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ASYMPTOTIC RESULTS FOR CERTAIN WEAK DEPENDENT

VARIABLES

I. ARAB, P. E. OLIVEIRA

Abstract. We consider a special class of weak dependent random variables with control on covariances

of Lipschitz transformations. This class includes, but is not limited to, positively, negatively associated
variables and a few other classes of weakly dependent structures. We prove the Strong Law of Large

Numbers with the characterization of convergence rates which is almost optimal, in the sense that it

is arbitrarily close to the optimal rate for independent variables. Moreover, we prove an inequality
comparing the joint distributions with the product distributions of the margins, similar to the well

known Newman’s inequality for characteristic functions of associated variables. As a consequence, we

prove the Central Limit Theorem together with its functional counterpart, and also the convergence
of the empirical process for this class of weak dependent variables.
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1. Introduction

Limit theorems, either with respect to almost sure convergence or convergence in dis-
tribution are a central subject in statistics. In more recent years, many authors have ex-
pressed interested in the asymptotics of sequences of dependent variables. Several forms
of controlling the dependence have been proposed, many of them describing a control on
covariances of transformations of variables. Mostly, this control may be thought of as
measuring the degree of dependence between the past and a sufficiently separated future.
These dependence structures are commonly named weak dependence, and are described
using specific families of transformations of the random variables. We refer the reader to
Doukhan and Louhichi [8] or Dedecker et al. [6] for some examples and relations between
such dependence notions. Many of these notions stemmed from the positive dependence
and the association introduced by Lehmann [15] and Esary, Proschan and Walkup [10],
respectively. The association was the first of these two dependence notions to attract
the interest of researchers, and as expected, Strong Laws of Large Numbers and Cen-
tral Limit Theorems were eventually proved. We refer the reader to the monographs by
Bulinski and Shashkin [4], Oliveira [21] or Prakasa Rao [23] for an account of relevant
literature. Inevitably, several variations and extensions of these dependence notions were
introduced and limit theorems were established. Among these, the negative association
defined by Joag-Dev and Proschan [13] was one of the most popular, with various dif-
ferent extensions introduced in more recent years: extended negative dependent (END)
introduced by Liu [16], widely orthant dependent (WOD) introduced by Wang, Wang
and Gao [27] among other variations.

In this paper, we will be interested in a particular version of weak dependence defined
in the same spirit as in Doukhan and Louhichi [8], assuming an appropriate control on
covariances after transformation through Lipschitz functions, instead of a direct variation

This work was partially supported by the Centre for Mathematics of the University of Coimbra –

UID/MAT/00324/2013, funded by the Portuguese Government through FCT/MEC and co-funded by
the European Regional Development Fund through the Partnership Agreement PT2020.



2 I. ARAB, P. E. OLIVEIRA

on the inequalities that express the positive or the negative dependence. We note that us-
ing covariances of Lipschtiz transformations to prove limit theorems in probability seems
to have appeared for the first time in Bulinski and Shabanovich [3]. The dependence we
will be considering is somewhat similar to the quasi-association as introduced in Bulinski
and Suquet [5], that includes the positive, negative dependence notions referred above
and the quasi-association. We will also provide nontrivial examples showing that the
inclusions between these classes of dependent variables are strict. For the weak depen-
dence notion we are defining, we will prove the Strong Law of Large Numbers, with the
characterization of rates for both bounded and unbounded random variables, the Central
Limit Theorem and the invariance principle. We should compare the results proved here
with the ones already available in the literature for the various dependence structures.
As to the convergence in distribution, our results are of similar strength, essentially only
providing a unified approach to the different frameworks. For the almost sure conver-
gence, the assumptions and the derived rates are again similar to most of the known
results for negatively or positively associated variables. However, for weak dependent
families of variables, the only inequality controlling tail probabilities (see Corollary 1 in
[8]) is a Bernstein type inequality, that has a relatively weak form. Later, Corollary 4.1
and Theorem 4.5 in [6] and Kallabis and Neumann [14] also prove exponential inequali-
ties that are analogous to the Bernstein inequalities, but again with weaker exponents in
their upper bounds. This means that although the Strong Laws of Large Numbers may
be derived, not only the assumptions will become stronger, but the convergence rates
that follow will not be almost optimal, in the sense that these rates may be arbitrar-
ily close to the well known rates for independent variables. In the present paper, the
version of weak dependence we will be studying allows for the adaptation of techniques
used for associated variables (see, for example, Ioannides and Roussas [12], Oliveira [20],
Sung [26]) providing stronger forms of the Bernstein-type inequality, meaning that we
will obtain almost optimal convergence rates.

The paper is organized as follows: Section 2 defines the framework, Section 3 proves
some basic inequalities needed for the control of the almost sure convergence, which
is the object of Section 4, where the Strong Laws of Large Numbers for bounded and
unbounded random variables, with characterization of rates, are proved. Finally, in
Section 5, we extend the Newman inequality for characteristic functions to the present
dependence structure, from which the Central Limit Theorem, the invariance principle
and the convergence of the empirical process follow.

2. Definitions and framework

Let Xn, n ≥ 1, be centered random variables and define Sn = X1 + · · ·+Xn. As men-
tioned before, we will be interested in a particular form of weak dependence, according
to the following definition.

Definition 2.1. The random variables Xi, i = 1, . . . , n, are said to be L-weakly depen-
dent if there exist nonnegative coefficients γk, k ≥ 1, such that for every disjoint subsets
I, J ⊂ {1, . . . , n} and real valued Lipschitz functions f and g, defined on the appropriate
Euclidean spaces, the following inequality is satisfied:

|Cov (f (Xi, i ∈ I) , g (Xj , j ∈ J))| ≤ ‖f‖L‖g‖L
∑
i∈I

∑
j∈J

γ|j−i|,

where ‖f‖L represents the Lipschitz norm of f :

‖f‖L = sup
x 6=y

|f(x)− f(y)|
‖x− y‖

.
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An infinite family of random variables is said to be L-weakly dependent if every finite
subfamily is L-weakly dependent and the coefficients define a convergent series.

This is a form of weak dependence in the same spirit as in Doukhan and Louhichi [8]
or Dedecker et al. [6]. With respect to the discussion in [6], the L-weak dependence
implies what these authors called the κ or the ζ coefficients. In fact, the κ and the
ζ coefficients are defined in a quite similar way as our L-weak dependence by multi-
plying the Lipschtiz norms by the number of arguments, or by the minimum number
of arguments, used to define the transformations f and g. This means the examples
of L-weakly dependent sequences include positively associated, negatively associated,
Gaussian sequences or models for interacting particles systems (see Section 3.5.3 in [6]
for details for this last example). Moreover, the notion of quasi-association, introduced
by Bulinski and Suquet [5], is also included in the L-weak dependence structure by choos-
ing γk = Cov(X1, Xk+1) assuming, of course, the stationarity of the random variables.
The inclusion between these families of dependent variables is strict, as we will show by
presenting a few examples. In particular, the examples of the construction of L-weak
dependent sequences that are not quasi-associated are of interest because they show the
advantage of replacing covariances by some family of coefficients in the definition.

Example 2.2. Let ξn, n ∈ Z, be a sequence of independent random variables with vari-
ances σ2n. Given p ≥ 1 and α1, . . . ,αp ∈ R, define, for each n ≥ 1, Xn =

∑p
j=1 αjξn−j.

It is well known that the sequence Xn is positively associated if and only if all αi have
the same sign, as follows from property (P4) in Esary, Proschan and Walkup [10]. Now,
if we choose the coefficients α1 and αp positive, and α2, and αp−1 negative, it follows
that

Cov(Xn, Xn+p−1) = α1αpσ
2
n−1 > 0,

Cov(Xn, Xn+p−2) = α1αp−1σ
2
n−1 + α2αpσ

2
n−2 < 0.

Hence, the sequence Xn, n ≥ 1, is neither negatively associated nor positively associated.
However, it is easily verified that it is quasi-associated.

Remark 2.3. As composition of Lipschitz functions is still Lipschitzian, and quasi-
associated variables are L-weak dependent, it follows that Lipschitz transformations of
quasi-associated variables are L-weak dependent. However, as shown by the following
example, the transformed variables are not necessarily quasi-associated.

Example 2.4. Let ξn, n ≥ 1, be a sequence of independent and identically distributed
random variables, αn, n ≥ 1, a sequence of nonnegative real numbers, and define, for each
n ≥ 1, Xn =

∑n
i=1 αiξi. Therefore, the variables Xn, n ≥ 1, are positively associated,

hence, also quasi-associated. Consider the Lipschitz function g(x) = eax, for some a ∈ R.
Remark that g−1 is also a Lipschitzian function in every domain bounded away from 0.
Finally, define Yn = g(Xn). It is now easily verifiable that Cov(X1, X2) = α2

1Var(ξ1),
while Cov(Y1, Y2) = Var(g(α1ξ1))Eg(α2ξ2). If we choose the common distribution of ξn
and the function g such that limα1→+∞Var(g(α1ξ1)) = 0, it follows that the inequality

Cov(X1, X2) = Cov(g−1(g(X1)), g−1(g(X2))) ≤ ‖g−1‖2LCov(g(X1), g(X2)) (1)

can not be fulfilled, at least for α1 large enough. Therefore, the random variables Yn =
g(Xn), n ≥ 1, can not be quasi-associated.

Example 2.5. A more concrete example may be obtained taking g(x) = e−x and the ξn
uniform on some closed interval. As before, note that, although g(x) and g−1(x) = − log x
are not Lipschtizian in all their entire domain, they are Lipschitz in the support of the
variables to which we will be applying these transformations and, as we will be computing
expectations, this is enough to characterize the L-weak dependence. The uniform distri-
bution is just an easily verifiable example. Other distributions may be considered. In
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fact, representing by Mξ the moment generating function of the initial random variables
ξn, we have that Var(g(α1ξ1)) = Mξ(−2α1) − M2

ξ(−α1) and this converges to 0 un-
der the assumption limα→+∞Mξ(−α) = 0. Besides, to have the Lipschitzianity of the
transformations considered, ξn should have a compact support.

Example 2.6. A family of examples showing that L-weak dependence is broader than
quasi-association may be constructed by adding perturbations to the random variables that
are more significant when these variables are close to the origin and become negligible
when the variables are large. To be specific, let us start with a family of independent and
non-negative random variables ξn, n ≥ 1, and define Xn =

∑n
i=1 αiξi, where αi > 0.

This implies that Xn, n ≥ 1, are associated and that Cov(X1, X2) = α2
1Var(ξ1). Now,

choose some decreasing Lipschitz function h such that h′(0) = 0 and β > 0, and define
g(x) = h(βx) + x. The function h should be chosen such that g is strictly increasing.
Consider now

Cov(g(X1), g(X2)) = α2
1Var(ξ1) + Cov

(
α1ξ1, h(β(α1ξ1 + α2ξ2))

)
+Cov

(
h(βα1ξ1), g(α1ξ1 + α2ξ2)

)
.

Both covariances in the right hand side above consider an increasing transformation of the
(ξ1, ξ2) and a decreasing transformation of the same random vector. So the association
of the vector implies that these covariances are negative. Let us denote N(β) = ‖g−1‖L =

supx

∣∣∣ 1
βh′(βg−1(x))+1

∣∣∣, and choose α1 = α2 = c
β

, where c > 0 is such that Cov(ξ1, h(c(ξ1+

ξ2))) < 0. Note that, h being Lipschitzian implies that h′ is bounded, so for β > 0 small
enough, we have N(β) = 1

1+infx βh′(βg−1(x)) . If the random variables g(X1) and g(X2)

are to be quasi-associated, then (1) must be fulfilled. For the present framework, this is
equivalent to

Var(ξ1) ≤ N2(β)
(

Var(ξ1) + βCov
(
ξ1, h(ξ1 + ξ2)

)
+ β2Cov

(
h(ξ1), g(α1ξ1 + α2ξ2)

))
.

To prove the above inequality can not hold, assume the weaker condition (remember the

last covariance is negative): Var(ξ1) ≤ N2(β)
(

Var(ξ1) + βCov
(
ξ1, h(ξ1 + ξ2)

))
. Di-

viding by Var(ξ1), this is equivalent to 1 ≤ N2(β)(1−dβ), where d = −Cov(ξ1,h(ξ1+ξ2))
Var(ξ1)

>

0, which may be rewritten as β
(
β(h′(βg−1(x)))2 + 2h′(βg−1(x)) + d

)
≤ 0, and this, for

small enough β, can not be fulfilled. Hence, for such choice of the parameters, the random
variables g(X1) and g(X2) can not be quasi-associated. However, being Lipschitz trans-
formations of quasi-associated random variables, they are L-weak dependent. A concrete

example is obtained choosing h(x) = e−x
2

, for which we have ‖g−1‖L = 1
1−
√
2β e−1/2 .

We will be assuming throughout this paper that

1

n
ES2

n −→ σ2 ∈ (0,∞). (2)

Remark 2.7. This condition follows immediately from the convergence of the series of
L-weak dependence coefficients γk (see Lemma 1.1 in Rio [24]).

This, obviously, implies that for n large enough, we have ES2
n ≤ 2σ2n. Besides, we will

need to decompose Sn into an appropriate sum of blocks in order to apply the classical
Bernstein block decomposition method, here with equal sized blocks. For this purpose,
consider an increasing sequence of integers pn ≤ n

2 such that pn −→ +∞, put rn = b n
2pn
c,

where bxc represents the integer part of x, and define the blocks:

Yj,n =

jpn∑
k=(j−1)pn+1

Xk, j = 1, . . . , 2rn. (3)
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Notice that, if the random variables are bounded by c > 0, then |Yj,n| ≤ cpn. Moreover,
define the alternate sums:

Zn,od =

rn∑
j=1

Y2j−1,n and Zn,ev =

rn∑
j=1

Y2j,n.

Note that Sn = Zn,od + Zn,ev + Rn, where

Rn =

n∑
j=2rnpn+1

Yj .

Finally, we introduce the generalized Cox-Grimmett coefficients adapted to the L-weak
dependence structure,

v(n) =

∞∑
k=n

γk. (4)

3. Inequalities for bounded variables

This section establishes a few inequalities that are the basic tools for proving the almost
sure convergence results. The inequalities below are extensions of analogous results for
associated random variables. We start by establishing a bound for the Laplace transform
of the blocks Yj,n.

Lemma 3.1. Assume that the sequence Xn, n ≥ 1, is stationary, there exists some c > 0
such that for every n ≥ 1, |Xn| ≤ c almost surely, and that (2) holds. Let dn > 1, n ≥ 1,
be a sequence of real numbers. Then, for every t ≤ dn−1

dn

1
cpn

and n large enough,

EetYj,n ≤ exp
(
2t2σ2pndn

)
.

Proof. Using the Taylor expansion and taking into account the boundedness of the
random variables, we have

EetYj,n = 1 +

∞∑
k=2

tkEY k
j,n

k!
≤ 1 +

∞∑
k=2

tkck−2pk−2n EY 2
j,n

k!
≤ 1 + t2EY 2

j,n

∞∑
k=2

(tcpn)k−2.

It follows from the assumption on t that tcpn ≤ dn−1
dn

< 1, thus, as the sequence Xn,
n ≥ 1, is stationary, we may write

EetYj,n ≤ 1 +
t2ES2

pn

1− tcpn
.

Now, as pn −→ +∞, we have that for n large enough, ES2
pn
≤ 2σ2pn. Moreover, we have

1
1−tcpn

≤ dn, so EetYj,n ≤ 1 + 2t2σ2pndn ≤ exp
(
2t2σ2pndn

)
.

Considering now L-weakly dependent variables, we establish an upper bound for
EetZn,od .

Lemma 3.2. Assume the conditions of Lemma 3.1 are satisfied and the sequence of
random variables Xn, n ≥ 1, is L-weakly dependent. Then, for every t ≤ dn−1

dn

1
cpn

and n

large enough, we have

EetZn,od ≤ t2e
tcn
2 pnv(pn)

rn−2∑
j=0

exp
(
jtpn(2tσ2dn − c)

)
+ exp

(
t2σ2ndn

)
. (5)
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Proof. First, remark that EetZn,od = E
(∏rn

j=1 e
tY2j−1,n

)
. Now, by adding and sub-

tracting appropriate terms, we find that

E

 rn∏
j=1

etY2j−1,n

 = Cov

rn−1∏
j=1

etY2j−1,n , etY2rn−1,n

+ E

rn−1∏
j=1

etY2j−1,n

EetY2rn−1,n

= Cov

rn−1∏
j=1

etY2j−1,n , etY2rn−1,n


+Cov

rn−2∏
j=1

etY2j−1,n , etY2rn−3,n

EetY2rn−1,n

+E

rn−3∏
j=1

etY2j−1,n

EetY2rn−3,nEetY2rn−1,n .

Before iterating this procedure note that due to the stationarity of the sequence of random
variables Xi, EetY2rn−3,n = EetY2rn−1,n = EetY1,n , so the previous expression may be
rewritten as

E

 rn∏
j=1

etY2j−1,n


= Cov

rn−1∏
j=1

etY2j−1,n , etY2rn−1,n

+ Cov

rn−2∏
j=1

etY2j−1,n , etY2rn−3,n

EetY1,n

+E

rn−3∏
j=1

etY2j−1,n

(EetY1,n
)2

.

Now, we iterate the procedure above to decompose the mathematical expectation of the
product to find

E

 rn∏
j=1

etY2j−1,n

 =

rn−1∑
j=1

(
EetY1,n

)j−1
Cov

(
rn−j∏
k=1

etY2k−1,n , etY2(rn−j)+1,n

)
+
(
EetY1,n

)rn
.

The L-weak dependence of the variables implies that∣∣∣∣∣Cov

(
rn−j∏
k=1

etY2k−1,n , etY2(rn−j)+1,n

)∣∣∣∣∣
≤ t2etcpn(rn−j+1)

rn−j∑
k=1

(2k−1)pn∑
`=2(k−2)pn+1

(2(rn−j)+1)pn∑
`′=2(rn−j)pn+1

γ`′−`.

(6)

The summation above is similar to the one treated in the course of proof of Lemma 3.1
in [12]. Adapting their arguments, one easily finds that

(2k−1)pn∑
`=2(k−2)pn+1

(2(rn−j)+1)pn∑
`′=2(rn−j)pn+1

γ`′−` =

pn−1∑
`=0

(pn − `)γ2kpn+` +

pn−1∑
`=1

(pn − `)γ2kpn−`

≤ pn

(2k+1)pn−1∑
`=(2k−1)pn+1

γ`,
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thus,

rn−j∑
k=1

(2k−1)pn∑
`=2(k−2)pn+1

(2(rn−j)+1)pn∑
`′=2(rn−j)pn+1

γ`′−` ≤
rn−j∑
k=1

pn

(2k+1)pn−1∑
`=(2k−1)pn+1

γ` ≤ pnv(pn).

Insert this into (6) and use the inequality proved in Lemma 3.1 to obtain the upper

bounds for
(
EetY1,n

)j−1
and

(
EetY1,n

)rn
. Finally, recall that 2pnrn ≤ n to conclude the

proof.

We may now find an upper bound for the tail probabilities of Zn,od.

Lemma 3.3. Assume that the sequence Xn, n ≥ 1, is stationary, there exists some c > 0
such that for every n ≥ 1, |Xn| ≤ c almost surely, that (2) holds, and that the sequence
of random variables is L-weakly dependent. Then, for each fixed x and n large enough,

P (Zn,od > x) ≤
(
k1(x, n)x2

4σ4n2d2n
e

cx
4σ2dn pnv(pn) + 1

)
exp

(
− x2

4σ2ndn

)
, (7)

where k1(x, n) =
(

1− exp( xpn

2σ2ndn
( x
n − c))

)−1
.

Proof. Using Markov’s inequality and taking into account (5), we get that

P (Zn,od > x) ≤ t2e
tcn
2 pnv(pn)e−tx

rn−2∑
j=0

exp
(
jtpn(2tσ2dn − c)

)
+ exp

(
t2σ2ndn − tx

)
.

(8)

The minimization of the exponent in the second term above leads to the choice t =
x

2σ2ndn
, which implies that

t2σ2ndn − tx = − x2

4σ2ndn
.

We still have to control the summation in the first term. For this purpose, remark
that for the choice of t as above, 2tσ2dn − c = x

n − c. Thus, as x is fixed, for n large

enough 2tσ2dn − c < 0, so the series corresponding to the summation appearing in (7)
is convergent, its sum being equal to k1(x, n). Finally, remark that, again for the choice

made for t, we have tx = x2

2σ2ndn
, so e−tx ≤ exp

(
− x2

4σ2ndn

)
, and the proof is concluded.

4. Strong laws and convergence rates

With the tools proved in the previous section, we may now find conditions for the
Strong Law of Large Numbers and characterize its convergence rate. The first subsection
will deal with bounded random variables, using directly the inequalities of Section 3, while
in the second subsection we will extend these results to arbitrary (unbounded) L-weakly
dependent variables by using a truncation technique.

4.1. The case of bounded variables. The aim is, of course, to prove that 1
nSn con-

verges almost surely to 0, and we will conclude this by verifying that it is possible to
decompose Sn into sums with appropriate block sizes.

Lemma 4.1. Assume that the sequence Xn, n ≥ 1, is stationary and L-weakly dependent,
there exists some c > 0 such that for every n ≥ 1, |Xn| ≤ c almost surely and that (2)
holds. Assume that the generalized Cox-Grimmett coefficients (4) satisfy v(n) = O(ρn),
for some ρ ∈ (0, 1). Then for a suitable choice of the sequence pn we can achieve
1
nZn,od −→ 0 almost surely.
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Proof. We will bound P (Zn,od > nε) where, without loss of generality, we choose ε > 0
sufficiently small. Applying (7) with x = nε, we find the upper bound

P (Zn,od > nε) ≤
(
k1(nε, n)ε2

4σ4d2n
e

cnε
4σ2dn pnv(pn) + 1

)
exp

(
− nε2

4σ2dn

)
. (9)

Choosing dn = nε2

4σ2α logn , for some α > 1, the final term above becomes n−α, thus

defining a convergent series. So, to prove the convergence, it is enough to control the
term in the large parentheses in (9) and verify that the assumptions of Lemma 3.1 are
satisfied. We start by looking at

k1(nε, n) =
1

1− exp(ε(ε−c)pn

2σ2dn
)
.

To prevent k1(nε, n) from exploding, we choose the sequences such that pn = c0dn, for
some strictly positive c0, making k1(nε, n) independent of n. On the other hand, taking
into account the assumption on the Cox-Grimmett coefficients and the choice for pn,

ε2

d2n
e

cnε
4σ2dn pnv(pn) =

ε2c0
dn

exp

(
cεn

4σ2dn
+ pn log ρ

)
= 4c0σ

2α
log n

n
exp

(
cα

ε
log n +

c0ε
2 log ρ

4σ2α

n

log n

)
,

which is bounded as ρ ∈ (0, 1). Concerning the assumptions of Lemma 3.1, we need to
verify that t = ε

2σ2dn
≤ dn−1

dn

1
cpn

, that is equivalent to

ε ≤ 2
σ2

c

(dn − 1)

pn
=

2σ2

c

(
c0 −

1

pn

)
,

which is fulfilled for n large enough as, for the choice we made, pn −→ +∞.

It is obvious that the result just proved also holds if we replace Zn,od by Zn,ev, thus
we have the almost sure convergence of 1

nSn. For the sake of completeness, we state this
result.

Theorem 4.2. Assume that the conditions of Lemma 4.1 are satisfied. Then, 1
nSn −→ 0

almost surely.

Remark 4.3. We did not mention the remaining term Rn. In fact, in our setting, this
term is negligible, taking into account that |Rn| ≤ 2cpn and, for the choice made for the
sequence pn, we have that 2cpn

n −→ 0, so

P
(∣∣∣∣Sn

n

∣∣∣∣ ≥ ε) ≤ P
(∣∣∣∣Zn,od

n

∣∣∣∣+

∣∣∣∣Zn,ev

n

∣∣∣∣+

∣∣∣∣Rn

n

∣∣∣∣ ≥ ε)
≤ P

(∣∣∣∣Zn,od

n

∣∣∣∣+

∣∣∣∣Zn,ev

n

∣∣∣∣+
2cpn
n
≥ ε
)
≤ P

(∣∣∣∣Zn,od

n

∣∣∣∣+

∣∣∣∣Zn,ev

n

∣∣∣∣ ≥ ε2
)
.

We may further identify the convergence rate for the almost sure convergence above.

Theorem 4.4. Assume that the conditions of Lemma 4.1 are satisfied. Then, for a
suitable choice of the sequence pn, we can achieve that 1

nZn,od −→ 0 almost surely with

convergence rate logn
n1/2−δ , where δ > 0 is arbitrarily small.

Proof. We follow the proof of Lemma 4.1, allowing now ε to depend on n, that is,
considering εn such that

ε2n =
4σ2αdn log n

n
, α > 1. (10)
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We need to verify that the condition on t in Lemma 3.1 is satisfied for an appropriate
choice of the sequences pn and dn, that is, t = εn

2σ2dn
≤ dn−1

dn

1
cpn

. Hence, we require that
εnpn

dn
is bounded. On the other hand, looking at

k1(nε, n) =

(
1− exp

(
εnpn
2σ2dn

(εn − c)

))−1
,

we need to require that εnpn

dn
is bounded away from 0, so that we can still have εn −→ 0.

Therefore, we choose the sequences such that εnpn

dn
= O(1). Taking into account (10),

this leads to dn = O
(

p2
n logn
n

)
, which implies that

εn = O

(
pn log n

n

)
.

If we now choose pn = O(nθ), for some θ > 1
2 , it follows that εn = O(nθ−1 log n),

identifying the convergence rate stated after representing θ = 1
2 + δ. However, we still

need to control the upper bound for the tail probability that follows from (7), which is
now written as

P (Zn,od > nεn) ≤
(
k1(nε, n)ε2n

4σ2d2n
e

cnεn
4σ2dn pnρ

pn + 1

)
n−α.

Replacing the choices for the sequences made so far, we find that the term inside the
parentheses above behaves like

1

nθ
exp

(
cα1/2

2σ

(
n log n

dn

)1/2
)
ρn
θ

+ 1 =
1

nθ
exp

(
n1−θ + nθ log ρ

)
+ 1,

which, as θ > 1
2 , is bounded.

Remark 4.5. For convenience in the next section, we write explicitly the exponential
inequality that follows from the arguments used in course of proof of the previous result:
there exists a constant C > 0 such that

P (Zn,od > nεn) ≤
[
C

1

nθ
exp

(
n1−θ + nθ log ρ

)
+ 1

]
n−α, (11)

where θ > 1
2 and α > 1.

Theorem 4.4 was proved for 1
nZn,od for the convenience of the exposition. An analogous

version obviously holds for 1
nZn,ev, thus implying the same result for 1

nSn by using the
same argument as stated in Remark 4.3. Again, for the sake of completeness, we state
the final result.

Theorem 4.6. Assume that the conditions of Lemma 4.1 are satisfied. Then, 1
nSn −→ 0

almost surely with convergence rate logn
n1/2−δ , where δ > 0 is arbitrarily small.

4.2. General random variables. We now want to drop the boundedness assumption.
To extend the results just proved, we will use a truncation technique together with a
control on the tails of the distributions. Define, for a given fixed c > 0, the nondecreasing
function gc(x) = max(min(x, c),−c), performing a truncation at level c. Remark that,
for every c > 0, gc is Lipschtizian with ‖gc‖L = 1. Choose some sequence cn −→ +∞,
to be made precise later, and define, for j, n ≥ 1, the random variables

X1,j,n = gcn(Xj), X2,j,n = Xj −X1,j,n,
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and the partial summations

S1,n =

n∑
j=1

(X1,j,n − EX1,j,n), S2,n =

n∑
j=1

(X2,j,n − EX2,j,n).

Theorem 4.7. Assume that the L-weakly dependent sequence Xn, n ≥ 1, is stationary,
(2) holds, and the generalized Cox-Grimmett coefficients (4) satisfy v(n) = O(ρn), for
some ρ ∈ (0, 1). Assume further that,

∃ τ > 0, U > 0 : sup
0≤r≤τ

Eer|X1| ≤ U. (12)

Then, 1
nSn −→ 0 almost surely with convergence rate log2 n

n1/2−δ , where δ > 0 is arbitrarily
small.

Proof. It is obvious that P (|Sn| > 2nε) ≤ P (|S1,n| > nε) + P (|S2,n| > nε). The
random variables X1,j,n are bounded by cn, hence, to follow the proof of Theorem 4.4,
we need to verify that the construction of the auxiliary sequences satisfies the suitable
assumptions. In order to obtain an analogous control on the probabilities, we will again
choose εn according to (10). As in Theorem 4.4, we need to start by verifying that
the assumptions of Lemma 3.1 are satisfied. Now, let us rewrite these assumptions as
t = εn

2σ2dn
≤ dn−1

dn

1
cnpn

. Thus, cnεnpn

dn
needs to be bounded. Now, we need to prevent

k1(nεn, n) =

(
1− exp

(
εnpn
2σ2dn

(εn − cn)

))−1
from exploding to +∞. As εn −→ 0, the argument of the exponential behaves like
−cnεnpn

dn
, so we require that cnεnpn

dn
is bounded away from 0. These considerations lead

to dn = O(cnεnpn). Squaring this representation and taking into account the behaviour

of εn described in (10), it follows that dn = O
(
c2np

2
n
logn
n

)
. We take the remaining

auxiliary sequences as pn = O(nθ), for some θ > 1
2 and cn = β log n, for some β > 0.

Applying now (11), replacing the bounding constant there by cn, and using Remark 4.3,
which requires cnpn

n −→ 0, that is satisfied, it follows that,

P (|S1,n| > nεn) ≤ 2

[
C

1

nθ
exp

(
n1−θ log n + nθ log ρ

)
+ 1

]
n−α,

and this upper bound defines a convergent series if θ = 1
2 + δ, for some arbitrary δ > 0.

To complete the proof, we need now to control P (|S2,n| > nεn). Note first that, taking
into account the stationarity,

P (|S2,n| > nεn) ≤ nP (|X2,1,n − EX2,1,n| > εn) ≤ n

ε2n
EX2

2,1,n.

Denoting F̄ (x) = P (|X1| > x), we have that

EX2
2,1,n = −
∫

(cn,+∞)

(x− cn)2 F̄ (dx) =

∫ +∞

cn

2(x− cn)F̄ (x) dx.

Now, using Markov’s inequality, it follows that F̄ (x) ≤ e−rxEer|X1| ≤ Ue−rx, if r ∈ (0, τ).
Thus, for r ∈ (0, τ), integrating the above expression above, we get that

EX2
2,1,n ≤

2U

r2
e−rcn ,

so finally, taking into account the choices made for the several sequences,

P (|S2,n| > nεn) ≤ 2nU

r2ε2n
e−rcn = O

(
n3−2θ−βr

log4 n

)
,
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and take r = 3
β

, so this upper bound defines a convergent series, as θ > 1
2 . Finally,

insert these choices into the expression for εn to explicitly identify the convergence rate,
finding

εn = O

(
log2 n

n1−θ

)
,

and remember that θ = 1
2 + δ.

Remark 4.8. The convergence rate proved in Theorem 4.7 is, up to logarithmic fac-
tors, close to the rates derived, using an approach based on the same methodologies,
for positively associated variables, where a denominator equal to n1/2 has been attained
(see Corollary 2.4 in Henriques and Oliveira [11], or the examples discussed after Corol-
lary 5.4 in Xing, Yang and Liu [30]). Moreover, note that the convergence rate proved
here is, up to logarithmic factors, arbitrarily close to the optimal convergence rate for
the Strong Law of Large Numbers for associated random variables which is of order
(logn)1/2(loglogn)η/2

n1/2 for arbitrarily small η > 0, as proved by Yang, Su and Yu [28].

5. Asymptotic normality

We now look at the convergence in distribution of sums of L-weakly dependent vari-
ables, extending the Central Limit Theorem (CLT) for associated random variables by
Newman [18, 19] to the L-weak dependence structure. The proof of Newman’s result (see
Theorem 2 in [18] or Theorem 12 in [19]) relies on the inequality for characteristic func-
tions, the Newman inequality for characteristic functions (Theorem 1 in Newman [18] or
Theorem 10 in Newman [19]) that controls the approximation between the joint distri-
bution and the product of the marginal distributions. So, we start by proving a version
of that inequality for the present dependence structure.

Theorem 5.1. (Newman’s inequality for L-weakly dependent random variables) Let X1,
X2, . . . , Xn be L-weakly dependent random variables. Then, for every t ∈ R, we have∣∣∣∣∣∣E

 n∏
j=1

eitXj

− n∏
j=1

E
(
eitXj

)∣∣∣∣∣∣ ≤ 4t2
n−1∑
j=1

(n− j)γj . (13)

Proof. First, in the left side of (13), we add and subtract the appropriate terms to
find,∣∣∣∣∣∣E
 n∏

j=1

eitXj

− n∏
j=1

E
(
eitXj

)∣∣∣∣∣∣
≤

∣∣∣∣∣∣E
 n∏

j=1

eitXj

− E
(
eitXn

)
E

n−1∏
j=1

eitXj

∣∣∣∣∣∣+

∣∣∣∣∣∣E (eitXn
)
E

n−1∏
j=1

eitXj

− n∏
j=1

E
(
eitXj

)∣∣∣∣∣∣
≤

∣∣∣∣∣∣Cov

n−1∏
j=1

eitXj , eitXn

∣∣∣∣∣∣+

∣∣∣∣∣∣E
n−1∏

j=1

eitXj

− n−1∏
j=1

E
(
eitXj

)∣∣∣∣∣∣ .
Iterating now this procedure, we find that∣∣∣∣∣∣E

 n∏
j=1

eitXj

− n∏
j=1

E
(
eitXj

)∣∣∣∣∣∣ ≤
n∑

m=2

∣∣∣∣∣∣Cov

m−1∏
j=1

eitXj , eitXm

∣∣∣∣∣∣ .
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To bound the covariance terms above, expand this covariance using the trigonometric
representation of the complex exponential to find four terms involving cosine or sinus
functions. Now, for example,∣∣∣∣∣∣Cov

cos

t

m−1∑
j=1

Xj

 , cos (tXm)

∣∣∣∣∣∣ ≤ t2
m−1∑
j=1

γm−j ,

taking into account that ‖ cos(tx)‖L = t and using the L-weak dependence of the sequence
Xi of random variables. Obviously, the same upper bound applies to the remaining terms,
so we finally have∣∣∣∣∣∣E

 n∏
j=1

eitXj

− n∏
j=1

E
(
eitXj

)∣∣∣∣∣∣ ≤ 4t2
n∑

m=2

m−1∑
j=1

γm−j = 4t2
n−1∑
j=1

(n− j)γj .

Newman’s inequality is the main tool for proving the Central Limit Theorem for as-
sociated random variables (see, for example, Theorem 4.1 in Oliveira [21]). So, having
extended Newman’s inequality to L-weakly dependent variables, we immediately may
state the corresponding CLT. The arguments for the proof are similar to those of The-
orem 5 in Newman [18], except for what regards the control of the approximation to
independence.

Theorem 5.2. Let the sequence Xn, n ≥ 1, of random variables be centered, square inte-
grable, L-weakly dependent, strictly stationary, and satisfying (2). Then, 1√

n
Sn converges

in distribution to a centered normal random variable with variance σ2.

Proof. The proof is based on the decomposition of Sn similar to (3), into the sum
of blocks of size p ∈ N, now independent from n, and using (13). So, given p ∈ N, put
m = bnp c, and redefine the blocks

Yj,p =

jp∑
k=(j−1)p+1

Xk, j = 1, . . . ,m, and Ym+1,p =

n∑
k=mp+1

Xk.

Represent by ϕn(t) the characteristic function of 1√
n
Sn. We will start by establishing

that
∣∣∣ϕn(t)− e−t

2σ2/2
∣∣∣ −→ 0. Let us start by writing∣∣∣ϕn (t)− e−

t2σ2

2

∣∣∣ ≤ |ϕn(t)−ϕmp(t)|+
∣∣ϕmp(t)−ϕm

p (t)
∣∣

+

∣∣∣∣ϕm
p (t)− e−

t2σ2
p

2

∣∣∣∣+

∣∣∣∣e− t2σ2
p

2 − e−
t2σ2

2

∣∣∣∣ , (14)

where σ2p = 1√
pVar(Sp), and prove that each term of the right hand side goes to zero.

Let p be fixed for the time being. As to the first term of the upper bound in (14), we
have, using Cauchy’s inequality,

|ϕn(t)−ϕmp(t)| ≤ E
∣∣∣∣exp

(
it√
n
Sn

)
− exp

(
it
√
mp

Smp

)∣∣∣∣
≤ |t|E

∣∣∣∣ Sn√
n
− Smp√

mp

∣∣∣∣ ≤ |t|
(
E
(
Sn√
n
− Smp√

mp

)2
)1/2

≤ |t|
(

1
√
mp
− 1√

n

)(
ES2

mp

)1/2
+
|t|√
n

(
EY 2

m+1,p

)1/2
.
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It follows from the stationarity of the sequence of random variables Xi that, for m large
enough, ES2

mp ≤ 2σ2mp and EY 2
m+1,p ≤ 2σ2(n − mp) < 2σ2p. Thus, as n −→ +∞,

which implies that m −→ +∞, it follows

|ϕn(t)−ϕmp(t)| ≤
√

2 |t|σ
(

1−
√
mp
√
n

+
1√
m

)
−→ 0.

The second term in (14) represents the difference between the joint distribution of the
blocks and what we would find if they were independent. To control this term, define
Wj,p = 1√

pYj,p. Taking into account the stationarity of the sequence Xi, the characteristic

function of Wj,p isϕp(t). As the variables Wj,p are transformations of X(j−1)p+1, . . . , Xjp,
it follows from the definition of L-weak dependence, representing the exponential with
the trigonometric functions as done for the proof of Theorem 5.1, that∣∣ϕmp(t)−ϕm

p (t)
∣∣ =

∣∣∣∣∣E
(

exp

(
it√
m

m∑
k=1

Wk,p

))
−

m∏
k=1

E exp

(
it√
m
Wk,p

)∣∣∣∣∣
≤ 4t2

mp

m−1∑
`=2

(`−1)p∑
j=1

`p∑
j′=(`−1)p+1

γj′−j

=
2t2

mp

 mp∑
j,j′=1

γ|j′−j| −m

p∑
j,j′=1

γ|j′−j|

 .

(15)

It is easy to verify that

1

mp

mp∑
j,j′=1

γ|j′−j| =

mp−1∑
j=1

(1− j

mp
)γj −→ D =

∞∑
`=1

γ` <∞, (16)

which gives us,

lim sup
m→+∞

∣∣ϕmp(t)−ϕm
p (t)

∣∣ ≤ 2t2

D − 1

p

p∑
j,j′=1

γ|j′−j|

 .

For the third term in (14), the classical Central Limit Theorem for independent random
variables implies that

lim
m→+∞

∣∣∣∣ϕm
p (t)− e−

t2σ2
p

2

∣∣∣∣ −→ 0.

Concerning the last term in (14), we have
∣∣∣e−t2σ2

p/2 − e−t
2σ2/2

∣∣∣ ≤ t2

2

∣∣σ2p − σ2∣∣. So, finally

we obtain,

lim sup
n→+∞

∣∣∣ϕn(t)− e−
t2σ2

2

∣∣∣ ≤ t2

2

∣∣σ2p − σ2∣∣+ 2t2

D − 1

p

p∑
j,j′=1

γ|j′−j|

 .

Note that the left hand side above does not depend on p. Allowing now p −→ +∞ and
taking into account that limp→+∞ σ

2
p = σ2, it follows that

lim sup
n→+∞

∣∣∣ϕn(t)− e−
t2σ2

2

∣∣∣ = 0.

Remark 5.3. Versions of the Central Limit Theorem obviously exist for the associated
or quasi-associated dependence structures that are embedded in the L-weak dependence.
Theorem 5.2 above corresponds exactly to Theorem 4.1 in Oliveira [21], as the convergence
of the coefficients is, for the L-weak dependence, included in the definition. A necessary
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and sufficient condition for the CLT in the case of strictly stationary associated random
fields, hence in a more general framework than the one considered here, is given in
Theorem 1 in Bulinski [2], expressed in terms of the uniform integrability of a suitable
normalization of Sn using sums of covariances between the variables.

For quasi-associated random variables, the CLT is proved in Corollary 6 in Bulinski
and Suquet [5], under assumptions that are, in fact, somewhat weaker than the ones we
used in Theorem 5.2. Indeed, Corollary 6 in [5] proves the CLT assuming a Lindeberg
like condition, which is seen to be a consequence of the convergence of the dependence
coefficients, as noted in their Remark 8.

Remark 5.4. Concerning the weak dependence defined by Dedecker et al. [6], the CLT
above should be compared with their Theorem 7.1 (see Doukhan and Winterberger [9] for
the original statement), where the existence of moments of order strictly larger than 2
is required, along with a suitable decrease rate on the κ dependence coefficients: κ(n) =
O(n−k) from some k > 2.

In order to prove a functional version of Theorem 5.2, we need a moment inequality,
extending Lemma 4.2 in Doukhan and Winterbeger [9] (this result may be found as
Lemma 4.3 in Dedecker et al. [6]) to L-weak dependent variables.

Lemma 5.5. Let the sequence of random variables Xn, n ≥ 1, be centered, L-weakly

dependent, strictly stationary and satisfies E |X1|2+ζ < ∞ for some ζ > 0, and (2).
Let η > 0 and δ ∈ (0,min(B(ζ,η), 1)), where B(ζ,η) ≤ ζ is described below. If the L-
weak dependence coefficients γk, k ≥ 1, are decreasing such that γk = O(k−r), for some

r > 3 + min(0, δ
2+δ(1−ζ)+2

2(ζ−δ) ), then there exists C > 0 such that ES2+δ
n ≤ Cn1+δ/2.

Proof. (Sketch) The proof follows the same arguments as for Lemma 4.2 in [9], so we
will only highlight the differences. The initial construction referring to the induction step
and truncation is exactly the same as in the proof of Lemma 4.2 in Doukhan and Winter-
berger [9]. This leads to a bound of order nmT 2+δ−m+Cov((ST

n )2, (1+
∣∣ST

2n+q − ST
n+q

∣∣)δ),
where T > 0 is the truncation parameter and ST

n = gT (X1) + · · ·+ gT (Xn), where gT is
the truncating function we defined earlier in Subsection 4.2. It follows from the L-weak
dependence that

Cov((ST
n )2, (1 +

∣∣ST
2n+q − ST

n+q

∣∣)δ) ≤ nT

n∑
i=1

2n+q∑
j=n+q

γj−i ≤ n2Tv(q).

From here onwards, the arguments are exactly the same as in the proof of Lemma 4.2
in [9], taking into account that v(q) = O(q−r+1). For the bound on δ, we find B(ζ,η) =
1
2

(
ζ− 1− 2η+

√
(ζ− 1− 2η)2 − 8(1− ζη)

)
.

We now prove a functional version of Theorem 5.2, giving sufficient conditions for the
convergence in distribution of the partial sums process:

ξn(t) =
1√
n

bntc∑
j=1

Xj , 0 ≤ t ≤ 1. (17)

Theorem 5.6. Assume the conditions of Lemma 5.5 are satisfied. Then ξn(t), n ≥ 1,
converges in distribution, in the Skorokhod space D[0, 1], to σW , where W is the standard
Brownian motion.

Proof. The proof follows the usual arguments to prove the convergence with respect
to the Skorokhod topology: prove the convergence of the finite dimensional distributions
and the tightness of the sequence. The convergence of the one dimensional marginal
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distributions of ξn follows directly from Theorem 5.2. Now, choose k points such that
0 = u0 ≤ u1 < u2 < · · · < uk ≤ 1. We shall prove the asymptotic normality of the
random vector

H(u1, . . . , uk) =
1√
n

(ξn(u1), ξn(u2)− ξn(u1), . . . , ξn(uk)− ξn(uk−1)) .

Note that, due to the stationarity, it follows again from Theorem 5.2 that each coor-
dinate of H(u1, . . . , uk) is asymptotically centered normal with variance (us − us−1)σ2,
s = 1, . . . , k. We now compare the characteristic function of the random vector with
the product of the characteristic functions of its margins. In the sequel, denote T =
maxs=1,...,k |ts|. From the definition of L-weak dependence, reasoning as for the decom-
position (15), taking into account that ‖ cos(

∑
j tjXj)‖L = maxj=1,...,k |tj |, we get that,

for every t1, . . . , tk ∈ R,∣∣∣∣∣E exp

(
i√
n

k∑
s=1

ts (ξn(us)− ξn(us−1))

)
−

k∏
s=1

E exp

(
its√
n

(ξn(us)− ξn(us−1))

)∣∣∣∣∣
≤ 4kT 2

n

k−1∑
s=2

bnus−1c∑
j=1

bnusc∑
j′=bnus−1c+1

γj′−j

=
2T 2

n

bnukc∑
j,j′=1

γ|j′−j| −
k∑

s=1

bnusc∑
j,j′=bnus−1c+1

γ|j′−j|

 .

Note that our assumption on the decrease rate of the γj coefficients implies the conver-
gence of the corresponding series. So, defining D as in (16), the above expression is easily
seen to converge to 2T 2D(uk − u1 − (u2 − u1) − · · · − (uk − uk−1)) = 0, hence we have
proved the asymptotic normality of H(u1, . . . , uk).

To complete the proof, we need to prove the tightness of the sequence. This is now
achieved as in the proof of Theorem 8.1 in Dedecker et al. [6]. Taking into account the
moment inequality proved in Lemma 5.5, we have that (ξn, λ), where λ is the one dimen-
sional Lebesgue measure is of class C(1 + δ, 2 + 2δ) defined in Bickel and Wichura [1], so
tightness follows from their Theorem 3.

This result complements Theorem 5 in Doukhan and Louhichi [8] and Theorems 2.1
and 2.2 in Doukhan and Winterberger [9], where different weak dependence structures
were considered.

It is still possible to prove the result concerning the convergence of the empirical pro-
cess, again somehow in a similar way it is done in Doukhan and Louhichi [8]. For this
later result, in [8] the dependence coefficient considered is always larger than our gener-
alized Cox-Grimmett coefficients, so that their result implies directly the corresponding
one for L-weakly dependent variables. We include a sketch of proof corresponding to the
adaptation of the proof of Theorem 6 in [8], and mention some related issues concerning
the particular case of associated random variables.

Theorem 5.7. Let Xn, n ≥ 1, be L-weakly dependent and strictly stationary random
variables uniformly distributed on [0, 1]. If the L-weak dependence coefficients γk, k ≥ 1,

satisfy γk = O(k−15/2−δ), for some δ > 0, then ζn(t) =
√
n
(

1
n

∑n
j=1 I[0,t](Xj)− t

)
,

t ∈ [0, 1], n ≥ 1, converges in distribution in the Skorokhod space D[0, 1] to a centered
Gaussian process indexed by [0, 1] with covariance operator

Γ(s, t) =

+∞∑
k=1

Cov
(
I[0,s](X1), I[0,t](Xk)

)
.
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Proof. (Sketch) The proof follows the arguments used to prove Theorem 6 in Doukhan
and Louhichi [8], based on the large-block-small-block variant of the classical Bernstein
decomposition method. First, we bound the covariances between transformations of the
variables by indicator functions by means of the covariances of the original variables.
Reproducing the arguments in the proof of Corollary 2.36 in Oliveira [21] and adapting
the indices in the proof of Theorem 5.1, we find that there exists a constant C > 0, such

that Cov(I[0,t](Xj), I[0,t](Xk)) ≤ Cγ
1/3
|k−j|. This means that, following now the argument

for the proof of Proposition 2 in Doukhan and Louhichi [8], the tightness in D[0, 1] of the
sequence ζn follows if γk = O(k−15/2−δ), for some δ > 0. To complete the proof, we need
to argue the convergence of the finite dimensional distributions. For this purpose, we
follow the final part of the proof of Theorem 6 in [8] step by step, constructing sequences
pn, qn both converging to +∞, such that pn

n −→ 0 and qn
pn
−→ 0, in order to apply their

Lemma 11. With respect to our dependence coefficients we find, instead of the upper

bound (4.15) in Doukhan and Louhichi [8], the bound γ
1/3
qn , hence the construction of

the auxiliary sequences holds, and the theorem follows.

Remark 5.8. We expressed our results with respect to the dependence coefficients regard-
ing the original sequence of random variables. We highlight this point as the statement
of Proposition 2 in Doukhan and Louhichi [8] refers to the coefficients with respect to
the family of variables obtained by transformation through indicator functions, requiring
the multiplication of the exponent by 3, as described in Doukhan and Louhichi [8] in the
comments that follow their Proposition 2.

Remark 5.9. One final note about the decrease rate of the dependence coefficients and
the particular case of associated variables. First, note that the convergence rate for the
dependence coefficients is determined by the need to prove the tightness of the sequence
ζn and also by the bound for covariances of transformations through indicator functions
by means of the dependence coefficients of the original variables. This explains why the
exponent 1

3 appears, likewise what we could reproduce for L-weak dependent variables.
For the convergence of the empirical process with underlying positively associated vari-
ables, this was at the origin of the decrease rates proposed by Yu [29], Shao and Yu [25] or
Oliveira and Suquet [22]. For this particular dependence structure, the exponent in the up-
per bound has recently been improved by Demichev [7], showing that this exponent may be
arbitrarily close, but never equal, to 1

2 (see Corollary 1.1 in Demichev [7]). This improve-
ment means that the proof methodology used above implies the convergence of the uniform
empirical process with underlying associated variables if Cov(X1, Xk) = O(k−5−δ), for
some δ > 0. However, this is still weaker than the condition given by Louhichi [17] for
underlying associated variables, who only requires that Cov(X1, Xk) = O(k−4−δ), for
some δ > 0.

Acknowledgement: The authors wish to thank the anonymous Referee and the Asso-
ciate Editor whose careful reading and suggestions helped improving an earlier version
of this paper.
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