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Abstract It is generally assumed that in order to preserve
Bose symmetry in the left- (or right-chiral) current it is nec-
essary to equally distribute the chiral anomaly between the
vectorial and the axial Ward identities, requiring the use of
counterterms to restore consistency. In this work, we show
how to calculate the quantum breaking of the left- and right-
chiral currents in a way that allows to preserve Bose symme-
try independently of the chiral anomaly, using the implicit
regularization method.

1 Introduction

Almost half a century after the seminal papers [1,2], report-
ing the existence of theories with anomalous breaking of
symmetries, it remains to present date still a challenge to
deal explicitly with these quantum breakings in a perturba-
tive field theoretical approach, as the latter requires the use
of an invariant regularization and renormalization program.

The necessity to have the gauge symmetries of the Stan-
dard Model implemented to all loop orders led to the advent
of dimensional regularization (DR) [3,4], which has been
since then one of the most widely used regularizations, as
it also respects unitarity and causality to all orders. DR is,
however, burdened by the technical complexity associated
in dealing with dimension specific objects, such as the Levi-
Civita tensor and the γ5 matrix [5–7], which can be present in
theories with anomalous breakings. Work has been dedicated
to devising methods capable of handling these structures to
yield unambiguous results in the limit of recovering the phys-
ical dimension of a theory [8–12].
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The importance of being able to focus directly on the Ward
identities in renormalized perturbation calculations in gauge
theories with chiral fermions has been emphasized in [13]
and requires a careful treatment of the γ5 matrix.

The correct assessment of Bose symmetry and anoma-
lous processes is of pertinent interest for the study of cer-
tain hadronic processes in current experimental facilities; see
[14].

Recently, we became aware that even if one stays in the
dimension of the theory, certain operations involving the γ5

algebra may lead to ambiguous results if used in divergent
integrals [15]. In particular the use of the anticommutator
{γμ, γ5} = 0 has been identified as a source of ambiguities.
The root of this problem seems to reside in illegal symmetric
integrations in the momentum variable of a divergent integral
[16,17]. We have forwarded a minimal prescription to deal
with γ5 which leads to unambiguous results; it simply relies
in using its definition (equivalent to symmetrization of the
trace) [18–21] and avoiding the use of the anticommutator.
To show this, use has been made of the Implicit Regulariza-
tion (IReg) framework [22–24], which allows one to keep
open the choice of the Ward Identity (WI) to be (or not to
be) satisfied, until the very end of the evaluation of an ampli-
tude allowing for a democratic display of physical anomalies.
This is achieved in terms of a set of arbitrary surface terms
that are extracted as differences of basic divergent integrals
(BDIs) (independent on physical properties, such as masses
and external momenta) of the same degree of divergence.
This approach reflects the matters raised by Jackiw in [25]
about the occurrence of finite but arbitrary parameters which
appear in certain perturbative calculations and are regular-
ization dependent. In addition, it should be emphasized that
the choice of the WI to be satisfied (or not) can be made with-
out breaking momentum routing invariance of an amplitude
[15,18].
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In this contribution we use IReg as a tool to identify and
resolve the source of conflict in the implementation of Bose
symmetry in the left–right (chiral) sector of gauge currents,
which reportedly [26] constrains the values of the anomaly in
the related vector-axial representation. For that purpose we
use effective vertices of the abelian chiral Schwinger model in
two dimensions (2-d) and the Adler–Bell–Jackiw (ABJ) tri-
angle anomaly [1,2] and show that the conflict in these cases
can also be traced back to the incautious use of the property
{γμ, γ5} = 0 in divergent amplitudes when we choose to
relate axial and vectorial vertices with right and left fields.
In fact the anticommutator evaluates, in the cases considered
in the present contribution, all chirality mixing amplitudes
to zero, prior to the use of a regularization. By avoiding this
relation and using IReg combined with the symmetrization
of the trace, one obtains full consistency of the Bose symme-
try and the values that the anomaly can take in the equivalent
left–right and vector-axial representations.

The paper is organized as follows. After a resumée of the
IReg in the next chapter, we present in Sect. 3 the quantities
to be evaluated in 2-d and 4-d, then proceed to calculate
them in Sects. 4.1 and 4.2, and we study their anomalous
breakings in the light of Bose symmetry. Finally, we present
our conclusions in Sect. 5.

2 Calculational framework: the implicit regularization
method

In this section we present, briefly, the regularization method
used to deal with the divergences that will appear in the
course of the calculations. Since our aim is to discuss ambi-
guities related to dimension specific objects (such as the γ5

matrix), regularization methods based on dimensional con-
tinuation are a priori inappropriate as the Clifford algebra is
ambiguous under dimensional continuation. Therefore, reg-
ularization methods that operate in the physical dimensions
of the underlying quantum field theory seem more appealing
to tackle the problem at hand. For a recent review of different
methods; see [27].

In this work, we adopt the framework of IReg whose basic
characteristic is to use an algebraic identity in divergent inte-
grands in order to isolate divergences as unevaluated integrals
free of physical quantities (physical momenta or masses, in
general). The divergent integrals thus generated can be fur-
ther simplified to a well-defined set of scalar integrals only,
at the expense of regularization-dependent objects (surface
terms). It had been shown that the latter are at the root of
violation of abelian gauge symmetry [28], and must be set to
zero in this case, while it is conjectured that they are related
to symmetry breakings in general.

For ease of the reader, we illustrate the method reviewing
some of the results of [15] which will be used in the next

sections. In this reference the chiral Schwinger model was
studied and the one-loop two-point function of the photon
with a vectorial and a chiral vertex was computed. Its ampli-
tude is given by

�V A
μν = −iT r

∫
q
γμ

1

/q − /p
γνγ5

1

/q
, (1)

where
∫
q stands for

∫ d2q
(2π)2 . To evaluate this integral accord-

ing to IReg one must just follow the steps:

1. Perform Dirac algebra. As reviewed recently in [27], this
step is crucial to obtain terms of q2 in the numerator,
which should be canceled against propagators. Proceed-
ing otherwise would generate spurious finite terms, inval-
idating the connection between surface terms and sym-
metry breakings.

2. Introduce a fictitious mass (μ2) in propagators to control
spurious infrared divergent terms that will appear in the
course of the evaluation.

3. Use Eq. (2) as many times as necessary to free the
divergent integrals from physical quantities (the physi-
cal momentum p in the example),

1

(q + p)2−μ2 = 1

q2 − μ2 − (p2 + 2p · k)
(q2 − μ2)[(q + p)2 − μ2] .

(2)

4. Divergences are now written in terms of a well-defined
set of logarithmic BDI’s as

Iμ1...μ2n
log (μ2) ≡

∫
q

qμ1 . . . qμ2n

(q2 − μ2)1+n
. (3)

In this work only the logarithmic divergences occur; see
[29] for a comprehensive discussion of the quadratic
divergences.

5. Reduce the tensorial BDIs to the scalar one, at the expense
of surface terms. For instance,

gμνυ0

= gμν

∫
d2q

(2π)2

1

(q2−μ2)
− 2

∫
d2q

(2π)2

qμqν

(q2−μ2)2

(4)

6. Perform the limit μ2 → 0. In the examples used in this
work, the latter will always be well defined. If this was
not the case, a scale λ2 �= 0 would be introduced which
would play the role of the renormalization scale in the
renormalization group equations.

This program can be successfully extended to higher loop
orders [24,30,31].
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Therefore, applying the steps above to Eq. (1) gives

�V A
μν =−2iενθ

[
(δθ

μ p
2 − pμ pθ )(−2b)

p2 − δθ
μυ0

]
= �AV

νμ

(5)

where b = i/4π , and υ0 is the surface term defined in Eq. (4)
which is ambiguous. From the result above, the two Ward
identities, the vectorial and axial one, are easily obtained:

pμ�V A
μν = 2iενθ p

θυ0,

pν�V A
μν = −2iεμθ p

θ (2b + υ0). (6)

We notice the appearance of an arbitrariness parametrized
as a surface term which allows a democratic view of the
anomaly. Similar analysis can be performed for the other
components of the complete two-point function in the chiral
Schwinger model, namely �VV

μν and �AA
μν , with the result

�VV
μν =�AA

μν =−2i

[
(gμν p2− pμ pν)(−2b)

p2 − gμνυ0

]
.

(7)

Finally, we emphasize that the procedure described in this
section is not restricted to 2-d theories, rather it can easily be
generalized to arbitrary (integer) dimensions. For instance,
the surface term υ0 will be thus defined in 4-d as

gμνυ0 =gμν

∫
d4q

(2π)4

1

(q2−μ2)2 −4
∫

d4q

(2π)4

qμqν

(q2 − μ2)3 ,

(8)

and similar considerations also hold for the BDIs.
IReg is compatible with the recursion formula of the

Bogoliubov, Parasiuk, Hepp, Zimmermann (BPHZ) frame-
work, [32–35], as discussed in [24,36], therefore it respects
unitarity, causality and Lorentz invariance, basic requisites
that any regularization method should fulfill. IReg was devel-
oped having additionally in mind that the symmetries of the
underlying theory be fulfilled at the largest extent possible
in the process of regularization. In this respect IReg proves
to be superior to the original BPHZ scheme. For instance, it
is well known that the BPHZ scheme, although providing a
recipe to obtain finite quantities, breaks non-abelian gauge
invariance. IReg provides for a means to reconstruct the sym-
metries through the above-mentioned systematic classifica-
tion of the surface terms. We reiterate that these are finite and
regularization dependent quantities which are a priori arbi-
trary valued. If one decides, for instance, to preserve vectorial
gauge symmetry, it is just necessary to set all of the surface
terms to zero. However, the method is sufficiently general that
no choice regarding symmetries must be performed until the
very end of the computation, as all regularization dependent
information can be kept arbitrary until then. The symmetry

content of the theory dictates at the end the values that the
arbitrary parameters must take. This fact offers a neat arena
to discuss anomalies, with the application of the method in
different contexts [15,18,28,37–43].

A different framework is handled in the calculation of
anomalous processes, which uses the BPHZ renormalized
form for the master equation of the field antifield quantization
[44,45] proposed by De Jonghe et al. [46]. Initially developed
to address gauge anomalies, this framework can be adapted
to deal with global anomalies too, and it generates the Ward
identities associated with the axial anomaly [47].

3 Overview on the quantum breaking of classical
currents

A d-dimensional action for massless fermions interacting via
general axial and vectorial couplings can be written as

S =
∫

dd x ψ̄(i /∂ + e /V + e /Aγ5)ψ, (9)

where Vμ and Aμ stand for a general external vector and
axial field, respectively. QED is recovered when Aμ = 0 and
chiral QED when Aμ = Vμ.
The classical action of (9) is invariant under both the local
gauge and the local axial transformations UV (1) × UA(1),
with associated conserved classical currents

∂μ jμV = ∂μ(ψ̄γ μψ) = 0,

∂μ jμA = ∂μ(ψ̄γ 5γ μψ) = 0. (10)

By decomposing the fermion field in Eq. (9) as a sum of
left- and right-chiral fields, ψ = ψL + ψR , where ψR,L =
1
2 (1 ± γ5)ψ are the fields with positive (R) and negative (L)

chirality, the lagrangian of (9) is seen also to be invariant
under left- and right-chiral local gauge transformations, it is
UL(1) ×UR(1) symmetric. The left- and right-chiral global
gauge transformations lead to the left- and right-chiral clas-
sical currents,

∂μ jμL ,R = ∂μ(ψ̄L ,Rγ μψL ,R) = 0. (11)

In order to determine the anomalous breaking of the sym-
metry currents (10) and (11) by quantum corrections, one
must evaluate the vacuum expectation value of these currents
in the interaction-picture, i.e. 〈∂μ jμI 〉, where I = V, A, R, L .
For instance, for the axial current in (1 + 1)-dimensions one
gets that

〈∂μ jμA 〉 = ie
∫

d2y∂μ

(
i�μν

AA(y)Aν(x − y)

+i�μν
AV (y)Vν(x − y)

)
, (12)
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where �
μν
AV (y) is the two-point Green’s function in configu-

ration space,

�
μν
AV (y) = 〈0|T jμA (y) jνV (0)|0〉. (13)

The same works for �
μν
AA(y) but with two axial currents

instead. Therefore, in order to find the quantum breaking
of the axial current, we need to compute the two-point dia-
grams AA and AV . Analogously the diagrams V A and VV
are needed to get information on the quantum breaking of
the vector current, and the diagrams RR, RL , LL and LR
for the anomalous left- and right-chiral currents.

The four-divergence of the axial current in (3 + 1)-
dimensions is given by

〈∂μ jμA 〉
= −e2

2

∫
d4yd4z∂μ

(x)

(
T AVV

μνρ (x, y, z)Vν(x−y)Vρ(x−z)

+T AAV
μνρ (x, y, z)Aν(x − y)Vρ(x − z)

+T AAA
μνρ (x, y, z)Aν(x − y)Aρ(x − z)

+T AV A
μνρ (x, y, z)Vν(x − y)Aρ(x − z)

)
,

(14)

where T AVV
μνα stands for a three point function with two vector

vertices and one axial vertex, for example. The anomalous
axial current is thus found by analyzing the diagrams AVV,
AAV, AAA and AVA. Similarly the breaking of the vector
current requires the evaluation of the VAA, VVA, VVV and
VAV triangle amplitudes.

4 Left- and right-chiral versus axial and vectorial
anomalies

4.1 Two dimensional case

Consider the two-point function

�I J
μν(p) = −i

∫
q

Tr V I
μ

1

/q − /p
V J

ν

1

/q
(15)

with possible vertices (I, J = A, V, L , R),

VV
μ = γμ, V A

μ = γμγ5, V R
μ = 1

2
γμ(1 + γ5)

and VL
μ = 1

2
γμ(1 − γ5). (16)

In order to simplify the following relations between the
amplitudes:

�RR
μν = 1

4

(
�VV

μν + �AV
μν + �V A

μν + �AA
μν

)
,

�LL
μν = 1

4

(
�VV

μν − �AV
μν − �V A

μν + �AA
μν

)
,

�RL
μν = 1

4

(
�VV

μν + �AV
μν − �V A

μν − �AA
μν

)
,

�LR
μν = 1

4

(
�VV

μν − �AV
μν + �V A

μν − �AA
μν

)
, (17)

we shall resort to two approaches. In the first case we use the
identity

{γα, γ5} = 0, (18)

and the property (γ5)
2 = 1, leading to

�AV
μν = �V A

μν (19)

�AA
μν = �VV

μν , (20)

and thus to the following identities:

�RR
μν = 1

2
�VV

μν + 1

2
�AV

μν ,

�LL
μν = 1

2
�VV

μν − 1

2
�AV

μν ,

�RL
μν = �LR

μν = 0. (21)

In the second approach we avoid using the identity (18)
and take instead the 2-d definition of γ5

γ5 = 1

2!ε
αβγαγβ. (22)

In this case Eq. (20) remains unchanged, because it can be
obtained independently of such identity, as shown in [15],
with the result given by Eq. (7). On the other hand instead of
Eq. (19) one gets now Eq. (5)

�V A
μν = �AV

νμ . (23)

As a consequence of Eq. (23), one obtains from (17) the
following relations:

�RR
μν = 1

2
�VV

μν + 1

4

(
�V A

μν + �V A
νμ

)
,

�LL
μν = 1

2
�VV

μν − 1

4

(
�V A

μν + �V A
νμ

)
,

�RL
μν = −�LR

μν = 1

4

(
�V A

νμ − �V A
μν

)
. (24)

Two different results have been generated relating the ampli-
tudes in the left–right and axial-vector representations, Eqs.
(21) and (24), the first resulting from the use of the anti-
commutator, the second not. These differences have drastic
implications on the consistency of Bose symmetry or lack
thereof of the results. Indeed, one can easily verify that the
first approach is not consistent with the Bose symmetry of the
RR and LL diagrams. For example, Bose symmetry requires
that for diagram RR

�RR
μν (p) = �RR

νμ (−p), (25)

which means that the amplitude �V A
μν must be symmetric

under the exchange of the Lorentz indices μ ↔ ν and the
momenta p ↔ −p, according to Eq. (21). However, this

123



Eur. Phys. J. C (2018) 78 :160 Page 5 of 11 160

fixes the values of the axial and vector WI. This can be
seen by combining these constraints with Eqs. (6) for the
AV anomaly, yielding

pμ�V A
μν (p) = pμ�V A

νμ (−p) = pμ�V A
νμ (p)

= −2ibενθ p
θ , (26)

which fixes the value of the surface term to be v0 = −b.
As opposed to this, Bose symmetry of the RR and LL

diagrams is fulfilled in the second approach given by Eq.
(24), independently of the value of the anomaly in the axial
and vector WI of the amplitude�V A

νμ , as can easily be verified.
We also note that the Bose symmetric amplitudes RR and LL
in Eq. (24) can be reconstructed from the asymmetric result
(21), by taking the average 1

2 (�RR
μν + �RR

νμ ), provided the
amplitude �V A

μν on the right hand side is calculated without
using the anticommutator. Then condition (23) leads to the
desired result. In the 4-d case this provides for an essential
simplification to obtain the symmetrized trace.
Equation (24) can be used to calculate explicitly the left–right
WI, starting with Eqs. (5) and (7) to obtain the following sum
and differences involving the VA amplitudes:

�V A
μν + �V A

νμ = −4ib
(
pνεμθ + pμενθ

) pθ

p2 ,

�V A
μν − �V A

νμ = −4ib
(
pμενθ − pνεμθ

) pθ

p2

−4iεμν (v0 + 2b) , (27)

which lead to

pμ�RR
μν = i

(
υ0 pν − bενθ p

θ
)

pμ�LL
μν = i

(
υ0 pν + bενθ p

θ
)

pμ�RL
μν = −pμ�LR

μν = −i (b + υ0) ενθ p
θ . (28)

Before proceeding let us comment on these WI. Regard-
ing the WI of the Bose symmetric amplitudes RR and LL,
one sees that although the AV amplitude is sensitive to the
procedure used in the evaluation of the trace, the average
�V A

μν + �V A
νμ is free from any ambiguity, as the arbitrary

surface term v0 drops out. Nevertheless the WI of the RR
and LL amplitudes remain ambiguous, due to the presence
of the VV amplitude in Eq. (24), which depends on v0. The
amplitude mixing chirality �RL

μν does not vanish in general.
(This is corroborated by the work of [48,49], where in the
chiral decomposition of the 2-d fermionic determinant lead-
ing to a gauge invariant result the amplitude mixing chirality
does not vanish in general. In 4-d [50] it has been reported
recently that within the framework of dimensional regular-
ization gauge invariance and Bose symmetry are maintained
simultaneously in the BM [51] and FDF [52] approaches,
and comply with our statement that chirality mixing ampli-
tudes do not vanish in general). And its WI is only null if
v0 = −b, i.e. for the case of implementing Bose symmetry

on the amplitudes calculated with the anticommutator of γ5.
For the sake of completeness we mention that, for vanishing
surface term v0, the WI related with the VV and AA ampli-
tudes yield zero and the WI for the RR and LL differ by a
sign, with the same magnitude as for the RL amplitude.

With these results and Eq. (6) one obtains

〈∂μ J
μ
V 〉 = ieυ0ε

νρF A
νρ − 2ieυ0∂μV

μ,

〈∂μ J
μ
A 〉 = −ie(2b + υ0)ε

νρFV
νρ − 2ieυ0∂μA

μ,

〈∂μ J
μ
R 〉 = − ibe

2
ενρFR

νρ − ieυ0∂
νRν − ie

b + υ0

2
εμνFL

μν,

〈∂μ J
μ
L 〉 = ibe

2
ενρFL

νρ − ieυ0∂
νLν + ie

b + υ0

2
εμνFR

μν,

(29)

where

FB
μν ≡ ∂μBν − ∂νBμ, (30)

with B standing for any of the external fields considered.
They are related in each representation by

Rμ = Vμ + Aμ, Lμ = Vμ − Aμ. (31)

Comparing the results displayed in Eq. (29), one sees that
they comply with the relations among the currents

Jμ
V = Jμ

R + Jμ
L , Jμ

A = Jμ
R − Jμ

L (32)

showing once again that Eqs. (24), obtained from the second
approach, are correct, and do not fix a priori the value of the
anomaly.

As is well known, the chiral Schwinger model describes
an unitary theory with a radiatively induced massive gauge
boson with mass [53]

m2 = e2

π

(λ + 1)2

λ
(33)

with a positive value λ = −4iπv0 > 0 [15,23,53]. If one
would take the condition v0 = −b, resulting from the first
approach, one would get λ = −1. This shows a further loop-
hole regarding the blind use of the anticommutator.

4.2 Four dimensional case

As we have seen in the previous section, the naive use of
the anticommuting property (18) of the γ5 matrix in diver-
gent integrals, leads to inconsistencies in the values of the
anomalous quantum breakings of the chiral theory and its
equivalent vector-axial formulation, if Bose symmetry is to
be satisfied. We thus expect that the inadvertent use of the
anticommutator is also at the root of these inconsistencies in
4-d, which have been reported in the literature [26]. In this
section we show that this is indeed the case.
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Fig. 1 The T I J K
μνα (p, q, l) triangle diagram

Contributing to the anomaly in 4-d are the 3-point func-
tions

T I J K
μνα (p, q, l) =

∫
d4xd4yd4z exp (i px + qy + lz)

×〈0|T j Iμ(x) j Jν (y) j Kλ (z)|0〉, (34)

where the indices I, J, K = A, V, L , R stand for any com-
bination of the currents, vectorial and axial or left and right,
and the external momenta obey

p + q + l = 0. (35)

The 3-point functions, Fig. 1, read in momentum space

T I J K
μνα (p, q, l) = −i

∫
k

TrV I
μ

i
/k + /k1

V J
ν

i
/k + /k2

VK
α

i
/k + /k3

−i
∫
k

TrV J
ν

i
/k + /k4

V I
μ

i
/k + /k5

VK
α

i
/k + /k6

,

(36)

where

k2 − k1 = q, k3 − k2 = l, k1 − k3 = p,

k4 − k6 = q, k6 − k5 = l, k5 − k4 = p. (37)

Using Eq. (18) and (γ5)
2 = 1, one obtains the following

relations:

T RRR
μνα (p, q, l) = 1

2
T VV A

μνα (p, q, l),

T LLL
μνα (p, q, l) = −1

2
T VV A

μνα (p, q, l),

T AAA
μνα (p, q, l) = T VV A

μνα (p, q, l), (38)

where the diagram T VVV
μνα is absent, since it vanishes by the

Furry theorem.
Now we proceed to showing that these three equations

are not consistent with the Bose symmetry pertaining to the
diagrams RRR, LLL and AAA. For that purpose, we use the
WI related with the AVV amplitude (in the massless case)

[15],

lαT VV A
μνα (p, q, l) = − 1

2π2 aεμνβλ p
βqλ, (39a)

pμT VV A
μνα (p, q, l) = 1

4π2 (1 + a)εναβλ p
βqλ, (39b)

qνT VV A
μνα (p, q, l) = 1

4π2 (1 + a)εαμβλ p
βqλ, (39c)

where the parameter a is defined through 1
4π2 (1 + a) ≡

4iυ0(α −β − 1), υ0 is again an arbitrary surface term and α,
β are parameters that are used to specify the internal momen-
tum routing obeying

k1 = αp + (β − 1)q,

k2 = αp + βq,

k3 = (α − 1)p + (β − 1)q. (40)

At this point one sees that one has the freedom to choose a,
either to fulfill the vector (a = −1) or the axial (a = 0) WI.

Let us now analyze the implications of requiring Bose
symmetry. In diagram RRR for example

T RRR
μνα (p, q, l)=T RRR

μαν (p, l, q)=T RRR
ανμ (l, q, p) = . . . , ,

(41)

and thus Eq. (38) imposes by the same symmetry the require-
ment that the T VV A

μνα diagram must be symmetric under
subsequent exchange of the same two Lorentz indices and
momenta, for instance

T VV A
μνα (p, q, l) = T VV A

μαν (p, l, q) (42)

and thus

lαT VV A
μνα (p, q, l) = lαT VV A

μαν (p, l, q). (43)

Comparing the left hand side of this equation with Eq. (39a)
one sees that it represents the axial WI, and the right hand side
is identical to the vector WI, Eq. (39c); the latter becomes
evident by noting that Eq. (42) means that the exchange of
Lorentz indices and momenta occurs for distinct vertices, i.e.
for V and A, thus the vectorial WI is obtained from the right
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Fig. 2 The T I K J
μαν (p, l, q) triangle diagram

hand side of Eq. (42) by contraction with lα . Then, by the
momentum conservation l = −(p + q), it reduces to

lαT VV A
μαν (p, l, q) = 1

4π2 (1 + a)ενμβλ p
βlλ

= 1

4π2 (1 + a)εμνβλ p
βqλ. (44)

Consequentially Eq. (42) results in

a = −1

3
, (45)

distributing the anomaly with equal value in the vector and
axial WI.

In the following we avoid the identity (18) in divergent
integrals, and instead subject the AVV amplitude on the right
hand side of Eq. (38) to all possible permutations of indices
and momenta, and average over them, taking into consider-
ation that the AVV amplitude must be computed using the
definition

γ5 = i
4!ε

μναβγμγνγαγβ. (46)

As already mentioned in the 2-d case this is equivalent to a
symmetrization of the trace.

Then, starting with the AAA amplitude, the trace can be
rewritten as

T AAA
μνα (p, q, l) = 1

3

(
T VV A

μνα (p, q, l) + T VV A
μαν (p, l, q)

+T VV A
ανμ (l, q, p)

)
, (47)

which is consistent with the Bose symmetry of diagram AAA,
and does not depend on the value of the AVV anomaly; see
Eq. (61) below. To obtain the RRR and LLL amplitudes in
terms of the amplitudes involving the A and V fields, we start
from the algebraic relation between the vertices (16):

T RRR
μνα (p, q, l) = 1

8

(
T VVV

μνα (p, q, l) + T VV A
μνα (p, q, l) + · · ·

+T AAA
μνα (p, q, l)

)
, (48)

which contains all the following combinations (keeping fixed
their indices and momenta): VVV, VVA, VAV, VAA, AVV,
AVA, AAV, AAA. We show that they are equivalent to the
expected permutations on indices and momenta of the right
hand side of Eq. (38). Using the cyclic property of the trace,
Eq. (36) may be rewritten as

T I J K
μνα (p, q, l) = −i

∫
k

TrV I
μ

i
/k + /k5

VK
α

i
/k + /k6

V J
ν

i
/k + /k4

−i
∫
k

TrVK
α

i
/k + /k3

V I
μ

i
/k + /k1

V J
ν

i
/k + /k2

.

(49)

With the definitions (37) this represents the amplitude
T I K J

μαν (p, l, q) depicted in Fig. 2. Thus one obtains

T I J K
μνα (p, q, l) = T I K J

μαν (p, l, q). (50)

In the same way one shows that

T I J K
μνα (p, q, l) = T K J I

ανμ (l, q, p) (51)

and so

T V AV
μνα (p, q, l) = T VV A

μαν (p, l, q),

T AVV
μνα (p, q, l) = T VV A

ανμ (l, q, p). (52)

The diagrams involving two axial vertices reduce to the VVV
diagram, upon using the definition (46) of γ5 in 4-d, to eval-
uate the trace containing two γ5,

Tr [γμγνγαγβγ5γγ γδγ5] = Tr [γμγνγαγβγγ γδ] (53)

(in this case the result coincides with the trace evaluated using
the anticommutator of γ5), leading to

T AAV
μνα (p, q, l) = T AV A

μνα (p, q, l) = T V AA
μνα (p, q, l)

= T VVV
μνα (p, q, l), (54)
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with T VVV
μνα (p, q, l) = 0 by Furry’s theorem. With Eqs. (47),

(48) and (54) we obtain finally

T RRR
μνα (p, q, l) = 1

6

(
T VV A

μνα (p, q, l) + T VV A
μαν (p, l, q)

+T VV A
ανμ (l, q, p)

)
, (55)

and in an analogous way

T LLL
μνα (p, q, l) = −1

6

(
T VV A

μνα (p, q, l) + T VV A
μαν (p, l, q)

+T VV A
ανμ (l, q, p)

)
. (56)

The results (55) and (56) are compatible with the Bose
symmetry of diagrams RRR and LLL, without the need to fix
the value of the anomaly of the amplitude AVV. We empha-
size that this achievement relies on the fact that now there is a
permutation in the external indices and momenta, as opposed
to Eq. (38).

In the following we obtain the anomalies associated to the
left–right currents. Using for instance Eq. (55) and combining
it with the results for the axial and vector anomalies (39)
yields

lαT RRR
μνα (p, q, l) = 1

6
lα

(
T VV A

μνα (p, q, l) + T VV A
μαν (p, l, q)

+T VV A
ανμ (l, q, p)

)
, (57)

lαT VV A
μνα (p, q, l) = − 1

2π2 aεμνβλ p
βqλ,

lαT VV A
μαν (p, l, q) = 1

4π2 (1 + a)ενμβλ p
βlλ

= 1

4π2 (1 + a)εμνβλ p
βqλ,

lαT VV A
ανμ (l, q, p) = − 1

4π2 (1 + a)εμνβλl
βqλ

= 1

4π2 (1 + a)εμνβλ p
βqλ, (58)

which lead to

lαT RRR
μνα (p, q, l) = 1

12π2 εμνβλ p
βqλ. (59)

In a similar way

lαT LLL
μνα (p, q, l) = − 1

12π2 εμνβλ p
βqλ (60)

and

lαT AAA
μνα (p, q, l) = 1

6π2 εμνβλ p
βqλ, (61)

in accordance with the results in [54].
Let us comment on Eqs. (59)–(61). The WI of these Bose

symmetric amplitudes are not ambiguous. Like in the 2-d
case the average �V A

μν + �V A
νμ was not ambiguous, Eq. (27),

the combination over the AVV amplitudes in Eq. (57) is also
not, there is an exact cancellation of the arbitrary parameter a.

But due to the Furry theorem, the VVV amplitude is absent.
This distinguishes the 4-d from the 2-d behavior of the Bose
symmetric amplitudes, where an ambiguity appeared in the
VV term. Therefore for these WI it is irrelevant whether the
trace for the amplitude AVV is calculated using Eq. (46) or
the anticommutator in Eq. (47). However, and most impor-
tantly, the symmetrization of the trace of AVV using Eq.
(46) continues to be mandatory, as it leads to non-vanishing
contributions to the anomaly from the amplitudes of mixed
chirality as in the 2-d case. These amplitudes are given at the
end of this section.

The operator identity (14) for the vector anomaly is writ-
ten in terms of the amplitudes pμT VVV

μνρ (p, q, l), pμT V AV
μνρ

(p, q, l), pμT V AA
μνρ (p, q, l) and pμT VV A

μνρ (p, q, l),

pμT VV A
μνρ (p, q, l) = 1

4π2 (1 + a)ερνβλlβqλ, (62)

pμT V AV
μνρ (p, q, l) = pμT VV A

μρν (p, l, q)

= 1

4π2 (1 + a)ενρβλqβ lλ

= 1

4π2 (1 + a)ερνβλlβqλ, (63)

and since the other diagrams do not contribute, one obtains

〈∂μ J
μ
V 〉 = e2

16π2 (1 + a)εμνρσ F A
μνF

V
ρσ . (64)

To calculate the operator identity for the axial anomaly
we need the amplitudes pμT AVV

μνρ (p, q, l), pμT AAV
μνρ (p, q, l),

pμT AAA
μνρ (p, q, l) and pμT AV A

μνρ (p, q, l). From

pμT AVV
μνρ (p, l, q) = 1

2π2 aενρλσ lλqσ (65)

and

pμT AAA
μνρ (p, l, q) = 1

6π2 ενρβλl
βqλ, (66)

one obtains

〈∂μ J
μ
A 〉 = e2

16π2

(
−aεμνρσ FV

μνF
V
ρσ + 1

3
εμνρσ F A

μνF
A
ρσ

)
.

(67)

In order to calculate 〈∂μ J
μ
R 〉 and 〈∂μ J

μ
L 〉 we need to con-

sider the diagrams T RRR
μνρ , T RLR

μνρ , T RLL
μνρ , etc. An equivalent

and easier way is to use the relations among the currents (32)
and the fields (31),

〈∂μ J
μ
R 〉 = 1

2

(〈∂μ J
μ
V 〉 + 〈∂μ J

μ
A 〉)

= e2

32π2

(
1

3
εμνρσ FR

μνF
R
ρσ

−1

2

(
a + 1

3

)
εμνρσ

(
FL

μνF
L
ρσ + FR

μνF
L
ρσ

) )
,

123



Eur. Phys. J. C (2018) 78 :160 Page 9 of 11 160

〈∂μ J
μ
L 〉 = 1

2

(〈∂μ J
μ
V 〉 − 〈∂μ J

μ
A 〉)

= − e2

32π2

(
1

3
εμνρσ FL

μνF
L
ρσ

−1

2

(
a + 1

3

)
εμνρσ

(
FR

μνF
R
ρσ + FR

μνF
L
ρσ

))
.

(68)

Nevertheless it is instructive to check these results going
through the evaluation of diagrams RRR, RLL, RLR, RRL,
LLL, LLR, LRL and LRR; it is important to realize that if
one uses the identity (18) only RRR and LLL do not vanish,
in contradistinction to the approach advocated in the present
work, which uses instead the symmetrization of the trace and
leads to a non-vanishing result for all these amplitudes. With
the same prescription as in Eq. (48), we obtain

T RLL
μνα (p, q, l) = 1

8

(
−T VV A

μνα (p, q, l)

−T V AV
μνα (p, q, l) + T AVV

μνα (p, q, l)

+T AAA
μνα (p, q, l)

)

= 1

8

(
− T VV A

μνα (p, q, l) − T VV A
μαν (p, l, q)

+T VV A
ανμ (l, q, p) + 1

3

(
T VV A

μνα (p, q, l)

+T VV A
μαν (p, l, q)

+T VV A
ανμ (p, q, l)

))
= 1

6
T VV A

ανμ (l, q, p)

− 1

12

(
T VV A

μνα (p, q, l)

+T VV A
μαν (p, l, q)

)
, (69)

which leads to

pμT RLL
μνα (p, q, l) = 1

8π2 (a + 1

3
)ενασλl

σqλ ; (70)

and analogously

T RLR
μνα (p, q, l) = 1

8

(
T VV A

μνα (p, q, l) − T V AV
μνα (p, q, l)

+T AVV
μνα (p, q, l) − T AAA

μνα (p, q, l)
)

= 1

12

(
T VV A

μνα (p, q, l) + T VV A
ανμ (l, q, p)

)

−1

6
T VV A

μαν (p, l, q) (71)

implies

pμT RLR
μνα (p, q, l) = 1

16π2

(
a + 1

3

)
ενασλl

σqλ (72)

and

T RRL
μνα (p, q, l) = 1

8

(
− T VV A

μνα (p, q, l) + T V AV
μνα (p, q, l)

+T AVV
μνα (p, q, l) − T AAA

μνα (p, q, l)
)

= 1

12

(
T VV A

μνα (p, q, l) + T VV A
ανμ (l, q, p)

)

−1

6
T VV A

μαν (p, l, q), (73)

leading to

pμT RRL
μνα (p, q, l) = 1

16π2

(
a + 1

3

)
ενασλl

σqλ. (74)

Finally, with the results of Eqs. (70), (72) and (74) we obtain
the first equation displayed in (68); and the same can be done
for the second equation.

A comment is in order regarding the four-divergence of
the currents (68) and its general character in the description
of the anomalies.

Were the currents to be obtained from the sum of two
Weyl spinor anomalies, each obtained from an unambiguous
anomalous contribution of a single left- or a single right-Weyl
spinor (denoted in the literature as the consistent anomaly or
left–right symmetric anomaly) [55,56], it would be repro-
duced from (68) setting a = − 1

3 . Note the subtle difference
from the case of a single left (right) Weyl spinor anomaly
(not their sum); then the four-divergence of the currents in
(68) should not depend on the arbitrary value a, as this would
imply that the single currents would be ambiguous. Indeed
the single currents are unambiguous, since, for example, the
right fields are absent from the beginning from the evalu-
ation of the left current, meaning that one should set them
to zero in the expression for the four-divergence of the left
current in (68), and the opposite for the right current. This
eliminates any dependence on a and yields the correct value
of the anomaly.

Rephrased in terms of the triangle contributions, the left–
right consistent anomaly corresponds to consider only the
sum of the RRR and LLL pieces in the evaluation of the cur-
rents. By now we have understood that these, in turn, are the
only ones that result from the calculation of the traces using
the anticommutator of the γ5 matrix. We have demonstrated
that not abiding by this property, and instead symmetrizing
the trace, the general result displayed in (68) is tantamount
to having in addition the non-vanishing contributions of the
RRL, RLR, LLR and LRL amplitudes.

The left–right symmetric anomaly is lifted if one considers
the coupling of the left and right Weyl spinors taken together
with the left and right fields [55], resulting in an ambiguity
in the form of the ABJ anomaly. The vector current conser-
vation is implemented in [55] by the addition of appropriate
counterterms. In our approach the result (68) allows one to
fix the anomaly either in the vector (a = −1), or in the axial
(a = 0) currents, or to distribute it symmetrically (a = − 1

3 ).
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5 Concluding remarks

The purpose of the present contribution was to show that
the Bose symmetry of amplitudes in the left–right symmetry
representation of gauge fields or currents does not impose
any new restriction on the values that the corresponding left-
and right-chiral anomalies may take, and consequently on
the values of the related vector and axial-vector anomalies.
Examples in the literature that alert one to these Bose sym-
metry related restrictions can be found for instance in the
textbooks [26,54]. These extra constraints lead to an equal
distribution of the anomaly in the vector and axial WI. They
are thus inconsistent with the expected values that the vector
and axial anomalies must fulfill, if for instance invariance of
the gauge current (or alternatively of the axial current) is to
be implemented.

Using IReg we have argued that such restrictions are an
artifact of inadvertently using the anticommuting property of
the γ5 matrix (and its analog in two dimensions) within diver-
gent integrals. We have analyzed two case studies, resorting
to the chiral Schwinger model in 2-d and the Adler–Bell–
Jackiw triangle anomaly in 4-d, in the equivalent left–right
and vector–axial-vector representations. We have repeatedly
shown that the use of the anticommutator in IReg is prob-
lematic even when staying in the physical dimension of the
problems addressed. In practical terms the use of the anticom-
mutator in divergent integrals is translated in IReg either into
fixing the values of some (a priori arbitrary) surface terms to
zero and consequently dismissing potential contributions to
the value of an anomaly, or in generating spurious finite but
fixed contributions.

We have demonstrated that with a minimal prescription
to deal with the γ5 matrix, which resides in using its basic
definition (46), together with the IReg technique, it is pos-
sible to obtain a result that respects Bose symmetry inde-
pendently of the values of the anomalies. For example one
of the results, obtained by using our minimal prescription
concerning the left- and right-handed currents in the 4-d
case, is that the RLR, RLL, LRL and LRR diagrams have
non-vanishing contributions to the anomaly, in the form of
finite (arbitrary) surface terms (embodied in the parameter a),
Eq. (68), as opposed to the case where the anticommutator
has been used, where only the RRR and LLL diagrams sur-
vive. These arbitrary parameters leave open the distribution
of the values of the anomalies until the very end of the calcu-
lation, then to be fixed according to the physics of the problem
considered. This has the obvious advantage that all symme-
tries can be discussed on an equal footing within the same
framework. In particular it leads to the appealing conclusion
that Bose symmetry does not interfere with the anomalous
breaking of dynamical symmetries, in the examples consid-
ered. The desired equivalence of representing the anomaly
in terms of the left and right currents (68) or in terms of the

vectorial (64) and axial currents (67) is manifestly imple-
mented.

We would like to emphasize that our conclusion of Bose
symmetry not giving extra constraints on how to distribute
the anomaly, if left and right currents are used instead of vec-
tor and axial currents, is a result that should be reproduced
by other methods as well. We used IReg to demonstrate it,
since it does not resort to dimensional schemes and due to
its convenient “democratic” display of the anomalies, while
preserving fundamental principles such as unitarity, Lorentz
invariance and causality. We should, however, keep in mind
that in other methods the conditions may differ from the ones
used in IReg. In particular IReg uses always the cyclicity
of the trace. On the other hand there exist approaches that
show a correspondence between noncyclicity of the trace
and anomalies [57,58] and rely on the anticommuting prop-
erty of γ5; see also [7]. It would be interesting to understand
whether such approaches are also free from any extra condi-
tions stemming from Bose symmetrization of the left–right
currents impacting on the values that the anomaly takes.
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