fact that the SAM provides safe values with exception of very
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Figure 8.15: Comparison of the reduction curves obtained by the SAM (2 DOF) and FEM
(«=1.0, global imperfection w,=min(a;b)/500 with a,,and BCU)
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Figure 8.16: Comparison of the reduction curves obtained by the SAM (2 DOF) and FEM
(#=1.0, global imperfection w,=min(a;b)/500 with a,,and BCC)

few cases, however the maximum error on the unsafe side is only +3.6%. Taking this into

account, it was not considered pertinent to use a more conservative strength criterion.

The same results are compared in scatterplots of Figure 8.17, for both boundary
conditions, with the reduction factor, 7, obtained by the SAM and FEM. As verified, the
values match reasonably well the line with slope 1.0. The statistical parameters, namely
the coefficient of variation (CV), the correlation factor (Corr) and the mean absolute
error (MAE), with respect to the values of the ultimate load calculated by the SAM and
FEM are presented for each curvature in Table 8.2. All parameters corroborate the

accuracy of the SAM. Not only the value of the correlation factor is very close to 1.0, but
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Figure 8.17: Comparison of the ultimate load by the SAM (2 DOF) and FEM for 2)BCU and
b)BCC (Z=10, a=b=1 m, h=0.01 m and global imperfection w,=min(a:5/500) with a,,)

also the mean absolute error shows a small negative error, as desired, with small

dispersion.

It should be noted that, in some situations, the gains of introducing 2 DOFs in
comparison with a SDOF are limited because: 7) the deformation shapes are simple and
a SDOF is enough; or 7) the deformation shapes are so complex that consistent
improvements of the ultimate load would be only obtained with more DOFs;
Nevertheless, the gains with the introduction of 2 DOFs are unquestionable, and they
are justified in certain cases. In order to assess the influence of the number of DOFs in
the prediction of the ultimate load, in Table 8.3 the comparison of the reduction factors,
7 obtained with 1 (4,;) and 2 (6, and b;5) DOFs are presented for some random cases
where the improvement are more noticeable. For comparison purposes the
corresponding values of y obtained by FEM are also presented. Three panels with Z=10,
20 and 30 with 2/h=100, wy=min(2;6)/500 and BCC are considered. From the

Table 8.2:  Statistical analysis of reduction factor, ¥, of the error between the SAM and FEM

BCU BCC
z Cv Corr MAE CV (%) Corr MAE (%)
0 7.8% 0.996 -3.3% 3.7% 0.988 -2.1%
10 7.1% 0995  -34% 3.2% 0.998  -4.0%
20 7.2% 0.998  -3.9% 3.8% 0.998  -5.1%
30 4.5% 0.998 -5.4% 4.3% 0.998 -3.3%
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8.3. Ultimate resistance of unstiffened curved panels

Table 8.3: Comparison of the reduction factor, y, obtained by the SAM with 1 DOF (b,,)
and 2 DOFs (b;;and b;;3) and FEM (a/A=100, a=1.0 m, wy=min(a;5)/500 and BCC)

z @ e Xsampor  Xsamzpor  Diff. iporysrem [%]  Diff. 200 v rem [%)]
10 125 0550 0511 0.535 -7.13% -2.69%
20 125 0429 0.366 0.403 -14.70% -6.13%
30 1S 0550 0.568 0.549 3.33% -0.15%

observation of the results it is possible to verify that for these cases, the error decreases
significantly when 2 DOFs are considered. While in some cases errors on the safe side are

significantly reduced, in other cases small unsafe values replace safe values.

Additionally it was found that for flat plates the gains with the introduction of an
additional DOF are, in general, more reduced, corroborating the idea that the need for

more DOF is much larger in curved than flat panels.

In Table 8.4, the ultimate load obtained by the SAM, with DOFs 4,; and 4,3, and FEM
are compared for different aspect ratios, #, and curvatures, Z. A global imperfection, 4.,
is considered with and amplitude wo=min(a;6)/500 for BCU. As previously discussed,
the number of DOFs becomes important in the cases of large aspect ratios and curvatures.
For these cases, 2 DOFs are insufficient to catch the very complex deformation shapes

and more DOFs are required (for example, Z=30 and #=1.5). Even so, the results show

Table 8.4: Comparison of the ultimate load obtained by SAM (2 DOFs) and FEM for
different aspect ratios and curvatures (2/4=100, 2=1.0 m, w,=min(a;5)/500 for BCU )

P z 2 xsam  xrem Error  Diff. P z 2 xsam xrem Error  Diff.

0 208 0380 0429 -11.4% -0.049 0 211 0400 0443 -9.7% -0.043
10 190 0431 0423 18% 0.008 10 186 0394 0450 -12.3% -0.056

0.75 1.25
20 158 0439 0444 -10% -0.004 20 151 0392 0446 -12.2% -0.055
30 131 0470 0523 -10.1% -0.053 30 128 0566 0554 21% 0012
0 216 0372 0436 -147% -0.064 0 208 0442 0450 -1.8% -0.008
10 192 0397 0432 -8.0% -0.034 10 186 0414 0464 -10.8% -0.050

M o0 154 03%0 043 133% 0058 20 1s2 0414 0452 8% 0038
30 129 0507 0523 -3.0% -0016 30 127 - 0580 - :
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that only 2 DOFs are able to provide good results for most curvatures of practical

applicability, which for unstiffened panels in bridges, for example, is Z<15 [135].

In order to show that a SDOF is able to estimate reasonably well the cases where the
deformation shapes are well represented by the assumed mode, in Table 8.5, panels with
2=1.0 and 2/h=100 and 150 are compared with the FEM. Additionally, to assess also the
validity for different yield stresses, a value of ,=235 MPa is considered for the latter a/h
ratio. A general good agreement is verified and on the other hand, the decrease on the
reduction factor, y, obtained increasing the value of the curvature, as identified in
Chapter 6, is also perfectly caught with the SAM. In fact, it is verified that the value of ¥
may be considerably lower for the curved panels than for the corresponding flat plate
(Z=0). The generally better agreement for lower vyield stress, even for considerably
slender panels, may be explained by the fact that the ultimate load is reached earlier
leading to the development of smaller displacements where the agreement is generally

better.

In order to validate the results of the SAM for the ultimate load, other amplitudes and
patterns for imperfections should be assessed. In Table 8.6 the reduction factors, y, are
calculated for global imperfections a5, but now considering amplitudes
wo=min(a;6)/200. Panels with aspect ratio 2=1.0 and BCC are considered. Although,
the differences for the FEM increase with the curvature, they are acceptable and on the

safe side.

Table 8.5: Comparison of the ultimate load obtained by the SAM (SDOF) and FEM for

different a/ hratios, curvatures and yield stresses (#=1.0, 2=1.0 m, wy=min(a;5)/500 for BCC)

a/h=125 (£=355 MPa) a/h=150 (£=235 MPa)
Z Xsam XFEM Error Diff. [%] Xsam XFEM Error Diff. [%]
0 0.457 0.455 0.4% 0.2% 0.459 0.465 -1.3% -0.6%
10 0.431 0.448 -3.7% -1.6% 0.436 0.450 -3.1% -1.4%
20 0.388 0.402 -3.4% -1.4% 0.397 0.408 -2.5% -1.0%
30 0.363 0.394 -8.0% -3.1% 0.382 0.400 -4.4% -1.8%
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8.3. Ultimate resistance of unstiffened curved panels

Table 8.6: Comparison of the ultimate load obtained by SAM (2 DOFs) and FEM for
2=1.0 and different curvatures (2/A=100, a=1.0 m, w,=min(a;b)/200 and BCC)

zZ p) xsam  xeem Error  Diff.

0 216 0485 0536 -97% -0.052

10 1.81 0454 0477 -5.0% -0.024

20 142 0403 0450 -10.5% -0.047

30 1.23 0400 0478 -162% -0.078

Itis possible to deal with larger aspect ratios, obviating the use of a large number of DOFs,
if the DOFs are properly chosen. However, as discussed in previous chapters, long panels
with large curvatures show very intricate deformation shapes and a large number of DOFs
are usually required. Therefore, if a small number of DOFs is used, one cannot expect the
same level of accuracy, however, most curvatures of practical applicability (Z<15, for
bridges, for example) may be simulated reasonably well if the DOFs are chosen in
accordance with the deformation shapes of the panels. For example, the deformation
shape of panels with aspect ratio close to 2=3.0 and an imperfection pattern 4,3, may be
reasonably approximated with only the DOFs 4,3 and &33. In order to exemplify this, in
Table 8.7 the ultimate load of panels with 2=2.5 and 3.0 is calculated for panels with

curvatures up to Z=15. In this case, initial imperfections are considered with 3

Table 8.7: Comparison of the ultimate load obtained by SAM (2 DOFs) and FEM for large
aspect ratios (a/h=100, a=1.0 m, w,=min(a;5)/500 with a,;and BCU)

a VA 2 Xsam XFEM Error Diff.

0 213 0355 0429  -17.3%  -0.074

5 205 0349 0426  -18.0%  -0.077

2 10 189 0363 0424  -144%  -0.061
15 171 0397 0425  65%  -0.028

0 216 0394 0436  95%  -0.030

5 209 0394 0432 -87%  -0.023

>0 10 191 0411 0429  41%  -0018
15 171 0437 0427  23% 0010
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longitudinal semi-waves, 2,3, with amplitudes wy=2/500 for BCU. In spite of the fact that
the error is larger for aspect ratios #=2.5 than for #=3.0 the difference are on the safe side

and, consequently, they are acceptable.

Another important aspect is related to the variation of y with the aspect ratio. Despite
not being so notorious as for the curvature, the variation of y with the aspect ratio is not
always monotonic, i.e. there are intermediate aspect ratios leading to lower values of y as
shown in Table 8.8. The results are calculated for a yield stress ,=235 MPaand a different
amplitude for the imperfection, wo=min(4;6)/200. The SAM is able to catch this

behaviour as shown by the agreement with the results from the FEM. The error increases

with the increase of the aspect ratio but maintained within acceptable limits.

Table 8.8: Comparison of the ultimate load obtained by SAM (2 DOFs) and FEM using
avyield stress, £=235 MPa (imperfection wy=a/200 with a,;, Z=10 for BCC)

a p) Xsam XFEM Error Diff.

0.5 1.67 0.519 0.518 0.2% 0.1%

0.75 1.86 0.485 0.489 -0.9% -0.4%

1.0 1.81 0.494 0.511 -3.5% -1.8%

1.25 1.71 0.511 0.566 -9.8% -5.5%

8.3.6 Simplified expressions for ultimate load based on the SAM

Expressions to predict the ultimate load of unstiffened curved panels, based on a SDOF
solution, are proposed in this subsection. As it has been discussed along this chapter,
increasing the number of DOFs increases the accuracy of the ultimate load predicted by
the SAM, especially for larger curvatures and aspect ratios. However, as it was already
shown in the previous subsection and it will be shown in more detail next, a SDOF is,

nevertheless, able to provide good estimates of the resistance for a large part of the panels.

Solving the problem for isotropic panels according the Chapter 4, the distribution of the

von Mises’ stresses, 7., in equation (8.14) is transformed in equation (8.15).
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Cons :\/(—py +T,) —%h(—py FT)T, + [%hT j +T, (8.15)

with p, given by equation (8.1) as a function of the out-of-plane displacement, 8;;, and 77,

T>and T3 are function of x and y given, in their more general form, by:

Eh? 27X T
TFQ[_Z 511(25011+511)c05[ " }—q—82a25ﬂcos[ " }cos[a;}

%327ZCOS|:E}£ co sh{2 }A+[aacosh[4ﬂ}+

a ax aa aa

+2ﬂxsinh[ﬂDBj 8x cos[ }(cosh[ y}CvLysmh[—y} B
aa a a a

h 1 X Vs 2
T, = ?[_?82 J,, C0S [?} cos {a—;} + 128}, (28, + 6y )cos {a_ay} -~
1 ) 2ry 27X .| 27X
—327° cos cosh A+xsinh| — |B |+
a? { aa } { aa }( [ aa } j (8.16)

87 cos [”—X}[ﬁysinh {”—y} D +cosh [”—y}(nc + 2aD)JJ
a a a
214
T, = 3E 4h (—Zaf“ sin[” }sm[”y} —%(nsin[ﬂ}[4nsinh[@}A+
a c a aa | «a aa aa
(47zxcosh [@} aasinh [ﬂD Bj+
aa aa
2
za® sin {%X}Lzry cosh [%y} D +sinh {%y}(;zc + aD)jD

where A4, B, C and D are constants that depend on the geometric properties of the panels

and the displacement 9y, given by:
Za®5,, csch [”}
“ (
8¢, 2% (-1+ COSh[ﬂO{])[67ICOSh|: }+5asmh{2 D
a a

J[et-ami-emtcae ) e e 51

A=

(8.17)

2asinh [2—7[
[04

2¢,a cosh| za |- 2c5a sinh [%} — ¢y (~1+4v)sinh [mx]} +
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2z

4r cosh[ }[—05(204 +¢,7(1+4v))+ ¢’ (1+v)cosh {%} -

a

2¢,a cosh| ] - 2¢;e% sinh [%} — ¢y (1+4v)sinh [m]n
2

~Za?s,, csch [7[2“}

2a0127r(67z cosh [2”} +5asinh [ZﬂD [
a

B=

(24

—Za(c4 +2c,7 (1+ U)) + Cl7za3 (1+ U)Cosh I:%} +

2c,acosh [ 7] - 2¢;0° sinh {%} —4c,(1+v)sinh [m]]

C= —Za—alé(z% + mac, coth [ﬂDcsch [ﬂ}
2 2

40127r
D =%c5ch {ﬂ}
2ac 2
C, =1+a’
C;=—1+a’
C,=2+a’+v

2
C;=5+3v+a’(3+v)
These expressions are general and they are applicable to any curvature and aspect ratio.

The objective is then to determine p, (i.e. the ultimate load) for which the following

condition is verified.
w =1 (8.18)

For this, it is first required to determine the corresponding displacement 9y, at the
ultimate load. With due substitutions, equation (8.15) could be solved for the
displacement d;;, where 7, equals the yield stress, ;. However, given the fact that the
solution for 9}, is quite cumbersome, due to the high order of 41;, and, consequently, not
convenient to present here, an alternative approach is preferable. Since the geometry,
imperfection and material properties are defined, only two additional parameters are

needed to be defined: 7) the displacement d;;; and 7z) the location where the von Mises’
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8.3. Ultimate resistance of unstiffened curved panels

stresses first reach f,.

In fact, the location of the critical points is changed with the curvature, as seen in Figure
8.10 and Figure 8.11. Fortunately, the location of the critical points occurs generally
along the edges and it may be approximately predicted depending on the curvature, as
follows: 7) x=0.54 and y=0 for Z=0 to Z=10; 77) x=0.354 to0 0.454 and y=0.55 for Z>0 to
Z=30; and #7i) x=0 and y=0.55 for Z=10 to Z=30. This means that few points have to
be tested, leading to a straightforward process. It should be noted that, for example, for
Z=0 the SDOF model leads to x=4/2 and y=0, although in many cases in FEM the first
yield occurs in x=4/2 and y=56/2 as shown in Figure 8.10 for the von Mises stresses on the
bottom surface. However, it is important to mention that £, is almost reached
simultaneous in both points, as it is possible to confirm in Figure 8.11, ze. the
propagation of the yield stress passes very quickly to x=4/2 and y=0, and consequently
the differences are very small. To clarify the location of the critical points, some plots with

the distribution of the von Mises stresses are present in Figure 8.18

355
300 |

200 |
vl oo \ .
0.5 o \ 05
04 04 TS // 04
- 03 0.3 ~ 0.3
7 g X g T g )
0.1 “0.1
0.0
Z=30

Figure 8.18: Comparison of the distribution of the von Mises’ stresses for a panel with a=1.0
(a=b=1.0 m) and A=0.01 m (BCC) obtained by equation (8.15)
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Once the location is determined, the next step is to increment d;; until the condition
(8.18) is verified, introducing this displacement in the load-deflection curves derived in
Chapter 7, being equation (8.1) the most general, and to determine the corresponding

load, i.e. the ultimate load.

A useful simplification of the problem is for aspect ratios 2=1.0, leading to the following

expression for 77, 7> and 7.

Eh? 27X Ty
Tl:@( 511(25011+511)00{ " } 2251100{ " }cos[ " }
327 cos [m}(n cosh [ on } A+ (acosh {ﬂ} +
a a a
+2ﬁxsinh[ﬂD BJ 87 cos[ }(cosh[ y}cjtysmh{ y} n
a a a a
T,= 12[—22 5, €S [”—X} cos ”—y} +7° cos {ﬂ}
a a | a a
27X
[511(25011+511)—32005h }A 16x smh[ " }Bj+ (8.19)

| a

87 cos{%x}(ﬂysinh [%y D +cosh {”—y}(ﬂC + 2aD)B

a

. _
;= € '1 (Z@lsln[ }sm ”y}—Msin{m}@ smh[zﬁ }A+
16a a | a a a

[4ﬁxcosh[ﬂ}+asinh{ﬂDBJ—
a a
2
4nsin[”—x}(zycosh [”—y} D +sinh [”—y}(nc + aD)jJ
a a a

With the following constants:

it 1 1 1

647° (7[ cosh [72[} +2sinh {ZD(Gﬂcosh [27]+5sinh[27])
4’ (—1— 4v +(1+v)cosh {%Dcosh [27]+

A=

(8.20)
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8[cosh {%} +cosh {%Dsinh {%T (—2(2 +0)+(3+v)sinh [%D +

7(2(3+v)cosh[z]-4(3+v)cosh[27]+2(3+v)cosh[3z]+

(17+90)5inh{37ﬂ}+2(1—4U)Sinh[27r]—(15+7u)sinh{57ﬂDJ
zs,, .
(000

B =
4a;z'(67r cosh[27]+5sinh[27]

(—4(2 +v)+z(1+v)coth [%Dcsch [%J +47z(1+v)csch [%T]

3
C:—L;“csch r sinh[7]
167 2
D 20y, csch [E}
ar 2

For #=1.0, equation (8.3) is used for p,.

For exemplification, the simplest possible case is obtained assuming Z=0. Taking into
account that for Z=0, A/=B=C=D=0, the following equations are obtained for the terms

of equation (8.15).

Eh27°6,,(28,,, + &
T = 2 11( 011 11)COS[2”X}

' 8a’
h* 8y, (2651, +611) [Zﬂy} (8.21)
T, = : cos
a a
T, =0

Taking into account that the location of the point where the von Mises’ stresses reach
first the yield stress for Z=0 with a SDOF (x=4/2 and y=0), the expressions are further

simplified, as follows:

Eh’7%6,, (204 + 61 )
T,=- .
8a
h7°Sy, (20011 + 61 ) (8.22)
a
T,=0

Substituting equation (8.5) for p, and expression (8.22) in equation (8.15), the following

expression is obtained for the von Mises’ stress at the critical point.
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_ Eh®z%6,
24a° (8, + 3y )(1-v

Owm

2 ) \/(64 + 3(5011 + 511)(25011 + 511)

(8.23)
(<1 07)(~40+ 21( By + 611) (205 + 63, ) -1+ 02)))

To exemplify the procedure, the ultimate load of a flat plate with 2=6=1.0 m, »#=0.01 m

and a global imperfection of wy=min(4;6)/500 is calculated next.

Incrementing the value of d;; until the von Mises’ stress reaches the value of £, a value of
354.8 MPa is reached for a displacement 0;,=1.864. This process is exemplified in Table
8.9.

Table 8.9:  Example of the calculation of the ultimate load by the proposed expressions for

flat plates (calculation of the displacement at the ultimate load)

ou 1.5 1.8 1.85 1.86 1.864

oo [MPa] 259.6 3367 3508 3536 3548

Inserting 97,=1.864 in equation (8.5) a value of 177.9 MPa is obtained for the ultimate
load, corresponding to a value of the normalized ultimate load y=0.501. The value of

calculated by the FEM is 0.541, meaning -7.4%, on the safe side.

Repeating the same procedure, changing the width of the panels, and consequently the
width to thickness ratio, from 4/h=50 to 150 for wy=min(a;6)/500 and
wo=min(a;6)/200, Figure 8.19 is obtained. The results are in very good agreement with
the FEM. However, it should be noted that the ultimate load predicted by the expression
for 2/h=50 (and wy=min(4;6)/500) shows an error of 3.6% (y54:=0.827 vs yrn=0.798)
on the unsafe side. This is a reasonable error taking into account the relatively low value
of a/h. As previously, explained the von Mises’ first yield criterion for the membrane
stresses may lead to non-conservative predictions of the ultimate load for thick plates (in
comparison with the width). In this cases, bending stresses start to be relevant and they
should be accounted for in the strength criteria. The same phenomenon may be verified
for small aspect ratios where the /5 ratio shows a low value. However, as a/h and b/h
lesser than 50 were not considered and the error for the lowest ratios of the studied panels

are small, it was not considered relevant to account for a more conservative strength
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7Z=0, w,=min(a;b)/500 Z=0, w,=min(a;b)/200
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Figure 8.19: Comparison of the ultimate load calculated by equations (8.5) and (8.23) and
FEM for flat plates as a function of the a/Aratio with imperfection a) w,=min(a;5)/500 and b)
wo=min(a;b5)/200 (2=1.0, ~=0.01 m, BCC)

criterion.

Applying the procedure for the curved panels with 2=1.0, through equations (8.3), (8.15)
and (8.19), the normalized ultimate loads for Z=10 and Z=30 are plotted in Figure 8.20,
as a function of the /b ratio. For validation purposes, in Figure 8.21 similar results for
Z=20 are obtained with a steel with =235 MPa. The agreement between the analytical
expressions and the FEM are generally very good. Only for Z=30 and 2/h=75 the
ultimate load predicted by the expression exceed in 5.5% (ys41=0.854 vs yr£1=0.809) the
value of the FEM. However, it should be noted that this curvature is considerably large
taking into account that only 1 DOF is used (see Chapter 7). Additionally, the
incorporation of bending stresses along the thickness in the strength criterion can be

required for a conservative estimate.

Z=10, wy=min(a;b)/ 500 7=380, w,=min(a;b)/ 500
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Figure 8.20: Comparison of the ultimate load calculated by equations (8.3) and (8.15)(8.19)
and FEM for curved panels as a function of the a/Aratio (#=1.0, BCC)
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Z=20, w,=min(a;b)/ 500, f,=235 MPa
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Figure 8.21: Comparison of the ultimate load calculated by equations (8.3) and (8.15) and
FEM for curved panels as a function of the a/ Aratio for £=235 MPa (#=1.0, BCC)

In order to validate the proposed expressions for what was previously discussed in
Chapter 6 about the local minimums of y when plotted as a function of the curvature,
Figure 8.22 compares this effect with the FEM. The local minimum at Z=20 is caught

and accurate safe values are provided for all curvatures (2=1.0, 2/h=100).

The normalized ultimate loads of panels with different aspect ratios are plotted in Figure
8.23. A very good agreement is shown for aspect ratios between 0.75 and 1.25. The panel
with 2=0.5 shows an error of +6.8% which may be explained, once again, by the strength
criterion considered. As previously explained, more conservative strength criteria should
be applied to these cases. In fact, =0.5 with 2/h=100 seems to be more sensitive to this

aspect than ¢=1.0 with 4/h=50, despite both having 6/h=50. For this reason, the
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B 1 1
- 1 1
1 1
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Figure 8.22: Comparison of the ultimate load calculated by equations (8.3) and (8.15) and
FEM for several curvatures (w;=min(a;b)/500, a=1.0 m, #=1.0, a/ =100, BCC)
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Figure 8.23: Comparison of the ultimate load calculated by equations (8.1) and (8.15) and
FEM for a curved panel with Z=30 for several aspect ratios (w,=min(a;5)/500, 2=1.0 m,
a/ k=100, BCC)

calculation of panels with low aspect ratios (#<0.75) is not reccommended. Additionally,
aspect ratios #>1.25 do not should be used with the proposed expression due to the
SDOF implications. For the remaining cases and according to the applicability assessed
in Chapter 7, the proposed expressions showed, in the cases analysed, very good

agreement with the nonlinear finite element analyses.

To corroborate this, Figure 8.24 presents all the results of y calculated by the SAM in
comparison with the FEM. The values fit well the line with slope 1.0 and are within the
range of +10% and -10%. The good agreement is corroborated by the following statistical
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Figure 8.24: Comparison of the ultimate load calculated by the proposed expressions and
FEM (BCC)
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parameters: CV=5.8%, Corr=0.985 and MAE=-0.3%.

8.4 EXAMPLES OF APPLICATION

8.4.1 Introduction

In this section, the methodology proposed in the previous sections is used in two curved
panels extracted from real cases. In the first example, the large deflection behaviour of a
stiffened curved panel is studied and in the second example, the ultimate load of an
unstiffened curved panel is predicted. The results of both examples are compared with

FEM results showing good agreement.

8.4.2 Example 1: Large deflection behaviour of a stiffened curved panel

The objective of the first example is to apply the proposed expression to predict the large

deflection behaviour of a stiffened curved panel under in-plane uniaxial compression.

The geometry of the panel is based on the information given in Tran ez 4l. [84], Tran
[14] and Reis ez al. [135] for a stiffened panel from the Confluences bridge in Angers,
France (see Figure 8.25). The information collected corresponds to a stiffened panel with
a width, 4, of 4.8 m, a radius, R, of 80 m, a thickness, 5, of 16 mm, a length given by the
distance between diaphragms, 4, of 5.0 m and it is composed by 6 stiffeners, 7., spaced by
0.8 m, 4, in the central zone and 0.4 m and the extreme stiffeners are 0.4 m away from
the boundaries, as identified in the figure. It is indicated that the stiffeners are flat, their
geometry is omitted. Consequently, based on a survey done for similar cases, reasonable
values of 0.18 m and 18 mm (i.e. 4./h,=10.0) were assumed, respectively, for the depth,
d,, and thickness of the stiffeners, /.. As previously explained, to account in the numerical

model for the overlap of the shell elements of the stiffeners and the panel, 4. is

R

Figure 8.25: Cross-section of the Confluences bridge in Angers, France [14]
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incremented in the FEM with half the thickness of the panel, d,r£4=0.188 m.

Taking into account the surrounding of the panel, BCC boundary conditions may be

assumed.
The following geometric parameters are obtained for this panel:

a’ 4.82

Rh 80x0.016
zgzizl,om (8.25)
a 4.8

The spacing of the stiffeners for the panel of this example is different from the one used
throughout the thesis. While previously the stiffeners were considered equally spaced by
a distance a.=a/(n.+1), the panel of this example is assumed with the spacing of the end
panels half of the internal ones. This means a distance between stiffeners of 2,=a/7.. Both

cases are shown in Figure 8.26. This effect is non-negligible and, consequently, it should

be taking into account in the study of the nonlinear behaviour of the panels.

To assess the accuracy of the expressions for this situation and to assess the differences

between cases, both stiffener configurations are calculated next.

The first step is the calculation of the orthotropic properties of the panels as described in

Chapter 4. Table 8.10 presents these values.

The next step is to introduce the geometric properties and the calculated orthotropic

.aS:a/nS. a,=al(n +1)

S

a) b)

Figure 8.26: Stiffener spacing configuration assumed for 2) the panel of example 1 and b)

throughout the thesis
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resistance of curved panels

Table 8.10: Calculation of the orthotropic properties for both stiffener spacing

configurations
a=a/n; a=a/(n+1) a=a/n; a=a/(n+1)
=0.8 m =0.685714m =0.8 m =0.685714m
zo [m] 0.0197955 0.0223426 G,y [Pa] 8.87136x10" 8.84808x 10"
L[m*]  0.0000285637  0.0000272939 D:[N-m] 80141.9 80346.5
v [-] 0.290273 0.293387 D, [N-m] 9.05019x10° 1.03192x107
E.[Pa] 2.1x10" 2.1x10M D,y [N-m] 29151.5 29539.5
E, [Pa] 2.63156x10" 2.63156x10" D,. [N-m] 2.62703x10° 3.02752x10¢
vy [-] 0.363748 0.367651 D, [N-m] 30280.9 30201.4

vy [-] 0.324941 0.328427

Table 8.11: Calculation of the constants C;, C,, C;and C;

CI Cz C3 C4
a=a/n=0.8 m -1.52995x107 -5.26631x10° -4.99045x107 2.09925x107
a=a/(n+1)=0.685714 m -1.52995x107 -6.0105x108 -5.00496x107 2.09899x107

parameters in equations (8.8) to calculate the constants Ci, C2, Cs and Cy. The results for

both cases are presented in Table 8.11.

Substituting these constants in equation (8.7), the expression for p, appears as a function

of the normalized imperfection, do;;, and the normalized displacement, d;,.

In this example, a global imperfection, 4;;, with an amplitude wy=min(a;6)/400 is
assumed, leading to the following normalized value of dy;;:

_ min(a;b)/400 4.8/400

= =0.75 8.26
ot h 0.016 (8.26)

Normalizing p, through equation (7.2), assuming f;=355 MPa, the equilibrium paths of
both panels may be plotted as shown in Figure 8.27. It is possible to verify that the effect
of the configuration of the stiffeners is noticeable. Additionally, the agreement between
the proposed expression and the FEM is perfect, showing that it is able to deal accurately

with stiffened panels of practical interest.
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Z=18, ns=6, hs=0018 m, ds=018 m,
a=48 m, b=50 m, h=0016 m
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Figure 8.27: Comparison of the equilibrium paths for the stiffened panel of example 2
(w/=min(a;b)/400)

8.4.3 Example 2: Ultimate load of an unstiffened curved panel

The second example aims to assess the ultimate load of a bilge panel under uniaxial
compression of a container ship taken from Mohammed e# 4/[143] (see Figure 8.24).
The selected panel is situated between two stiffeners considered, here, with a sufficiently
high moment of inertia (370x13 bulb flats), so that the subpanel can be assumed as simply
supported. Taking into account the location of the panel, BCC may be assumed. The

selected subpanel has a thickness, 4, of 21 mm, a width (between stiffeners), 2, of 0.86 m

and a radius of 4.9 m. The bulkheads are separated by 0.791 m, defining the length, 4, of

A4
1.1 0% Lo rama

Min. extension of AT

RADIUS OF BILGE = 4900 MM

Figure 8.28: Midship section of a container ship and identification of the curved panel to

study [143]
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the panels. The panel is composed by a HT36 steel with a yield stress, ;=355 MPa.

The following geometric parameters are obtained for this panel:

2 2
_a 086" .00 (8.27)
Rh ~ 4.9x0.021
a=2 2019 699 (8.28)
a 0.860

A global imperfection, 4;;, with an amplitude wy=min(a;6)/500 is assumed, leading to a

normalized value of 9y,

~ min(a;b)/500 ~0.791/500
o1 h ~0.021

=0.0753 (8.29)

Substituting the geometric variables and the calculated parameters in equation (8.17), 4,
B, Cand D are written in function of the normalized displacement §;,. Introducing them
in equations (8.16), T}, 7> and T are written as a function of the x, y and d;;. Substituting
these expressions and equation (8.1) for p, (also as a function of d};) in equation (8.15),
the von Mises’ stresses are written only in function of the coordinates (x and y) and the

displacement ;; which are the unknowns of the problem.

The point where the von Mises’ stresses, ouas, reach first £, should be determined. As
previously explained, for this value of curvature, ¢ is, generally, first reached for one of

these two points: 7) x=0.354 to 0.452 and y=0.5b6; and ii) x=0.5a and y=0.

The first point may change along the transversal edge and the value of x, where the
maximum stress occurs, should be determined. Assuming an initial value 9,,=0.1, x=0.35

m is determined as the one leading to the maximum value of 7,4, as shown in Table 8.12.

Now, d:; should be incremented until the von Mises’ stress reaches the value of f,. This

process is shown in Table 8.13.

Table 8.12:  Calculation of the x coordinate for J;,=0.1 and y=5/2=0.3955 m

x [m] 0.32 0.33 0.34 0.35 0.36

o [MPa] 31691 317.07 317.16 317.19 317.12
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Table 8.13: Calculation of the displacement for x=£;

ou 0.1 0.11 0.12 0.13

o [MPa]  317.19 330.88 343.34 354.75

A value of 354.75 MPa is reached for a displacement 0;,=0.13, which introduced in
equation (8.1) leads to a value of p,=329.21 MPa, corresponding to a value of y=0.927.

The value of 7,1 should be now assessed for the second point, x=0.52 and y=0. For these
coordinates, 0;,=0.13 leads to a value of 7,,=325.80 MPa, meaning that this point is not

the critical one.

The normalized ultimate load is obtained for the same panel by the FEM with the
material properties previously described. A normalized ultimate load y=0.923 is obtained

for the panel, as shown in Figure 8.29. The error between both approaches is 0.4%.

1.0
x=0.923

0.8

0.6
=

0.4

0.2

0.0

0.00 0.40 0.80 1.20
bt011

Figure 8.29: Equilibrium path and ultimate load of the unstiffened panel considered in the

example 2

8.5 SUMMARY

Accurate closed-form analytical expressions for the post-buckling behaviour of curved
unstiffened and stiffened curved panels based on a SDOF model were proposed. These
expressions incorporate explicitly all the geometric parameters (including the aspect

ratio) and are able to account for both in-plane and out-of-plane loading.
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Despite being possible to include a non-linear material, as an elastic-plastic material, in
the semi-analytical model, this is not a very practical strategy. The usual approach is to
account for the plasticity in a simplified manner, using strength criteria. A first yield
criterion was applied to the von Mises’ stresses with the membrane stresses (z=0). Despite
a more conservative criterion (e.g. accounting with the bending stresses along the
thickness in the von Mises stresses) would be desirable in some situations, it was not
considered necessary to consider it, because for the studied panels the strength criterion

using only the membrane stresses provided good results for most cases.

The effect of the curvature in the ultimate load was assessed in terms of the reduction
buckling curves. Comparison with the provision of Eurocode 3 (EN1993-1-5 and
EN1993-1-6) showed the total inadequacy of these standards to deal with curved panels.
On the other hand, the predictions of the SAM matched with good accuracy the buckling
curves for both BCU and BCC.

The validity of the SAM was then assessed for diverse situations of geometries and
boundary conditions. A multi degree of freedom solution was employed whenever
necessary. In this case, 2 DOFs were shown to increase the accuracy of the SAM especially
for more complex deformation shapes for larger curvatures and aspect ratios.

Nevertheless, a SDOF is able to deal reasonably well with a large part of the cases.

Finally, expressions to predict the ultimate load of unstiffened curved panels based on a
SDOF were proposed and validated. They show good agreement with the FEM and they

are able to account for the large part of the unstiffened curved panels used in practice.
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9 CONCLUSIONS AND OUTLOOK

9.1 CONCLUSIONS

The choice for the subject of this thesis was motivated by the recent growing interest in
curved panels in several engineering fields and, at the same time, by the verified lack of
robust provisions to deal with these structures. Consequently, it was proposed to address
this topic through advanced numerical finite element analyses, but mainly, through semi-
analytical methods. This decision was motivated by the fact that, although the FEM is
able to deal accurately with the problem, it is time consuming and requires expertise, but
mainly, it can only be used to derive design provisions necessarily involving empirical
coefficients based on statistical assessment. On the other hand, analytical models allow
to identify the key parameters that influence the behaviour of the panels and to develop
expressions purely based on the physical background of the problem, which have a much

greater interest.

In this sense, the derivation of a large deflection formulation for unstiffened and stiffened

curved panels subjected to different loading conditions was derived. Special emphasis was
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given to uniaxial compression which represent the key aspect in the stability of thin

walled structures, but out-of-plane loading was also analysed.

The DMV theory based on the Donnell’s theory and derived for shallow shells was shown
to be the most adequate theory for application in the curved panels after a brief review
was carried out comparing different shells theories available. The hypotheses on the basis
of the theory and the consequences on the simplifications underlying the shallow shells
assumptions were discussed. It was concluded that this theory combines simplicity and
accuracy if certain limits are fulfilled (the present panels fall within this limits) and,

consequently, it was chosen to formulate the problem.

The formulation was provided for isotropic and orthotropic panels with the number and
geometry of stiffeners explicitly considered in the concave side of the curved panels for
generic aspect ratios and curvatures. The formulation is able to account for generalized
loading for two different simply supported boundary conditions depending of the in-
plane restraint along the edges and it was derived for a multi degree of freedom solution

solved with the Rayleigh-Ritz method.

Detailed finite element models able to describe accurately the behaviour of the panels
were constructed. The modelling of the initial imperfections was considered in a
relatively innovative way in comparison with the default approach used in most shell
problems. This default approach, which consists in using the eigenmodes as initial
imperfection, was found to overestimate, in some cases of unstiffened panels, the ultimate
load in more than 25% the ultimate load in comparison with other perfectly admissible
imperfections. This means that the consideration of initial imperfection patterns given
by the eigenmodes from LBAs, which is usually assumed in many structural problems,
may be non-conservative for curved panel. However, none of the considered
imperfections may be considered always the most unfavourable one and, consequently,
none of them can be a priori neglected. Additionally, to validate the SAM the same
imperfection pattern must be used in the FEM and the followed approach is much more
advantageous for this end. Other drawback of using the eigenmodes is that for stiffened
panels they join the deformation of the panel and the stiffeners which makes impossible
to define the correct amplitude to each type of imperfection separately. Consequently,

the developed approach consisted in modelling the imperfections defining directly the
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coordinates of the points composing the deformed panel. This alternative provides more
flexibility to choose imperfections as desired. Despite neglected many times in the
literature, the direction of imperfection is also an aspect of utmost importance, especially
in stiffened panels. A negative imperfection (the one that induces compression on the
stiffeners) is more detrimental than the positive one (which corresponds, generally, to the
default direction of eigenmodes) in many cases. Although the importance of the negative
direction decreases with the increase in curvature (for example, it leads to the lowest
ultimate load in 93% and 20% of the cases, for Z=0 and 200, respectively) it is important

and it cannot be neglected.

The behaviour of both unstiffened and stiffened panels was characterized for in-plane
compression, out-of-plane pressure and interaction between both loading conditions
through an extensive parametric variation with finite elements analyses. The results were

discussed through the non-linear equilibrium paths and the ultimate loads.

The effect of the curvature on the equilibrium paths and ultimate load is very intricate.
The existence of very pronounced local minimums for the ultimate load in function of
the curvature was found. These effects depend very significantly of the width to thickness
ratio, a/h, and the boundary conditions play also an important role in this behaviour.
This effect is especially important for BUU. It was shown that a curved panel may have a
decrease of more than 40% in the ultimate load when compared with the corresponding
flat plate. This means that it may be quite unsafe to design a curved panel as if it was a flat
plate. In contrast, this effect is much less severe for BCU. On the other hand, significant
increases in resistance are obtained, in some cases, with the curvature. This shows that
the design of curved panels has to be performed with a deep knowledge of this complex

behaviour.

In spite of only simply supported boundary conditions were considered, the effect of the
in-plane restraints along the edges is very evident. Large differences are found between
BUU and the remaining boundary conditions both in the behaviour and in the ultimate
load. BUU shows generally more unstable behaviours. Additionally, it is possible to say,
as a rule of thumb, that the more in-plane restrained are the boundary conditions, the

greater is the resistance.

Despite some conclusions are more or less generic and transversal to unstiffened and
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stiffened panels, like the important effect of the curvature and aspect ratio, the additional
contribution of stiffeners increases the number of parameters and, consequently, the
complexity of the analysis because the dependency between variables increases. The local

width to thickness ratio of the subpanels between stiffeners, 4,/5, and the ratio height to
thickness of the stiffeners, d./h,, play an important role in the response of the stiffened

panels.

The study was then extended to out-of-plane pressure and interaction with in-plane
compression. When only out-of-plane pressures are existent, ultimate loads are not
usually reached within displacements with practical significance, and consequently more

emphasis was given to the non-linear behaviour of the panels.

After being used to characterise thoroughly the behaviour of the unstiffened and
stiffened panels, the finite element models were used to validate the semi-analytical
model. This validation was first carried out in terms of the equilibrium paths and then in

terms of the ultimate load.

It was found that, generally, as the curvature increases the modal participation of higher
modes is larger. Nevertheless, few DOFs are, generally, sufficient to characterize
accurately the behaviour of most curved panels of practical interest. Despite the complex
behaviour identified for the panels, the SAM was able to account accurately with all the

geometric parameters, boundary and loading conditions.

The orthotropic approach showed very good results in all cases where the assumed modes
were able to describe the verified deformations, i.e. overall buckling of stiffened panels,
which occurs for panels composed by stiffeners not too strong so they do not constitute
nodal lines; or by a large number of stiffeners where the stiffeners buckle together with

the panel.

Closed-form expressions were derived for the equilibrium paths of both unstiffened and
stiffened curved panels. These expressions are able to provide very good accuracy covering
a wide range of panels used in practice, and they are very useful once they incorporate
explicitly all the considered parameters. Besides that, they are able to account for the

interaction between in-plane and out-of-plane loading.

The ultimate load of unstiffened panels under compression was predicted using a first
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yield criterion applied to the von Mises stresses with the membrane components. This
criterion was shown to provide good results for most cases under diverse situations of
geometries and boundary conditions. The predictions of the SAM matched with good
accuracy the buckling curves of curved panels for both BCU and BCC. The complex
interaction of the several parameters in the ultimate load, identified firstly with the finite
clement analyses, was perfectly reproduced with the proposed formulation. Despite
shown that a MDOF increases the accuracy of the SAM especially for more complex
deformation shapes which occur for larger curvatures and aspect ratios, in most cases a
SDOF is able to deal reasonably well with the large part of the cases. Based on this,
expressions to predict the ultimate load of unstiffened curved panels based were
proposed. They show good accuracy with only small differences in some cases in
comparison with the FEM which may be explained by the lack of more degrees of
freedom and by the strength criteria considered. However, only perfectly acceptable
errors were shown for occasional cases, which are perfectly covered with the utilization
of a small partial safety factor. Once these expressions are able to account for the large

part of the panels used in practice they show a large practical interest.

9.2 OUTLOOK ON FURTHER WORK

Despite the fact that many of the issues raised at the outset of the research were
successfully addressed, some others have arose as the work progressed and many more
emerge from that would be the natural continuation of this work. Consequently, some

recommendations for further work are identified next.

There is room to improve the efficiency of the resolution of the problem, for example in
solving the system of equations when more degrees of freedom are considered. The
formulation implemented with the software Mathematica can be further optimized to
deal with a larger number DOFs more efficiently in terms of calculation times and
convergence. Although there is no need for a very large number of DOFs for a reasonable
characterization of most panels in practice, it was found that a larger number of DOFs

would be desirable for some panels with larger curvatures and generic aspect ratios.

Snap-through phenomena were found to be rare in the analyses carried out with the semi-

analytical method. However, as it was shown in the wide parametric study carried out
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with FEM, some panels with large curvatures, aspect ratios and certain type of
imperfections may be prone to snap-through phenomena. Although, the semi-analytical
formulation is able to account for them properly, an arc-length method must be

implement instead of the Newton-Raphson method.

The orthotropic approach was shown to be efficient to deal with stiffened panels
approaching an overall buckling collapse. However, in some situations the panels are
designed to local buckling occurs first. For these panels, which have generally slender
subpanels, local deformations are generally more important than the global
deformations. Consequently, for these panels, local modes of the subpanels should be
assumed and the stiffeners should be considered as a separated member with assumed
deformations (similarly to what is done for the panel). The process is identical to the one
presented here with the additional energy components of the stiffeners and the
conditions of continuity between the panel and stiffeners. In intermediate cases,
interaction between local and global buckling may occurs and interaction between both

approaches should be considered.

Some of the panels, namely the stockier ones, panels would benefit from using a more
conservative strength criteria accounting with the bending stresses along the thickness,

eliminating probably the use of a partial safety factor.

The prediction of the ultimate load of stiffened panels can also be addresses introducing
strength criteria for stiffeners. The incorporation of residual stresses in the SAM can also

be beneficial to tackle stiffened panels.

The present formulation was shown to have a large potential to extract expressions with
a purely mechanical background. This kind of expressions has a huge practical interest.
Although, several expressions were derived, much more can be obtained with the present
formulation, as for example for other loading conditions (e.g. shear, biaxial compression,
etc.) and for the remaining boundary conditions for which the formulation was already
developed. Additionally, these expressions can be further simplified, in some cases,

increasing the ease of its use for more design oriented formats.
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ANNEX A

A.1. Expressions for the local imperfection pattern given by sum of sines (from

section 5.7)

€L X {1.45005(%x1.924y} -

,for ¢, <0.75
0.5891cos(gx3.715y] xsin| m| 22+ Z
b a, 2

€y, X {1.006 cos (§x1.598yJ -
z(x,y)= ,
0.8065003(6x5.921yj—

2 ,for o,,, >0.75
100.8cos[6x8.062yj+

101.4cos(g><8.053yﬂxsin m| 2+ 2
b a, 2
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ANNEX B

B.1. Slenderness of the unstiffened curved panels of the parametric study

2=0.5 a=1.0
a/h a/h
VA 50 75 100 125 150 50 75 100 125 150
0 0.87 1.30 1.73 2.16 2.59 1.08 1.62 2.16 2.70 3.24
10 0.84 1.26 1.67 2.09 2.51 0.99 1.48 1.98 2.47 2.96
BUU 20 0.77 1.15 1.53 1.92 2.30 0.82 1.23 1.64 2.05 2.46
30 0.68 1.02 1.36 1.71 2.05 0.69 1.03 1.38 1.72 2.06
40 0.60 091 121 1.51 1.81 0.60  0.90 1.20 1.50 1.80
S0 054 0.81 1.08 1.34 1.61 053  0.80 1.07 1.34 1.61
0 0.87 1.30 1.73 2.16 2.59 1.08 1.62 2.16 2.70 3.24
10 0.84 1.25 1.67 2.09 251 0.96 1.44 1.92 2.39 2.87
BCU 20 0.76 1.14 1.52 191 2.29 0.77 1.15 1.53 1.92 2.30
30 0.68 1.01 1.35 1.69 2.03 064 097 1.29 1.61 1.93
40 0.60 0.89 1.19 1.49 1.79 057  0.85 1.14 1.42 1.70
S0 053 0.80 1.06 1.33 1.59 0.51 0.77 1.03 1.28 1.54
0 0.87 1.30 1.73 2.16 2.59 1.08 1.62 2.16 2.70 3.24
10 0.83 1.25 1.67 2.08 2.50 091 1.36 1.81 2.26 2.72
BCC 20 0.76 1.13 1.51 1.89 227 0.71 1.07 1.42 1.78 2.14
30 0.67 1.00 1.33 1.67 2.00 062 093 1.23 1.54 1.85
40 059  0.88 1.17 1.46 1.76 0.55 0.83 1.11 1.38 1.66
S0 052 0.78 1.04 1.30 1.56 0.50 0.75 1.00 1.26 1.51
a=15 a=2.0
a/bh a/bh
VA 50 75 100 125 150 50 75 100 125 150
0 1.04 1.56 2.08 2.60 3.11 1.08 1.62 2.16 2.70 3.24
10 0.94 1.41 1.88 2.34 2.81 0.97 1.45 1.94 2.42 2.90
20 0.82 1.23 1.64 2.05 2.46 0.79 1.18 1.58 1.97 2.36
BUU
30 0.70 1.06 141 1.76 2.12 0.69 1.04 1.39 1.74 2.09
40 0.61 0.92 1.23 1.54 1.85 062 093 1.24 1.55 1.87
S0 0.55 0.82 1.10 1.37 1.65 055 0.84 1.12 1.40 1.68
0 1.04 1.56 2.08 2.60 3.11 1.08 1.62 2.16 2.70 3.24
10 0.93 1.40 1.86 2.33 2.79 0.96 1.43 191 2.39 2.87
20 0.76 1.14 1.52 1.90 228 0.78 1.16 1.55 1.94 2.32
BCU
30 0.64 095 1.27 1.59 191 0.65 0.98 1.30 1.63 1.95
40 056 0.84 1.13 141 1.69 057  0.85 1.14 1.42 1.71
S50 0.51 0.76 1.02 1.27 1.53 0.51 0.77 1.02 1.28 1.53
0 1.04 1.56 2.08 2.60 3.11 1.08 1.62 2.16 2.70 3.24
10 0.84 1.26 1.68 2.10 252 0.84 1.26 1.68 2.10 2.52
20 0.71 1.07 1.42 1.78 2.13 0.70 1.05 1.40 1.75 2.10
Bee 30 0.61 0.92 1.23 1.54 1.84 0.61 091 1.22 1.52 1.83
40 0.55 0.82 1.10 1.37 1.64 054 0.82 1.09 1.36 1.63
S0 0.50 0.75 1.00 1.25 1.50 050 0.74 0.99 1.24 1.49
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2=3.0 a=5.0
a/b a/b
VA 50 75 100 125 150 50 75 100 125 150
0 1.08 1.62 2.16 2.70 3.24 1.08 1.62 2.16 2.70 3.24
10 096 144 1.92 2.40 2.88 096 144 1.92 2.40 2.88
BUU 20 080 121 1.61 2.01 2.42 079 1.19 1.59 1.99 2.39
30 0.68 1.03 1.37 1.72 2.06 0.68 1.02 1.37 1.71 2.05
40 059  0.89 1.19 1.49 1.79 059  0.90 1.20 1.50 1.81
50 0.53  0.80 1.07 1.35 1.62 054 0.82 1.09 1.37 1.65
0 1.08  1.62 2.16 2.70 3.24 1.08 1.62 2.16 2.70 3.24
10 0.95 143 191 2.38 2.86 0.95 142 1.90 2.37 2.85
BCU 20 0.77  1.15 1.53 1.92 2.30 077 116 1.55 1.94 2.33
30 0.65 098 1.30 1.63 1.96 0.65 098 1.31 1.63 1.96
40 0.57 0.86 1.15 1.43 1.72 0.57 0.86 1.15 1.44 1.73
50 052 0.77 1.03 1.29 1.55 052 077 1.03 1.29 1.55
0 1.08 1.62 2.16 2.70 3.24 1.08 1.62 2.16 2.70 3.24
10 0.81 1.22 1.62 2.02 2.43 078 1.17 1.56 1.95 2.34
BCC 20 0.68 1.02 1.36 1.70 2.05 0.66  0.98 1.31 1.64 1.97
30 0.60  0.90 1.20 1.50 1.79 0.58 0.87 1.16 145 1.74
40 054 0.81 1.07 1.34 1.61 052  0.79 1.05 1.31 1.58
50 049 074 0.98 1.23 1.47 048 0.72 0.96 1.21 1.45
a=7.5
a/bh
VA 50 75 100 125 150
0 1.08  1.62 2.16 2.70 3.24
10 096 144 191 2.39 2.87
BUU 20 079  1.19 1.59 1.99 2.39
30 0.68 1.02 1.36 1.71 2.05
40 059  0.89 1.20 1.50 1.80
50 054 0.81 1.09 1.36 1.64
0 1.08 1.62 2.16 2.70 3.24
10 0.95 143 1.90 2.38 2.85
BCU 20 077  1.16 1.55 1.94 2.33
30 0.65 098 1.31 1.64 1.97
40 0.57  0.86 1.15 1.44 1.73
50 052 0.78 1.04 1.30 1.56
0 1.08  1.62 2.16 2.70 3.24
10 0.77  1.15 1.53 191 2.29
20 0.63 095 1.26 1.58 1.90
Bee 30 0.56  0.84 1.12 1.41 1.69
40 051  0.77 1.02 1.28 1.54
50 047 071 0.95 1.18 1.42
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ANNEX C

C.1. Normalized ultimate load of the unstiffened curved panels under in-plane

compression (cases from section 6.6 with w,=min(a;5)/200)

a/h=50
Positive eigenmode imperfection (P_EM) Worst imperfection
Z 2=0.5 2=1.0 2=1.5 2=2.0 2=3.0 2=5.0 2=7.5 2=0.5 2=1.0 2=1.5 2=2.0 2=3.0 2=5.0 2=7.5
0 0708 0744 0712 0.748 0701 0.702 0.690 0.708 0.695 0.654 0.700 0.701 0.701 0.688
10 0717 0672 0811 0.712 0.623 0.646 0.639 0.717 0.587 0.595 0.633 0.623 0.634 0.625
20 0789 0.827 0.897 0.831 0765 0.761 0.743 0.789 0.688 0.672 0.723 0742 0.734 0.721
30 0.847 0875 0919 0954 0802 0.808 0.821 0.847 0.827 0.791 0.839 0.802 0.808 0.821
40 0877 0.889 0.928 0960 0.808 0.887 0.830 0.877 0876 0.844 0.882 0.807 0.885 0.830
50 0.895 0901 0933 0.963 0.815 0908 0.889 0.895 0901 0878 0909 0.815 0.908 0.889
0 0771 0759 0736 0759 0712 0713 0705 0.771 0711 0.684 0712 0.712 0.712 0.703
10 0791 0766 0.752 0.763 0.683 0.682 0.686 0.791 0.691 0.673 0.691 0.683 0.682 0.685
20 0.850 0.887 0.852 0.863 0.759 0.765 0.775 0.850 0.815 0.766 0.799 0.759 0.764 0.775
30 0892 0907 0.883 0.890 0816 0814 0802 0892 0889 0.838 0.872 0.816 0.814 0.802
40 0914 0919 0924 0.904 0.831 0827 0817 0914 0919 0876 0904 0.831 0.827 0.817
50 0928 0930 0932 0917 0.844 0.840 0.834 0928 0930 0902 0917 0.844 0.840 0.834
0 0771 0789 0744 0.789 0751 0751 0.766 0.771 0751 0.698 0.751 0.751 0.751 0.734
10 0791 0777 0.841 0844 0.768 0.783 0.789 0.791 0.687 0.766 0.829 0.746 0.767 0.789
20 0.850 0.873 0.885 0.898 0.844 0.884 0912 0.850 0.826 0.885 0.898 0.844 0.884 0.882
30 0.892 0900 0.909 0919 0871 0916 0.954 0.892 0.887 0.909 0919 0.871 0901 0.901
40 0916 0918 0925 0933 0.888 0934 0970 0916 0918 0925 0933 0.888 0912 0912
50 0931 0932 0938 0.945 0904 0946 0978 0.931 0932 0938 0945 0.904 0.920 0.920
a/h=75
Positive eigenmode imperfection (P_EM) Worst imperfection
Z 2=0.5 2=1.0 2=1.5 2=2.0 2=3.0 2=5.0 2=7.5 2=0.5 2=1.0 2=1.5 2=2.0 2=3.0 2=5.0 a=7.5
0 0441 0484 0471 0491 0478 0479 0473 0441 0471 0453 0477 0478 0478 0473
10 0422 0390 0456 0412 0397 0404 0405 0422 0.386 0.388 0407 0397 0404 0.400
20 0459 0365 0407 0399 0351 0349 0346 0459 0314 0.331 0.354 0351 0.349 0.346
30 0548 0529 0542 0.618 0447 0453 0466 0.548 0413 0396 0417 0447 0434 0430
40 0.642 0.656 0.698 0.757 0.546 0.658 0.628 0.642 0.594 0552 0586 0.545 0.613 0.602
50 0706 0.712 0.761 0.818 0.803 0.728 0.701 0.706 0.700 0.656 0.700 0.718 0.718 0.698
0 0562 0536 0527 0536 0523 0523 0519 0562 0523 0508 0523 0.523 0523 0518
10 0567 0515 0513 0520 0.504 0.503 0.504 0.567 0.506 0.499 0512 0504 0.503 0.504
20 0.611 0567 0549 0543 0502 0491 0494 0.611 0516 0498 0.504 0499 0491 0494
30 0.686 0722 0.729 0.665 0.602 0599 0.567 0.686 0.664 0594 0.617 0496 0514 0.502
40 0.752 0.773 0.773 0717 0.642 0.637 0.634 0.752 0.767 0.681 0.717 0.642 0.637 0.634
50 0.797 0.800 0.800 0.750 0.665 0.659 0.659 0.797 0.800 0.733 0.750 0.665 0.659 0.659
0 0568 0623 0561 0.623 0609 0606 0.625 0.568 0.613 0541 0593 0.604 0.606 0.586
10 0567 0543 0.627 0550 0.538 0.531 0.528 0567 0.535 0.523 0.550 0.538 0.531 0.528
20 0.611 0599 0.629 0.643 0.608 0.639 0.661 0.611 0.522 0.620 0.643 0.553 0.568 0.633
30 0.684 0.717 0723 0.734 0.676 0.708 0.738 0.684 0.683 0.723 0.734 0.676 0.708 0.738
40 0752 0765 0772 0779 0712 0741 0.772 0.752 0765 0772 0.779 0712 0741 0.772
50 0798 0.797 0.803 0.809 0.737 0.763 0.792 0.798 0.797 0.803 0.809 0.737 0.763 0.792

BUU

BCU

BCC

BUU

BCU

BCC

285



Annexes

a/h=

100

Positive eigenmode imperfection (P_EM)

Worst imperfection

Z 2=0.5

2=1.0 2=1.5 2=2.0 2=3.0 2=5.0 2=7.5 2=0.5 2=1.0 a=1.5 2=2.0

2=3.0 2=5.0 2=7.5

0

0.300

0.358

0.353

0.362

0.358

0.357

0.353

0.300

0.352

0.347

0.355

0.358

0.357

0.353

10

0.265

0.299

0.320

0.307

0.303

0.304

0.306

0.265

0.298

0.298

0.306

0.303

0.304

0.306

20
BUU

0.269

0.249

0.241

0.258

0.261

0.261

0.258

0.269

0.249

0.241

0.258

0.261

0.261

0.258

30

0.313

0.267

0.279

0.431

0.232

0.224

0.231

0.313

0.216

0.224

0.235

0.221

0.224

0.231

40

0.389

0.380

0.380

0.402

0.296

0.365

0.348

0.389

0.298

0.270

0.280

0.296

0.297

0.291

50

0.476

0.482

0.499

0.506

0.545

0.469

0.456

0.476

0.432

0.390

0.396

0.387

0.423

0412

0

0.440

0.435

0.425

0435

0.429

0.429

0.426

0.440

0.428

0.414

0.428

0.429

0.429

0.425

10

0.439

0.430

0.421

0.430

0.419

0.418

0.418

0.439

0.424

0.411

0.426

0.419

0.418

0.418

20

0.462

0.438

0.424

0.430

0.411

0418

0.422

0.462

0.435

0416

0.426

0411

0415

0415

BCU
30

0.507

0.526

0.526

0.467

0.438

0.437

0.413

0.507

0.454

0.418

0.413

0.413

0.410

0.408

40

0.570

0.606

0.595

0.529

0.488

0.487

0.424

0.570

0.585

0.500

0.521

0.399

0.396

0.338

50

0.632

0.649

0.637

0.571

0.515

0.510

0.509

0.632

0.649

0.558

0.571

0.478

0.470

0.467

0

0.456

0.540

0.478

0.541

0.536

0.539

0.529

0.456

0.533

0.470

0.472

0471

0.478

0.495

10

0.448

0.483

0.524

0.459

0.448

0.444

0.364

0.448

0.477

0.446

0.459

0.448

0.444

0.364

20

0.463

0.462

0.476

0.462

0.456

0.463

0.476

0.463

0.450

0.443

0.452

0.456

0.455

0.449

BCC
30

0.506

0.538

0.536

0.548

0.525

0.547

0.566

0.506

0.478

0.534

0.548

0.484

0.487

0.529

40

0.571

0.600

0.607

0.614

0.571

0.593

0.615

0.571

0.587

0.607

0.614

0.571

0.593

0.615

50

0.635

0.646

0.652

0.659

0.603

0.623

0.645

0.635

0.646

0.652

0.659

0.603

0.623

0.645

a/h=

125

Positive eigenmode imperfection (P_EM)

Worst imperfection

2=0.5

2=1.0 2=1.5 2=2.0 2=3.0 2=5.0 2=7.5 2=0.5 2=1.0 a=1.5 2=2.0

2=3.0 2=5.0 2=7.5

0.239

0.280

0.283

0.285

0.282

0.284

0.263

0.239

0.276

0.279

0.280

0.281

0.283

0.263

10

0.197

0.239

0.248

0.246

0.244

0.246

0.246

0.197

0.238

0.243

0.246

0.244

0.238

0.245

20
BUU

0.175

0.204

0.215

0.211

0.213

0.212

0.211

0.175

0.204

0.212

0.211

0.212

0.212

0.211

30

0.194

0.175

0.189

0.269

0.197

0.183

0.183

0.194

0.175

0.188

0.190

0.183

0.183

0.183

40

0.237

0.223

0.224

0.279

0.217

0214

0.203

0.237

0.164

0.168

0.172

0.167

0.171

0.171

50

0.299

0.299

0.299

0.303

0.351

0.275

0.267

0.299

0.243

0.211

0.216

0.222

0.231

0.221

0.363

0.366

0.359

0.365

0.362

0.361

0.362

0.363

0.361

0.351

0.361

0.362

0.361

0.361

10

0.362

0.372

0.360

0.367

0.359

0.359

0.362

0.362

0.367

0.352

0.362

0.359

0.359

0.359

20

0.376

0.383

0.369

0.369

0.356

0.359

0.362

0.376

0.376

0.359

0.364

0.356

0.355

0.354

BCU
30

0.403

0.386

0.408

0.361

0.360

0.355

0.327

0.403

0.377

0.353

0.356

0.355

0.352

0.327

40

0.443

0.480

0.457

0.409

0.388

0.388

0.348

0.443

0.429

0.378

0.342

0.350

0.347

0.344

50

0.492

0.517

0.500

0.441

0.409

0.406

0.341

0.492

0.517

0.440

0.441

0.343

0.341

0.340

0.388

0.454

0.439

0457

0.444

0.456

0.438

0.388

0.439

0.433

0.414

0.407

0.423

0.438

10

0.380

0.451

0.397

0.404

0.390

0.389

0.382

0.380

0.443

0.397

0.404

0.390

0.389

0.382

20

0.388

0416

0.405

0.404

0.391

0.387

0.335

0.388

0.399

0.383

0.404

0.391

0.387

0.335

BCC
30

0.409

0.423

0.419

0.430

0.420

0.429

0.439

0.409

0.395

0.389

0.385

0.390

0.389

0.380

40

0.441

0.479

0.483

0.488

0.464

0.477

0.490

0.441

0.459

0.483

0.488

0.454

0.448

0.461

50

0.495

0.520

0.529

0.534

0.495

0.509

0.525

0.495

0.520

0.529

0.534

0.495

0.509

0.525
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a/b=

150

Positive eigenmode imperfection (P_EM)

Worst imperfection

Z 2=0.5 2=1.0 2=1.5 2=2.0 2=3.0

2=5.0 2=7.5 2=0.5 2=1.0

a=1.5 2=2.0 2=3.0 2=5.0 2=7.5

0 0203

0.228

0.234

0.234

0.233

0.233

0.233

0.203

0.225

0.229

0.122

0.233

0.233

0.233

10 0.170

0.197

0.203

0.204

0.205

0.205

0.204

0.170

0.196

0.201

0.204

0.205

0.205

0.202

20 0.142
BUU

0.171

0.177

0.179

0.179

0.177

0.180

0.142

0.171

0.177

0.178

0.179

0.177

0.180

30 0.129

0.150

0.157

0.168

0.184

0.157

0.158

0.129

0.150

0.157

0.159

0.184

0.157

0.158

40 0.154

0.142

0.145

0.185

0.200

0.139

0.139

0.154

0.138

0.143

0.150

0.139

0.139

0.139

50 0.194

0.193

0.194

0.197

0.313

0.176

0.170

0.194

0.147

0.142

0.133

0.134

0.138

0.133

0 0310

0314

0.311

0.314

0.312

0.312

0.312

0.310

0.311

0.304

0.311

0.312

0.312

0.311

10 0310

0.322

0.313

0.315

0.312

0.312

0.312

0.310

0.317

0.309

0.313

0.304

0.306

0.311

20 0319

0.336

0.320

0.318

0.315

0.308

0.311

0.319

0.331

0.311

0.311

0.310

0.308

0.306

BCU
30 0.339

0.327

0.340

0.316

0314

0.312

0.307

0.339

0.322

0.306

0.312

0.309

0.305

0.305

40 0.366

0.394

0.370

0.342

0.329

0.327

0.309

0.366

0.319

0.290

0.303

0.303

0.301

0.298

50 0397

0.419

0.398

0.360

0.343

0.341

0.302

0.397

0.419

0.363

0.320

0.305

0.300

0.298

0 0345

0.379

0.387

0.391

0.393

0.383

0.378

0.345

0.377

0.353

0.376

0.364

0.383

0.378

10 0336

0.412

0.350

0.367

0.351

0.357

0.346

0.336

0.391

0.345

0.367

0.351

0.357

0.346

20 0.340

0.371

0.358

0.357

0.354

0.361

0.319

0.339

0.358

0.342

0.357

0.354

0.361

0.295

BCC
30 0.355

0.366

0.408

0.354

0.353

0.315

0.330

0.355

0.345

0.337

0.346

0.347

0.315

0.330

40 0.379

0.402

0.399

0.398

0.386

0.391

0.397

0.378

0.362

0.370

0.374

0.340

0.337

0.333

50 0.398

0.427

0.433

0436

0413

0.421

0.430

0.398

0.427

0.433

0.436

0413

0418

0.409
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Annexes

C.2. Normalized ultimate load of the stiffened curved panels under in-plane

compression (cases from section 6.7 with d./h.=10.0)

a/h=25
Positive imperfection Negative imperfection
Z 2=0.5 2=0.75 «=1.0 2=1.25 a=15 2=0.5 2=0.75 «=1.0 2=1.25 a=I5
0 099 0.963 0.980 0.970 0.979 0.985 0.946 0.925 0.919 0.919
10 0990 0.963 0.979 0.969 0.978 0.987 0.954 0.944 0.939 0.948
20 0991 0.966 0.980 0.970 0.978 0.991 0.966 0.969 0.966 0.972
30 0993 0.969 0.981 0.972 0.978 0.995 0.974 0.981 0.978 0.982
40 0997 0.973 0.984 0.975 0.980 1.000 0.980 0.989 0.984 0.989
50 1.001 0.977 0.987 0.979 0.983 1.006 0.985 0.996 0.990 0.994
100 1.011 1.004 1.006 1.011 1.015 0.988 0.999 0.997 0.998 0.999
200 1.008 1.007 1.008 1.008 1.005 0.981 0.997 0.997 0.997 0.998
0 099 0.964 0.982 0.971 0.981 0.985 0.946 0.925 0.920 0.926
10 0990 0.965 0.981 0.973 0.981 0.987 0.956 0.954 0.957 0.971
20 0991 0.969 0.983 0.978 0.983 0.991 0.968 0.974 0.975 0.985
30 0993 0.976 0.986 0.982 0.987 0.995 0.977 0.987 0.984 0.996
40 0997 0.983 0.990 0.987 0.991 1.001 0.986 0.999 0.993 1.007
50 1.001 0.990 0.995 0.992 0.995 1.006 0.995 1.011 1.002 1.018
100 1.010 1.001 1.006 1.010 1.011 0.977 0.998 0.997 0.996 0.998
200 1.006 1.007 1.008 1.007 1.006 0.979 0.995 0.996 0.998 0.998
0 0963 0.982 0.971 0.966 0.962 0.987 0.968 0.945 0.942 0.941
10 0.963 0.982 0.970 0.966 0.961 0.943 0.912 0.884 0.876 0.870
20 0963 0.982 0.970 0.965 0.961 0.946 0.920 0.895 0.894 0.891
30 0963 0.982 0.970 0.965 0.961 0.953 0.942 0.933 0.936 0.933
40 0964 0.982 0.971 0.966 0.962 0.961 0.962 0.962 0.960 0.956
50 0965 0.982 0.972 0.968 0.964 0.967 0.974 0.974 0.971 0.967
100 0973 0.985 0.983 0.979 0.989 0.986 0.998 0.996 0.991 1.002
200 0.9% 1.016 1.033 1.029 1.032 0.993 0.985 0.990 0.993 0.994
0 0965 0.983 0.975 0.970 0.964 0.942 0.910 0.881 0.872 0.866
10 0964 0.983 0.974 0.971 0.966 0.943 0913 0.887 0.887 0913
20 0964 0.983 0.974 0.971 0.968 0.946 0.926 0.924 0.946 0.958
30 0964 0.983 0.973 0.972 0.970 0.953 0.950 0.956 0.969 0.975
40 0964 0.983 0.973 0.973 0.971 0.961 0.966 0.971 0.979 0.983
50 0965 0.984 0.974 0.974 0.973 0.968 0.976 0.979 0.985 0.987
100 0973 0.988 0.983 0.983 0.995 0.991 1.006 1.004 1.005 1.018
200 0.995 1.017 1.039 1.019 1.034 0.994 0.984 0.990 0.992 0.996

BCU

ns=1

BCC

BCU

ns=.

BCC
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a/h=25
Positive imperfection Negative imperfection

Z 2=0.5 2=0.75 2=1.0 a=125 «=1.5 2=0.5 2=075 «=1.0 2=125 a=15

0 0.980 0.973 0.960 0.953 0.943 0.919 0.875 0.828 0.809 0.787

10 0.980 0.973 0.961 0.952 0.942 0.920 0.878 0.833 0.817 0.797

20 0980 0.973 0.961 0.952 0.942 0.923 0.884 0.845 0.834 0.821

BCU 30 0.980 0.974 0.962 0.953 0.943 0.928 0.894 0.865 0.864 0.861

40 0981 0.974 0.963 0.955 0.945 0.934 0911 0.904 0.912 0913

50 0981 0.975 0.964 0.957 0.949 0.943 0.937 0.936 0.944 0.945

100 0.984 0.978 0.973 0.971 0.968 0.980 0.982 0.982 0.983 0.983

_ 200 0997 0.993 0.993 0.997 0.997 1.008 1.006 1.012 1.017 1.020
=3 0 0.981 0.974 0.965 0.957 0.946 0.919 0.875 0.829 0.812 0.793
10 0981 0.974 0.966 0.961 0.954 0.921 0.879 0.839 0.832 0.847

20 0981 0.974 0.967 0.963 0.959 0.924 0.887 0.858 0.889 0.912

30 0981 0.974 0.967 0.965 0.962 0.928 0.899 0.909 0.933 0.945

Bec 40 0981 0.975 0.967 0.966 0.965 0.935 0.926 0.941 0.956 0.964

50 0981 0.975 0.968 0.968 0.967 0.945 0.949 0.959 0.971 0.976

100 0.984 0.979 0.974 0.975 0.977 0.981 0.985 0.989 0.993 0.995

200 0.997 0.993 0.993 0.999 1.003 1.016 1.015 1.019 1.029 1.000

0 0.975 0.949 0918 0.877 0.817 0.865 0.786 0.696 0.639 0.573

10 0975 0.949 0.919 0.877 0.817 0.866 0.789 0.703 0.652 0.592

20 0975 0.950 0.921 0.878 0.817 0.868 0.795 0.719 0.678 0.630

30 0975 0.952 0.924 0.883 0.821 0.870 0.803 0.742 0.716 0.685

Bcu 40 0976 0.953 0.927 0.890 0.836 0.873 0.815 0.774 0.764 0.752

50 0976 0.955 0.931 0.899 0.857 0.876 0.835 0.813 0.820 0.819

100 0.977 0.962 0.953 0.942 0.935 0.934 0.938 0.938 0.945 0.952

_ 200 0983 0.974 0.974 0.974 0.985 0.984 0.984 0.985 0.985 0.992
7=3 0 0975 0951 0922 0877 0827 0865 0786 0698 0654 0704
10 0975 0.952 0.927 0.884 0.816 0.866 0.790 0.712 0.706 0.735

20 0975 0.953 0.931 0.897 0.829 0.868 0.797 0.736 0.762 0.792

BCC 30 0975 0.954 0.936 0911 0.873 0.870 0.807 0.781 0.825 0.854

40 0976 0.955 0.940 0.922 0.910 0.873 0.820 0.836 0.871 0.893

50 0976 0.956 0.943 0.932 0.930 0.876 0.851 0.873 0.899 0916

100 0.978 0.962 0.957 0.956 0.962 0.936 0.946 0.952 0.960 0.967

200 0983 0.975 0.975 0.975 0.987 0.985 0.986 0.988 0.991 0.998
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a/h=2S§

Positive imperfection Negative imperfection

Z 2=0.5 2=0.75 a=1.0 2=125 a=15 2=05 2=0.75 2=1.0 a=125 a=L5

0 0963 0.917 0.829 0.712 0.600 0.808 0.686 0.557 0472 0.401

10 0964 0.919 0.831 0.710 0.585 0.809 0.690 0.568 0.489 0.430

20 0965 0.922 0.835 0.713 0.580 0.811 0.697 0.586 0.519 0.472

30 0.966 0.924 0.841 0.719 0.582 0.813 0.708 0.611 0.560 0.527

BCU
40 0.966 0.927 0.849 0.733 0.601 0.816 0.721 0.644 0.612 0.591

50 0.967 0.931 0.858 0.753 0.632 0.819 0.737 0.684 0.671 0.660

100 0.969 0.948 0.915 0.889 0.857 0.851 0.862 0.861 0.878 0.890

200 0975 0.965 0.959 0.962 0.961 0.957 0.959 0.957 0.963 0.966

n=7
0 0.964 0.920 0.829 0.741 0.713 0.808 0.687 0.563 0.621 0.628

10 0964 0.924 0.833 0.721 0.668 0.809 0.692 0.585 0.636 0.644

20 0.965 0.927 0.842 0.709 0.639 0.811 0.700 0.633 0.663 0.679

BCC 30 0.966 0.930 0.854 0.720 0.616 0.813 0.712 0.676 0.709 0.740

40 0.966 0.933 0.867 0.763 0.660 0.816 0.727 0.723 0.763 0.795

50 0967 0.936 0.880 0.816 0.766 0.819 0.745 0.769 0.807 0.837

100 0.969 0.949 0.927 0.926 0.932 0.943 0.955 0.959 0.968 0.973

200 0975 0.965 0.960 0.964 0.967 0.990 0.993 0.993 0.997 1.000
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a/h=50
Positive imperfection Negative imperfection

Z 2=0.5 2=0.75 a=1.0 2=125 a=1S5 2=0.5 2=0.7S a=1.0 2=125 a=l5

0 0749 0.696 0.731 0.700 0.724 0.754 0.713 0.693 0.701 0.678

10 0752 0.691 0.723 0.693 0.713 0.753 0.712 0.721 0.721 0.731

20 0.757 0.688 0.716 0.687 0.704 0.756 0.712 0.744 0.717 0.738

BCU 30 0764 0.689 0.712 0.685 0.698 0.766 0.717 0.743 0.718 0.732
40 0777 0.695 0.714 0.691 0.701 0.784 0.729 0.754 0.730 0.740

S0 0797 0.709 0.730 0.708 0.719 0.814 0.751 0.783 0.756 0.768

100 0912 0.829 0.854 0.869 0.881 0.935 0.881 0.871 0.890 0.904

m=l 200 0.905 0.924 0.941 0.956 0.967 0916 0.939 0.958 0.971 0.979
0 0.766 0.704 0.752 0.712 0.746 0.772 0.719 0.704 0.711 0.699

10 0.768 0.695 0.734 0.699 0.723 0.771 0.716 0.751 0.730 0.759

20 0773 0.689 0.719 0.693 0.710 0.774 0.713 0.748 0.727 0.746

30 0779 0.687 0.709 0.701 0.714 0.782 0.720 0.748 0.746 0.762

Bcc 40 0791 0.700 0.718 0.740 0.762 0.802 0.753 0.798 0.790 0.812
50 0810 0.734 0.764 0.798 0.822 0.836 0.804 0.870 0.822 0.850

100 0915 0911 0.860 0.881 0.899 0.943 0.967 0.883 0.904 0.923

200 0.908 0.927 0.944 0.960 0.971 0.921 0.943 0.962 0.975 0.983

0 0703 0.762 0.704 0.661 0.603 0.722 0.673 0.581 0.512 0.451

10 0.701 0.758 0.699 0.654 0.593 0.721 0.683 0.595 0.535 0.479

20 0.699 0.754 0.696 0.652 0.593 0.719 0.698 0.620 0.576 0.534

30 0.698 0.750 0.694 0.653 0.601 0.718 0.717 0.655 0.630 0.610

Bey 40 0.697 0.746 0.693 0.658 0.614 0.718 0.738 0.694 0.688 0.686
50 0.697 0.744 0.693 0.667 0.633 0.718 0.764 0.732 0.731 0.725

100 0.709 0.748 0.722 0.721 0.790 0.739 0.788 0.770 0.767 0.845

n=2 200 0.806 0.858 0.871 0.887 0.901 0.859 0.874 0.898 0913 0.926
0 0708 0.780 0.719 0.684 0.665 0.726 0.675 0.589 0.532 0.568

10 0.705 0.772 0.711 0.666 0.627 0.724 0.690 0.610 0.591 0.613

20 0.702 0.764 0.705 0.662 0.595 0.722 0.710 0.638 0.661 0.683

BCC 30 0.700 0.756 0.701 0.674 0.628 0.721 0.733 0.671 0.730 0.741
40 0.698 0.751 0.699 0.690 0.676 0.719 0.762 0.732 0.748 0.752

50 0.697 0.746 0.697 0.702 0.701 0.719 0.775 0.762 0.748 0.753

100 0.715 0.758 0.733 0.758 0.790 0.755 0.827 0.848 0.796 0.857

200 0.842 0.867 0.890 0.905 0914 0.901 0.878 0.904 0.920 0.933
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a/h=50

Positive imperfection Negative imperfection

Z 2=0.5 2=0.75 a=1.0 2=125 a=15 2=05 2=0.75 2=1.0 a=125 a=L5

0 0745 0.703 0.598 0.499 0.447 0.692 0.554 0.420 0.349 0.335

10 0.743 0.700 0.587 0.475 0.424 0.697 0.563 0.436 0.372 0.354

20 0741 0.699 0.588 0.466 0.410 0.703 0.577 0.462 0.410 0.393

30 0739 0.699 0.598 0.481 0.406 0.710 0.596 0.498 0.462 0.450

BCU
40 0.737 0.699 0.615 0.511 0.428 0.719 0.619 0.541 0.524 0516

50 0735 0.701 0.631 0.549 0.473 0.729 0.647 0.589 0.589 0.585

100 0.730 0.711 0.686 0.680 0.668 0.755 0.757 0.751 0.750 0.749

200 0.755 0.752 0.817 0.838 0.858 0.795 0.800 0.845 0.868 0.891

=3 0 0754 0.713 0.624 0.590 0.603 0.691 0.554 0.444 0.480 0.495
10 0.751 0.708 0.600 0.538 0.562 0.696 0.564 0.477 0.507 0516

20 0.748 0.706 0.596 0.486 0.519 0.702 0.579 0.517 0.547 0.572

30 0745 0.705 0.611 0.487 0.479 0.709 0.599 0.562 0.603 0.639

Bee 40 0742 0.705 0.636 0.545 0.479 0.718 0.626 0.616 0.662 0.696

50 0740 0.707 0.659 0.614 0.587 0.728 0.654 0.665 0.707 0.735

100 0.730 0.715 0.716 0.734 0.744 0.755 0.759 0.762 0.764 0.762

200 0.773 0.790 0.825 0.843 0.862 0.827 0.844 0.862 0.884 0.908

0 0703 0.475 0.352 0.313 0.297 0.539 0.351 0.265 0.258 0.256

10 0.702 0.470 0.339 0.301 0.287 0.542 0.359 0.276 0.267 0.263

20 0.701 0471 0.332 0.295 0.282 0.546 0.370 0.293 0.283 0.275

30 0.701 0.478 0.334 0.296 0.283 0.552 0.386 0.317 0.308 0.298

Bcy 40 0.701 0.491 0.347 0.300 0.289 0.559 0.405 0.348 0.340 0.330

50 0702 0.507 0.370 0.302 0.291 0.566 0.429 0.383 0.376 0.366

100 0.708 0.597 0.525 0.464 0.419 0.619 0.580 0.569 0.580 0.582

n=s 200 0.721 0.692 0.689 0.687 0.755 0.753 0.741 0.748 0.743 0.849

0 0709 0.486 0.448 0475 0.494 0.539 0.359 0.391 0.403 0.400

10 0.708 0.476 0.418 0.447 0.470 0.542 0.377 0.401 0413 0413

20 0.706 0.474 0.391 0.419 0.445 0.546 0.396 0.413 0.427 0433

BCC 30 0.706 0.481 0.368 0.392 0.421 0.552 0417 0432 0.450 0.464

40 0.706 0.494 0.351 0.367 0.397 0.559 0.441 0.458 0.482 0.503

50 0.706 0.513 0.373 0.344 0.372 0.566 0.467 0.488 0.519 0.544

100 0.711 0.624 0.575 0.527 0.518 0.619 0.615 0.631 0.677 0.709

200 0.724 0.719 0.728 0.729 0.843 0.756 0.744 0.754 0.753 0.872
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a/h=50
Positive imperfection Negative imperfection

Z 2=0.5 2=0.75 a=1.0 2=125 a=1S5 2=0.5 2=0.7S a=1.0 2=125 a=l5

0 0837 0.602 0413 0.354 0.331 0.394 0.242 0.215 0.209 0.207

10 0.549 0.310 0.250 0.232 0.227 0.397 0.248 0.220 0.213 0.211

20 0550 0.309 0.247 0.229 0.224 0.400 0.258 0.229 0.221 0218

BCU 30 0552 0.313 0.249 0.230 0.224 0.405 0.270 0.242 0.232 0.227

40 0556 0.320 0.253 0.235 0.227 0.410 0.285 0.259 0.249 0.239

50 0561 0.330 0.260 0.241 0.233 0.417 0.302 0.279 0.269 0.258

100 0.599 0.405 0.336 0.309 0.265 0.467 0.414 0.404 0.402 0.396

_ 200 0.667 0.544 0.475 0.462 0.426 0.622 0.637 0.634 0.651 0.637
=7 0 0555 0.364 0.378 0.398 0.405 0.394 0.323 0.337 0.339 0.345
10 0553 0.348 0.359 0.377 0.386 0.397 0.330 0.345 0.346 0.349

20 0554 0.336 0.341 0.360 0.373 0.400 0.344 0.353 0.359 0.357

30 0556 0.327 0.325 0.344 0.358 0.405 0.354 0.364 0.371 0.370

Bcc 40 0559 0.323 0.310 0.328 0.345 0.411 0.366 0.377 0.385 0.388

S50 0564 0.331 0.298 0.312 0.329 0.418 0.379 0.393 0.404 0411

100 0.605 0.402 0.402 0.355 0.332 0.467 0.474 0.494 0.524 0.541

200 0.681 0.646 0.571 0.536 0.537 0.624 0.641 0.653 0.688 0.720
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a/h=75

Positive imperfection Negative imperfection

Z 2=0.5 2=0.75 a=1.0 2=125 a=15 2=05 2=0.75 2=1.0 a=125 a=L5

0 0578 0.519 0.528 0.489 0.475 0.581 0.544 0.504 0.543 0.403

10 0577 0.514 0.517 0.475 0.448 0.579 0.540 0.575 0.532 0.520

20 0575 0.512 0.516 0.474 0.446 0.578 0.538 0.566 0.527 0.523

30 0575 0.513 0.521 0.482 0.465 0.578 0.536 0.558 0.525 0.530

BCU
40 0576 0.516 0.524 0.491 0.488 0.580 0.536 0.553 0.524 0.532

50 0579 0.519 0.527 0.499 0.502 0.584 0.537 0.549 0.524 0.530

100 0.673 0.571 0.658 0.669 0.670 0.694 0.616 0.661 0.670 0.673

200 0.732 0.758 0.785 0.807 0.820 0.742 0.771 0.802 0.827 0.847

n=l 0 0625 0.540 0.591 0.534 0.549 0.628 0.561 0.522 0.570 0.486
10 0.621 0.531 0.569 0.513 0.520 0.624 0.554 0.608 0.558 0.577

20 0616 0.525 0.552 0.503 0.497 0.621 0.548 0.589 0.549 0.568

30 0611 0.521 0.543 0.505 0.508 0.618 0.542 0.574 0.542 0.557

Bee 40 0.608 0.520 0.537 0.508 0.517 0.616 0.538 0.562 0.536 0.546

50 0.607 0.521 0.534 0.510 0.517 0.614 0.536 0.553 0.533 0.536

100 0.695 0.634 0.672 0.689 0.701 0.723 0.726 0.684 0.698 0.708

200 0.741 0.769 0.796 0.821 0.841 0.752 0.784 0.817 0.842 0.863

0 0526 0.486 0.366 0.345 0.326 0.555 0.419 0.300 0.273 0.264

10 0523 0.479 0.367 0.328 0.319 0.553 0.437 0.309 0.288 0.271

20 0521 0.481 0.381 0.315 0.314 0.551 0.460 0.331 0.311 0.287

30 0521 0.490 0.406 0.307 0.311 0.549 0.504 0.364 0.354 0.334

Bcy 40 0.520 0.503 0.434 0.326 0.306 0.548 0.548 0.408 0416 0.393

50 0521 0.516 0457 0.356 0.317 0.547 0.599 0.464 0.494 0.438

100 0.526 0.544 0.512 0.487 0.554 0.544 0.577 0.564 0.542 0.604

n=2 200 0553 0.638 0.629 0.620 0.618 0.578 0.673 0.683 0.683 0.683

0 0539 0.532 0.435 0432 0.413 0.566 0.430 0.340 0.370 0.396

10 0535 0.519 0.419 0.396 0.396 0.563 0.449 0.364 0.402 0414

20 0533 0.518 0.413 0.370 0.382 0.560 0.482 0.396 0.447 0.458

BCC 30 0531 0.525 0.424 0.342 0.371 0.558 0.520 0436 0.501 0.522

40 0529 0.535 0.448 0.355 0.370 0.555 0.572 0.480 0.562 0.585

50 0528 0.543 0.474 0.407 0.364 0.553 0.615 0.524 0.572 0.578

100 0.529 0.554 0.521 0.534 0.579 0.546 0.581 0.560 0.556 0.638

200 0.569 0.649 0.655 0.643 0.637 0.612 0.688 0.699 0.700 0.697

294



Annexes

a/h=75
Positive imperfection Negative imperfection

Z 2=0.5 2=0.75 a=1.0 2=125 a=1S5 2=0.5 2=0.7S a=1.0 2=125 a=l5

0 0512 0.347 0.280 0.265 0.255 0.489 0.283 0.229 0.229 0.224

10 0.509 0.341 0.271 0.257 0.249 0.501 0.292 0.240 0.234 0.226

20 0.508 0.342 0.265 0.252 0.246 0.522 0.306 0.254 0.244 0.235

BCU 30 0.509 0.347 0.263 0.249 0.245 0.542 0.323 0.273 0.264 0.253

40 0512 0.357 0.265 0.250 0.245 0.599 0.344 0.298 0.290 0.278

S0 0516 0.371 0.281 0.249 0.242 0.596 0.368 0.325 0.320 0.308

100 0.536 0.458 0.407 0.372 0.347 0.583 0.523 0.494 0516 0.525

_ 200 0549 0.533 0.572 0.593 0.571 0.568 0.559 0.596 0.603 0.603
=3 0 0538 0.371 0.345 0.361 0.373 0.472 0.286 0.304 0.320 0.329
10 0534 0.358 0.324 0.339 0.352 0.497 0.302 0316 0.335 0.341

20 0532 0.356 0.308 0.319 0.333 0.500 0.324 0.335 0.356 0.364

30 0531 0.360 0.298 0.301 0316 0.536 0.349 0.360 0.383 0.398

Bcc 40 0533 0.372 0.290 0.285 0.300 0.615 0.375 0.387 0415 0.438

50 0536 0.389 0.295 0.270 0.284 0.611 0.404 0.416 0.452 0.485

100 0.549 0.488 0.460 0.438 0.464 0.593 0.537 0.555 0.593 0.579

200 0553 0.537 0.604 0.636 0.645 0.569 0.557 0.613 0.619 0.626

0 0.322 0.211 0.191 0.181 0.180 0.272 0.177 0.167 0.164 0.163

10 0321 0.207 0.187 0.177 0.177 0.275 0.181 0.171 0.166 0.165

20 0321 0.205 0.186 0.175 0.176 0.279 0.187 0.176 0.170 0.170

30 0323 0.205 0.187 0.176 0.176 0.283 0.195 0.183 0.177 0.176

Bey 40 0326 0.207 0.190 0.179 0.178 0.289 0.204 0.192 0.185 0.183

50 0330 0.212 0.194 0.183 0.181 0.296 0.216 0.203 0.194 0.191

100 0.365 0.261 0.236 0.208 0.183 0.347 0.302 0.288 0.287 0.281

_ 200 0456 0.367 0.338 0.331 0.305 0.503 0.475 0.492 0.466 0.494
=3 0 0.331 0.262 0.270 0.282 0.281 0.273 0.245 0.262 0.271 0.265
10 0.329 0.252 0.257 0.272 0.273 0.276 0.252 0.264 0.273 0.267

20 0329 0.244 0.247 0.263 0.267 0.279 0.259 0.260 0.277 0.270

BCC 30 0331 0.238 0.236 0.252 0.260 0.284 0.267 0.273 0.283 0.277

40 0334 0.234 0.228 0.243 0.253 0.291 0.277 0.285 0.292 0.289

50 0338 0.234 0.222 0.234 0.246 0.298 0.289 0.298 0.305 0.303

100 0.376 0.267 0.250 0.251 0.236 0.350 0.363 0.377 0.400 0.410

200 0478 0.406 0.418 0.401 0.384 0.521 0.508 0.514 0.552 0.523
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a/h=75

Positive imperfection Negative imperfection

Z 2=0.5 2=0.75 a=1.0 2=125 a=15 2=05 2=0.75 2=1.0 a=125 a=L5

0 0214 0.160 0.146 0.144 0.145 0.184 0.139 0.132 0.131 0.129

10 0213 0.158 0.144 0.142 0.144 0.186 0.142 0.135 0.133 0.132

20 0213 0.158 0.144 0.142 0.143 0.188 0.145 0.138 0.137 0.137

30 0213 0.159 0.144 0.142 0.144 0.192 0.149 0.142 0.142 0.141

BCU
40 0215 0.161 0.147 0.144 0.145 0.195 0.154 0.147 0.147 0.146

50 0217 0.164 0.150 0.147 0.147 0.200 0.159 0.153 0.152 0.151

100 0237 0.191 0.182 0.156 0.151 0.233 0.204 0.194 0.188 0.183

200 0.303 0.247 0.234 0.237 0.213 0.336 0.329 0.327 0.333 0.335

n=7
0 0.228 0.217 0.223 0.221 0.219 0.204 0.219 0.223 0.217 0.211

10 0225 0.211 0.216 0.217 0.214 0.208 0.219 0.225 0.218 0212

20 0223 0.206 0.210 0.212 0.210 0.211 0.222 0.227 0.219 0.213

BCC 30 0221 0.201 0.205 0.208 0.207 0.215 0.224 0.229 0.221 0.216

40 0221 0.198 0.200 0.203 0.204 0.219 0.223 0.233 0.225 0.220

50 0222 0.196 0.196 0.199 0.198 0.223 0.233 0.238 0.231 0.227

100 0.241 0.209 0.196 0.184 0.206 0.260 0.275 0.277 0.275 0.273

200 0311 0.344 0.330 0.294 0.302 0.364 0.379 0.383 0.394 0.384

296



Annexes

C.3. Ultimate load of the unstiffened curved panels under an initial out-of-plane

pressure of 50 kPa followed by in-plane compression (from section 6.8)

a/h=100
BUU BCU BCC
VA a=0.5 2=1.0 2=2.0 a=5.0 2=0.5 2=1.0 2=2.0 2=5.0 2=0.5 a=1.0 2=2.0 2=5.0
0 0273 0297 0290 0312 0407 0373 0371 0404 0425 0477 0446 0374
10 0.230 0.246 0245 0260 0407 0371 0389 0419 0418 0442 0477 0.456
20 0228 0206 0211 0220 0429 0387 0407 0420 0432 0412 0489 0.484
30 0267 0.177 0.188 0.191 0474 0403 0399 0412 0472 0414 0.508 0471
40 0343 0.157 0.184 0.179 0534 0495 0372 0394 0531 0497 0461 0.448
50 0434 0296 0217 0201 0.600 0.576 0480 0397 0597 0.564 0525 0.427
C.4. Ultimate load of the stiffened curved panels under an initial out-of-plane
pressure of 50 kPa followed by in-plane compression (from section 6.9 with
d./h.=10 and BCC)
a/h=25
n=1 n=2 n= n=S
VA a=0.5 2=1.0 2=1.5 a=05 a=1.0 2=1.5 2=0.5 «=1.0 2=1.5 a=05 2=1.0 a=1.5
0 0.988 0978 0974 0964 0966 0.941 0.977 0947 0887 0965 0.860 0.693
10 0989 0978 0974 0963 0966 0.945 0.977 0949 0902 0966 0.868 0.648
30 0992 0982 0981 0962 0965 0.952 0978 0952 0922 0967 0.885 0.646
50 1.000 0.992 0990 0963 0965 0.957 0978 0954 0935 0968 0.898 0.782
100 1.007 1.001 1.021 0971 0977 0976 0.982 0963 0956 0970 0.924 0.895
200 0.986 1.008 1.006 0995 1.020 1.010 0.997 0991 0989 0979 0.956 0.947
n=7
VA a=0.5 «=1.0 a=1.5
0 0944 0.829 0.635
10 0.945 0.692 0.604
30 0.948 0.715 0.552
50 0.950 0.880 0.355
100 0954 0927 0.730
200 0963 0.960 0.891
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ANNEX D

D.1. Comparison of the equilibrium paths for stiffeners of type C (from section 7.4):

Z=0, ns=3, Siff. C

Z=10, ns=3, Siff. C
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Figure AD.1: Equilibrium paths in function of the out-of-plane displacement at the centre of

the panel for panels with a=1.0 and 3 stiffeners of type C
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Z=0, ns=5, Siff. C

7-10, ns=5, Siff. C
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Figure AD.2: Equilibrium paths in function of the out-of-plane displacement at the centre of

the panel for panels with a=1.0 and S stiffeners of type C
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7-0, ny=7, Siff. C 7-10, ns=7, Siff. C
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Figure AD.3: Equilibrium paths in function of the out-of-plane displacement at the centre of

the panel for panels with a=1.0 and 7 stiffeners of type C
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