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Abstract 

The use of low-cost feedstocks such as waste cooking oils has gained prominence in biodiesel 

production due to its potential economic and environmental advantages. Since these feedstocks are 

derived from multiple sources, its compositional variability has led to quality concerns that may 

significantly limit its utilization. One potential strategy to address this concern is to use stochastic 

blending models to optimize the mixing of secondary and primary oils (e.g., palm, canola, or soya). 

In this paper, we present a stochastic blending model that embeds a second, key source of 

uncertainty: the future price of feedstocks, a topic of tremendous concern for producers. The 

stochastic blending model embeds a chance-constrained formulation to account for compositional 

variability and uses time-series methods to address feedstock price uncertainty. The model was 

developed to support production-planning decisions to minimize cost and cost variation in biodiesel 

production. We demonstrate that the proposed approach is useful for determining an optimal 

planning of feedstock acquisition, blending and storage in order to minimize the risks associated 

with feedstock price fluctuations. Results show that addressing the compositional uncertainty via 

the chance-constrained formulation will allow for the use of waste cooking oil in biodiesel blends 

without compromising their technical performance.  

Keywords:  compositional uncertainty, feedstock blending, forecast models, optimization, time 

series analysis, waste cooking oil   
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1 Introduction 

In the late 1990s, biofuels emerged as a strategy to increase revenue for farmers, reduce greenhouse 

gas emissions, and improve energy independence [1]. However, what seemed to be the solution for 

such critical issues has become a controversial topic; demand for biofuel feedstocks may have 

increased food prices [2,3] and their environmental benefits are ambiguous [4,5]. This dilemma 

makes it clear that producers and governmental agencies must make smarter feedstock selection 

decisions in order to achieve their ambitious goals, particularly given that feedstocks are responsible 

for the majority of biofuel producer costs (about 85%) [6] and lifecycle greenhouse gas emissions 

(about 70 to 80%) [7]. 

This paper focuses on two key dynamics that must be considered to improve biofuel feedstock 

decisions: (1) the shift to novel, alternative feedstocks and (2) feedstock price volatility. The 

European Commission recently published Directive 2015/1513 recommending to cap the use of 

food crop-based feedstocks and encourage the development of alternative feedstocks that do not 

compete with foods [8,9]. In the United States, the Environmental Protection Agency has also been 

exploring a lower cap on the use of crop-based feedstocks [10]. Caps like these will add pressures 

on biodiesel producers and limit their available options to, on average, lower quality (yet higher 

variability) alternative feedstocks  [11]. Several studies suggest that feedstocks from residues such 

as waste cooking oils (WCO) may simultaneously reduce production costs [12] and environmental 

impacts [13,14].  However, the technical characteristics of residue-derived feedstocks (RDFs) are 

highly variable and may lead to operational difficulties [15,16]. 

The volatility associated with the price of feedstocks conventionally used in biodiesel production is 

another challenge facing producers [17]. Since current demand for RDFs including WCO is 

relatively small, one would expect particularly high price volatility in the future [18]. To move 

forward with such RDFs in production, suppliers need high-fidelity models that explicitly account 

for price volatility, which may cause producers to be particularly conservative in planning 

production. 
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Based on the described challenges facing producers in their operational decisions, this paper 

explores novel feedstock-selection algorithms that can be used in biodiesel production planning to 

increase its cost effectiveness. These algorithms will assess the value of the use of RDFs in 

biodiesel blends and hedging feedstock purchases (i.e., purchases made ahead of time of use) in a 

context where both feedstock quality and price are uncertain.  

In this research, quality variability is addressed using stochastic blending models (chance-

constrained (CC) formulation) to identify the lowest cost combination of low quality RDFs and 

conventional feedstocks used worldwide for biodiesel production (e.g., virgin oils such as palm, 

canola and soya). The CC method has been shown to identify blending strategies that increase 

secondary (i.e. recycled) material utilization while controlling variation in the finished good, 

allowing secondary producers to explicitly control the risk of quality variation in incoming raw 

materials [19]. Moreover, CC can increase potential heterogeneous material use (i.e., lower cost 

material) through raw materials diversification and, consequently, reduce costs [20]. Gülsen et al. 

[21] and Olivetti et al. [22] developed a CC blend optimization model that explicitly considers the 

inherent uncertainty present in the feedstock properties of conventional vegetable oils commonly 

used for biodiesel production. Results show that feedstock diversification can help control costs and 

ensure fuel quality by spreading the risk of price volatility across multiple feedstocks [21]. In 

addition to achieving cost reductions, blending can also be used to manage greenhouse gas 

emissions uncertainty characteristics of biodiesel [22]. Although conventional feedstocks present 

compositional variability, this is not as high as the variability observed in residue material such as 

WCO, which may limit its market potential [23]. As a follow up of Gülsen et al. [21] and Olivetti et 

al. [22] approach, the CC biodiesel blending  model is applied in this work focused on the use of 

RDFs (WCO).  

The other aspect considered in this research is the variability in feedstock price. Optimization 

models that consider price uncertainty can be found in the literature applied to a plethora of areas 

such as electricity [24], metal [25], fleet replacement [26], chemical industry [27], supply chain 



5 

 

network [28] or forestry [29] using different approaches. A widely used approach to deal with price 

volatility is two stage stochastic programming with recourse. Examples include to determine the 

optimum production plans for a petroleum supply chain that minimize the risks due to fluctuations 

in market conditions [30]; to deal with variability in performance requirements in optimal midterm 

refinery planning [31]; to explicitly account for uncertainty in spot market prices of raw materials 

and the predictability of demand response models (DRM) applied to a chemical production network 

[27]; and to determine product prices and design an integrated supply chain operations plan under 

demand uncertainty [32]. Other approaches use: geometric Brownian motion (GMB) to model price 

behavior over time to decide optimal crude oil procurement and amount of oil products to produce 

[33]; fuzzy set theory to address uncertainty in electricity price forecasting in the optimization of 

capacity of distribution generation sources and operational strategy in microgrids [34];  or, the 

Markowitz Mean-Variance (MMV) model to determine the optimal planning at a refinery [31].   

In the biofuel area, some studies address price uncertainty. Marvin et al. [35] analyzed the influence 

of variability of several economic parameters, including the feedstock cost of biomass, assuming a 

variation of each parameter at a time and using Monte Carlo simulation to analyze the effects of 

each parameter on the Net Profit Value (NPV) of proposed biorefineries. Dal-Mas et al. [36] built 

probability functions for corn purchase cost and fuel ethanol market price, that were then 

discretized into the vectors of scenarios. The model is used to assess the influence of these factors in 

the profitability of the biorefinary. Also the work done by Giarola [37] followed a scenario 

approach to address uncertainty associated with biomass costs. The model maximizes profit and 

uses a parameter that represents the decision-makers’ attitude towards financial risk and also a 

weighing factor to model the trade-off between the expected profit and GHG emissions. Mazzeto et 

al. [38] used scenario modelling to capture the uncertainty of the corn and ethanol prices using 

forecasted prices. The model optimizes the NPV of the whole supply chain during its entire 

operative life. In the work done by Osmani and Zhang [39] uncertainty in prices, demand and 

supply are addressed using two stage stochastic programming. The model is a multi-objective 
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model that maximizes the annual profit of an integrated dual-feedstock lignocellulosic-based 

bioethanol supply chain and minimizes carbon emissions. Santibanez-Aguilar et al [40] addresses 

raw material price uncertainty in the design of biorefinery supply chains by the stochastic 

generation of scenarios using the Latin Hypercube method followed by the implementation of the 

Monte-Carlo method. Zhang et al. [41] considers the uncertainty of biodiesel price using a min-max 

approach, addressing uncertainty by guaranteeing the feasibility and optimality of the solution 

against all instances of the parameters within the uncertainty set in an attempt to design a robust 

supply chain considering WCO suppliers, integrated bio-refinery and demand zone. Bairamzadeh et 

al. [42] presents a hybrid robust optimization model to handle multiple types of uncertainty, 

including randomness, epistemic and deep uncertainties in the biofuel supply chain network design 

and planning problem. Also applied to supply chain design optimization, in this case of biogas, the 

work presented by Khishtanda [43] addresses the price of biomass uncertainty using fuzzy chance-

constrained programming. 

The gap identified in the literature and that motived the research presented in this paper was the 

lack of a model that would address feedstock price uncertainty in a dynamic approach using 

feedstock price forecast models to optimize blends for biodiesel production, considering 

simultaneously the uncertainty of the feedstocks composition. The approach presented in this paper 

is innovative as it presents novel feedstock-selection algorithms that combine price forecast models 

to address price uncertainty with stochastic approaches that address compositional uncertainty. The 

model allows to consider the use of RDFs in the blending without compromising the technical 

quality of the biodiesel. Moreover, the dynamic nature of the price uncertainty modelling extends 

the scope of the analysis further than just having fixed recipes. Technical, cost and cost variation 

performance metrics were used to investigate and interpret the behavior of the proposed approach in 

order to answer the following research questions: (1) Can WCO be incorporated in blends for 

biodiesel production without compromising the biodiesel technical performance?  (2) What are the 

economic benefits of using WCO in the blends?  (3) Can production cost variation be reduced by 
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planned hedging purchases informed by forecasted feedstock prices? (4) Does such an approach 

makes WCO more or less attractive? By answering these questions, we intend to provide biodiesel 

producers information and tools to support feedstock optimization, reducing biodiesel production 

costs and cost variation. 

This innovative approach is a significant contribution to (1) the optimal use of energy resources, by 

providing a way to use higher quantities of RDF´s without compromising the product final quality, 

and (2) to the development of sustainable energy systems. 

 

 

 

  

2 Material and methods 

2.1 Stochastic model to address biodiesel feedstock composition and price uncertainty 

The model developed determines the optimal feedstock purchase and use plan that minimizes costs 

by identifying both (1) the quantities of each available feedstock to buy, store and use and (2) the 

specific combination of feedstocks to blend in a biodiesel production plant, in face of two types of 

uncertainty: (a) feedstock compositional uncertainty and (b) feedstock price uncertainty. The former 

type of uncertainty influences the constraints of the model and is addressed using chance-

constrained programming. The latter influences the coefficients of the objective function and is 

addressed by adding a term to the objective function to reflect the uncertainty around future prices. 

A description of the approach followed to address each type of uncertainty is presented in sub-

sections 2.1.1 and 2.1.2. The full model formulation is presented is sub-section 2.1.3.  
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2.1.1 Chance-constrained (CC) to address compositional uncertainty 

The chance-constrained (CC) formulation was first presented by Charnes and Cooper [44] for a 

logistics planning model with uncertain flows.  The CC formulation allows the user to select a 

confidence level at which a constraint must be complied; it adds flexibility to the model reflecting 

the reality under consideration [45,46]. Deterministic constraints typically found in optimization 

formulations as shown in Equation 1, where 𝑎𝑖  is the stochastic parameter, xi is the decision 

variable and b is the constraint level, are replaced by nonlinear versions as shown in Equation 2. 

The nonlinear versions incorporate statistical characteristics of the problem assuming that  𝑎𝑖  is 

normally distributed parameter, ai ~ N(𝜇𝑖 , 𝜎𝑖
2) and all 𝑎𝑖  are independent. Considering Gaussian 

distributions for the stochastic parameter, 𝐾1−𝛼 is the test coefficient usually denoted as a z-value 

corresponding to the chosen confidence value level. A detailed explanation about the CC 

formulation is provided in supplementary material (Section 1).  

ai xi ≤ b (1) 

∑ μi xi + K1−α √∑ σi
2xi

2

N

i=1

  ≤ b

N

i=1

 (2) 

2.1.2 Price projection model and storage purchase optimization to address price uncertainty  

To address price uncertainty, a stochastic model that uses forecasted feedstocks prices was 

developed to inform purchasing and holding decisions. The model uses both current and forecasted 

feedstock prices and information on current inventory to decide the quantities to blend, buy and 

store in each period (in our model, one period represents a single month). The decision in each 

period is made based on actual prices for that period and forecasted prices for the next 2 periods. 

For example, to decide what to buy (denoted as Quantity to buy, or QB), store (denoted as Quantity 

to store, or QS), and use (denoted as Quantity to use, or QU), in period 1, the actual prices in 1 and 

forecasted prices for periods 2 and 3 are used. Then, to decide what to buy, store and use in period 
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2, the prices for period 2 are replaced by the actual prices and predicted prices for periods 3 and 4 

are used. The optimization is repeated for W time periods. The modelling approach is illustrated in 

Fig. 1. 

 

Fig. 1  Schematic representation of the modelling approach 

2.1.3 Model formulation 

The CC constraints and the recourse planning model were combined to create a dynamic model to 

identify the quantity of each feedstock i to buy in period p (QBi,p), store (QSi,p) and use (QUi,p) as 

previously explained in Section 2.1 (Fig. 1). The objective is to minimize the cost function, Z 

(Equation 3), which comprises three terms: (1) the cost of the feedstock, given by the quantity of 

each feedstock to purchase (QBi,p) and the actual feedstock price in time period p (Pi,p); (2) the 

storage cost, given by the quantity stored (QSi,p) storage cost (StCost); and (3) a penalty term for the 

use of feedstocks that increase future price uncertainty. Parameter 𝛼 is the risk tradeoff parameter 

associated with price uncertainty. Specifically, α creates a penalty within the objective function for 

price risk (uncertainty); a higher α penalizes risk more. Theoretically, α can vary over the entire 

range of positive real numbers [0, ∞] to generate a set of feasible decisions that have minimum cost 

for a given level of risk. However, in practice it was verified that after a certain value (specifically, 

α = 10) no changes in the total cost and cost variation were observed. This model will allow 

analyzing two strategic quantities that influence producer price risk: the extent of available storage 

capacity and the relative weight placed on price risk (i.e. compared to the expected value of price). 
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The model is subject to demand and supply constraints (Equation 4 and Equation 5); since the goal 

is to analyze the proportions of each feedstock in the blend, demand is set equal to 1 and there are 

no supply limitations. Equations 6-9 list the storage constraints, in which we consider a storage 

capacity of 20% of production.  

Technical constraints  (defined as Equations 10 and 11) were built according to the CC formulation 

(Equation 2) and based on prediction models that relate the chemical composition (fatty acids, FA) 

of the vegetable oils and biodiesel properties [23,47]. Prediction models based on the chemical 

composition of the vegetable oils were found for the following biodiesel properties: density (Den) 

[48], cetane number (CN) [49], cold filter plugging point (CFPP) [50], iodine value (IV) [51]and 

oxidative stability (OS)[52]. Although other biodiesel parameters are critical for biodiesel 

producers, the focus of this model is to specifically address properties that are directly related to the 

fatty acid composition. These models are presented and discussed by Caldeira et al. [53,54], which 

concluded that the derived results from the prediction models are in agreement with measurement 

values found in the literature. These models were used as technical constraints in the optimization 

model and the constraint threshold was based on the European Standard EN 14214 that define the 

FAME requirements for diesel engines. The chemical composition information (average and 

standard deviation) used in the model was adopted from Hoekman et al.[23]. β is the test coefficient 

(z-value) corresponding to the chosen confidence value level and is determined by the user. The 

nomenclature (Table 1) and mathematical formulation of the problem are presented below. The 

model was implemented in GAMS 24.4.2 [55] and the problem is solved using the non-linear solver 

CONOPT [56] 

Table 1 Biodiesel blending optimization problem nomenclature 

Indices and sets i ϵ I I = {soya, canola, palm, WCO}, feedstock oils 

 p ϵ P P = {1, 2, 3}, periods 

 j ϵ J J = {1, 2,…, 18}, Fatty Acids (FA) index 

 l ϵ L L = {DenLB, CN, OS}, set of properties with lower bound 
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 m ϵ M M = {DenUB, IV, CFPP}, set of properties with upper bound 

Parameters Pi,p Price of feedstock i in period p 

 StCost Storage cost 

 σfci,p Standard deviation of the price of feedstock i in period p 

 D Demand 

 Si,p   Supply of feedstock i in period p 

 StCap 𝑖  Storage Capacity of feedstock i 

 qi,j̅̅ ̅̅  Average quantity (%) of FA-j in feedstock i 

 𝜎i,j Standard deviation of the quantity (%) of FA-j in feedstock i 

 PropCoefl,j   Coefficient of FA-j in the prediction model for property l 

 PropCoefm,j   Coefficient of FA-j in the prediction model for property m 

 PropConstl Constant in the prediction model for property l 

 PropConstm Constant in the prediction model for property m 

 PropGT𝑙  Threshold for property l 

 PropLT𝑚 Threshold for property m 

 α Risk tradeoff parameter 

 β Test coefficient for normal distribution, one tailed 

Variables QBi,p Quantity of feedstock i to buy in period p 

 QUi,p Quantity of feedstock i to use in the blend in period p 

 QSi,p Quantity of feedstock i to store in period p 

 

Objective function  

 

Minimize:   Z =   ∑ ∑ Pi,p QBi,p

i∈Ip∈P

+  ∑ ∑ StCost QSi ,p 

i∈Ip∈P

+  α√∑ ∑σfci,p
2 QBi ,p 

2

i∈Ip∈P

 
(3) 

 

Demand and Supply constraints 

 

∑ QUi,p

i∈I

= D   ∀p∈P 

  QBi,p ≤ Si,p   ∀p∈P,  ∀i∈I 

(4) 

(5) 

Storage constraints  
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QBi,1 = (QSi,1 −  QSi,0) +  QUi,1     ∀i∈I 

QBi,2 = (QSi,2 − QSi,1) +  QUi,2   ∀i∈I 

QBi,3 = (QSi,3 − QSi,2) +  QUi,3   ∀i∈I 

QSi,p ≤ StCapi  ∀p∈P,  ∀i∈I 

 

(6) 

(7) 

(8) 

(9) 

Technical Constraints  

 

∑ (PropCoefl,j ∑ QUi,pqi,j̅̅ ̅̅  

i∈I

)

j∈J

+ PropConstl − 𝛽√∑ PropCoefl,j
2

j∈J

∑ QUi,p
2σi,j

2

i∈I

 ≥ PropGTl    ∀p∈P,  ∀l∈L 
(10) 

∑ (PropCoefm,j ∑ QUi,pqi,j̅̅ ̅̅  

i∈I

) + PropConstm + 𝛽√∑ PropCoefm,j
2

j∈J

∑ QUi,p
2σi,j

2

i∈I

 ≤ PropLTm  ∀p∈P,  ∀m∈M 

j∈J

 (11) 

QBi ,p ≥ 0;  QSi ,p ≥ 0 ;   QUi,p ≥ 0        ∀p∈P,  ∀i∈I (12) 

 

2.2 Price forecasting model 

Feedstock prices are forecasted using the highly general Autoregressive Integrated Moving Average 

(ARIMA) framework. The ARIMA model is usually referred to as an ARIMA (p,d,q) since it is 

composed of p autoregressive terms, d non-seasonal differences (in order to transform a non-

stationary stochastic process into a stationary one), and q lagged forecast errors in the prediction 

equation.  

Prices for WCO were obtained from a European broker [18] and price information for palm, canola 

and soya oils was based off IndexMundi [17]. Fig. 2 depicts the monthly prices for the four 

feedstocks (palm, canola, soya and WCO) from January 2011 to May 2014 that were used in this 

study.  
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Fig. 2 Monthly prices for palm, canola, soya and WCO 

Some fundamental issues for time-series forecasting include (a) determining whether the dataset at 

hand is trend stationary (e.g., the statistical properties of a process once detrended are constant over 

time) or difference stationary and (b) incorporating the appropriate number of lags to address serial 

correlation  [57]. One typical approach to address the former issue is to use unit-root tests, where 

one evaluates whether price shocks tend to be transient or persistent. Should price shocks have a 

permanent effect on a stochastic process, then its variance diverges towards infinity over time. The 

fidelity of unit-root tests depend upon the available sample size, which is limited in this particular 

case. Nevertheless, this study carries out the Augmented Dickey Fuller (ADF) unit-root test for each 

commodity, which indicated that all time-series are subject to a unit-root and, therefore, should be 

modeled as difference-stationary processes.  

To determine an appropriate lag order for the models we used three separate metrics.  First, the 

overall fit of different lag orders was evaluated using two common goodness-of-fit metrics, the 

Bayesian Information Criterion (BIC) and the Akaike Information Criterion (AIC) [58].  

Additionally, the authors estimated the partial autocorrelation function (PACF) of each dataset to 

confirm lag orders selected per the BIC and AIC.  For each dataset, all three metrics suggested that 

only one lag order should be incorporated. Further inspection of the residuals suggested that the one 
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lag model adequately removed serial correlation from the estimation, an initial concern given the 

possible presence of seasonality. The structural form of the model selected, ARIMA (1, 1, 0), for 

each dataset is of the form:  

Δ𝑃𝑡 =  ρΔ𝑃𝑡−1 + C +  ε𝑡  (13) 

where Δ is the first difference operator, 𝑃𝑡 and 𝑃𝑡−1 are the prices in month t and t-1, ρ is the 

autoregressive parameter, 𝐶 is a constant and 𝜀 is a white noise term that follows a Gaussian 

distribution with a volatility measure 𝜎. The model parameters for each feedstock are presented in 

supplementary material (Section 2). The standard deviation of the predicted price is used in the 

model to address price volatility. 

The adopted model was validated using backcasting [59]. In this technique, a known outcome is 

compared to the prediction, and the accuracy of the forecast is measured by the Mean Absolute 

Percent Error (MAPE) according to Equation 14 where n is the number of forecasts [60]. 

Forecasts made from July 2013 to May 2014 were compared to the real prices and a MAPE ranging 

from 3.4-4.6% was obtained for the first month predicted and 4.6-6.1% for the second month 

predicted.  

2.3 Performance assessment 

To understand the implication of this modeling approach on the attractiveness of WCO to biodiesel 

producers, the use of WCO in model-suggested blends was assessed using the error rate (ER) and 

the WCO-blends cost reduction. The error rate (ER) evaluates the blends technical performance and 

was calculated using posteriori Monte Carlo simulations. The Monte Carlo method statistically 

simulates random variables, in this case, oil compositions, using pseudo-random numbers [19]. The 

WCO-blends cost reduction was calculated relatively to equivalent blends (same ER) composed 

only with virgin oils (VO-blend) using equation (15). 

MAPE =
100%

n
∑ |

Actual𝑖 − Predicted𝑖

Actual𝑖
|

n

i=1

  (14) 
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WCO blend CR (%) =
VO blend cost −  WCO blend cost

VO blend cost
 ∗ 100 

(15) 

 

To investigate and interpret the behavior of the proposed approach to address feedstock price 

uncertainty, two key levels that could be selected by the decision-maker were varied: (a) the extent 

of available storage capacity and (b) the relative weight placed on price risk (i.e., compared to the 

expected value of price). Different variants of the model included: (i) a no storage model (No St) 

obtained by setting 𝑆𝑡𝐶𝑎𝑝 equal to zero; (ii) a storage model with no weight on the risk tradeoff 

parameter, α (i.e., St_α =0); (iii) a storage model with four different weights for the risk tradeoff 

parameter (i.e., St_α=1; St_α=3, St_α=5 and St_α=10). These models assessed the influence of 

including storage capacity (comparing (i) and (ii)) and the influence of the weight given to the 

uncertainty term (comparing (ii) with (iii)).  

Notably, the results obtained for the No storage model (No St) reflect a hypothetical situation where 

there is no uncertainty in the prices; the producers buy in each period knowing the exact feedstock 

price and the quantity necessary to use in that period. Although this situation does not reflect reality, 

it serves as a useful benchmark against which other model variants can be compared. This 

formulation also most closely resembles previous work that has examined the application of 

stochastic optimization to blending-related questions [21]. 

To test the robustness of the optimization results, we developed two sets of price series – uptrend 

and downtrend. Each set contains 40 price series each comprising 41 monthly prices. To develop 

these sets, we first randomly generated 40 simulated historical price datasets for each commodity 

using the parameter estimates for the ARI (1, 1) model from section 2.2. In other words, the 

parameter estimates for 𝜌 and C for each ARI (1, 1) model were preserved, but random price shocks 

were generated to allow the time-series to have behaved in a different stochastic manner over time.  

This collection of price series represents the downtrend set. Additionally, since all of the raw data 



16 

 

from which the ARI(1,1) models were developed exhibited a downward stochastic trend over time 

(see Fig. 2), we generated another 40 simulated historical price data series for each commodity, but 

now changing the sign of the drift term, C, such that it was positive. These price series are referred 

to as the uptrend set. 

To analyze the cost performance of the models, we calculated the average total cost of each model 

for the uptrend and downtrend sets and the relative difference (RD) of the total cost obtained by two 

different models. For example, the comparison between the results obtained for the storage model 

with no weight on the risk tradeoff parameter (St_α =0) relatively to the no storage (No St) model 

was calculated using equation (16).  

RDStα=0  No St (%) =
Total costSt_α= 0 −  Total costNo St

Total costNo St

 ∗ 100 
(16) 

The cost variation performance of the models was assessed through the Mean Absolute Deviation 

(MAD). This parameter was calculated as the average of the absolute differences obtained between 

period p and period p-1 as given in equation (17).  

MAD =
1

n
∑|Pp −  Pp−1|

n

p=1

 
(17) 

3 Results and Discussion 

3.1 Economic benefits of using Waste Cooking Oil in biodiesel blends  

As an initial assessment of the attractiveness of WCO in blends for biodiesel production, we 

analyzed a case considering no storage capacity and no price uncertainty (StCapi= σ fci,p=0). The 

optimal blends were obtained for each month (from January 2011 to May 2014) and compared with 

optimal blends obtained without WCO available. To ensure the comparability of the blends in terms 

of technical performance, the confidence level was adjusted so that the ER of the blends with and 

without WCO was similar. In the case when WCO is not available, the confidence level was set to 

80%. Conversely, when WCO was available, the confidence level was altered to 90%. Since WCO 
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introduces higher compositional uncertainty, the confidence level has to be increased in order to 

obtain the same technical performance as blends of virgin oils. Fig. 3 depicts the blends 

composition obtained when WCO is not available (left-hand side top) and when it is (right-hand 

side top). The dashed line in the graph (right-hand side down) is the ER of the blends and the solid 

line is the cost reduction obtained relatively to the equivalent blend (obtained in the same month 

and with similar ER) with no WCO available.  

Using WCO in blends for biodiesel production allows a cost reduction relative to blends without 

WCO that ranges from 1% to 10 %. This reduction is related to the WCO quantity in the blend and 

the relation among the feedstock prices. From January 2011 to August 2012, the virgin oils price is 

closer to each other relative to the WCO price and in this period the optimal blends are mainly 

composed of canola and WCO. From September 2012 to September 2013, there is a reduction on 

the palm oil price relatively to soya and canola oils price and the optimal blends of these months 

contain a higher quantity of palm and a lower quantity of WCO. Consequently, the cost reduction 

relatively to virgin oils blends in this period is lower.  

To analyze the influence of different price trajectories, we used the 40 price series that were 

simulated based on historical data. On average, a cost reduction of 7% is achieved when WCO is 

available to blend. Nevertheless, one should point out that in some of these simulated series the 

WCO price can be in some periods higher than the virgin oils. For the cases when WCO price is 

always the lower along the series, the cost reduction varies from about 6% to 23%. This variation is 

because the relation among the feedstock prices is different.  
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Fig. 3 Blend composition for each month from January 2011 to May 2014 without WCO available (left-hand side top) 

and with WCO available (right-hand side top). Error rate of the blends and blend cost reduction (left hand-side down) 

3.2 Managing cost and cost variation addressing feedstock price and composition uncertainty  

The different models described in Section 2.3 were used to evaluate the proposed modeling strategy 

particularly as a function of two key aspects selected by the decision-maker: the extent of available 

storage capacity and the relative weight placed on price risk (i.e. compared to the expected value of 

price). The compositional uncertainty is considered with a confidence level fixed to 95%, allowing 

a 5% probability of non-compliance for each property. 

3.2.1 Influence of planned hedging purchases informed by forecasted feedstock prices on 

cost variation 

The different models were tested on each data set. The average total cost and the average MAD of 

the 80 data sets were calculated and are depicted in Fig. 5 (left-hand side), together with the 
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inventory level (right-hand side). The results obtained for the No storage model (No St) reflect the 

situation where there is no uncertainty in the prices; the producers buy in each period knowing the 

exact feedstock price and the quantity necessary to use in that period. Although this situation does 

not reflect reality it can be considered as an ideal situation benchmark against which the other 

formulations can be compared.  

Results in Fig. 4 show that when storage capacity is added to the model (blue dots) there is a cost 

reduction relatively to the idealized no storage case (red cross). When storage is available, there is a 

tradeoff between the cost variation and the total cost. Lower average cost solutions are obtained if 

no or little weight is given to the risk tradeoff parameter α (solutions St_α=0, St_α=1) but these 

solutions present higher cost variation (approximately 85%).  If one intends to reduce cost variation, 

the weight of the risk tradeoff parameter has to be increased. The minimum cost variation (MAD= 

20%) was obtained for α=10. Interestingly, for this case, there is a 75% reduction in cost variation 

with only a less than 1% increase in average cost. This tradeoff may be attractive for many 

producers and is possible through the combination of models presented here. From the second plot 

in Fig. 4 (Fig. 4, right-hand side), it is clear that the reduction of cost variation (obtained with 

increasing α) results from an increase of the inventory level suggested by the model. It should be 

noted that for α=10, the cost variation is the closest we could obtain to the ideal situation of the No 

storage scenario. The results obtained for α higher than 10 show no reduction in the MAD average 

value or spread.  
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Fig. 4 - Average total cost vs average MAD for the 80 data sets (left-hand side) and inventory level (right-hand side) 

obtained for each model. No St: No Storage; St_α: Storage available and risk tradeoff α=0, 1, 3, 5 and 10. 

To better understand the implications of the model, we disaggregate the results and analyze 

separately the behavior for the uptrend and downtrend data sets.  The results for the uptrend and 

downtrend (average total cost vs average MAD) are presented in Fig. 5 and the average inventory 

level is showed in Fig. 6. Individual plots of average total cost and Box-and-Wiskers of the MAD 

are provided in supplementary material. 

 

  

Fig. 5 - Cost vs MAD obtained for the different models, for the uptrend (left-hand side) and downtrend (right-hand side) 

data sets. No St: No Storage; St_α: Storage available and risk tradeoff α=0, 1, 3, 5 and 10.  
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Fig. 6- Inventory level obtained for the different models, for the uptrend (left-hand side) and downtrend (right-hand 

side) data sets. No St: No Storage; St_α: Storage available and risk tradeoff α=0, 1, 3, 5 and 10. 

A common observation can be made from the results obtained either aggregated (Fig. 4) or 

separated according data set trends (Fig. 5): when storage capacity is added to the model (a more 

realistic situation) and if no weight is given to the risk tradeoff parameter (St_α=0) the cost 

variation is significantly higher than the idealized No St case. A reduction on the cost variation is 

observed with increasing weight given to the uncertainty term (increasing α) and for α=10, the cost 

variation is the closest we could obtain to the idealized case of the No storage scenario.  

Nevertheless, the results average total cost versus average MAD obtained by the different models 

present distinct profiles depending on the price trend. We observed that when prices are generally 

increasing (uptrend – left-hand plot of Fig. 5) average costs are higher when no storage is available 

(No St) compared some amount of storage is available (St_α=0…St_α=10). Furthermore, when 

more weight is given to price risk (increasing α) average inventory grows (uptrend – left-hand plot 

of Fig. 6) and average cost drops; in the uptrend, clever inventory purchases can lead to savings, 

avoiding a purchase later at higher cost. In this case, there is no tradeoff between costs and cost 

variation: lower cost variation can be obtained at a lower cost. 

Interestingly, in the downtrend case (right-hand plot of Fig. 5) there is a small drop in average cost 

when comparing the model that has no storage capacity (No St) to the model with storage capacity 

without considering the uncertainty (St_α=0) and, contrary to what was observed for the uptrend, 
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the total average cost increases as the alpha parameter rises. Increasing alpha places more emphasis 

on reducing cost risk and there is a tradeoff between costs and cost variation. This, in turn, drives up 

average inventory (right-hand plot of Fig. 6). For the downtrend cases, purchases for inventory are 

on average more expensive than deferred purchases.  

Average cost reductions are observed when comparing the model that has no storage capacity (No 

St) to the model with storage capacity without considering the uncertainty (St_α=0) for both price 

trends: about 1.25% for the uptrend and 0.16 % for the downtrend. Despite the fact that these results 

were obtained for a storage cost of zero, the sensitivity analyses performed on the storage cost 

parameter considering it up to 3 % of the feedstock portfolio price (15 €/ton), show the same type of 

behavior of the models. Nevertheless, the cost reductions obtained are lower: about 0.8 % for the 

uptrend and about 0.07 % for the downtrend.  

3.2.2 Influence of the approach in the attractiveness of WCO  

The previous section shows that planned hedging purchases informed by forecasted feedstock prices 

can lead to production cost variation reductions., To analyze the effect on the WCO use of the 

suggested approach and also if WCO would present benefits not only in terms of costs (as it was 

shown in section 3.1) but also in the cost variation, we calculated the average WCO level for each 

model (with increasing α) and the MAD for the different models and data sets setting the WCO 

quantity in the blends to zero. 

As WCO price presents lower variability compared to the virgin oils, we did observe an increase in 

the WCO level with increasing the risk tradeoff parameter but not very significant (about 3% 

increase comparing α=10 relatively to α=0).  This is because the standard deviation of the WCO 

forecasted price (that is used in the third term of equation 3 that penalizes the use of feedstocks that 

increase future price uncertainty) is very close to the standard deviation of the palm forecasted price 

and this feedstock price is also very often closer to the WCO price (sometimes is even lower) in the 

simulated data sets. In what concerns the use of WCO or not in the blends and its effect on the cost 
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variation, we observed that results of MAD median values and spread are lower when WCO is 

available relatively to the case when only virgin oils are used. The Box-and-Whisker plot of the 

MAD of both cases are provided in supplementary material. 

4 Application in Real-world facilities 

Results of these case analyses suggests that real-world facilities could benefit from the application 

of stochastic programming models, like those described here, to improve production planning 

decisions. Depending on the context, facilities applying these models may be able to reduce 

feedstock costs, maintain more stable costs, and/or diversify their feedstock supply chain while still 

meeting their current product quality requirements.  

The first step towards realizing these benefits is data management. The models described here 

depend upon accurate and current data. There are two primary roles for that data in the models. First 

is data to relate feedstock cost to feedstock properties. Second is historical data of feedstock price 

movement. For purchased feedstocks, firms should develop a database of feedstock properties and 

purchase price. Firms should also collect data on prices of other feedstocks even if they are not 

purchasing them at the time. 

Using the data on feedstock properties, firms can estimate the distribution of properties (particularly 

μi and σi from equation 2) for a given feedstock. Using the historic data on feedstock prices, firms 

can develop the ARIMA projection models. The distributional information and projection models 

should be updated annually. Firms may want to consider recalibrating the parameters that relate 

feedstock properties to expected fuel properties as well, but this not need to be revised frequently. 

Using these firm specific data and models proposed here, firms could then develop monthly 

purchasing plans that should improve their financial performance in the long run. 
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5 Conclusions 

A stochastic programming model was developed to support production planning decisions to reduce 

cost and cost variation in biodiesel production. The model simultaneously addresses operational 

(using the chance-constrained formulation) and feedstock price uncertainty (using time series 

analysis to forecast the feedstock price). Technical, cost and cost variation performance metrics 

were used to investigate and interpret the behavior of the proposed approach.  

The proposed stochastic programming formulation proved to be useful in determining optimum 

planning for feedstocks acquisition, blending and storage that minimize the risks associated with 

feedstock price fluctuations. If feedstock prices present an uptrend behavior the suggested 

optimization approach also allows the biodiesel producer to obtain a cost reduction. 

Results show that addressing the compositional uncertainty using the chance-constrained 

formulation allows the use of feedstocks with high compositional uncertainty like waste cooking 

oils in biodiesel blends without compromising the biodiesel technical performance. A cost reduction 

was obtained for blends with waste cooking oils relatively to blends composed only of virgin oils. 

This cost reduction depends on the relation among the prices of the feedstocks. The use of low-cost 

feedstocks in a diversified portfolio of raw materials used in blending optimization models 

represents a cost reduction opportunity for the biodiesel producer without compromising the 

biodiesel quality. As for the influence on cost variation, although the lower price volatility of the 

waste cooking oils should be favored by the recourse model, the various compositional constraints 

limit flexibility enough that it does not appear to be realized significantly for this set of feedstocks, 

prices, and technology. As waste cooking oils present lower environmental impacts relatively to the 

virgin oils its use in the blends also represents a chance for biodiesel producers to move towards a 

more sustainable production 

One must highlight that this model can be adapted to any country specific biodiesel quality 

standard. Although, the technical constraints thresholds used to illustrate the model are based on 

European regulation they can be adapted to other standards (for example in the US regulation there 
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is no threshold for iodine value and there is a lower limit for oxidative stability. Moreover, it can 

also be used to support the assessment of the use of fatty acid based residue-derived feedstocks like 

for example animal fats or the viability of emerging feedstocks such as algae.  
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