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Relativistic particle in a box: Klein-Gordon vs Dirac Equations

Pedro Alberto 1,∗ Saurya Das 2,† and Elias C. Vagenas 3‡

1Physics Department and CFisUC, University of Coimbra, P-3004-516 Coimbra, Portugal
2Theoretical Physics Group and Quantum Alberta,

Dept of Physics and Astronomy, University of Lethbridge,

4401 University Drive, Lethbridge, Alberta, Canada T1K 3M4 and
3 Theoretical Physics Group, Department of Physics,

Kuwait University, P.O. Box 5969, Safat 13060, Kuwait

The problem of a particle in a box is probably the simplest problem in quantum mechanics which
allows for significant insight into the nature of quantum systems and thus is a cornerstone in the
teaching of quantum mechanics. In relativistic quantum mechanics this problem allows also to
highlight the implications of special relativity for quantum physics, namely the effect that spin
has on the quantized energy spectra. To illustrate this point, we solve the problem of a spin zero
relativistic particle in a one- and three-dimensional box using the Klein-Gordon equation in the
Feshbach-Villars formalism. We compare the solutions and the energy spectra obtained with the
corresponding ones from the Dirac equation for a spin one-half relativistic particle. We note the
similarities and differences, in particular the spin effects in the relativistic energy spectrum. As
expected, the non-relativistic limit is the same for both kinds of particles, since, for a particle in a
box, the spin contribution to the energy is a relativistic effect.

I. INTRODUCTION

The problem of a particle confined in a one-dimensional infinite square well potential lies at the heart of non-
relativistic quantum mechanics, being the simplest problem that illustrates how the wave nature of bound particles
implies that their energy is quantized. So it is no surprise that introductory quantum mechanics courses present and
discuss it as a powerful pedagogical tool to introduce the students the particular features of the spectra of quantum
systems.
The generalization of this problem to three dimensions is used for the statistical description of a gas of quantum

particles (see, for example, ref. [1]) and thus is presented also in statistical physics courses.
In relativistic quantum mechanics, where quantum mechanics and special relativity are combined, new features of

the energy spectra appear coming from the relativistic energy-momenta relations and spin, as well as the difficulties
which arise when one tries to describe one-particle quantum systems similar to ones used in non-relativistic quantum
physics courses. The problem of a relativistic particle in a box is again a direct way to address those questions and
thus is an useful tool to discuss, in advanced quantum mechanics courses, the issues arising when one extends quantum
mechanics to incorporate special relativity (see, for instance, [2]).
The relativistic formulation and solution of the problem of a spin-1/2 fermion with mass m confined in a one-

dimensional square well potential was done by Alberto, Fiolhais and Gil [3] and then extended to a three-dimensional
square well potential by Alberto, Das and Vagenas [4].
The problem of a relativistic particle confined in an infinite square well potential is traditionally not considered in

the textbooks of Relativistic Quantum Mechanics, even in the most comprehensive ones such as Greiner’s [5], which
considers only the case of a finite square well with a vector (energy coupled) potential. However, as discussed in
[3, 4], in relativistic problems one cannot simply let the well height go to infinity, because this would lead to problems
related to the Klein paradox, i.e., the emergence of negative energy solutions and thus compromise the one-particle
picture that one wishes to retain. We address this problem again below. Other problems particular to the relativistic
problem concern the boundary conditions, which cannot be the same as in the non-relativistic problems, as discussed
in refs. [6] and [7].
Here we extend further the problem of relativistic particle in a box to spin-0 particles, i.e., solutions of the Klein-

Gordon equation in an infinite well, both in one- and three-dimensional space. To this end, we use the Feshbach-Villars
formalism [8], by which one can have a Schrödinger-type equation of motion, linear in the time derivative and thus
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having a Hamiltonian defined for relativistic spin-0 particles. This allows us to follow a similar procedure to obtain
an infinite well solution as was done for the Dirac equation, in particular achieving a clear separation between particle
and anti-particle solutions. Although not common, the Feshbach-Villars formalism has been applied in other contexts,
as in computing creation rates for particle-antiparticle pairs produced by a supercritical force fields [9].
Finally, we compare the solutions obtained with those for the Dirac equation and draw the conclusions.

II. KLEIN-GORDON EQUATION IN FESHBACH-VILLARS FORMALISM

The Feshbach-Villars formalism (FVF) consists essentially in obtaining a first-order differential equation in time
from the original second-order Klein-Gordon equation. This is achieved by defining two wave functions ϕ and χ.
Following the original Feshbach-Villars paper [8] but with a slight different notation and definitions, and also inspired
by the textbook of Greiner [5], one may write

ψ = ϕ+ χ (1)

i~
∂ψ

∂t
= mc2(ϕ− χ) (2)

where ψ is the conventional Klein-Gordon wavefunction. If now one defines the two-component spinor

Ψ =

(

ϕ

χ

)

, (3)

the free Klein-Gordon equation can be written as a Schrödinger-type equation of motion

i~
∂Ψ

∂t
= HΨ (4)

H = (τ3 + iτ2)
~̂p 2

2m
+mc2τ3 , (5)

where τk (k = 1, 2, 3) are Pauli matrices and ~̂p is the momentum operator, given as ~̂p = −i~∇. Note that the
Hamiltonian (5) is similar to the one of a non-relativistic particle plus its rest energy. Equation (4) is equivalent to
two coupled equations for ϕ and χ

i~
∂ϕ

∂t
=

~̂p 2

2m
(ϕ+ χ) +mc2ϕ (6)

i~
∂χ

∂t
= −

~̂p 2

2m
(ϕ+ χ)−mc2χ . (7)

One can check, from these last equations and equations (1) and (2), that one gets the free Klein-Gordon equation for
ψ

1

c2
∂2ψ

∂t2
−∇2ψ +

m2c2

~2
ψ = 0 . (8)

The conserved charge and current assume the following forms

ρ = ϕ⋆ϕ− χ⋆χ = Ψ†τ3Ψ (9)

~J =
~

2im
[(ϕ∗ + χ∗)∇(ϕ+ χ)− (ϕ+ χ)∇(ϕ∗ + χ∗)]

=
~

2im

[

Ψ†τ3 (τ3 + iτ2)∇Ψ−
(

∇Ψ†
)

τ3 (τ3 + iτ2)Ψ
]

. (10)

Similarly to spin-1/2 particles, there is a charge conjugated spinor given by

Ψc =

(

χ∗

ϕ∗

)

= τ1Ψ
∗ (11)
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which changes particle into anti-particle solutions and vice-versa. One can check that the charge conjugated density
and current are

ρc = −ρ (12)

~Jc = − ~J , (13)

meaning that these should be interpreted as a charge density and charge current, as is well-known to be the case for
the Klein-Gordon equation. One may also note that here τ3 is related to the particle charge, so that the physical
significance of Pauli matrices τi is similar to that of the Pauli matrices used, for instance, for the isospin degree of
freedom of nucleons.

III. SOLUTION OF THE KLEIN-GORDON EQUATION FOR SQUARED WELL POTENTIALS

The solution of the free Klein-Gordon equation (4) in the FVF which has good linear momentum, i.e., which is an
eigenstate of the linear momentum operator, is given by [8]

Ψ±
~p (~x, t) = A±

(

ϕ±
0 (~p)

χ±
0 (~p)

)

ei(∓Ept−~p·~x)/~ ≡ A±Ψ
±
0 (~p)e

i(∓Ept−~p·~x)/~ (14)

where ± denotes the positive (negative) energy solutions, i.e., E = ±Ep, with Ep =
√

p2c2 +m2c4, A± are normal-
ization constants, and functions ϕ±

0 (~p) and χ
±
0 (~p) are written as

ϕ±
0 (~p) =

±Ep +mc2

2
√

mc2Ep

(15)

χ±
0 (~p) =

mc2 ∓ Ep

2
√

mc2Ep

. (16)

Note that ϕ±
0 (~p) and χ

±
0 (~p) depend on ~p only through its magnitude |~p| and

[

ϕ±
0 (~p)

]2
−
[

χ±
0 (~p)

]2
= ±1. We also have

Ψ±
~p (~x, t)c = Ψ∓

−~p(~x, t).

A. Solution for one-dimensional squared well potential

In order to obtain the solution of the Klein-Gordon equation for an infinite squared well potential, one must tackle
the problem that arises with the one-particle description in Relativistic Quantum Mechanics when particles are subject
to very strong external potentials. This shows up clearly when one computes the transmission of a plane wave through
a vector (energy-coupling) potential barrier, known as the Klein paradox. While it takes a different form for spin-1/2
particles than for spin-0 particles, one common feature is that in both cases a strong vector potential leads to a
non-zero transmission to a classically forbidden region, which is related to particle/anti-particle pair production. A
good historical review can be found in ref. [10]. In order to avoid this problem and retain the one-particle quantum
description of spin-0 particles with wave functions which are solutions of the Klein-Gordon equation, one must consider
the one-dimensional potential defined in a one-dimensional box L ≡ {0 ≤ x ≤ L} with length L as a potential invariant
under Lorentz transformations, i.e., a position dependent mass term, as follows

m(x) =

{

m , x ∈ L

M → ∞ , x /∈ L
, (17)

as was done in the Dirac equation case [3]. In this case, one can consider the time-independent solutions of the
Klein-Gordon equation in the FVF, that is, one has

HΨ̃(~x) = EΨ̃(~x) where Ψ(~x, t) = e−iEt/~Ψ̃(~x) . (18)

From equation (14), the general solution for a time-independent positive-energy solution in this one-dimensional box
is given by, with p > 0,

ΨB(x) =

{

AΨ+
0 (p)e

ipx/~ +BΨ+
0 (p)e

−ipx/~ , x ∈ L

0 , x /∈ L

. (19)
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The continuity of the wave function at the box borders yields the box boundary conditions ΨB(0) = 0 = ΨB(L).
Together with the normalization

∫

L
ρ dx = 1, one has for the wave function inside the box

ΨB(x) =

√

2

L
Ψ+

0 (p) sin(p x/~) with pL = nπ~ n = 1, . . . . (20)

This gives rise to the quantized energy

EB(n) =

√

n2π2~2c2

L2
+m2c4 (21)

≈ mc2 +
n2π2

~
2

2mL2
+ . . . (22)

where a small p/(mc) = nπ~/(Lmc) expansion has been made in the last line, with the second term being that which
arises by solving the Schrödinger equation, mc2 is the rest energy, and . . . represent second and higher order terms.
The usual Klein-Gordon wavefunction ψ and its time derivative, given by (1) and (2) respectively, can be recovered

noting that in those equations

ϕ =

√

2

L
ϕ+
0 (pn) e

−iEB(n)t/~ sin(pnx/~) (23)

χ =

√

2

L
χ+
0 (pn) e

−iEB(n)t/~ sin(pnx/~) (24)

in which pn = nπ~/L and ϕ+
0 (pn) and χ

+
0 (pn) are given respectively by (15) and (16) with Ep replaced by EB(n).

Finally, the current as given by (10) vanishes in this case, since it is composed of a left and a right moving wave
with symmetric amplitudes, satisfying at the same time current conservation throughout all space.

B. Solution for the three-dimensional squared well potential

For a three dimensional box defined by V ≡ {0 ≤ xi ≤ Li}, i = 1, 2, 3, where Li are the lengths of the box in each
dimension, the scalar infinite well potential would be given by

m(~x) =

{

m , ~x ∈ V

M → ∞ , ~x 6∈ V
. (25)

Since the potential inside the box is constant, we expect that the wave function in the box would be a linear combination
of wave functions with good momenta of the type (14). One may note also that the potential (25) can be written as

separable potential in terms of the one-dimensional well potentials: m(~x) = m+ (M −m)
∏3

i=1[θ(xi −Li) + θ(−xi)],
where θ(x) is the Heaviside step function. This means that the space-dependent part of the wave function may be
written as a product of a linear combination of one-dimensional plane waves travelling both ways in each direction,
or a linear combination of the eight plane waves

ei
∑

3

i=1
ǫipixi/~ where ǫi = ±1 . (26)

Since the magnitude of the momenta of all of these plane waves (±p1,±p2,±p3) is the same, one can write the general
time-independent positive-energy wave function as

ΨB(~x) =







Ψ+
0 (~p)

∑

~ǫ

A~ǫ e
i
∑

3

i=1
ǫipixi/~ , ~x ∈ V

0 , ~x /∈ V

, (27)

where ~ǫ represents all the 8 sets of values of (ǫ1, ǫ2, ǫ3), that is, (±1,±1,±1) and A~ǫ is the amplitude for each plane
wave. Note the formal similarity with the Dirac wave function for a relativistic spin-1/2 particle in a three dimensional
box, equation (33) of [11] and equation (24) of [4].
The boundary conditions and normalization are now

ΨB(0, 0, 0) = 0 = ΨB(L1, x2, x3) = ΨB(x1, L2, x3) = ΨB(x1, x2, L3) (28)
∫

V

ρ d3~x = 1 (29)
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giving rise to the interior wave function

ΨB(~x) =

√

23

V
Ψ+

0 (~p)

3
∏

i=1

sin(pixi/~) , (30)

where V = L1L2L3 is the volume of the box and one has piLi/~ = niπ, with ni = 1, . . ., and i = 1, 2, 3.

EB(~n) =

√

√

√

√

3
∑

i=1

n2
iπ

2~2c2

L2
i

+m2c4 (31)

≈ mc2 +
3
∑

i=1

n2
iπ

2
~
2

2mL2
i

+ . . . (32)

where ~n = (n1, n2, n3), and the wave functions ϕ and χ are now

ϕ =

√

23

V
ϕ+
0 (~p(~n)) e

−iEB(~n)t/~
3
∏

i=1

sin(pi(~n))xi/~) (33)

χ =

√

23

V
χ+
0 (~p(~n)) e

−iEB(~n)t/~
3
∏

i=1

sin(pi(~n))xi/~) (34)

in which pi(~n) = niπ~/Li while ϕ
+
0 (~p(~n)) and χ

+
0 (~p(~n)) are given by (15) and (16) respectively, with Ep replaced by

EB(~n). Once again the charge current ~J is zero.

IV. COMPARISON BETWEEN THE ENERGY SPECTRA FOR SPIN-0 AND SPIN-1/2 RELATIVISTIC
PARTICLES IN A BOX

A. One-dimensional box

The energy solutions of the Klein-Gordon and Dirac equation for particles in a one-dimensional box of size L are
given, in terms of the allowed wave numbers kn, by (see [3])

Klein-Gordon EB(n) =
√

~2c2k2n +m2c4 , kn = nπ/L , (35)

Dirac EB(n) =
√

~2c2k2n +m2c4 , tan(knL) = −
~kn
mc

. (36)

In the case of the Dirac equation, kn denotes the nth solution (excluding the trivial one k = 0) of the transcendental
equation. It is convenient to write these quantities in terms of dimensionless quantities and consider the scaled kinetic
energy T = T/(mc2) = E/(mc2) − 1 instead of the total energy. Defining xn = knλC and LC = L/λC , where
λC = ~/(mc) is the Compton wavelength of the relativistic particle of mass m, one gets

Klein-Gordon T KG
B (n) =

√

x2n + 1− 1 , xn = nπ/LC , (37)

Dirac T D
B (n) =

√

x2n + 1− 1 , tan(LCxn) = −xn . (38)

One sees that the main difference between Klein-Gordon and Dirac spectra is the value of the quantity xn. Writing
the transcendental equation for xn in (38) as

tan(yn) = −
yn
LC

, yn = xnLC , (39)

it is clear that, for lengths of the box much bigger than the Compton wavelength, i.e., LC ≫ 1, one has yn ∼ nπ and
thus xn ∼ nπ/LC . Since, on the other hand, xn, at least for values of n not too high, would be small in this case, we
would be in the non-relativistic limit. Therefore, one can state that the effect of spin on the energy of a relativistic
particle in a box is itself coming from relativity, or the covariance of the Dirac equation, since this is how the Dirac
plane wave spinor is constructed, and thus the origin of the transcendental equation above. This is similar to what
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happens to a spin-1/2 particle in a spherical box, for which the spin-orbit coupling disappears for big (non-relativistic)
boxes [12].
The difference between the two equations (35) and (36) can be traced back to the boundary conditions obeyed by the

wave function for a particle-in-a-box problem in Klein-Gordon and Dirac equations, respectively. In the case of Klein-
Gordon equation, being a second-order differential equation in the coordinates, one requires, as in the Schrödinger
equation, that the wave function vanishes at the box borders because of the continuity of the wave function. However,
this cannot be done in the Dirac equation, as mentioned before and discussed in refs. [3] and [4]. Indeed, being
a first-order differential equation in the coordinates, the former requirement cannot be made, and it is replaced by
a boundary condition which is equivalent to demand that the current flux ~j · n̂ vanishes at the box borders (n̂ is
the outward unit vector at the borders). Of course, this happens in the Klein-Gordon equation as well – the current

vanishes at the borders – but in the Dirac equation the current ~j is fundamentally different from the Klein-Gordon one
because of the spinor structure of the wave function. Therefore, this structure, related to the spin 1/2 nature of the
Dirac particles, affects the energy spectrum for a spin-1/2 relativistic particle in a box problem. It turns out that both
boundary condition are equivalent in the non-relativistic limit, because in this limit one recovers the non-relativistic
solutions of the same problem (see [3, 4]). This spin effect in relativistic problems does not happen necessarily with
other interactions, namely with the interaction with a pure vector electromagnetic field (except for the Stern-Gerlach
term) or for certain combination of scalar and vector potentials [13].
For the electron, λC ∼ 3.86 × 10−13 m = 3.86 × 10−3 Å, a relatively small value at atomic scale, but one could

envisage an electron confined in smaller boxes than an atom-sized box, given a sufficient high electric field. For spin-0
mesons like the charged pions π±, one has λC ∼ 1.41 fm = 1.41× 10−5 Å.
In the following figure we plot the values of T KG

B (n) and T D
B (n) for n = 1, . . . , 4, in logarithmic scale, for several

values of LC . The non-relativistic value T
nr
B (n) = x2n/2 is presented for the highest value of LC = 300, which is about

1.15 Å for an electron.
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FIG. 1: Scaled kinetic energy spectrum of the first four solutions of Klein-Gordon and Dirac equations for four values of the
ratio LC for a one-dimensional box.

B. Three-dimensional box

For the three-dimensional infinite well we have now for the Klein-Gordon and Dirac energies [4]

Klein-Gordon EB(~n) =

√

~2c2|~k(~n)|2 +m2c4 , ki(~n) =
niπ

Li
, i = 1, 2, 3 , (40)

Dirac EB(~n) =

√

~2c2|~k(~n)|2 +m2c4 ,

tan(ki(~n)Li) = −
2(EB(~n) +mc2)~ki(~n) c

~2c2k2i (~n)− (EB(~n) +mc2)2
, i = 1, 2, 3 . (41)
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As in the previous section, ~n denotes the set of quantum numbers (n1, n2, n3), all non-zero positive integers. In the
case of the Dirac equation, they are used to label the different solutions of the three coupled transcendental equations,
as discussed in [4]. Considering now a cubic box, i.e., L1 = L2 = L3 = L, and, as in the one-dimensional case, using
the scaled kinetic energy and defining xi(~n) = ki(~n)λC , LC = L/λC , we get

Klein-Gordon T KG
B (~n) =

√

|~x(~n)|2 + 1− 1 , xi(~n) =
niπ

LC
, i = 1, 2, 3 , (42)

Dirac T D
B (~n) =

√

|~x(~n)|2 + 1− 1 ,

tan(xi(~n)LC) =
2(T D

B (~n) + 2)xi(~n)

x2i (~n)− (T D
B (~n) + 2)2

, i = 1, 2, 3 . (43)

Again, defining yi(~n) = xi(~n)LC one has for the transcendental equations

tan(yi(~n)) = LC
2(T D

B (~n) + 2)yi(~n)

y2i (~n)− L2
C(T

D
B (~n) + 2)2

. (44)

When LC ≫ 1, one has tan(yi(~n)) ∼ 0 and thus xi ∼ niπ/LC , and thus, as before, we get the Klein-Gordon (and in
this case, non-relativistic) result. It is interesting to remark that, if one xi(~n) is much bigger than the others, then
xi(~n) ∼ |~x(~n)| and the respective equation becomes

tan(xi(~n)LC) =
2(T D

B (~n) + 2)xi(~n)

x2i (~n)− (T D
B (~n) + 2)2

=
2(T D

B (~n) + 2)xi(~n)

x2i (~n)− |~x(~n)|2 − 2(T D
B (~n) + 2)

∼ −xi(~n) (45)

exactly as the one-dimensional case.
For the 3-dimensional box, there is an energy degeneracy regarding the levels with quantum numbers (n1, n2, n3):

any permutation of the ni’s gives rise to the same energy, as it is evident from the Klein-Gordon energy expression
(31) for a cubic box and was already noted in [4] for a Dirac particle in a cubic box as well. Therefore, one has 3 types
of degeneracies: 1-fold for n1 = n2 = n3; 3-fold when two ni’s are the same but the third is different; 3! = 6 -fold
degeneracy when the ni’s are all different.
The following figure is similar to Fig. 1 for the three-dimensional box. In this case the first four distinct energy

levels correspond to ~n being equal to (1, 1, 1), (1, 1, 2), (1, 2, 2) and (1, 1, 3) in increasing energy order. Because of the
degeneracies mentioned above, one is actually depicting 10 energy levels. Actually, in the Dirac case, one still has an
additional 2-fold degeneracy for each level, corresponding to the two independent spin polarizations.
Several aspects are common to the Klein-Gordon and Dirac on three-dimensional box spectra: the energy levels for

spin-1/2 are in general lower than the ones for spin-0 particles and, for larger boxes, measured in units of the Compton
wavelength, they approach the non-relativistic values, as could be expected, since larger boxes mean smaller momenta
for the particle confined. In the three-dimensional case, there are more levels up to a certain energy and they are
closer to each other than in the one-dimensional case. This can be understood by the fact that with increasing n, the
number of combinations of (n1, n2, n3) such that n2

1 + n2
2 + n2

3 ≤ n2 increases more than linearly with n, actually as
n3 for sufficiently high n.
As discussed in [4], the energy levels computed for a three-dimensional box allows us to compare the density of

states of a relativistic fermion gas to the density of a non-relativistic fermion gas. Since the separation between ki
values is smaller than π/Li for volumes V ∼ λ3C , the relativistic density is higher than the non-relativistic one. This
can also be seen in Fig. 2. For a spin-0 gas, in spite of the fact the separation between allowed ki value is identical
with the non-relativistic case, one must take into account the Bose-Einstein statistics, by which one has, at zero
temperature, as many states as one wishes in the same energy state.

V. CONCLUSIONS

In this paper, we have solved the problem of a relativistic spin-0 particle in a one- and three-dimensional box
using the Klein-Gordon equation in the Feshbach-Villars formalism. By using position-dependent mass for the infinite
square well potential we were able to avoid the Klein paradox problem and thus retain a one-particle description
of spin-0 particles. We compare these solutions with those previously found for the Dirac equation with the same
potentials. We find that the spin has indeed an effect on the energy spectra for relativistic spin-1/2 particles as
compared with relativistic spin-0 particles with the same mass, decreasing the energy of the former compared in
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FIG. 2: Scaled kinetic energy spectrum of the first four solutions of Klein-Gordon and Dirac equations for four values of the
ratio LC for a three-dimensional box.

the latter. As expected, both kinds of particles tend to the same non-relativistic spectrum, if the size of the box is
sufficiently large in units of Compton wavelength.
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