UNIVERSIDADE B

COIMBRA

Maria José Guerra

FORECASTING OF AIRBORNE POLLUTANTS
WITH ARIMA MODELS

Dissertacao no ambito do Mestrado em Quimica Avangada e Industrial,
variante Quimica-Fisica Experimental e Teorica,
orientada pelo Professor Doutor Jorge Costa Pereira
e apresentada ao Departamento de Quimica da Faculdade de Ciéncias e Tecnologia
da Universidade de Coimbra

Setembro de 2018






UNIVERSITY OF COIMBRA

MASTERS THESIS

Forecasting of Airborne pollutants with ARIMA
models

Author: Supervisor:
Maria José GUERRA Dr. Jorge COSTA PEREIRA
Dr. Pedro CARIDADE

A thesis submitted in fulfillment of the requirements
for the degree of Master’s in Advanced and Industrial Chemistry Chemistry

Department of Chemistry
Faculty of Science and Technology of the University of Coimbra

September 5, 2018


http://www.uc.pt
jcpereira@qui.uc.pt
jcpereira@qui.uc.pt
https://www.uc.pt/fctuc/dquimica/




iii

“How are you holding up? Because I'm a POTATO!”

GLaDOS - Portal 2






Abstract

Exposure to airborne pollutants has serious health, environmental and economic impacts.
Real-time monitoring and forecasting of the air quality has become of necessity in order to protect
citizens. Due to the intricacies of the physical and chemical processes that govern airborne
pollutant formation and transport, producing forecasts is not a trivial task. Computational and
expertise costs are very high when resorting to physically based models. Stochastic models
provide more parsimonious approaches with the same accuracy potential.

The Box-Jenkins methodology, that originally developed for econometrics, was used in
the past to forecast successfully some airborne pollutants. Using that methodology several
Autoregressive Integrated Moving Average model was fitted to six pollutants, regulated in the
European Union, and the goodness of fit tested with residual analysis and a statistical test.

The fitted models were used to produce out-of-sample forecasts and their accuracy tested. In
order to evaluate the models forecast robustness, a time series cross-validation procedure was
implemented . The results presented and compared for every pollutant.
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Resumo

Exposicdo a poluente aéreos acarreta grandes impactos nos sectores da satide, ambiente e
economia. Monitoriza¢do da qualidade do ar em tempo real e emissdo de previsdes tornaram-se
numa necessidade para a proteccdo dos cidaddos. Devido a complexidade dos processos fisicos e
quimicos que descrevem a formacao e transporte de poluentes, fazer previsdes dos mesmos nao
é uma tarefa trivial. Os custos computacionais e de pericia sdo extremamente alto quando séo
utilizados modelos baseados fisicamente. Modelos estocésticos providenciam uma abordagem
mais econdmica e tém o potencial de exibir a mesma precisdo e exactidao.

O método de Box-Jenkins, desenvolvido originalmente para econometria, foi utilizado no
passado para a previsdo bem sucedida de algumas espécies de poluentes aéreos. Fazendo
recurso a essa mesma metodologia varios modelos Auto-regressivos Integrados com Média
Moével foram ajustados a seis poluentes, regulados dentro da Unido Europeia, e a qualidade dos
ajustes testadas através de andlise residual e um teste estatistico.

Os modelos ajustados foram utilizados para produzir previsdes para além da amostra e
a sua qualidade testada. Para melhor avaliar a robustez das previsdes, varios procedimentos
de validagdo cruzada para séries temporais foram implementados. Foram apresentados e
comparados os resultados obtidos para todos os poluentes.
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Chapter 1

Introduction

1.1 Airborne pollution impacts and future solutions

Pollutant gases and particulate matter have always been present naturally in the atmosphere.
But ever since human activity boomed with the Industrial Revolution, creating industry that
depended on the energy from burning coal, they have become a serious health problem [1].
During the 1950’s, a smog crisis in London killed thousands of people and caused health
problems to thousands more [2] leading legislators to understand that emissions of said gases
needed to be regulated. After successfully implementing said regulations it was presumed
until the 1980’s that the levels of pollution experienced in Europe were no harmful. Since then
long-term epidemiological studies reveled that even exposure to moderate to low concentrations
of air pollution have short and long-term effects on human health [1].

The 2017 report by the European Environment Agency — Air quality in Europe — states that air
pollution still seriously impacts the European population health and economy. It is responsible
for losses in life span, increases in medical costs and consequently hindering productivity and
finally, premature death [3].

In Portugal alone, the cost of treating childhood asthma amounts to 0.9% of the total health-
care expenses with 75% of these represented by the treatment of acute episodes [4]. Air pollution
is a serious contributor to the heightening and triggering of respiratory conditions [5], meaning
that a possible solution would be interconnected to a change in policies in order to diminish the
number of acute cases that require emergency treatment [3-5].

To counteract the impacts of air pollution, the European report explains that solutions that
involve technological advances and structural and behavioural changes must be found and
implemented across global and local levels, economic sectors and enlist the public in what is only
achievable by a joined effort [3]. It is in response to the European necessity to take immediate
action, that Sensor Observation of Urban Life, SOUL, by SpaceLayer Technologies came to life.

Relying in satellite data provided by the Copernicus Earth Observation Programme and
a network of moving sensors through out a city, capture local concentrations of pollutants.
By sending real-time geo-tagged information about the air quality to a mobile application, it
enables the user to protect himself against acute exposition to harmful pollutants, either by
taking alternative routes or preventive medication.

The present work is a first approach to produce n-step ahead forecasts of several common
airborne pollutants, regulated in the European Union, in order to ultimately generate alerts.



2 Chapter 1. Introduction

We will not dwell in the spatial aspect of the problem mentioned earlier hence, only satellite
data will be used. The data for the present work was provided by the Copernicus program and

contains hourly concentrations about six pollutants:
Carbon Monoxide - CO,
Sulfur Dioxide - SO,,
Nitrogen Dioxide - NO,,
Ozone - O3,
Particulate matter - PM;g and PM; 5.

The main anthropogenic sources for these pollutants is fuel combustion. Tropospheric O3 is
a secondary pollutant, as it is not directly emitted into the atmosphere. Rather it results from a
photochemical reaction between precursors gases such as, NO,, NO and non-methane volatile

organic compounds. The precursors main source is nevertheless, fuel combustion [3].

1.2 Air Quality forecasting

Considering the impact that air pollution has in health, the environment and even economy,
air quality forecasting has become extremely relevant. Many advances have been made since
the 1960’s but this problem still poses a challenge due to the complexity of the phenomena
involved [6]. There are several, more or less sophisticated, tools available to produce air quality
forecast. These can be broadly grouped as: simple empirical techniques, statistical models and
physically-based approaches.

Simple empirical techniques include methods like, persistence and climatology. The persis-
tence method assumes that the pollution levels of one day are the same that the day before and
climatology uses averages of historical data to produce a forecast. As one can extrapolate, these
methods are not highly accurate and fail if there are changes in the air quality.

Statistical models use the fact that the different variables are correlated to produce forecasts.
In this group are included methods like regression models, artificial neural networks and fuzzy
logic. These approaches demand a large volumes of different types of data. Both pollutants
concentrations and other variables that correlate to these e.g. UV index or temperature [6].

Although more accurate than simple empirical models and not very computationally expen-
sive, there are a few disadvantages. They can only describe the conditions in which the data
used was collected and cannot be generalized. For that reason they also fail to describe any
behavior not present in the historical data. Fundamentally, simplifications of several important
meteorological and chemical processes are used, hindering the accuracy of the models. They
also lack the capacity to explain the underlining processes since they do not use any physical or
chemical relations. Despite the handicaps mentioned, some artificial neural networks were able
to outperform a physically-based model in [7, 8].

Finally, the most complex and computationally expensive approach, but also the most
accurate, are physically-based models. The processes that describe pollutants formation and
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accumulation are explicitly resolved. They are capable of forecasting in time and space and
provide an understanding of the pollutants processes. Because they do not depend on the
characteristics of historic data, they perform well under unusual condition and in unknown or
unmonitored zones.

The major difficulty of implementing these types of models are the costs associated. In
order to build such a model, it is necessary an extensive knowledge of the sources of pollution
and of the processes that determine how the pollutants form and travel. Being an imperfect
representation of reality, some approximations have to be made. Knowledge of the processes
might be insufficient or the complexity to high to handle. Also, their accuracy depends on the
accuracy of the model inputs. If the monitoring of the input data or approximations are not
done correctly, it leads to bias and inaccuracy in the forecasts [6, 9].

Particularly in Portugal, the Portuguese Environment Agency, provides a one day ahead
forecast of the air quality index. The information is provided to this agency by two Universities,
of Aveiro and NOVA in Lisbon [10]. One of the models used to forecast is a physical-based
model specifically, CHIMERE. A chemical transport model extensively studied and used in
Europe [11-13]. The other model is a statistical model. It makes multivariate regression using
classification and regression trees [14, 15] which is a machine learning method. Both models
forecast Oz and PM; concentrations which are subsequently used to calculate the air quality
index forecast.

1.3 Obijectives for the present work

The data available for each pollutant, is an hourly measurement of the maximum concentration.
Since there are no other variables a statistical approach was chosen to deal with the forecast
problem. Because the data is recorded as a function of time it is possible to resort to time series
modeling.

A Time Series (TS) is a sequence of data where the variable is indexed according to time
order. Most commonly, a TS consists of a set observations collected sequentially in time [16].
When working with other types of data, usually, the order is irrelevant. As a matter of fact, it
is often good practice to randomize the order of the data points e.g. when training a Artificial
Neural Network (ANN), in order to eliminate any dependency effects. This is not the case
when analyzing a TS. The data is dictated by time and randomizing a TS would mean to lose
information about it. Moreover, this dependency can be crucial to better estimate the appropriate
model [17].

For the present work, the purpose of the model will be to produce accurate forecasts of
pollutants one day ahead. There are several options to model a TS. For this thesis, Autoregressive
Integrated Moving Average (ARIMA) models were chosen. These are essentially regressions to
past values of the variable itself, making them suitable for the present work.

The indicated family of models was originally introduced in the field of econometrics
but have since been used in several other fields of study. Applying these models to forecast
pollutants has been done before with moderate success [7, 18-20].
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The models were first introduced by Box and Jenkins who developed the methodology that
is still used to build ARIMA models.

The Box-Jenkins method is comprised of three main steps:
e Model selection;

e Parameter estimation;

e Model checking.

The model selected for this work is ARIMA. This is a more general form that can incorporate
mixed or purely autoregressive moving average models as will be explained in Chapter 3.

Before taking the second step mentioned above, it is necessary to examine the data visually.
We will inspect the data in search of trend and seasonal components, any abrupt changes in
behavior and the presence of outliers. These family of models is constrained to stationary data
[17]. If trend and seasonal components are present, it is necessary to remove them in order to
coerce the TS into a stationary series. The values produced from the transformations are referred
to as residuals. There are several transformations that can help to achieve this goal and they will
be discussed further ahead.

After ensuring stationarity of the data, parameter estimation can effectively begin. Analyzing
the autocorrelation and partial autocorrelation plots of the residuals, informs what parameters
could possibly perform a good fit. Parameter estimation will be done by a search algorithm to
provide the best fit. The algorithm tests the fit of several models and selects the best one. We
then assess the model analyzing errors and perform residual analysis of the model residuals?. If
the results are not satisfactory it is necessary to return to the first step. This cycle is repeated
until an adequate model is achieved.

Upon completing the former steps we proceed in using the selected model to forecast the
data. Finally, using cross-validation, we will determine the model that produces the most
accurate and robust forecasts [17, 21-23].

INot to be confused with the residuals that originate from applying a mathematical transformation to the original
data.



Chapter 2

Statistical Concepts

Prior to discussing the practical model implementation, it is necessary to define some concepts
that are necessary to understand decisions and interpretations made in Sections and Chapters
ahead. The way to make informed decisions about how to use these concepts, is to understand
the theoretic fundamentals behind them. We would like to highlight that the information in this

Chapter is merely introductory.

2.1 Stochastic Processes and Stationarity

A stochastic process is, by definition, a group of random variables {Yj}, where 6 belongs to an
index set ®. Considering the data for the present work was recorded in fixed intervals, the TS
is discrete. Hence, © becomes a set of integers representing particular time points. The index
6 is now replace by n € {1,..., N} and the stochastic process becomes {Y;} [24, 25]. Since a
stochastic process is random, it can also be described as a process that develops according to
probabilistic rules.

A stochastic or a probability model, is one that can be used to calculate the probability of a
future value, falling between two specific limits [17]. From this point forward it will be implied
that the stochastic processes and models are discrete.

These processes are said to be strictly, or strongly, stationary when the joint probability
distribution is invariant under a time shift, k [17, 25].

Let {Y;,, } be a stochastic process and Fy (Y, 1, - - ., Yn1k), the function of the joint distribution
of {Y,} attimes n +k,..., N + k. A process {Y, } is strictly or strongly stationary if for all n, for
all k and for all Yy, ..., Yy the following conditions verifies:

FyYpskr - Ynak) = Fy (Yo, .., YN). (2.1)

This means that the joint distribution of any set of observations is not a function of time [16, 17].
Strictly stationary natural phenomena are very uncommon. Furthermore, the latter condition
is very hard to verify. In practice, less restrictive criteria is imposed and the concept of strong
stationarity is replaced with weak stationarity [16, 26].

A process is said to be weakly stationary if condition (2.1) is verified for the first and second
joint moments for any time point and shift, n and k, respectively. As a consequence of the latter

condition the variance and mean of the process are constant over time.
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The covariance between two random variables v, and x,, is:

1
N

1=

1 N
Cov(yn, xn) = (yn — P‘y)(xn — Hx), Hy = N Z Yn- (2.2)
n=1

n=1

For a weakly stationary process the mean is constant over time, y, = p,+x = y. Then, using
Equation (2.2), one can define the autocovariance which will only depend on the interval
between time points [16, 26] i.e., the lag k:

1 N—k
Te =7 2 Un = 1) Uik — 1), (2.3)
n=1

2.1.1 Assessing Stationarity

When inspecting a TS one looks for homogeneous aspects: the series is approximately horizontal,
has constant variance and there are no predictable long-term pattern. It is not always obvious if
a data set is stationary or not. Hence, some tools are required to make an accurate assessment.

Next, we discuss some of these tools.

Autocorrelation

Autocorrelation is the dependence of a variable with itself, shifted in time. A plot of the
autocorrelation function versus lag is used in TS analysis to infer about the characteristics of a
TS.

Using the definition for autocovariance given by Equation (2.3) the autocorrelation, pi, can
be calculated. It is defined as:

Tk
Pk = Yo' (2.4)

Autocorrelation of a variable plotted as a function of lags is referred to as the Autocorrelation
Function (ACF). Another useful function is the Partial Autocorrelation Function (PACF). The
partial autocorrelation between the lagged values, n and n + k, of a TS is similar to the autocor-
relation but the effects of intermediate lags, n +1,...,n + k — 1, are not accounted for. If the
data is stationary the value of the lags will fall to zero quickly and if the data is non-stationary
the values will decay slowly [17, 21, 27].

ACF and PACEF plots of the data also help to identify parameters of the model. It is not
always straightforward to identify what parameters would best explain a TS, but combining the
analysis of both plots offers a reasonable starting point. These types of plots will later be used
in Chapter 4 to help identify non-stationarity and, to assess what model parameters could one
expect for a given pollutant.

Augmented Dickey-Fuller Test

Another tool for testing stationarity is unit-root tests like Augmented Dickey-Fuller (ADF). This
test uses an autoregressive model applied to the data. If there is an unit-root present in the
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model the characteristics of the TS will be a function of time and the stationarity condition is not
met [28]. Let:

Hp: The model has an unit-root.

Hj: The model does not have an unit-root and hence, the TS is stationary.

Regarding the present work, the sample size is superior to 500 data points. This means, that to
reject the null hypothesis, at the 99% confidence level, the ADF results for the data will need to
be inferior to the critical value of —3.98 and a p-value inferior to 0.05 [28].

2.1.2 Extracting Non-Stationarity

Many TS models are built assuming that the condition of stationarity is met, but real-world data
is more often that not non-stationary [16]. One way of overcome this is to decompose the data
in order to remove the components that make it non-stationary.

Assuming additive components we can define a TS, y,,, as:
Yn = Su+Tu + Ry. (2.5)

In the latter definition, S,,T, and R, are the seasonal, trend-cycle and remainder components,
respectively.

Seasonality,S,, is defined by the impact of seasonal factors like, months, holidays or days
of the week, on the data. It has fixed and know frequency. A cycle,T;, is similar to a seasonal
pattern but with no fixed frequency. Usually a cyclic pattern is also longer than a seasonal one.
The trend is observed as long term variations in the TS as a whole [27].

It is possible to model these components separately in order to subtract them to the TS and
obtain the remainder, which includes all the unexplained features of the TS [16]. Next we will
present some methods to model these components.

Moving Average Smoothing

One way of estimating the trend, T, in order to smooth the data is to apply a moving average
(MA) [16]. A moving average order m is defined as:

Tn:

SRS

k
Y Yuije (2.6)
j=—k

Here, k = mT_l For even orders, the MA is not symmetric and it becomes more practical to use a
centered MA. This is equivalent to using a MA order of 2 after the first MA of even order [29].

Seasonal-Trend Decomposition based on LOESS

Another method to estimate the TS components is local regression (LOESS). It works by con-
structing a function that results from local fits to subsets of the data with a chosen length.
The local fits are performed using polynomials of first or second degree, depending on the



8 Chapter 2. Statistical Concepts

curvature of the data. The fitting of the local polynomial is also weighted. This means that
closer observations will have a greater influence on the local fit and, as the distance increases,
the observations will have less influence on the local fit. All the procedure is implemented in R
and described in [30].

Differencing

Differencing is the process of subtracting consecutive data points generating a new TS with the

values of the differences. First order differencing is defined by:

Yo =Yn —Yn-1. (2.7)

This new time series,y;,, will have N — 1 values since it is not possible to obtain a difference for
y1, the first observation. To obtain higher order differencing it is only necessary to repeat this
process e.g., to obtain second order differencing the differences of y,, are calculated and so on.

Differencing the data helps eliminate changes in level and hence, helps stabilize the mean
and decrease the effects of a trend and seasonality [17, 27].

Square root and Natural Logarithm

These transformations are special cases of a Box-Cox transformation. They are designed to
stabilize the variance of the data, additivity of effects and symmetry of the density [27, 31].

2.2 Models and Fitting

The previous section was dedicated to exposing statistical concepts that are needed in order to
apply the family of models chosen. Now, the models themselves and how to evaluate their fit
will be described.

2.2.1 Autoregressive Models

Autoregressive (AR) models are those where a linear combination of past values of given
variables are used to forecast that same variables [27]. The evolution of these processes happens
by regressing the variables past values towards the mean and then adding noise [26, 27].

An AR process of order p, AR(p), can be defined as follows:

yVl =Cc+ fplynfl + (PZyn—z + ...+ (Ppynfp + En. (2.8)

Where ¢, . .., ¢, are coefficients and ¢, is a white noise term. The models adjust the coefficients
by regressing to past values. Changing these coefficients produces different TS patterns [26, 27].

These types of processes are discrete representations of ordinary differential equations
making them very useful in climate research [26]. Additionally, they are very flexible and can

handle various types of time-series behaviors.
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2.2.2 Moving Average Models

Moving average (MA) models, not to be confused with moving average smoothing explained
previously, are a type of regression model where the past forecast errors are used to estimate the
coefficients [27]. A MA model order g, MA(g), is given by the following equation:

Yn=c+018, 1+ 08 2+...+ 058, 4+ €n. (2.9)

Here, 04, ...,0, are coefficients and {e, } is a white noise process with mean zero and variance
0. Similar to AR models, different TS patterns are obtained by altering the coefficients [27].

MA and AR models are not unique. In fact, it is their non-uniqueness that allows for the
construction of more sophisticated models described later. The non-uniqueness makes it possible
to describe a stationary AR process, with arbitrary precision, using an infinite MA [26]. This can
be more easily illustrated for an AR(1) model®:

Yn = P1Yn—1+€n
= ¢1(P1Yn—2+en—1) +n
= PTYn—2 + Pr1€1-1 + €n
= P3Yn-3 + PTYn-2 + Pren1 +en -+ ...

If the condition |¢1| < 1 is met, the coefficient value, 4)'1‘, decreases as the index k increases. If
k — oo it is possible to write:

Yn = €n+Pren 1+ Pren 2+ Plen 3+ ... (2.10)

which is a MA(co) process. The previous condition is called the invertibility condition. The
same is valid for a MA(g) process as long as the invertibility conditions are met [26, 27]. These
conditions are similar to the ones of the AR model e.g., for a MA(1) model the constraint would
be |61] < 1. For higher model orders the conditions are more complex.

The R algorithm, used in the present work, was designed to account for these constraints of
stationarity and invertibility [27].

Invertibility has use beyond the non-uniqueness of AR and MA models. Take for example a
MA(1) process, y, = &, + the, — 1. Using the AR(o0) representation, the most recent error, ¢,
can be approximated by a sum of current and past observations:

(o]

en =13 (=0)yn . (2.11)
j=0

If |6] > 1, the weight increases with the lag and more distant observations will have more
influence than the adjacent ones. If [§| = 1, the weight is constant and the distance of an
observation will not matter since they are weighted the same. The two previous cases are very
illogical hence, it is required that |#| < 1. It is only when this condition verifies that the most
recent observations weight more in the error than the more distant ones [27].

IFor simplicity we assume that the AR(1) process has no constant.
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2.2.3 Autoregressive Integrated Moving Average Models

The previous models discussed are special cases of the more general Autoregressive integrated
moving average models (ARIMA). Here integration refers to reversing the differencing transfor-
mation. This type of model is defined by orders p, d and g. The parameter p refers to the order
of AR model used, the d to the differencing order and the g to the order of the MA model. Using
the backshift notation, where By, = y,_1, the general form of a nonseasonal ARIMA can be
written as:

(1—¢1B—...—¢pB")(1—B)lyy=c+ (1+0B+...+60,B)e,. (2.12)

Where {¢,} is a white noise process with mean zero and variance ¢2. If there is a significant
influence from seasonal effects, these can be included in the model. A seasonal ARIMA model
is constructed simply by including seasonal (P, D, Q),, parameters, where m is the seasonal
period. , a seasonal ARIMA model can by described as?:

(1—¢pB")(1 — ®pB™P)(1 - B)*(1 - B")Py, = (1+6,B7) (1 + OgB"*?)e,. (2.13)

The seasonal terms of the model are similar to the nonseasonal but use the backshift of the
seasonal period. These terms are simply multiplied to the existent ones. The invertibility
conditions that apply to AR and MA models also apply to ARIMA models [27].

2.2.4 Parameter estimation and Goodness of fit

Here, the tools used to estimate the model parameters and, later asses the goodness of fit will be
explained.

Maximum Likelihood Estimation

Maximum likelihood estimation (MLE) is a method for optimizing the parameters of a statistical
model. The parameters are fitted in a way that maximizes the likelihood function. This function
describes the likelihood that a given set of model parameters originated the set of observations.
The MLE is the method used in R for estimating ARIMA parameters [27].

Akaike Information Criterion

The Akaike information criterion (AIC) is a relative estimator of how much information is lost
by a model. When searching for ARIMA parameters, the goal is to find the model with the lower
AIC value, i.e, the model that lost the least amount of information [27]. This estimator also has
the advantage of trading-off between the goodness of fit and the loss of degrees of freedom,
which helps to avoid overfitting [32]. The AIC is defined by:

AIC = —2In L() + 20, (2.14)

2Again, for simplicity it is assumed that ¢ = 0.
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where £(4) is the likelihood of the estimated model and v the total number of parameters
estimated in the model [32].

Often, if the sample size is small, there is the risk that the AIC will choose more complex
models and overfit the data. To counteract this, a correction was developed and AIC becomes
AIC,, defined by:

2
AIC. = AIC + M,
n—v—1

(2.15)
where 7 is the sample size. This correction applies and extra penalty for smaller values of n and

as n — oo AIC, converges to AIC [33].

Ljung-Box test

ACF and PACF plots are an important tool to evaluate the goodness of fit. If a model is able
to explain the data correctly the residuals will be uncorrelated and resemble white noise. This
means that the ACF and PACF plots will not have significant peaks and, ideally, that residuals
pass a statistical test to evaluate the hypothesis of correlation [21, 27].
The test chosen for the present work is the Ljung-Box, which is a portmanteau test for serial
correlation. This means it tests the autocorrelations as a group instead of individually [27].
For the Ljung-Box test:

Hp: The model residuals are uncorrelated and the model does not exhibit lack of fit.

Hj: The model residuals are correlated and the model exhibits lack of fit.

This test is based on the following statistic:

m 2
Tk

Qx =n(n+2) k; e (2.16)
where 7 is the number of observations, m is the maximum lag being considered and ry is the
autocorrelation at lag k. A large value of Q* indicates that there is autocorrelation present. If the
Q values are not significant, meaning the p-values are larger than 0.05, considering a significance
level of @ = 0.05, then the null hypothesis can not be rejected. In this case, the model residuals
are considered to be white-noise [29].

Root Mean Squared Error

The Root Mean Squared Error (RMSE) is defined as:

Z

1
RMSE = | & )¢, (2.17)

1

Il
—_

Where N is the number of errors and e; is the i error. This error is not suitable for comparisons
between different series since it is scale dependent. It is useful when applying different methods
to the same dataset [34, 35].
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Mean Absolute Error

The Mean Absolute Error is defined as:
N

1
MAE = ; lei].- (2.18)

It is more robust with respect to outliers than RMSE but still not suitable for comparison between
different datasets since it is scale dependent.

Mean Absolute Scaled Error

The simple errors are scaled using the in-sample MAE from a naive forecast method. This
forecast method simply assumes that the future value is equal to the past value, v, = y,_1. The

scaled error is define as:

n
1 L i — vieal

SE = (2.19)
Here the subscript h refers to the forecast set and N to in-sample data. The MASE is simply:

h
MASE = - Y |ei|- (2.20)
i=1

= -

This error is scale independent so it is suitable for comparing different methods. If MASE< 0
the forecast is better than the naive method and a MASE> 1 implies the opposite [34].
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Chapter 3

Model implementation

3.1 Quantile-Quantile Plots

The estimator used by R, MLE, assumes that the data came from a normally distributed popula-
tion. For this reason we need a tool to perform a normality check before fitting any model.

A Quantile-Quatile (QQ) plot is a plot that compares the shape of distributions by plotting
the quantiles of each one against the other. In the case of a normality check, the plot is of
the estimated probability density quantiles of the sample data against a theoretical normal
distribution. If the two distributions are similar, the plot will fall on a line that connects the first
and third quantiles of the simulated normal distribution. Some outliers in the extremities are
still acceptable [36].

3.2 ARIMA parameter estimation

The numerical implementation of these models is already present in R and the specific package
uses the procedure described in [37]. Since the main difficulty in modeling ARIMA is the choice
of the (p,d,q)(P,D, Q) parameters, in the course of this work, an automatic search function
will be used. If seasonality is allowed, the function tests the TS with a measure of seasonality
according to [38]. If significant seasonality is detected the D parameter is the first to be estimated
resorting to statistical testing [37]. The only orders of D allowed are 0 or 1. Then, the second
parameter estimated is the nonseasonal differentiation order, 0 < d < 2. To achieve that a unit
root test is used. If the test determines a unit root is present the first differences of the data is
tested and so on.

After estimating the order of D and d the orders of p, q, P and Q are determined using AIC..
The AIC,. is not comparable between models with different orders of differentiation. This results
from the likelihood function being calculated over the differentiated data [37].

By default the algorithm would fit four initial models with combinations of 0 < p < 2,
0<g<2P=0,1and Q = 0,1 to determine the best model out of these. Next, small variations
on the best model out of the previous four are considered. This stepwise process is repeated
until it becomes impossible to find a model with lower AIC.. Additionally, when estimating the
parameters some approximations are also used [37].

This procedure implies that the algorithm does not consider all the possible combinations
in order to resume the search. This is a very useful property if there is a large number of TS
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to analyze. Unfortunately it also makes it conceivable that the model that minimizes the AIC,
will not be considered. For the purpose of this work, the approximations and the stepwise
features will be disabled. Further more, the algorithm will allow larger orders of p, q, P and Q.
This ensures that the maximum of possible combinations will be considered. Finally, since the
TS data corresponds to hourly measurements, a 24 hours frequency will be associated to the
appropriate R object. This enables the algorithm to properly test for seasonality.

3.3 ARIMA with explanatory variable

Some of the methods to extract seasonality presented in 2.1.2 involve subtracting a trend to the
data. Instead of explicitly subtracting the modeled trend to the data, model the de-trended and
later add the trend again, an extended ARIMA model will be used. This version of ARIMA
allows for the introduction of an explanatory variable. Consider an ordinary regression model:

Yn = Bo+ P1X1,n + -+ BrXin + €n, (3.1)

where By are coefficients associated to the predictor variables xi, and ¢, are the regression
errors.

In this model, the errors become an ARIMA model, #,. For example, if #,, is an ARMA(1,0,1)
model with one explanatory variable and By = 0:

Yn = B1X1,n + Y,
Mn = C+ $11—1 + 01841 + 4.

One refers to 77, as the ARIMA errors, and to ¢, as the residuals. The residuals should still be
white noise and uncorrelated for the model to have performed a good fit.

The automatic search algorithm used in R is also capable of handling these types of extended
ARIMA models [27, 37].

3.4 Forecast

The forecast of the ARIMA model is very straightforward. The parameters ¢ and 6 are sub-
stituted with their estimated values and the subscript n is replaced with n 4 h, where h is the
forecast horizon. The predictions are calculated iteratively for h = 1,2, ..., H. For illustration
purposes, consider an ARMA(1,0,1) model with no constant:

Yn = ¢1yn—l + 01841 + €p. (32)
Substituting n with n + h with h = 1 yields:

Ynt1 = P1Yn + 618, + €441 (3.3)
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Where the only unknown is ¢,,41, which is replaced by zero, and ¢, is the last known residual
from the model [21, 27].

If it is necessary to add an explanatory variable, this variable also needs to be forecasted.
This procedure will be automated by R with an exponential smoothing method [39].

The other transformations like, natural logarithm, square root and differencing are already
implemented in the R algorithm. Hence no such considerations are necessary [37].

3.5 Cross-Validation

When evaluating forecast performance, residual analysis is not a reliable method. In order to
truly evaluate the forecast validity two methods will be employed: out-of-sample testing and TS
cross-validation.

The out-of-sample testing consists simply, of holding out a subset of the data that will not be
used for fitting the model. This creates a data subset that is unknown to the model, meaning
that any forecasts the model makes will be genuine forecasts. Visually one can represent this
method as seen in Figure 3.1.

time

In-Sample Data Out-of-Sample Data

FIGURE 3.1: Out-of-sample cross-correlation diagram. Data represented as colored points as a function of
time.

This method will be used as an initial look at how the models forecast unknown data since, a
good fitting model is not at all indication of a good forecast. The length of the subset chosen is of
24 data points. This corresponds to about 4% of the total dataset. In the context of validation it
is a small percentage. Typically, around 20% of the data is reserved but given the characteristics
of TS, actually this method has several disadvantages [40, 41].

Considering only one out-of-sample dataset would yield only one forecast and only one
forecast error. Because the data is autocorrelated to past values of itself, forecasting from a fixed
origin could lead to distortions in the results resulting from singular events occurring at the
origin [41]. Finally, the forecast error for a multi-step forecast is built by averaging point to point
errors. This means that there is no representation of the evolution of the errors with the distance
to the forecast origin [41].

To overcome the previous referred limitations, the classical out-of-sample cross-validation
procedure needs to be modified. One possible modification is to used a rolling forecasting origin.
In this method, the forecast origin is iteratively updated and new forecasts are produced starting
at the new origin. A diagram for one use of this method is seen in Figure 3.2.
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Increasing Sample Window

time
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FIGURE 3.2: Diagram of a rolling forecasting origin cross-validation, with the sample window increasing. Data
represented as colored points as a function of time.

Here, the forecast origin is updated by increasing the length of the data used for fitting the
model. This method was implemented in this work starting with the minimum window length,
which is equal to the length of the forecast. A plot of the error as a function of the window
length will be produced in order to evaluate how consistent are the forecasts, considering the
change in forecast origin as the length of the window increases.

Another variation on this cross-validation, represented in Figure 3.3, involves fixating the
length of the sample window and just dislocating the window through the data, iteratively.

Fixed Sample Window

time
— 9o o o o —— 1 —i—i——>
— 9o o o ————i——>
— o o & o —————>

FIGURE 3.3: Diagram of a rolling forecasting origin cross-validation, with the sample window of a fixed length.
Data represented as colored points as a function of time.

This method was also implemented in this work with two variations: rolling fixed window
and a rolling fixed window with increasing forecast horizon. The first variation was done with a
3 x h window length, where / is the forecast horizon of 24 data points. This window length is
suggested in literature to ensure forecasts that are not hindered by lack of data. A plot of the
error as a function of runs! will be produced. Here we wish to compare the results with the
previous method. Hopefully it will be possible to infer if there is any difference in the errors

IMeaning the number of iterations of the window along the data set.
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when the window length is increased versus when kept fixed. It is also possible that the forecast
origin has more influence than the window length.

The second variation was performed with a window length of 400 points and forecast
horizon h =1, ...,96. For each forecast horizon, a forecast of rolling origin with fixed window
was performed and the results averaged. For this variation the errors for each different horizon
will be averaged. Plotting the average error as a function of the increase in the length of the
horizon will show the evolution of the error when the forecasts distance to the origin increases.
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Chapter 4

Results and Discussion

The following section will be dedicated to presenting the full TS analysis, modeling and forecast-
ing process for one pollutant, CO. Due to the extensive data generated by this type of work only
the main results for the remaining pollutants will be highlighted in this chapter, the intermediate

results will be presented in the Appendix. The final results for every pollutant will be discussed.

4.1 Carbon Monoxide

The first step in any type of data analysis is to plot the data and perform a visual inspection.
Upon doing so, left panel of Figure 4.1, it was clear that there had been an atypical event that
led to the incredibly high concentration values observed close to the 1000 hours data point.
This event was the transport of particulate matter and pollutants from North Africa by the
wind. It was not a equipment malfunction or human error. Nevertheless, the kind of statistical
model used in this work is not capable of dealing with these extreme outliers so, they had to be
removed or substituted by other values.

Using the Median Absolute Deviation (MAD) a more systematic approach to outliers was
performed. Values outside an interval between plus and minus three times the value of the
MAD were considered to be outliers. Some authors recommend a smaller interval [42] but a
more conservative estimate was preferred. Even with a broader MAD interval, several patches
of data were identified as outliers as one can see in Figure 4.2.

Dealing with outliers is not a trivial matter. On a first approach, the outliers were substituted
by the mean of the data, but the intervals were so large that it created discontinuities in the TS.
This problem was detected across every pollutant. Furthermore, for the purpose of comparing
the forecasts performance in different pollutants, it was important to have the same amount of
information for every TS. Simply removing the outliers from the data would result in a different
amount of data points between pollutants and loss of autocorrelation effects.

Taking all of this into consideration it was decided to only use the longest set of data, not
containing outliers, common to every pollutant. This resulted in a TS with 612 points, presented
in the right side of Figure 4.1, to perform modeling and forecasting. It is not the ideal solution
since the amount of data is not enough to reflect long-term seasonality but it is enough for a first
study of this type of data and models.

The Normal QQ plot of the CO TS with outliers, the left panel in Figure 4.3, shows a lot
of points that are not on the dotted line. This line connects the first and third quantiles and
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departures from it, except at the extremes, is an indication that the sample quantiles were not

generated from a normal distribution. After removing the outliers it was also verified by the
Normal QQ plots, in the left panel of Figure 4.3, that it was not absurd to assume that the data

was normally distributed.
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FIGURE 4.1: Left: CO concentration plotted over time for the complete data. Right: CO concentration plotted
over time for the longest outlier-free data points, common to every pollutant.
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FIGURE 4.3: Left: QQ plot for the complete data. Right: QQ plot for the longest outlier-free data points.

Upon completing a more general statistical analysis, the TS analysis could start. The CO
TS, represented on the left in Figure 4.1, is clearly non-stationary with a trend-cycle component
and maybe some seasonal effects. Many pollutants emissions are related to human life, traffic,
factories, etc, which follow patterns and seasons, that can be reflected onto the data. In an effort
to stabilize the data, several transformations were tested: natural logarithm, square root, LOESS
decomposition, subtraction of moving average (orders 12 and 24) and first order differencing.
These are not the most contemporary methods of smoothing data but they are simple to use,
understand and do work [16, 17, 27, 31]. In a way to effortlessly refer to each transformation
without explicitly writing it out, the following abbreviations will be made:

CO-MA,4 - Subtraction of a MA order 24.

CO-MA 1, - Subtraction of a MA order 12.

In CO - Natural logarithm.

/CO - Square Root.

LOESS(CO) - Subtraction of the trend obtained with LOESS decomposition.

diff; (CO) - First order differences

4.1.1 Time Series Analysis and Transformations

In the Figures 4.4, 4.5 and 4.6 the results are presented for the first three previously mentioned
transformations. These produced no stabilizing results. Visually the series before and after
transformation appear to be identical and the autocorrelation values in the ACF plot are signifi-
cant for every lag. Finally, the last three transformations - CO-MA;4, CO-MA; and diff;(CO) -
produced satisfactory results as shown in Figure 4.7. The visual results were further confirmed
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by an ADF test. The TS CO-MAj;, CO-MA; and diff; (CO) are stationary with a 99% confidence
level according to the test. All the results are presented in Table 4.1
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FIGURE 4.4: Left: Normalized CO compared to In(CO) plotted over time. Center: ACF plotted over lags for
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FIGURE 4.7: Left: CO concentrations compared to CO-MA 1, plotted over time. Center: CO concentrations
compared to CO-MAy, plotted over time. Right: CO concentrations compared to diff; (CO) plotted over time.

TABLE 4.1: ADF test results and respective p-values for every transformation.

Transformation ADF test p-value

CO-MA,, -6.93 0.01
CO-MA1, -7.99 0.01
InCO 239 0.41
v/ CO -2.36 0.43
LOESS(CO) 2.18 0.50
diff; (CO) -5.36 0.01

Determining possible model parameters is the next step in the Box-Jenkins approach and to
do so, the ACF and PACF plots of the TS are closely studied. Significant lags in both ACF and
PACEF for every transformation suggest a mixed ARMA model.

For the CO-MA; and CO-MA,4 transformations the ACF plots, see left panel of Figures 4.8
and 4.9, show a damped periodical behavior which is typical of an AR(2) process. Combining
this information with the major cut-off at lag(2) in the PACF plots, see right panel of Figures 4.8
and 4.9, seems to reinforce the estimation. This will have to be tested considering that are a few
more significant lags in the PACF plot. Since there are no major cut-offs in the ACF plots there
are no expectations for the value of the MA parameter could be.

For the diff;(CO) transformation the ACF and PACF behavior is not so obvious. Both
parameters will be estimated iteratively. A AR(2) behavior is expected since the ACF plot in the
left panel of Figure 4.10 shows some kind of periodicity, but the cut-off on the PACF plot in the
right panel of Figure 4.10 is in lag(1). Like the previous ACF plots there is not a clear cut-off and
it is not possible to estimate a MA parameter only by analyzing the plots.

There appears to be some seasonality in the data since there are significant lags beyond
the initial ones, but the R algorithm will also account for that and add seasonal parameters if

necessary. After the fit, residual analysis will be performed.
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FIGURE 4.10: ACF and PACEF plots for the diff; (CO) transformation.

4.1.2 Fitting and Forecasting

To determine the best fitting model, 564 data points were used and 24 were saved to perform
a forecast. After running the R algorithm the best models to fit each transformation and their
respective forecasts, Figures 4.15, 4.11 and 4.13, were plotted against the original data. The
ARIMA(p,d,q) orders the algorithm converged to were:

e ARIMA(5,0,2), for the CO-MA1;
e ARIMA(4,0,1), for the CO-MAyy;
e ARIMA(5,1,1), for the diff; (CO).

The model ARIMA(5,0,2) produced the best results in the fit since it had the lowest errors
values, followed by ARIMA(4,0,1) and ARIMA(5,1,1) as shown in Table 4.2. To further assess the
goodness of fit, residual analysis was performed for every model. Visually, the plotted residuals
appear to be white noise, as one can observe in the top panels of Figures 4.16, 4.12 and 4.14. A
closer inspection shows there are significant lags both in the ACF, bottom left panels of Figures
4.16, 4.12 and 4.14, and PACEF plots of every model residuals, bottom right panels of Figures
4.16,4.12 and 4.14. Every model, ARIMA(5,0,2), ARIMA(4,0,1) and ARIMA(5,1,1), passed the
Ljung-Box test for autocorrelation. This implies that the models were not able to fully capture
the information in the data. They can still be used to forecast but the prediction intervals might
not be very accurate and the errors might be underestimated [27].

Forecasting is a very different matter and a good fitting model does not equate to a good
forecast. This was not the case, as shown by the results in Table 4.3. The best fitting model
had the best forecast performance followed by ARIMA(5,1,1) and lastly ARIMA(4,0,1) with the
worst results. To further test the robustness of these results cross-validation was performed and

is presented in the next subsection.
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FIGURE 4.11: Best fitting model determined by R for the CO-MA, transformation in red, forecast of 24 hours
in blue and the 95% prediction interval for the forecast.
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on the bottom right and bottom left, respectively.
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FIGURE 4.13: Best fitting model determined by R for the CO-MA,, transformation in red, forecast of 24 hours
in blue and the 95% prediction interval for the forecast.
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FIGURE 4.15: Best fitting model determined by R for the diff; (CO) transformation in red, forecast of 24 hours
in blue and the 95% prediction interval for the forecast.
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FIGURE 4.16: Plot of the model residuals as a function of time on the top. ACF and PACF plots of the residuals
on the bottom right and bottom left, respectively.

TABLE 4.2: Values of the RMSE, AIC, BIC and Ljung-box test of the residuals of every model.

RMSE [103ppm] MASE Ljung-Box p-value
CO-MA, 1.84 0.673 37.4 0.01
CO-MAy, 1.96 0.717 11.1 0.01
diff;(CO) 2.20 0.810 10.7 0.03
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TABLE 4.3: Values of the RMSE, MAE and MASE for the forecasts produced by each model.

RMSE [10 3ppm] MAE[10-3 ppm] MASE

CO-MA;; 4.16 3.56 1.81
CO-MAy4 14.5 11.1 5.67
diff; (CO) 10.0 7.36 3.76

4.1.3 Time Series Cross-Validation

After finding the best models, the next step is to test the robustness of the forecasts. Since
ARIMA models depend on past values, they can prove to only be effective in some section of
the TS. To avoid this, forecasts with rolling origin were performed with two variants: increasing
data window and a fixed data window.

For the increasing data window, the ARIMA models determined previously, are applied to
the data window without parameter! re-estimation. A 24 hour forecast is performed and the
error measured. The data window is increased by 1 data point and the process is repeated until
there are no more data points available.

The second method has a data window with a fixed length, 96 data points. The models
determined are still applied to the data window without parameter re-estimation and a 24 hour
forecast performed. Next, the window is dislocated 1 point ahead and the process repeats itself
until no more data points are available. The expectation, for the fixed window is that the error
values, if the models indeed produce robust forecasts, will have small oscillations around a
mean value but not an overall increasing or decreasing trend.

In Figure 4.17, the evolution of RMSE, MAE and MASE were tracked when performing
a rolling origin forecast with an increasing window. The errors in CO-MAj4 appear be more
stable after a certain window size, but CO-MA, and diff; (CO) have very volatile behaviors
besides larger error values. In Figure 4.18, where the rolling forecast was performed with a fixed
window, it seems that the same behavior is observed. CO-MA»4 has smaller errors values, which
was unexpected according to the previous forecast results.

Finally, to check how the errors evolved when the length of the forecasts increased, a variation
of the rolling forecast with fixed window was performed. The size of the window was 400 data
points to try eliminate errors from insufficient data. This time the errors resulting of the the
rolling forecast are averaged and the process is repeated for a forecast 1 data point longer.

The average RMSE MAE and MASE were plotted as a function of the forecast length in
hours is shown in Figure 4.19. The error for the different models evolves differently. For shorter
forecasts, until approximately 6 data points, the errors of CO-MAj; and CO-MAy; are very
similar. After approximately 60 data points, the error for CO-MA,4 continues to grow linearly
and for diff; (CO) starts to stabilize. This makes diff; (CO) the best model for longer forecasts
and CO-MAy, the best model for the forecast length of 24 hours. This information was not
possible to observe in previous results, Figures 4.17 and 4.18, since the forecasts were of the
length chosen to optimize in the course of this work, 24 hours. It also shows how important it is

Here, parameter refers to the (p,d,q) ARIMA parameters and not to the model coefficients ¢ and 8 referred in
previous chapters.
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to test the forecast through out the whole TS. Judging only by the information of the previous
subsection, the user would wrongly assume the best model for forecasting to be CO-MA, when
it is in fact CO-MA 4.
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FIGURE 4.17: Left: RMSE of different models plotted as a function of data points used by the model. Center:
MAE of different models plotted as a function of data points used by the model. Right: MASE of different
models plotted as a function of data points used by the model.
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FIGURE 4.19: RMSE, MAE and MASE of different models plotted as a function of the forecast length.

For the remaining pollutants, the TS Cross validation will be discussed in Section 4.7 for a

more effortless comparison between results.

4.2 Nitrogen Dioxide

The same procedure of data analysis was performed for NO;. The outlier free data is presented

in Figure 4.20. As seen and mentioned in the previous section the amount of information

produced is too massive to be conveniently presented in the body of this thesis. Every plot not

presented here is available in Appendix A.

Similar to the CO results, after the transformations the only ones that yielded stationary TS
where NO; — MA1,, NO; — MAy, and diff; (NO; ). The ADF test results for every transformation

are presented in Table 4.4.
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FIGURE 4.20: NO, concentration plotted over time for the longest outlier-free data points, common to every

pollutant.
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TABLE 4.4: ADF test results and respective p-values for every transformation.

Transformation ADF test p-value

NO,-MA,, -8.64 0.01
NO,-MA 1, -10.4 0.01
InNO, -3.12 0.11
NO, 327 0.08
LOESS(NO,) -3.28 0.08
diff; (NO,) -6.44 0.01

The models determined by R as the best for the transformations used are:

e ARIMA(2,0,3), for the NO, — MA1y;
e ARIMA(4,0,0), for the NO; — MAyy;

o ARIMA(2,1,5), for the diff, (NO,).

None of the models failed the Ljung-Box test and is evident from the residual analysis in
Figures 4.22, 4.24 and 4.26 that there is still autocorrelation present. In regards to fit performance
Table 4.5 shows that the best model is ARIMA(2,0,3) for NO, — MA,, followed by ARIMA(2,1,5)
for diff; (NO,) and lastly ARIMA(4,0,0) for NO; — MAy,.

The forecast performance is very similar for each model as seen in Table 4.6. The model for
diff; (NO,) has a slightly better performance.
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FIGURE 4.21: Best fitting model determined by R for the NO;-MA 1, transformation in red, forecast of 72 hours
in blue and the 95% prediction interval for the forecast.
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in blue and the 95% prediction interval for the forecast.
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FIGURE 4.24: Plot of the model residuals as a function of time on the top. ACF and PACF plots of the residuals
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FIGURE 4.26: Plot of the model residuals as a function of time on the top. ACF and PACEF plots of the residuals
on the bottom right and bottom left, respectively.

TABLE 4.5: Values of the RMSE, AIC, BIC and Ljung-box test of the residuals of every model.

RMSE [10 *ppm] MASE Ljung-Box p-value

NO;-MA, 2.89 0.563 8.81 0.03
NO>-MAy, 3.40 0.650 48.0 0.01
diff; (NO,) 3.38 0.631 33.7 0.01

TABLE 4.6: Values of the RMSE, MAE and MASE for the forecasts produced by each model.

RMSE [103ppm] MAE[10~* ppm] MASE

NO;-MA;» 1.06 8.75 244
NO,;-MAy,; 1.10 8.42 2.35
diff;(NO») 0.977 7.60 2.12

4.3 Sulfur Dioxide

After cutting the SO, TS to 612 data points there were still a few outliers. This was always a
possibility since the MAD intervals for the full length data are not the same as can be seen in left
and right panels of Figure A.15, respectively. The variation was not very extreme and so it was
decided not to further treat the data. The SO, TS is presented in Figure 4.27.

After the transformations performed, the stationarity of the data was tested and the results
presented in Table 4.7. Every transformation is stationary above the 95% confidence level
but only the moving averages and first order differentiation are stationary above the 99%
confidence level. Subsequently these were the transformations chosen to perform model fitting
and forecasting.
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FIGURE 4.27: SO, concentration plotted over time for the longest outlier-free data points, common to every
pollutant.

TABLE 4.7: ADF test results and respective p-values for every transformation.

Transformation ADF test p-value

SO,-MAys 7.44 0.01
SO,-MA1, -8.64 0.01
In SO, -3.67 0.03
SO, -3.64 0.03
LOESS(SO5) -3.60 0.03
diff;(SO») -6.46 0.01

The best models, for each transformation, determined by the R algorithm were:

e ARIMA(5,0,0), for the SO, — MA1y;
e ARIMA(5,0,0), for the SO, — MA,y;

e ARIMA(3,1,3), for the diff; (SO5).

The best performing model regarding only the fit was ARIMA(5,0,0) for SO, — MAj, see
Figure 4.28, but this also had the lowest p-value in the Ljung-Box test, meaning that the resid-
uals are correlated. Indeed, there are several significant peaks in the left and right bottom
panels in Figure 4.29. The second best model is ARIMA(5,0,0) for SO, — MAyy, see Figure 4.30.
Unfortunately this model also passed the Ljung-Box test and it is also possible to see a few
significant peaks in the left and right bottom panels of Figure 4.31. The worst fitting model was
ARIMA(3,1,3), see Figure 4.32. This model is the only one that failed the Ljung-Box test, as seen
in Table 4.8. The ADF and PACEF plots of the residuals, see left and bottom panels of Figure 4.33,
only have significant peaks after lag 20.
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The forecast performance is much different. The best performing model was for diff; (SO,).
It had the lower values for RMSE, MAE and MASE. The results for the forecast performance are
shown in Table 4.8.

SO, MA1, Regression with ARIMA(5,0,0) errors
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FIGURE 4.28: Best fitting model determined by R for the SO,-MA, transformation in red, forecast of 72 hours
in blue and the 95% prediction interval for the forecast.
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FIGURE 4.29: Plot of the model residuals as a function of time on the top. ACF and PACF plots of the residuals
on the bottom right and bottom left, respectively.
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SO, MA,, Regression with ARIMA(5,0,0) errors
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FIGURE 4.30: Best fitting model determined by R for the SO,-MA,, transformation in red, forecast of 72 hours
in blue and the 95% prediction interval for the forecast.
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FIGURE 4.31: Plot of the model residuals as a function of time on the top. ACF and PACF plots of the residuals
on the bottom right and bottom left, respectively.
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FIGURE 4.32: Best fitting model determined by R for the diff; (SO,) transformation in red, forecast of 72 hours
in blue and the 95% prediction interval for the forecast.
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FIGURE 4.33: Plot of the model residuals as a function of time on the top. ACF and PACF plots of the residuals
on the bottom right and bottom left, respectively.

TABLE 4.8: Values of the RMSE, AIC, BIC and Ljung-box test of the residuals of every model.

RMSE [10°ppm] MASE Ljung-Box p-value

SO,-MA;
SO-MAy,
diff;(SO,)

441 0.731 14.8 0.01
4.88 0.805 10.3 0.04
5.16 0.837 6.54 0.16
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TABLE 4.9: Values of the RMSE, MAE and MASE for the forecasts produced by each model.
RMSE [10 *ppm] MAE [10 % ppm] MASE
SO,-MA; 3.02 241 5.58
SO,-MAy, 1.95 1.59 3.68
diff;(SO,) 1.68 1.45 3.36
44 Ozone

After analyzing outlier free O3 TS, see Figure 4.34, different transformations were applied to

stabilize the data. Results of the stationarity test are presented in Table 4.10. The transformations
that passed the test, O3 — MA1y, O3 — MAy, diff; (O3) were used to estimate ARIMA models.
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FIGURE 4.34: O3 concentration plotted over time for the longest outlier-free data points, common to every
pollutant.

TABLE 4.10: ADF test results and respective p-values for every transformation.

Transformation ADF test p-value

03-MAos -8.43 0.01
03-MA1, 115 0.01
InO; 245 0.39
VO3 244 0.39
LOESS(O3) 234 0.44
diff;(03) -7.10 0.01

The best models, for each transformation, determined by the R algorithm were:

e ARIMA(5,0,1), for the O3 — MA1y;

e ARIMA(5,0,0), for the O3 — MAyy;
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e ARIMA(2,1,2), for the diff; (O3).

The best performing model regarding fitting the data is ARIMA(5,0,1), followed by ARIMA(5,0,0)
and ARIMA(2,1,2). As seen on Table 4.11, all of the models passed the Ljung-Box test and it is
also evident that the residuals are still autocorrelated when looking at Figures 4.36, 4.38 and
4.40. Although the residuals appear to be white-noise, there are still many significant peaks in
the ACF and PACEF plot of every model residuals.

For the forecast the results are presented in Table 4.12. The performances are quite different
from the fit. The best forecast was done by the model ARIMA(2,1,2), see Figure 4.39. The second
best result was for model ARIMA(5,0,0), see Figure 4.37 and the worst forecast was performed
by model ARIMA(5,0,1), see Figure 4.35.
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FIGURE 4.35: Best fitting model determined by R for the O3-MA, transformation in red, forecast of 72 hours
in blue and the 95% prediction interval for the forecast.
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O3 MA;, Regression with ARIMA(5,0,1) errors
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FIGURE 4.36: Plot of the model residuals as a function of time on the top. ACF and PACF plots of the residuals
on the bottom right and bottom left, respectively.
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FIGURE 4.37: Best fitting model determined by R for the O3-MA;, transformation in red, forecast of 72 hours
in blue and the 95% prediction interval for the forecast.
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O3 MA,; Regression with ARIMA(5,0,0) errors
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FIGURE 4.38: Plot of the model residuals as a function of time on the top. ACF and PACF plots of the residuals
on the bottom right and bottom left, respectively.

diff,03 ARIMA(2,1,2)

N~
Q
o
L .
L L )
8 1 L L
o 1 ] 'ﬁ
<
1 1 < L |
8 4 1 'J ! I
— o 4 < <
E q LKAV IS
% <t L < ' 449 ¢
~— S ) |
(2] O 494 L
O L # r l
™ < P
o P < *
o q1 )
. ‘ ° 11?
o 1 4
Q L
o

\ T T T T T \
0 100 200 300 400 500 600

Time (h)
—— O3 —— Forecast
—— ARIMA fit Prediction Interval

FIGURE 4.39: Best fitting model determined by R for the diff; (O3) transformation in red, forecast of 72 hours
in blue and the 95% prediction interval for the forecast.
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FIGURE 4.40: Plot of the model residuals as a function of time on the top. ACF and PACF plots of the residuals
on the bottom right and bottom left, respectively.

TABLE 4.11: Values of the RMSE, AIC, BIC and Ljung-box test of the residuals of every model.

RMSE [103ppm] MASE Ljung-Box p-value

03-MA 1, 1.63 0.520 27.8 0.01
03-MAy, 1.85 0.592 45.1 0.01
diff;(O3) 1.93 0.615 35.6 0.01

TABLE 4.12: Values of the RMSE, MAE and MASE for the forecasts produced by each model.

RMSE [10?ppm] MAE [10~2 ppm] MASE

03-MA;» 2.58 1.94 8.10
03-MAy, 1.47 1.14 4.74
diff;(O3) 1.29 1.07 4.46

4.5 PM;j, - Particulate matter

After transforming the outlier free PM;y TS, see Figure 4.5, stationarity was tested. The full
results are presented in Table4.13. The only transformations capable of making the TS stationary
were PM1y — MA1,, PMyg — MAy4 and diff; (PMyg). These were the ones used to estimate the
ARIMA models parameters.
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FIGURE 4.41: PMjj concentration plotted over time for the longest outlier-free data points, common to every
pollutant.

TABLE 4.13: ADF test results and respective p-values for every transformation.

Transformation ADF test p-value

PM;9-MAys -6.58 0.01
PM;9-MA1, -8.71 0.01
InPM;0 231 0.45
PMo 225 0.47
LOESS(PM;) -2.05 0.56
diff; (PMyo) -4.87 0.01

The best models, for each transformation, determined by the R algorithm were:
e ARIMA(3,0,3), for the PM1p — MAyy;

e ARIMA(2,0,3), for the PMg — MAyy;

e ARIMA(5,1,1), for the diff; (PMyg).

As can be seen in Table 4.14, the best performing model is ARIMA(3,0,3) with the lowest
RMSE and MASE. It was also the only model that passed the Ljung-Box test, meaning the
residuals are correlated, as can also be seen in Figure 4.43. The second best model for fitting is
ARIMA(2,0,3) and this model has uncorrelated residuals according to the Ljung-Box test. In
Figure 4.45, the ACF plot, left bottom panel, shows some almost significant lags up until lag
30. The PACF plot, bottom right panel in Figure 4.45, shows the same kind of behavior with
significant lags only showing after lag 50. The worst performing model was ARIMA(5,1,1)
although it also failed the Ljung-Box test. The Figure 4.47 shows significant peaks in the ACF
and PACEF plots, left and right bottom panels, around lag 20.

The forecast performances are shown in Table 4.15. The model ARIMA(3,0,3) had an almost
completely useless forecast, that can be seen in Figure 4.42. ARIMA(2,0,3), see Figure 4.44,
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was the best forecasting model and ARIMA(5,1,1), see Figure 4.46, performed the second best
forecast.

PMyo MA;, Regression with ARIMA(3,0,3) errors

o _|
<
~—
5 81
o
N—r
S |
14
= S - s
o |.'
L)
r
:
S :

\ T T T T T T
0 100 200 300 400 500 600

Time (h)
—— PMyg — Forecast
—— ARIMA fit Prediction Interval

FIGURE 4.42: Best fitting model determined by R for the PM;p-MA 1, transformation in red, forecast of 72
hours in blue and the 95% prediction interval for the forecast.

PM3, MA;, Regression with ARIMA(3,0,3) errors

~ 4
— )
o 4 AR st Sl
,‘v\‘ l\ I “l“\"“\““ \
7 |
o
1
o |
I
T T T T T T
0 100 200 300 400 500
o o
- -
o o

ACF
0.00
PACF
0.00

-0.10
-0.10

FIGURE 4.43: Plot of the model residuals as a function of time on the top. ACF and PACF plots of the residuals
on the bottom right and bottom left, respectively.
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PMyo MA,, Regression with ARIMA(2,0,3) errors
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FIGURE 4.44: Best fitting model determined by R for the PM;p-MA,, transformation in red, forecast of 72
hours in blue and the 95% prediction interval for the forecast.
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FIGURE 4.45: Plot of the model residuals as a function of time on the top. ACF and PACF plots of the residuals
on the bottom right and bottom left, respectively.
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FIGURE 4.46: Best fitting model determined by R for the diff; (PM;) transformation in red, forecast of 72 hours
in blue and the 95% prediction interval for the forecast.
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FIGURE 4.47: Plot of the model residuals as a function of time on the top. ACF and PACF plots of the residuals
on the bottom right and bottom left, respectively.

TABLE 4.14: Values of the RMSE, AIC, BIC and Ljung-box test of the residuals of every model.

RMSE [ppm] MASE Ljung-Box p-value
PM;p-MA;, 0.592 0.674 14.8 0.01
PM;o-MAy4 0.664 0.740 291 0.40
diff; (PM;) 0.752 0.818 4.03 0.40
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TABLE 4.15: Values of the RMSE, MAE and MASE for the forecasts produced by each model.

RMSE [ppm] MAE [ppm] MASE
PMio-MA;, 17.7 17.7 22.6
PM;1o-MA, 291 2.56 3.94
diff; (PMyp) 4.47 3.77 5.80

4.6 PM,; - Particulate matter

After cutting the TS to 612 data points, see Figure 4.48, several transformations were tested in
order to coerce the data to be stationary. After performing the ADF test, see Table 4.16, the only
transformations that passed were PMy 5 — MA1p, PMjy5 — MAy, and diff; (PMy5). These were
used to estimate the ARIMA model parameters.
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FIGURE 4.48: PM, 5 concentration plotted over time for the longest outlier-free data points, common to every
pollutant.

TABLE 4.16: ADF test results and respective p-values for every transformation.

Transformation ADF test p-value
PM;,5-MAyy -7.10 0.01
PMy5-MA1» -9.19 0.01

InPM; 5 -2.19 0.50
PM; 5 -2.10 0.54
LOESS(PM35) -1.99 0.58
diff; (PM25) -4.98 0.01

e ARIMA(4,0,5), for the PMa 5 — MA;

The best models, for each transformation, determined by the R algorithm were:
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e ARIMA(2,0,5), for the PMa 5 — MAyy;

e ARIMA(2,1,3), for the diff; (PMy5).

The models ARIMA(4,0,5) and ARIMA(2,0,5), Figures 4.49 and 4.51 respectively, have
very similar performances regarding the fit of the data. The worst performing model is
ARIMA(2,1,3),see Figure 4.53. All the results are presented in Table 4.17. Every model passed the
Ljung-Box test meaning there is still correlation in the residuals. In Figures 4.52 and 4.54 there are
less significant peaks in the ACF and PACF plots, bottom left and right panels respectively, than
in Figure 4.50. This accounts for the lower p-value in the Ljung-Box test for model ARIMA(4,0,5)
compared to the other models.

For the forecast all of the models have similar performances with model ARIMA(4,0,5) being
a slightly better as seen in Table 4.18.
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n _|
— .
B ' J
s . 1 1
o I
~ o | [ | [ 1. ]
0 — 1 | o .
[N | o .
= $ . :
o 2% . . M ‘ ]
. i l ' b
o - : ]
T T T T T T T
0 100 200 300 400 500 600
Time (h)
—— PM3s — Forecast
—— ARIMA fit Prediction Interval

FIGURE 4.49: Best fitting model determined by R for the PM; 5-MA; transformation in red, forecast of 72

hours in blue and the 95% prediction interval for the forecast.
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PM, 5 MA;, Regression with ARIMA(4,0,5) errors
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FIGURE 4.50: Plot of the model residuals as a function of time on the top. ACF and PACF plots of the residuals

on the bottom right and bottom left, respectively.
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FIGURE 4.51: Best fitting model determined by R for the PM, 5-MA, transformation in red, forecast of 72
hours in blue and the 95% prediction interval for the forecast.
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PM, 5 MA,, Regression with ARIMA(2,0,5) errors
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FIGURE 4.52: Plot of the model residuals as a function of time on the top. ACF and PACF plots of the residuals
on the bottom right and bottom left, respectively.
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FIGURE 4.53: Best fitting model determined by R for the diff; (PM;5) transformation in red, forecast of 72
hours in blue and the 95% prediction interval for the forecast.
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FIGURE 4.54: Plot of the model residuals as a function of time on the top. ACF and PACEF plots of the residuals
on the bottom right and bottom left, respectively.

TABLE 4.17: Values of the RMSE, AIC, BIC and Ljung-box test of the residuals of every model.

RMSE [ppm] MASE Ljung-Box p-value

PM, 5-MA 1, 0.517 0.724 26.3 0.01
PM, 5-MAy, 0.541 0.770 10.3 0.02
diff; (PM, 5) 0.607 0.824 11.0 0.05

TABLE 4.18: Values of the RMSE, MAE and MASE for the forecasts produced by each model.

RMSE [ppm] MAE [1073 ppm] MASE

PM, 5-MA1» 131 1.10 2.15
PM, 5-MAy, 1.82 1.25 2.45
diff; (PM, 5) 1.71 1.27 2.48

4.7 Time Series Cross-Validation

In this section the results of cross-validation for every pollutant will be analyzed and compared.
Only the MASE plots are presented here since it is the only error measure that does not depend
on the scale. This means it is appropriate to compare results between pollutants. The cross-
validation methodology performed is exactly identical to the one used for CO and consequently,
the full procedure will not be explained here.

In the NO; rolling origin forecast with a fixed window, left panel of Figure 4.55, the less erratic
behavior and lower error values come from diff; (NO; ), which was also the best performing
model in Table 4.6. This carried on when a increasing window was used, center panel of Figure

4.55, and when the performance with increasing forecast length was evaluated, right panel in
Figure 4.55.
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FIGURE 4.55: Left: MASE of different models plotted as a function of fixed windows. Center: MASE of different
models plotted as a function of data points used by the model. Right: Average MASE of different models
plotted as a function of the forecast length.

For the SO; cross-validation the results from the rolling forecast with fixed window, left
panel in Figure 4.56, and the rolling forecast with increasing window, center panel in Figure
4.56, show that the models for SO, — MA;4 and diff; (SO;) do not differ much. Only in the right
panel of Figure 4.56, the average MASE as a function of the forecast length, it is possible to see
that for forecasts length 24 hours the model SO, — M Ay, outperforms diff; (SO, ), which was the
best performing model in Table 4.9. There is also the possibility that the error for SO, — MAy, is
being underestimated , since the model residuals were correlated.
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FIGURE 4.56: Left: MASE of different models plotted as a function of fixed windows. Center: MASE of different
models plotted as a function of data points used by the model. Right: Average MASE of different models
plotted as a function of the forecast length.

The models obtain for O3 had very correlated residuals so the expectations for forecast
performance were low. In the left panel of Figure 4.57, the forecast performance with a fixed
window seems to be better for O3 — MAyy. The forecast with increasing window, center panel of
Figure 4.57, showed the same performance. Between 384 and 456 data points used by the model
the MASE values of O3 — MAy4 keep constant, where for the other two models increase. When
the forecast length was varied, right panel in Figure 4.57, the results are very interesting. The
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errors for O3 — MAy4 and Oz — MAy; are very irregular. For forecasts with length of 24 data
points O3 — MAy, has a lower error value.
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FIGURE 4.57: Left: MASE of different models plotted as a function of fixed windows. Center: MASE of different
models plotted as a function of data points used by the model. Right: Average MASE of different models
plotted as a function of the forecast length.

The MASE values in the left and center panels in Figure 4.58 show that the previously
best performing model in Table 4.15, PM,5 — MAy4 was also the best performing model in
cross-validation since it had the lowest error values. This performance remained the same when
the forecast length varied, in Figure 4.58.
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FIGURE 4.58: Left: MASE of different models plotted as a function of fixed windows. Center: MASE of different
models plotted as a function of data points used by the model. Right: Average MASE of different models
plotted as a function of the forecast length.

The results of the previous forecasts in Table 4.18 showed that all the models had very close
performances with the one for PM; 5 — MAj; performing slightly better. The cross-validation
showed that actually the model for PM; 5 — M A4 was the better for forecast. The left and center
panels in Figure 4.59 show smaller values of MASE for PM; 5 — M Ay, than for both PM; 5 — MA 1,
and diff; (PMy5), although all the models show an erratic behavior. For the performance with
increasing forecast length, once again the model for PM; 5 — M A4 outperforms the other models
and with an average MASE lower that the other models with a 24 data points forecast.
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In the previous analysis concludes that the best results were obtained for PMjg — MAy,. It
was the only model with uncorrelated residuals that had a MASE between 2 and 3. The MASE for

diff; (NO,) is lower, but the model had correlated residuals so this could be an underestimated

value.
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FIGURE 4.59: Left: MASE of different models plotted as a function of fixed windows. Center: MASE of different
models plotted as a function of data points used by the model. Right: Average MASE of different models
plotted as a function of the forecast length.

It was unexpected that the R algorithm did not pick any seasonal models but possibly there
was not enough data to do so. Indeed a good fit does not equate to a good forecast. It is difficult
to compare results to other similar studies since the data sets used are different and not available
to the public. Also the decision of using MASE and not median absolute percentage error, which
is a more popular error measurement, made it impossible to find comparable results. This type
of measurement does not depend on scale but can lead to bias when the data values are close to
zero so was excluded from the analysis.

Our results were compared to the results of the M3-Competition, a forecasting competition
where different methods are applied to several TS. The best performing methods had MASE
values between 2 and 3 [34, 43], of which was achieved in this work. But it would be unwise to
claim that the models in this work perform as well. Because of the correlation in the residuals of
many models, the errors could be underestimated. Overall the results were good, considering

the modeling conditions were not ideal however, there is definitely room for improvement.
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Chapter 5

Conclusions and Further Work

In the present work the Box-Jenkins ARIMA methodology was studied in order to produce
models capable of good forecasts for several pollutants. After analyzing the data, it was detected
the existence of extreme outliers in every TS. Since they imparted such acute changes on the
mean values of the data and spanned across many data points it was chosen to not deal with the
outliers and simply to cut down all the series to a common size were no outliers were detected.
This meant a trade-off between the number of data points available and a easier to forecast
series. The choice was made and the resulting TS re-analyzed. The TS were not stationary and
so, several transformations were used to try and stabilize the data. In every pollutant only three
transformation produced stationarity: subtraction of a moving average of orders 12 and 24 and
first order differentiation. It was also expected that LOESS produced satisfactory results but it
was not the case.

After obtaining the stationary series the ARIMA models parameters were estimated. This
was done by a R algorithm. It iteratively considered several ARIMA models of different orders,
optimized the coefficients and then chose the best ones according to the AIC. The models
residuals where analyzed for autocorrelation and many of them still had correlation between
them. This meant there was information in the data that the models did not capture. These
models were also used for an initial forecast of 24 hours and their performance measured with
RMSE, MAE and MASE.

Cross-validation was the next step. Since ARIMA models depend on past values they
sometimes produce a good forecast merely because the future data resembles the past data and
they are not robust. To assess this, multiple methods of forecast with a rolling origin were used:
fixed window, increasing window and a fixed window with an increase in forecast length. The
best models showed a less volatile behavior with the fixed and increasing window along with
the smaller error values in all the methods. For the fixed window with increasing forecast length
the best model was considered the one with lower error value at 24 data points. This was the
forecast length that interested us for this work. It was interesting to see how the error evolved
with the forecast length since the models changed behavior. The best model depended on the
length of the forecast considered.

The results produced were overall good since a forecast of 24 data points is reasonably
long, considering the results from M3-competition [34, 43]. Still, the forecasts errors might
be underestimated due to autocorrelation in the models residuals so, there is much room for
improvement. Finding real data without outliers is practically impossible so in future work
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it would be necessary either to, find a method flexible enough to be able to forecast such a
change in the data or, a way to deal with the outliers. In addition, this work was made resorting
only to information about pollutant concentrations but there are several explanatory variables
that could have been taken into consideration. Data like temperature and UV index would be
particularly important. Also more elaborate smoothing techniques that were not considered
could be used.

Finally the complexity of the model itself could be increased. A dynamic harmonic regression
could be implemented were the seasonal pattern is modeled by Fourier terms, or multiple sea-
sonality patterns could be defined for the data. All these are possible options for improvement,
even before reaching for truly more complex models like ANN or Fuzzy Logic.

In conclusion, the world of forecasting is vast and the options to perform the same task are
endless. Ultimately it is the scientist responsibility to make decisions based on knowledge and
experience. This work delved only on the tip of the iceberg and recognizes that there is much

more to learn and to experiment with.
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FIGURE A.1: NO; concentration plotted over time for the complete data.
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FIGURE A.2: Left: NO; concentration plotted over time for the complete data and MAD. The upper limit in
blue and the lower limit in red. Right: The longest outlier-free data points for the first 612 data points and

MAD. The upper limit in blue and the lower limit in red.
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FIGURE A.11: Left: RMSE of different models plotted as a function of data points used by the model. Rigth:
MAE of different models plotted as a function of data points used by the model.
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FIGURE A.13: Left: Average RMSE of different models plotted as a function of the forecast length. Rigth:
Average MAE of different models plotted as a function of the forecast length.
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FIGURE A.15: Left: SO, concentration plotted over time for the complete data and MAD. The upper limit in
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FIGURE A.16: Left: QQ plot for the complete data. Right: QQ plot for the longest outlier-free data points.
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FIGURE A.17: Left: Normalized SO, compared to In(SO;) plotted over time. Center: ACF plotted over lags for
In(SO,). Right: PACEF plotted over lags for In(SO;).
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FIGURE A.18: Left: SO, concentrations compared to /SO, plotted over time. Center: ACF plotted over lags for
V/SO;y. Right: PACEF plotted over lags for 1/SO;.
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FIGURE A.20: Left: SO, concentrations compared to SO;-MA; plotted over time. Center: SO, concentrations
compared to SO»-MA,, plotted over time. Right: SO, concentrations compared to diff; (SO;) plotted over time.
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FIGURE A.21: ACF and PACEF plots for the SO,-MA; transformation.
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FIGURE A.23: ACF and PACEF plots for the diff;(SO,) transformation.
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FIGURE A.24: Left: RMSE of different models plotted as a function of data points used by the model. Rigth:
MAE of different models plotted as a function of data points used by the model.
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FIGURE A.27: O3 concentration plotted over time for the complete data.
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FIGURE A.29: Left: QQ plot for the complete data. Right: QQ plot for the longest outlier-free data points.
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FIGURE A.30: Left: Normalized O3 compared to In(O3) plotted over time.

In(O3). Right: PACF plotted over lags for In(O3).
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FIGURE A.31: Left: O3 concentrations compared to /O3 plotted over time.
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FIGURE A.32: Left: O3 concentrations compared to LOESS(O3) plotted over time. Center: ACF plotted over
lags for LOESS(O3). Right: PACF plotted over lags for LOESS(O3).
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FIGURE A.33: Left: O3 concentrations compared to O3-MA1; plotted over time. Center: O3 concentrations
compared to O3-MAy, plotted over time. Right: O3 concentrations compared to diff; (O3) plotted over time.

o |
—
—_ <N 4
9 0 | <‘E‘ o
< © s
| |
™ o
O L1 L _ L Q o _\_:_‘\L_L_‘[‘T‘-T“T“_‘_‘\LI‘T“T'
> L T] \ \ - S B B —
Q 3 __% ____ﬂ | ﬁ__. g AR -1
| )
Te)
10 ?
o
]
0 10 20 30 40 0 10 20 30 40
Lag Lag

FIGURE A.34: ACF and PACEF plots for the O3-MA; transformation.
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FIGURE A.35: ACF and PACF plots for the O3-MAy, transformation.
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FIGURE A.36: ACF and PACEF plots for the diff; (O3) transformation.
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FIGURE A.37: Left: RMSE of different models plotted as a function of data points used by the model. Rigth:
MAE of different models plotted as a function of data points used by the model.
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FIGURE A.38: Left: RMSE of different models plotted as a function of the number of fixed windows. Rigth:
MAE of different models plotted as a function of fixed windows.
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FIGURE A.39: Left: Average RMSE of different models plotted as a function of the forecast length. Rigth:

Average MAE of different models plotted as a function of the forecast length.
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FIGURE A.40: PMj( concentration plotted over time for the complete data.
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FIGURE A .41: Left: PMjg concentration plotted over time for the complete data and MAD. The upper limit in
blue and the lower limit in red. Right: The longest outlier-free data points for the first 612 data points and

MAD. The upper limit in blue and the lower limit in red.
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FIGURE A.42: Left: QQ plot for the complete data. Right: QQ plot for the longest outlier-free data points.
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FIGURE A.44: Left: PM; concentrations compared to /PMj plotted over time.
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FIGURE A.45: Left: PMjg concentrations compared to LOESS(PMj) plotted over time. Center: ACF plotted
over lags for LOESS(PMyy). Right: PACF plotted over lags for LOESS(PMyj).
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FIGURE A.46: Left: PMjj concentrations compared to PM9-MA1; plotted over time. Center: PM;j( concentra-
tions compared to PM19-MAy4 plotted over time. Right: PMj( concentrations compared to diff; (PM;) plotted
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FIGURE A.50: Left: RMSE of different models plotted as a function of data points used by the model. Rigth:
MAE of different models plotted as a function of data points used by the model.
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FIGURE A.51: Left: RMSE of different models plotted as a function of the number of fixed windows. Rigth:
MAE of different models plotted as a function of fixed windows.
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FIGURE A.52: Left: Average RMSE of different models plotted as a function of the forecast length. Rigth:
Average MAE of different models plotted as a function of the forecast length.
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FIGURE A.53: Left: PMj 5 concentration plotted over time for the complete data. Right: PM, 5 concentration
plotted over time for the longest outlier-free data points, common to every pollutant.
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FIGURE A.54: Left: PM, 5 concentration plotted over time for the complete data and MAD. The upper limit in
blue and the lower limit in red. Right: The longest outlier-free data points for the first 612 data points and

MAD. The upper limit in blue and the lower limit in red.
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FIGURE A.55: Left: QQ plot for the complete data. Right: QQ plot for the longest outlier-free data points.
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FIGURE A.57: Left: PMj 5 concentrations compared to v/PM; 5 plotted over time. Center: ACF plotted over
lags for /PMj; 5. Right: PACF plotted over lags for v/PM; 5.
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FIGURE A.58: Left: PM; 5 concentrations compared to LOESS(PM; 5) plotted over time. Center: ACF plotted
over lags for LOESS(PM, 5). Right: PACF plotted over lags for LOESS(PM 5).
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FIGURE A.63: Left: RMSE of different models plotted as a function of data points used by the model. Rigth:
MAE of different models plotted as a function of data points used by the model.
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MAE of different models plotted as a function of fixed windows.
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