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Abstract 19 

Decision-makers in government and industry must develop policy and strategy for highly 20 

complex systems, trading off competing objectives such as environmental and economic 21 

impact. These trade-offs can be difficult to analyze, which may lead to misinformed 22 

choices. There is lack of decision support tools that both include multiple objectives and 23 

facilitate communication to decision-makers in a comprehensive and simple way. To 24 

address this gap, a mathematical model that facilitates the decision process by allowing an 25 

agent to decide based on an explicit overall economic and environmental performance but 26 

simultaneously visualize graphically the trade-offs among the different objectives was 27 

developed. This model was used to assess the trade-offs of using waste-based feedstocks in 28 

blends with conventional feedstocks for biodiesel production, and explore opportunities to 29 

improve biodiesel cost effectiveness whilst managing environmental impacts, particularly 30 

in the feedstock selection process. The compositional uncertainty of the feedstocks is 31 

considered in the model ensuring that the final quality of the biodiesel is not compromised 32 

by the high uncertainty associated with the composition of waste materials. Reductions on 33 

production costs (3%) and on environmental impacts (from 2% to 32%) were obtained 34 

using this model to select the blend composition. The model was shown to be useful to 35 

inform decision-making by allowing comprehensive, simplified visualization of the trade-36 

offs among cost and environmental impacts. The model can be used to support biodiesel 37 

production planning with lower environmental impacts. 38 

Keywords: Biodiesel, waste cooking oil, blending optimization, uncertainty, climate 39 

change, water impacts  40 
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1. Introduction 41 

The combination of Life-Cycle Assessment (LCA), a tool used to assess environmental 42 

impacts, with multi-objective optimization (MOO), a mathematical modeling tool that 43 

supports decision-making considering multiple objectives, has led to the development of 44 

life-cycle multi-objective (LCMO) frameworks to analyze trade-offs between 45 

environmental and economic aspects in several applications (Jacquemin et al., 2012; 46 

Pieragostini et al., 2012; Yue et al., 2016). Case studies can be found in the literature in 47 

several areas such as processing (Capón-Garcia et al., 2011), recycling (Ponce-Ortega et al. 48 

2011), energy systems (Bamufleh et al., 2012; Cristóbal et al., 2012; Gerber and Gassner, 49 

2011; Gutiérrez-Arriaga et al., 2012; López-Maldonado et al., 2011), or buildings (Carreras 50 

et al., 2015; Safaei et al., 2015). Nevertheless, they are often focused on a single economic 51 

and a single environmental objective, typically greenhouse gas (GHG) emissions. A few 52 

studies include a higher number of objectives, like is the case of the recent work presented 53 

by Vadenbo et al. (2017) that developed an environmental multi-objective optimization 54 

model to determine the environmentally optimal use of biomass for energy using the 55 

Danish energy system as case study. In this work, six environmental impact categories are 56 

considered to be minimized. However, a pitfall of these studies is the lack of a simple and 57 

intuitive visual communication of the trade-offs among the different objectives in order to 58 

facilitate the decision process.  59 

The challenge of including more environmental impact categories as objective functions in 60 

a LCMO model is related to the complexity of trade-off analysis when considering many 61 

competing objectives. For example, one may be concerned on minimizing GHG emissions 62 

and costs but in fact, the solution that minimizes these two objectives may bring burdens to 63 

other relevant environmental issues such as water scarcity. For this reason, the development 64 
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of tools that facilitate the trade-off analysis and the decision process is very important 65 

within the LCMO framework (Tsang et al., 2014). This paper presents an alternative 66 

LCMO decision-aiding approach that facilitates the decision process by allowing the 67 

decision-maker to decide based on an explicit overall environmental performance and, at 68 

the same time, visualize the trade-offs among the different objectives to support decisions 69 

in a more comprehensive manner. 70 

The model developed is illustrated by assessing the use of Waste Cooking Oils (WCO) in 71 

blends for biodiesel production. WCO have been gaining prominence as an alternative 72 

feedstock for biodiesel production due to their potential to improve the economic and 73 

environmental performance of biodiesel compared with crop-based oils (e.g. soya, rapeseed 74 

or palm, also designated as virgin oils in this paper) (Caldeira et al., 2015; Carla Caldeira et 75 

al., 2016; Dufour and Iribarren, 2012). However, the high uncertainty and variability in 76 

WCO chemical composition due to a high diversity of sources hinder guaranteeing 77 

biodiesel quality (Knothe and Steidley, 2009). A potential strategy to deal with this issue is 78 

to blend WCO with virgin oils, such as soybean, rapeseed, and palm oil as presented by 79 

Caldeira et al. (2017b). The authors showed that, using chance constrained programming 80 

(CCP) to address compositional uncertainty, blends containing WCO can have the same 81 

technical performance as blends composed only of virgin oils while reducing costs. 82 

However, besides costs, it is also important to assess the potential environmental benefits. 83 

Although the main environmental concern of biodiesel is related to GHG emissions, 84 

another relevant aspect to consider when evaluating the environmental impacts of biodiesel 85 

is water use. Water use impacts have been insufficiently addressed in the literature, but if 86 

the location where the crops are cultivated is water scarce, the water consumption impacts 87 

can be significant (Pfister and Bayer, 2014). Moreover, the water quality may be 88 
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compromised due to the use of fertilizers and pesticides in the crops cultivation 89 

(Emmenegger et al., 2011). 90 

Few studies can be found in the literature that combine LCA and MO under uncertainty. 91 

Some of these studies are focused on the uncertainty of the LCA impact either by using 92 

CCP (Guille and Grossmann, 2009; Guillén-Gosálbez and Grossmann, 2010) or by 93 

describing the LCA uncertain parameters through scenarios with given probability of 94 

occurrence (Sabio et al., 2014).  Other studies address uncertainty related to prices and 95 

demand uncertainty, using scenarios with given probability of occurrence in the design of 96 

sustainable chemical supply chains (Ruiz-Femenia et al., 2013) and chemical processes 97 

network (Alothman and Grossmann, 2014)  or, uncertainty in several parameters expressed 98 

as fuzzy possibility distributions and probability distributions to help design better waste 99 

management strategies (Zhang and Huang, 2013). No study that optimizes blends for 100 

biodiesel production minimizing costs and multiple environmental impacts considering the 101 

feedstocks compositional uncertainty was found in the literature.  102 

This paper presents a model to facilitate trade-off analysis in LCMO problems illustrating 103 

its use in the assessment of the incorporation of secondary material (WCO) in blends for 104 

biodiesel production. The model objectives (to minimize) include feedstock costs, life-cycle 105 

GHG emissions, water scarcity, toxicity, acidification and eutrophication impacts. The oils 106 

compositional uncertainty is incorporated in the model, minimizing the risk of 107 

noncompliance with biodiesel technical requirements. The efficient solutions obtained 108 

allow the production planner to analyze the trade-offs between economic and 109 

environmental performance, and select blends that will lead to a product with lower 110 

environmental impacts.  111 
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2. Material and Methods 112 

2.1 Life-cycle multi-objective (LCMO) chance constrained model 113 

The model framework is presented in Fig.1. The model determines blends that minimize 114 

costs and environmental impacts by calculating the quantity of each feedstock (palm, 115 

rapeseed, soya and WCO) to use in the blend, addressing the feedstock compositional 116 

uncertainty. The input information is the profile of the different feedstocks: chemical 117 

composition and its associated uncertainty, costs and environmental impacts. The outputs 118 

are optimal blends that are in compliance with the required biodiesel properties with 119 

minimum cost and environmental impact. Typically, there is no feasible solution that 120 

minimizes costs and all the environmental impacts simultaneously thus, the model is a 121 

decision support tool that helps decision-makers find Pareto-optimal solutions, i.e. solutions 122 

such that it is not possible to improve one of the objectives without worsening some other 123 

objective. Decision-makers may thus observe the trade-offs between their objectives and 124 

select their most preferred solution. 125 

The model framework is presented in figure 1.  126 

 127 

Fig. 1. Life-cycle multi-objective chance constrained model framework 128 

 129 

Since the biodiesel production cost is mainly attributed to feedstock costs (about 85%) 130 

(Haas et al., 2006), the costs considered in the model concern the purchase of feedstock. 131 
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Price information from 2011 to May 2014 for palm, canola and soya oils was taken from 132 

IndexMundi (IndexMundi, 2014) and prices for WCO were obtained from a European 133 

broker (Grennea, 2014). The month July 2013 was selected because it is the month when 134 

the price of WCO was closer to the virgin oils price, which represents a conservative 135 

situation to evaluate the benefits of WCO. The prices were 559 €, 767 €, 765 € and 400 € 136 

per ton of palm, rapeseed, soya and WCO. The environmental impacts categories include: 137 

Climate Change (CC), Water Stress Index (WSI), Freshwater Eutrophication (FE), Aquatic 138 

Acidification (AC), Human Toxicity (HT) and Ecotoxicity (ET). The model is illustrated 139 

using the Portuguese context as a case study because the authors had access to primary data 140 

and detailed information about the biodiesel production in Portugal to determine the 141 

environmental impacts of the feedstocks used in the model. Nevertheless, this case is used 142 

to illustrate the model and the assessment herein presented can be replicated for biodiesel 143 

production in other countries. 144 

Life-Cycle Assessment model 145 

LCA was used to assess the environmental profile of four feedstocks: three crop-based oils 146 

(palm, soya and rapeseed) and WCO. The data used to build the LCA model was retrieved 147 

from another work done by some of the authors (Caldeira et al., 2018). As the goal of this 148 

paper is to illustrate the LCMO model, the LCA model is briefly described and the impacts 149 

values used in the optimization model are presented in Table 1. The life-cycle (LC) model 150 

was built to assess the GHG emissions impacts (CC), water consumption impacts 151 

(measured by the impact category WSI) and water degradability impacts (measured by the 152 

impact categories FE, AC, HT and ET. The functional unit chosen was 1 kg of vegetable 153 

oil. It is assumed that after the refining step, the virgin oils and the WCO have the required 154 
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characteristics for the transesterification reaction (biodiesel production). Technically, the 155 

production of biodiesel from WCO is similar to conventional transesterification processes 156 

of the virgin oils (Knothe et al., 1997). The variation on the energy content (low heating 157 

value) of biodiesel produced from palm, soya, rapeseed and WCO is below 1% (Hoekman 158 

et al., 2012). 159 

The system boundaries of the crop-based oils systems, schematically represented in Fig. 2, 160 

include cultivation, oil extraction, feedstock transportation and oil refining, considering that 161 

the oils are refined in Portugal. Different cultivation locations were considered: Colombia 162 

and Malaysia for palm fruit; Argentina, Brazil and US for soybean; and, Germany, France, 163 

Spain, Canada and US for rapeseed. The palm oil extraction was made in the cultivation 164 

site while the soya and rapeseed oils were extracted in Portugal. The transportation of the 165 

palm oil, soybeans and rapeseeds to Portugal was considered in the model.  166 

 167 

 168 
Fig. 2. System boundaries of the oils systems 169 

 170 
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Virgin oil production is a multifunctional system because from the oils extraction phase 171 

other co-products are obtained: from palm oil extraction is also obtained palm kernel meal 172 

and kernel oil; from soybean oil extraction, soybean meal; and, from rapeseed oil, rapeseed 173 

meal. The distribution of the impacts between the oils and the co-products was made using 174 

energy allocation (method suggested in the European Directive 2009/28/EC (European 175 

Comission, 2009) on the promotion of the use of energy from renewable sources).  176 

For the WCO, the stages considered within the system boundaries (Fig. 2) are the WCO 177 

collection and refining in Portugal. Depending on the quality of the WCO (mainly related 178 

to the percentage of free fatty acids, FFA) the refining process is different. For low quality 179 

WCO, the refining consists in an acid-catalyzed process to reduce the percentage of FFA 180 

(Jungbluth et al., 2007) while for high quality WCO, the refining consists in filtering to 181 

remove impurities and heating to remove water (above 100º C during approximately 2 182 

hours)(Caldeira et al., 2015). The two alternative WCO refining processes are considered in 183 

the study.  184 

The inventory was built with data collected from several references: palm cultivation and 185 

palm oil extraction in Colombia (Castanheira et al., 2014); palm cultivation and palm oil 186 

extraction in Malaysia, Ecoinvent 3.1 database (Jungbluth et al., 2007) soybeans cultivation 187 

in Argentina (considering the reduced tillage cultivation system) (Castanheira and Freire, 188 

2013); soybeans cultivation in Brazil (considering cultivation in Mato Grosso) (Castanheira 189 

et al., 2015); soybeans cultivation in the US, Ecoinvent 3.1 database (Jungbluth et al., 190 

2007); rapeseed cultivation in Spain, Germany, France, Canada (Malça et al., 2014); 191 

rapeseed cultivation in the US, Ecoinvent 3.1 database; soybean oil extraction in Portugal 192 

(Castanheira et al., 2015); rapeseed oil extraction (Castanheira and Freire, 2016); palm, 193 

soybean and rapeseed oils refining, (Castanheira and Freire, 2016); low quality WCO 194 
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refining (Jungbluth et al. 2007); high quality WCO refining ( Caldeira et al., 2016) and 195 

WCO collection (Caldeira et al., 2016; Caldeira et al., 2015).  196 

Climate Change (CC) and Freshwater Eutrophication (FE) were assessed using the impact 197 

assessment method ReCiPE (Goedkoop et al. 2009); water consumption impacts (WSI) 198 

using the method presented by Pfister et al. (2009) and Ridoutt and Pfister (2013); Aquatic 199 

Acidification (AC) using Impact 2002+ (Jolliet et al., 2003); and Human toxicity (HT) and 200 

Ecotoxicity (ET)  using Usetox recommended version (Rosenbaum et al., 2008). 201 

Table 1 Environmental impacts - Climate Change (CC), Water Stress Index (WSI), Freshwater  202 

Eutrophication (FE), Aquatic Acidification (AC), Human Toxicity (HT) and Ecoxicity (ET) - for the different 203 

oils analyzed, palm, soya, rapeseed and WCO (Caldeira et al., 2018). 204 

 

Feedstock_origin 

CC WSI FE AC HT ET 

kg CO2 eq kg
-1

 

oil 

m
3
 eq kg

-1
 

oil 

kg P eq kg
-1

oil 

(*10
-4

) 

kg SO2 eq kg
-

1
oil (*10

-2
) 

CTUh kg
-1

 oil 

(*10
-11

) 

CTUhe kg
-1

 

oil 

Palm_CO 0.90 0.076 3.98 1.24 0.44 0.004 

Palm_MY 0.72 0.078 1.83 1.09 0.69 2.47 

Soya_AR 0.90 0.264 7.15 0.80 0.74 5.54 

Soya_BR 1.29 0.109 7.81 1.08 1.08 8.32 

Soya_US 1.23 0.088 1.97 1.02 40.1 0.39 

Rapeseed_DE 1.69 0.111 2.62 2.23 1.1 0.45 

Rapeseed_FR 1.68 0.182 2.6 2.56 60.2 6.57 

Rapeseed_SP 1.85 2.113 2.87 2.88 213.0 23.38 

Rapeseed_CN 1.75 0.095 4.42 2.84 79.2 18.06 

Rapeseed_US 3.32 0.172 1.88 3.30 52.2 3.09 

WCO_PT _Hi* 0.23 0.0020 0.71 0.15 1.37 0.03 

WCO_PT_Lo** 0.12 0.0015 0.56 0.01 1.33 0.03 

CO:Colombia, MY:Malaysia AR:Argentina, BR:Brazil, US:United States, DE:Germany, FR:France, SP:Spain, 205 

CA:Canada, PT:Portugal 206 

*High Quality Waste Cooking Oil  207 

**Low Quality Waste Cooking Oil 208 

 209 

 210 

 211 
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Addressing feedstock compositional uncertainty using chance constrained 212 

optimization 213 

Compositional uncertainty has been addressed by several authors using chance constrained 214 

programming (CCP) optimization (Gaustad et al., 2007; Gülşen et al., 2014; Li et al., 2012; 215 

Sakallı et al., 2011). The application of CCP in blend optimization of conventional 216 

feedstocks (palm, canola, sunflower and soya) used in biodiesel production showed that 217 

feedstock diversification (blending) can: i) help control costs while ensuring fuel quality by 218 

spreading the risk of price volatility across multiple feedstocks (Gülşen et al., 2014); and, 219 

ii) manage GHG emissions uncertainty characteristics of biodiesel (Olivetti et al., 2014). 220 

Using CCP formulation, Caldeira et al. (2017b) analyzed the use of a secondary material 221 

(WCO) in blends with conventional feedstocks. The same set of constraints was used in this 222 

paper to address compliance with technical constraints in face of composition uncertainty. 223 

The constraints were defined based on existing  prediction models that relate the 224 

composition, specifically the vegetable oils fatty acids (FA) content of the feedstocks and 225 

biodiesel properties: density (Den), cetane number (CN), cold filter plugging point (CFPP), 226 

iodine value (IV) and oxidative stability (OS) (Caldeira et al., 2017a). The explanation of 227 

these prediction models and derivation of these constraints can be found in previous work 228 

(Caldeira et al., 2017b, 2014).  229 

 230 

Model formulation 231 

The mathematical formulation of the problem is presented below and the nomenclature 232 

used is described in Table 2. The goal is to determine the Pareto optimal blend that 233 

minimizes production costs and environmental impacts that are calculated according to 234 
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equation 1, multiplying the quantity of each feedstock used in the blend (the decision 235 

variable in the model, QUi) by the coefficient for each objective k of each feedstock i (Ck,i). 236 

This coefficient indicates the cost or impact on objective k per unit of feedstock i used in 237 

the blend. Table 1 presents the coefficients of the environmental impact for each feedstock 238 

and, as explained in the section 2.1 (2
nd

 paragraph), the coefficient for the feedstock prices 239 

were 559 €, 767 €, 765 € and 400 € per ton of palm, rapeseed, soya and WCO. The model 240 

is subject to demand and supply constraints (equations 2 and 3). Since the goal is to analyze 241 

the proportion of each feedstock in the blend, the demand was set equal to 1 and no supply 242 

limitations were considered. For each property (Den, CN, CFPP, IV and OS) the final blend 243 

must comply with the technical specifications (equations 4 and 5 for lower and upper 244 

limits). β represents a risk tolerance parameter that determines the maximum accepted non-245 

compliance rate level chosen by the user. Assuming a normal distribution of the uncertain 246 

parameter (qi,j), β is the normal distribution test coefficient (z-value), one-tailed. The 247 

constraints thresholds were defined according to the European Standard EN 14214 (CEN, 248 

2008).  249 

Objective functions  

 

min zk = ∑(Ck,𝑖 QUi)

i∈I

    ∀ k 

 

(1) 

Demand and Supply constraints  

∑ QUi

i∈I

= D    

  QUi ≤ Si  ∀ i 

(2) 

(3) 

Technical Constraints  

 

∑ (PropCoefl,j ∑ QUi q̅ij 

i∈I

)

j∈J

+ PropConstl − 𝛽√∑ PropCoefl,j
2

j∈J

∑ QUi
2σij

2

i∈I

 ≥ PropGT𝑙    ∀ l (4) 

∑ (PropCoefm,j ∑ QUiq̅ij 

i∈I

) + PropConstm + 𝛽√∑ PropCoefm,j
2

j∈J

∑ QUi
2σij

2

i∈I

 ≤ PropLT𝑚  ∀ m 

j∈J

 (5) 
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  QUi ≥ 0        ∀ i  (6) 

 250 

 251 

Table 2 Biodiesel blending optimization problem nomenclature 252 

Indices and sets i ϵ I I = {soya, canola, palm, WCO}, feedstock oils 

 k ϵ K K = {Cost, CC, WSI, FE, AC, HT, ET}, objective functions 

 j ϵ J J = {1, 2,…, 18}, Fatty Acids (FA) 1 to 18 types of FA  

 l ϵ L L = {DenLB, CN, OS}, set of properties with lower limit 

 m ϵ M M = {DenUB, IV, CFPP}, set of properties with upper limit 

Parameters Ck,i Coefficient of objective k concerning feedstock i 

 D Demand 

 Si   Supply of feedstock i  

 qi,j̅̅ ̅̅  Average quantity (%) of FA-j in feedstock i 

 𝜎i,j Standard deviation for qi,j̅̅ ̅̅  

 PropCoefl,j   Coefficient of FA-j in the prediction model for property l 

 PropCoefm,j   Coefficient of FA-j in the prediction model for property m 

 PropConstl Constant in the prediction model for property l 

 PropConstm Constant in the prediction model for property m 

 PropGT𝑙  Threshold for property l 

 PropLT𝑚 Threshold for property m 

 β Test coefficient for normal distribution, one tailed 

Decision 

Variables 
QUi Quantity of feedstock i to use in the blend  

 253 
 254 

2.2 An approach to facilitate the trade-off analysis between cost and environmental 255 

impacts 256 

As typically occurs in multi-objective problems, the competing nature of the objectives 257 

makes it difficult for decision-makers to identify the “best” solution. Methods exist that use 258 

“à priori” decision-maker preferences to aggregate the multiple objectives into a single 259 

objective (by attributing weights to each objective). However, the decision-maker may find 260 

it hard to define such weights in an explicit way in the absence of a thorough understanding 261 

of the problem.   262 
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Alternatively, an approach to visualize the trade-off among cost and environmental impacts 263 

without attributing weights to objectives is the -constraint method, in which one objective 264 

is minimized while the other are considered as constraints. In particular, if cost is the 265 

objective being minimized, the following (mono-objective) mathematical program could be 266 

solved: 267 

Objective function  

 

min zCost = ∑(CCost,𝑖 QUi)

i∈I

 

 

(7) 

Subject to: 268 

 

zk = ∑(Ck,𝑖 QUi)

i∈I

≤ 𝜀𝑘    ∀ k ≠ Cost 

 

(8) 

   Demand and Supply constraints, i.e. equations 2 and 3 269 

   Technical Constraints, i.e. equations 4 to 6. 270 

The above mathematical program yields a Pareto-optimal solution for each combination of 271 

impact limits defined by the 𝜀𝑘 right-hand side values, if feasible (some limits might be 272 

impossible to attain). Hence, different solutions can be obtained by varying these limits. 273 

However, it might be difficult for a decision-maker to deal with all the 𝜀𝑘 parameters 274 

simultaneously. For this reason, in this work a single parameter Θ is used to define Pareto-275 

optimal solutions corresponding to cost versus environmental impact trade-offs. This 276 

approach consists in replacing all the k-constraints in equation 8 by the constraints in 277 

equation 9:  278 

∑(ck,i ∙ QUi)

i∈I

 ≤ Ideal +  θ (Anti ideal − Ideal)     ∀ k \ {Cost} , θ ϵ [0,1] (9) 

 279 

In this equation, Θ is a parameter that reflects the constraint level of the environmental 280 

impacts and ranges from 0 to 1. The so-called “ideal” and “anti-ideal” values are obtained 281 
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by optimizing each environmental objective at a time. The “ideal” value for each objective 282 

corresponds to minimum impacts on this objective among all the solutions. The “anti-ideal” 283 

value for each objective is the maximum impact found when examining the solutions that 284 

optimize the other objectives. The “ideal” and “anti-ideal” values provide an indication of 285 

the range of impacts obtained by Pareto optimal solutions. When Θ =1, the environmental 286 

impacts are allowed to be as high as the “anti-ideal” value and the solution with the 287 

minimum cost can be obtained. As Θ decreases, the upper limit for all environmental 288 

impacts also decreases, departing from the “anti-ideal” values and getting closer to the 289 

“ideal” values (e.g., Θ=0.5 means that the upper limit on each environmental indicator will 290 

be halfway between the ideal and anti-ideal values). Thus, the feasible region decreases 291 

leading to more expensive solutions, up to a minimum value (ΘLim) such that for Θ < ΘLim 292 

the problem becomes unfeasible. The parameter Θ determines if the decision-maker wants 293 

to be closer to the environmental impacts “ideal” value and therefore, having the best 294 

environmental performance (within the constraints of the problem), or to be closer to 295 

minimum costs achievable. The decision-maker can vary Θ to learn what the involved 296 

trade-offs are, and results can be conveniently depicted graphically presenting costs as a 297 

function of Θ. 298 

The model was implemented in GAMS 24.4. (GAMS, 2011). The problem was solved 299 

using the non-linear solver CONOPT (Drud, 2014) which is well suited for models with 300 

nonlinear constraints with a fast method for finding a first feasible solution for very 301 

constrained models. The solver makes use of the Generalized Reduced Gradient (GRG) 302 

method with some extensions added. It has been widely used for solving stochastic and 303 

multi-objective optimization models (Cristóbal et al., 2012; Guillén-Gosálbez & 304 

Grosseman, 2010; López-Maldonado et al., 2011; Sabio et al., 2014).  Each run of the 305 
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model took approximately 40 seconds on an intel (R) Core ™ i5-3337U CPU@ 1.8 GHz 306 

machine. 307 

3. Results and discussion 308 

It was first analyzed the results of the model minimizing three objectives because this is the 309 

limit of objectives that can be visualized: costs, climate change (CC) and water 310 

consumption impacts (WSI) (section 3.1). Then, the assessment was extended by adding 311 

the other environmental impact categories FE, AC, HT, ET. In this situation, since it is 312 

impossible to visualize the trade-offs the approach described in 2.2 was used. Results are 313 

presented in section 3.2. The analysis was performed for two cases: a) WCO is available to 314 

blend with the virgin oils; and,  b) only virgin oils are available (the reference scenario for 315 

biodiesel production in Portugal for the price period considered). The latter is used as 316 

benchmark to evaluate the use of WCO in the blends. 317 

3.1 Cost, Climate Change and water consumption  318 

This section is presented and discussed the results obtained by minimizing costs, CC and 319 

WSI. Table 3 presents the pay-off tables obtained for both scenarios considering three 320 

objectives: Cost, Climate Change (CC) and Water Stress index (WSI). Each row 321 

corresponds to minimizing a different objective. The diagonal of each table (bold values) 322 

presents the “ideal” value of each objective (column) and the shaded area indicates the 323 

“anti-ideal” value of each objective.  324 

When WCO is available to blend with the virgin oils, the blends incorporate 34% of WCO 325 

when the cost objective is minimized, 10% when CC is minimized and 32% when WSI is 326 

minimized. The incorporation of WCO allows a reduction of the minimum value obtained 327 

for each objective (“ideal” values) comparatively to the “ideal” values obtained with blends 328 
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composed only of virgin oils (Table 3). The “ideal” value for cost, CC and WSI obtained 329 

with WCO available are 3%, 2% and 32% lower than the “ideal” values obtained when 330 

only virgin feedstocks are available. Also the “anti-ideal” value for cost is lower (2%) when 331 

WCO are included in the blend. Nevertheless, for the “anti-ideal” values for CC and WSI 332 

there is an increase of 3% and 14%. 333 

Table 3 Pay-off tables obtained by minimizing cost, CC and WSI in two scenarios:  a) WCO is available to 334 

blend with the virgin oils and, b) only virgin feedstocks are available.  335 

 a) With WCO b) Without WCO 

Objective 

minimized 

Cost 

(€ ton
-1

) 

CC (kg CO2 

eq kg
-1

 oil) 

WSI 

(m
3
 eq kg

-1
 

oil) 

Cost 

(€ ton
-1

) 

CC (kg CO2 

eq kg
-1

 oil) 

WSI 

(m
3
 eq kg

-1
 

oil) 

Cost 

 
642.7 1.48 0.354 662.4 1.43 0.304 

CC 

 
677.9 1.07 0.149 692.1 1.09 0.159 

WSI 

 
650.1 1.31 0.065 689.6 1.26 0.086 

The diagonal contains “ideal” values of the objective (column)  336 
The shaded values are “anti-ideal” values of the objective (column)  337 
 338 

A set of Pareto optimal solutions were obtained using the Ɛ-constraint method miminizing 339 

costs and using CC and WSI as constraints, incorporating them in the constraint part of the 340 

model. The contraint level ranges, interactively, from the “anti-ideal” to the “ideal” values 341 

presented in Table 3. The iteration step for each objective is one tenth of the difference 342 

between the “anti-ideal” and “ideal” value. Fig. 3 shows the Pareto surface obtained 343 

minimizing cost, CC and WSI for the two scenarios considered: (a) having WCO available 344 

in the model (right-hand side) and, (b) without WCO available (left-hand side). The Pareto 345 

surface is displaced to lower costs when WCO is included in the blends. The quantity of 346 

WCO incorporated in the blends ranges from 10% to 34%. Lower CC and WSI solutions 347 

can be obtained at a lower cost if WCO is included in the blends. 348 
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Fig. 3. Pareto surface obtained minimizing cost, climate change (CC) and water stress index (WSI) having 349 

WCO available in the model (right-hand side) and without WCO available (left-hand side). 350 

 351 

3.2 Extended environmental assessment 352 

In this section, the analysis was extended to include the other environmental impacts: 353 

eutrophication (FE), acidification (AA), human toxicity (HT) and ecotoxicity (ET). The 354 

pay-off tables obtained for the two scenarios, with and without WCO available, are 355 

presented in Table 4 and Table 5. Similarly to what was observed for the “ideal” values 356 

obtained for cost, CC and WSI, the use of WCO also reduces the ideal values in 9% for FE, 357 

3% for AA and 4% for ET relatively to the situation when only virgin oils are available to 358 

blend. For HT, the ideal value is the same in both situations. The quantity of WCO 359 

incorporated in the blend when minimizing FE is 33% and 11% when minimizing AA or 360 

ET. The blend obtained when minimizing HT has no WCO in its composition.  361 

 362 

 363 

 364 
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Table 4 Pay-off table for Cost, Climate Change (CC), Water Stress Index (WSI), Freshwater  Eutrophication 365 

(FE), Aquatic Acidification (AC), Human Toxicity (HT) and Ecoxicity (ET) when WCO is available 366 
O

b
je

ct
iv

e 

m
in

im
iz

ed
 

Cost 

€ ton
-1 

CC 

kg CO2 eq 

kg-1 oil 

WSI 

m3 eq kg-1 

oil 

FE 

kg P eq kg-1 

oil 

(*10-4) 

AC 

kg SO2 eq kg-1 

oil (*10-2) 

HT 

CTUh  kg-1 oil 

(*10-11) 

ET 

CTUhe  

 kg-1 oil 

Cost 642.7 1.48 0.354 4.36 1.87 54.03 6.82 

CC 677.9 1.07 0.149 3.62 1.39 13.10 4.09 

WSI 650.1 1.31 0.065 3.22 1.98 54.32 12.30 

FE 647 1.24 0.101 1.95 1.64 23.62 2.55 

AC 676.9 1.11 0.127 3.60 1.34 2.79 2.36 

HT 693.7 1.17 0.146 4.49 1.44 0.74 1.86 

ET 668 1.32 0.091 3.07 1.74 0.83 0.25 

The diagonal contains ideal values of the objective (column)  367 
The shaded values are anti-ideal values of the objective (column)  368 
 369 

Table 5 Pay-off table for Cost, Climate Change (CC), Water Stress Index (WSI), Freshwater  Eutrophication 370 

(FE), Aquatic Acidification (AC), Human Toxicity (HT) and Ecoxicity (ET) when WCO is not available 371 

O
b

je
ct

iv
e 

m
in

im
iz

ed
 

Cost 

€ ton
-1 

CC 

kg CO2 eq 

kg-1 oil 

WSI 

m3 eq kg-1 

oil 

FE 

kg P eq kg-1 

oil 

(*10-4) 

AC 

kg SO2 eq kg-1 

oil (*10-2) 

HT 

CTUh kg-1 oil 

(*10-11) 

ET 

CTUhe 

  kg-1 oil 

Cost 662.4 1.43 0.304 4.57 1.96 40.60 5.74 

CC 692.1 1.09 0.159 3.87 1.43 12.37 4.24 

WSI 689.6 1.26 0.086 3.27 1.70 38.73 6.54 

FE 693.4 1.20 0.105 2.13 1.50 24.36 2.28 

AC 689.7 1.13 0.132 3.85 1.38 3.35 2.57 

HT 693.7 1.17 0.146 4.49 1.44 0.74 1.86 

ET 676.9 1.35 0.096 3.21 1.80 0.79 0.26 

The diagonal contains ideal values of the objective (column)  372 
The shaded values are anti-ideal values of the objective (column)  373 
 374 

This analysis shows the potential competing nature of objectives. For example, minimizing 375 

cost leads to solutions (blends) that correspond to the anti-ideal solution for CC and WSI. 376 

On the other hand, minimizing WSI leads to the anti-ideal solution for AC, HT and ET 377 

(Table 4). 378 

As the number of objectives increased to seven, it would be impossible to visualize the 379 

Pareto solutions as it was shown for Cost, CC and WSI in Fig. 3. In this case, the approach 380 
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described in section 2.2 (equation 9) was applied. Results for the cost obtained for different 381 

Θ for the two scenarios, with and without WCO available, are depicted in Fig.4. 382 

 383 

Fig.4. Blends cost obtained for different Θ. For Θ lower than 0.15 and 0.27 the problem is unfeasible (shaded 384 

area) for the situation with and without WCO. 385 

 386 

Lower cost blends are obtained if WCO is available (yellow crosses). Blend 1 was obtained 387 

setting Θ=1 and corresponds to the lowest cost solution (642.7 € ton
-1

). Decreasing the 388 

value of Θ increases the cost and for Θ values lower than 0.15 the problem becomes 389 

unfeasible. For ΘLim= 0.15 the solution corresponds to blend 7 which has a cost of 665.1 € 390 

ton
-1

. In the scenario were WCO is not available (green squares), the cost of blend obtained 391 

with Θ=1 (Blend 1’) is 670 € ton
-1

, 4% higher than blend 1. The ΘLim for this scenario is 392 

0.27 and corresponds to blend 6’ that has a cost of 686.6 € ton
-1

, 2.3% higher than Blend 7. 393 

The cost and environmental impacts obtained with Θ=1 (Blends 1, 1’) and Θ= ΘLim (7, 6’) 394 

in both scenarios (with and without WCO) are presented in Table 6. 395 

 396 
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Table 6 Results for Cost, Climate Change (CC), Water Stress Index (WSI), Eutrophication (FE), 397 

Acidification (AC), Human Toxicity (HT) and Ecotoxicity (ET) obtained for Θ=1 and Θ= Θ lim when WCO is 398 

available (a) and when it is not (b) 399 

Objective 

Θ=1 

(a)  

(Blend 1) 

Θ=1  

(b) 

(Blend 1´) 

Θ=0.15 

(a) 

(Blend 7) 

Θ=0.27 

(b) 

(Blend 6´) 

Cost (€ ton
-1

) 642.7 670.0 665.1 686.6 

CC (kg CO2 eq kg
-1

 oil) 1.48 1.22 1.17 1.18 

WSI (m
3
 eq kg

-1
 oil) 0.354 0.304 0.120 0.145 

FE (kg P eq kg
-1

 oil *10
-4

) 4.35 3.13 2.41 2.79 

AC (kg SO2 eq kg
-1

 oil *10
-2

) 1.87 1.7 1.44 1.47 

HT (CTUh kg
-1

 oil *10
-11

) 54.08 27.83 8.07 11.5 

ET (CTUhe kg
-1

 oil) 6.82 4.25 1.52 1.94 

Quantity of WCO (%) 34 — 18 — 

 400 

Using 34% of WCO in Blend 1 needs to be compensated with the use of rapeseed 401 

feedstocks to comply with the technical constraints, whereas in Blend 1’ there is a high 402 

quantity of palm feedstocks (20% Palm_CO + 26% Palm_MY). Since the rapeseed 403 

feedstocks have higher impacts than the palm ones, the environmental impacts of Blend 1 404 

are higher than those of Blend 1’. Nevertheless, with decreasing Θ, the environmental 405 

impacts decrease and for Θ=0.15 (Blend 7) the environmental impacts are lower than the 406 

ones of Blend 6’ (blend with the lowest environmental impacts in the no WCO available 407 

scenario). This means that lower environmental impacts at a lower cost are obtained when 408 

WCO is available.  409 

Additionally to Fig. 4, that so far was used to analyze the cost savings from using WCO in 410 

the blends, this approach allows to depict Fig. 5 that shows the value for each 411 

environmental impact and the position relatively to the “ideal” and “anti-ideal” value for 412 

the blends. This figure helps the decision-maker to understand in a more comprehensive 413 

manner the trade-offs associated with different Θ values. Fig.4 shows the relative position 414 

of the solution obtained with Θ =5 (Blend 4) to the “ideal” and “anti-ideal” values (extreme 415 

values of the line in the graphs) and also to the solution obtained with Θ =1 (Blend 1, red 416 
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dots) and with Θ = 0.15 (Blend 7, green squares). The combination of Fig.4 and Fig.5 417 

allows the decision-maker to visualize graphically what happens to cost (Fig. 4) and to each 418 

impact environmental objective (Fig. 5) for different values of Θ. For example, if the 419 

decision-maker wants to be sure that the blend is closer to the “ideal” value than to the 420 

“anti-ideal” in all the environmental performance objectives, Θ can be set as equal to 0.5 421 

and the optimal solution is Blend 4 (yellow crosses in Fig. 5). The choice of Blend 4 422 

represents an increase in the cost of 0.3% relatively to Blend 1 (lower cost blend) but a 423 

reduction of 11% in AC, 13% in CC, 40% in WSI, 45% in FE, 50% in HT and 72% in ET.  424 

 425 

Fig.5. Relative position to the ideal and anti-ideal values of blend 1 (obtained with Θ = 1), blend 4 (obtained 426 

with Θ = 0.5) and blend 7 (obtained with Θ = 0.15). 427 

 428 

Another interesting aspect of this approach is that, if there is a limit value for a specific 429 

environmental impact category, this information can be included in the model by limiting 430 

the specific constraint and performing the analysis having that impact category limited to 431 
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its threshold. This is the case, for example, for biofuels production in the EU, where the 432 

Renewable Energy Directive establishes a reduction target of 50% relatively to fossil fuel 433 

for biofuels produced after 2016 (European Comission, 2009) meaning that the oil blend 434 

must have at the most a value for CC of 1.395 g CO2 eq kg
-1

 oil blend.  435 

The composition of Blends 1, 4 and 7 are presented in Fig.6. Blend 1, the lowest cost blend 436 

(obtained with Θ=1), is composed of WCO and rapeseed. Since the goal is to minimize cost 437 

and this blend is obtained for the less stringent constraint level for the environmental 438 

impacts, the model distributes the quantity of WCO and rapeseed equitably for the different 439 

“types” of those feedstocks that only differ in the environmental impacts value. Blend 1 is 440 

the blend that incorporates the highest quantity of WCO, 34% (adding the low and high 441 

quality WCO). 442 

 443 

Fig.6. Blends composition obtained for Θ=1, Θ=0.5 and Θ=0.15 (ΘLim) 444 

 445 

When the feasible region contracts by decreasing Θ, the quantity of WCO diminishes and 446 

palm is added to the blend. The quantity of WCO incorporated in Blend 4 is 32%. For ΘLim 447 

=0.15, Blend 7 is the optimal blend obtained and the four types of feedstock compose it: 448 
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palm, soya, rapeseed and WCO. The quantity of WCO in this blend is 18%. The quantity of 449 

WCO in the blend diminishes with decreasing Θ because WCO have higher impacts for HT 450 

and to reduce this category, this feedstock is replaced by others that have lower impacts 451 

such as Palm_MY, Soya_US or Rapeseed_DE.  452 

An interesting aspect to analyze is the fact that the blend with lower environmental impacts 453 

(obtained with Θ =0.15) presents a higher diversity of feedstocks and an uneven 454 

distribution in opposition to what is observed for Θ =1. When the value of Θ is decreased 455 

up to the limit of the model feasibility (Θ =0.15) the constraints for the environmental 456 

impacts are quite demanding (impacts cannot surpass the ideal value plus 15% of the 457 

difference between the anti-ideal and ideal values) and the model selects feedstocks that, 458 

although being more expensive, have lower environmental impacts in some categories 459 

relatively to rapeseed and even WCO. Nevertheless, since each of the feedstocks have 460 

different environmental profiles, the model will blend different proportions of each. For 461 

example, it selects Palm_MY, Soya_AR and Soya_Br because these feedstocks have lower 462 

environmental impacts for HT (table 1). Also the proportion of Rapeseed_DE is higher in 463 

the blend because among the rapeseeds is the one with lower impacts for HT. Additionally, 464 

the amount of WCO is reduced because these have higher impacts for HT than, for 465 

example, palm. The share of rapeseed has to be kept to comply with the technical 466 

constraints. The proportion of the two WCO feedstocks is the same because both WCO 467 

feedstocks have similar environmental impacts profile (table 1) and the differences between 468 

them is not sufficient to change their proportion in the blend, considering the other 469 

feedstocks environmental impact profile. This is why the lower environmental impacts 470 

solution (obtained with Θ =0.15) presents more diversity of feedstocks and proportions (the 471 
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other environmental impact categories are also taken into account but their influence is not 472 

so evident because the values for the alternative feedstocks are not so different). 473 

One should have note that the results obtained correspond to a single period price – July 474 

2013. As mentioned in the beginning of this chapter, this period was selected to illustrate 475 

the model because it is the month when the price of WCO is closer to the virgin oils price, 476 

representing a more conservative situation to evaluate the cost benefits of WCO. 477 

Nevertheless, although in the other periods the use of WCO is expected to be beneficial, the 478 

type and quantity of each feedstock used in the blend may change and consequently, the 479 

environmental impacts of the blends may also be different. 480 

 481 

4. Conclusions 482 

The decision-aiding model herein presented was developed combining environmental LCA 483 

with blending algorithms using multi-objective optimization towards novel engineering 484 

systems methodologies to analyze and better communicate potential trade-offs among 485 

multiple objectives. It was used to assess economic and environmental trade-offs of 486 

decisions at the operational level in biodiesel production, addressing feedstock 487 

compositional uncertainty. Although the model was designed with particularities of the 488 

biodiesel systems, it can be adapted to other industries, particularly recycling industries and 489 

be used to support production planning at the operational level to enhance the technical, 490 

economic and environmental performance of these industries.  491 

The application of this tool to assess the use of secondary material (WCO) in blends for 492 

biodiesel production showed that the use of WCO leads to reduction of biodiesel 493 

production costs and environmental impacts relatively to blends composed only with crop-494 

based oils. Blending WCO with crop-based oils is an attractive approach to reduce costs 495 
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and environmental impacts of biodiesel while new technologies and alternative feedstocks 496 

for biodiesel production are still evolving and are not yet cost competitive. Moreover, the 497 

collection and use of this residue for biodiesel production avoids its disposal through 498 

sewage systems, reducing economic and environmental burdens by avoiding sewage 499 

treatment at wastewater treatment plants. 500 

The technical constraints thresholds used in the model are based on European regulation 501 

but they can be adapted to other standards (for example in the US regulation  there is no 502 

threshold for Iodine Value and there is a lower limit for Oxidative Stability (OS)) and the 503 

Cold Filter Plugging Point (CFPP) limit values vary according to the type of climate. Also, 504 

OS and CFPP, that are the biding properties in the model, can be enhanced using additives 505 

and so, the model developed in this work together with these techniques, increases the 506 

spectrum of possible Fatty Acid (FA) based feedstocks to be used in biodiesel production. 507 

Moreover, this model can also be used to assess the use of secondary material like for 508 

example animal fats or the viability of emerging feedstocks such as algae.  509 

This study presents some limitations that can be addressed in future research: (i) the 510 

biodiesel production costs considered in the model are the feedstock cost and, although 511 

different cultivation locations were analyzed, the feedstock cost does not take this issue in 512 

consideration; (ii) the technical constraints were defined for properties that are related 513 

directly related to the chemical composition of the oils and other parameters need to be 514 

considered to address other technical difficulties that may be related to the use of WCO; 515 

and (iii) the uncertainty associated with the availability and price of the feedstock (and its 516 

inter-relation based on supply and demand curves), and the uncertainty related to the 517 

environmental impacts are also relevant aspects to be addressed and included in a more 518 

comprehensive uncertainty model. 519 
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