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The field exploring artificial life has existed since the early ages of computer science. Be-

cause of its development, it has been possible to create numerous virtual models that have al-

lowed the study of the behaviour of living organisms and their interactions within artificially 

created ecosystems. Whilst the methods employed in this field have been mostly explored by 

various researchers in their projects, they had not been broadly applied in the entertainment 

and art fields. 

 

With this thesis, I intend to create an entertainment software which contains agents with 

artificial life. Beyond this, the effectiveness of machine learning as one of the key elements in 

an entertainment directed program is to be investigated. A question that will be explored in 

this thesis is how machine learning can enable the artificial creatures to respond to audio 

commands in addition to audio-based interaction between creatures and their environment. 

 

 

 

Artificial life, video games, evolutionary computation, genetic algorithms, machine learning, 
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O domínio que explora a vida artificial existe desde do início da ciência da computação. O 

desenvolvimento deste domínio levou criaçãode vários modelos virtuais que possibilitam o 

estudo do comportamento de organismos vivos e suas interações dentro de ecossistemas 

criados artificialmente. Estes metodos tem sido explorados principalmente por investigadores 

do domínio, não tendo sido explorados nos campos de entretenimento e arte.  

 

Com esta tese, pretendo criar um sistema computacional de entretenimento que contem 

agentes com vida artificial. Além disso, a eficácia do aprendizagem de máquina como um dos 

elementos-chave de um programa direcionado ao entretenimento deve ser investigada. Uma 

questão que será explorada nesta tese é como aprendizagem de máquina pode permitir que as 

criaturas artificiais respondam aos comandos de áudio, além da interação baseada em áudio 

entre as criaturas e seu ambiente. 

 

 

 

Vida artificial, video-jogos, computação evolutiva, algoritmos geneticos, aprendizagem de 

máquina, reconhecimento de som 
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2D – Two-dimensional/ second dimension 

3D - Three-dimensional/ third dimension 

AI - Artificial intelligence  

ANN – Artificial neural network 

A-Life - Artificial life  

CPU – Central processing unit  

DNN – Deep neural network 

DQN – Deep Q network 

EA – Evolutionary algorithms 

GA – Genetic algorithm 

GPU – Graphics processing unit 

LSTM – Long short-term memory 

MSE – Mean squared error 

Q – Queen  

UC - University of Coimbra  

UI – User interface 

UML – Unified Modelling Language 

W – Warrior  
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This thesis represents the work undertaken to complete the dissertation element of a master’s 

course in Design and Multimedia at the University of Coimbra. The introduction section 

provides a summary of the research context and rationale, the key aims and objectives of the 

project as well as an outline of the thesis structure. 

 

 

 

 

 

The A-life field has been present since the early days of computing. Some of algorithms 

related to the field had existed even before it was possible to reproduce them 

programmatically (e.g. Conway’s Game of Life). Living organisms are extremely complex 

and by learning their patterns, it is possible to translate them into algorithms. 

 

The motivation of this work was primarily enforced by observing various examples of 

artificial life and artificial intelligence at several exhibitions and the desire of discovering 

possibilities that are offered by this often under researched field within the entertainment 

industry. 

 

The book of Nicola Tesla, “My Inventions”, served me as a key element towards 

understanding how learning the rules and patterns of life is an important task that can lead to 

many significant discoveries. According to Tesla, all humans, animals and creatures may 

arguably be nothing more than automata acting in accord with the data sent to their brains by 

various sensors. It is important to study these patterns in order to create a system that can be 

truly efficient and stable. 
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An interesting topic, related to simulated environments is the use of audio sensors in virtual 

creatures. It is not a broadly explored topic and creating such an environment could serve as a 

possible contribution to the field of AI. Creation of a piece of entertainment software with the 

a-life elements will be a step into this not broadly explored area, especially in the field of 

entertainment, which I am willing to undertake. 

 

 

 

 

 

A-Life is a field wherein researchers are studying systems related to natural life, its patterns 

and evolution. The study is done through creation of computational models, robots or bio-

chemistry. In this thesis, the main project within the A-life field was the creation of artificial 

agents functioning within a virtual environment. 

 

Machine learning is a part of the field of AI. It studies algorithms that allow various agents to 

learn, similarly to actual living creatures. Several algorithms and techniques from this field 

were explored in this project, primarily artificial neural networks (ANN), evolutionary 

algorithms (EA), and Q-learning. 

 

Additional fields which were relevant to this project to a small degree are game design and 

user interface (UI). 

 

 

 

 

 

In order to consider this work successful it was necessary to accomplish the following 

objectives: 

- Study how A-life agents can be created using a computational approach. 

- Determine and study design problems within similar projects and how they can be avoided. 

- Develop a virtual toy involving A-life agents as a part of its key elements. 
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- Construct a system within the toy environment allowing the user to interact with and teach 

A-life agents through their audio sensors. 

- Develop a communication system between the A-Life agents of the toy and the simulated 

environment. 

 

 

 

 

 

In the first phase of the project, the study of existing systems was accomplished. During this 

phase, it was equally important to understand how neural networks and the evolution factor 

can be applied to A-life agents using a programmatic approach. 

 

The second phase consisted of the planning of the software that is to be developed. The 

decisions had to be made about the style, tools and the user interaction. In addition to that, 

decisions about the architecture of neural networks and the evolutionary systems had to be 

made. 

 

This phase also involved the development of an application and its analysis. During this 

phase, the conclusions about the project were made. 

 

 

 

 

 

It was expected, through a critical analysis of the existing cases in the relevant areas to find a 

relation between them and to bring up new research questions and answers. 

 

From the practical side of the work, it was expected to utilise A-life agents in a unique 

manner within the entertainment application. It was also expected to find a new way of 

interaction with these agents using speech and as a result integrating it into their AI. This 

could not only contribute to the field of UI but also AI. 
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A way of evolving artificial agents within a toy environment is expected to be a possible 

contribution to an entertainment field such as video games, as well as the field of AI. 

 

 

 

 

 

The present document is structured as follows: 

 

Chapter 2, LITERATURE REVIEW, contains a brief introduction into the history of A-life 

and explains its nature. It also describes some papers that particularly inspired this work and 

contributed to its development. By no means is it a review of the most recent and state of the 

art contributions to the field, neither are these projects are representative of the field. The 

mentioned works are merely considered relevant to this thesis. 

 

Chapter 3, OBJECTIVES AND METHODS, defines the objectives of the thesis and the 

methodology employed in order to achieve them. 

 

Chapter 4, PRELIMINARY WORK, describes preliminary work that had been done in the 

1st semester and in summer in preparation for the thesis. The analysis of early experiments is 

also presented here. 

 

Chapter 5, PRACTICAL WORK, describes the practical work that had been done in the 2nd 

semester. It describes the continuation of preliminary experiments and implementation of the 

final application. 

 

Chapter 6, CONCLUSIONS, contains the conclusions made about the work. 
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“In the course of time it became perfectly evident to me that I was 

merely an automaton endowed with power of movement, responding to the stimuli of the 

sense organs and thinking and acting accordingly.“ 

Nicola Tesla - “My inventions” 

 

 

 

 

Before going into the chapter, I will discuss its sections and reasons behind their inclusion.  

 

Section 2.1, Artificial life and humans, serves as a brief introduction to the topic, describing 

some historical details that served as an inspiration for this project. The section is limited to 

technology that is relevant to this work and served as an inspiration for it. 

 

Section 2.2, Cellular Automata, primarily talks about John Conway’s Game of Life which is 

one of the life simulations from the early days of computing. The reason for its inclusion is 

primarily its historical importance in serving as one of the first steps towards the creation of 

life simulation. Even though it is not the first or the last cellular automaton that was invented, 

it was an important inspiration for this project. 

 

Section 2.3, Simulations of Creatures, discusses the attempts that had been accomplished in 

order to create the realistic simulations and models of creatures, their evolution, life-cycle and 

other key elements of their existence. Some of them are not state of the art technologies of the 

field, but they are relevant for this particular project. 
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Section 2.4, Living agents in entertainment software, discusses the attempts that had been 

made within the field of entertainment software towards including the A-Life agents as their 

key element. The included examples were studied with the goal of finding the unexplored 

path which could possibly be taken in order to discover new opportunities in the field, as well 

as space for contribution. 

 

Section 2.5, Machine learning technology, briefly talks about the definition and history of 

Artificial Neural Networks and other machine learning technology relevant to this project. 

This section exists primarily to introduce the technologies that were used in this project. 

 

 

 

 

 

The question of artificial life has always been one of the most intriguing topics for humanity. 

During the excavations of ancient civilisations, a lot of statues and paintings portraying 

humans, animals and body parts are discovered. From the ancient Greek myths and poetry, 

we learned about the fantasies of people trying to bring the statues to life. Ovid's 

Metamorphoses still remains as one of the most important sources of classical mythology. 

One of the notable poems inside the book is about Pygmalion and the statue where the 

sculpture had been brought to life by the Greek goddess Venus. This romantic view on 

crafting a living organism is one of many examples of people dreaming of engineering their 

own living creature. 
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The Terracotta Army (Fig.1) in China was constructed with the belief that it would serve the 

emperor in the afterlife, it is a notable example of people creating art which they believe will 

come to life at some point (even if it will only animate in the afterlife). 

 

Later on, in the era of the machines, we have examples of automata. An automaton is usually 

a figure made out of metal (such as brass) or wood which is then animated using mostly 

mechanics, clockwork mechanisms and, in some cases, a basic electricity without any 

Figure 2: Photograph of a part of the Terracotta Army in China. 

Figure 1: Silver Swan Automaton on the lake made of silver and glass. 
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computer logic. One of most notable examples of automata is the Silver Swan (Figure 2). It 

consists of a mechanical construction of a swan positioned atop a crystal lake with 

mechanical fish in it. 

 

When the swan automaton is wound up, it comes to action. Glass rods rotate to simulate 

water and the mechanical fish are moving within it. The swan made of silver turns its neck 

and picks up one of the fish with its beak. It is a unique and beautiful mechanism made in an 

attempt to recreate the grace of a living animal. 

 

Some more modern classic examples of this fantasy are the Frankenstein's monster and Maria 

(Figure 3) from the 1927 silent film Metropolis among many other examples.  

 

 

Why are humans interested in creating something that would come to life? Sometimes it 

would be a personal issue like loneliness or a desire to have a perfect servant, but the idea of 

creating an artificial human/creature is much more ancient and deep than that. Life is a 

mystery and the one who discovers its secret will be able to accomplish great things. 

 

 

Figure 3: A scene from Metropolis showing Maria the automaton in the middle of the composition. 
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In our current world, scientists, artists and engineers around the world are working within the 

field of AI. Many of the AI algorithms have their roots in natural phenomena. The fact that 

some of the patterns from nature can be translated into a programmatic algorithm had become 

known since the early days of computing. Some of the most notable algorithms based on 

nature are the artificial neural networks (ANN) and the evolutionary algorithms (EA). 

 

ANN are the algorithms that simulate the network of neurons in the human brain (or a brain 

of any other creature). The function of ANN consists mostly of the responses of artificial 

neurons to outputs of different sensors. Each of the artificial neurons has connections with 

other neurons, it is a connectionist system. Each of the connections has a value associated 

with it (weight). Each action performed by a network is a result of calculation involving 

weights and inputs from sensors. Any change in weights results in different behaviour.  

Changes in the state of the world (reinforcement learning), or feedback from the teacher 

(supervised learning) can result in changes of weights, therefore altering the final behaviour. 

Functionality, history and types of ANN will be described in more detail in section 2.5 of this 

chapter. 

 

 

EA are based primarily on Darwin’s theory of the evolution of species, described in his book 

“On the Origin of Species by Means of Natural Selection, or the Preservation of Favoured 

Races in the Struggle for Life”. According to his theory, the life on Earth exists the way we 

see it today due to natural selection with possibility of mutation. 

 

Fitness of an individual is a factor determining its survival. Only the fittest can reproduce 

(and therefore their genotype stays in the universe), while unfit ones fail to do so and their 

genotypes get discarded. This process is called natural selection. 

 

Mutation factor is something that allows evolution to progress. Sometimes one or more 

individuals among the offspring may be born with random alterations in their genotype which 

may cause them to be fitter than the other individuals, or, if they are less fortunate, lower 

degrees of fitness. If a mutated individual is fit, it will procreate and produce offspring which 
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will inherit its characteristics. As the evolution progresses, it can create an individual with 

high enough fitness to solve a problem that is set before the population (be it a survival-

related problem, or a mathematical problem). 

 

 

Figure 4: Tabular View of Characteristic British Fossils, Stratigraphically Arranged” (1853) from 

“Science Circa 1859: On the Eve of Darwin’s ‘Origin of Species. 

 

Genetic algorithm (GA) is a metaheuristic inspired by the process of natural selection and 

belongs to class of EA. GA are relying on bio-inspired operators such as mutation, crossover 

and natural selection. 

 

Its creation began with Alan Turing in 1950 when he proposed a “learning machine” which 

would function in accord to the principles of evolution. Actual computer simulation of 

evolution began later in 1954 with the research of Nils Aall Barricelli, but his publication was 

not widely noticed. Later, with the works of Fraser and Burnell (1970), as well as Crosby 

(1973) and Bremermann (1960) computer simulation of evolution became more common. 

Other noteworthy early pioneers include Richard Friedberg, George Friedman and Michael 

Conrad. 

 

Good examples of EA use are in space programs. When a rocket is being launched it is 

necessary to perform all calculations beforehand in order to maintain the program as cost 

efficient as possible and ensure safety. If a spacecraft needs to meet a space station on orbit, it 

is required to make a step further with these calculations and keep in account the position of 

the station relative to the position of where the spacecraft is being launched from, predicting 
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the future positions of both objects as they are moving on their orbit. It needs to be launched 

at the right moment when the estimated fuel burn required to meet the target object is the 

smallest, apart from many other factors that need to be kept in mind. Distances, trajectories, 

angle of a rocket, weights, weather, day and year, etc. In order to perform a calculation using 

so many variables, it has proven useful to utilise GA. 

 

Both EA and ANN are used in Boston Dynamics who are working on a robot with the goal to 

make it develop an ability to walk, jump, recover from a fall and do many other things related 

to maintaining equilibrium and developing a good walking technique. Because it would be a 

tedious task for any human to hard code such a complex and detailed behaviour, the 

calculations and adjustments in the robot's movements are done through use of ANN and EA. 

 

Solutions to many complex mathematical problems such as of the travelling salesman or of 

the brachistochrone curve (Figure 5) were found using these algorithms. Systems like web 

search, image and speech recognition, text prediction also use these algorithms. They can be 

found in various computers (tablets, smartphones, laptops, PC’s, etc.) throughout the world. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5: Brachistochrone problem depicted as a graph with two points. 
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A cellular automaton is a mathematical model studied in computer science, theoretical 

biology and many other fields. The model consists of a grid within any finite number of 

dimensions of cells where each of the cells has one of the finite states (such as on and off). 

The state transitions are usually triggered by the status of the nearby cells or the previous 

status of the cell. 

 

John von Neumann in 1940 has defined life as a creation which can reproduce itself and 

simulate the Turing machine. He was thinking about an engineering solution which would use 

electromagnetic components floating randomly in gas or liquid. But because of the state of 

technology of those days, it didn't prove to be realistic. 

 

Then Stanislaw Ulam invented the cell automaton which was to simulate von Neumann's idea 

by applying the early computers to do so. In parallel, von Neumann attempted to construct 

Ulam's cellular automaton which would be alive. He succeeded but left it unfinished. Von 

Neumann’s cellular automaton was also very complicated. Later on, much simpler life 

constructions were provided by other researchers and published in papers and books. It turned 

out that even simpler life automatons were possible. 

 

 

 

John Conway had set a goal to define an interesting and unpredictable cell automaton. He 

wanted it to have many different configurations, some of which would die out fast, and some 

would last for a long time. Conway's Life game (1970) admitted a configuration which was 

"alive" in the sense of satisfying two of von Neumann's general axioms of life: 

 

-  Can reproduce itself  

- Can simulate the Turing machine 
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Conway’s game of Life is operating in accord with four simple rules. The rules of Conway's 

automaton are the following:  

 

1. Any live cell with fewer than two live neighbours dies as if caused by underpopulation. 

2. Any live cell with two or three live neighbours’ lives on to the next generation. 

3. Any live cell with more than three live neighbours dies, as if by overpopulation. 

4. Any dead cell with exactly three live neighbours becomes a live cell, as if by reproduction. 

 

With these rules, it is possible to create several patterns which would result in interesting 

behaviour within the simulation. The simplest patterns were discovered before the use of 

computing. Among them are still and oscillating patterns that were discovered while tracking 

various small configurations using graph paper or physical game boards such as Go. During 

that research, a glider (Figure 7) and some other patterns were discovered. The glider is the 

simplest of the moving patterns. 

 

 

Figure 6: Some possible combinations and outcomes from Conway's game of Life. 
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Figure 7: The glider pattern in action. 

 

Later with the development of computing and translation of the game of life into a digital 

form, more complex patterns came to the surface. Figuring out the patterns was a difficult 

mathematical problem and there were many researchers trying to come up with patterns that 

would prove or disprove a theory. 

 

Even though Conway’s game of life contains the word “game” in its title, it cannot really be 

played. However, it is an interesting mathematical model that can be analysed and studied. 

 

The combination of the simple rules and fascinating results make this model worth studying 

when working with any kind of artificial life. 

 

 

Figure 8: Conway's Game of Life. 

 

Conway’s game of life proves that the A-Life which is not very complex and has a set of 

simple rules is capable of generating unique and unexpected results. 
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The research of Karl Sims plays an important role in the development of this project. In his 

paper, "Evolving virtual creatures", he had created a simulation of living organisms that can 

evolve their bodies in order to facilitate the achievement of a set goal. His program generates 

structures of different creatures out of polygons within a physics engine. They can develop 

various limbs with different types of joints that would enable them to move. The type of joint 

or limb is predetermined by a genotype using GA. ANN of each individual is also a product 

of many generations of genetic crossover which allows the program to produce creatures of 

high complexity. 

 

“Evolving Virtual Creatures” is a paper written by Karl Sims in 1994 about the evolution of 

artificial creatures. It describes the use of a combination of techniques involving the use of 

both ANN and the EA in order to evolve virtual creatures. 

 

This paper is important not only because it explores a unique technique of evolving the digital 

organisms but also because it offers a unique perspective on the field of artificial life. 

Figure 9: A creature of Karl Sims that evolved sinusoidal motion in water. 
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While the creatures of Karl Sims are not completely intelligent, they are capable of solving 

various problems through their evolution and learning. They can evolve limbs and learn how 

to operate them, an ability that can be particularly useful in the field of robotics. It also offers 

a technique to generate 3D models that will then adapt to their surroundings and perform a 

specific behaviour. 

 

The creatures themselves are 3D objects generated of multiple polygons within a simulated 

universe. Each one of them operates in accord with a combination of ANN and GA 

techniques. The creatures form their bodies using L-systems as a basis. 

 

In the first phase of the program, creatures are evolving. Their evolution works in accord with 

Darwin’s law where unfit ones are eliminated and only the fit ones get to reproduce with an 

element of mutation present. 

 

Figure 10: Use of L-systems to generate limbs as shown by Karl Sims in “Evolving Virtual 

Creatures”. 
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The fitness of the creatures is determined by how quickly/effectively they can move through 

space. So the creatures that reach a particular point faster have higher fitness. The effective-

ness of their movement is determined by their evolved limbs and control over them. 

 

Interesting examples of accomplished variety could be the water creatures that were evolving 

either fins or a snake-like body with sinusoidal motion, ground creatures developing leg-like 

structures, or rolling behaviour developed through the use of a tail. 

 

The project of Karl Sims is undoubtedly important within the field of A-life. It shows the 

capability of virtual creatures to evolve over time and develop physical characteristics along 

with the ability to control those new features using EA techniques. 

 

The movement and control over body parts was accomplished with the aid of ANN which 

could evolve new nodes using GA. This simulates the evolution of a nervous system. 

Resulting generated complexity was high, but on the good side, a person working on it didn’t 

need to understand it as long as the results were seen. According to Karl Sims: “A control 

system that someday actually generates “intelligent” behaviour might tend to be a complex 

mess be-yond our understanding.” 

 

While the creatures can evolve new appendages and accomplish a simple task it is still un-

clear from the work how tasks of a higher difficulty could be accomplished using this system. 

Each of the Karl Sims’s creatures evolves with a determination to accomplish one simple task 

to a better degree than other individuals, however, the efficiency of the system functioning 

with more tasks is not shown. 

 

The program can dynamically gain in complexity by using GA which results in creatures 

evolving new capabilities. While the system gives the creatures a freedom to evolve, it 

sacrifices control over itself. An aesthetic user selection is possible if a user wants more 

control, however, in the real situation it would be a tedious task. It is also eliminating the 

purpose of system in the first place which consists of creatures evolving by themselves, using 

their own means. 

 

De Garis has evolved weight values for neural networks, Ngo and Marks have performed 

generic algorithms on simultaneous pairs and van de Panne and Fiume have optimised 
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sensor-actuator networks. Each of these methods has resulted in successful locomotion of 

two-dimensional stick figures. Here, the entire creatures are designed using the algorithms, 

unlike in the projects described above the nervous system also evolves and grows in 

complexity. 

 

Karl Sims had succeeded in creating a system that generates complex and interesting 

creatures without cumbersome user input, design knowledge or algorithms. The system is 

able to simulate the evolution of species to a high degree. It had also proven to be able to 

evolve appendages and their use, with resulting behaviours similar to the ones in Nature. 

 

There is unlimited space of creatures to be explored. The extreme variety increases even 

further by introducing a user input in the form of aesthetic selection.  

In addition to other pros of the system, complex results produced by it are the reason for 

applying an approach of Karl Sims to more projects. As computers become too powerful, the 

human might no longer be able to manually create a complexity that would utilise the full 

potential of a computer, so the generated system used in the project of Karl Sims is a possible 

solution to the problem. 

 

The downsides of this project are mainly related to very small user control. The creatures are 

not really customisable and almost everything is left in the hands of simulated evolution. 

Another negative is that the resulting creatures are too basic. The only feature that is being 

evolved is locomotion and no other factors are taken into account. According to the paper, 

Karl Sims suggests that it could be expected in the future to afford creation of more complex 

structures - like scales, fur, a rigid skeleton covered in flexible skin, etc. 

 

The environment is very simple. The simulated world is either a plane or a body of water. 

There are no obstacles, predators or other elements that could interfere with evolution. This 

lack of complexity in the world results in a small level of realism in the model. 

 

Karl Sims has a similar paper called “Evolving 3D Morphology and Behaviour by 

Competition”. In this work, he uses the same type of creatures from his previous paper. The 

main thing that makes this project different is that the creatures in it are evolved through 

competition. 
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Figure 11: Competing creatures of Karl Sims in his application. Note the goal (cube) positioned in the 

middle. 

 

There are several types of competition available - all vs all, tournament, random, etc. In each 

competition a creature is pitted against another creature, selection of which determined by a 

competition type. They compete for a goal (for example, reaching a cube) and as a result of 

competition, the fittest individual is determined. 

 

The fitness is defined by the distance between the centre of the creature’s mass and a 3D 

object (cube) for which it is competing. The object has a mass and physics applied to it. In 

figure 11 two creatures competing for the possession of a cube are shown. 

 

For a time there was a problem where taller creatures could easily get hold of a cube by 

falling over it. It was solved by placing a creature further back or relaxing the bodies of the 

creatures immediately after placing them. 

 

As a result, the creatures evolve not only the locomotion techniques in order to get to the 

object but also appendages with grabbing capabilities which can even move the object in 

order to decrease the distance between the object and an opponent. 

 

 

Some of the downsides found in the work of Karl Sims were later solved in another project 

written by Larry Yaeger with the goal to evolve artificial intelligence through natural 

selection with GA. The project was started in 1994 and it is still ongoing. 
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Polyworld (Figure 12) is an artificial ecosystem inhabited by the virtual creatures where they 

get to adapt to the environment rather than to achieve a simple goal. 

 

Polyworld is a 3D simulation of a pocket-sized world. It consists of a plane and the creatures 

inhabiting it along with many other elements such as obstacles and plants. Creatures can die, 

reproduce, eat, communicate and kill other creatures. Each one of the creatures has an energy 

pool which can be depleted by performing an energy taxing activity such as reproduction. 

Food restores the energy. When the energy decreases beyond the minimum, the creature dies. 

 

Each of the creatures is equipped with a number of sensors and uses ANN. The GA is used so 

an offspring of a creature can inherit properties of a parent. 

 

A prominent feature in the Polyworld is that the creatures can communicate with each other 

at a certain level. The communication is established through a visual change of colour which 

can theoretically result in various signalling patterns. While in practice this feature is, in most 

of the cases, rudimentary, it finds its use in certain cases such as expression of violence or 

reproduction. 

Figure 12: Screenshot from Polyworld showing the world populated with creatures, a grid of 

neural network weights (right) and fields of vision of each creature (upper left). 
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This project went a step further from the virtual creatures of Karl Sims. Creatures in the 

Polyworld can develop complex life cycles and they don’t have a determined fitness function 

- the best ones simply survive like in real world. The environment, energy, life, sources of 

nutrition and new interactions between the creatures offer a broader view of a model of the 

evolution of species. It is possible to study the behaviours of interaction between the 

creatures. 

 

A downside of this project is a lack of realism of the creatures. Scenarios presented in the 

Polyworld are highly stylised to correspond to the model and possibilities of computation. 

Creatures cannot evolve complex structures like fur, scales, feathers or a skeleton. 

 

Another downside is that the world itself is lacking detail. Whilst it contains obstacles, food 

and other elements, it still lacks a lot of features which would be crucial to the evolution of 

creatures. Such features could be opposing species or world elements such as wind, 

temperature, humidity. 

 

Understandably, evolving communication is not a major preoccupation of this work, even 

though a way of signalling was added for the creatures. Some level of communication had 

been established between the agents nevertheless. The evolution of “speech”, in this case, was 

provoked by the necessity to report reproduction intention, which seems necessary because it 

is established between two creatures. The violent mood communicated by the change of 

colour was a necessary measure for the species to achieve survival. 

 

 

While both the research of Karl Sims and Polyworld are playing an equally important part in 

this study, it is important to mention a paper that made me think more globally about the topic 

and imagine my creatures in a group rather than as individuals. 

 

When we observe a school of fish or a swarm of insects they can almost be perceived as a 

single organism. The “Flocks, herds and schools” is a title of the paper from 1987 by Craig 

Reynolds which served as an eye-opener to me when it comes to thinking about artificially 

evolved creatures. Even though it was published many years ago, the technique described in 
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the paper is still relevant and is widely used within the animation industry. It is also one of 

the major sources of inspiration for this thesis. 

 

The paper was written in order to develop an animation technique for film in order to be able 

to produce a realistic animation of a moving flock. Due to how animation works, in order to 

produce a realistic animation of a flock, an artist would be forced to draw each bird and 

animate it separately in order to achieve a good result. It would be an extremely tedious task 

and a realistic result would only scale with the animating skills of an artist. In order to 

automate this process, an algorithm was needed. 

 

Craig Reynolds came up with an algorithm when he was observing birds moving in a flock. A 

flock is essentially a survival mechanism that emerged in species that move through 3D 

space, especially in low visibility scenarios. Like fish that move through murky water 

obviously have no notion of what is around them, therefore they are forced by conditions to 

form schools. 

 

Low visibility is something that makes schooling essential for survival because within a 

group like that an individual does not need to have a good visibility. In order to notice the 

food, obstacles, and predators - it just needs to follow other individuals in a flock. Fish scales 

that are reflecting light help them to be noticed by other members of a school. Therefore the 

algorithm was designed after a natural phenomenon of creatures that form schools and flocks. 

Figure 13: A flock of birds landing on water. 
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However, variations of this algorithm are considered to be more applicable to fish that form 

large schools in murky water with low visibility.  

 

What would be the rules that an organism within the flock would follow? It is fairly obvious 

to assume that it would be important for each fish to follow the general mass of a school 

because becoming isolated in a dark water means becoming a good target for a predator. 

Equally important here would be catching up with the average speed of a school. And finally, 

the most important rule would be avoiding collision with other fish and other types of 

obstacles.  

 

Therefore the three rules of flocking are Alignment, Cohesion and Separation. Using these 

simple rules, Craig Reynolds was able to design a flocking algorithm.  

 

Within the artificial flock of Craig Reynolds, each individual is called “boid” (bird-oid). Each 

boid is a little computer in itself and is also a centre of its own coordinate system. The vision 

range of a boid is something that defines the size of its coordinate system. 

 

What makes this algorithm realistic is a geometrical flight function of each boid. They exist 

in a more or less realistic simulation of the physics system and each boid can pitch, yaw and 

Figure 14: Schooling fish forming what seems to be a whole new organism. 
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roll, emulating a flying body. There is the possibility of a stall which happens when a body 

loses the velocity during the flight and also there is flight inertia - a flying object cannot stop. 

When starting to program a flocking algorithm it’s advisable to start implementing the 

geometrical flight for each boid because with it helps achieving realistic results. 

 

 

A difficult part of writing this algorithm is combining the three rules of flocking in the right 

way, so a boid would know which rule is the priority in the current situation. (Collision 

avoidance rule, of course, would be a priority in all of the situations). Additionally, a boid 

should “know” which rules can be ignored or performed to a lesser degree without significant 

loss. 

 

The algorithm of Craig Reynolds is extremely widely used and in some physics engines it is a 

default feature. It can be used in cinema, video games and as a minor special effect in any 

other digitally produced arts. 

 

The flocking algorithms are compatible with the possibility of more complex environments 

with include predators and more complex obstacles. They can also be adjusted easily to work 

with different species of flocking, swarming or schooling creatures. Broad capabilities 

Figure 15: Flocking of Reynolds in a custom environment. 
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together with simplicity of this algorithm make it an important tool to reference in this 

project. 

 

However, the flocking algorithm has some downsides. The major one (at least at the time 

when the original paper was written) is the processing speed. While nowadays it's not such a 

big issue, some problems can arise when using a very complex flocking algorithm with a 

large number of boids. 

 

Another downside is a lack of detail in movement of each individual. The paper doesn’t 

include information about factors like wing movements, head rotation, etc. The only factors 

that are being calculated are general direction, speed and angle of movement. Additionally, 

the algorithm is rather applied to fish schools with low visibility factor rather than bird flocks 

or fly swarms (even though it may still be adjusted to be used in those examples). 

 

As I figured out later, the algorithm can still be very fast in real-time rendering if the actors 

are simple planes with animated texture and rendering is still done on CPU level. The down-

side of this would be the fact that at a closer inspection one can see the lack of detail of the 

boids, even though the overall image would still be realistic. A similar technique was 

observed in various computer games that have rivers and oceans with fish (World of 

Warcraft), the designers use this when real-time rendering is required. 

 

 

Artificial creatures are not only created with the goal of producing animation or studying the 

natural process of the evolution of species. There are several A-life projects aimed at 

understanding the biology of an animal by creating a computational copy of its brain and 

nervous system. One such project is Neurokernel. 

 

According to their own definition, The Neurokernel Project aims to build an open software 

platform for the emulation of an entire brain of the fruit fly Drosophila melanogaster on 

multiple GPUs. The development started in 2011 and it is still ongoing. 

 



43 

 

 

Figure 16: Visualisation of a fly brain from Neurokernel project. 

 

The development of this project is conducted among a great number of researchers where 

each creates a separate model which is then being connected and integrated with the rest of 

the models using their Neurokernel software.  

 

According to Neurokernel, animal behaviour is governed by the activity of interconnected 

brain circuits. Comprehensive brain wiring maps are thus needed in order to formulate 

hypotheses about information flow and also to guide genetic manipulations aimed at 

understanding how genes and circuits orchestrate complex behaviours. A successful 

determination of how a brain’s highly complex structure implements specific functions 

requires its decomposition into functional modules whose input-output relationships can be 

individually analysed and whose interactions can be explained in terms of the groups of 

synaptic connections that exist between them. 

 

The importance of this project can be justified by how significant it would be for medicine 

and many other fields to be able to finally replicate a working model of a human brain. The 

human brain is extremely complex, the computers of our days are unable to process such high 

complexity and creating such a model manually would be a task far too complicated. 

Therefore starting with a brain of a small animal with a more basic brain structure is the first 

step towards creating a model of a human brain. 

 

While Neurokernel is an important project that is open for public and contributors from 

outside of the main research group, and it can, later on, serve as a guideline for designing a 

brain for constructs with AI, it is still in the process of being designed and the effectiveness of 

the final result is not yet guaranteed. 
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As was mentioned earlier, there are many projects that aim to create a working computational 

model of a creature, therefore here is another project that shares the same goal: OpenWorm. 

As the description on their site states: “OpenWorm aims to build the first comprehensive 

computational model of the Caenorhabditis elegans (C. elegans), a microscopic roundworm. 

With only a thousand cells, it solves basic problems such as feeding, mate-finding and 

predator avoidance. Despite being extremely well studied in biology, this organism still 

eludes a deep, principled understanding of its biology. “ 

 

It’s an open source project collecting contributors from around the world to build a model of 

a roundworm. Even though the roundworms are believed to be simple organisms, the brain of 

such a small creature is still very complex. 

 

The OpenWorm project is similar to Neurokernel, it is not being built with the purpose of 

entertainment. Its main goal is to research the biology of a creature using a computational 

model. It is a relevant example of how artificial creatures can contribute to our society. Both 

Neurokernel and OpenWorm are mentioned here as more scientific examples showing how 

accurate the computers can be at reproducing a copy of a biological neural network of a living 

being and are a glimpse into the capabilities of modern computers. 

 

 

 

 

 

Black & White is a “God simulator” game from 2001. The game was developed under the 

direction of Peter Molyneaux. Previously he was famously working on such games as 

Populous and Dungeon Keeper. Both of the games are top-down strategies. Populous is an 

earlier god simulator and Dungeon Keeper is a game where the player takes on the role of an 

overlord of a dungeon full of monsters, where the main objective is to protect the treasures 

from questing heroes. 
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While in Black & White the player takes on the role of a god, one of the key features of this 

game is a presence of an avatar - a giant creature that can be trained by the player. The 

creature can learn the simple concepts of good and evil and it can develop certain traits 

depending on the player’s actions. For example, the player can choose to punish the creature 

after it eats a human, or to reward it instead. Depending on this choice, the creature will 

change its behaviour. 

 

The main objective of the game is to increase the belief of the in-game villagers in you as 

their god through using the creature and some special abilities. 

 

 

The villagers have AI that was in no way innovative at the time when the game was released. 

It was the creature that was programmed in a sophisticated and innovative manner. The 

developers of the game intended to make the creature as alive and human-like as possible so 

the players would connect with it. The creature starts as a child, not knowing anything about 

the surrounding world and later grows up and learns things about the world. The chief AI 

developer for the game, Richard Evans, provided the gaming website www.gameai.com with 

some simple documentation of the game design. 

 

Figure 17: Screenshot showing a creature from Black and White. The hand of a user can be seen 

interacting with it. 
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What makes the AI of Black and White so powerful is the mixture of different approaches to 

representing the intelligence. This idea was taken from Marvin Minsky’s years of research 

about AI at Massachusetts Institute of Technology. In particular, three representations were 

used. Symbolic attribute-value pairs are used to represent a creature’s belief in an individual 

object. An example of this type of representation is: 

 

The strength of obstructions to walking:  

object.man-made.fence->1.0  

object.natural.body-of-water.shallow-river->0.5  

object.natural.rock->0.1  

 

This method is used alongside rules-based AI (situational calculus) to give creatures their 

basic intelligence about objects. This scripted-AI is the most popular form of artificial 

intelligence found in games today. Decision trees represent the agent’s beliefs about general 

types of objects. Finally, neural networks of perceptrons represent desires. 

 

For example, a creature knows from birth that eating will satisfy its hunger. That is a natural 

instinct. But, it does not yet know what type of object satisfies its hunger best. It may see a 

fence and instantly walk over and take a bite out of it. It will then realise that the fence did 

not satisfy its hunger well and tasted horrible in the process. The creature will alter its internal 

food decision tree in order to keep it from eating fences in the future. 

 

Black & White is an important example because it is an attempt at introducing a learning 

creature into a video game. The AI of the game was also a big breakthrough at the time when 

the game was released. 

 

In this example, we have a video game and a creature that can be trained. However, the 

creature in this game cannot really be considered as a living organism as it does not exist 

within an ecosystem, interact in a natural way with the ambience or have any features 

associated with the realisation of the natural life cycle. The hybrid nature of AI limits the 

living computation possibilities in this example with the purpose of introducing the element 

of fun and control to the user. 
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Nintendogs is a game released by Nintendo in 2005. This game is virtual pet simulator for the 

Nintendo DS platform. The user can adopt a virtual pet and take care of it. One of the features 

of interest in this project is the voice recognition feature. 

 

While the AI of the pets is not introducing anything new into the field, the voice recognition 

system is an interesting addition to the game. When the game starts, a user is asked to 

introduce a name for the pet. After a name is introduced a user will be repeatedly asked to say 

the name into a microphone. Through an analysis of multiple examples, the system will be 

able to recognise the voice of a user pronouncing the name of a pet. The mechanism involves 

ANN that learns to recognise a particular command. 

 

While it takes a lot of time to make the program finally learn the name of a pet, it is a quite 

rewarding experience to call a virtual pet and see it respond to its name. It is important to 

mention this game because it utilises ANN working together with voice commands for one of 

its core features. 

 

The negatives of this game are that pets lack complexity. While they have a very realistic and 

advanced animation, their behaviour is basic and does not introduce any novelty into the field 

of AI or A-Life. 

 

Figure 18: Pet from Nintendogs. 
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The voice recognition feature takes too many attempts for a pet to finally learn a name. I 

would call it realistic, but because it happens on a separate screen with only occasional testing 

on the pet itself, it loses realism. 

 

In 2011 a new improved version was released for Nintendo 3DS under the title “Nintendogs + 

Cats”. This game features new improved voice recognition together with facial recognition. 

The names of pets and tricks don’t need to sound exactly the same during the play anymore. 

Another function that was added was facial recognition for the camera, so the pets can now 

recognise their owner. Apart from improved learning functions the game is still very similar 

to the original. 

 

 

Perhaps the closest example to the objective of this project is Creatures. It is an A-life 

computer program series developed in the mid-1990s by English computer scientist Steve 

Grand, whilst working for the Cambridge video games developer Millennium Interactive. 

 

Rather than a game, it is considered a program or a toy. It features a 2D world with creatures 

called Norns which can be taught by a player. 

 

Figure 19: Screenshot from Creatures program, showing the world inhabited by Norns. Two Norns 

can be seen in the structure on the left. Their speech is presented in text bubbles above their heads. 
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A player assumes the role of something similar to a god and controls a hand which can 

interact with things within the world. In the beginning, a player gets a number of eggs from 

which the creatures can hatch. A new-born Norn has no knowledge of the world but it is 

curious about it. It is the task of a player to teach it by using reinforcement learning 

techniques. A player can type the commands and then can slap or tickle a Norn. Slap gives  

negative feedback in the form of a feeling that a Norn is doing something wrong, while 

tickling gives a good feeling of having done something good. Apart from these commands, a 

player can teach words to a Norn and also make it form a bond with the player’s hand 

(cursor) by giving it a good impression of it. 

 

Success of this toy was arguably due to effective incorporation of A-life creatures. Unlike in 

similar games, creatures here react to changes in the world brought by a player and interact 

with a player’s hand dynamically. The creatures also possess a biological life cycle with 

several stages such as adolescence, adult-hood and a senescence phase when the creature 

finally dies. The creatures can procreate, the offspring inheriting various features of the 

parents which introduces more variety into the game. A learning approach in a new 

generation might be different due to inherited features. 

 

Figure 20: One of the characters from Creatures, a Norn. 



50 

 

The Creatures series have brought innovation into the field of A-life partly because of the 

underlying model that generates such interesting behaviours. 

 

AI in Creatures is close to being an accurate biological structure. It is not completely realistic 

and is adjusted in order to fit into the game. This becomes obvious in: 

 

1. The way a creature perceives its world. 

2. The way creatures inherit characteristics from their parent. 

3. The way a creature learns new things. 

 

As mentioned by Steve Grand in “Creatures: Entertainment Software Agents with Artificial 

Life”: “The network architecture was designed to be biologically plausible, and computable 

from the ‘bottom-up’, with very few top-down constructs.” 

 

 

 

Figure 21: Brain structure of the Creatures of Steve Grand. 
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The game simulates sounds, touch and sight for each Norn. Sounds attenuate over distance 

and are muffled by any objects between a creature and a sound source. The result is a 

Boolean value used as an input for a neuron in the network. 

 

ANN is something that is completely responsible for controlling the creatures. As shown in 

Figure 20 it is built in a modular way. It helps to deal with common unpredictability problems 

of neural networks and helps to make the training more accurate. As mentioned in “Creatures: 

Entertainment Software agents with Artificial Life”: “Each creature’s brain is a 

heterogeneous neural network, sub-divided into objects called ‘lobes’ […] Cells in each lobe 

form connections to one or more of the cells in up to two other source lobes to perform the 

various functions and sub-functions of the net.” 

 

The creatures are also capable of generating emergent behaviour by interacting with various 

objects present in the game, additionally, ANN is connected to a body which acts in an 

approximate biological way: 

 

 The brain’s decisions are subject to hormones in the body. 

 The body may be affected by toxins ingested while eating. 

 Norns have a metabolism that may be affected by bacteria in food. 

 

As mentioned before, Creatures has an evolution system which adds a variety to players who 

play for multiple generations. Because the evolution can produce several changes in a 

genotype and some of them can be so extreme that they can break a creature, the developers 

implemented a post-mutation check. 

 

Quote from “Creatures: Entertainment Software agents with Artificial Life” : “To prevent an 

excessive failure rate due to reproduction errors in critical genes, each gene is preceded by a 

header which specifies which operations (omission, duplication and mutation) may be 

performed on it.” 

 

It is important to note that even though behavioural traits are affected by evolution, mutation 

and learning, they can be subtle. Arguably the most important changes from a player’s 

perspective are the visual ones. 
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Quote from “Creatures: Entertainment Software agents with Artificial Life”: “Creatures are 

bipedal, but minor morphological details such as colouring and hair type are genetically 

specified. […] The life-span of each creature is genetically influenced: if a creature manages 

to survive to old age (measured in game-hours) then senescence genes may become active, 

killing the creature.” 

 

In general, this is a toy/program that incorporates A-Life agents successfully, taking such a 

conclusion from to its popularity. 

 

After playtesting this toy, it was evident that the interface was not intuitive, as the action was 

happening in several windows at the same time and interactions were not clear at the very 

start. The creatures, however, seemed to be truly alive, acting in a realistic manner and 

learning words and commands typed by a user. 

 

What was lacking, however, was mostly due to the processing power available at the time. 

The creatures could have much higher complexity in their behaviour, having more variables 

for their expression, emotions, animation and needs. 

 

While the creatures could identify various objects using speech, they could not rely 

completely on sounds and most of the interactions were happening using sight. Speech itself 

was also represented by typed commands which the creatures learned to replicate and respond 

to. With this thesis, I intend to make sound play a much more significant role in the life of 

artificial creatures. 
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ANN is a computational model inspired by the network of neurons that can be observed 

within the brains of various animals inhabiting our planet. Neurons are cells that transmit 

information within a nervous system, generating the response to stimuli from the 

environment. The number of neurons in different parts of the brain determines the neural 

function and behaviour of an individual. While the human nervous system contains around 86 

billion neurons, where roughly 16 billion are in the cerebral cortex, many simpler organisms 

like sea squirt or roundworm possess less than 1000 neurons. 

 

When a machine is required to perform a human function, such as recognise images, speech, 

patterns, etc., a possible way of accomplishing it is by creating an ANN that will perform the 

task. While ANN are not used in neuroscience studies because they are an oversimplified 

analogy to axons in a biological brain and don’t function in the same way as their biological 

counterparts. Biological neural networks are difficult to model in detail because they are 

composed of large numbers of nonlinear elements and have a wide range of time constraints. 

There is no evidence that some neural computing algorithms such as backpropagation 

represent actual brain mechanisms of learning, therefore most neural network architectures 

are an example of “neural inspired” modelling, not modelling of actual brain structures. 

 

 

The simplest history of neural networks would start with three items: McCulloch and Pitts 

(1943), Hebb (1949) and Rosenblatt (1958). These publications introduced the first model of 

neural networks as “computing machines”, the basic model of network self-organisation, and 

the perceptron model of “learning with teacher” respectively. To fill the story, we would have 

to review the neural network models of vision, memory, motor control, and self-organisation 

studied in the 1960s and 1970s by Amari, Anderson, Cooper, Cowan, Fukushima, Grossberg, 

Kohonen, von der Malsburg, and Widrow. However in order to keep this brief, I will move to 

a more practical approach. 
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Figure 22 : Photograph of Mark 1 Perceptron machine of Rosenblatt, as seen at MIT exhibition. 

 

 

The most basic model of a neural network is perceptron. While in 1958 this word was used by 

Rosenblatt to describe his physical “Mark I Perceptron” neural network machine (figure 22), 

it is now used in literature to describe a very simple neural network consisting of one layer 

and having a binary input/output, as the perceptron learning rule was invented by Rosenblatt 

in 1950. 

 

 

Figure 23 : Schemes of biological axon (up) and perceptron (bottom). 
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Similar to a biological axon, perceptron receives inputs from the environment, processes them 

and generates an output. The training of perceptron is accomplished through updating 

weights, comparing each guess of the network to the right answer. As can be seen in Figure 

23, in1, in2 and in3 on the perceptron scheme are the inputs. Arrows pointing from them to 

the body of perceptron are connections which have weights attributed to them. And there is 

also an output function which returns the final result. 

 

The process that allows the calculation of an output is called feed forward. In a simple 

perceptron, the inputs are multiplied by weights corresponding to them and then summed 

together to calculate a final number. In order to transform an output number into a binary or a 

more compact output, it is necessary to apply an activation function. In Table 1, different 

activation functions are shown.  

 

 

 

Table 1: Activation functions. 
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After the output is received, in supervised learning (learning with a teacher), the weights are 

adjusted according to a desired (correct) result given by a teacher. In a basic perceptron this 

function is simple: 

 

𝑤𝑗(𝑡 + 1) =  𝑤𝑗  (𝑡) + 𝑛(𝑑 − 𝑦)𝑥 

𝑤ℎ𝑒𝑟𝑒: 

𝑤 = 𝑡ℎ𝑒 𝑤𝑒𝑖𝑔ℎ𝑡 

𝑑 = 𝑑𝑒𝑠𝑖𝑟𝑒𝑑 𝑜𝑢𝑡𝑝𝑢𝑡 

𝑡 = 𝑖𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛 𝑛𝑢𝑚𝑏𝑒𝑟 

𝑛 = 𝑔𝑎𝑖𝑛 𝑜𝑟 𝑠𝑡𝑒𝑝 𝑠𝑖𝑧𝑒, 𝑤ℎ𝑒𝑟𝑒 0.0 < 𝑛 < 1.0 

 

Perceptron is a neural network that can learn according to small sets of inputs, however when 

the input is bigger and more than one output is required, the neural network of higher 

complexity is needed. Such networks are known as Deep Networks (DNN) and they had been 

used in this project in order to achieve desired results. 

 

 

DNN are composed of multiple layers. Each layer consists of multiple perceptrons. In all of 

the layers, inputs are outputs of perceptrons from previous layers, except the first layer, where 

the inputs are the state of the world or any other variables that serve as an input for the entire 

network. There can be any number of layers and any number of nodes (perceptrons) in each 

of them, however, a network is only considered deep when it has one or more hidden layers. 

Hidden layers are additional layers between the input and output layers (Figure 24). 

 

Because of the bigger number of weights and layers in DNN, a higher complexity 

backpropagation algorithm is required. Backpropagation is the function where a desired 

output is propagated backwards through a neural network and the weights are adjusted to fit 

the desired result. 
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For backpropagation in this project I mostly used Mean Square Error (MSE) function, as it is 

the most common error cost expression that is used for neural networks: 

 

𝑀𝑆𝐸 =  
1

𝑛
 ∑(𝑌𝑖 − 𝑌𝑖̂)

2

𝑛

𝑖=1

 

𝑤ℎ𝑒𝑟𝑒:  

𝑌 = 𝑣𝑒𝑐𝑡𝑜𝑟 𝑜𝑓 𝑜𝑏𝑠𝑒𝑟𝑣𝑒𝑑 𝑣𝑎𝑙𝑢𝑒𝑠 𝑜𝑓 𝑡ℎ𝑒 𝑣𝑎𝑟𝑖𝑎𝑏𝑙𝑒 𝑏𝑒𝑖𝑛𝑔 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑 

𝑌̂ = 𝑣𝑒𝑐𝑡𝑜𝑟 𝑜𝑓 𝑛 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛𝑠 𝑔𝑒𝑛𝑒𝑟𝑎𝑡𝑒𝑑 𝑓𝑟𝑜𝑚 𝑠𝑎𝑚𝑝𝑙𝑒 𝑜𝑓 𝑛 𝑑𝑎𝑡𝑎 𝑝𝑜𝑖𝑛𝑡𝑠 𝑖𝑛 𝑎𝑙𝑙 𝑣𝑎𝑟 − 𝑠 

 

This function allows calculating the error for each of the nodes and creates a gradient descent, 

which means the layers further from the output layer will have smaller error values associated 

with them. 

 

Derivation calculations for the output layer in the code were different from the ones for 

hidden layers. The reason for that is because the output layers are where the error cost 

expression is first calculated and hidden layers are where the backpropagation of the error 

cost expression is taking place. 

 

 

 

Figure 24: Schematic representation of a DNN. 
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It is necessary to mention that the backpropagation function is not always necessary. Instead 

of backpropagation is it possible to use EA (in particular, GA) in order to adjust the weights 

of the network. GA allows avoiding the use of backpropagation, but it doesn’t provide 

learning for a unique individual, rather for the entire population. More details on the history 

and functionality of GA is available in subsection 2.2.3. 

 

With this technique, the ANN would be evolved, rather than taught. A large population of 

individuals is created, their weights in networks are randomly distributed. After that the 

program runs a test or competition where it determines which of the individuals have higher 

fitness and are therefore allowed to reproduce. Fitness can be determined using a function, or 

can be attributed by a user (aesthetic selection). It is also possible to determine fitness by 

survival, where individuals die in cases of failure and only survivors reach reproduction.  

 

These methods allow selecting the fittest individual out of the entire population. However, for 

the evolution to take place it is necessary to include the factor of mutation. With it, the 

offspring of individuals, instead of always having a copy (or crossover result) of their parents 

ANN, is going to sometimes be born with some weights altered according to mutation 

algorithms. This allows exploration and testing of different variants of networks that could be 

more efficient than the current fittest network. 

 

 

Q-Learning is another important technology that is necessary to discuss as it is directly 

related to Deep Q-Learning which is relevant to this project. Q-Learning is a type of 

reinforcement machine learning and it is table based. It was first detailed in a Cambridge PhD 

thesis by Christopher Watkins in 1989. It is inspired by the conditioning methods applied to 

animals where the desirable behaviours are rewarded and undesirable are punished (through 

negative reward). 

 

A Q-Learning agent has a state. The state consists of observations that agents can make. The 

state could be the output of the sensors or various data that an agent received about the world. 

An agent can select an action which will then transition it to another state. Each action has a 
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quality, based on its potential to result in a reward. The goal of Q-Learning is to determine 

the correct action to take given the current state. It is known as policy. 

 

The state-action pairs are saved into a table and attributed a quality. While initially an agent 

will be performing random actions, it will be improving the quality attribution to state-action 

pairs and soon the correct policy will be discovered. It is done via the use of the Bellman 

equation: 

 

𝑄(𝑆𝑡, 𝐴) = ∝ [𝑅𝑡+1 + 𝛾 max 𝑄(𝑆𝑡+1, 𝐴)] 

𝑤ℎ𝑒𝑟𝑒: 

𝑄(𝑆𝑡, 𝐴) = 𝑇ℎ𝑒 𝑞𝑢𝑎𝑙𝑖𝑡𝑦 𝑜𝑓 𝑒𝑎𝑐ℎ 𝑎𝑐𝑡𝑖𝑜𝑛 𝑔𝑖𝑣𝑒𝑛 𝑡ℎ𝑒 𝑐𝑢𝑟𝑟𝑒𝑛𝑡 𝑠𝑡𝑎𝑡𝑒 

∝ = 𝐿𝑒𝑎𝑟𝑛𝑖𝑛𝑔 𝑟𝑎𝑡𝑒 

𝑅𝑡+1 = 𝑅𝑒𝑤𝑎𝑟𝑑 𝑟𝑒𝑐𝑒𝑖𝑣𝑒𝑑 𝑎𝑓𝑡𝑒𝑟 𝑡𝑎𝑘𝑖𝑛𝑔 𝑎𝑐𝑡𝑖𝑜𝑛 

𝛾 = 𝐷𝑖𝑠𝑐𝑜𝑢𝑛𝑡 𝑓𝑎𝑐𝑡𝑜𝑟 

𝑚𝑎𝑥𝑄(𝑆𝑡+1, 𝐴) = 𝑇ℎ𝑒 ℎ𝑖𝑔ℎ𝑒𝑠𝑡 𝑞𝑢𝑎𝑙𝑖𝑡𝑦 𝑔𝑖𝑣𝑒𝑛 𝑡ℎ𝑒 𝑛𝑒𝑥𝑡 𝑠𝑡𝑎𝑡𝑒 

 

Learning rate is a value from 0 to 1 that determines how much the current Q-value is 

overwritten. Discount factor is also a value from 0 to 1 and it controls how much the future 

Q-value prediction is to be trusted. When the state is terminal (final), the equation is: 

 

𝑄(𝑆𝑡, 𝐴) = ∝ ∗ 𝑅𝑡+1 

 

The problem of Q-Learning is the complexity. The Q-table needs to contain many entries 

even for the smallest examples. Even for a simple tic-tac-toe game, accounting all the 

possible game combinations and symmetries there are almost 27000 entries. Any application 

with any real complexity needs ANN to approximate the behaviour of a Q-table. 

 

 

In 2013 DeepMind released “Playing Atari With Deep Reinforcement Learning” and in 2015 

“Human-Level Control Through Deep Reinforcement Learning”. This introduces us to using 

Q-Learning in conjunction with ANN, which results in Deep Q-Learning (DQN). 
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To train an ANN of a Q-Table it is required to have two feed-forward passes and one back 

propagation pass. On a first feed-forward pass we get an estimate of the quality of each 

action, then the highest quality action is selected from Q-Table and it is applied. 

 

Then the next state is observed and passed through the ANN. Then the largest Q-Value in the 

output is used in the Bellman equation to calculate a target value. Finally, MSE between the 

first feed-forward pass and the target is calculated and backpropagated though the ANN. In 

figure 25, the flowchart of the DQN cycle can be seen. 

 

 

 

Figure 25: Flowchart showing a DQN cycle. 

 

Another necessary component of DQN is the experience replays. Experience replays are 

similar to batch optimisation in supervised learning. The buffer is constantly updated with 

past experiences and in each loop the training is done on a randomly selected batch from a 

buffer. 

 

The initial data in a buffer can be random, but it is possible to fill it with data from a human 

controller. The method that is mostly used in this project is accumulation of random data 

before batches start being selected from a buffer. 
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The advantages of DQN are mostly related to its ability to learn from its own experience 

collecting rewards from the environment. It is a technique that has been explored in self-

driving cars and neural networks that learn to complete computer games. 

In a sterile laboratory environment of a computer game they are highly effective. However, 

even though DQN can function in complex environments with lots of variables, their 

functionality and usefulness in the real world, outside of a simulated environment, is still a 

topic of ongoing research. However, as it is a fairly new technology, it is possible to see 

significant improvements in the future. 

 

 

 

 

 

Nature is rich with the variety of life. Each species, be it plants, animals, insects or some 

more simple life forms have behaviours that can influence computer science and many other 

research fields apart from ones that study Nature. 

 

When it comes to communication, different creatures can report information to each other 

through the use of gesture, sound, touch, smell or colour. 

 

Social insects’s hives represent one huge body composed out of smaller entities. They are 

very efficient in foraging. In order to forage successfully these complex systems require a 

way of communicating to each other the locations of food. 

 

Bees have a specific “dance” to indicate the distance and other data related to the location of 

food. Ants, however, leave scent trails – pheromone paths between a food source and the 

nest. The more workers return through the pass, the more the scent is reinforced and the more 

attractive it is to unoccupied ants. 
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The scent naturally decays over time, dissipating into the atmosphere until it ceases to exist 

and ants are no longer recruited to visit the former food site. Some consequences of this 

method of path indication are that: 

 

- Ants will choose the shorter of two paths of unequal length if the paths are presented 

simultaneously. 

- After ants have chosen a path they are unable to switch to a new path, even if the new 

path is shorter. 

- Ants will all choose one path in preference to half of them travelling the second path, 

even if the paths are of equal length. 

 

These rules can be easily translated into computer logic. An example of that is the Ant 

Colony Optimisation algorithm.  

 

Creatures only develop communication regarding something that requires reporting, 

something that is vital to their existence as a single individual or a group.  

 

 

Robust - first computing is a way of computing where the programs are being designed as 

living organisms rather than deterministic machines. There are many controversial opinions 

Figure 26: Ants following a pheromone trail. 
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about such systems, but with the development of computers, they possess more adaptability 

and security necessary to handle bigger challenges. 

 

Serial determinism is a name of a traditional approach to computing. Machines are designed 

to perform series of functions step-by-step (serial) and the results of each step are absolutely 

determined at a state where the step began (deterministic). 

 

Machines using serial determinism are remarkably easy to deal with and they have had a huge 

success in the marketplace, but they have several downsides. They scale poorly, have poor 

security and are unable to adapt to unpredictable changes in the system. There are other ways 

to compute, which probably haven’t received enough attention, and they are the techniques 

used in robust-first computing. 

 

Viewed as a kind of computer, it is notable how different a living organism is compared to a 

serial deterministic machine. Deterministic machines are 100% completely repeatable – from 

the same inputs will come the exact same outputs — while living organisms rarely do 

anything the exact same way twice. Deterministic machines will crash, seize-up, or otherwise 

misbehave when anything goes wrong inside them; living organisms, by contrast, can suffer 

grievous injury and yet survive, handle the immediate situation, and get away long enough to 

heal up and live on. 

 

Robust computing is an example of how the living systems can have higher survivability than 

Deterministic machines. Robust agents as a part of an entertainment software can have a 

unique response to an unpredictable input from a player while deterministic ones may fail to 

respond at all or provide one of the default and expected responses. 
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The research was conducted in two different parts. The first part was a comprehensive 

analysis of the literature to determine the key factors relating to A-Life agents. The second 

part was planning the structure of the software and its development. 

 

 

Identifying literature for analysis began with suggestions from the advisers and further 

continued with the keyword search using combinations of search terms shown in table 2. 

Searches were repeated in a number of scientific databases and the web. 

 

 

Table 2 : Search terms. 

A-Life Artificial creatures A-Life agents 

Computer learning Neural networks Perceptrons 

Evolution Evolving creatures Evolutionary algorithms 

Computer games AI A-Life games Life simulation 
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The in-reference part of the search consisted in scanning through the reference lists and re-

ports from the already identified literature. The abstracts of any papers of potential relevance 

were read, and if appropriate, were selected for inclusion. 

 

Each publication identified in section 3.1 was studied with the purpose of finding the material 

related to the implementation of A-Life systems in computing. 

 

 

Some of the found examples of A-Life were computer games or programs that required 

testing in order to understand their functionality. At this stage all the necessary testing was 

done and the observations were documented. 

 

 

 

 

The objective of part two was the development of an entertainment software featuring A-life 

agents. The software needed to include the A-life agents as one of its key elements, allowing 

the user to observe their behaviour. 

 

Further on, the interaction between A-life agents and the user had to be created, making it 

possible to manipulate the agents, make decisions about their life cycle and evolution. A 

certain level of control over the agents needed to be established. 

 

The final objective was to create a possibility for the agents to evolve speech at a certain 

level, be it through the interaction with the player or with other agents. 
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Taking into account the existing cases, the “brainstorming” technique was applied in order to 

create an outline of the design of the application. The key features and design elements were 

identified and analysed. Several early decisions about the software architecture were made. 

The choice of the learning and evolutionary algorithms was done relying on the conducted 

research. 

 

 

Taking into account the design of the application and considering the choice of the 

algorithms, it was necessary to choose a tool for implementation. The list of potential tools 

was created as seen in table 3. 

 

The tools were analysed according to the following criteria: viability when working with 

sound and simplicity of working with graphical elements with geometrical movement. 

 

After analysis of given tools, it was decided to stick to the tool that I was the most familiar 

with in order to avoid unnecessary issues that may arise due to lack of experience with a 

certain platform. Processing is the tool taught in the UC and is the one I have the most 

experience with, besides it has a large online community which can offer support. 

 

During the development of the project, the environment had to be switched from the native 

Processing software to Eclipse. The main reason behind that was the lack of Maven support 

in Processing. It is possible to avoid this problem by manually adding all .jar library files to a 

Processing directory, however, with large libraries like nd4j or dl4j it is an extremely tedious 

process that can cause errors that would be difficult to track, it also prevent the library from 

updating itself. An additional reason for the change was the fact that Eclipse offers more tools 

for working with Java code and simplifies managing multiple classes, while the Processing 

application does not contain those functions. Processing library was still used, but within 

Eclipse environment. 

 

A visual comparison of Processing 3.3 and Eclipse Oxygen can be seen in Figure 27. 

Processing (above) has lots of tabs that cannot be closed and in a large project the names of 
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the tabs can no longer be displayed. In order to find a required tab it is necessary to open a 

menu and select a class from it. Eclipse (below) is superior in terms of offering an option of 

closing unneeded tabs, tree based file organisation and opening a new tab without requiring 

opening any additional menus. 

 

 

 

Figure 27: Eclipse (below) and Processing (above) interface comparison. 
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Table 3: Platforms. 

Software name/ 

Library 

Programming 

Language 

Observations 

NetBeans / Eclipse Java While Java without using any specific tools to 

facilitate the development can be tedious to 

program, it offers a high level of control and 

freedom.  

Microsoft Visual 

Studio 

C++ While C++ without using any specific tools to 

facilitate the development can be tedious to 

program, it offers a high level of control and 

freedom. Faster than Java.  

Processing Java 

(Processing) 

As Processing is a tool taught in the UC, I may 

hope for a lot of help and support in the 

development. Large online community offers 

additional support.  

Microsoft Visual 

Studio/ Cinder 

C++ (Cinder) A faster counterpart of Processing. Large 

community and lots of libraries. 

Microsoft Visual 

Studio/ 

OpenFrameworks 

C++ (Open 

Frameworks) 

Similar to Cinder, but larger community.  

Unreal Engine C++ Offers the high-quality rendering and physics 

support. Allows focussing on the main features 

rather than “reinvent the wheel” by 

programming the geometrical movement and 

other details. 

Unity C# Allows focussing on the main features rather 

than “reinvent the wheel” by programming the 

geometrical movement and other details. 
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In order to implement the practical part of this project, it was necessary to collect data related 

to the implementation of some functionalities of this project. First, the primary functions that 

had to be implemented were set. Secondly, the key words associated to each of the functions 

were searched in various scientific databases and search engines. The key words and 

functions are listed in Table 4. 

 

Table 4: Key words used for search related to functions. 

Functions Key words 

To understand audio input from the user and 

reacting to it 

Sound recognition, audio prediction, 

speech recognition, speech prediction,  

Audio spectrum, distinguishing audio 

input, Processing sound libraries, minim 

To teach agents to respond to audio input using 

user interaction 

Reinforcement learning, Q-Learning, 

Deep Q-Learning, Reward based 

machine learning, learning based on 

experience, learning based on user input 

Interaction between the agents using sounds Deep Q-Learning, multiple agents, 

multiple neural networks, sensors for 

neural networks, NL4j, Reinforcement 

learning, fast deep learning 

Interaction with simulated environment using 

sounds 

Evolutionary algorithms, Generic 

algorithm, Deep Neural Network, 

mutation, fitness function 

 

Additional study was performed with help of the book “The Handbook of Brain Theory and 

Neural Networks” by Michael A. Arbib. The beginning of the book contains a brief 

introduction to the history of neural networks and neural studies, as well as pointers to the 

articles and authors that contributed to machine learning. There are also details related to the 

implementation of neural networks and some useful algorithms. The rest of the book is a 

compilation of articles by different authors that contributed to different areas of machine 
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learning. This book helped with the literature search, related to technical aspects of this 

project such as types and implementation of ANN. 

 

 

Practical work was done in accord with the literature analysis of subsection 3.2.3. While 

being originally implemented in accord with the plan, described in section 4.2, work had to 

deviate from it in order to achieve its goals in the most straightforward fashion. Chapter 5 

contains a detailed chronological description of the work process. 

 

During the practical work, discovered algorithms were applied to the project. Practical work 

started with some minor experiments with the purpose of familiarisation with the algorithms 

and techniques. Later, the main project was started. 

 

Due to various discoveries during the development, the final project had to be different from 

the one described during the preliminary work in section 4.2. The main reason for it being 

that interaction described in section 4.2 could not provide any entertainment-directed 

mechanics. 
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Bug world was part of the preliminary work undertaken. It consisted of a virtual ecosystem 

developed in preparation for this project using Processing. 

 

 

Figure 28: A screenshot from the Bug World. 

 

 

The following link contains the demonstration video of the Bug World application:  

https://vimeo.com/252213430 

 

https://vimeo.com/252213430
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In this simulation, a user can observe a simple ecosystem of cannibalistic creatures - bugs. 

The bugs are represented as a number of black dots that start their life cycle at a very small 

size. They move pointlessly controlled by the need for feeding and their fear. 

 

The world in which they exist is a 2D toroidal or infinite world (it is possible to switch 

between the two). It does not contain any other elements apart from bugs and can be observed 

from the top. 

 

This model is very far from the realistic biology, but realism was not my goal. With this 

project, I aimed to create a virtual ecosystem with fictional rules for the creatures that do not 

reference any real world insects, even though they are called bugs. I wanted to experiment 

with the capabilities of evolutionary algorithms and test how the behaviour of very simple 

creatures would be influenced by evolution. What inspired me to do so, was the book 

Biological Bits by Alan Dorin. 

 

 

 

Figure 29: Bug World after evolving for 4 hours. Note the different coloured species. 

 

Each bug has a need to feed. The hunger meter of each bug is defined by its metabolism gene. 

Depending on the metabolism rating each agent would eventually get hungry and decide to 

chase another. As the world does not contain any other agents apart from bugs, they feed on 
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each other. Each feeding increases the size of a bug. When they reach a certain size they 

reproduce and die simultaneously. They can die of hunger fairly quickly and need to chase 

their prey and feed very often. 

 

Each bug has a number of statistics that can be inherited by their offspring - initial size (size 

at which they start when they are born), metabolism (how quickly they get hungry and die of 

hunger), speed (how fast they move), lifetime (how much they need to eat before they 

reproduce and die), offspring number, fear (how likely they are to run away from the bigger 

bugs), vision (how far they can see other bugs), colour (a cosmetic feature to observe the 

mutation). Each one of these statistics can mutate into a new-born individual. Mutations can 

be favourable (bigger size) or not so (lower speed). 

 

Each of the statistics is essential for the survival of a bug: 

 

- Bigger initial size grants an advantage in hunting other bugs of the same age as a bug 

can only consume a prey if it is smaller than itself, this will ensure the survival of the 

bug during its young age. 

- Changes in the metabolism rating can slow down the hunger meter which will result 

in a bug having more time for hunting before dying of hunger. 

- High speed is essential for those who want to run away from predators or be good 

hunters. 

- Longer lifetime is actually bad and means that the bug might need to consume more 

bugs in order to finally reproduce which can undermine the reproduction chance. 

- Higher offspring number helps the survival of the species as it allows the bug to burst 

into a bigger number of small bugs. 

- High fear rating ensures the survival of an individual as it will probably start running 

away from the predators more often. 

- High vision allows seeing both predators and prey at a higher range. 

- Colour does not offer any advantage, apart from being an indicator to a user. 

 

So, the bigger bugs chase smaller ones and grow until they burst and reproduce. Then their 

offspring start consuming each other and move around. On birth, a bug inherits all the 

statistics of a parent and has a small chance that one of its statistics is going to mutate. Like 

this, evolution is achieved. 
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It was quickly proven to me that the bugs with bigger initial size have a strong advantage 

over the others and are more likely to survive. Isolated bugs die soon if their speed and vision 

are low, bugs existing in tight clusters reproduce at a very quick rate and reach 

overpopulation easily. 

 

In the previous section, a number of statistics were mentioned. However, when their 

advantages were discussed, they mostly kept in account only one individual and its survival. 

An interesting thing was that a behaviour visually resembling flocking can be observed when 

a bigger bug would appear close to the cluster of very tiny bugs - they would form a flock-

like group when running away from the big individual. 

After careful observation of the behaviour of the bugs as a species, it became obvious to me 

that rather than profiting from the individualistic survival techniques, bugs tended to engage 

in a flocking mechanism, forming a colony that relied on each individual being as a part of 

the mass organism of a group. 

 

After leaving the program running for more than 3 hours I could observe different "societies" 

being created. Most of them were bugs with high initial size, short lifetime and high speed 

which provided everyone with a chance to reproduce. Their low vision and flocking reminded 

me of the behaviour of the fish in the murky water, when they are forced to engage in 

schooling due to the low vision. In the case of the Bug World, the low vision was the result of 

many generations of evolution and it was the behaviour which resulted in the high fitness of 

the individuals that engaged in it. 

 

Some other groups had only one very large individual at a time, a "queen", surrounded by the 

tremendous amount of slow and blind offspring. The “queen” would constantly grow until 

reaching a giant size and then burst to leave a large amount of offspring, then the cycle would 

repeat. This kind of behaviour could be related to the survival techniques found in ants and 

other insects that profit from hauling. In this case, however, the “ants” didn’t need to bring 

food to the “queen”, because they themselves are food, therefore they evolved to be slow and 

blind so they would be forced to stay closer to the “queen”. 
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It was to my surprise, that I was able to observe various sorts of species being formed. This 

was higher than my expectations at the time and I remained pleased with the result. 

The fact that the bugs ended up profiting from the group behaviour was a curious discovery 

that deserved further exploration in future work. 

 

The simplicity of the Bug World is something that forces it to remain an experiment. Similar 

projects have been done and accomplished at a higher degree with greater complexity (e.g. 

Polyworld) and they offer many more scenarios to study and to experiment with. 

 

In the course of this test, I understood how A-Life agents can be created using a 

computational approach. 

 

 

 

 

The following subsections describe the progress which has been done in creating the concept 

of the “Hive Mind” which is the name for the application developed as one of the objectives 

of this thesis. 

 

The requirements listed in this section are for the early stage of the development. It is 

possible that throughout the study a lot of the mechanics described here will change or be 

removed completely. 

 

 

The term hive mind is a sci-fi idea of a universal mind that through telekinetic powers 

maintains absolute control over species. Like this, the entire species possess one mind. 

 

In this toy, the player takes control over a hive mind of an alien species. Because the species 

of the characters are alien to us, the story is set in space. It's difficult to characterise this 

project as a game of a certain genre, apart from a sandbox or a puzzle, it is essentially a toy. 



76 

 

- To produce the sound using keyboard or an external sound synthesiser/musical instrument 

- To train the aliens using sound  

- To breed and evolve aliens 

- To control the alien evolution 

- To accomplish small tasks using the trained aliens  

- To use real-life sheep herding mechanism as a model of this mechanics 

 

 

The player takes control over the hive mind of an alien species. Using their own language, the 

player has to communicate with them and teach them to respond to various sounds. 

The action takes place on a spaceship and, in order to progress, the player needs to take over 

the vessel by training their aliens and issuing the commands to them. 

The view of the toy is planned to be isometric and visually similar to "Attack of the Killer 

Tomatoes" game from 1986 (Fatman, Dobbin, Stuart Ruecroft) 

  

 

 

 

Figure 30: Attack of the Killer Tomatoes game. A screenshot. 
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Warrior mechanics  

The human is master of many animals. Dogs are a very good example of such an animal and 

one of the fascinating mechanics in which they are involved is herding. Sheep herding is done 

in order to keep sheep from running astray and also in order to protect them from natural 

predators such as foxes. 

 

While observing sheep herding, first of all, we see a human who with a series of complex 

whistles issues commands to a dog. Subsequently, the dog responds to the whistles by 

moving left, right, forward, backwards, lying down, speeding up, slowing down, etc. The 

mechanics are based on the fact that the sheep wish to stay away from the dog as it in many 

ways resembles their natural predators. By controlling the dog, the human is not only able to 

steer the herd but can also perform more complex tasks such as sorting the males from the 

females or making the entire herd go in the desired direction. More control is usually 

achieved with an additional dog. 

 

Using the herding mechanism, I was exploring the fact that perhaps instead of commanding 

all of the aliens at once, sound commands of the hive mind reach only specific individuals 

called "warriors". 

 

The player can select any alien and make them evolve into a warrior. The warriors are bigger 

than the regular aliens (workers) and can perform some additional actions. The sound 

commands of the player are only heard by the warriors. Using these commands, it is possible 

to train the warriors so they can be controlled in a more or less precise way which will allow 

the player to use them for steering the aliens around. 

 

An advantage of these mechanics is that it will make the application much cleaner in the way 

that not everyone will respond to player’s commands which can cause chaos. It will instead 

create some space for improvement of player's skills by making only the warriors directly 

controllable. 

 

Another advantage is that the player will be able to control a large number of aliens at once. 
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The main advantage is the possibility of creating puzzles based on learning. An example of 

this is where for the completion of the level we may need to lead the aliens through a narrow 

passage, it is therefore important to keep them together. Having two warriors on either side 

might help, but each will require learning different commands in order to make this work. We 

might need two warriors where we teach one warrior to respond to the same commands in 

reverse. If the passage would as well have lasers or any other type of danger on either side, 

the player would need to steer each warrior out of it at the same time which would provide a 

nice challenge. 

 

Hive mind 

The hive mind is unique and represents the entire species. It is intelligent, knows everything 

and is aware of all aliens. The player is the hive mind and has a strong connection with the 

queen – it is possible to issue direct commands. But controlling the queen is not enough since 

she is slow and vulnerable and cannot move. In order to be successful, the player needs to 

take control over the rest of the aliens (workers). In order to accomplish that, the player has to 

use language to talk to them. Language needs to be alien. The entire keyboard offers a variety 

of sounds and each key produces a different synthesized insect-like noise. 

 

Another considered possibility for implementing the sound controls is using the external 

sound input through the mic, maybe through a separate analogical mini-keyboard with 

sounds. This possibility however, could lead to unwanted complications with aliens 

understanding the commands, so first-hand the more basic computer keyboard variant will be 

implemented. 

There are two sounds that the player is offered to input at the very beginning. These sounds 

will remain locked throughout the play and the aliens will be pre-trained to perceive them: 

YES and NO. 

 

Using the YES and NO, hive mind can train warriors to move around according to a player’s 

wish using the reinforcement learning. 

 

Each sound produced by the hive mind is heard by all warriors. The idea is to use warriors 

strategically to lead aliens into the areas where the goals are. 

 

 



79 

 

Alien types:  

There are 4 types of aliens:  

 

1. Regular aliens (workers)  

2. Queen 

3. Breeders  

4. Warriors 

 

Workers 

They are small and mindless creatures that may be present in large amounts. They are the 

most numerous of all aliens. Each worker can move up, down, left, right, pick up an object, 

put down an object and produce a noise. They cannot see but they can hear very well. They 

do not hear the commands of the player. They tend to stay relatively close to each other, 

using the sounds to orient themselves. They also keep a distance from the warriors. Each of 

them has personal statistics like, for example, speed and lifetime - they represent the genotype 

of this individual. 

 

Queen  

The Queen cannot move through the level. It can lay eggs if fertilised by a breeder. The 

Queen also serves as an objective point where workers need to bring objects. 

 

Breeders  

The player can select any worker or warrior to evolve into a breeder. When they become 

breeders, they perform the hard-coded breeding. After they breed, they die. Subsequently, the 

queen will lay eggs that will hatch into the workers that share the genotype of the breeder 

with the small possibility of mutation. 

 

Warriors  

Warriors are the main feature of this toy. The player can select any worker to evolve into a 

warrior. When a worker becomes a warrior it means that it starts being able to hear the player.  

 

Warriors can be taught using the hard-coded YES and NO commands to learn what other 

sounds mean. When the player produces a sound, the warriors try to interpret it and to 

respond to it in a certain way. The player then says YES or NO according to whether they 
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guessed the action or not. Through this process of training they learn voice commands. 

Example:  

 

- Player produces "beep" sound and they want a warrior to respond to it by going right 

- Warrior responds with going left 

- The player produces "NO" sound 

- Warrior remembers that “beep” means not going left 

- The player produces "beep" sound 

- Warrior responds with going right 

- The player introduces "YES" sound 

- Warrior remembers that "beep" means right and now will always try to go right when 

the player produces that sound 

 

Warriors are similar to herding dogs. The sheep (workers) try their best to keep the distance 

from the warriors. By positioning the warriors strategically, a player can lead workers to the 

current level objective. 

 

 

The program starts and the player is offered to introduce the sounds that are associated with 

YES and NO. After that the player can see the map as shown in Figure 25 (this is only a 

schematic representation of the map). 

 

 

Figure 31: Queen and the objectives (triangles). 
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Q is the queen and the little triangles are objects that need to be brought to her in order to 

complete the level. The Q doesn't move and stays in place. The player can click the Q and 

order her to lay eggs. The Q is then going to lay eggs and many workers will hatch (Figure 

26). 

 

 

Figure 32: Queen, workers (dots) and the objectives (triangles). 

 

Each worker is a small computer that is going to listen to the sounds that other workers make. 

Using the sounds to orient themselves they will try to avoid the collision with others while 

trying to stay closer. These mechanics are similar to flocking behaviour described in Craig 

Reynolds’s “Flocks, Herds, and Schools: A Distributed Behavioral Model”. 

 

Each worker has a lifetime countdown and will inevitably die when the time comes. They can 

move around, pick up objects and put them down when they touch them. 

 

Now, in order to actually start doing something, the player needs to create a warrior. For that 

they need to select one of the aliens so it evolves. Warrior is marked as W in Figure 33. 
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Figure 33: Queen, Warrior, workers (dots) and the objectives (triangles). 

 

As one can see, all the workers keep some distance from the W. If we could control the W we 

could probably push some workers through the narrow passage so they would collect the little 

triangles and then we could "herd" them back in order to deliver the triangles to the Q. 

 

In order to be under our control the W needs to be trained. We can teach the W to respond to 

certain sounds with movement. The training is accomplished using the sound keyboard and 

the YES and NO sounds that it already knows. It is done with a form of reinforcement 

learning. 

 

When we produce any sound apart from the YES and NO the W is forced to respond in some 

way. If it does, we can tell it if it guessed using the YES and NO. Weights in W’s neurons 

will be adjusted and then we will be able to control it more precisely. 

 

In Figure 34 the W that is under our complete control was able to lead the rest of the aliens 

through the narrow passage towards the objectives. 

 

 

Figure 34: Warrior brings workers (dots) to the objectives (triangles). 
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It is possible to create various level layouts with different puzzles using these mechanics. 

This, of course, was a basic example but we can design levels that require not only more 

warriors but also challenge a player's reaction. 

 

In the following layout, we have a room with moving deadly lasers (Figure 35). If the aliens 

touch them - they die. For this scenario the player would need to have two W’s that would 

sandwich the workers from both sides, making them move in a thin line. The problem here is 

that the W’s themselves have to avoid the lasers. This requires quick responses from the 

player. 

 

Because there are two W’s, the player either needs to teach them polyphonic sounds or to 

train one of them to respond to the commands in reverse so one sound could make both of 

them move either closer to each other or away from each other and closer to the outer sides of 

the map. Shepherds use multiple dogs in sheep herding so using multiple warriors is 

definitely one of the ways of solving the problem. 

 

Figure 35: A possible play scenario with deadly lasers. 

 

Some scenarios might involve aliens having to move really fast, or not having enough time to 

complete the level and therefore dying because their lifetime is over. In such situations, 

breeders come in. Creating a breeder from the fastest alien may let us evolve individuals with 

higher speed which would let us complete the level. Some hard-coded mechanics could 

prevent the evolution from scaling - for example limiting the number of eggs the queen can 

produce during the current mission. 
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Further possibilities described here are just ideas and they do not represent the functional 

requirements for the final prototype. Some of these possibilities might be explored if 

necessary, but for now, they are just options that do not relate themselves to the goals of this 

thesis. 

 

As I understand, the mechanics described in the above sections offer a number of possibilities 

for adding more complexity to it. For example, some levels might require the aliens to have 

certain skills such as shooting projectiles, melting walls or forming a shell that makes them 

invincible to lasers. A consumable object granting one of these skills would be located in an 

area right next to a dangerous item (possibly a deadly virus). The player would have to herd 

the workers with great caution in order to pick up the “good” item without touching a deadly 

item. The worker who picked up the item would then gain an ability. The player would then 

have to lead that worker back to the Q and make it into a breeder so it can breed with the Q 

and produce the offspring that share the ability. 

 

Another idea is that it would be possible to add killable humans or other beings and enemies 

that will have a basic AI and try to shoot the aliens. 

 

A further way of adding depth and difficulty to the toy would be adding the possibility of 

deadly viruses that spread to the nearest aliens. 

 

 

A UML diagram in figure 36 explains how the transition through various stages of the toy is 

accomplished.  



85 

 

 

Figure 36: Activity graph of Hive Mind. 
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This chapter describes the practical work done throughout the second semester which 

involved multiple experiments in creating ANN using Processing and Java (Eclipse). The 

code written during this phase of the research will be discussed and described. 

 

The major focus of this chapter is the analysis of the work done so far in chronological order 

towards the development of the Hive Mind application and listing of the decisions that had to 

be made in order to bring the application to its final form. 

 

 

 

 

This section describes the attempts to create ANN in Processing ranging from simple 

perceptrons to more complex DNN. Several experimental applications are shown and 

analysed. 

 

The process described here was essential in order to produce an ANN framework/library that 

would serve as a basis for the final application. 

 

 

To grasp a full understanding of ANNs I started by programming a simple sketch in 

Processing which would utilise a single perceptron to learn to associate a name of a colour 

with an RGB value. I only used two colours – red and green, because of the binary nature of a 

single perceptron. In this scenario, the correct answer was backpropagated after every guess. 
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The circle would change its colour on each click and the ANN would print a guess, after that 

the guess would be compared with an actual colour. After a couple of clicks, the frequency of 

the correct answer would improve as weights would get adjusted quickly due to the simplicity 

of a perceptron. Table 5 shows screenshots of the untrained perceptron output vs trained 

perceptron, along with a simplistic schematic of a perceptron and its weights. 

 

Table 5: Comparison of trained and untrained outputs of Colour Guess application. 

Untrained output Trained output 

 
 

 

 

Subsequently, the challenge had to be increased because implementing a simple perceptron 

would not be able to accomplish the goals of this project. In order to increase the 

understanding of ANN and make a first attempt in backpropagation algorithms, a DNN with 

one hidden layer and MSE gradient descent backpropagation was created. This time the 

application had more colours to guess from, therefore there were 7 outputs instead of a binary 

output. 

 

The sketch would draw 7 rectangles of different colours, DNN would have to write a correct 

name underneath each of the rectangles. This time, the DNN was not designed not learn in 

real time and its training was done beforehand. The table shows the outputs with different 

numbers of training cycles, ranging from 0 – no backpropagation to 10000 backpropagations. 

The examples shown in Table 6 can vary depending on the initial setup of weights, the 

examples that were selected to be put in were chosen through a purely aesthetic analysis, as 

the ones that do not deviate far from their average. As calculations were done almost 
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instantly, it was easy to experiment with different numbers of cycles. As expected, accuracy 

increases with the number of cycles. 

 

Table 6: Comparison of Deep Colour Guess outputs. 

Output Cycles Accuracy Score 

 

0 0% 0/7 

 

10 14% 1/7 

 

50 28% 2/7 

 

100 42% 3/7 

 

200 71% 5/7 

 

500 100% 7/7 

 

10000 100% 7/7 

 

 

Fascinated with the results of previous tests, I decided to design a more interesting challenge. 

I would like to see a DNN to play a game. I saw some examples of ANN learning to complete 

retro games such as Mario, play Go (Alpha GO) and even playing DOOM (DL4J), however 
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using an existing game would be a big challenge, which I decided to save for later for in the 

current situation I needed to focus on the basics. 

 

With that in mind, a simple environment was designed: a 2D world populated with obstacles 

in the form of ellipses. The creatures that existed in this world were presented as smaller 

ellipses, each possessing a DNN, a reworked version of the previous deep colour guess 

example. Each of the creatures would be able to perform one of the simple actions each frame 

– walk right, walk left, initiate jump and do nothing. Apart from the actions, the creatures 

could “sense” the distance to the nearest obstacles and were aware of their current Y position 

in order to distinguish the jumping state. 

 

The objective was to train these creatures to successfully move from the left side of the map 

all the way to the right by successfully avoiding the obstacles. 

 

A problem arose immediately – how to train an ANN without knowing the correct answer. Of 

course, I could hard code such things as – when you are next to an obstacle, the correct 

answer is to jump or when you are on the ground, the correct answer is to walk forward. ANN 

would not be required for the implementation of this, and it would be required to program 

unnecessary complexity (more detail on this can be found in subsection 2.6.5). If a 

programmer can create correct patterns for creatures to follow, then there is no need for 

ANN. Instead of doing that I could just hard code those actions and watch the creatures 

solving the problem easily since the beginning. What I really wanted was to observe 

emerging behaviour, patterns that a machine would come up with on its own. 

 

To increase the complexity of the task, positions of circles would be randomised each time so 

DNN would never be able to rely on time in order to learn correct actions. It would have to 

rely on sensors, similar to self-driving cars. 

 

In the current situation, the optimal solution to this problem was removing backpropagation 

and replacing it with mutation. It would increase the frame rate of the application as agents 

would not have to backpropagate each of their actions, however, a successful mutation 

mechanism would require a large population of agents and a fitness function. 
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I decided to avoid using a fitness function as I like to see it as natural pattern that is based on 

survival as opposed to an equation, as an alternative, fitness based on multiple functions 

could be another path to an interesting emerging complexity. 

 

The sketch was playing each generation for 1000 frames before removing all of the agents, 

solving the crossover and mutation, creating a new generation, randomising the obstacles and 

playing the next generation. Each generation would be composed of 100 agents. The fitness 

was calculated taking in account the X position of the agent, increasing along with the X 

value, as well as number of obstacles which were avoided without touching them. 

 

In Table 7 some screenshots of the application can be seen. Although, the evolution from the 

1st to 4th generation is not clearly noticeable as the primary evolving element is animation, 

screenshots allow to make additional comments about the program. 

 

Table 7: Screenshots of various generations of Jumping over ball. 

Generation number Screenshot of generation 

1 

 

2 

 

3 

 

4 

 

 

As seen in Table 7 creatures are represented by black semi-transparent circles. The reasons 

why some of the circles are darker is because that area contains many overlapping 

individuals. This kind of visualisation allows the observer to see the behaviour which is 

predominant in a generation. 

 

As a result, it proved possible for the agents to figure out correct jumping times and 

movement actions after around 20 generations, depending on the number of nodes in a hidden 

layer, number of inputs and mutation chance. 
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The original sketch of jumping over a ball from the previous sub-section lacked good sensors. 

Improved new sensors would definitely generate more interesting emerging behaviours for 

the agents. The new sensors needed to be designed in a way, so that an agent could switch 

between them and choose in which direction to look. It would be interesting to see a 

behaviour where agents make decisions about their sensors and know in which direction to 

look in each situation. 

 

A new sensor was designed which was represented in the form of a line which could sense 

whether something is within a small circle around its tip. Apart from that, each agent had a 

set of new actions which corresponded to pointing a sensor in each of the four directions. 

Inputs now included not only the output of sensors, but also a value indicating which 

direction the sensor is currently pointing at.   

 

As expected, the newly implemented dynamic sensors brought more interesting behaviour 

into the sketch. While the speed of learning did not increase or decrease significantly, the 

accuracy of the jumps that the agents were doing had increased as now, while an agent is in 

the air, it could point the sensor downwards in order to scan the area underneath in order to 

adjust its landing trajectory. Many times agents evolved a behaviour where they were 

pointing the sensor backwards during the landing in order to land as close as possible to an 

obstacle that they were jumping over, this kind of behaviour helped them to avoid landing on 

top of the next obstacle and leave more space for further manoeuvres. A more sophisticated 

form of this behaviour that could also be observed was a rapid switching of sensors between 

Figure 37: Agents jumping over a ball. Sensors (lines) can be seen. 
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front and back while landing from a jump which allowed the agents to align themselves 

nicely between two obstacles. 

 

In conclusion, it was interesting to observe new behaviours being formed as a result of 

multiple mutations. Individuals were able to solve problems relatively fast which can serve as 

a proof of successful implementation. It is possible that there are better solutions involving 

computer learning but the current example worked and resulted in the interesting behavioural 

patterns. A video of this application can be seen here: https://vimeo.com/277782107 

 

 

 

 

In this section, the development of the final application was described, featuring the steps that 

were taken towards reaching the result. 

 

Problems of learning through sound, artificial ear system, ways to avoid implementation of 

sound-prediction and constant frequency analysis are described here. 

 

The concept of the final project is described in the preliminary work chapter under the title of 

“Hive Mind”. It is outlined as an interactive digital toy where user can interact with various 

A-Life agents. For a more detailed description, it is advised to consult section 4.2. This entire 

section covers the progress that was made towards its implementation. 

 

 

The first thing that needed to be implemented was the user interaction. As described in the 

concept outline, the interaction is done through sounds in the following order: user produces 

a sound, agent responds with an action. After that the user must aesthetically evaluate the 

action by pressing a key or producing a sound corresponding to yes (correct) or no (wrong). 

A user, who clearly knows the right answer, reporting it to the agent in a simple way was a 

difficult issue. As a user could not report an actual answer to an agent, they were limited to 

binary input. And so the first problem that was encountered during the starting phase of 

https://vimeo.com/277782107
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implementation was “How an agent can learn without knowing the right answer?” If the agent 

is guided only by YES and NO user input, how it can learn and adapt its behaviour according 

to what the user expects from it? 

 

Of course, the answer to this question is given in the previous chapter when the 

implementation of “Jumping over Ball” is described. Translating it to the current scenario, 

YES would be a positive fitness value, while NO would be negative. EA are a viable option 

in many computer learning programs, however, in this scenario something that worked with 

the effect that was only achievable through backpropagation was needed. One simple agent 

was required, rather than a group of them (a generation), it also had to learn in real-time, 

listening to a user and immediately evaluating the state of the world they are in together with 

their own output. 

 

This sounded a hard enough problem in itself. I would need to look into LSTM networks and 

how to train a network by giving sounds data overtime. It would not be an optimal solution to 

train a network where it receives the entire sound data at the same time because it would have 

too many notes and be computationally impossible. The closest possible solution would be 

text prediction with RNN, as the architecture of a sound predictor would be roughly the same 

as what is needed for the sound recognition. 

 

Subsequently, this created more questions. How clunky would such a system be, would it run 

smoothly in java using the Processing library? These architectures were designed for large 

datasets and they learn effectively over very long periods of time, which was not suitable for 

the implementation of a little game where the agents needed to learn in real time. The 

solution needed to be simple and compact. 

 

 

Q-Learning allows agents to learn using a simple binary response of YES or NO. It was based 

around generating tables of pairs of actions and states which an agent would analyse in order 

to pick the right action next time. 
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Because an agent needed to analyse a very complex and detailed world state as an input 

(entire sound spectrum), Q-learning alone was not enough. ANN was needed in order for it to 

function as intended. DQN seemed like an optimal solution. It is essentially a combination of 

an ANN and a Q-Learning table. 

 

A resulting ANN would consist of several Java classes:  

 

- Replay – an object of this class would be able to store a single experience replay with 

all relevant data about it.  

- Neural Network – this class was a re-written and refined version of the old colour 

guess network that I had written during the process described in the previous section.  

- Layer – class that would define a single layer of the network, again, it was re-used 

from the previous section examples.  

- DeepQNetwork – this class describes all additional functions that would manipulate 

ANN and replays in order to make them function in accordance with DQN flow by 

saving all replays, feeding them forward and backpropagating in the correct order.  

 

 

As it was said previously, sound prediction implementation is a complex task (mainly for the 

reason of requiring libraries of learning examples) which required an easier, and a more 

efficient way in the current situation to solve the sound recognition problem. 

 

One of the answers to this question was using a limited library of extremely basic sounds 

which would be easily stored in the memory and would not generate the range of infinite 

sound combinations. 

 

 

One of the original ideas for this project involved turning the keyboard into a piano so each 

key would produce a sound which would be clean enough for any of the virtual creatures to 

interpret. 
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I looked for insect sounds online in order to use them as a reference and consequently I 

started creating my own sounds using Audacity. Various foley recordings were made of 

simple objects, such as paper, plastic bags and a water tap which were later edited to appear 

like sounds produced by insects. 

 

After mapping the sounds to the keyboard keys, I was able to produce them and the agent 

could respond to them. 

 

This link contains a video with various sounds that were produced during this stage: 

https://vimeo.com/277789895 

 

 

At this point the application contained several agents and interactions between them. There 

was also the user interface and the possibility to interact with various agents. Table 8 shows 

the various functions that existed at that point of the application. 

 

Several changes were made to the concept described in the first part of this thesis. One of 

them was changing the name of the user-controller agent from warrior to fighter. A reason for 

this change was the fact that both warrior and worker words started with “w”, which could 

cause confusion in schemes and abbreviations. Therefore, when the word “fighter” is 

mentioned, it refers to “warrior” from section 4.2. 

 

 

 

 

 

 

 

 

 

 

https://vimeo.com/277789895
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Table 8: Functions in early version of Hive Mind. 

Function Graphical representation 

Possibility to select and deselect 

an agent.   

 

A visual effect when mouse is 

hovering over an agent. 
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Menu with buttons, showing 

functions of selected agent. 

 

Queen spawning larvae 

 

Larvae growing into workers 
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Workers evolving into fighters 

 

Workers avoiding fighter but 

clustering together 

 

 

 

 

The most obvious problem that could come to anyone’s mind with this model – is whether the 

agents can perceive the same sound multiple times and remember various bits of composition 

in order to react to them the same way as before. 
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And no, they couldn’t do it, at least not easily enough. The problem was that each frame of 

sound would be perceived by an agent as a large array of the audio spectrum which would 

definitely, in the most cases, be different from the audio spectrum of a previous frame. 

 

Figure 38 represents spectral analysis of a very simple half a second long sound produced by 

a bird. To humans it sounds like a uniform noise, however even this sound has variation. 

Every column of lines on the image represents the audio spectrum of each individual 

milliseconds long frame during which the sound was played. While the variety is minimal, it 

is still present. In this case it would be possible to train ANN to recognise any frame of it 

relatively easily, however as the complexity of sounds increases, so does the time it takes for 

the network to learn them. Ultimately, such techniques as sound prediction will be required to 

train a network in an effective way. 

 

The way of solving this problem was creating new sound files which would have very slight 

spectrum variation or even none. In this case it meant getting rid of insect sounds and creating 

a new batch of sound files where each one of them would be a plain noise without any 

spectrum variations over time. 

 

 

Figure 38: Spectral analysis of a bird sound. 
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For the sake of curiosity, I decided to try and test the learning capabilities of an agent without 

the use of pre-defined sounds and instead utilising the microphone as an input. After the 

microphone was enabled as an input, I noticed patterns in the behaviour of the agent that 

definitely showed me that it was responding to the sound in a similar way as before. Its 

movement became more erratic, similar to Brownian motion of particles, but whenever a loud 

sound with a constant spectrum was produced, the agent would switch into a more consistent 

behaviour. 

 

The reason for erratic movement turned out to be a constant noise produced by the 

microphone. The agent was constantly responding to the humming of computer fans and 

random background noises. In order to decrease and possibly eliminate the effect of 

background noise, the minimum audio level was defined for the agent. The agent would only 

listen and perceive the sounds when the audio level was higher than a certain value. 

 

This method worked as while the levels were not surpassing the defined value, the agent 

would remain in the state of rest, without performing any erratic movements. Whenever a 

loud sound was produced, audio levels would increase, enabling the agent to listen to the 

input and react to it in the same consistent way. 

 

Later a slider for levels (Figure 39) was added so the value could be changed dynamically by 

the user, allowing adjustments during the experience itself. 

 

 

 

Figure 39: Levels slider. 

 

 

 

With the new microphone interaction the agent was listening to real world sounds. While 

various musical instruments, voice and scratching of the microphone were making an agent 
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be-have in a relatively consistent way, its behaviour was much less accurate than the one that 

was achieved through digital sounds that came from a keyboard straight into the sound card. 

 

A spectrum of mostly real-world sounds tends to be not as consistent as it might seem in 

some cases (for example, flute). The previous digital sounds used to be more consistent and 

were accompanied by an accurate response. It was natural to assume that the reason behind 

the less accurate behaviour was the inconsistency of the audio spectrums from the real world 

object sounds. 

 

So what if the sounds that were produced in the real world were generated by electronics and 

were consistent enough for the agents to perceive them as intended? In order to find an 

answer to this question, I used an Arduino board, a set of buttons and a miniature speaker to 

create a prototype of an electronic “piano” that would play sounds similar to the original 

consistent digital sounds but through a speaker (Figure 40). A short demonstrational video of 

this “piano” can be seen here: https://vimeo.com/277783441 

 

 

Figure 40: Arduino "piano". 

 

The piano did work and the creatures were responding to the sounds with a more consistent 

behaviour, but for this behaviour to manifest, the little speaker needed to be right next to the 

microphone. I assumed that the volume of it was just not enough. 

 

As I kept working on the electronic piano, I decided to try out an option that was neglected 

previously – synthesisers available in Garage Band app on an iPad. 

https://vimeo.com/277783441
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With a synthesiser, it was important to find one that had settings that would disable all kinds 

of echo and reverb effects, so the sound would stay pure and consistent. This iPad option 

turned out to work much better than the Arduino piano as it could achieve higher volumes 

and also had more choices of sounds. 

 

At this point, the project had to move on towards the next stage, as the major issue with the 

sound-based learning was solved. 

 

 

As was outlined in the concept, the agent would be taught with YES and NO commands. By 

issuing these commands it would be possible to teach the agent to respond to sound 

commands in the correct way. 

 

Table 9: Command log of an agent. 

Command  Action Reward 

GO UP DOWN NO 

GO UP LEFT NO 

GO UP UP YES 

GO UP UP YES 

GO DOWN UP NO 

GO DOWN RIGHT NO 

GO DOWN UP NO 

GO DOWN DOWN YES 

 

Table 9 shows a log of commands that were issued to an agent (fighter), its responses and the 

consecutive rewards. Commands in this example would be represented by sounds, which the 

user chooses to associate with a certain action. For simplicity, they were presented in the 

table as direct commands. From this table, we learn that it is required to input a large (from 

the user’s perspective) set of commands and rewards before the agent adopts a behaviour 

wanted by a user. 
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There are many aspects of the YES/NO interaction that point at its inefficiency:  

 

- Additional actions added to the action pool of an agent increase the amount of user 

input required for each successful movement memorization 

- YES command is not required as a simple lack of input replaces its functionality. The 

agent will maintain the last action as the NN will remain unaffected.  

- The agent requires a lot of time in order to re-learn commands. The difficulty 

increases when the agent has to perform actions which were previously rewarded with 

NO.  

- The agent simply takes a lot of time going through actions because it needs to guess 

something based on very basic binary input 

 

These reasons make user interaction tedious, filled with unnecessary actions that also need to 

be performed in a fixed order. A better form of interaction was required. 

 

 

Looking at the games available for Nintendo or iOS mobile devices and observing the 

interaction available in them, I came up with new learning mechanics. The new mechanics 

were based on swipes, in it the previous YES/NO interaction would be replaced with swipes 

in different directions. 

 

Holding a mouse button and swiping in a direction would issue a reward for the action which 

would also serve as a correction. 

 

Table 10: Command log using swipes. 

Command  Action Reward (swipe) 

GO UP DOWN UP 

GO UP UP -  

GO LEFT RIGHT LEFT 

GO LEFT LEFT - 
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Because a correct action is known to the user and it is delivered to an agent, the use of DQN 

stops being a strict requirement. It is possible to use DNN and to backpropagate a correct 

result directly. However, it was decided to keep using Q table, just with a smaller batch 

number, as there was no need for the large number of replays any more. Rewards were 

automatically calculated, because there was no longer a clear YES/NO instruction, so an 

action was just compared to a reward and if they did not match, it was recorded as NO. 

 

Table 11: Comparison of different elements of each user input mechanics. 

 Swipe YES/NO 

Back Propagation Gradient Descent using 

correct value 

Gradient Descent using 

multiple replays (Q table), 

trying to predict a correct 

value considering 

previous successes and 

failures 

Interface Moving the mouse in a 

direction 

Pressing either Y or N key 

Number of actions 

supported 

Limited by number of 

swipes the user can 

memorize and use 

Very few actions, as the 

learning time drastically 

increases with more 

actions 

Efficiency All swipes are useful, 

cannot observe any 

unnecessary functions 

YES command is almost 

useless 

Changing an action 

associated to a sound 

Easy by back propagating 

the correct action. 

Can take a very long time, 

as an agent won’t be 

willing to try the action 

for which it was 

previously punished 

 

As can be observed in table 11, YES/NO lacks a lot in comparison to the faster and more 

efficient swipe method. As a result, it was decided to remove the YES/NO mechanics, 

replacing it with the new swipe mechanics. 
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Here are some characteristics of the swipe mechanics:  

 

- The actions are memorized faster as only a few corrections are needed because the 

right answer is backpropagated directly through the network.  

- User performs very few actions – one swipe 

- Re-learning is extremely easy as the agent’s actions are immediately adjusted through 

backpropagation.  

- No need to go through all of the actions  

- All commands are useful  

- Possibility of having more actions by adding more swipes 

 

 

Even with the audio level control, the audio spectrum is still affected in many ways by 

background noise. This results in a perfectly consistent by default spectrum being distorted 

and appearing to have a lot of variations from one frame to another. 

 

As we are backpropagating the spectrum of a last frame where the sound was played, very 

often this frame ends up being distorted which results in it being not very characteristic of a 

sound that is being analysed. 

 

As a result, when the sound is played next, only at the moment when the sound matches to the 

distorted learning example that was given previously, an agent will behave as expected. 

In order to solve this problem, it was decided to backpropagate a certain number of last inputs 

instead of one. 

 

The audio spectrums of a number of last frames where the sound was played are saved into a 

list. If they exceed a set value, the most outdated spectrum is removed in order to maintain 

the list to be of a fixed length. Then, instead of rewarding only the last input, the entire array 

of spectrums is rewarded and a correct action is backpropagated for each one of them. The 

optimal number of spectrums was 20 because using bigger numbers is risky, as older 

spectrums might belong to a different sound played earlier, while 20 allows it to encompass a 

broad number of latest outputs. 
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This solved the problem of only the last frame being evaluated. It also increased the learning 

speed of an agent, as it increased the number of times the correct value is backpropagated and 

therefore made it possible to make quick changes in weights that deviate massively from the 

target and therefore are difficult to change by backpropagating once. 

 

 

 

Table 12: Tutorial script. 

Tutorial text Completion condition 

"The black circle in the center of the screen is the queen. 

You can select her by clicking on her. Now try to select the 

queen" 

Queen is selected. 

"The queen is now selected. You can deselect her by right 

clicking anywhere. Try that now." 

Queen is deselected. 

"Good. Now select the queen again and click the button on 

the top left to produce larvae. Create 3 of them. They will 

grow rapidly to become Workers. " 

Spawn Larvae button is 

pressed 3 times in the 

Queen menu. 

"Now that all workers have hatched, select one of the 

workers and evolve it into a fighter by pressing a button on 

the top left" 

Evolve Fighter button is 

pressed in the worker menu. 

" A Fighter is hatching..." Fighter pupal stage is 

finished. 

"We now have a Fighter. Fighter responds to the sounds 

from the mic and also mouse drags in one of four directions. 

Hold left mouse button and drag to the right. " 

The right swipe command 

is issued.  

"Dragging the mouse in a direction teaches a Fighter to 

respond to previous sounds by going in the direction in a 

drag. It might take several attempts for a Fighter to learn. 

Producing a sound and then dragging is a way of teaching 

it." 

700 frames had passed 

since the message appeared.  
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One of the aspects of the project at this point was the tutorial. It was created using Observer 

programming pattern which allows one object to listen to various events and notifications 

from other objects. For example when a subject of an observer walks to the right, it sends a 

notification “WALKING_RIGHT” to the observer. As a result, observer can respond in a 

certain way. In the case of the tutorial, the response would consist of advancing the tutorial by 

spawning a new text box. The script of the tutorial can be seen in table 12. 

 

The message appeared in the right side of the screen, giving advices to the user on how to 

proceed next. 

 

 

This section is a brief description of what the application looked like at this point and how all 

of the agents were represented. Following link contains a video of this version of Hive Mind 

application: https://vimeo.com/277795353 

 

 

Figure 41: Screenshot from early stages of Hive Mind application. 

 

 

 

https://vimeo.com/277795353
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Figure 41 shows the queen in the centre of the screen with the larvae and workers clustered 

around it. The red circles are larvae – they cannot move on their own, unless pushed by 

another object. The queen spawned them because a user selected that in the menu. Black dots 

are workers. It takes time for larvae to grow into a worker. 

 

 

 

Figure 42: Screenshot from an early version of Hive Mind featuring evolving fighter. 

 

In figure 42 the purple dot – evolving worker can be observed. The tutorial message in the top 

right suggests that it’s evolving into a fighter. The top left menu shows available options for 

the worker which are to evolve fighter or to evolve drone. 
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Figure 43: Screenshot of an early version of Hive Mind, showing a hatched fighter. 

 

 

Figure 43 shows the hatched fighter (big spiky dot at the bottom left of the queen). The 

workers are avoiding it while clustering together. 

 

 

 

Figure 44: Screenshot from an early version of Hive Mind, featuring a mouse swipe. 
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In figure 44 the red line below the agents represents a horizontal mouse swipe. When the 

swipe is performed, the line is drawn to indicate the registered swipe to the user. 

 

 

Figure 45: Screenshot from an early version of Hive Mind, featuring ANN visualization. 

 

On the left side of figure 45, a graphical representation of agent’s ANN weights can be seen. 

As there are a large number of inputs, the input layer occupies a lot of space. The output layer 

is a small rectangle on the far right. Changes in brightness can be observed on the grids, 

which points at the fact that learning is being accomplished. 

 

 

At this point a hard coded system of workers avoiding a fighter and clustering together was 

taking place. However, it was not an easy task to make workers perform these actions 

reacting only to sounds on a computer learning level. ANN that would be a part of each 

creature would require a higher level of complexity, which slowed the system down a lot, as 

it needed to calculate the values for many agents at once. 

 

There were various attempts at creating such a behaviour using DNN with the help of various 

sensors. Sound pings were also attributed to the workers so they could report their position to 
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others. Figure 46 shows lines on some of the workers symbolising a direction from which 

they hear sounds. Circles surrounding the workers mean that they are producing a ping. 

 

Figure 46: Workers with sensors producing sounds. Sounds are graphically presented as ellipses 

around the workers. 

 

Simpler ANN would not work, as the positions of a fighter and other workers are constantly 

changing so the learning would either take longer, or it would require higher complexity. 

 

In the end it was decided that such a system was not necessary, as the goal of its 

implementation was a deterministic behaviour that was already designed and imagined as it 

should be. 
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Figure 47: Screenshot of an early version of Hive Mind showing workers avoiding a fighter. 

 

 

In the attempts to implement a complex response to the other agent producing sounds, it was 

needed to create a system that would serve as an audio sensor (an artificial ear) that the agents 

would use in order to perceive sounds. The output of the ear could serve as not only the input 

for DNN, but also as regular values useful for programming the actions of agents. 

 

The main problem that required a solution was the fact that sound-producing agents, instead 

of emitting constant sound, were transmitting small pings at an equal interval. This behaviour 

seemed to be closer to the reality and the solution would also be applicable to the cases where 

the sounds were being produced only sometimes. 

 

To solve this problem a system was created. It incorporated a grid of sensors around a 

listening agent. The idea was partially inspired by SOSUS sensors that US used during the 

Cold War. When a sound is produced around a sensor, those sensors report the frequency of 

the heard sound to the listening agent. The data transmitted also contains the number of the 

sensor, as DNN input, however, each sensor could serve as an input so DNN would always 

know which sensor fired. Frequencies were used instead of audio spectrum simply because 
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the spectrum data contains 513 values, which might require some time to process if there are 

many listening agents and sensors calculated in the same program. 

 

 

Figure 48: Screenshots of sound sensor grid. 

 

Because the sounds are being transmitted as pings, it was necessary to implement a temporary 

memory system for each of the sensors. Whenever the sound is produced, a sensor fires and 

then keeps the value for several frames, unless it is overwritten with a different value. 

 

Figure 48 shows 3 scenarios where frequencies of sounds are displayed in a form of a table. 

Note that sensors which are not detecting any sounds are marked with 1, while in reality their 

spectrum is 0. Numbers 1 on the table mean 0.01 inside the code. In the code, values from 0 

to 1 are used in order to make it more convenient for ANN calculations, for the same reason 

0s are not used because they can disable the function of some layers (as n*0=0, therefore the 

value of n wouldn’t matter). 0.01 is marked as 1 on the table because numbers are portrayed 

on a different scale and as the table is a visualisation created with the purpose of debugging, 

0s needed to be tracked, so the value 0.01 is portrayed as 1 rather than 0. 

 

 

Now that all of the agents (workers) were equipped with an audio sensor, I started wondering 

whether it was still possible to also add an ANN to each of them. Some of the ANN written 

for this project are DNN and therefore some of them rely on n-dimensional arrays (tensors). It 

is common to assume that such arrays require a pre-written library, as they are not a part of 

Java programming language. There are lots of libraries available online that provide them, 
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however, none of them were used in this work. All of the calculations were written (and some 

designed) by me. The n-dimensional arrays that were used in this work are as well of my own 

design which, as I thought, could be the cause of the problem where the calculations would 

slow down immensely for a large number of networks in the code. 

 

A key to my solution was a function that returns a single row from a 2D array. Using this 

function helped me emulate n-dimensional array functionality, as there was no need for using 

an array with more than 2 dimensions in this project. Here is what it looks like in the code: 

 

 

float [] getaRow (float[][] array, int i) { 

  float myRow []= new float [array[i].length]; 

  for (int l = 0; l< array[i].length; l++) { 

    myRow[l] = array[i][l]; 

  } 

  return myRow; 

} 

 

 

In order to test the effectiveness of my solutions, I decided to try the ND4J library which is 

providing n-dimensional arrays for Java. The arrays are specially designed for use with ANN 

and can perform calculations on the GPU, which, according to their official documentation, 

could speed up calculations. Besides, many calculations in the library are done in a faster 

language such as C++. 

 

This particular Java library required Maven and therefore it was not easy to continue using 

the Processing application, as is does not have any system that allows managing Maven 

dependencies. As a result, the project had to be transferred into the Eclipse environment, and 

the entire code had to be modified, as some of the Processing features were no longer 

available. When the n-dimensional arrays were replaced with ND4J arrays, there was no 

noticeable change in performance. It seemed that there were no problems related to arrays. 

Using CUDA in order to process the code on the GPU also did not increase the performance. 

Per-haps, there was no problem at all, and ANN is just not a good decision for multiple 

agents. 
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To make a last check, I decided to include the DL4J (Deeplearning4J) library to the Java 

project as well. DL4J library is made by the same people who made ND4J and their library is 

known for having an example which can learn to complete DOOM levels, as well as some 

examples that play classic arcade games. 

 

The original DNN was temporarily replaced by an identical DL4J DNN network. The first 

impression was related to the fact that the code was taking a lot of time to load. After long 

loading, the agents would start acting, but they would slow down around the same point as 

before, using my network. It happens when the replay buffer becomes full, there is simply not 

enough computing power in my laptop to process that number of replays (when the buffer is 

full, the system can pick full batches as well). To clarify, ANN in the library includes its own 

replay managing system and creates the batches of replays using its own classes. Running the 

code with a smaller replay batch resulted in faster performance, but the framerate was still too 

low to make the result enjoyable as a game or a toy. Decreasing the replay batch further 

would prevent the program from learning. 

 

After consulting additional information on the official web site, it seemed that their ANN are 

the most efficient when working with large data sets. As there are no large data sets used in 

this project and all the data is processed in real time, there is no significant advantage in using 

a library such as ND4J or DL4J. 

 

The project was reverted to what it used to be before using the libraries and it was decided to 

not continue creating a separate ANN for each of the agents (workers) and instead focus on 

the user interaction between each other and other agents (fighter). 

 

 

At this point, almost all of the behaviours described in the Preliminary work chapter were 

implemented. There was the queen, workers, fighters (previously warriors), each acting 

accordingly. But transforming this into a game-like, toy-like or playable experience was not 

seen as a very easy task. I had created a system complex enough to serve as a basis for a toy, 

it was the environment that was lacking features. 
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It was decided to design a new environment, and remove all unnecessary features that were 

interfering with the main goal of application. The tutorial, multiple types of creatures, 

clickable characters, life cycles. All of that was removed. All that remained was one simple 

agent (fighter) using DNN that allows learning various commands from the user. 

 

Figure 49: Sketch showing particles being attracted by a sound from an object. 

 

In my mind I was seeing a nucleus of a cell, surrounded by other cell components (particles). 

All of the particles could move around freely, but they would still cling to the core (nucleus), 

sometimes reaching for nearby food. They would be blind but could hear sounds emitted by 

objects around them (pick-ups) and using audio sensors from the subsection 5.2.15 they could 

determine the location of a sound and its frequency. Particles would also learn which audio 

frequencies meant food, and which meant danger. A user would control the core using a 

microphone and teaching it various commands. 
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Figure 49 illustrates what a core with particles clustered around it would look like. It also 

shows how the sound produced by an object (pick-up) can influence the behaviour of 

particles. 

 

 

As the system to control the core was already implemented (subsection 5.2.10), the next step 

was to de-sign the mechanics which would be used by particles in order to reach for objects 

(pick-ups) or avoid them. 

 

First of all, each particle was equipped with an ear so they could hear and determine the 

locations of sounds. Because they needed to process sounds and react to them in a unique 

way, a DNN was added to them. DNN was a reworked version of a network used in the 

Jumping over ball examples, described in subsections 5.1.2 and 5.1.3. The network was 

compact enough and the only input that it needed to receive was a sound frequency. The 

resulting DNN was very fast and it was possible to have many agents, each using its own 

network. 

 

Apart from that, code that enabled particles to follow the core was added. It was a coded 

behaviour, but it had a priority set to it, which meant that whenever any sound was perceived 

by a particle, it would always prioritise its response to the sound over hard coded behaviour. 

The resulting behaviour was particles clustering around the core and sometimes reaching for 

pick-ups. Pick-ups that populated the map were dummy geometrical figures that were 

producing various sounds. Some of the audio frequencies attracted particles, some repelled 

them. It was a sign that DNN was working. However, there was still no backpropagation or 

any kind of alternative mechanism for adjusting weights. 

 

 

The objects in the world had no meaning or effect associated with them, therefore new 

passive objects were required. 
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It was decided to create 2 types of objects: good and bad. Good objects would cause an agent 

to reproduce by creating 2 identical individuals (parent’s ANN would be copied over to 

them). Bad objects would cause a particle to explode destroying every other particle around it 

at a high range. 

 

The way the objects were generated was too sudden, so the unprepared user could end up 

with the bad object placed right on top of them, therefore a mechanic that allowed objects to 

grow slowly before starting to have an effect was implemented. Starting with a small dot, the 

object grows into a full individual over time and can only be good or bad when it reaches its 

full size. Objects only produce sounds when they are fully grown. 

 

Bad objects have a frequency different from good objects so particles can learn to distinguish 

them. 

 

Apart from the functions described above, all objects are slowly floating through the map and 

can collide with each other in which case they slowly float away from each other. The 

movement was added in order to create more dynamics in the map, however the movement 

needed to be slow because the user controls are complicated and it can be frustrating catching 

up with a fast moving object. 

 

If an object is consumed or leaves the map, it is destroyed and it will soon be replaced with a 

new object which will start growing at a random place on the map. 

 

Touching a bad object causes an explosion, however touching a good object won’t cause 

reproduction unless the agent is choosing to consume it. It should be seen as stepping on a 

mine versus seeing an apple and having the choice to ignore it or to eat it. 

 

 

A component that was missing was learning for particles. They already had DNN and the 

environment had various objects in it. It was now required to create a system which would 

allow the ANN to adapt. 
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It would be possible to implement backpropagation and just tell the agents which object is 

bad and which one is good when they pick it up, but it would be too deterministic. It would 

be more valuable for this project to let the agents decide for themselves what is good for 

them. 

 

In subsection 5.1.2 “Jumping over ball” example was described. DNN in that example was 

identical to the one used by the agents in this application. The way the creatures are learning 

in that example is that at the end of each life-cycle/generation the fittest individuals are 

selected. After that the fit reproduce so the next generation has better fitness then the previous 

one. 

 

In this example reproduction is achieved through picking up a good object, while 

death/punishment is inflicted upon touching a bad object. As a result, newborn individuals 

will also pick up good objects as they will inherit their parent’s ANN. The number of 

particles that step on bad objects will diminish too as they will soon die out leaving space for 

particles that don’t step on bad objects. The learning is definitely happening already. In order 

to increase its variety, the possibility of mutation was added, so some new born individuals 

may end up with a mutated version of their parent’s ANN. Agents don’t have a fitness 

function or a value determining their fitness, so possibility of reproduction or death are purely 

results of their actions. 

 

 

 

The content of this section consists in the description, presentation and analysis of the final 

application. Technical references such as names of equations and algorithms will be done 

assuming that the reader is familiar with them. Their more detailed description can be found 

in section 2.6.  

 

 

A demonstrational video of the final application can be seen here: 

https://vimeo.com/277741291 

https://vimeo.com/277741291
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The final application is a 2D world populated with various agents. There are 3 types of 

agents: pick-ups, core (user-controlled) and particles. 

 

The core is controlled by a user using the microphone. The user can input various sounds and 

the core will respond in a way determined by its DNN. The user is able to manipulate a 

response by using the mouse. Clicking and dragging in a direction can communicate a 

direction to the core. For example, dragging to the right creates a “RIGHT” command, 

dragging in any other direction creates a command in that direction. If a command is issued 

after the sound is produced, the command will be backpropagated for that sound, so next time 

when the same sound is produced the response of the core will follow the command. The 

mechanism will be described in more detail in next subsection. 

 

Particles are smaller agents clustering around the core. Each particle has a DNN which 

receives sounds produced by nearby world objects (pick-ups) as an input. An output of the 

network is one of the actions: to move away from the sound, to ignore the sound or to move 

to-wards it. Particles are clustered around the core and at some point, when there is a nearby 

sound-producing object, they may reach towards it, ignore it or avoid it. 

 

When particles are too separated from the core they may lose it and remain static within the 

environment, occasionally reaching for pick-ups or avoiding them. If the core is brought 

closer to them, they will continue following it. 

 

Because picking up bad objects destroys particles, a low-fitness population reaching for bad 

objects will soon be exterminated leaving only those particles that ignore or avoid bad 

objects. When a good object is picked up, the particle that picked it up will reproduce, 

creating offspring which copies DNN weights of a parent. Sometimes on the reproduction 

event a mutation of weights can happen which might render a behaviour of offspring to be 

different from one of a parent. 
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Figure 50: Screenshot of final application showing particles reaching for an object. 

 

Another type of object populating the environment are world objects (pick-ups). These 

objects are passive and don’t have any kind of computer learning algorithm assisting their 

behaviour. They can appear on any place of the map at random and will grow until reaching 

their maximum size. While they are growing, they cannot be interacted with and they are not 

producing any sound. Once grown, they will start sending pings which can be heard by 

particles. There are good and bad objects, their sound frequencies differ so that they can be 

distinguishable. When a good object was picked up by a particle, this particle produces 2 

similar ones, however, if it was a bad object, the particle explodes destroying other 

individuals within a certain range. 

 

Sounds produced by pick-up objects can be heard by a user when the core is near them. If a 

user cannot hear the sound of an object, it doesn’t mean that the object is not producing it, it’s 

just not close enough to hear it. Sounds that are not in range are muted, but only for the user, 

the particles can still hear them. The closer a user is to a sound, the louder it will sound. This 

mechanic was implemented in order to avoid having too many sounds played at the same 

time, making them indistinguishable to the user. 

 

At the bottom of the screen there is a slider for audio levels. The value on the slider 

determines the minimum level that the sound from a microphone should have in order to be 
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perceived by the core. This mechanic was created in order to prevent background noise from 

affecting the behaviour of the core. 

 

Table 13 shows graphical representations of all elements and agents, it also offers short 

explanations of why these graphical decisions were made. 

 

Table 13: Agents within Hive Mind application. 

 

Scene 

The entire scene is populated with 

agents. If there are too many pick-ups, 

scene will stop spawning more until 

some of them get destroyed either by 

being picked up or leaving the borders 

of the screen. 

Background colour is constantly 

changing its hue, but remains dark so 

all objects are clearly seen. 

 

Core 

Core is a small hollow circle. It is not 

filled with colour in order to make it 

easily distinguishable from the 

particles. 
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Particles 

Particles are dots clustering around of 

or close to the core. They are the only 

filled circles in the application which 

creates contrast with remaining agents. 

The contrast is needed in order to 

under-line their important role. 

 

Good object / good pick-up 

They look like any other objects, except 

that they are producing sounds. When 

approached by the core, they can be 

heard, otherwise their sound is still 

present, but muted to a user. 

When in range, user can see a sound 

visual effect in a form of expanding 

circles. Colour of the visual effect 

depends on audio frequency. 

 

Bad object/ bad pick-up 

Same as good objects, except that the 

sound is produced at a different 

frequency, which also results in 

different colouring of the sound visual 

effect. In this case it’s blue. 
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Out of range objects 

Objects that are out of user’s range are 

plain circles. Their sound is heard by 

particles, but muted to the user in order 

to limit a number of sounds present at 

the same time. 

 

Growing object 

When a pick-up object is born it starts 

growing. Until it reaches the full size, it 

won’t start producing sound. It is 

impossible to determine whether the 

growing object is going to be good or 

bad. It’s impossible to interact with it 

even if it’s in range. It can still collide 

with other objects. 

 

Blood 

When an explosion caused by touching 

a bad object happens, the exploding 

particle produces a “blood splatter” 

effect. Random number of purple 

particles fly out in random directions. 

Blood stays on the scene for some time 

before disappearing. 
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Audio levels slider 

Audio levels slider at the bottom of the 

screen is the only UI element in the 

application. It can be interacted with by 

dragging the slider in any direction or 

clicking at a desired point of the slider. 

 

 

The main focus of the application was implementing interesting behaviour and interaction. In 

terms of the appearance, it was decided to avoid using unnatural shapes and instead utilise 

ellipses because they reflect the biological nature of simulated creatures. The final look 

somehow resembles Osmos, which is a 2009 video game available for most of mobile 

platforms and desktops. Figure 51 shows a screenshot from the application. The topic of the 

game is survival of the fittest, which matches the concept of Hive Mind.  

 

 

Figure 51: Screenshot from Osmos video game. 
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The use of circular shapes, in the mind of a user, can relate to the experience of looking 

through a microscope or observing the night sky. Both cases involve looking at a cosmos, at a 

micro or macro scale. These experiences are the source of inspiration for the visual 

appearance of the Hive Mind.  

 

 

Figure 52: Artistic depiction of stellar objects (left), cellular division though microscope (right). 

 

 

This subsection is going to discuss the functionality behind the learning system that the core 

(user) is using, primarily DNN and its components.  

 

As it was described previously in the section 5.2, the solution to a problem that was present 

during the development shouldn’t’ve necessarily been DNN, because the earlier functionality 

featuring YES/NO feedback from a user is no longer used and therefore there is no strict 

requirement for a Q table. However, even though the gradient descent backpropagation of a 

correct result is used, it is profitable to keep a table of replays, as they significantly increase 

learning speed, allowing to backpropagate multiple cases at once instead of just one. For real-

time learning it is a valuable feature as it would be extremely inefficient if a user had to 

repeat the same action multiple times in order to make the net adjust to their preferences; it’s 

better if ANN does it by itself. Therefore, an initial reinforcement learning DQN had to be 

adapted in order to function in a way similar to a supervised learning DNN by simply adding 

the user input with maximum reward to experience replay table. 
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Figure 53 shows layer configuration of DQN used for the core. Numbers within the circles 

indicate a number of nodes in each layer. Connections between nodes are established from 

each node to all of nodes of a next layer. Every connection has weights associated to it. In 

figure 54 a more direct representation can be seen. 

 

 

The number of inputs is 513. This is a number of values within an audio spectrum transmitted 

every frame from a microphone. The core receives all spectrum values and then feeds them 

forward through hidden layers. Feed forward for each output is accomplished in the following 

manner: 

 

 

for (int j = 0; j < numberOfInputs; j++) { 

 if (inputs != null) { 

  outputs[i] += inputs[j] * weights[i][j]; 

 } 

   } 

outputs[i] = (float) Math.tanh(outputs[i]); 

 

 

From the above code it can be seen that TANH activation function is used. 

 

Figure 53: Illustration of all DQN layers and connections (left). 



128 

 

Actions resulting from output layer can be performed by the core. There are only 5 actions 

available to it. They are represented as following: 

 

 

{ "up", "down", "left", "right", "nothing" };  

 

 

Every time when DNN feeds forward audio spectrum values, the core calculates a maximum 

value of all the outputs, associates it to an action and performs it. 

 

 

 

 

Figure 54: Scheme showing DQN configuration of the core. 

 

Backpropagation of this network won’t happen unless there is an input from a user. Clicking 

the left mouse button and dragging in a direction will create a command associated with that 

direction. For example, “RIGHT”, when the mouse is dragged to the right. If a command was 

issued by a user, it will be added to the experience replay list together with an input (audio 

spectrum values) and will have a high reward (100) associated to it. 

 

After the data was added to the replay buffer, a batch of replays will be selected and the net 

will be trained. Here an additional feed forward is performed on a copy of ANN because in 

DQN learning both world states before and after the action need to be analysed. Like this the 

network knows what the input was like before the action and how it changed after the action. 

However, this is not entirely relevant in this project because a world state (sound spectrum) is 

determined by a user and is not entirely related to the actions of an agent. After that the 

network will be trying to predict a future reward based on previous rewards from experience 

replays. After that a selected replay is backpropagated in main DQN and a copy of the net is 

updated.  
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Backpropagation of each layer (calculating MSE) is accomplished as follows:  

 

 

public void BackPropOutput(float[] expected) { 

 for (int i = 0; i < numberOfOutputs; i++) {  

  error[i] = outputs[i] - expected[i]; 

 } 

 // gamma calc 

 for (int i = 0; i < numberOfOutputs; i++) { 

  gamma[i] = error[i] * TanHDer(outputs[i]);  

 } 

 for (int i = 0; i < numberOfOutputs; i++) { 

  for (int j = 0; j < numberOfInputs; j++) { 

    weightsDelta[i][j] = gamma[i] * inputs[j]; 

  } 

 } 

} 

public float TanHDer(float value) { 

 return 1 - (value * value); 

} 

 

 

 

It is worth noting that apart from replays there is a list of last actions performed by an agent, 

paired with the sound spectrum input. The list is limited to a certain number of entries and 

cannot hold more values than maximum, therefore when new values are added, the oldest 

ones get removed. Every time when DQN operations are performed, they are performed for 

each of the entries in the list, instead of just one last entry. A reason for this was non-

consistent data from a microphone. Backpropagating a number of last sets of values is 

superior to choosing just the last set of values, as the audio spectrum shifts a lot from one 

frame to another and it is important to make sure that backptopagation is done for all 

variations of one sound. 
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Additional parameters of this DQN are setup as follows: 

 

final int REPLAY_MEMORY_CAPACITY = 12; // the total number of 

replays that can be stored in the memory 

final float DISCOUNT = .99f; // discount factor 

final double EPSILON = 1d; // exploration rate 

final int BATCH_SIZE = 12; // how many replays are processed at a 

time 

final int UPDATE_FREQ = 1; // update rate of network 

final int REPLAY_START_SIZE = 12; // how many replays need to be 

accumulated in buffer for batches to start being selected 

final float RATED_ACTIONS_NUM = 50; // number of last actions that 

are going to be rated by a user, there needs to be many actions (at 

least 10) for precision 

final int INPUT_LENGTH = 513; // size of input that an agent 

receives. sound spectrum is the total of 513 numbers 

final public float L = (float) 0.001; // learning constant 

 

Some of the values above are not completely relevant. One of such values is epsilon, which is 

the exploration rate. Exploration rate determines how often an output might purposefully 

deviate from a correct output. This exists in order to enable agents to explore new behaviours 

instead of sticking to only one that worked last time. With a good exploration rate, agents are 

more likely to discover better actions in some situations. Because the correct supervised 

learning value is pre-determined by a user, it is not needed in this scenario and therefore left 

at 1, which on the scale from 0 to 1 would be equivalent to 0% chance, where 0 would mean 

100%. If the learning was accomplished using a previous YES/NO input, having exploration 

rate would be extremely relevant. 

 

Replay memory capacity should, in most cases, be a larger value, but because learning is 

happening in real time and the input is the entire audio spectrum, it is set to a low value in 

order to maintain high framerate. The same applies to batch size. 

 

Update frequency is not completely relevant as update is happening whenever a user is 

introducing a reward. If a reward was issued every frame, it would be relevant. 

 



131 

 

Smaller agents (particles) surrounding the core have their own ANN configuration. They are 

using DNN with the layer configuration shown in figure 55. 

 

 

Figure 55: DNN configuration of particles. 

 

The number of nodes in hidden layers is relatively high in relation to the number of inputs 

and outputs. A reason for that is that more hidden layers in some situations generate more 

complex and interesting responses which are interesting in artistic terms. Particles were 

imagined as chaotic creatures choosing their behaviour on their own, without any direct 

intervention from a user, therefore a complex and erratic behaviour would portray particles as 

in-tended.  

 

The feed forward process of this DNN is identical to the DQN described in the previous 

subsection. 

 

In contrast to a previously described DQN, this network is performing feed forward every 

frame if there is a sound from a pick-up object that can be heard (is in range). 

Backpropagation, however, is never done. Learning is accomplished solely through 

reproduction and survival over generations. 

 

When a particle reproduces, it creates two identical copies of itself that contain copies of their 

parent’s ANN. Therefore DNN of particles that were able to achieve reproduction will stay in 

the application as fitter ones. 
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In order for evolution to progress and new behaviours to emerge, mutation algorithms were 

added. Whenever a particle reproduces, an offspring has a chance to mutate. This chance is 

determined by mutation chance constant. When mutation happens, some of weights in the 

network change. There are 7 possible mutations: 

 

- Random value is added to weight 

- Sign of weight is inverted  

- Random value is subtracted from weight 

- Weight is divided in half  

- 0.1 is subtracted from weight  

- 0.1 is added to weight  

- Weight is set to 0 

 

 

The code of the application consists of 14 different Java classes. Their brief descriptions and 

structure can be seen in table 14 and figure 56. 

 

In figure 56, a class diagram is shown, it is necessary to note that the parent-child connections 

between all classes and a main class had been omitted in order to maintain clarity. This 

parent-child relationship that was not shown in the table exists due to the use of Processing 

library which required every class that used Processing language elements to have main class 

registered as parent. This is a measure required in order to successfully manage Java classes 

in Eclipse in a similar manner as it is done in the Processing application, avoiding nesting the 

classes inside main class. 
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Table 14: Java classes of Hive Mind. 

Name Description 

HiveMind The main class of application  

DeepQNetwork Class that adds functions of DQN, requires DNN to function 

Ear Contains the functions related to the particles’s ability to detect 

the sound around them and to temporarily save the sounds on a 

grid of sensors 

Fx Visual effects for pick-ups producing sounds and particles 

exploding 

GameLoop Updates all of the game objects every frame and removes the 

dead objects. It also places new pick-ups when there are not 

enough of them on the map.  

GameObject Class for all game objects such as user, particle and WorldObject 

Hud UI elements 

Layer Class that describes an individual layer of DNN 

NeuralNetwork Class containing all basic DNN functions 

Particle Class describing particles and their behavior. 

Player Class describing core and the functions associated to it. 

Replay Replay storage class. 

Swiper Functions determining the direction of mouse swipes, translating 

them to actions and drawing them.  

WorldObjects Pick-ups and their behavior.  
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Figure 56: Class diagram of Hive Mind. 
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When application starts a user is faced with a challenge to teach the core agent to respond to 

sound commands as soon as possible before particles get destroyed by bad objects. Once 

control is established, the goal of a user shifts into teaching particles to recognise good 

objects and distinguish them from bad ones. A user will have to rely on particles and their 

reaction in order to determine which objects are good and which ones are bad. It is a relaxing 

experience that can be enjoyable as a user is observing an accumulating number of particles. 

 

It is interesting to observe the behaviour of particles when they are reaching towards pick-ups 

and extending into a line, helping each other to get to objects. 

 

User interaction in this application is established in several phases. When an application 

starts, a user has no control so far, however, with time, control over the core agent can be 

established and at which point it turns into a completely different experience. Phase two starts 

when a user discovers that their actions affect particles too. Particles then follow the core 

which is controlled by a user and can be steered to avoid bad objects, or to pick up good 

objects. 

 

Behaviour of particles picking up objects has its own dynamics related to their evolution. 

Particles that exploded by picking up a bad object will be dead, therefore there will be less 

particles in a next generation trying the same action, however, mutations can still cause 

particles to evolve bad habits. 

 

The core itself is controlled by a user through a microphone, however, it can often deviate 

from its path because of background noise or because a different correct answer was 

backpropagated through DNN. It can generate unpredictable behaviours that can be 

interesting to observe. 

 

Particles that were separated from the core remain in place, but whenever an object is moving 

by, it can be picked up by them. As a result, a whole new colony of particles can be formed. 

This can result in an unexpected outcome and emerging mechanics. 
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Continuation of development of this project is visible. Its further development and 

improvement would be directed towards increasing playability. 

 

Adding more different pick-ups and effects for them, adding interesting visual mutations for 

particles and perhaps adding more types of particles can increase complexity and playability 

of this project. 

 

Adding clear goals for the user can also transform this application into a game, while 

currently it remains an interactive toy. 
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The research was conducted in two different parts. The first part was a comprehensive 

analysis of the literature to determine key factors relating to A-Life agents. The second part 

was planning the structure of the software and finally its development. 

 

The objective of the part one analysis was to identify key factors relating to existing A-Life 

models and to understand how A-Life agents can be used within an entertainment software. 

Design decisions that have to be made in order to achieve a desired behaviour were 

investigated within existing examples. 

 

The objective of part two was developing an entertainment software featuring A-life agents. 

The software needed to include the A-life agents as one of its key elements, allowing a user to 

observe their behaviour. 

 

Further on, an interaction between A-life agents and the user had to be created, making it 

possible to manipulate agents and make decisions about their life cycle and evolution. A 

certain level of control over agents needed to be established. 

 

The final objective was to create a possibility for agents to evolve sound recognition at a 

certain level, be it through interaction with a user or with other agents. 

 

For the conclusion of part one of this thesis, a study based on literature, computer 

games/programs and web articles had been accomplished. During this study, an 

understanding of key elements of the A-Life field had been achieved. Design decisions within 

studied examples were analysed, making comparisons with other projects and highlighting 

the pros and cons of some of them. 
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The use of relevant algorithms has been studied in preparation for part two of the project 

which is the development phase. Taking into account algorithms and design decisions 

analysed in the Literature Review chapter, an outline of a prototype was described. With an 

understanding of key projects within the A-Life field, necessary techniques for a creation of a 

toy with A-Life agents were exposed. 

 

During the second part of the thesis, an entertainment software featuring A-life agents was 

developed. The software included multiple A-life agents as its key elements. Their behaviour 

could be observed and manipulated by a user. 

 

An interaction between A-life agents and a user had been created. It was possible to 

manipulate the core agent and teach it various movements using sound. When a user 

established control over the behaviour of the core agent, they also gained control over minor 

agents (particles), where a user could directly interfere with their evolution. 

 

As for the final objective, which is achieving evolution through sound, it can be considered 

achieved. The core agent can perceive any sound that was inputted through a microphone and 

as a result can learn to be controlled using only sound. Audio commands controlling the core 

agent also affect minor agents clustering around the core which results in them being affected 

by an audio input as well. Besides, minor agents are able to perceive sounds from their virtual 

environment (sounds from other agents). They evolve to perceive these sounds and respond to 

them in the best way possible. 

 

The resulting application can be considered a toy because a user can interact (play) with it 

and the actions of a user affect the state of the environment and the artificial creatures within 

it. 
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https://drive.google.com/file/d/1Gso2FCLR9EjKyKeQqvktLObwWoUls6BO/view?usp=shar

ing – Executable JAR file of Hive Mind.  

 

https://vimeo.com/277741291 - Hive Mind. Video shows the final Hive Mind application and 

user interaction with the agents. The beginning of the video shows the agent learning various 

sound commands, inputted through the microphone. Mouse swipes are documented in the 

upper left corner showing a corresponding direction. Second half of the video shows agents 

responding to sounds that were taught to them earlier. Bottom right shows how the sounds are 

produced using Garage Band app on an iPad.  

 

https://github.com/bug-ugly/hivemindgame.git - Hive Mind Eclipse project. This repository 

contains full code of the final Eclipse project.  

 

https://vimeo.com/277795353 - Hive Mind (early version). Video showing an early version of 

Hive Mind application which is radically different from the final application and has many 

discarded functionalities. Video shows a user following a tutorial in the upper right corner by 

interacting with the application using the mouse.  

 

https://vimeo.com/277782107 - Agents learning to jump over obstacles in Processing. This is 

a video demonstration of Jumping over ball application where agents learn to jump over 

obstacles using deep learning. Beginning of the video shows behaviour of untrained agents, it 

is followed by a time lapse of the agents learning. In the end behaviour of trained agents can 

be seen. Upper left corner shows the generation number.  

 

https://vimeo.com/252213430 - Bug World. Video showing agents of Bug World in action. 

 

https://vimeo.com/277783441 - Arduino piano. A short video demonstration of functionality 

of a small piano prototype.  

 

https://vimeo.com/277789895 - Bug sounds. It is primarily an audio (presented as a video) 

demonstrating the bug sounds designed during an earlier stage of this project.  

 

https://drive.google.com/file/d/1Gso2FCLR9EjKyKeQqvktLObwWoUls6BO/view?usp=sharing
https://drive.google.com/file/d/1Gso2FCLR9EjKyKeQqvktLObwWoUls6BO/view?usp=sharing
https://vimeo.com/277741291
https://github.com/bug-ugly/hivemindgame.git
https://vimeo.com/277795353
https://vimeo.com/277782107
https://vimeo.com/252213430
https://vimeo.com/277783441
https://vimeo.com/277789895
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