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Resumo 
 O aumento da população mundial e das suas atividades e a crescente concentração de 

população nos centros urbanos resultam em alterações não só nas características físicas da 

superfície terrestre como igualmente, nas características climáticas. Como resultado desta ação 

antropogénica, as cidades registam valores mais elevados de temperatura em comparação com as 

áreas rurais circundantes. A constatação de que as temperaturas da cidade são mais elevadas, já foi 

estudada e documentada por um longo período temporal, referindo-se a este fenómeno como 

“ilhas de calor urbano”.  

Ao longo dos últimos anos, esta temática tem registado grande destaque, em particular, nos 

meios de comunicação social, pela existência de um fenómeno denominado aquecimento global. 

Este fenómeno pode ser descrito como o aumento significativo das temperaturas a nível mundial 

e que com uso de modelos matemáticos de previsão do futuro climático foi perspetivado como 

sendo bastante significativo no futuro.  

Contudo, para que possa ser efetivamente possível avaliar de uma forma mais precisa as 

futuras características climáticas do planeta, é importante perceber qual são as características do 

local onde estão implantadas as estações meteorológicas usadas nos modelos matemáticos. Isto 

porque nestas projeções são utilizados dados históricos das estações. Ora, se uma estação estava 

anteriormente localizada num ambiente rural e se, com o passar do tempo, sofreu ao seu redor um 

processo de urbanização, as temperaturas registadas passaram a verificar um aumento significativo.  

O uso de mais estações localizadas em ambiente urbano, em comparação com estações localizadas 

em ambiente rural nestes modelos tem suscitado o interesse científico, dado que pode ter 

‘enviesado’ os resultados dos modelos das projeções climáticas. 

Assim o principal objetivo deste trabalho é testar uma metodologia que ajude a melhorar a 

classificação de áreas urbanas a nível mundial feita no âmbito do projeto World Urban Database 

and Access Portal Tools (WUDAPT), para que se possa conhecer o ambiente envolvente das 

estações meteorológicas. Para isso, propõe-se uma metodologia que recorre a dados de Informação 

Geográfica Voluntária, especificamente, a dados do OpenStreetMap (OSM), para complementar 

os resultados da classificação de imagens de satélite nestas áreas. 

A metodologia baseia-se na combinação, usando regras previamente estabelecidas, dos 

resultados obtidos através da classificação de imagens de satélite com a informação obtida a partir 

do OSM, depois de associada às classes usadas no projeto WUDAPT.  

Os objetivos propostos inicialmente foram cumpridos, no entanto existem ainda limitações 

associadas à metodologia proposta, que deverão ser abordadas em trabalho futuro. 
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Abstract 
The increase in the world’s population and its activities, and the increasing concentration 

of population in the urban centers, has resulted in alterations, not only in the physical characteristics 

of the terrestrial surface, but also in terms of the climate. As a result of this anthropogenic action, 

cities are experiencing higher temperature values compared to the surrounding rural areas. The 

evidence that the city temperatures are higher has been studied and documented for a long time, 

referred to as the "urban heat island." 

Over the last few years, this issue has become particularly prominent in the media, due to 

the existence of a phenomenon called global warming. This phenomenon can be described as the 

significant increase of temperatures worldwide, which, with the use of mathematical models of the 

prediction of the future climate, has been foreseen as being quite significant in the future. 

However, in order to be able to accurately assess the future climatic characteristics of the 

planet, it is important to understand the characteristics of the location of the meteorological 

stations used in mathematical models. This is important because, in these projections, historical 

data of the stations are used. However, if a station was previously located in a rural environment 

and if, over time, it had an urbanization process around it, the temperatures registered will have 

increased significantly. The use of more stations located in an urban environment compared to 

stations located in rural environments in these models has aroused scientific interest, since it may 

have 'biased' the results of the climate projection models. 

Thus, the main objective of this work is to contribute and propose a methodology that will 

help to improve the precision of the classification of urban areas of the world made in the 

framework of the World Urban Database and Access Portal Tools (WUDAPT) project, so that the 

surrounding environment of the meteorological stations is better known. For this, a methodology 

is proposed that uses Volunteered Geographic Information, specifically OpenStreetMap data, to 

complement the results of the classification of satellite images in these areas. 

The methodology was based on the combination, using previously established rules, of the 

results obtained in the classification of satellite images and the data available in OpenStreetMap 

once they are associated to the classes used in the WUDAPT project. 

The objectives initially proposed were fulfilled; however, there are still some limitations 

associated with the proposed methodology, which should be addressed in future work.  
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1.1. Framework and motivation 

Knowledge of the Land Use and Land Cover (LULC) of the Earth’s surface is undoubtedly 

an important resource to assist in the development of local, regional and national-scale policies. 

Currently, it is recognized that the climate system is subject to induced environmental changes 

from natural or man-induced sources, so it is important that climate projections consider LULC 

change, since this can support the assessment of impacts in biodiversity as well as climate and 

ecosystem changes (Kondratyev and Cracknell 1998; Aquilué et al. 2017; Stewart and Oke 2012). 

In other words, the representation of the historical series of LULC patterns with the analyses of 

historical series of climatological variables (for example, temperature and precipitation) can be used 

to identify not only trends and their causes, but also to predict future climatological trends, based 

on updated data (Stewart and Oke 2012). 

A large variety of climate models have been developed over several decades and provide 

results with considerable confidence, particularly at the global and continental scales. These models 

have generally shown a trend in the Earth’s global warming and have raised concerns regarding  

greenhouses gases and the hole in the stratospheric ozone layer (IPCC 2007). However, these 

models, as with any mathematical representation of reality, still show significant errors that are 

greater overall when local scales are considered (IPCC 2007). The main source of most errors is 

the integration and representation of small-scale processes, since they cannot be represented 

explicitly in the models, and hence are integrated in a simplistic way and interact with larger-scale 

features (IPCC 2007).

The use of historical temperature series without consideration of the environment in which 

meteorological stations are located, i.e. whether in an urban or a rural landscape, can lead to 

misinterpretations and misclassifications of future climate trends. Hence, it becomes important to 

determine the influence of the values of temperature on the stations located in urban environments 

in the model’s outputs. This could occur if, for example, a station, which was originally located in 

an rural environment, is subject to population growth and increasing urbanization (Stewart and 

Oke 2012), and hence is now located in an urban environment. In this case, the increase in 
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temperature values recorded at the station may not be due not to global temperature increases but 

rather to a change in the station environment. Moreover, the representativeness of rural and urban 

areas needs to be retained in the modelling process to eliminate any bias towards higher 

temperatures in the historical series that does not exist. Hence, knowledge of the actual land cover 

patterns of the Earth’s surface at global scale is important to support the creation of future climate 

change trends and projections worldwide.  

According to the United Nation World Population Prospects: the 2012 revision, the 

world’s population of 7.2 billion in mid-2013 is expected to increase by one billion people within 

the next twelve years, reaching 9.6 billion in 2050 and 10.9 billion by 2100. The increase of world 

population and their activities influence the natural surface energy and radiation balance, so cities 

are relatively warm places compared to rural areas (Stewart and Oke 2012). 

Evidence that air temperatures are often higher in cities than in the surrounding countryside 

was identified by Luke Howard in 1833. However, the scientific term “Urban Heat Island” (UHI), 

which is used to express this phenomenon, was only first recognized in the 40s, by Balchin and 

Pye (1947). This phenomenon is typical of the urban climate and occurs in almost all urban areas, 

large or small, in warm or cold climates (Stewart and Oke 2012). It also is an example of 

unintentional climate modification as a result of urbanization and anthropogenic activity. These 

factors induce changes in the physical characteristics of the surface (albedo, thermal capacity, heat 

conductivity, moisture), in radiative fluxes and in the near surface flow (Yang and Liu 2006). 

 However, for these types of studies, the classification of the environment into urban/rural 

has been shown to be too simplistic and therefore new classifications have been proposed to 

characterize the environment (further explained in section 2.3). Stewart and Oke (2012) proposed 

the Local Climate Zones (LCZ) classification based on a number of factors that characterize the 

physical characteristics of the region. A project has also been initiated to collect data on the form 

and function of cities around the world, namely the World Urban Database and Access Portal 

Tools (WUDAPT) project, which proposes a methodology to classify cities into LCZ classes and 

enable citizens around the world to participate. Due to the large quantities of information made 

available by citizens in other collaborative projects, additional data may be used to improve the 

LCZ classification. In this context, the main aim of this work is to identify if the data available in 

the collaborative project, OpenStreetMap (OSM), can be used to assist the process of creating 

more accurate LCZ classifications.  

The importance of the topic described above and my personal interest in environmental 

issues were important motivations for the choice of this theme, in particular, the possibility to 

collaborate with the WUDAPT project and contribute to improving knowledge of the Earth's 
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surface that is used for the creation of more accurate models of climate prediction. Another key-

factor for the choice of this theme was that it would give me the opportunity to work in several of 

the topics and disciplines studied during the Master course, namely Remote Sensing and 

Geographic Information Systems (GIS). 

 

1.2. Objectives and structure of the thesis 

 The main objective of this dissertation is to develop and test a methodology that explores 

the possibility of using Volunteered Geographic Information (VGI), namely data extracted from 

OSM, to assist in the creation of more accurate LCZ maps. The methodology proposed in the 

WUDAPT project is used to create the initial LCZ maps, and a methodology is developed to insert 

the data available in OSM into this process, in order to create more accurate LCZ maps. 

 The work was divided into several stages. In the first stage, the creation of LCZ maps using 

the methodology proposed by WUDAPT was carried out, including the accuracy assessment of 

the results. Subsequently, several processes for extracting, processing and transforming the data 

available in OSM were tested and developed. Then a methodology was developed to integrate the 

data created with the processes proposed by the WUDAPT project and the data extracted from 

OSM. Finally, the last step consisted of an analysis of the final results and the assessment of their 

accuracy. 

This dissertation is subdivided into five chapters. In the first chapter an introduction is 

made to the dissertation, its objectives and the motivation that leaded to the choice of this subject. 

Subsequently, in the second chapter, some theoretical aspects are presented that can help in the 

contextualization of this work. This chapter describes some concepts of Remote Sensing, GIS, and 

VGI, as well as some of the tools and processes used within the dissertation. A more developed 

description of the local climate classification is presented, including the classification into LCZs. 

Finally, the WUDAPT project is presented. 

Then, in the third chapter, the methodology used is described, including: 1) the 

methodology proposed by the WUDAPT project, which was also used in this thesis; 2) the 

processes used for converting OSM data into LCZ classes and 3) the integration of OSM data with 

the outputs of the LCZ classification performed with the WUDAPT project. The methodology 

used for the accuracy assessment of all the results is also described in this chapter. 

In the fourth chapter, the methodology described in the previous chapter is applied to two 

areas of study, namely Coimbra and Hamburg. In this chapter, the location and characteristics of 
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the study areas are described, the results of all the processing is presented, as well as the confusion 

matrices and the user’s, producer’s and overall accuracy indices.  

Finally, chapter five presents the conclusions, the main difficulties and limitations that have 

occurred throughout the study, as well as proposals for future developments and improvements. 
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2.1. GIS and Remote Sensing 

2.1.1. Geographic Information 

In this section, some basic notions of GIS that are used in this dissertation are presented, 

as well as the GIS software used.  

Geographical information can be represented in geographical space using vector or raster 

model (Figures 1 and 2). 

The raster model corresponds to a matrix of square cells. An attribute is associated with each 

cell of the matrix. In this model, the geographical space is considered discrete, since each cell (pixel) 

is considered as a spatial unit (Bonham-Carter 2014). The raster data structure can represent zero-

dimensional objects by a cell or pixel, unidimensional elements by a sequence of cells or 

neighboring pixels and bi-dimensional elements, also by a sequence of cells or neighboring pixels 

(Bonham-Carter 2014). 

The vector model, on the other hand, represents the phenomena or target-object as points, 

lines or polygon features (that can be filled – areas or features bound by lines). This model is 

appropriate to represent a large variety of different types of objects in comparison with the raster 

model, since in the raster model it is more difficult to capture the spatial position accurately, without 

making pixels very small, which would require higher storage costs and will make the processing 

of data much slower. In the vector model, in addition to the positional information and topology 

of the entities, it is possible to store additional information about each of the represented 

phenomena, called attributes. 

It is possible to convert between these data structures but the use of one model over 

another depends on the aims of the project.  In particular, the processing tools to use in each case 

are very different.  

2. Theoretical background 
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Figure 1: Raster model on the left and vector model on the right (in Humboldt State University 
2014; and Science 2017) 

 

 

Figure 2: Raster and vector models schemes (in Heywood, Cornelius, and Carver 2006, 78) 

 

 



7 

In this project, several software packages were used in different parts of the research, namely 

Google Earth, the System for Automated Geoscientific Analyses (SAGA) and ArcGIS software. 

Google Earth software corresponds to ‘virtual globe’ software that allows 3D environmental 

data to be viewed, using a combination of digital elevation models, satellite imagery and 3D building 

envelopes (in some cities). This free software, which has been called “A 3D Interface to the Planet”, 

was presented to public in June 2005 and has attracted considerable public use and attention due 

to its ability to visualize landscapes in realistic three dimensions (Sheppard and Cizek 2009). The 

Google Earth software can be download as Google Earth or Google Earth Pro.  

Google Earth allows the user to view any location on Earth, visualize space (i.e. the Sky, 

Moon and Mars - new features available only from Google Earth 5.0 or later versions), see 

geographical content, save toured places, and also share data with others.  

Additionally, Google Earth Pro (Figure 3) provides extra capabilities such as Movie Maker 

and GIS data import capabilities (https://www.google.com/earth/outreach/tools/ index.html). 

For over ten years, Google Earth Pro was not freely available, but since 30 January 2015, the 

software was made available for free download. 

 

Figure 3: Google Earth vs Google Earth Pro tools (https://www.google.com/intl/en-
EN/earth/explore/products/desktop.html) 

  

The SAGA software can be classified as an open source system of geographic information, 

that was classified as free and available for public use since it was publised in 2004. With the 

exception of the Application Programming Interface (API), the source code is licensed under the 

terms of the GNU General Public License. 

SAGA has experienced a relatively fast evolution from a particular tool for digital terrain 

analysis to global GIS software, useful for geographical and scientifical analysis and modeling 
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procedures. This software is coded in the C ++ programing language, it can be used in diverse 

operating systems, such as Windows and Linux, and is based on an object-oriented approach 

(Conrad et al. 2015). 

SAGA was designed as a modular architecture that provides a user-friendly approach to 

users with little or no programming knowledge, with several visualization options. For users with 

programming knowledge, a command line interpreter is available that can interpret R and Python 

languages (Conrad et al. 2015). 

 ArcGIS is also a GIS software, but unlike SAGA, it is proprietary software. It is developed 

and commercialized by the Environmental Systems Research Institute, Inc (ESRI). This software 

has suffered a long evolution since it was originally developed for mainframe computers in a system 

based on command line into one with a graphical user interface (GUI), making the software more 

user-friendly and therefore available to a larger number of users. The old core of the ArcGIS system 

was called Arc/Info and included a basic set of programs: Arc, ArcPlot and ArcEdit and was 

command line based. As in intermediate product, ESRI developed ArcView, which was created 

primarily to view and analyze spatial data (Dixon and Uddameri 2016). ArcGIS was released in 

2001 and emerged as a synthesis of both the powerful Arc/Info system with the easy-to-use 

interface ArcView.  

ArcGIS contains several components, which include ArcMap (to create, display, analyze 

and edit spatial data and tables) and ArcCatalog (to view and manage spatial data files). It also 

includes ArcToolbox, a collection of tools and operations to which users can create and add their 

own tools for special or even often-used tasks (“ArcGIS Desktop” 2015). In ArcGIS 9.0, the 

Python programming language (a free, open-source, cross-plataform and interpreted programming 

language) was introduced as a scripting language (“ArcGIS Desktop” 2015). 

 All the tasks that were performed in this research used the ModelBuilder, which is a visual 

programming language for building geoprocessing workflows, which allows spatial analysis and 

data management processes to be automated and documented. Several iterative models were 

created, which also included the creation of some block code in the Python language, mostly within 

the “Calculate field” tool.  
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2.1.2. Remote Sensing 

Remote Sensing science is based on the fact that the objects on the terrestrial surface reflect 

electromagnetic radiation from the Sun. This is possible using sensors on board of satellites to infer 

the physical and chemical characteristics of objects on the Earth’s surface, through the 

electromagnetic radiation reflected by those objects. Besides the reflected radiation, the objects 

emit their own radiation (with intensity and spectral composition dependent on the temperature), 

which is also used in remote sensing (Fonseca and Fernandes 2004). 

There are many satelite platforms collecting data about the Earth’s surface. However, the 

longest historical records of space-based Earth surface observations is provided by the Landsat 

series, with the first launch in 1972, followed by successive launches with chronological 

overlapping, namely, Landsat observatories (Landsat 2, 3, 4, 5, 7 and 8) that contributed to the 

knowledge of the Earth’s surface by capturing images with higher spatial and spectral fidelity (Roy 

et al. 2014). 

Landsat-8 satellite images are very important and useful for monitoring trends and 

evaluating land use changes because these satellites have collected data from the entire Earth’s land 

surface with moderate resolution since they were launched on 11 February 2013. The applications 

are diverse, including land mapping and identification of changes in land cover (Knight and Kvaran 

2014). 

Landsat 8 satellites have a good temporal resolution, covering the entirety of the Earth’s 

surface every 16 days, in an 8-day offset from Landsat 7. The data can be dowloaded for free from 

GloVis, EarthExplorer or via the LandsatLook Viewer 24h after being received 

(http://landsat.usgs.gov/landsat8.php). 

Landsat 8 transports two instruments (Figure 4): the Operational Land Imager (OLI) 

sensor, that measures nine spectral bands, where eight are multispectral, one is a pancromatic band 

and also a Quality Assessment band; and the Thermal Infrared Sensor (TIRS), that contibutes to 

data acquisition with two thermal bands (Knight and Kvaran 2014). 

The OLI band signal-to-noise ratios exceed those achieved by previous sensors, namely, 

by the Landsat “Enhanced Thematic Mapper Plus” (ETM+) of the Landsat 7 mission. These 

enhancements allow a 12-bit quantization (4096 levels) by the OLI and TIRS analog-to-digital 

converters, rather than the 8 bits (256 levels) used by Landsat ETM+. This upgraded signal-to-

noise characteristcs have improved measurements of land cover, reducing band saturation over 

highly reflective surfaces, such as snow or cloud (Roy et al. 2014). The 12-bit data are transformed 

into 16-bit integer data and distributed as Level 1 data products. All products are transformed into 
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55 000 levels of grey and this product can also be transformed by users into the Top of the 

Atmosphere (TOA) reflectance and/or radiance though the use of radiometric rescaling 

coefficients avaiable on product metadata file (MTL file). Thus, Landsat 8 products are delivered 

as 16-bit images (U.S. Geological Survey 2016). 

 

 

Figure 4: Landsat 8 satellite (U.S. Geological Survey 2016) 

 

Landsat 8 images (Table 1) have eight spectral bands at 30 m resolution (OLI multispectral 

bands), from band 1 to 7 and 9, one panchromatic band with 15 m resolution (band 8) and two 

other thermal bands (TIRS) collected at 100 m resolution (band 10 and 11), which can be used to 

distinguish between surface covers. 

The use of satellite data images involves performing image processing operations, namely, 

the pre-processing step. All Landsat standard products, namely, the data used in this study, are 

processed using the Level 1 Product, where a GeoTIFF output format is applied with a Cubic 

Convolution (CC) resampling technique. The map projection is Universal Transverse Mercator 

(UTM) with a World Geodetic System (WGS) 84 datum and a Map (North-up) image orientation 

(http://landsat.usgs.gov/Landsat_Processing_Details.php).  

The Cubic Convolution (CC) corresponds to an image resampling process, where each new 

pixel is interpolated from the existing pixel values. The image resampling process is necessary 

whenever the raster’s structure (number of rows and columns) is modified during the projection, 

datum transformation or cell resizing operations (enlarged or reduced). CC resampling uses a 

weighted average of the 16 pixels nearest to the focal cell and produces the smoothest image 

compared to bilinear interpolation or nearest-neighbor resampling (Studley and Weber 2011). 
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Table 1: Characteristics of the Landsat 8 Operational Land Imager (OLI) and Thermal Infrared 
Sensor (TIRS) (from http://landsat.usgs.gov/best_spectral_bands_to_use.php) 

Band Wavelength Useful for mapping 
Band 1: coastal 
aerosol 

0,43 – 0,45 µm Coastal and aerosol studies 

Band 2: blue 0,45 – 0,51 µm 
Bathymetric mapping, differentiate soil from vegetation 
and deciduous from coniferous vegetation 

Band 3: green 0,53 – 0,59 µm 
Highlights peak vegetation, which is useful for 
assessing plant vigor 

Band 4: red 0,64 – 0.67 µm Discriminates vegetation slopes 
Band 5: Near 
Infrared (NIR) 

0,85 – 0,88 µm Emphasizes biomass content and shorelines 

Band 6: Short-
wave Infrared 
(SWIR) 1 

1,57 – 1,65 µm 
Distinguishes moisture content of soil and vegetation; 
penetrates thin clouds 

Band 7: Short-
wave Infrared 
(SWIR) 2 

2,11 – 2,29 µm 
Enhanced moisture content of soil and vegetation 
and thin cloud penetration 

Band 8: 
Panchromatic 

0,50 – 0,68 µm 15-meter resolution, sharper image definition 

Band 9: – Cirrus 1,36 – 1,38 µm Improved detection of cirrus cloud contamination 

Band 10: TIRS 1 10,60 – 11,19 µm 
100-meter resolution, thermal mapping and estimated 
soil moisture 

Band 11: TIRS 2 11,5 – 12,51 µm 
100-meter resolution, improved thermal mapping and 
estimated soil moisture 

 

According to the U.S. Geological Survey (2016), the standard terrain correction (Level 1T 

-precision and terrain correction) is applied to Landsat 8 products and is available to users as 

radiometrically and geometrically corrected images. For that, inputs from both sensors and the 

spacecraft are used, as well as ground control points (GCPs) and Digital Elevation Models (DEMs). 

Hence, the result is “a geometrically rectified product free from distortions related to the sensor 

(e.g., view angle effects), satellite (e.g., attitude deviations from nominal), and Earth (e.g. rotation, 

curvature, relief). The image is also radiometrically corrected to remove relative detector 

differences, dark current bias, and some artifacts.” (U.S. Geological Survey 2016). 

Remotely sensed data can be analyzed to extract thematic information, so data is 

transformed into information. The utilization of remote sensing as a source of information for 

characterizing LULC at local, regional and global scales has been increasing over time. One of the 

most often used techniques to extract information is image classification into LULC maps based 

on statistical pattern recognition procedures applied to multispectral remote sensing data (Jensen 

2004).  Image classification aims to automatically categorize the pixels in an image into a LULC 

class. It is therefore a process of reducing an image to informative classes. The categorization of 
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pixels is based on the values of grey from one or more spectral bands (Jensen 2004; Sousa and 

Marques 2011). 

According to Jensen (2004), multispectral classification can be performed using a large 

variety of methodologies. These methods include parametric and nonparametric statistical 

algorithms (that use ratio and interval-scaled data) or non-metric procedures (that can similarly 

integrate nominal scale data). The classification methods can be classified into supervised or 

unsupervised, hard or soft (fuzzy), per-pixel or object-oriented or hybrid classification approaches. 

Table 2 summarizes these.  

 

Table 2: Some multispectral classification methodologies (Jensen 2004; Alba 2014; Cortijo and 
Blanca 1996) 

Method Description Examples 
Parametric These techniques assume that the data are normally 

distributed, in other words, this classifier assumes 
that there is an underlying probability in the 
distribution of the data. 
The parameters (for example, mean vector and 
covariance matrix) are frequently created from 
training samples. 

- Maximum likelihood 
- Unsupervised 
classification 

Non-
parametric 

These techinques are based on the fact that no 
assumption about the data is need, in other words, 
they do not assume anything about the probability 
distribution. This technique does not employ 
statistical parameters for the computation of the 
separation of class.  

- Nearest neighbor 
classifiers 
- Fuzzy classifiers 
- Neural networks 
 

Nonmetric These techinques can be used in both remote sensing 
with real-value data (for example, reflectance values 
from 0 to 100%) or nominal scale data (for example, 
class 1 = agriculture; class 2 = water) 

- Rule-based decision 
tree classifiers  

Supervised 
classification 

In this classification, samples of classes (e.g. types of 
soil cover) in the image are identified. In supervised 
classification the training samples need to have field 
information. The procedures of this classification are 
based on the extraction of the spectral characteristics 
(signatures) of the training samples. Then, the 
classifier uses these signatures to classify the input 
data into a thematic map. 

- Parallelepiped 
- Minimum distance to 
mean 
- Maximum likelihood 
- Others (hyperspectral 
matched filtering, 
spectral angle mapper) 

Unsupervised 
classification 

In this classification, the identity of the soil cover 
types is specified in classes. However, unlike the 
supervised classification, it does not require any field 
information. In other words, no prior information is 
needed about the classes. Pixels with similar 
characteristics are grouped in different 'clusters' 
according to some statistical parameters. The 
classifier later reclassifies and combines these 
spectral clusters into information classes. 

- Chain method 
- Multiple-pass 
ISODATA 
- Fuzzy c-means) 
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As mentioned above, imagery classification is a process of reducing an image to informative 

classes. Nonparametric classification represents those methods that are not based on the 

assumptions that the population (from which the sample is drawn) has a specific distribution, such 

as normal distribution (Bhar 2014).  

Random Forest (Figure 5) is a widely-used algorithm for remote sensing image 

classification because of its capability to manage high dimensional and non-normally distributed 

data, making it a powerful option for integrating different imagery sources. This classification 

method, used in this research, is an ensemble classifier that produces numerous Classification and 

Regression (CART)-like trees, where each tree varies according to the values of a bootstrapped 

sample of the training data. In each bootstrapped training set, approximately one-third of the 

training data are left out. The input variables are also randomly selected for building the trees. The 

trees grown are not pruned (Millard and Richardson 2015; Breiman 2001). 

 

 

Figure 5: Random Forest scheme (Isied and Tamimi 2015) 

 

The algorithm used by this classifier delivers an accuracy assessment called “out-of-bag” 

error (rfOOB error) that according to Breiman (2001), eliminates the necessity for a set-aside test 

set. These out-of-bag estimates are calculated using the withheld training data and the measures of 

variable importance based on the mean decrease in accuracy when a variable was not used in 

building a tree (Millard and Richardson 2015). Breiman (2001) considered this rfOOB error as an 

independent assessment of accuracy since sample points used for error calculation are not used in 

building the trees of the “forest” classification (Millard and Richardson 2015). 
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2.2. Volunteered Geographic Information 

Geographic information has traditionally been acquired by specialists using, for example, 

remote sensing, land surveys or photogrammetric methods to capture data that characterize both 

social and environmental phenomena of the Earth (Castelein et al. 2010). The phenomenal 

development of many geographic information related technologies, such as GPS-enabled cell 

phones and sensor technology, have opened up the possibility for citizens to collect geographic 

data (Michael Goodchild 2007a; Sui, Goodchild, and Elwood 2013; Castelein et al. 2010). This user 

generated geographic information has been named Volunteered Geographic Information (VGI) 

by Goodchild (2007b).  

The development of the new Web 2.0 has also been fundamental in the development of 

VGI. The early Web was one-directional, where a relatively small number of sites existed and a 

huge number of users, while the Web 2.0 is bi-directional, and users can interact and provide 

information to central sites, see the information collected and also make the data available to others. 

One example of this type of crowd-generated content is Wikipedia (https://www.wikipedia.org), 

where users can provide information to the project that is managed by a relatively small group of 

reviewers (Goodchild 2007b). 

The combination of web developments along with portable positioning devices have 

triggered a large variety of VGI activities, such as the creation of maps by walking, cycling or driving 

or geocaching activities, where the participants have to find hidden destinations based on their 

coordinates (Goodchild 2007a). 

Many examples of interactive platforms such as OSM (https://www.openstreetmap.org/), 

Wikimapia (http://wikimapia.org), Google Maps (https://www.google.pt/maps), Flickr 

(https://www.flickr.com) or the Geo-Wiki Project (http://www.geo-wiki.org/) make it possible 

for every citizen to disseminate their own georeferenced data, such as maps, photographs or other 

types of geographic information, contributing to sparking a large growth in VGI content (Castelein 

et al. 2010). 

The use of VGI for charitable projects or the mapping of regions affected by natural 

disasters, such as the OSM mapping to support rescue response after Haiti’s 7.0 magnitude 

earthquake in 2010, resulted in more attention being focused on VGI. Examples such as the 

Humanitarian OpenStreetMap Team (HOT) played a significant role through projects like the Sri 

Lanka Flooding in 2016 or the Nepal Earthquake Response in 2015, among others (Neis and 

Zielstra 2014). This has contributed to the acceptance of citizens as a legitimate source of 

observations that can be used by the scientific community, contributing to so called ‘citizen 

science’, which is now respected and recognized in some areas (Goodchild 2007b).  
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2.2.1. The OpenStreetMap project 

The OSM project was started in 2004. In the beginning, all databases and web services were 

hosted on several severs at university domains of University College London, but over time, with 

the growth of the project and through numerous donations, it was possible to establish additional 

server infrastructures. The fundamental goal of the project was to build “a free database with 

geographic information” (Neis and Zielstra 2014, 79) and most of the all servers and interfaces of 

the project have been developed and administrated by volunteers (Neis and Zielstra 2014). 

In this project, OSM volunteers contribute and maintain data on roads, railways, buildings, 

land use and many other types of information around the world. The OpenStreetMap Foundation 

(OSMF) has managed the basic design services and legal rights of this project and the data are 

available under an Open Database (ODbL) license. This allows commercial use of the data as long 

as a reference is made to the OSM project. Moreover, the data and their derivative products must 

be released under the same license or another compatible one (https://www.openstreetmap.org/). 

The information available in OSM is in vector format and each element has an associated 

spatial dimension (geometry) and an informative dimension (attribute data). When an OSM 

contributor creates an object (Figure 6) that represents a real-world feature, the volunteer is able 

to use three types of primitives (Figure 7): nodes (points), ways (polylines, closed ways or 

areas/polygons) (http://wiki.openstreetmap.org/wiki/Elements) and relations (logical collections 

of two or more nodes, ways, areas or other relations) (Neis and Zielstra 2014).  

In OSM, each element has a spatial and an informative dimension, so each of these 

primitives (namely, nodes, ways and relations) are associated with one or more attributes, also 

referred as tags. Tags are used to describe information such as the type of object (e.g. restaurant, 

street, etc.) and their most relevant details (e.g. address, if access is restricted, etc.). Each tag is 

formed by a key and a value; e.g. to identify a wood, the tag "natural=wood" must be used, where 

"natural" is the key and "wood" is the value. OSM contributors can use their own tags, although 

there is an official collection of tags that have been established and agreed by the OSM community, 

including explanations and examples on their use (http://wiki.openstreetmap.org/wiki 

/Map_Features).  

 

https://www.openstreetmap.org/
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Figure 6: Creating/Editing on OSM (December 13, 2016) 

 

 

Figure 7: OpenStreetMap Primitives 

 

The OSM project organizes contributions according to numerous layers, including the ones 

represented in Figure 8, i.e. points of interest (POIs), roads, waterways, railways, land use, natural 

and buildings. In general, there are more contributions relating to roads, POIs and buildings than 

relate to other features (Arsanjani et al. 2013). It is important to note that the information available 

in OSM for each area varies widely, so in many regions, not all of the information represented in 

Figure 8 is available. 
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Figure 8: Types of OSM features  
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The use of OSM to generate land-use (LU) patterns was tested and applied by Arsanjani et 

al. (2013) in Vienna, Austria, where the OSM data are largely available. In this study, the Land-use 

map obtained using OSM data was compared with a propriety dataset, namely, the Global 

Monitoring for Environment and Security Urban Atlas (GMESUA). The outcomes showed 

acceptable accuracy. Thus, it was concluded that “VGI can be a potential source for mapping LU 

patterns” (Arsanjani et al. 2013, 13).  

The use of OSM data as the only source of data for Land Use and Land Cover Maps 

(LULCM) has also been tested and confirmed in regions with high levels of available data in OSM 

by Martinho and Fonte (2015), namely for two regions located in London and in France. An 

automated methodology was developed to convert OSM features into LULCM, which through a 

hierarchical approach, a set of decision rules and spatial analysis, solves some types of 

inconsistencies (Fonte et al. 2016). The outcomes demonstrated satisfactory results but the 

problems inherent to this procedure are still present, namely, empty regions on the LULCM map 

or areas with no data in OSM, the fact that volunteers can classify each feature freely and also the 

predefined categories that can vary between study areas.  

According to Arsanjani et al. (2013), the main advantage of VGI, and particularly of OSM, 

for the collection of LULC data, is that it is able to provide some data that have not been collected 

before and that are missing in authoritative databases.  

 

2.2.2. VGI Quality 

One of the main problems associated with VGI data is its quality. The quality of geographic 

information includes a large variety of aspects and standards that should be respected. Namely, the 

lineage or chronological nature of information (history of dataset), the positional (exact accurate 

location) and attribute accuracy (the values on attribute information corresponding to the spatial 

data represented), logical consistency (rules to adapt and optimize data structures and storage), 

completeness (percentage of data available in relation to all data that should be represented), 

semantic accuracy (reliability of geographical entity types and their attributes ), usage, its purpose 

and constraints, and lastly, the temporal quality (Oort 2005).  

There have been a number of research studies that have addressed this issue. The evaluation 

of all the quality parameters is not easy, so most authors only address a few of them. For example, 

Haklay (2010) only studied two elements of VGI quality, namely, positional accuracy and 

completeness of OSM data in relation to a United Kingdom (UK) government dataset provided 

by the Ordnance Survey, in the city of London – England (Haklay, 2010). The author concluded 
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that information from OSM can be fairly accurate, but also raised many questions about VGI 

quality that can and should be explored.  

Ribeiro and Fonte (2015) developed an automated methodology to assess the degree of 

coverage of OSM data, computing an indicator of completeness. 

Girres and Touya (2010) studied OSM data accuracy and selected France as the study area. 

Hence, they computed a comparison of OSM data with BD TOPO from the French National 

Institute of Geographic and Forest Information (IGN). The authors outlined the main advantages 

of OSM data such as its responsiveness and flexibility but also referred to the very high 

heterogeneity in several domains, such as attribute variety, limiting a large possibility of 

applications. These heterogeneities occur because of the lack of standardized and precise 

specifications. 

Neis, Zielstra, and Zipf (2011) compared OSM roads or street networks with commercial 

spatial data (of TomTom Multinet 2011) in Germany. The completeness results of OSM were very 

satisfying, where the information of the total network exceeded that provided by the authoritative 

dataset by 27%, and for car routes and navigation, OSM only missed 9% of the commercial data.  

Senaratne et al. (2017), in a literature review, used query techniques in Google Scholar with 

the aim of investigating all studies starting from 2007 up until the middle of 2015 that included 

some words or expressions both on title or abstract, namely, “quality assessment, methods and 

techniques, uncertainty, volunteered geographic information, map, microblog, photo” (Senaratne 

et al. 2016, 8). The results showed 425 academic studies. Thus, the authors minimized the requested 

parameters according to relevance ranking in Google Scholar, refining their assembly of papers by 

establishing some criteria. Namely, the papers must explore methodologies or tools for quality 

assessment, and when multiple studies used analogous procedures, the newest research was 

selected. This resulted in a total of 56 papers selected for further analysis.  

This study, and others, demonstrate that despite the amount of literature produced over 

time on this subject, the advantages and disadvantages of VGI have been largely explored and 

analyzed. Nevertheless, the potential of this information has also been proven by a large variety of 

studies about urban management administration (Song, Chen, and Guo 2009), flood damage 

assessment (Poser and Dransch 2010), wild fire evacuation (Pultar et al. 2009) and natural disaster 

management or responses (Ostermann and Spinsanti 2011; Manfré et al. 2012; Horita and de 

Albuquerque 2013; M. Goodchild, Glennon, and Glennon 2010; Neis, Singler, and Zipf 2010; 

Bono and Gutiérrez 2011) (in Neis and Zielstra 2014).  
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2.3. Local Climate Classification 

Over time, many studies of the UHI effect have been developed and the typical UHI 

studies were based on only two approaches; in one of them, the temperature is retrieved at 

meteorological stations located at urban or rural places, and the other is based on temperature 

values obtained along a transect from rural to urban areas using a mobile device (such as cars or 

bicycles, for example). In both approaches, sites are classified as either urban or rural and the UHI 

effect is estimated by comparing urban (U) values with rural (R) values or the background 

temperatures (ΔTU-R) (Alexander and Mills 2014; Stewart and Oke 2012). 

The background temperatures, or the UHI intensity (ΔTU-R), is defined as the temperature 

difference between the maximum urban temperature and its surrounding rural temperatures (Oke 

1987 in Santamouris 2013; Alexander and Mills 2014; János Unger, Lelovics, and Gál 2014; Stevan 

et al. 2013). Thus, the typical UHI measurement studies that have been developed for many decades 

were based on single comparisons of "urban" and "rural" air temperatures. 

However, the terms rural and urban cannot be defined universally, given that they have a 

unique objective meaning, and thus also no climatological relevance. Furthermore, what is defined 

as urban or rural in a certain city can be different for another city (Stewart and Oke 2012). 

In recent decades, urban theorists advocated that the spatial borderline between an urban 

region and the countryside is not natural, and that the relation should be more precisely represented 

as a continuum, as opposed to a dichotomy of urban/rural (Gugler 1996).  

 According to Chandler (1965), the climate of a city is a component of numerous factors, 

among which urban development is only one. He stated that there are three fundamental 

determining factors: the proprieties of the general climate of the region; the physical or geomorphic 

characteristics; and the built form of a town. According to Stewart and Oke (2012), Chandler (1965) 

was perhaps the first specialist to create a classification of a city based on climate characteristics. 

 Auer (1978) developed another urban-rural classification for St. Louis, located in Missouri, 

USA, where he partitioned the city into twelve types of land use, established according to the 

vegetation of the city and the utilization and the structures of the buildings. 

 Ellefsen (1991) grouped ten North American urban areas into a system of seventeen classes 

of neighborhood types referred to as "Urban Terrain Zones" (UTZ), which were based on building 

continuity, construction materials, and street configuration (Stewart and Oke, 2012). Combining 

the features of both Auer’s and Ellefsen’s classifications, Oke (2004, 2008) designed a classification 

called "urban climate zones" (UCZs), dividing the city terrain into seven homogenous regions, 

which ranged from semi-rural to intensely-developed cities.   
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Stewart and Oke (2009) applied a classification system that divides the landscape universe 

into nineteen local climate zone classes based on three landscape proprieties, namely, surface cover, 

surface structure and cultural activity. This was an initial classification system that was subject to 

upgrades. These nineteen classes are structured into four landscape series, namely city series, 

agricultural series, natural series and mixed series. For example, the natural series are divided into 

five local climate zones, namely, forest, wetland, grassland, tundra and hot desert. Their study area 

was the Nagano basin of central Honshu, Japan and they selected seven field sites from the 

observational urban heat island studies of Sakakibara (1999) and Sakakibara and Matsui (2005). 

According to Stewart and Oke (2012), despite their many advantages, the previously 

mentioned classifications have limitations; namely, not all classifications use a full set of surface 

climate properties in the definitions of their classes. This full set must include “the urban structure 

(dimensions of buildings and the spaces between them, the street width and street spacing), the 

urban cover (built-up, paved, vegetated, bare soil, water), the urban fabric (construction and natural 

materials) and the urban metabolism (heat, water and pollutants due to human activity)”. Secondly, 

the systems that do not use any class for rural landscapes or systems that use elements (such as 

classes names or definitions), which are specific to a region, are not reliable for these studies. The 

authors state that all the previous classifications are based on developed cities, so if they were used 

in underdeveloped cities they would present several limitations. 

To provide a universal answer for urban temperature studies, Stewart and Oke (2012) 

established another framework, a new upgraded classification system referred to as "Local Climate 

Zones" (LCZs) for urban temperature studies. 

The LCZs classification system divides the landscape into seventeen classes (Figure 9). 

LCZs are areas of “uniform surface cover, structure, material, and human activity that span from 

hundreds of meters to several kilometers in horizontal scale" (Stewart and Oke 2012, 1884). This 

classification divides LCZs into ten built-up types (from LCZ 1 to 10), seven land cover types 

(from LCZ A to G), and additionally, variable seasonal types. These last types consist of variable 

seasonal or short period land cover properties, referenced, for example, by LCZ1s when the surface 

is covered by snow.  

All classes emerge from the logical division of the landscape, according to different 

properties that influence screen-height temperatures, i.e. temperatures measured from one to two 

meters above the ground (Stewart, Oke, and Krayenhoff 2014), such as surface structure and 

surface cover. In this way, each "LCZ has a characteristic screen-height temperature regime that is 

most apparent on dry surfaces, on calm, clear night and in areas of simple relief" (Stewart and Oke 

2012, 1884). LCZ types can be distinguished by ranges of typical values of measurable physical 
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properties, which characterize the geometry and surface cover, and the thermal, radiative and 

anthropogenic energy features of the surface. Tables 3 and 4 show the description of the properties 

used to characterize the LCZs and the values associated with each class, respectively. 

The LCZ system can be classified as generic, as it is impossible to consider every peculiarity 

of each place, be it urban or rural. Moreover, in all classifications, the descriptive and explanatory 

capabilities are limited. However, the seventeen typologies should be familiar to the majority of 

any city's dwellers and should be adaptable to the local features (Stewart and Oke, 2012). 
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Figure 9: Local Climate Zone types (Stewart and Oke, 2012) 
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Table 3: Description of surface cover and geometric properties for LCZs (Stewart and Oke 2012, 
1886–87) 

 Properties Properties description 
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Sky view factor: 

𝜓𝑠𝑘𝑦 

Proportion of the measure of half of earth sky seeable from 
terrain level to that of a clear hemisphere 

Aspect ratio: H/R 
Mean height-to-width proportion of roads canyons (LCZs 1-7), 
building arrangement (LCZs 8-10), and tree arrangement (LCZs 
A-G) 

Building surface 

fraction: 𝜆𝑏 

Proportion of building cover area from total area (%) 

Impervious surface 

fraction: 𝜆𝑖 

Proportion of impervious area (namely, rock or paved) from 
total area (%)  Pervious surface 

fraction: 𝜆𝑣 

Proportion of pervious area (bare soil, vegetation, water) from 
total area (%) 

Height of roughness 

elements (m): 𝑍𝐻 

Geometric mean of building statures (LCZs 1-10) and 
tree/plant statures (LCZs A-F) 

Terrain roughness 

class: 𝑧0 

Classification in Davenport et. al.'s (2000) of effective terrain 
harshness (z0) for city and nation scenes. 
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Surface admittance 

(J m-2 s-1/2 K-1): 𝜇 

The capacity of a surface to receive or discharge heat. This 
propriety differs with soil wetness and material thickness. 

Surface albedo: 𝛼 

The proportion of the quantity of solar radiation reflected by a 
surface to quantity received by it. This propriety differs with 
surface color, wetness, and roughness. 

Anthropogenic heat 

output (W m-2): 𝑄𝐹 

Mean annual warmth flux density from fuel burning and 
anthropological activity. Changes fundamentally with latitude, 
season and quantitate of the population.   

 
 

Table 4: Values of surface cover and geometric properties for LCZs (Stewart and Oke 2012, 1886–
87) 

LCZ 𝜓𝑠𝑘𝑦 H/R 𝜆𝑏 𝜆𝑖 𝜆𝑣 𝑍𝐻 𝑧0 𝜇 𝛼 𝑄𝐹 

LCZ 1 0.2-0.4 >2 40-60 40-60 40-60 >25 8 1500-1800 0.10-0.20 50-300 

LCZ 2 0.3-0.6 0.75-2 40-70 30-50 <20 10-25 6-7 1500-2200 0.10-0.20 <75 

LCZ 3 0.2-0.6 0.75-1.5 40-70 20-50 <30 3-10 6 1200-1800 0.10-0.20 <75 

LCZ 4 0.5-0.7 0.75-1.25 20-40 30-40 30-40 >25 7-8 1400-1800 0.12-0.25 <50 

LCZ 5 0.5-0.8 0.3-0.75 20-40 30-50 20-40 10-25 5-6 1400-1200 0.12-0.25 <25 

LCZ 6 0.6-0.9 0.3-0.75 20-40 20-50 30-60 3-10 5-6 1200-1800 0.12-0.25 <25 

LCZ 7 0.2-0.5 1-2 60-90 <20 <30 2-4 4-5 800-1500 0.15-0.35 <35 

LCZ 8 >0.7 0.1-0.3 30-50 40-50 <20 3-10 5 1200-1800 0.15-0.25 <50 

LCZ 9 >0.8 0.1-0.25 10-20 <20 60-80 3-10 5-6 1000-1800 0.15-0.25 <10 

LCZ 10 0.6-0.9 0.2-0.5 20-30 20-40 40-50 5-15 5-6 1000-2500 0.12-0.20 >300 

LCZ A <0.4 >1 <10 <10 >90 3-30 8 unknown 0.10-0.20 0 

LCZ B 0.5-0.8 0.25-0.75 <10 <10 >90 3-15 5-6 1000-1800 0.15-0.25 0 

LCZ C 0.7-0.9 0.25-1.0 <10 <10 >90 <2 4-5 700-1500 0.15-0.30 0 

LCZ D >0.9 <0.1 <10 <10 >90 <1 3-4 1200-1600 0.15-0.25 0 

LCZ E >0.9 <0.1 <10 <10 >90 <0.25 1-2 1200-2500 0.15-0.30 0 

LCZ F >0.9 <0.1 <10 <10 >90 <0.25 1-2 600-1400 0.20-0.35 0 

LCZ G >0.9 <0.1 <10 <10 >90 - 1 1500 0.02-0.10 0 
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The LCZ system can be classified as generic, as it is impossible to consider every peculiarity 

of each place, be it urban or rural. Moreover, in all classifications, the descriptive and explanatory 

capabilities are limited. However, the seventeen typologies should be familiar to the majority of 

any city's dwellers and should be adaptable to the local features (Stewart and Oke, 2012). 

The classification methodology of LCZs has evolved throughout the years. Perera, 

Emmanuel, and Mahanama (2012) applied the classification to the city of Colombo, Sri Lanka, a 

warm and humid region. For the creation of the LCZ map, they used observational data, namely 

superficial temperature measures and photographs (fisheye lens photographs) and also published 

normative values (Oke 1987; Arnfield 1982). The authors also utilized the Surface Heat Island 

Model (SHIM), developed by Johnson et al. (1991), with the urban fabric LCZ classification, to 

simulate the local effects of warming. 

A different methodology was used by Emmanuel and Krüger (2012) for the LCZ 

classification of the city of Glasgow, United Kingdom. The aim of the authors was to study the 

climatic changes of the area using three data sources, namely the UK Meteorological Office 

historical data for Glasgow (50-year historical series), the Weather Underground Network and the 

MIDAS Surface Weather Stations network. The LCZ map was created with the purpose of 

characterizing the Land Usage and Land Cover patterns of the regions surrounding the weather 

stations. 

Also in 2012, and for the first time, Bechtel and Daneke used multiple observational data, 

namely thermal and multispectral satellite imagery, a normalized digital terrain model and different 

classifiers, including Support Vector Machines, Neural Networks, and Random Forest to map 

LCZs. 

Meng and Liu (2013) used time series between 1981 and 2011, from Landsat Thematic 

Mapper (TM)/Enhanced Thematic Mapper Plus (ETM+) satellite imagery to extract LULC and 

Land Surface Temperature (LST) in the city of Jinan, China. The purpose was to analyze the Urban 

Heat Island patterns in a city that experienced a fast-urban growth during the aforementioned 

period. Although this study is not directly related to LCZ classification, it is mentioned here because 

it used satellite imagery to obtain LULC data. This procedure was later implemented by Alexander 

and Mills (2014), as will be explained in greater detail later. 

The classification methodology without remote sensing images is again used for the LCZ 

classification by Stevan et al. (2013) and Thomas et al. (2014), for Novi Sad, Serbia, and Kochi, 

India, respectively. Stevan et al. (2013) used field work and data (using meteorological stations) 

aerial photographs, topographical maps, satellite imagery (Google Earth) and normative values. In 

the second study by Thomas et al. (2014), the study areas were classified based on site 
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measurements in all territories, with the creation of a grid of 100*100 m within a 2 km radius 

around the meteorological stations, and a 500*500 m grid for the rest of the area. Using an 

electronic distance meter and a GPS, measurements were made to obtain the following properties: 

building aspect ratio, building surface fraction and mean building height. The sky view factor was 

derived from the height and length of the buildings and the width of the roads. The remaining 

properties were obtained from field work and with the help of images from Google, so the study 

area was classified into LCZs. 

Alexander and Mills (2014) applied the LCZ classification to the city of Dublin, Ireland, as 

grounds for a study of the UHI, as already undertaken by Emmanuel and Krüger (2012) in the 

past. The authors used LULC data from the CORINE program (CO-oRdination of INformation 

on the Environment) for the transformation of the study field into LCZ classes. The process 

involved the creation of a grid of 1 km2 resolution. In the first step, all the grid cells were 

transformed and coded into a LULC category using CORINE data and a random sample of cells 

were then selected for examination. The selected cells were scrutinized with data from Google 

Earth, Bing Maps and field work, and an LCZ class was then assigned. The data were subsequently 

used for the transformation of the all grid cells into corresponding LCZ classes. 

Unger, Lelovics, and Gál (2014) developed a semiautomatic methodology based on 

geographic information systems and LCZ parameters. This procedure was also used to generate 

LCZ maps in Szeged, Hungary. The methodology was based on obtaining seven properties for the 

study area. Aspect ratio, surface admittance and anthropogenic heat output were properties that 

were omitted. The height of roughness elements, the sky view factor and the building surface 

fraction (BSF) properties were calculated using the 3D building database of Szeged. For the 

pervious surface fraction (PSF), RapidEye (2012) satellite imagery was used for calculating the 

Normalized Difference Vegetation Inde (NDVI), while a 1:25000 topographic map, a road 

database and the CORINE Land Cover database were also employed. The impervious surface 

fraction (ISF) was calculated as the paved area outside the buildings, so ISF = 1 – (BSF+PSF). 

Finally, the surface albedo was obtained using atmospherically corrected reflectance values of the 

five band RapidEye satellite imagery. 

 Middel et al. (2014) simulated the local thermal environment in the residential areas of 

Phoenix, Arizona, through the ENVI-met model. This model is a three-dimensional model that 

simulates surface-plant-air-interactions in urban environments. The model requires input data 

including air and soil temperature, relative humidity, soil moisture as well as wind speed and 

direction. It also requires information about vegetation, the surface characteristics and built 

structures that were collected in on-site measurements, digitization of data based on Bing Maps 
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and the North Desert Village (NDV) databases. This model was validated with meteorological data 

from the North Desert Village. The authors concluded that the “overall scale of the ENVI-met 

model and approach fits well with the concept of LCZs” and that “the LCZ classification scheme 

not only is a comprehensive framework for UHI research, but is also a useful concept for 

integrating local climate knowledge into urban planning and design practices” (Middel et al. 2014, 

27). 

Singapore has suffered fast landscape changes during the last 50 years. Ng (2015) studied 

the UHI map of this country, through LCZ classification. Three areas of study were used and 

monitored: one residential area, one area of parks/green spaces (CleanTech Park) and one 

commercial area (Central Business District), the Asia Square Tower 2. The author used 

photographs (using a Sony’s Nex3 camera with a 16mm f/2.8 wide-angle lens) for the extraction 

of the sky view factor property. The remaining properties, such as the aspect ratio, building surface 

fraction, impervious surface fraction, and pervious surface fraction were obtained through field 

surveys, the analysis of Google Earth, aerial photographs and LCLU maps. The terrain roughness 

class, surface admittance, surface albedo and anthropogenic heat, were obtained using the “LCZ 

data sheets as a guide” (Ng 2015, 122). At last, the LCZ map was created using guidelines developed 

by Stewart and Oke (2012). 

 Zheng et al. (2015) applied the LCZ classification to a city with a high population density, 

Hong Kong, and studied the UHI of that region. They used three datasets to classify the urban 

surface and quantify the relationships between urban morphology and climatic conditions at the 

local scale, namely, where one consisted of morphological data from the Planning Department, 

another was stationary observation data from automatic weather stations and the third included 

local meteorological data at a high spatial resolution captured by night-time traverse measurements 

across the study areas. The zonal average of the building coverage ratio and the building height 

were two properties calculated using a GIS methodology to classify the surface properties by 

density (compact/open) and height (high-rise/mid-rise/low-rise). The LCZ map was then 

generated.  

In 2016, more studies appeared using the methodology proposed by the World Urban 

Database and Portal Tools (WUDAPT) project, which started in 2009, using remote sensing data 

and geographical information for the LCZ classification. This subject will be explored in detail in 

chapter 2.4. 

Kaloustian and Bechtel (2016) applied the LCZ classification to the city of Beirut, Lebanon, 

located over the Mediterranean Sea. The classification was made using the WUDAPT methodology 
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as described in Bechtel, Foley, et al. (2015). A total of 251 training areas were collected using 

Google Earth and a template was provided by WUDAPT.  

 Danylo et al. (2016) studied two cities in Ukraine, namely Kyiv and Lviv, which differ in 

urban form and topography, and utilized three ways to validate and verify this classification. The 

classification was conducted according to the WUDAPT methodology, using Landsat 8 imagery 

for both cities. The classification of the study areas was done with images from different seasons; 

for Kyiv, four scenes representing spring (April and May, June) and autumn (October) were used 

while five scenes representing spring (May, June, March, April) and winter (March) were used for 

Lviv. However, the fifth scene that was downloaded for Kyiv resulted in linear artifacts (distortions 

on the image because of errors in the optical sensor of the satellite) in the LCZ map and was, 

therefore, omitted. A stratified random sample of 1125 pixels at the original resolution of 120 m 

was then selected from the city of Kyiv. This sample was used for independent validation of the 

LCZ map of Kyiv. The overall accuracy was 66%. Two different datasets were then used to make 

an independent comparison. The first comparison used the GlobeLand30 land cover dataset, at a 

resolution of 30 m, that has recently been (2010) developed by the National Geomatics Center of 

China. This dataset is divided into nine classes of landscape cover. The second dataset used was 

the POIs available in OSM, which were compared with the LCZ classification. The independent 

comparison with the GlobeLand30 land cover dataset in both cities showed an overall accuracy of 

83% for Kyiv and 75% for Lviv. The comparison between LCZs and OSM data showed good 

correspondence between the POIs for the city, towns and villages and the LCZ classification.  

 Ren et al. (2016) studied two of the major cities in China, Wuhan and Hangzhou, using the 

methodology from the WUDAPT project. The authors also made an evaluation of the 

classification’s accuracy, with a random sample corresponding to 0.5% of the number of pixels 

from each LCZ class. The assessment of the accuracy showed satisfactory results, namely an overall 

accuracy of 75.2% for Wuhan and 75.5% for Hangzhou. 

2.4. World Urban Database and Access Portal Tools 

 

The World Urban Database and Access Portal Tools (shortly, WUDAPT) project was 

created to collect data about cities. It is an international collaborative project based on the National 

Urban Database and Portal Tool (NUDAPT), developed in 2009 (Ching et al. 2009). The 

NUDAPT project was designed as a resource of data for model development for the modeling 

community to facilitate addressing many of the evolving environmental problems of urban areas. 
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The NUDAPT characterized cities across the USA. However, in most regions of the world, 

this information is not available, since different methodologies for gathering the data must be 

developed (Feddema, Mills, and Ching 2015).  

According to Feddema, Mills, and Ching (2015), over time, innumerous models of 

simulations of UHI and other urban climatology characteristics have been published, but a better 

correspondence of the parameters that represent the surface features is still lacking. In other words, 

the progress of urban climate science is limited as it is very dependent on the data that describes 

the form and functions of cities. The WUDAPT project was created to solve this issue. In 2012, 

this initiative started to collect and distribute urban information to provide parameters to be used 

in urban climate models using the same consistent methodology for all urban areas worldwide 

(Feddema, Mills, and Ching 2015; Bechtel, Alexander, et al. 2015). 

As mentioned previously, the data needed for climate research studies must report aspects 

related to urban form and function (UFF). Urban form depends on three aspects of cities: surface 

cover, proprieties of the construction materials and surface geometry. The urban form also 

describes the energy demands of the city, which may be represented by the anthropogenic heat flux 

(Mills et al. 2015). To capture these data, WUDAPT categorizes data acquisition into different 

levels, each of which represents a different level of detail (Figure 10). 

 

Figure 10: WUDAPT’s data hierarchy based on Mills et al. (2015); See et al. (2015) 

 

Level 0 
•Describes a city in terms of its constituent neighbourhood types using 
the Local Climate Zone (LCZ) scheme (Stewart and Oke, 2012). 

•The LCZ types are also associated with ranges of values for some 
urban form and function (UFF) variables that may be used to run 
some types of urban climate models.

Level 1
•Refers to the sampling aproach that refines the parameters for each 
LCZ.

•Focus on aspects of form ( e.g. bulidings heights, street width) and 
fuctions (e.g. building use).

Level 2
•The most detalied description of urban landscape parameters at a 
scale suited to boundary-layer models. 
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The procedure for gathering Level 0 data has been established (and is further explained in 

section 3.1), but the methodology for collecting data at Levels 1 & 2 is currently being established. 

Nevertheless, it is planned to employ sampling schemas to Level 0 data for gathering data for levels 

1 & 2; see Figure 11 (See et al. 2015).  

 

 

Figure 11: Hierarchal methodology to collect data for levels 1, 2 and 3 (based on Mills et. al. (2015) 
and See et. al. (2015) 

 

 

  

 

Level 0

•Universal metodology 
is defined;

•Local experts provide 
training areas;

•Landsat 8 data

•GoogleEarth, and 
SAGA software.

Level 1

•Sampling of LCZ 
throught the use of 
mobile and Web 2.0 
techonology in 
combination with 
crowdsourcing.

Level 2

•Methodology is still in 
developement.

•It is expected the use 
of all avaiable 
databases (e.g. 
builiding footprints).
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The methodology used in this thesis consists of: 1) using the procedure proposed by the 

WUDAPT project (level 0) to create an LCZ map for each study area using four different images, 

corresponding to four different times of the year. The detailed process used in this step is explained 

in section 3.1; 2) the data available in OSM is then converted to LCZ classes. This process is 

explained in section 3.2; 3) the outputs of both previous steps are integrated in order to solve 

inconsistencies obtained from the classification performed in the first step, where different LCZ 

classes are associated with the same pixel for the different satellite images used; and 4) the accuracy 

assessment of the results obtained in steps 1 and 3 is made, in order to determine if the data 

extracted from OSM improved the results obtained. 

3.1. The World Urban Database and Access Portal Tools 

 

The protocol to derive an LCZ map in level 0 of the WUDAPT project was established by 

Bechtel, Foley, et al. (2015), allowing local volunteers with varied levels of education to generate 

an LCZ map. The authors justified the procedure with several criteria that aim to achieve a method 

that is universal, quick and has no associated costs. In other words, it needed to be achievable, 

consist of a relatively fast procedure (a procedure that take less than 10 minutes on a standard 

computer) and without any economic costs (through the use of free software and data that needs 

to be available worldwide). 

The resources needed to apply the level 0 procedure are: the local knowledge of the city, 

the study of the LCZ scheme available on Stewart and Oke (2012), the Google Earth and SAGA 

software and Landsat 8 scenes available on http://earthexplorer.usgs.gov. The protocol for 

gathering Level 0 data for each city can be divided into several steps (Figure 12), that can be 

summarized in the following list: 

1. Digitize training data 

2. Load satellite data 

3. Import satellite data 

4. Import vector data 

3. Methodology 
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5. Merge vector data 

6. Project the vector data to the same coordinate system as the satellite images 

7. Clip the satellite images with the ROI (Region of Interest) 

8. Resample satellite images 

9. Supervised Classification 

10. Post classification filtering 

11. Export the result to KML (Keyhole Markup Language) 

 

Figure 12:  Workflow for the WUDAPT level 0 LCZ mapping procedure (in Bechtel et al. 2015) 

 

The first step is a vector processing procedure, i.e. “Digitize training data”, where an 

individual with an interest and knowledge about a city (i.e. the expert) outlines an area that encloses 

the region of interest (ROI) and identifies parts of the natural and urban landscape that typify LCZ 

types. Thus, the expert creates training areas for each LCZ class present in the ROI. These training 

areas are created as polygons using Google Earth (Figure 13).  

In the WUDAPT project website (http://www.wudapt.org/create-lcz-training-areas/), 

this procedure is explained in detail and a template for Google Earth is available, where each of 

the LCZ types is listed in folders. Classes 1 to 10 represent the urban landscape (LCZ 1 to LCZ 

10) and classes 101 to 107 represent LCZ classes A to LCZ G (https://drive.google.com/drive/ 

folders/0B83nwq2eGktbUGxSV196a2tpYTA). 
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Figure 13: Step 1: “Digitize training areas” 

 

A polygon for the ROI is created around the urban area and also the training areas (that 

should be created within the template referred to previously). 

The second step corresponds to downloading of Landsat 8 data (available on 

http://earthexplorer.usgs.gov). 

The third step involves importing satellite data and is performed using the SAGA software 

(deselecting the “Transformation” option). The fourth step corresponds to importing the KML 

files created with Google Earth into SAGA, which contain both the ROI and the LCZ training 

areas. When importing the KML files, the option “Geometry Type” should be changed from 

“automatic” to “wkbPolygon”.  

In the fifth step, the layers of the LCZ training areas are merged, so in the “Merge Layers” 

window, all of the LCZ training areas (not the ROI) were selected. It is still necessary to select the 

options, “Add Source information” and “Match Files by Name”, so that the attribute information 

of the layers is not lost. 

In the sixth step, the coordinate transformation of the shape layers into the coordinate 

system of the satellite images is performed. In the “Coordinate Transformation (Shapes list)” 

window, the “Loaded Grid” was selected, and then the coordinate system information from the 

Landsat 8 image to geo-reference the KML vector file was imported. Then in the “Source” option, 

both the ROI and LCZ training area files were selected to geo-reference. At this stage (Figure 14), 

it is better to check the results, checking that the ROI and the training areas overlay correctly with 

the satellite images. 
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Figure 14: Process and location of tools in SAGA software (Procedure 1) 

 

The seventh step (Figure 15) corresponds to the raster clip procedure, “Crop to ROI”, 

where the satellite images are clipped to the size of the ROI through the tool “Clip Grid with 

Polygon”. The grids (i.e. satellite images) should be selected to ‘clip’ and the ROI polygon imported 

within the same coordinate system. 

 

Figure 15:  Process and location of tools in SAGA software (Procedure 2) 

 

The eighth step corresponds to the resampling of the satellite images, and consists of the 

integration of information contained in the Landsat 8 scenes, since as referred to previously, there 

are different spatial resolutions. Hence, it is necessary to resample these bands to the same grid. At 

the beginning of this study, the resolution advised to resample all Landsat scenes to a grid was 120 

meters’ resolution, but in November 2016, the spatial resolution advised was altered to 100 meters 

(http://www.wudapt.org/prepfeat_overview/path2step3c/). Thus, in this step, all Landsat scenes 

(B1 to B11) are resampled to a grid of 120 m resolution. The interpolation method that should be 

selected is “Mean Value (cell area weighted)”. All Landsat scenes were resampled to a grid of 30 m 

resolution to test if a greater spatial resolution produced a more accurate result. 

The ninth step uses the LCZ training areas to classify the images in the ROI (Figure 16) 

into neighborhood types using the random forest classification scheme (Mills et. al., 2015). The 

resulting raster image, based on a per-pixel automatic classification, can create an outcome with 

pixels with isolated LCZs. Thus, the tenth step consists in the removal of this single pixels of one 

LCZ using a post classification filter, namely, a majority filter. At the beginning of this study, the 

WUADPT project advised a post classification majority filter with a 200 to 300 m radius. Thus, for 

Load LS data 

•Tool: 
Geoprocessing 

> File > 
GDAL/OGR 

> GDAL: 
Import Raster
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•Tool: 
Geoprocessing 
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a grid of 120 m resolution, a majority filter considers 25 neighboring cells and for a grid of 30 m 

resolution, a majority filter considers 64 neighboring cells 

In the eleventh step, the classification process was exported as KML files for integration 

into the Google Earth software. The lookup table with the same legend colors as other cities on 

the WUDAPT project website (Figure 17) was used; the coloring was set to “same as in graphical 

user interface” and the interpolation option was deselected.  

At the beginning of this study, the color scheme for each LCZ class was not available but 

since November 2016, it can be download from the WUDAPT project website. 

 

Figure 16: Process and location of tools in SAGA software (Procedure 3) 

 

Figure 17: Colouring of WUDAPT project 

 

Finally, in the last step, the expert scrutinizes the map and adds to (or adjusts) the LCZ 

training areas to account for misclassifications and repeats the process until satisfied (Figure 16).  

In this stage, the expert with the knowledge of the city sets the transparency of the 

classification product image overlay to approximately 50% in Google Earth and examines the 

results to evaluate whether the process has generated an acceptable LCZ classification for the ROI 

or not. If not, the expert can readjust or improve it by adding other training areas until reaching a 

satisfactory result.  
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3.2. Conversion of OSM data into LCZs 

 

In this project, the methodology of converting OSM features into an LCZ map was done 

via a sequence of steps that can be divided in two phases: data pre-processing and data processing. 

3.2.1. Pre-processing phase 

The data pre-processing phase includes: the download of OSM data, identification of the 

key/value combinations that can be used to identify LCZ classes, transformation of reference 

systems, and creating a grid corresponding to the limits of the pixels obtained with the application 

of the WUDAPT methodology, so that the outputs of the conversion of OSM data into the LCZ 

classes can be compared with the results of the satellite image classification. The procedures used 

to create the features in the pre-processing phase are shown in Appendix A and B. 

The OSM data were downloaded from the Geofabrik portal (http://www.geofabrik.de) in 

shapefile format. To associate the OSM data with the LCZ classes, a previous analysis was done to 

associate the key/value combinations and their descriptions established by the OSM community 

and available online (http://wiki.openstreetmap.org/wiki/Map_Features) with the most relevant 

LCZ classes. Table 5 shows the associations considered in this research. It should be noted that, 

in some cases, the data available do not allow differentiation between some classes. For example, 

in the OSM features that correspond to regions with trees, it is not possible from the data available 

in OSM to differentiate between dense or scattered trees. Therefore, in this case the conversion 

process just identifies that those regions that may be associated with class A or B.  

As volunteers can create new values for the available keys, the analysis made previously is 

insufficient. Thus, an additional analysis must always be done for each study area because different 

key/value combinations may be available. Moreover, even for the same region, the OSM data may 

differ if obtained at different dates, since the information is continuously added and edited by the 

citizens. Therefore, for each study area, additional key/value combinations available in OSM data 

were identified and their correspondence to the LCZ classes of interest (LCZ 1 to LCZ 10 and 

LCZ A to LCZ G) was made. 

The next step in the pre-processing phase is the transformation of the coordinate system 

of the LCZ maps obtained with the application of the WUDAPT methodology to the same 

coordinate system used for the processing of the OSM data, so that the data obtained from both 

approaches can then be compared and integrated. This requires the creation of a GRID in vector 

format, in such a way that each cell corresponds to the LCZ map resulting from the random forest 

classification.  
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Table 5: OSM keys and values  

LCZ Keys Keys values 

LCZ A or B 
natural Wood, trees, grass, tree_row, forest  

landuse Forest, nature_reserve 

LCZ C 

natural Scrub 

landuse 
Heath, orchard, scrubs, vineyard, scrub, scrubs, 

plant_nursery 

LCZ D 
natural Grass 

landuse Farm, farmland, farmyard, meadow, greenfield, grass 

LCZ G 
natural water 

waterways river, stream, canal, drain, brook, ditch, riverbank 

LCZ 1 to 10 

roads 
Bus_guideway, living_street, primary, primary_link, 
residential, raceway, road, secondary link, tertiary, 

tertiary link, trunk, trunk, trunk link 

railways 
funicular, miniature, monorail, light_rail, narrow gauge, 

rail, tram, transfer table, mainline 

building 

apartments, hotel, house, detached, residential, 
dormitory, terrace, houseboat, static_caravan, 

commercial, industrial, retail, warehouse, bakehouse,  
cathedral, chapel, church, mosque, temple, synagogue, 
shrine, civic, hospital, school, stadium, train_station, 

transportation, university, barn, public, bridge, bunker, 
cabin, ruins, construction, farm_auxiliary, garage, 

garages, carport, hangar, roof, shed, stable, transformer 
tower, kiosk 

 

3.2.2. Processing phase 

In the processing phase, the conversion of the OSM data into the LCZ classes is made. This 

phase consists of several steps, as different features available in OSM require different types of 

processing. Some OSM features have a direct association to LCZ classes, namely to the land cover 

classes such as LCZ A or B (dense trees and scattered trees), LCZ C (Bush or scrub) or LCZ D 

(low plants). The processing of these features requires the selection of the OSM polygons with a 

particular combination of key/value that satisfies the defined correspondences to the LCZ classes. 

Once all polygons corresponding to the LCZ classes are identified, they are merged into a single 

feature. Then an intersection of the resulting features with the GRID corresponding to the satellite 

images classification in done, and the area occupied by the specified LCZ in each cell of the GRID 

is computed. 

Figures 18, 19 and 20 show the procedures applied to identify LCZ A or B, LCZ C and LCZ D, 

respectively. The procedures used to create the features corresponding to LCZ classes, namely, 

LCZ A or B, LCZ C and LCZ D, are shown in Appendix C, D and E, respectively. 

  

http://wiki.openstreetmap.org/wiki/Tag:building%3Dresidential
http://wiki.openstreetmap.org/wiki/Tag:building%3Ddormitory
http://wiki.openstreetmap.org/wiki/Tag:building%3Dterrace
http://wiki.openstreetmap.org/wiki/Tag:building%3Dhouseboat
http://wiki.openstreetmap.org/wiki/Tag:building%3Dstatic_caravan
http://wiki.openstreetmap.org/wiki/Tag:building%3Dcommercial
http://wiki.openstreetmap.org/wiki/Tag:building%3Dindustrial
http://wiki.openstreetmap.org/wiki/Tag:building%3Dretail
http://wiki.openstreetmap.org/wiki/Tag:building%3Dwarehouse
http://wiki.openstreetmap.org/wiki/Tag:building%3Dbakehouse
http://wiki.openstreetmap.org/wiki/Tag:building%3Dcathedral
http://wiki.openstreetmap.org/wiki/Tag:building%3Dchapel
http://wiki.openstreetmap.org/wiki/Tag:building%3Dchurch
http://wiki.openstreetmap.org/wiki/Tag:building%3Dmosque
http://wiki.openstreetmap.org/wiki/Tag:building%3Dtemple
http://wiki.openstreetmap.org/wiki/Tag:building%3Dsynagogue
http://wiki.openstreetmap.org/wiki/Tag:building%3Dshrine
http://wiki.openstreetmap.org/wiki/Tag:building%3Dcivic
http://wiki.openstreetmap.org/wiki/Tag:building%3Dhospital
http://wiki.openstreetmap.org/wiki/Tag:building%3Dschool
http://wiki.openstreetmap.org/wiki/Tag:building%3Dstadium
http://wiki.openstreetmap.org/wiki/Tag:building%3Dtrain_station
http://wiki.openstreetmap.org/wiki/Tag:building%3Dtransportation
http://wiki.openstreetmap.org/wiki/Tag:building%3Duniversity
http://wiki.openstreetmap.org/wiki/Tag:building%3Dbarn
http://wiki.openstreetmap.org/wiki/Tag:building%3Dbridge
http://wiki.openstreetmap.org/wiki/Tag:building%3Dbunker
http://wiki.openstreetmap.org/wiki/Tag:building%3Druins
http://wiki.openstreetmap.org/wiki/Tag:building%3Dconstruction
http://wiki.openstreetmap.org/wiki/Tag:building%3Dfarm_auxiliary
http://wiki.openstreetmap.org/wiki/Tag:building%3Dgarage
http://wiki.openstreetmap.org/wiki/Tag:building%3Dgarage
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Figure 18: Scheme of the methodology used for the conversion of OSM data into LCZ classes A 
(Dense trees) or B (Scattered trees). 

 

 

Figure 19: Scheme of the methodology used for the conversion of OSM data into LCZ class C 
(Bush, srub) 
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Figure 20: Schematic of the methodology used for the conversion of OSM data into LCZ class D 
(Low plants) 

 

Some of the features in OSM are represented by linear elements, such as roads, railways 

and waterways. To assign these features to classes in an LCZ map, they need to be converted into 

areas. This process was done clipping these features with the study area and creating a buffer 

around them. To define the width of the buffers to use, so that the resulting areas do not overlap 

other types of features existing in the vicinity, in particular the building along the streets, the lines 

are separated into segments, the distance of each segment to the OSM buildings is computed, and 

the obtained result is assigned to each segment as an additional attribute (distance to buildings). 

The process used to create the buffers is illustrated in Figure 21, where “d” represents the obtained 

distance to the buildings and “t” represents a value predefined for each type of feature, which is 

used when distance “d” it too large to be considered. That is, if the distance of the feature to the 

buildings (d) is greater than the user-defined threshold (t), this means that there are no buildings 

near the feature. Thus, the user-defined threshold is used to create the buffer. If the distance to 

buildings is inferior to this threshold, then that value is used to define the buffer. The threshold 

values need to be chosen according to the characteristics of the regions under analysis, as the 

different types of features may have very different typical widths in different cities and different 

parts of the world. The procedures used to create the various features are shown in Appendix G. 

For LCZ G (Water), there are usually both linear features representing waterways but also 

polygonal features corresponding to the regions with water (mainly in the features with the key 

“natural”) in OSM. Hence, it is necessary to convert these linear features to areas, and then merge 
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them into polygonal features that also represent water. Figure 22 illustrates the procedure used to 

extract the water layer from the OSM data, which is shown in Appendix F. 

As with the other classes, the merged results are then combined with the outputs obtained 

with the GRID previously created at a spatial resolution of 120 meters. An intersection of the 

GRID with the data obtained is then made and the area occupied by each feature per cell was 

computed. 

 

Figure 21: Procedure for converting linear features into polygons 

 

Figure 22: Schematic of the methodology used for classes LCZ G (Water) 
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For the LCZ urban classes (LCZ 1 to LCZ 10), the data available in OSM can provide 

information on the presence of buildings and impervious surfaces, such as roads or railways. To 

associate these data to the LCZ classes, the values established by Stewart and Oke (2012) regarding 

the building surface fraction and the impervious surface were considered, as well as the outputs of 

the described procedure, which was enable to the conversion of the polyline features (railways and 

roads) into polygons. Figure 23 illustrates the procedure used to extract this urban classes layers 

from the OSM data. The procedures used to create the various features are provided in Appendix 

H and I. 

 

 

Figure 23: Schematic of the methodology used for classes LCZ 1 to 10 

 

The data resulting from the conversion of the roads and railway linear features to areas was 

aggregated, where these resulting features correspond to the impervious regions. The buildings 

existing in OSM were extracted and the layer corresponding to the impervious regions and the 

buildings were intersected with the GRID corresponding to the cells in the raster file resulting from 

the classification of the satellite images. Then, the percentage of each cell occupied by the 

impervious layer and building was computed, generating a layer with the building surface fraction 

and another with the impervious surface fraction. 
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Once the information about the building surface fraction and impervious surface area in 

each cell of the GRID is available, the cells were assigned to LCZ urban classes according to the 

percentage of area covered by building and impervious surfaces. Table 6 shows the values defined 

by Stewart and Oke (2012) that were used in this assignment. 

With this procedure, the area occupied by each LCZ class in each cell was obtained. This 

information is important since a cell may be occupied by more than one class with a different 

percentage of occupation (see Figure 24). Table 7 shows an example of the attribute table that is 

associated with the GRID features (in vector format), where the existence (or not) of each LCZ 

class is identified and the percentage of the cell covered by that class is also stored. 

 
Table 6: Percentage of building and impervious surface fraction for classes LCZ 1 to 10 (in 

Stewart and Oke 2012) 

 

 

Figure 24: Cells with different LCZ class 

 

 

LCZ Building surface fraction (%) 
Impervious surface fraction 

(%) 
LCZ 1 40 – 60  40 – 60 
LCZ 2 40 – 70 30 – 50  
LCZ 3 40 – 70 20 – 50  
LCZ 4 20 – 40 30 – 40  
LCZ 5 20 – 40  30 – 50  
LCZ 6 20 – 40  20 – 50  
LCZ 7 60 – 90  < 20 
LCZ 8 30 – 50  40 – 50  
LCZ 9 10 – 20  > 20 
LCZ 10 20 – 30  20 – 40  
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Table 7: Example of part of the attribute values associated with the GRID 

FID 
GRID 

LCZ A  
or B 

Area 
LCZ A or 

B (%) 
LCZ G 

Area 
LCZ G 

(%) 
Buildings 

Area 
Buildings 

(%) 
LCZ 1 

Area 
LCZ 1 

(%) 

1 1 79 1 21 <Null> <Null> 
<Null

> 
<Null> 

2 1 20 
<Null

> 
<Null> 1 50 1 60 

3 1 100 
<Null

> 
<Null> <Null> <Null> 

<Null
> 

<Null> 

4 
<Null

> 
<Null> 1 100 <Null> <Null> 

<Null
> 

<Null> 

5 
<Null

> 
<Null> 1 50 <Null> 40 1 50 

6 1 100 
<Null

> 
<Null> <Null> <Null> 

<Null
> 

<Null> 

 

3.3. Integration and combination of data 

3.3.1. Integration of the outputs of the image classification and OSM data conversion 

 

In the first step of the methodology, the classification of four Landsat 8 satellite images 

corresponding to different seasons (spring, summer, autumn and winter) is made using the 

methodology proposed by the WUDAPT project. As some physical characteristics of the territory, 

such as vegetation, change with the seasons, which translates into different spectral responses for 

the same area at different times of the year, the classification of the four images produces different 

results for some locations, resulting in inconsistent data. All the data are now combined at the pixel 

level. For this combination, a feature of points was created (using ArcGIS tool ‘Feature to Point’), 

extracting the centroid of each pixel (see Figure 25). The value of the classes in the winter, summer, 

autumn and spring classified LCZ raster maps were then extracted and added as additional 

attributes to the table associated to the points (using ArcGIS tool ‘Extract multivalues to points’). 

The created point features were associated with the GRID used in the conversion of the 

OSM data into LCZ classes through a spatial join. This aggregates all rows from the point feature 

with the polygons of the GRID (target features) considering their relative spatial positions (in this 

case inclusion). The procedures used to create the various features are shown in Appendix J. 
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Figure 25: Representation of the created point feature and the vector GRID, overlaid with 
one map resulting from the classification of a Landsat 8 image into an LCZ map. 

 

3.3.2. Combination of the data  

 

To combine the results obtained during the satellite image classification, and keeping the 

information about the reliability of the result, a decision tree was used, where a degree of confidence 

is associated to each cell, depending on the outputs of the classification of the four images used. 

Figure 26 illustrates the procedure, which is used for each pixel, generating for each class a degree 

of confidence. The procedures used to create the various features in this combination-of-data phase 

are shown in Appendix J as well as the code used to generate a degree of confidence for each class, 

which is provided in Appendix L. 
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Figure 26: Example of the extraction of the percentage of the representative of this class for each 
pixel and for a particular class (x)  

 

A similar procedure was run for the data extracted from OSM, extracting the dominant 

LCZ class obtained for each cell of the GRID, which is the class with the greatest percentage of 

area occupied in the cell and also the second most representative LCZ class. 

The last step in the combination of the results consists of assigning a class to each cell based 

on the data provided by the satellite image classification and the data extracted from OSM. Thus, 

once the information regarding the percentage of the occupation identified in OSM (see code in 

Appendix M) and the confidence in the assignment of a class based on the four LCZ maps resulting 

from the WUDAPT procedure is available for each cell, it is then necessary to aggregate all this 

information and evaluate the possibility associated to the assignment of each class to that cell. This 

was done using Eq. 1, where 𝑎(𝑥) is the confidence rating associated with class 𝑥,  and 𝑏(x) is the 

OSM area occupied by class 𝑥 in the cell. The most likely class to assign to each cell is the class 

corresponding to the higher value of possibility. 

 

 𝑎 (𝑥) + 𝑏(𝑥)

200
∗ 100 

(1) 
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3.4. Accuracy Assessment 

To assess the accuracy of all the maps, a reference database was created for all study areas 

considered. A stratified sample was used, selecting 200 points per class, and the strata were the 

classes obtained with the classification of the winter images. The reference data were created 

through photo-interpretation of the images available in Google Earth as a base map. Confusion 

matrices were created and accuracy indices were computed, namely the user’s, producer’s and 

overall accuracy. 
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4.1. Study areas and data 

Two study areas were used to test the proposed methodology. One includes the city of 

Coimbra, Portugal, while the other is the city of Hamburg in Germany. These two regions were 

chosen because their LCZ maps were already created by the WUDAPT project and they have very 

different data coverage in OSM.  

4.1.1. Coimbra 

The first study area was the city of Coimbra, located in the center of continental Portugal. 

It is located on the Atlantic coast of the Iberian Peninsula, approximately 40 km from the western 

coast and has an area of 319.4 km2 (Direção-Geral do Território 2016) and a population of 105 842 

inhabitants (Instituto Nacional de Estatística 2013). This study area was chosen due to the 

possibility of using local knowledge and because of its relatively low-average cover of OSM data 

(12-13%) (Fonte et al. 2016), which allows for a better understanding of the usefulness of this 

procedure, even in cities where the OSM data are not abundant. Figure 27 shows the study area 

and the available OSM data while Figure 28 shows the LCZ map created by the WUADPT project 

for this area. 

For the creation of LCZ maps using the methodology proposed in WUDAPT, four 

Landsat 8 images were chosen corresponding to spring, summer, winter and autumn. Table 8 

shows the dates of the images used. 

 

Table 8: Dates of satellite images utilized for the LCZ classification for Coimbra 

 Spring Summer Autumn Winter 

Coimbra 23/04/2015 09/07/2015 29/10/2014 01/01/2015 

 

Figure 29 and 30 show, respectively, the true color Landsat 8 images for Coimbra and a 

composite RGB = 543, to enhance the presence of vegetation in the study areas (highlighted in 

red).  

4. Case studies  
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Figure 27: Study area and the available OSM data 

 

 

Figure 28: LCZ map created by the WUDAPT project for the region of Coimbra 
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Figure 29: Landsat 8 true color imagery of Coimbra in a) winter, b) autumn, c) summer and d) 

spring 

 

 
Figure 30: False color composite RGB = 543 of the Landsat 8 imagery of Coimbra in a) winter, b) 

autumn, c) summer and d) spring 
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4.1.2. Hamburg 

The second study area was the city of Hamburg located on the North of the German Plain 

in the lower slopes of Elbe River and 100 km upstream of the Elbe estuary. This is the second 

largest city in Germany, after Berlin, with 755.3 km2 and a population of 1 814 597 inhabitants 

(Statistical Office of Hamburg and Schleswig-Holstein 2014; Rose and Wilke 2015). This city 

contains a major seaport in Germany, which makes the city a center of exchange, transport and 

services and it also has one of the most important industrial areas in all Germany (Rose and Wilke 

2015). This study area presents a high-average cover of OSM data (see Figure 31), in contrast to 

Coimbra. Figure 32 shows the LCZ map created by the WUDAPT project.  

As for the first study area, for the creation of LCZ maps for the region of Hamburg using 

the methodology proposed in WUDAPT, four Landsat 8 images were also used, corresponding to 

the spring, summer, winter and autumn. Table 9 shows the dates of the images used. 

 

Table 9: Dates of satellite images utilized for LCZ classification for Hamburg 

 Spring Summer Autumn Winter 

Hamburg 30/04/2016 21/08/2015 06/12/2016 03/01/2017 

 

Figures 33 and 34 show, respectively, the true color Landsat 8 images for Hamburg and a 

composite RGB = 543.  

 

Figure 31: Study area and the available OSM data 
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Figure 32: LCZ map for Hamburg created by the WUDAPT project 

 

 
Figure 33: Landsat 8 true colors imagery of Hamburg in a) winter, b) autumn, c) summer and d) 

spring 
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Figure 34: False color composite RGB = 543 of the Landsat 8 imagery of Hamburg in a) winter, 

b) autumn, c) summer and d) spring 

4.2. Classification with the WUDAPT approach 

4.2.1. Coimbra 

 

The classification into LCZ classes proposed in the WUDAPT project was applied to the 

four images of each study area, providing four LCZ maps per area. After the definition of the ROI, 

it is necessary to identify training areas for each one of the LCZ classes. As some physical 

characteristics of the territory change with the seasons, which translate into different spectral 

responses for the same area at different times of the year, different training areas were selected for 

the images in each season, mainly for the vegetation classes. The training regions are shown in 

Figure 35 for Coimbra. 
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Figure 35: Training areas over the Landsat 8 image (True-Color RGB) of Coimbra in a) winter, b) 
autumn, c) summer and d) spring 

 

The classification of the images for each season was made using the methodology presented 

in section 3.1. Figures 36 and 37 show, respectively, the classification results of the four images 

with a spatial resolution of 120 m using a filter of twenty-five neighboring cells and a spatial 

resolution of 30 m using a filter of sixty-four neighboring cells. 

 

Figure 36: LCZs maps obtained for the city of Coimbra with a spatial resolution of 120 m with a 
filter of twenty-five neighboring cells for a) winter, b) autumn, c) summer and d) spring 
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Figure 37: LCZs maps obtained for the city of Coimbra with a spatial resolution of 30 m with a 
filter of sixty-four neighboring cells for a) winter, b) autumn, c) summer and d) spring 

 

Based on a visual comparison of Figures 36 and 37, it can be stated that the results show a 

relevant correspondence with the land cover. With the first figure, the misclassification in rice 

Mondego fields is evident, particularly in winter and spring time. The best results for this area were 

obtained from the summer imagery. The second image shows satisfying results overall, where the 

major misclassification occurs in the summer image on the right side of the image with the 

attribution of LCZ D class (Low plants) to forest areas.  

To validate the results, the methodology explained in section 3.4 was used.  

Tables 10, 12, 14 and 16 show the confusion matrices for the classification of Coimbra 

using Landsat 8 data with a 120 m spatial resolution for winter, autumn, summer and spring, 

respectively, and Tables 11, 13, 15 and 17 show the confusion matrices for the classification of 

Coimbra using Landsat 8 data with a 30 m spatial resolution for winter, autumn, summer and 

spring, respectively.   
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Table 10: Confusion matrix of the LCZs map with a spatial resolution of 120 m obtained using the 
winter satellite image for Coimbra. The user accuracy (UA), producer accuracy (PA) and overall 
accuracy (OA) are provided. Rows refer to classification output and columns to reference data. 

LCZ 2 3 6 8 9 A B D G ∑ UA 

2 17 3 107 11 37 2 15 4 4 200 9% 

3 0 119 67 0 0 0 10 4 0 200 60% 

6 4 10 80 4 60 3 10 29 0 200 40% 

8 7 5 17 85 52 1 17 13 3 200 43% 

9 0 0 6 3 93 10 48 38 2 200 47% 

A 0 0 0 0 22 47 125 6 0 200 24% 

B 0 0 0 0 23 31 137 6 3 200 69% 

D 0 0 0 0 24 10 23 139 4 200 70% 

G 0 2 3 4 19 46 77 19 30 200 15% 

∑ 28 139 280 107 330 150 462 258 46 1800 
 

PA 61% 86% 29% 79% 28% 31% 30% 54% 65% OA 42% 

 

The LCZ map (120 m spatial resolution) obtained with the classification of the winter 

satellite image shows a higher user’s accuracy for the classes LCZ D (Low Plants) and LCZ B 

(Scattered Trees) with 70% and 69%, respectively and a lower user’s accuracy for classes LCZ 2 

(Compact midrise) – 9% and LCZ G (Water) – 15%. The producer’s accuracy is higher for classes 

LCZ 3 (Compact low-rise) (86%) and LCZ 8 (Large Low-rise) (79%) and lower for classes LCZ 9 

(Sparsely built) – 28%. There appears to be a considerable amount of confusion between classes 

LCZ A and B, and also between classes LCZ 2 and LCZ 6. 

 
Table 11: Confusion matrix of the LCZs map with a spatial resolution of 30 m obtained using the 

winter satellite image for Coimbra.  

LCZ 2 3 6 8 9 A B D G ∑ UA 

2 7 0 0 0 0 0 0 0 0 7 100% 

3 2 116 61 0 0 0 0 9 0 188 62% 

6 10 18 196 10 117 10 38 30 2 431 45% 

8 8 4 12 72 25 2 3 3 1 130 55% 

9 1 0 8 22 106 19 77 75 13 321 33% 

A 0 0 1 1 26 60 148 5 3 244 25% 

B 0 0 0 1 44 55 175 14 1 290 60% 

D 0 0 0 0 9 3 13 118 1 144 82% 

G 0 1 2 1 3 1 8 4 25 45 56% 

∑ 28 139 280 107 330 150 462 258 46 1800 
 

PA 25% 83% 70% 67% 32% 40% 38% 46% 54% OA 49% 

 

Nevertheless, for the winter 30 m resolution LCZ map the higher user’s accuracy was 

obtained for classes LCZ 2 - 100% and LCZ D – 82%, and lower user’s accuracy for classes LCZ 

A (25%) and LCZ 9 (33%). The producer’s accuracy is higher for classes LCZ 3 – 83% and LCZ 
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6 – 70% and lower for classes LCZ 2 – 25% and LCZ 9, with 32%. There is a certain amount of 

confusion between classes LCZ A and LCZ B and between classes LCZ 6 and LCZ 9.  

The biggest differences between the two results was in LCZ 2, with a gain in user accuracy 

of 91% in the 30 m resolution LCZ map and in the LCZ G with a gain of 41% also in 30 m 

resolution map. The producer accuracy had a major loss in LCZ 2, namely, 36% 

Table 12: Confusion matrix of the LCZs map with a spatial resolution of 120 m obtained using the 
autumn satellite image for Coimbra, 

LCZ 2 3 6 8 9 A B D G ∑ UA 

2 12 1 35 1 0 0 0 0 1 50 24% 

3 2 115 78 0 0 1 1 1 0 198 58% 

6 11 17 112 19 102 2 16 18 0 297 38% 

8 2 3 34 80 26 1 8 5 0 159 50% 

9 0 0 12 3 115 12 55 61 0 258 45% 

A 0 1 4 1 51 45 131 28 6 267 17% 

B 0 0 0 0 3 44 150 9 1 207 72% 

D 0 0 1 1 23 9 34 120 3 191 63% 

G 1 2 4 2 10 36 67 16 35 173 20% 

∑ 28 139 280 107 330 150 462 258 46 1800 
 

PA 43% 83% 40% 75% 35% 30% 32% 47% 76% OA 44% 

 

For the image classification using the 120 m resolution autumn satellite image, the results 

show that there is also higher user’s accuracy for the classes LCZ B - 72% and LCZ D – 63%, and 

a lower user’s accuracy for classes LCZ A (17%) and LCZ G (20%). The producer’s accuracy is 

higher for classes LCZ 3 – 83% and LCZ G – 76% and lower for classes LCZ A – 30% and LCZ 

B, with 32%. As for the image classification using the winter satellite image, in this image a certain 

amount of confusion between classes LCZ A and LCZ B also occurs as well as between classes 

LCZ 6 and LCZ 9. 

 
Table 13: Confusion matrix of the LCZs map with a spatial resolution of 30 m obtained using the 

autumn satellite image for Coimbra. 

LCZ 2 3 6 8 9 A B D G ∑ UA 

2 0 0 0 0 0 0 0 0 0 0 0% 

3 0 111 51 0 1 0 1 6 0 170 65% 

6 21 20 201 13 143 14 29 35 1 477 42% 

8 6 7 17 86 16 0 6 3 1 142 61% 

9 0 0 9 6 120 12 90 116 4 357 34% 

A 0 0 0 0 30 63 157 14 1 265 24% 

B 0 0 0 0 15 42 147 10 2 216 68% 

D 0 0 0 0 0 1 3 67 2 73 92% 

G 1 1 2 2 5 18 29 7 35 100 35% 

∑ 28 139 280 107 330 150 462 258 46 1800  

PA 0% 80% 72% 80% 36% 42% 32% 26% 76% OA 46% 
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The overall accuracy of the classification using the 30 m autumn satellite image was 46 %, 

with a higher user’s accuracy for the classes LCZ D (Low plants) – 92 % and LCZ B (Scattered 

trees) – 68%. The producer’s accuracy is higher for classes LCZ 3 and LCZ 8, both with 80%. A 

lower user’s and producer’s accuracy was obtained for class LCZ 2 (0%), since no pixel was 

classified as belonging to that class. In this image, it appears that also occurred a certain amount of 

misclassification between classes LCZ 6 and LCZ 9 and between classes LCZ A and LCZ B. The 

biggest different in user accuracy was the gain of 29% in LCZ D in the classification using the 30 

m resolution satellite image and for the producer accuracy was the gain of 32% in LCZ 6, also in 

the classification using the 30 m satellite image. 

 

Table 14: Confusion matrix of the LCZs map with a spatial resolution of 120 m obtained using the 
summer satellite image for Coimbra. 

LCZ 2 3 6 8 9 A B D G ∑ UA 

2 13 4 27 1 5 0 1 1 0 52 25% 

3 2 121 45 2 1 0 0 1 0 172 70% 

6 6 11 168 32 109 5 27 14 0 372 45% 

8 5 1 11 63 6 0 6 0 1 93 68% 

9 0 0 15 0 68 0 26 18 0 127 54% 

A 0 0 1 2 37 95 219 15 10 379 25% 

B 0 0 0 0 18 34 107 84 6 249 43% 

D 1 2 9 6 85 16 73 117 6 315 37% 

G 1 0 4 1 1 0 3 8 23 41 56% 

∑ 28 139 280 107 330 150 462 258 46 1800 
 

PA 46% 87% 60% 59% 21% 63% 23% 45% 50% OA 43% 

 

For the image classification using the 120 m resolution summer satellite image, the overall 

accuracy was 43% with a higher user’s accuracy for the classes LCZ 3 and LCZ 8, with 70% and 

68% respectively, and a lower user’s accuracy for classes LCZ 2 and LCZ A, both with 25%. The 

producer’s accuracy is higher for classes LCZ 3 (87%) and LCZ A (63%) and lower for LCZ 9 

(21%) and LCZ B (23%). The major misclassification occurs between the LCZ A and LCZ B. 
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Table 15: Confusion matrix of the LCZs map with a spatial resolution of 30 m obtained using the 
summer satellite image for Coimbra. 

LCZ 2 3 6 8 9 A B D G ∑ UA 

2 8 2 4 1 3 1 0 0 0 19 42% 

3 0 103 32 0 0 0 1 0 0 136 76% 

6 13 24 215 10 87 7 31 17 0 404 53% 

8 6 9 14 88 9 0 13 0 1 140 63% 

9 0 0 10 5 129 2 51 36 0 233 55% 

A 0 0 1 2 43 75 177 35 3 336 22% 

B 0 0 0 0 35 59 164 123 17 398 41% 

D 0 0 1 1 20 5 18 43 0 88 49% 

G 1 1 3 0 4 1 7 4 25 46 54% 

∑ 28 139 280 107 330 150 462 258 46 1800 
 

PA 29% 74% 77% 82% 39% 50% 35% 17% 54% OA 47% 

 
The LCZ classification using the 30 m resolution summer satellite image had an overall 

accuracy of 47%. The higher user’s accuracy appears for classes LCZ 3 (76 %) and LCZ 8 (63%) 

while the classes LCZ A and LCZ B had lower user’s accuracies, 22% and 41%, respectively. The 

producer’s accuracy is higher for classes LCZ 8 (82%) and LCZ 6 (77%) and lower for classes LCZ 

D (17%) and LCZ 2 (29%). There was a certain amount of confusion between the classes LCZ A 

and LCZ B, and also between LCZ 6 and LCZ 9.  

The biggest differences between the two results was the loss in producer accuracy of 28% 

in LCZ D and the gain in producer accuracy of 23% in LCZ 8. 

 

Table 16: Confusion matrix of the LCZs map with a spatial resolution of 120 m obtained using the 
spring satellite image for Coimbra. 

LCZ 2 3 6 8 9 A B D G ∑ UA 

2 9 2 4 3 3 0 0 0 0 21 43% 

3 0 122 62 0 0 1 4 14 0 203 60% 

6 10 9 142 7 71 2 16 26 3 286 50% 

8 6 2 8 59 6 0 12 26 1 120 49% 

9 1 1 12 12 66 1 13 38 0 144 46% 

A 0 2 36 5 110 123 313 23 16 628 20% 

B 0 0 0 0 26 18 67 21 4 136 49% 

D 1 1 12 20 46 5 33 102 3 223 46% 

G 1 0 4 1 2 0 4 8 19 39 49% 

∑ 28 139 280 107 330 150 462 258 46 1800 
 

PA 32% 88% 51% 55% 20% 82% 15% 40% 41% OA 39% 

 

The LCZ classification using the 120 m resolution spring satellite image showed an overall 

accuracy of 39%. The higher user’s accuracy was obtained for classes LCZ 3 (60%) and LCZ 6 

(50%) while the classes LCZ A and LCZ 2 have a lower user’s accuracy, 20% and 43%, respectively. 
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The producer’s accuracy is higher for classes LCZ 3 (88%) and LCZ A (82%) and lower for classes 

LCZ B (15%) and LCZ 9 (20%). It also appears that there is a certain amount of confusion between 

the classes LCZ A and LCZ B, and also between LCZ A and LCZ 9. 

The overall accuracy of the classification using the 30 meters’ spring satellite image also 

was 39%, with a higher user’s accuracy for classes LCZ 3 (Compact low-rise) and LCZ D (Low 

plants), both with 70%, and a low user’s accuracy for LCZ A (Dense Trees) with 21%. The 

producer’s accuracy is higher for classes LCZ 3 with 85% and a lower user’s accuracy was obtained 

for class LCZ D (16%). Similar to the previous image classifications, there was a certain amount of 

confusion between classes LCZ A and LCZ B. 

Comparing both results, the class LCZ D presents the major gain in user accuracy and the 

major loss in producer accuracy, both with 24%. 

 

Table 17: Confusion matrix of the LCZs map with a spatial resolution of 30 m obtained using the 
spring satellite image for Coimbra. 

LCZ 2 3 6 8 9 A B D G ∑ UA 

2 11 1 12 0 1 1 0 0 0 26 42% 

3 0 118 44 0 1 0 1 5 0 169 70% 

6 9 14 191 31 121 11 50 76 9 512 37% 

8 5 4 11 71 10 0 17 50 0 168 42% 

9 0 0 4 1 59 2 14 27 0 107 55% 

A 2 0 11 3 75 106 267 24 8 496 21% 

B 0 1 0 0 50 23 84 24 4 186 45% 

D 0 0 3 0 9 2 3 40 0 57 70% 

G 1 1 4 1 4 5 26 12 25 79 32% 

∑ 28 139 280 107 330 150 462 258 46 1800  

PA 39% 85% 68% 66% 18% 71% 18% 16% 54% OA 39% 

 

4.2.2. Hamburg 

 

The creation of the training sites for Hamburg was done using the same approach (training 

sets were used in each of the images). Figure 38 shows the training areas used for the Hamburg 

study area.  

For Hamburg, the results of the classification process of the ROI into LCZ maps are 

illustrated in Figures 39 and 40, for the classification of the Landsat 8’ images with a 120 m and 30 

m spatial resolution, respectively.  
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Figure 38: Training areas over the Landsat 8 image (True-Color RGB) of Hamburg in a) winter, 
b) autumn, c) summer and d) spring 

 

Figure 39: LCZs maps for the city of Hamburg with a spatial resolution of 120 m with a filter of 
twenty-five neighboring cells for a) winter, b) autumn, c) summer and d) spring 
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Figure 40: LCZs maps for the city of Hamburg with a spatial resolution of 30 m with a filter of 
sixty-four neighboring cells for a) winter, b) autumn, c) summer and d) spring 

 

The results obtained for Hamburg were also validated using a stratified random sample of 

points as for Coimbra, where the classes were obtained using the classification of the winter image 

as strata (also considering 200 per class). As in the previous study area, the reference dataset was 

also created through photo-interpretation of the images available in Google Earth. 

Tables 18, 20, 22 and 24 show the confusion matrices for the classification of Hamburg 

using Landsat 8 data with a 120 m spatial resolution for winter, autumn, summer and spring, 

respectively, and Tables 19, 21, 23 and 25 show the confusion matrices for the classification of 

Hamburg using Landsat 8 data with a 30 m spatial resolution for winter, autumn, summer and 

spring, respectively.   
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Table 18: Confusion matrix of the LCZs map with a spatial resolution of 120 m obtained using the 

winter satellite image for Hamburg 

LCZ 1 2 4 5 6 8 9 10 A B D G ∑ UA 

1 182 18 0 0 0 0 0 0 0 0 0 0 200 91% 

2 1 156 0 2 0 0 0 23 0 0 0 18 200 78% 

4 0 0 112 4 42 5 2 0 9 20 5 1 200 56% 

5 1 0 1 158 21 8 0 1 0 3 1 6 200 79% 

6 0 0 2 1 152 5 0 2 11 21 6 0 200 76% 

8 0 0 3 5 28 141 0 13 0 3 3 4 200 71% 

10 0 1 5 22 43 4 1 67 1 9 23 24 200 34% 

A 0 0 0 0 4 0 0 0 162 26 7 1 200 81% 

B 0 0 0 0 21 0 2 0 51 114 12 0 200 57% 

D 0 0 1 0 18 0 2 0 6 12 159 2 200 80% 

G 0 1 0 0 1 0 1 2 0 3 3 189 200 95% 

∑ 184 176 124 192 330 163 8 108 240 211 219 245 2200   

PA 99% 89% 90% 82% 46% 87% 0% 62% 68% 54% 73% 77% OA 72% 

 
The classification using the winter image for Landsat 8 data with 120 meters of resolution 

has the best overall accuracy of the four classifications, namely, 72%. 

For this classification, the higher user’s accuracy is for classes G (Water) and LCZ 1 

(Compact high-rise) with 95% and 91%, respectively and lower user’s accuracy for classes LCZ 10 

(Heavy industry) – 34% and LCZ 4 (Open high-rise) – 56%. On the other hand, the producer’s 

accuracy is higher for classes LCZ 1 – 99% and LCZ 4 – 90% and lower for classes LCZ 9 (Sparsely 

built) (0%) and LCZ 6 (Open low-rise) – 46%. There also appears to be considerable confusion 

between classes LCZ 10 and 2 (Compact mid-rise), and also between classes LCZ 6 and LCZ 10. 

 

Table 19: Confusion matrix of the LCZs map with a spatial resolution of 30 m obtained using the 
winter satellite image for Hamburg. 

LCZ 1 2 4 5 6 8 9 10 A B D G ∑ UA 

1 161 8 0 0 0 0 0 0 0 0 0 0 169 95% 

2 1 123 0 0 0 0 0 1 0 0 0 7 132 93% 

4 0 0 8 0 0 0 0 0 0 0 0 0 8 
100
% 

5 6 4 0 74 5 0 0 0 0 2 1 2 94 79% 

6 0 0 6 6 90 2 1 0 25 28 6 0 164 55% 

8 0 8 7 4 15 100 0 7 0 2 1 4 148 68% 

10 16 33 80 100 127 50 2 95 1 30 34 76 644 15% 

A 0 0 0 0 1 0 0 0 148 24 2 0 175 85% 

B 0 0 1 0 22 0 2 1 54 100 8 0 188 53% 

D 0 0 22 8 70 11 3 3 12 25 166 1 321 52% 

G 0 0 0 0 0 0 0 1 0 0 1 155 157 99% 

∑ 184 176 124 192 330 163 8 108 240 211 219 245 2200   

PA 88% 70% 6% 39% 27% 61% 0% 88% 62% 47% 76% 63% AO 55% 
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For the classification using the winter image for Landsat 8 data with 30 meters of resolution, 

a higher user’s accuracy is obtained for classes LCZ 4 (Open high-rise), LCZ G (Water) and LCZ 

1 (Compact high-rise) with 100%, 99% and 95%, respectively and a lower user’s accuracy for classes 

LCZ 10 (Heavy industry) – 15% and LCZ D (Low plants) – 52%. However, the producer’s 

accuracy is higher for classes LCZ 1 and LCZ 10, both with 88%, but is lower for classes LCZ 9 

(Sparsely built) (0%) and LCZ 4 (Open high-rise) – 6%. There also appears to be a considerable 

amount of confusion between classes LCZ A (Dense trees) and LCZ B (Scattered trees) and also 

between LCZ B and LCZ D (Low plants). 

 

Table 20: Confusion matrix of the LCZs map with a spatial resolution of 120 m obtained using the 
autumn satellite image for Hamburg. 

LCZ 1 2 4 5 6 8 9 10 A B D G ∑ UA 

1 173 18 0 0 1 0 0 0 0 0 0 0 200 87% 

2 11 139 0 1 0 1 0 0 0 0 0 10 200 70% 

4 0 1 5 3 4 1 0 0 0 0 1 0 200 3% 

5 0 2 5 104 7 2 0 3 0 3 0 1 200 52% 

6 0 0  50 11 150 4 1 0 5 29 4 6 200 75% 

8 0 5 7 7 21 101 0 22 0 3 6 5 200 51% 

10 0 11 57 66 120 54 3 82 8 23 64 74 200 41% 

A 0 0 0 0 3 0 1 0 111 32 4 0 200 56% 

B 0 0 0 0 7 0 1 0 99 96 7 16 200 48% 

D 0 0 0 0 17 0 2 1 17 25 132 1 200 66% 

G 0 0 0 0 0 0 0 0 0 0 1 132 200 66% 

∑ 184 176 124 192 330 163 8 108 240 211 219 245 2200   

PA 94% 79% 4% 54% 45% 62% 0% 76% 46% 45% 60% 54% AO 56% 

 
 

The classification using the 120 m resolution autumn image has the second-best value of 

overall accuracy of all images (56%) and it has a higher user’s accuracy for classes LCZ 1 (Compact 

high-rise) (87%) and LCZ 6 (75%), and lower user’s accuracy for classes LCZ 4 (3%) and LCZ 10 

(41%). The producer’s accuracy is higher for classes LCZ 1 – 94% and LCZ 2 – 79% and lower 

for classes LCZ 9 (0%) and LCZ 4 (4%). In this image, it appears that a certain amount of confusion 

also occurs between classes LCZ 6 and LCZ 10 and between classes LCZ A and LCZ B (Scattered 

Trees). 
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Table 21: Confusion matrix of the LCZs map with a spatial resolution of 30 m obtained using the 
autumn satellite image for Hamburg. 

LCZ 1 2 4 5 6 8 9 10 A B D G ∑ UA 

1 153 15 0 0 0 0 0 0 0 0 0 0 168 91% 

2 1 112 0 0 0 0 0 0 0 0 0 6 119 94% 

4 0 0 7 0 0 0 0 0 0 0 0 0 7 100% 

5 0 0 1 47 2 0 0 0 0 1 0 0 51 92% 

6 0 0 37 15 157 2 0 1 26 62 9 4 313 50% 

8 17 4 4 8 21 89 0 21 0 3 13 5 185 48% 

10 13 45 75 122 122 72 4 85 8 29 73 130 778 11% 

A 0 0 0 0 6 0 2 0 120 15 3 0 146 82% 

B 0 0 0 0 14 0 1 0 76 77 8 0 176 44% 

D 0 0 0 0 7 0 1 0 10 24 113 1 156 72% 

G 0 0 0 0 1 0 0 1 0 0 0 99 101 98% 

∑ 184 176 124 192 330 163 8 108 240 211 219 245 2200   

PA 83% 64% 6% 24% 48% 55% 0% 79% 50% 36% 52% 40% AO 48% 

 

The classification using the autumn image has an overall accuracy of 48%. The higher user’s 

accuracy is obtained for classes LCZ 4 and LCZ G with 100% and 98%, respectively and lower 

user’s accuracy for classes LCZ 10 – 11% and LCZ B – 44%. On other hand, the producer’s 

accuracy is higher for classes LCZ 1 – 83% and LCZ 10 – 79% and lower for classes LCZ 9 -  0% 

and LCZ 4 – 6%. 

It also appears to be a lot of confusion between classes LCZ 2 and 10 and also between classes 

LCZ 6 and LCZ 10. 

 

Table 22: Confusion matrix of the LCZs map with a spatial resolution of 120 m obtained using the 
summer satellite image for Hamburg. 

LCZ 1 2 4 5 6 8 9 10 A B D G ∑ UA 

1 173 18 0 0 0 0 0 0 0 0 0 0 200 87% 

2 1 117 0 0 0 1 0 4 0 0 0 5 200 59% 

4 0 0 6 0 0 0 0 0 0 0 0 0 200 3% 

5 0 1 6 102 7 5 0 2 0 2 1 0 200 51% 

6 0 0 69 25 160 2 1 1 3 22 3 0 200 80% 

8 0 5 2 15 12 89 0 21 0 0 3 4 200 45% 

10 10 35 41 50 128 66 3 79 10 28 70 66 200 40% 

A 0 0 0 0 6 0 2 1 137 78 9 0 200 69% 

B 0 0 0 0 6 0 0 0 82 62 6 2 200 31% 

D 0 0 0 0 11 0 2 0 8 18 125 1 200 63% 

G 0 0 0 0 0 0 0 0 0 1 2 167 200 84% 

∑ 184 176 124 192 330 163 8 108 240 211 219 245 2200   

PA 94% 66% 5% 53% 48% 55% 0% 73% 57% 29% 57% 68% AO 55% 
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The LCZ classification using the 120 meters’ summer satellite image shows an overall 

accuracy of 55% with the higher user’s accuracy at the classes LCZ 1 (Compact high-rise) and LCZ 

G (Water), with 87% and 84% respectively, and lower user’s accuracy for class LCZ 4 (Open high-

rise) with 3%.  

The producer’s accuracy is higher for classes LCZ 1 – (94%) and LCZ 10 (73%) and lower at LCZ 

9 (0%) and LCZ 4 (5%). The major misclassification occurs between the LCZ 6 and LCZ 10. 

 

Table 23: Confusion matrix of the LCZs map with a spatial resolution of 30 m obtained using the 
summer satellite image for Hamburg. 

LCZ 1 2 4 5 6 8 9 10 A B D G ∑ UA 

1 154 15 0 0 0 0 0 0 0 0 0 0 169 91% 

2 1 108 0 0 0 0 0 0 0 0 0 4 113 96% 

4 0 0 7 0 0 0 0 0 0 0 0 0 7 100% 

5 0 0 3 100 5 1 0 1 0 2 0 0 112 89% 

6 0 0 67 20 149 2 0 0 3 12 2 0 255 58% 

8 0 7 0 6 7 91 0 13 0 0 2 3 129 71% 

10 29 46 47 66 136 68 3 93 9 30 47 67 641 15% 

A 0 0 0 0 3 0 1 0 142 77 7 0 230 62% 

B 0 0 0 0 4 0 0 0 67 45 4 2 122 37% 

D 0 0 0 0 26 1 4 1 19 44 156 2 253 62% 

G 0 0 0 0 0 0 0 0 0 1 1 167 169 99% 

∑ 184 176 124 192 330 163 8 108 240 211 219 245 2200   

PA 84% 61% 6% 52% 45% 56% 0% 86% 59% 21% 71% 68% AO 55% 

 

The LCZ classification using the 30 meters’ summer satellite image has an overall accuracy 

of 55%. The higher user’s accuracy it appears for classes LCZ 4 (100%) and LCZ G (99%) while 

the classes LCZ 10 and LCZ B has the lower user’s accuracy, 15% and 37%, respectively. 

The producer’s accuracy is higher for classes LCZ 1 (84%) and LCZ D (71%) and lower for classes 

LCZ 9 (0%) and LCZ 4 (6%). It also appears a certain amount of confusion between the classes 

LCZ 6 and LCZ 10, and also between LCZ B and LCZ A. 
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Table 24: Confusion matrix of the LCZs map with a spatial resolution of 120 m obtained using the 
spring satellite image for Hamburg. 

LCZ 1 2 4 5 6 8 9 10 A B D G ∑ UA 

1 160 18 0 0 0 0 0 0 0 0 0 0 200 80% 

2 24 124 1 0 0 0 0 1 0 0 0 5 200 62% 

4 0 0 7 0 6 0 0 0 1 0 0 0 200 4% 

5 0 1 6 103 18 6 0 0 0 3 0 0 200 52% 

6 0 0 55 11 128 7 0 0 0 15 9 0 200 64% 

8 0 4 3 7 13 90 0 33 1 1 2 5 200 45% 

10 0 29 47 70 93 58 3 73 4 24 52 80 200 37% 

A 0 0 0 0 10 0 0 0 111 53 3 0 200 56% 

B 0 0 0 0 6 0 3 0 107 82 11 2 200 41% 

D 0 0 5 1 56 2 2 1 16 32 142 5 200 71% 

G 0 0 0 0 0 0 0 0 0 1 0 148 200 74% 

∑ 184 176 124 192 330 163 8 108 240 211 219 245 2200   

PA 87% 70% 6% 54% 39% 55% 0% 68% 46% 39% 65% 60% AO 53% 

 

In the confusion matrix for the 120 meters’ spring image, the classes with higher user 

accuracy are LCZ 1 (Compact high-rise): (80%) and LCZ G (Water) – 74% and a lower user 

accuracy was found for class LCZ 4 – Open mid-rise (4%).  

The producer’s accuracy is higher for classes LCZ 1 (87%) and LCZ 2 (Compact mid-rise) - (70%) 

and lower for classes LCZ 9 – Sparsely Built (0%), and LCZ 4 – Open mid-rise (6%). A certain 

amount of confusion also appears between the classes LCZ 4 and LCZ 6, and also between LCZ 

6 and LCZ 10. 

 

Table 25: Confusion matrix of the LCZs map with a spatial resolution of 30 m obtained using the 
spring satellite image for Hamburg. 

LCZ 1 2 4 5 6 8 9 10 A B D G ∑ UA 

1 122 0 0 0 0 0 0 0 0 0 0 0 122 100% 

2 1 107 0 0 0 0 0 0 0 0 0 4 112 96% 

4 0 0 6 0 0 0 0 0 0 0 1 0 7 86% 

5 6 0 16 97 15 6 0 1 0 2 0 0 143 68% 

6 0 0 32 7 96 4 0 0 1 9 8 0 157 61% 

8 0 4 5 9 15 91 0 27 1 2 6 6 166 55% 

10 55 65 58 77 138 59 4 79 4 31 43 71 684 12% 

A 0 0 0 0 12 0 0 0 114 56 6 0 188 61% 

B 0 0 0 0 5 0 2 0 105 74 4 0 190 39% 

D 0 0 7 2 49 3 2 1 15 37 150 9 275 55% 

G 0 0 0 0 0 0 0 0 0 0 1 155 156 99% 

∑ 184 176 124 192 330 163 8 108 240 211 219 245 2200   

PA 66% 61% 5% 51% 29% 56% 0% 73% 48% 35% 68% 63% AO 50% 
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The classification using 30 meters’ spring image has the third larger value of overall accuracy 

of all images (50%) and the classes with higher user’s accuracy are LCZ 1 (Compact high-rise) - 

(100%) and LCZ G (Water) – 99% and lower user’s accuracy was found for classes LCZ 10 (12%) 

and LCZ B (39%). The producer’s accuracy is higher for classes LCZ 10 – 73% and LCZ D – 68% 

and lower for classes LCZ 9 (0%) and LCZ 4 with 5%. In this image, it appears that occurs a certain 

amount of confusion also between classes LCZ 4 and LCZ 6. 

 
 

4.3. Conversion of the OSM data into LCZ classes  

4.3.1. Coimbra 

Figure 41 a) shows Landsat 8 true color imagery of the study area. The images shown in 

Figure 41 b) to f) represent the percentage of area occupied in each cell by: b) LCZ class A (Dense 

Trees) or B (Scattered trees), c) LCZ class D (Low plants), d) LCZ class G (Water), e) the building 

surface fraction, and f) the impervious surface fraction. 

A visual analysis of the results shows that for classes LCZ A (Dense Trees) or LCZ B 

(Scattered Trees) (Figure 41 b), as well as for class LCZ D (Low Plants) (Figure 41 c), compact 

regions of cells with more than 80% occupation were obtained and only a few cells with low 

occupation can be seen, located mainly in the borders of the larger regions. 

For class LCZ G (Water) (Figure 41 d), a large number of cells have a low percentage of 

occupation, corresponding to existing creeks, and only the main watercourse of the study area 

(Mondego River) has high values of occupation. 

Relative to the building surface fraction (Figure 41 e), it can be seen that there is little 

information for the study area and that most of the available information indicates a low percentage 

of area occupied by buildings due to missing data in OSM. On the other hand, the impervious 

surface fraction (Figure 41 f) shows the railway and road network mapped in great detail, even 

though these structures only occupy a small percentage of the cell’s area, i.e. usually less than 20%.  

Even though there is a considerable amount of missing data in OSM for the study area 

(Figure 41), the visual comparison of the results obtained for the existing data with the Landsat 

true color image shows a good level of correspondence with the ground cover.  

In general, a visual analysis of the results obtained for the natural LCZ classes (LCZ A or 

B, LCZ D and LCZ G), in comparison with the satellite image, showed relevant correspondence 

with the land cover. 
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Another procedure that was undertaken was the extraction of the confidence of each class 

(𝑥) in each cell depending on the number of times that this class was assigned to the cell in the four 

LCZ maps (corresponding to different seasons). This procedure was implemented on all LCZ 

classes. Figures 42 and 43 show two examples of the results obtained for LCZ A and LCZ D, 

respectively. The results for the other classes are in Appendix N, from Figures 67 to 72. 

 

 

Figure 41: a) Landsat 8 true color imagery (RGB 432). Results obtained from OSM for the 
percentage of area occupied in each cell by: b) LCZ A (Dense Trees) or LCZ B (Scattered Trees), 

c) LCZ class D (Low Plants), d) LCZ class G (Water), e) building surface fraction and f) 
impervious surface fraction 
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Figure 42: Confidence of presence of LCZ A in each pixel based on the classification of four 
satellite images, in percentage, for Coimbra 

 

 

Figure 43: Confidence of presence of LCZ D in each pixel based on the classification of four 
satellite images, in percentage, for Coimbra 
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4.3.2. Hamburg 

 

Figures 44 to 47 show the results of the conversion of OSM data into LCZ classes by class 

and percentage of area occupied in each cell by the class, for classes LCZ A (Dense Trees) or B 

(Scattered trees) – Figure 44, LCZ C (Bush, scrub) – Figure 45, LCZ D (Low plants) – Figure 46 

and LCZ G (Water) – Figure 47. The urban classes are presented in Figures 52 to 58 and represent 

the classes LCZ 3 (Compact low-rise), LCZ 4 (Open high-rise), LCZ 5 (Open mid-rise), LCZ 6 

(Open low-rise), LCZ 7 (Lightweight low-rise), LCZ 9 (Sparsely built) and LCZ 10 (Heavy 

industry).  

 As for Coimbra, a visual analysis of the results shows that for classes LCZ A (Dense Trees) 

or LCZ B (Scattered Trees) (Figure 44), as well as for class LCZ D (Low Plants) (Figure 46), 

compact regions of cells with more than 80% occupation were obtained and only a few cells with 

low occupation can be seen, located mainly in the borders of the larger regions. The LCZ C (Figure 

45) has low representation in the study area, where numerous cells with a percentage of occupation 

of 0 to 20% exist but only a relatively small compact region with large values of occupation can be 

seen. 

Class LCZ G (Water) (Figure 47) has a small number of cells with high values of occupation 

corresponding to the main watercourse of the study area (Elba River) and has a large number of 

cells with a low percentage of occupation, corresponding to existing streams.  
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Figure 44: Results obtained from OSM for the percentage of area occupied in each cell by LCZ A 
(Dense Trees) or LCZ B (Scattered Trees) 

 

Figure 45: Results obtained from OSM for the percentage of area occupied in each cell by LCZ C 
(Bush, scrub) 
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Figure 46: Results obtained from OSM for the percentage of area occupied in each cell by LCZ D 
(Low plants) 

 

Figure 47: Results obtained from OSM for the percentage of area occupied in each cell by LCZ G 
(Water) 
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Relative to urban classes, the LCZ 1 (Compact high-rise) and LCZ 2 (Compact midrise) 

were not obtained for this study area. Classes LCZ 3 (Figure 48), LCZ 6 (Figure 51), LCZ 7 (Figure 

52) and LCZ 9 (Figure 53) have a low percentage of occupation across the study area. In contrast, 

the class LCZ 4 (Figure 49), LCZ 5 (Figure 50) and LCZ 10 (Figure 54) have a large number of 

cells with high values of occupation. The LCZ 4 and LCZ 5 have many corresponding cells since 

the similarity between these classes is very similar, so they have similar selection criteria.  

Overall, the visual comparison of the results obtained for the existing data with the Landsat 

true color image shows a great level of correspondence with the ground cover. In particular, for 

the natural LCZ classes (LCZ A or B, LCZ D and LCZ G), in comparison with the satellite image, 

a relevant correspondence with the land cover can be seen. 

The confidence of a particular class (𝑥) was also extracted for each cell, depending on the 

number of times that the class appears in all four LCZs maps for the different seasons. This 

procedure was applied to all LCZ classes, but here only two examples are presented, in Figures 55 

(LCZ A) and 56 (LCZ D). The results for the other classes are in Appendix O, in Figures 73 to 81. 

 

Figure 48: Results obtained from OSM for the percentage of area occupied in each cell by LCZ 3 
(Compact low-rise) 
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Figure 49: Results obtained from OSM for the percentage of area occupied in each cell by LCZ 4 
(Open high-rise) 

 

Figure 50: Results obtained from OSM for the percentage of area occupied in each cell by LCZ 5 
(Open mid-rise) 
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Figure 51: Results obtained from OSM for the percentage of area occupied in each cell by LCZ 6 
(Open low-rise) 

 

Figure 52: Results obtained from OSM for the percentage of area occupied in each cell by LCZ 7 
(Lightweight low-rise) 
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Figure 53: Results obtained from OSM for the percentage of area occupied in each cell by LCZ 9 
(Sparsely built) 

 

Figure 54: Results obtained from OSM for the percentage of area occupied in each cell by LCZ 10 
(Heavy industry) 
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Figure 55: Confidence of the presence of LCZ A as a percentage for Hamburg 

 

Figure 56: Confidence of presence of LCZ D as a percentage for Hamburg 
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4.4. Results of the data combination 

4.4.1. Coimbra 

 

 The final result of the proposed methodology for Coimbra is shown in Figure 57, where 

the cells are filled with the most likely class. In the case where a predominant class does not exist, 

the cells are not filled. Thus, to evaluate the accuracy of these final maps and compare them with 

the validation dataset created previously, the “no data” class was filled with the data from the LCZ 

map using the 120 m Landsat 8 images for each season. Figures 57 to 61 represent the combination 

of the most likely class and the values for winter (Figure 57), autumn (Figure 58), summer (Figure 

60) and spring images (Figure 61).  

 

 

Figure 57: Result of the procedure applied to Coimbra (the most likely class) 
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Figure 58: Result of the procedure applied to Coimbra (the most likely class) for the Winter LCZ 
map 

 

Figure 59: Result of the procedure applied to Coimbra (the most likely class) for the Autumn LCZ 
map 
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Figure 60: Results of the procedure applied to Coimbra (the most likely class) for the Summer 
LCZ map 

 

Figure 61: Result of the procedure applied to Coimbra (the most likely class) for the Spring LCZ 
map 
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 The results show that the overall accuracy of all images for Coimbra improved by at least 

7% (Table 26), where the spring image showed the largest increase (12%).  

 Tables 27 to 30 were generated for the classification of Coimbra using the combination of 

OSM data and the LCZ map from the classification using 120 m Landsat 8 data for winter, autumn, 

summer and spring, respectively. 

 

Table 26: Overall accuracy before and after the data combination to Coimbra 

 OA 
(Before) 

OA 
(After) 

Difference 

Winter 42% 53% +11% 

Autumn 44% 53% +9% 

Summer 43% 50% +7% 

Spring 39% 51% +12% 
 

Table 27: Confusion matrix for the final results after the data combination for Coimbra, using the 
OSM and LCZ map derived from the winter Landsat 8 image with a spatial resolution of 120 m. 

LCZ 2 3 6 8 9 A B D G ∑ UA 

3 0 102 12 0 0 1 0 0 0 115 89% 

6 10 23 206 10 107 8 24 10 0 398 52% 

8 18 3 53 89 44 3 17 2 2 231 39% 

9 0 1 5 3 106 8 47 33 0 203 52% 

A 0 0 0 0 9 73 166 8 3 259 28% 

B 0 1 2 2 42 47 170 20 5 289 59% 

D 0 0 2 1 19 8 30 179 5 244 73% 

G 0 9 0 2 3 2 8 6 31 61 51% 

∑ 28 139 280 107 330 150 462 258 46 1800   

PA 0% 73% 74% 83% 32% 49% 37% 69% 67% OA 53% 

 

The LCZ map combining the data extracted from OSM and the winter satellite derived 

LCZ map has an overall accuracy of 53%. It can be concluded that this represents a significant 

improvement (11%) in the overall accuracy. A higher user’s accuracy appears for classes LCZ 3 

(Compact mid-rise) – (89%) and LCZ D (Low plants) - (73 %), while the classes LCZ A (Dense 

Trees) – 28% and LCZ 8 (Large low-rise) – 39% have a lower user’s accuracy. The producer’s 

accuracy is higher for classes LCZ 8 (83%) and LCZ 6 (Open low-rise) (74%) and lower for classes 

LCZ 2 (Compact mid-rise) (0%), LCZ 9 (Sparsely Built) (32%) and LCZ B (Scattered trees) (37%). 

There is a certain amount of confusion between the classes LCZ A and LCZ B. Comparing these 

results with the confusion matrix obtained before the procedure for the winter image, there is a 
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major improvement in the producer’s accuracy for LCZ 6 (from 29% to 74%). There was also a 

major improvement in the user’s accuracy for class LCZ G (36%). 

 

Table 28: Confusion matrix for the final results after the data combination for Coimbra, using the 
OSM and LCZ map derived from the autumn Landsat 8 image with a spatial resolution of 120 m. 

LCZ 2 3 6 8 9 A B D G ∑ UA 

3 0 102 32 1 0 1 1 0 0 137 74% 

6 19 23 197 14 110 8 25 6 0 402 49% 

8 9 3 42 85 38 3 17 2 2 201 42% 

9 0 1 5 2 99 6 35 24 0 172 58% 

A 0 0 0 0 7 73 155 7 3 245 30% 

B 0 1 2 2 52 49 187 30 5 328 57% 

D 0 0 2 2 21 8 35 180 5 253 71% 

G 0 9 0 1 3 2 7 9 31 62 50% 

∑ 28 139 280 107 330 150 462 258 46 1800  

PA 0% 73% 70% 79% 30% 49% 40% 70% 67% OA 53% 

 

In the confusion matrix for the combined results of autumn, the classes with a higher user 

accuracy are LCZ 3 (Compact low-rise) – 74% and LCZ D (Low plants) - (71%) and it shows a 

lower user’s accuracy for classes LCZ A – Dense Trees (30%) and LCZ 8 – Large low-rise (42%).  

The producer’s accuracy is higher for classes LCZ 6 – Open low-rise (79%) and LCZ 3 (Compact 

low-rise) – (73%). There is also a certain amount of confusion between the classes LCZ 9 and LCZ 

6. Comparing the results with the confusion matrix before the procedure for the autumn image, 

the major gain was in the producer’s accuracy for LCZ 6 (from 40% to 70%) and for LCZ D (from 

47% to 70%). As in the previous image, the class that experienced a major improvement was the 

user’s accuracy for LCZ G (from 20% to 50%).  
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Table 29: Confusion matrix for the final results after the data combination for Coimbra, using the 
OSM and LCZ map derived from the summer Landsat 8 image with a spatial resolution of 120 m. 

LCZ 2 3 6 8 9 A B D G ∑ UA 

3 0 109 42 2 0 1 1 0 0 155 70% 

6 11 16 179 12 123 7 26 8 0 382 47% 

8 17 3 47 86 36 3 19 2 2 215 40% 

9 0 1 5 3 94 7 34 22 0 166 57% 

A 0 0 0 0 10 82 204 9 4 309 27% 

B 0 1 2 2 41 37 132 23 4 242 55% 

D 0 0 2 1 23 11 39 188 5 269 70% 

G 0 9 3 1 3 2 7 6 31 62 50% 

∑ 28 139 280 107 330 150 462 258 46 1800  

PA 0% 78% 64% 80% 28% 55% 29% 73% 67% OA 50% 

 

Table 29 shows an overall accuracy of 50%. A higher user’s accuracy is obtained for classes 

LCZ D (Low plants) and LCZ 3 (Compact low-rise), both with 70%, while the classes LCZ A 

(Dense Trees) and LCZ 8 (Large low-rise) have a lower user’s accuracy, with 27% and 40%, 

respectively. 

The producer’s accuracy is higher for classes LCZ 3 (78%), LCZ D (73%) and lower for classes 

LCZ 2 (0%), LCZ 8 (28%) and LCZ B (29%). There is also a certain amount of confusion between 

the classes LCZ A (Dense trees) and LCZ B (Scattered Trees). Comparing these results with the 

confusion matrix before the procedure for the summer image, a major gain in the producer’s 

accuracy can be seen in LCZ 8 (from 59% to 80%) and in the user’s accuracy for LCZ D (+33%). 

 

Table 30: Confusion matrix for the final results after the data combination for Coimbra, using the 
OSM and LCZ map derived from the spring Landsat 8 image with a spatial resolution of 120 m. 

LCZ 2 3 6 8 9 A B D G ∑ UA 

3 0 109 25 0 0 1 1 0 0 136 80% 

6 20 16 206 13 121 9 26 11 0 422 49% 

8 8 3 40 84 36 3 18 3 2 197 43% 

9 0 1 4 2 92 7 36 23 0 165 56% 

A 0 0 0 0 11 81 199 6 4 301 27% 

B 0 1 2 2 39 37 130 21 4 236 55% 

D 0 0 3 5 28 10 45 188 5 284 66% 

G 0 9 0 1 3 2 7 6 31 59 53% 

∑ 28 139 280 107 330 150 462 258 46 1800   

PA 0% 78% 74% 79% 28% 54% 28% 73% 67% OA 51% 
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In the confusion matrix for the combined results of spring, the classes with a higher user’s 

accuracy are LCZ 3 (Compact low-rise) – 80% and LCZ D (Low plants) - 66%, and it shows a 

lower user’s accuracy for classes LCZ A – Dense Trees (27%) and LCZ 8 – Large low-rise (43%). 

The producer’s accuracy is higher for classes LCZ 8 (79%) and LCZ 3 (Compact low-rise) – 78% 

and lower for classes LCZ 2 – Compact mid-rise (0%), and also LCZ B (Scattered Trees) and LCZ 

9 – Scattered Trees, both with (28%). There is also a certain amount of confusion between the 

classes LCZ A and LCZ B. Comparing this results with the confusion matrix before the procedure 

for the spring image it appears that a major gain was achieved in the producer’s accuracy for LCZ 

G (from 41% to 67%), LCZ 8 (from 55% to 79%) and in LCZ 6 (from 51% to 74%). For the user’s 

accuracy, major gains were made in LCZ 3 (from 60 to 80%) and LCZ D (from 46% to 66%). 

 

4.4.2. Hamburg 

 

The final result of the proposed methodology is shown in Figure 62, where the cells are 

filled with the most likely class. In the case where a predominant class does not exist, the cells were 

not filled. Figures 63 to 66 represent the combination of the most likely class and the values for 

winter (Figure 63), autumn (Figure 64), summer (Figure 65) and spring images (Figure 66).  

 

 

Figure 62: Result of the procedure applied to Hamburg (the most likely class) 
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Figure 63: Result of the procedure applied to Hamburg (the most likely class) for the Winter LCZ 
map 

 

Figure 64: Results of the procedure applied to Hamburg (the most likely class) for the Autumn 
LCZ map 
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Figure 65: Result of the procedure applied to Hamburg (the most likely class) for the Summer 
LCZ map 

 

Figure 66: Result of the procedure applied to Hamburg (the most likely class) for the Spring LCZ 
map 
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For Hamburg, one of the final maps showed a decrease in the overall accuracy, namely, the 

winter image (-5%). Nevertheless, all other maps showed an increase in overall accuracy of at least 

of 9% (Table 31).  

 Tables 32 to 35 show the user accuracy (UA) and producer accuracy (PA) for each class 

obtained in both confusion matrices of 120 meters’ LCZs maps (before and after the OSM 

procedure) and their differences in Hamburg. 

 

Table 31: Overall accuracy before and after the data combination was applied to Hamburg 

 (OA) 
Before 

(OA) 
After 

Difference 

Winter 72% 67% -5% 

Autumn 56% 65% +9% 

Summer 55% 64% +9% 

Spring 53% 65% +12% 

 

Table 32: Confusion matrix for the final results after the data combination for Hamburg, using 
the OSM and LCZ map derived from the winter Landsat 8 image with a spatial resolution of 120 

m. 

LCZ 1 2 4 5 6 8 9 10 A B D G ∑ UA 

1 173 18 0 0 0 0 0 0 0 0 0 0 191 91% 

2 10 141 0 0 0 0 0 7 0 0 0 8 166 85% 

4 0 1 33 3 15 1 2 0 2 5 1 0 63 52% 

5 1 4 4 149 15 8 0 4 0 3 0 1 189 79% 

6 0 0 49 8 163 3 0 0 5 18 2 0 248 66% 

8 0 1 1 3 15 118 0 18 0 2 0 3 161 73% 

9 0 0 1 0 4 0 0 0 0 0 0 0 5 0% 

10 0 10 35 29 76 33 1 75 3 12 18 33 325 23% 

A 0 0 0 0 4 0 0 0 144 40 7 0 195 74% 

B 0 0 0 0 16 0 2 0 78 108 10 1 215 50% 

C 0 0 0 0 0  0 0 0 1 1 2 0 4 0% 

D 0 0 1 0 22 0 2 1 7 21 177 1 232 76% 

G 0 1 0 0 0 0 1 3 0 1 2 198 206 96% 

∑ 184 176 124 192 330 163 8 108 240 211 219 245 2200   

PA 94% 80% 27% 78% 49% 72% 0% 69% 60% 51% 81% 81% AO 67% 

 

The LCZ classification using the integrated values of the winter satellite LCZ map resulted 

in an overall accuracy of 67%, which represents a reduction of 5%. A higher user’s accuracy is 

obtained for classes LCZ G (Water) – (96%) and LCZ 1 (Compact high-rise) - (91 %), while the 

classes LCZ 9 (Scattered trees), LCZ C (Bush, scrub) and LCZ 10 (Heavy industry) have lower 

user’s accuracies, the first two both 0% and 23%, respectively. The producer’s accuracy is higher 

for classes LCZ 1 (94%), LCZ D and LCZ G, both with 81% and lower for classes LCZ 9 (0%), 
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LCZ 4 (27%) and LCZ 6 (49%). There is also a certain amount of confusion between the classes 

LCZ 4 and LCZ 6, and also between LCZ A (Dense trees) and LCZ B (Scattered Trees). 

Comparing these results with the confusion matrix before the procedure for the winter image, it 

appears that the major loss in producer’s accuracy was in LCZ 4 (from 90% to 27%). 

 

Table 33: Confusion matrix for the final results after the data combination for Hamburg, using 
the OSM and LCZ map derived from the autumn Landsat 8 image with a spatial resolution of 120 

m. 

LCZ 1 2 4 5 6 8 9 10 A B D G ∑ UA 

1 173 18 0 0 0 0 0 0 0 0 0 0 191 91% 

2 10 140 0 0 0 0 0 0 0 0 0 8 158 89% 

4 0 1 27 3 8 2 0 0 0 0 1 0 42 64% 

5 1 4 5 148 14 8 0 4 0 3 0 1 188 79% 

6 0  49 9 164 2 1 0 3 18 3 0 249 66% 

8 0 1 2 3 12 102 0 21 0 2 0 4 147 69% 

9 0 0 1 0 4 0 0 0 0 0 0 0 5 0% 

10 0 11 40 29 92 49 1 79 6 15 19 37 378 21% 

A 0 0 0 0 4 0 1 0 120 38 7 0 170 71% 

B 0 0 0 0 11 0 1 0 101 112 9 1 235 48% 

C 0 0 0 0 0 0 0 0 1 1 2 0 4 0% 

D 0 0 0 0 21 0 3 1 9 21 176 1 232 76% 

G 0 1 0 0 0 0 1 3 0 1 2 193 201 96% 

∑ 184 176 124 192 330 163 8 108 240 211 219 245 2200  

PA 94% 80% 22% 77% 50% 63% 0% 73% 50% 53% 80% 79% AO 65% 

 
 

In the confusion matrix for the combined results of autumn, the higher user accuracy 

classes are LCZ G (Water) – 96% and LCZ 1 (Compact high-rise): (91%) and it shows a lower user 

accuracy for classes LCZ 9 – Sparsely Built and LCZ C - Bush, scrub (both with 0%) and LCZ 10 

– Heavy Industry (21%). The producer’s accuracy is higher for classes LCZ 1 (94%) and LCZ 2 

(Compact mid-rise) and LCZ D - (both with 80%) and lower for classes LCZ 9 – Sparsely Built 

(0%), and LCZ 4 – Open mid-rise (22%). It also appears a certain amount of confusion between 

the classes LCZ 6 and LCZ 10. Comparing this results with the confusion matrix before the 

procedure for the autumn image it appears that the major gain in producer accuracy was in LCZ 

G (from 54% to 79%) and in LCZ 5 (from 54% to 77%) and in user accuracy was in LCZ 4 (from 

3% to 64%). 
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Table 34: Confusion matrix for the final results after the data combination for Hamburg, using 
the OSM and LCZ map derived from the summer Landsat 8 image with the spatial resolution of 

120 m. 

LCZ 1 2 4 5 6 8 9 10 A B D G ∑ UA 

1 173 18 0 0 0 0 0 0 0 0 0 0 191 91% 

2 10 127 0 0 0 1 0 4 0 0 0 5 147 86% 

4 0 1 27 2 5 1 0 0 0 0 0 0 36 75% 

5 1 4 6 146 13 9 0 4 0 3 0 0 186 78% 

6 0 0 52 10 160 3 1 0 2 19 2 0 249 64% 

8 0 1 2 3 10 92 0 19 0 0 1 4 132 70% 

9 0 0 1 0 4 0 0 0 0 0 0 0 5 0% 

10 0 24 36 31 106 57 1 77 5 16 17 39 409 19% 

A 0 0 0 0 4 0 1 0 135 59 9 0 208 65% 

B 0 0 0 0 10 0 1 0 90 90 9 1 201 45% 

C 0 0 0 0 0 0 0 0 1 1 2 0 4 0% 

D 0 0 0 0 18 0 3 1 7 21 177 1 228 78% 

G 0 1 0 0 0 0 1 3 0 2 2 195 204 96% 

∑ 184 176 124 192 330 163 8 108 240 211 219 245 2200  

PA 94% 72% 22% 76% 48% 56% 0% 71% 56% 43% 81% 80% AO 64% 

 

 

The final results after the data combination for Hamburg, using OSM and LCZ’s map 

summer Landsat 8 image with the spatial resolution of 120 m combination shows an overall 

accuracy of 64%, that represent an improvement of 9%. Similarly, to the previous results, the higher 

user’s accuracy it appears for classes LCZ G (Water) – (96%) and LCZ 1 (Compact high-rise) - (91 

%), while the classes LCZ 9 (Scattered trees), LCZ C (Bush, scrub) and LCZ 10 (Heavy industry) 

has the lower user’s accuracy, first two with 0% and the third with 19%. 

The producer’s accuracy is higher for classes LCZ 1 (94%), LCZ D and LCZ G, with 81% 

and 80%, respectively and lower for classes LCZ 9 (0%), LCZ 4 (22%) and LCZ B (43%). It also 

appears a lot of confusion between the classes LCZ 6 and LCZ 10, and also between LCZ A (Dense 

trees) and LCZ B (Scattered Trees). Comparing this results with the confusion matrix before the 

procedure for the summer image it appears that the major’s gains in producer accuracy was in LCZ 

D (from 57% to 81%) and in LCZ 4 (from 53% to 76%) and in user accuracy was LCZ 4 (from 

3% to 75%). 
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Table 35: Confusion matrix for the final results after the data combination for Hamburg, using 
the OSM and LCZ map derived from the spring Landsat 8 image with a spatial resolution of 120 

m. 

LCZ 1 2 4 5 6 8 9 10 A B D G ∑ UA 

1 173 18 0 0 0 0 0 0 0 0 0 0 191 91% 

2 10 126 0 0 0 0 0 0 0 0 0 5 141 89% 

4 0 1 27 2 6 1 0 0 1 0 0 0 38 71% 

5 1 4 5 149 14 9 0 4 0 3 0 0 189 79% 

6 0 0 50 8 152 3 0 0 1 16 2 0 232 66% 

8 0 1 2 4 10 93 0 23 0 0 1 3 137 68% 

9 0 0 1 0 4 0 0 0 0 0 0 0 5 0% 

10 0 25 36 29 96 57 2 77 2 17 17 36 394 20% 

A 0 0 0 0 7 0 0 0 130 34 7 0 178 73% 

B 0 0 0 0 10 0 3 0 96 115 10 1 235 49% 

C 0 0 0 0 0 0 0 0 1 1 2 0 4 0% 

D 0 0 3 0 31 0 2 1 9 23 178 1 248 72% 

G 0 1 0 0 0 0 1 3 0 2 2 199 208 96% 

∑ 184 176 124 192 330 163 8 108 240 211 219 245 2200   

PA 94% 72% 22% 78% 46% 57% 0% 71% 54% 55% 81% 81% AO 65% 

 

In the confusion matrix for the combined results for spring, the classes with a higher user’s 

accuracy are LCZ G (Water) – 96% and LCZ 1 (Compact high-rise) - (91%) while a lower user’s 

accuracy is obtained for classes LCZ 9 – Sparsely Built and LCZ C - Bush, scrub (both with 0%) 

and LCZ 10 – Heavy Industry (20%). The producer’s accuracy is higher for classes LCZ 1 (94%), 

LCZ D (Low plants) and LCZ G - (both with 81%) and lower for classes LCZ 9 – Sparsely Built 

(0%), and LCZ 4 – Open mid-rise (22%). There is also a certain amount of confusion between the 

classes LCZ 4 and LCZ 10. Comparing this results with the confusion matrix before the procedure 

for the autumn image, it appears that the major gain in the producer’s accuracy was in LCZ 5 (from 

54% to 78%) and in LCZ G (from 60% to 81%). Similarly, with the previous results from the other 

images, the major gain in user’s accuracy was in LCZ 4 (from 4% to 71%).  
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It can be concluded that the objectives of this research have been achieved, i.e. the procedure 

developed here has been shown to improve the accuracy of the LCZ maps in a consistent manner. 

Moreover, it was shown that VGI can be an important source of spatial data although it is based 

on data collected by volunteers rather than scientists so there are limitations in the use of the data 

for scientific studies. Nevertheless, the use of the same validation points (200 per class) for the 

results, before and after the procedure was applied, shows a clear improvement in the accuracy of 

the results, validating the importance of VGI.  

  Although the methodology proposed here obtained good results, as in any application in 

the context of this work, there were some difficulties encountered, especially in the urban LCZ 

classes. Some of these difficulties are related to the lack of OSM data related to buildings and to 

the intervals of the values of the properties that distinguish the LCZ classes, such as building 

surface fraction and impervious surface fraction. Some of this information is not present in OSM, 

e.g. information on the number of floors, which is one of the main characteristics that distinguishes 

between the diverse types of urban LCZ classes. 

 The LCZ classes that represent natural land cover types experienced the greatest 

improvements in producer accuracy, namely, LCZ D (Low plants), which showed improvements 

of 8% in all images, for the both study areas. The Water (LCZ G) class also showed improvements 

in the majority of images, where the improvement was greater than 10% in both cases. In general, 

the largest improvement in producer accuracy was in class LCZ 6 (Open low-rise) in Coimbra and 

in class LCZ 5 (Open mid-rise) in Hamburg. 

  To evaluate the final results after the procedure was implemented, a comparison could be 

made with the results currently present in WUDAPT (http://www.wudapt. org/), which have been 

developed using the workflow presented in Bechtel, Alexander, et al. (2015) and See et al. (2015), 

which could be done as part of future research. However, in line with the philosophy of WUDAPT, 

it should be easy to implement and freely available for WUDAPT participants to try out.  

As a proposal for future work, this procedure can be developed in open source software and 

be made freely available to all WUDAPT contributors or a webpage could be developed that allows 

the citizens to submit their LCZ maps and download the OSM data for their region of interest. 

5. Conclusions 
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The application could also allow users to make choices on some of their parameters regarding the 

OSM data available, or even use OSM data as training data input for the LCZs classifications.  

It will also be interesting to test this methodology in more areas of study and to evaluate the 

results. It may also be interesting to study the differences obtained if a historical series of satellite 

images (for each season of the year) and the historical records corresponding to OSM data were 

compared in order to understand the evolution of the LCZ classes and hence changes in the land 

use and cover within urban areas. 
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Appendix A – Model I: Preparation of the variables 
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Appendix B – Model II: Preparation of the variables (Aggregation)  
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Appendix C – Model III: OSM to LCZ A or B 
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Appendix D – Model IV: OSM to LCZ C 
 

 

 

 



109 

Appendix E – Model V: OSM to LCZ D 
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Appendix F – Model VI: OSM to LCZ G 
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Appendix G – Model VII: Obtain Impervious Surface Fraction (Roads and Railways)  
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Appendix H – Model VIII: Obtain Building Surface Fraction  
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Appendix I – Model IX: OSM to urban LCZ class (LCZ 1 to LCZ 10) 
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Appendix J – Model X: Extract data from OSM maps 
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Appendix K – Model XI: Final procedure 
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Appendix L – Code Block to extract the percentage of times that a determinate 

class repeats on all classifications (summer, spring, autumn and winter) in each cell 

of the GRID 
 

def Reclass (one,two,three,four): 

  valor = 0 

  while valor == 0: 

    if one == 104: 

      valor = 0 + 25 

    if two == 104: 

      valor = valor + 25 

    if three == 104: 

      valor = valor + 25 

    if four == 104: 

      valor = valor + 25 

    return valor 
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Appendix M – Code Block to extract the percentage of area occupied by each in 

each cell of the GRID 
 

def Reclass (dom, dom_area, sec, sec_area): 

  valor = 0 

  while valor == 0: 

    if dom == "LCZ D": 

      valor = 0 + dom_area 

    if sec == "LCZ D": 

      valor = valor + sec_area 

    return valor 
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Appendix N – Confidence for each class regarding to satellite images for Coimbra 

 

Figure 67: Confidence of presence of LCZ B (Scattered Trees) in values of percentage 

 

Figure 68: Confidence of presence of LCZ G (Water) in values of percentage 
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Figure 69: Confidence of presence of LCZ 3 (Compact low-rise) in values of percentage 

 

Figure 70: Confidence of presence of LCZ 6 (Open low-rise) in values of percentage 
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Figure 71: Confidence of presence of LCZ 8 (Large low-rise) in values of percentage 

 

Figure 72: Confidence of presence of LCZ 9 (Scattered built) in values of percentage 
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Appendix O – Confidence for each class regarding to satellite images for Hamburg 
 

 

Figure 73: Confidence of presence of LCZ B (Scattered Trees) in values of percentage 

 

Figure 74: Confidence of presence of LCZ G (Water) in values of percentage 
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Figure 75: Confidence of presence of LCZ 1 (Compact high-rise) in values of percentage 

 

Figure 76: Confidence of presence of LCZ 2 (Compact mid-rise) in values of percentage 
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Figure 77: Confidence of presence of LCZ 4 (Open high-rise) in values of percentage 

 

Figure 78: Confidence of presence of LCZ 5 (Open midrise) in values of percentage 
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Figure 79: Confidence of presence of LCZ 6 (Open low-rise) in values of percentage 

 

Figure 80: Confidence of presence of LCZ 8 (Large low-rise) in values of percentage 
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Figure 81: Confidence of presence of LCZ 10 (Heavy Industry) in values of percentage 

 


