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Abstract 
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INTRODUCTION 

The literature has greatly emphasized the role played by both knowledge spillovers and 

agglomeration economies as drivers of firms performance (Audretsch and Feldman, 2004; 

Döring and Schnellenbach, 2006). However, while it has been widely accepted that 

knowledge spillovers have a positive effect on firm productivity, the complete picture of 

how knowledge agglomeration impacts on a firm productivity remains puzzling (Breschi 

and Lissoni, 2001; Tappeiner et al., 2008; de Groot et al., 2016). 

 Different streams of literature have provided clear evidence that knowledge 

transmission is limited by distance and therefore bounded in space (Baptista, 2000; 

Audretsch and Feldman, 2004; Rosenthal and Strange, 2004). The proximity to knowledge 

sources encourages the circulation of ideas and the transmission of knowledge thanks to 

face-to-face contacts and social networks, which allow units operating close to those 

sources to learn and innovate at a faster rate than rival firms located elsewhere (Baptista, 

1999; Storper and Venables, 2004; Fritsch and Kauffeld-Monz, 2010; Lambooy, 2010). 

The presence of knowledge mediators in the local milieu can accelerate this knowledge-

transfer by fostering face-to-face contacts between organizations that are not directly 

linked (Kauffeld-Monz and Fritsch, 2013). In fact, the local milieu where firms are located 

clearly matters for transmitting knowledge. 

 Technologies are path-dependent since they evolve as a historical process along 

technological trajectories (Nelson and Winter, 1982). Industry-specific technological 

regimes strongly determine potential learning effects (Marsili, 2002; Carreira and Teixeira, 

2011a). This implies that firm learning is likely to vary between industries, but it is 

relatively invariant across firms within the same industry (Klevorick et al., 1995; Malerba 

and Orsenigo, 1997; Grimpe and Sofka, 2009). Aside from its academic interest, the 

question is critical to formulating regional policy because there can be considerable 



3 

differences regarding the knowledge base and competences between regions and therefore 

there can be diverse growth regimes in different regions (Baptista and Swann, 1998; 

Audretsch and Fritsch, 2002; Fritsch and Falck, 2007). 

 This article contributes to the debate by studying the role played by regional 

knowledge spillovers in firm productivity among Portuguese industries. Spillovers occur 

whenever an individual or organization shares knowledge with its neighbours without 

having to pay for such knowledge in a market transaction. They have been identified as 

one of the main explanations of agglomeration externalities, so the productivity of firms 

should be influenced significantly by the access to these sources of knowledge (Audretsch 

et al., 2005; Baptista and Mendonça, 2010). Additionally, it looks at the nonlinearities in 

the effect of knowledge spillovers on firm-level total factor productivity (TFP), exploring 

differences among high-, medium-high-, medium-low- and low-technology industries, 

following the OECD classification of manufacturing industries (OECD 2005). 

 The empirical enquiry is based on a large sample of Portuguese manufacturing 

firms, covering the period 1996-2004. It is worth noting, first, that the use of firm-level 

data may help when dealing with endogeneity issues that are often found in analyses that 

rely on city-industry or region-industry aggregate data (van Oort et al., 2012). Furthermore, 

as it will be discussed in the next section, it allows us to address the risk of ecological 

fallacy that can occur when we draw inferences about firms based only on analyses of 

aggregate data. Second, unlike employment and wages growth, which are observed 

consequences, TFP is the most direct approach to capture agglomeration advantages at the 

firm level (Puga, 2010). 

 Following Cantwell and Piscitello (2005) and Frenken et al. (2007), the article 

distinguishes three potential sources of knowledge that firms experience in their local 

milieu: (1) at the intra-industry level, from the spatial concentration of firms belonging to 
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the same industry, called specialization (or localization) economies—in essence, they rely 

on the spread of specialized knowledge through firms within an industry, the increased 

variety and quality of shared inputs and the specialized labour market pooling (Marshall, 

1890, Arrow, 1962; Romer, 1986); (2) at the inter-industry level, from the wide variety of 

industrial activities outside the own industry involving some type of cross-fertilization 

between industries, known as diversity economies (Jacobs, 1969);1 (3) at the regional level, 

from improved access to public and private science-technology institutions, external to 

industries but internal to the region, such as universities, research laboratories, trade 

associations and other knowledge-generating and transmitting organizations, which this 

study will call science-technology economies (Audretsch et al., 2005; Fritsch and 

Slavtchev, 2007; Cassia et al., 2009; Baptista and Mendonça, 2010; Acs et al., 2013; 

Fritsch and Aamoucke, 2013).2 An important question concerns whether each of these 

agglomeration economies actually contributes to productivity gains. Given that firms can 

learn from different sources of knowledge, in theory, all three types of agglomeration 

economies can occur. However, different sources of spillovers are expected to lead to 

different effects on productivity among industries because firms learn differently. For 

example, location economies a priori should be particularly significant for low-tech 

industries, while access to science-technology institutions should be more important for 

high-tech industries. Another key question is whether firm productivity benefits most from 

a given amount of agglomeration. As the amount of spillovers differs between both 

industries and regions, the question is which precise density in a region-industry creates 

most spillovers. One should expect there to be certain nonlinearities, such as marginally 

decreasing/increasing economies, and consequently a peak agglomeration size that 

maximizes the productivity gains. 
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 This study extends the literature by adding several significant new pieces to the 

puzzle of regional knowledge spillovers. First, the findings on the effects of agglomeration 

economies on TFP are not new in the literature. However, presumably due to data 

constraints, most previous studies have relied on aggregate productivity data. Only a small 

fraction draws inferences from firm- or plant-level data in a panel context, but even these 

studies differ widely in the variables and empirical methodology that they use, as can be 

seen in the next section. 

 Second, although Combes (2000) and Henderson et al. (2001), based on analyses 

of aggregate data, have noted that there are good reasons to believe that the effects of 

spillovers are not homogeneous across industries, and to the best of our knowledge other 

comparable articles do not systematically account for cross-industry differences in 

agglomeration economies (the rare exceptions are Henderson, 2003; Lall et al., 2004; and 

Ehrl, 2013). 

 Third, even if there is no reason to assume a linear relationship between knowledge 

spillovers and firm productivity, since theory in economic geography and urban economics 

suggests that agglomeration can lead to both economies and diseconomies, little attention 

has so far been paid to the potential nonlinear features of such a relationship (the few 

exceptions are de Lucio et al., 2002, and Au and Henderson, 2006, at aggregate-level; and 

Martin et al., 2011, and Cainelli et al., 2015, at micro-level). Addressing potential 

nonlinearities, the article not only fills an important gap in the literature, but it is also able 

to estimate the density of spillovers that maximizes productivity gains. Finally, the impact 

of science-technology economies on firm productivity, in particular the role of knowledge-

intensive business services (KIBS), and the question of specialization and diversity 

economies were never considered simultaneously. Integrating both streams of research 
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allows us to provide a broader perspective of the issue by comparing the impact of each of 

these sources of knowledge. 

 To anticipate some of the main findings, this study finds considerable heterogeneity 

in the sources and magnitudes of regional knowledge spillovers among industries. And, 

moreover, they are nonlinear. 

 The remainder of the article is organized as follows. The next section presents an 

overview of the literature on the role of spatial knowledge agglomeration in firm 

productivity. The third section discusses the methodology and the main empirical results 

and their discussion are presented in the fourth section. Finally, the last section offers some. 

The Appendix in the supplemental data online provides a detailed description of dataset, 

the descriptive statistics of variables, additional econometric issues and some 

supplementary results. 

 

RELATED LITERATURE AND HYPOTHESES 

Most of the previous studies adopt a regional- or city-level perspective. In a seminal work, 

for example, using a panel of US cities between 1956 and 1987, Glaeser et al. (1992) found 

that urban variety has a positive impact on employment growth in industries but regional 

specialization does not, concluding that knowledge spillovers occur between rather than 

within industries. 

 The study of Glaeser et al. (1992) has been replicated to other countries, but with 

ambiguous results, which can be probably explained by (i) the level of aggregation in data 

and (ii) the dependent variable used in the analyses (see, for example, Cainelli and 

Leoncini, 1999; and Forni and Paba, 2002, for Italy; Combes, 2000, for France). In fact, as 

discussed by van Oort et al. (2012), the theories that underlie agglomeration economies are 

microeconomic in nature, so showing that regional economic performance is higher in 
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regions where agglomeration economies are also higher does not mean that a similar 

relationship holds at the level of the individual firm (see also Duranton and Puga, 2004). 

As a result, the study of the agglomeration issue has greatly shifted towards the 

understanding of the operation of micro units (see Audretsch and Feldman, 2004, Döring 

and Schnellenbach, 2006, or Combes and Gobillon, 2015, for a survey; and Melo et al., 

2009, or de Groot et al., 2016, for a meta-analysis). 

 Since data on productivity are generally not available at firm level, most of the 

studies use employment or wage growth as a proxy for productivity growth. Cingano and 

Schivardi (2004), using 1991 Italian census data, showed that the specialization impact on 

local employment growth is negative and variety has a significant positive effect, in line 

with Glaeser et al.’s results. However, using TFP as the dependent variable, they found 

that the specialization effect is reversed and becomes positive and industrial variety does 

not have any effect. Cingano and Schivardi (2004) thus question the conclusions of 

previous works, arguing that employment growth based regressions suffer from 

identification problems because the chain of causality from agglomeration economies to 

employment growth could be reversed. 

 Given that knowledge spillovers lead to a change in output that is not fully 

accounted for by a change in inputs, TFP would be a better measure of performance (Puga, 

2010; Combes and Gobillon, 2015). Nevertheless, very few studies draw inferences from 

TFP at firm-level, probably mainly because of data constraints. Anderson and Lööf (2011), 

for example, found that in the period 1997–2004 Swedish manufacturing firms located in 

larger regions are more productive after controlling for a firm’s participation in 

international trade, ownership structure and industry affiliation. Moreover, the marginal 

effect of agglomeration on firm productivity growth can be given a causal interpretation, 

suggesting a positive learning effect. In the case of Italian manufacturing firms over the 
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period 1995–2006, di Giacinto et al. (2014) also noted productivity advantages for firms 

located in both urban areas and industrial districts, with a higher premium for urban areas. 

 Distinguishing between different sources of knowledge, López and Südekum 

(2009) found evidence from Chilean manufacturing plants in the period 1990–1999 for 

intra-industry spillovers, but none for inter-industry spillovers. Similar results were 

reported by Martin et al. (2011) and Hashiguchi and Tanaka (2015) for French 

manufacturing plants in the 1996–2004 period and Chinese manufacturing firms in 2004, 

respectively. 

 The relevant sources of knowledge may not be limited to industries. Remarkably, 

however, the previous studies do not address the role of science-technology economies. In 

fact, while knowledge produced within incumbent firms that spills over to other firms has 

been extensively analysed, the role of regional science-technology organizations has been 

mostly neglected. However, favoured by the flourishing endogenous growth theory, 

empirical evidence seems to support the idea that universities, research laboratories and 

other local knowledge-generating organizations matter for the innovative activity of firms. 

For instance, universities and research laboratories have been described in the literature as 

crucial sources of knowledge, not only for undertaking knowledge-generating research and 

development (R&D) activities, but also for training qualified human capital capable of 

absorbing such knowledge (Audretsch et al. 2005; Fritsch and Slavtchev, 2007; Baptista 

and Mendonça, 2010; Baptista et al., 2011; Fritsch and Aamoucke, 2013). The role of 

KIBS as a key source of knowledge has also been increasingly recognized. Acting as 

knowledge mediators that facilitate collaboration between actors in a regional innovation 

system, KIBS significantly affect the production and diffusion of knowledge within a 

region (Muller and Zenker, 2001). 

 Based on these findings the following hypotheses can be formulated: 
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Hypothesis 1A Firms benefit from being located near other firms in the same industry. 

Hypothesis 1B Firms benefit from being located near other firms from other industries. 

Hypothesis 1C Firms benefit from being located near science-technology institutions. 

 Martin et al. (2011) went a step further by testing the existence of nonlinear effects 

on regional knowledge spillovers. Briefly, the rationale is that based on previous studies it 

can be concluded that more agglomeration is always better because it increases the 

productivity of firms, but agglomeration diseconomies such as congestion effects may also 

exist, besides knowledge spillovers, and these can dominate at a certain level of 

agglomeration. They concluded that localization economies have the form of a bell-shaped 

curve with a negative effect for small values of the variable. Cainelli et al. (2015), using a 

panel of Italian manufacturing firms over the period 1999–2007, also found a positive and 

statistically significant effect of specialization and diversity economies, but only above a 

certain threshold, which seems to contradict the congestion theory. Moreover, diversity 

seems statistically significant only once nonlinear effects are allowed for. These findings 

give rise to the following, mutually exclusive, hypotheses: 

Hypothesis 2A Agglomeration economies are significant only above a certain critical 

concentration. 

Hypothesis 2B: Congestion effects exist and offset agglomeration economies above a 

certain threshold. 

 Very few studies have analysed the effect of local knowledge spillovers across 

industries, even though we should expect substantial differences in the magnitude of 

agglomeration economies among industries. Henderson (2003), using the US census data 

for 1972–1992 period, found that localization economies have a strong positive effect on 

productivity in high-tech industries, but not in mechanical industries. He also found little 

evidence of diversity and region size economies. Based on plant-level data from India for 
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1994–1995 period, Lall et al. (2004) observe considerable variation in the sources and 

magnitudes of agglomeration economies across industries. Indeed, while they find no 

statistically significant agglomeration economies in leather products, basic metals and 

repair industries, agglomeration economies are quite substantial in the paper products and 

printing, machinery and equipment, and electronics and computers industries. Looking at 

the different sources of agglomeration economies, the productivity gains from localization 

economies are somewhat fewer; they are positive and significant in only two industries, 

paper products and printing, and non-metallic mineral products. The benefits from urban 

density are not statistically significant either. Ehrl (2013), using German establishment and 

employment-level data from 2000 to 2007, also found that agglomeration economies differ 

substantially between industries. The high-tech industry benefits from diversity and job 

changes of skilled workers, while the medium-tech industry only benefits from specialized 

labour market pooling. A rather surprising finding, however, is that for low-tech industries, 

job changes of more qualified workers generate significant productivity gains. One 

explanation may be that even though R&D investment is relatively low, knowledge is very 

important for low-tech firms as they compete for the leadership in technology and design. 

Apparently, local productive specialization has no impact on productivity in any industry. 

Thus, it will be expected that: 

Hypothesis 3 The magnitude and source of agglomeration economies vary between 

industries. 

 

EMPIRICAL METHODOLOGY 

The data 

The empirical study is based on an unbalanced panel of Portuguese manufacturing firms 

covering the period 1996–2004. The survey comprises all firms with more than 100 
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employees, plus a representative random sample of firms with 20 to 99 employees. It was 

excluded from the dataset firms located in the island regions (i.e. Madeira and Azores). 

(Appendix A in the Supplemental data online provides a more detailed description of 

dataset.) 

 Figure 1 shows the number of firms per region. There appears to be a substantial 

agglomeration of manufacturing firms in the coastal regions of central and northern 

Portugal, mainly in the central region of Grande Lisboa and northern regions of Grande 

Porto and Ave. 

[Figure 1] 

 

The model  

The empirical analysis is based on a firm-level Cobb-Douglas production function:3 


ititititit MLKAY  , (1) 

where subscripts i and t denote firm and year, respectively. Yit is the real gross output and 

Kit, Lit and Mit are capital, labour and material inputs, respectively; ,  and  are the output 

elasticities of each factor; and Ait is the TFP total factor productivity, which is assumed to 

depend on local milieu: 
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where jr
itLOC , jr

itDIV  and r
itSCI  are measures of localization (or specialization), diversity 

and science-technology economies, respectively, for firm i in year t (which operate in 

industry j and region r). 

 

Construction of agglomeration variables 
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The localization economies are measured for each firm as the share of other employees 

working in the same industry (at the two-digit level) within the region (Cingano and 

Schivardi, 2004; Saito and Gopinath, 2009; Combes and Gobillon, 2015):4 
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where jr
tL  and r

tL  are the number of employees in industry j and in all manufacturing 

industries, respectively, in region r, in year t. 

 The diversity economies are proxied by the entropy index of regional employment 

shares outside the industry j (Frenken et al. 2007; Cainelli et al., 2015):5 
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where rj
tL   is the number of employees in industry j’ (j’ ≠ j). The index ranges between 0, 

the minimum value, when all other manufacturing employment in the region is 

concentrated in a single industry, and  1rJln , the maximum value, if this employment 

is uniformly distributed across all (other) industries ( rJ  denotes the number of industries 

in region r). The value of diversity index is not directly linked with the specialization index. 

In fact, for example, if part of regional employment is highly concentrated in a particular 

industry and if the remaining employment is uniformly distributed over all other industries, 

the value of both indexes (specialization and diversity) for this industry is high (Combes, 

2000). 

 Finally, the science-technology economies are measured by two variables: the 

number of R&D workers in region r, r
tRD , as a proxy of local knowledge spillovers 

generated by universities, research laboratories, trade associations and other science-
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technology institutions;6 and the number of Knowledge Intensive Business Services 

workers, r
tKIBS , as a proxy of the role played by knowledge-transmitting organizations.7 

 

Estimation strategy 

Agglomeration variables may be endogenous. To deal with this issue, Combes and 

Gobillon (2015) suggest the implementation of a two-step approach where the production 

function is estimated in a first step without introducing local variables to compute firm-

level TFP. Then, the firm TFP is regressed in a second-step on agglomeration economies 

dealing with the endogeneity of regional characteristics (Martin et al., 2011; di Giacinto et 

al., 2014; Cainelli et al., 2015).  

 The log-linear transformation of model (1) is estimated using a two-step system 

Generalized Method of Moments (GMM) estimator to compute consistent estimates 

(Arellano and Bover, 1995). Ordinary least squares (OLS) estimates may suffer from 

endogeneity problems due to simultaneity and selection bias. The equation cannot be 

estimated using the within estimator (FE) either, since it requires the strict exogeneity of 

regressors, a non-realistic assumption. In contrast, the system GMM estimator provides 

consistent estimates in the presence of endogeneity issues (Blundell and Bond, 2000). 

(More econometric issues and production function results are given in Appendix B.) 

 After estimating the output elasticity coefficients, the firm-level TFP is computed 

as the residual: 

ititititit mˆlˆkˆyâ   , (5) 

where lower-case letters denote the log of corresponding upper-case variables in model 

(1). 
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 In the second stage, the TFP is regressed on both proxies aimed at capturing the 

effect of the regional knowledge spillovers, as proposed in model (2), and firm age to 

control for firm stock of knowledge.8 The rationale is that older firms are likely to have 

accumulated more knowledge (Carreira and Teixeira, 2011b). To account for the existence 

of nonlinear effects, it is introduced in the log-linear specification quadratic terms as 

follows:9 
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where t, vj and i are year, industry and firm-fixed effects, respectively; and it is a 

standard error term. The model cannot disentangle firm and regional fixed effects. A 

common strategy used to deal with this issue is to include regional-fixed effects in the 

estimated specification. However, Combes and Gobillon (2015) highlight several reasons 

why this strategy may not work. The empirical model includes two regional-level variables 

that vary little over year, r
tRD  and r

tKIBS , as a result, it is difficult to identify their effect 

separately form the unobserved, time invariant, characteristics affecting firm productivity 

across regions. Moreover, if firms do not change region over the year, firm-level local 

milieu unobserved characteristics can be appropriately dealt with using firm fixed effects. 

Industry fixed-effects control both for the technological differences across industries and 

for the well-known problem of comparing productivity levels of different industries. 

 Estimating empirical model (6), endogeneity can occur due to both unobserved 

heterogeneity and simultaneity bias. Some regional characteristics (e.g. public 

infrastructures, local climate, natural resources, etc.) can affect the propensity to 

agglomerate, while at the same time agglomeration influences these regional 

characteristics. Additionally, the likelihood of high-productivity firms being attracted to 
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large markets may not be as a result of agglomeration economies (selection effect). Thus, 

to deal with this endogeneity problem the model (6) is estimated using the system GMM 

estimator, as proposed by Combes and Gobillon (2015). 

 

RESULTS 

Results for all manufacturing firms 

The descriptive statistics and the correlation matrix of variables, and econometric issues 

are in the Appendix C and D, respectively. Column (1) of Table 1 reports the results for 

all manufacturing firms. It shows that the linear localization coefficient is positively 

signed, while the coefficient of the corresponding squared term is negative (both 

statistically significant at the 0.01 and 0.05 levels, respectively). On average, a 1% increase 

in the share of employment in neighbouring firms of the same industry implies a 0.237% (

locˆˆ
21 2  ) increase in firm TFP, all else constant—since all variables are expressed in 

logarithms, the estimated coefficients can be interpreted as elasticity parameters—, a result 

consistent with hypothesis 1A. As seen in revision literature section, comparing this result 

with those reported in the literature is a difficult task given the heterogeneity of 

methodologies used. Using a similar measure of specialization, Cingano and Schivardi 

(2004) also found an elasticity of 0.230. López and Südekum (2009), Martin et al. (2011) 

and Hashiguchi and Tanaka (2015) found positive effects of specialization on firm TFP as 

well, but the magnitude of elasticities cannot be compared because they use different 

location proxies. 

[Table 1] 

 The relationship between productivity and localization does not seem to be linear—

the greater the specialization, the lower the elasticity. In other words, the marginal effect 



16 

decreases as the specialization of region increases (Figure 2a). This suggests that the 

measured effect is the average net effect of localization economies and congestion effects. 

This result may also explain why studies using data from less densely populated regions 

find positive specialization effects and negative effects on more populated areas (de Groot 

et al., 2016). Martin et al. (2011) found that the (net) effect of localization economies has 

an inverted U-shape pattern, which confirms that concentration generates increasing 

congestion effects that, after a certain threshold (in our case at about the 90th percentile), 

can dominate localization effects. Therefore, in the case of localization economies, there 

is broad evidence in favour of the hypothesis 2B. 

[Figure 2] 

 In the case of diversity economies, only the squared coefficient is significantly 

positive (at the 0.1 level). Finally, in the case of science-technology economies, the linear 

and squared R&D coefficients are both positively and negatively signed (and significant 

at the 0.1 and 0.05 levels), respectively, while the KIBS coefficients do not seem to have 

any statistically significant impact, at conventional levels, on TFP. Moreover, the null 

hypothesis of existence of an inverted U-shaped relationship between R&D and 

productivity over the range of the data is not rejected at the 0.05 significance level by the 

Lind-Mehlum U-test.10 Hence, all else constant, more R&D employment in a region seems 

to be beneficial for improving firm productivity, but only up to a certain critical level 

(approximately at the median point, as can be seen in Figure 2b), which is again a clear 

confirmation of the hypothesis 2B. 

 

Industry-specific results 

In order to ascertain whether the impact of regional knowledge spillovers differs among 

industries, manufacturing industries are grouped in four sectors according to OECD 
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classification: low, medium-low, medium-high and high technology (see Appendix E). 

Columns (2) to (5) of Table 1 show that there is broad evidence in favour of the hypothesis 

3 that the effects of agglomeration economies vary considerably among industries. In 

particular, the low- and medium-low-tech industries seem to benefit from localization 

economies, while industry specialization does not impact (at conventional significance 

levels) on the productivity of medium-high- and high-tech firms. In the low-tech industries, 

a 1% increase in the specialization index implies an increase of 0.140% in firm TFP, on 

average—the elasticity ranges from 0.199 (10th percentile) to 0.019 (90th percentile)—, all 

else constant; in the medium-low-tech industries, the corresponding increase is 0.386%. 

These results are much in line with those reported by Lall et al. (2004), but do not confirm 

the significantly positive effect in high-tech industries found by Henderson (2003).  

 Regarding diversity economies, they are statistically significant only in the case of 

medium-high-tech industries, where an inverted U-shaped relationship over the range of 

the data was observed (the Lind-Mehlum U-test is passed at the 0.1 level). More precisely, 

the positive effect of regional diversity is observed up to the 70th percentile, after which 

there are agglomeration diseconomies, as can be seen in Figure 2f. 

 Finally, in the case of science-technology economies, the results are quite 

interesting. The two variables, R&D and KIBS employment, are statistically significant at 

the 0.05 level in the case of the medium-low- and high-tech industries (the linear R&D 

coefficient of the medium-low-tech industries, which is significant at the 0.1 level, is the 

sole exception). In particular, a 1% increase in the R&D (KIBS) regional employment 

implies a 0.387% (0.031%) increase in firm productivity, on average, in the case of 

medium-low-tech industries; the corresponding increasing in the case of high-tech 

industries is 0.055% (0.090%). 
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 Ehrl (2013) also observed a significant effect of science-technology externalities in 

lower technology industries. One plausible interpretation for this result is that, even though 

those firms invest relatively less in R&D and are less innovative than high-tech firms, they 

do nevertheless create new products and techniques to achieve competitive advantage. A 

vital part of this process is the external technological knowledge (Grimpe and Sofka, 2009; 

Robertson et al., 2009). 

 Surprisingly enough, the data seem to support an inverted U-shaped relationship 

between regional R&D employment and firm productivity in both industries (the Lind-

Mehlum U-test is significant at the 0.05 level). However, the elasticity is always positive 

over the range of the data in the former case, while it becomes negative at about the 55th 

percentile in the latter case (Figures 2d and 2g). There are two potential explanations for 

these diseconomies of scale. First, as R&D agglomeration increases, congestion or density 

costs may eventually offset the benefits to firms. Second, high R&D agglomeration can 

result in a so-called free-rider problem, that is, under high knowledge spillovers firms may 

find that imitation is cheaper and less-risky than internal R&D (Yang et al. 2013). 

 In the case of KIBS employment, the negative and positive coefficients on the linear 

and squared terms, respectively, depicts a U-shaped relationship over the range of the data 

(the Lind-Mehlum U-test is significant at the 0.05 level). Thus, the medium-low- and high-

tech firms do benefit from the presence of KIBS activities, but only when the 

agglomeration of KIBS employment is higher than the median, the sole confirmation of 

the hypothesis 2A (Figures 2e and 2h). This impact is higher in the latter case: in the third 

quartile, the elasticities are 0.367 and 0.093 in the high- and medium-low-tech industries, 

respectively. 

 

CONCLUSION 
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This article contributes to the ongoing debate on whether regional environment is 

beneficial to firm productivity by adding several significant new pieces to the puzzle. In 

particular, based on a panel of Portuguese manufacturing firms over the period 1996–2004, 

it sheds further light on whether regional knowledge spillovers have different, nonlinear, 

effects among industries, this being a critical issue to understanding the impact of regional 

disparities on economic growth and therefore to promoting and designing new, more 

assertive, regional policies. 

 The results are in line with other past studies and support the idea that 

agglomeration effects vary and depend on the type of externality and on the type of 

industry. They confirm the hypothesis that local knowledge spillovers play an important 

role in explaining firm productivity. Moreover, they occur in different combinations for 

firms belonging to different industries. Indeed, whereas in the case of estimates for all 

manufacturing sectors pooled together localization economies have a significantly positive 

effect, in the case of distinct regressions by sector only high-low- and medium-low-tech 

firms seem to benefit from this source of economies. Diversity externalities, for their part, 

have an inverted U-shaped relationship with firms TFP in medium-high-tech industries—

agglomeration diseconomies are dominant after the 70th percentile. It is also found an 

inverted U-shaped relationship between regional R&D employment and firm productivity 

for all manufacturing firms and firms from medium-low- and high-tech industries—the 

elasticities become negative for values higher than the median. Finally, medium-low- and 

high-tech firms benefit from KIBS activities when their employment in the region is higher 

than the median. 

 Overall, this study contributes to a better understanding of regional knowledge 

spillovers at the industry level, which is critical to promoting and designing new, more 

assertive, regional policies to enhance economic growth. In particular, their findings 
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suggest that differences in the effects between regions imply that the respective policy 

recommendations may only hold for certain types of industry. Given the heterogeneity of 

industries among regions, we should be careful about deriving general policy 

recommendations. The results suggest that policies should be adjusted to the specific 

characteristics of each region. Moreover, regional policies should take into account 

potential critical levels of agglomeration of each source of knowledge. For example, in 

regions where low-tech economic activities are dominant, policies should target new 

investors of similar industries. On the contrary, policies to promote the diversification tend 

to be better in regions where medium-high-tech firms predominating. But there is a limit 

in this policy. Over-diversification can negatively impact on firm productivity. 

 It is worth noting that this analysis has two main limitations. Firstly, multi-plant 

firms may affect results if those plants are located in different regions. Secondly, the study 

does not control for unobserved spatial correlation. 

 A number of interesting further extensions to this article could shed further light on 

regional knowledge spillovers. These include the replication of the study to other 

economies to identify the optimal regional density of the different sources of knowledge. 

Furthermore, future research could adopt both efficient instrumental variable quantile 

regression techniques to control for nonlinear effects with endogeneity and spatial 

econometric techniques to control for unobserved spatial correlation, two challenging 

tasks. They could also look more deeply into the role of firm human capital and R&D 

investment on the absorption of regional knowledge spillovers. 
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Notes 

1 As pointed out by Frenken et al. (2007, p. 686), it is important to distinguish diversity 

economies from urbanization economies. Diversity economies, i.e. variety of industries, 

are sometimes regarded as part of urbanization economies, i.e. variety of the local actors 

and infrastructure, as in Cingano and Schivardi (2004) and Martin et al. (2011), for 

example. 

2 Other authors identify a fourth source, the competition economies. However, in highly 

integrated markets like those in European countries, the effect of local competition does 
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not appear to be statistically significant. This is not so surprising since its marginal impact 

shrinks under high levels of competition (e.g. Martin et al., 2011; Carreira and Lopes, 

2015; Cainelli et al., 2015). 

3 It is assumed that each firm operates in a given industry j and is located in a given region 

r. Subscripts j and r are omitted to simplify the notation except when it causes ambiguity. 

4 Since it is subtracted ith firm employment, LOC variable is firm specific. 

5 Saito and Gopinath (2009), Martin et al. (2011) and Combes and Gobillon (2015) use the 

log of the inverse Herfindahl-Hirschman index of regional employment shares of the 

industries different from j. However, the entropy index is a more standard measure of 

variety (Frenken et al. 2007). We have nonetheless estimated the model with the inverse 

Herfindahl-Hirschman index. The results do not significantly change (available from 

authors upon request). 

6 The knowledge produced by universities and other knowledge-generating organizations 

is also often measured by, inter al., the amount of money spent on R&D, the number of 

employees engaged in R&D activities, the number of students in higher degree 

establishments, the number of articles published in scientific and academic journals or the 

number of patents (Audretsch et al. 2005; Fritsch and Slavtchev, 2007; Cassia et al., 2009; 

Baptista and Mendonça, 2010; Baptista et al., 2011; Fritsch and Aamoucke, 2013). 

However, most of these variables are highly correlated due to complementarity. Having a 

large number of students, for example, means a larger teaching staff and then a greater 

amount of R&D resources (Fritsch and Slavtchev, 2007). On the other hand, the number 

of R&D workers (or the R&D expenditures) is a more general and representative measure. 

We have nonetheless estimated the model with the number of students in higher degree 

establishments and the number of higher degree establishments, but the results were less 

significant (these results are available from authors upon request). 
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7 According to the European Monitoring Centre on Change, KIBS comprises the following 

CAE-rev2.1 divisions: (CAE 72) computer and related activities, (CAE 73) research and 

experimental development and (CAE 74) other business activities. 

8 Some firms are the sole representative of their industry in their region. Thus, we added 

one to the specialization index to overcome the log-of-zero problem. Consequently, if 

  01  jr
it

jr
it LOClnloc , there are no localization economies. The entropy index does 

not require any transformation, since it is already a weighted average of logs (i.e. 

jr
t

jr
t divDIV  ). 

9 The nonlinear effects could also be tested using quantile regression (see, e.g., Fritsch and 

Slavtchev, 2010). Because of the endogeneity problem in model (2), however, the ordinary 

quantile regression estimator is not a robust alternative. The instrumental variable quantile 

regression method it is not efficient for a large number of endogenous variables either. 

10 The U-test was performed using the Stata utest command (Lind and Mehlum, 2010). 

 

Figure 1 Number of firms by NUTS 3 regions (percentage of total) 
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Figure 2 Elasticity of (significant) dependent variables by percentile 
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Table 1. Regression results by technology level 

Variable 
Overall 

(1) 

Low 

(2) 

Medium-low 

(3) 

Medium-high 

(4) 

High 

(5) 

jr
itloc        0.348***       0.207***  0.386* -0.265 0.439 

(0.126) (0.079) (0.241)  (0.258) (0.530) 

 2jr
itloc  

  -0.332**   -0.200** -1.315  0.860 -0.265 
(0.167) (0.093)  (0.834) (1.251)  (0.267) 

jr
tdiv  -0.228 0.050 -1.120   0.239* -0.067 

(0.142) (0.908)  (0.897) (0.131)  (4.533) 

  0.069* -0.004 0.314  -0.062* 0.112 
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 2jr
tdiv  (0.039)  (0.227) (0.248) (0.035) (1.297) 

r
trd    0.324* 0.089   0.285* -0.185     1.582** 

(0.178) (0.102) (0.159)  (0.173) (0.739) 

 2r
trd  

  -0.025** -0.012   -0.026** 0.017   -0.128** 
(0.012)  (0.010) (0.013) (0.014) (0.055) 

r
tkibs  -0.106 0.087   -0.186** 0.062   -0.875** 

 (0.080) (0.081) (0.082) (0.076) (0.407) 

 2r
tkibs  

0.011 -0.001     0.015** -0.005     0.065** 
(0.007) (0.006) (0.006)  (0.005) (0.028) 

itage  -0.050 -0.037 0.002 -0.027 0.037 
 (0.045)  (0.044) (0.035)  (0.041) (0.190) 

 2itage  0.007 0.003 -0.002 0.001 -0.010 
(0.008) (0.007)  (0.006) (0.006)  (0.034) 

 1tia        0.499***       0.422***       0.648***       0.561*** 0.057 
(0.179) (0.153) (0.126) (0.076) (0.353) 

 2tia  0.114 0.018   0.231* 0.130 -0.541 
(0.150) (0.143) (0.120) (0.083)  (0.384) 

AR(1) [p-value] -2.52 [0.012] -5.61 [0.000] -3.55 [0.000] -3.49 [0.000] -2.17 [0.030] 

AR(2) [p-value]   0.22 [0.828]  1.11 [0.265] -0.07 [0.946]   0.66 [0.511] 1.29 [0.198] 

Sargan test [p-value] 40.92 [0.000]  79.07 [0.000] 24.55 [0.176] 22.72 [0.190] 27.64 [0.010] 

Hansen test [p-value]   9.64 [0.381]  9.50 [0.111] 24.05 [0.194] 18.89 [0.219]   9.04 [0.339] 

N. instruments 42 42 42 39 31 

Variance prop. 0.925 0.909 0.931 0.923 0.875 

KMO test 0.858 0.848 0.874 0.854 0.844 

Observations 14,882 8,335 3,149 2,620 568 

Notes: Blundell and Bond (1998) two-step system GMM estimates of model (6). Constant, industry dummies 

and year dummies included in all models. “Variance Prop.” denotes the proportion of the variance of GMM 

instruments explained by extracted principal components. KMO denotes the Kaiser–Meyer–Olkin test, 

which is a measure of sampling adequacy of GMM instruments. Sargan test is not robust enough to detect 

heteroskedasticity and autocorrelation (Roodman, 2009). (1) All manufacturing firms, (2) low tech firms, (3) 

medium-low tech firms, (4) medium-high tech firms and (5) high tech firms. The number of instruments may 

vary due to the number of industries considered in each column. Robust standard errors are given in 

parentheses. ***, **, and * denote statistical significance at the 0.01, 0.05, and 0.10 levels, respectively. 
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The empirical study is based on an unbalanced panel of Portuguese manufacturing firms 

covering the period 1996–2004. The raw data is drawn from the combination of two 

statistical data sources, both administrated by the Portuguese Statistical Office (INE): 

Inquérito às Empresas Harmonizado (IEH), which is an annual business survey with 

detailed input and output information required for the computation of firm-level 

productivity; and Ficheiro de Unidades Estatísticas (FUE), a file that contains information 

on firm location, number of employees and the main economic activity of all Portuguese 

firms, which is critical to computing spatial agglomeration variables. The longitudinal 

dimension of the panel, required for our analysis, was constructed using a (unique) firm 

identification code. 

 The unit of production considered is therefore the firm. Each firm was assigned to 

a given NUTS 3-region (Nomenclature of Territorial Units for Statistics at level 3 of the 

European regional classification, Portuguese definition for 2002) through a spatial 

identification code (see Figure A1). Thus, the first drawback of our dataset is that multi-

plant firms may affect our results if their different plants are located in different regions. 

However, we note that the different plants of a corporation are often registered as distinct 

legal entities, so the multi-plant phenomenon impact on results may be negligible. 

 

Figure A1 NUTS 3 regions of mainland Portugal 
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Region: 
1-Minho-Lima 
2-Cávado 
3-Ave 
4-Grande Porto 
5-Tâmega 
6-Entre Douro e Vouga 
7-Douro 
8-Alto Trás-os-Montes 
9-Baixo Vouga 
10-Baixo Mondego 
11-Pinhal Litoral 
12-Pinhal Interior Norte 
13-Pinhal Interior Sul 
14-Dão-Lafões 
15-Serra da Estrela 
16-Beira Interior Norte 
17-Beira Interior Sul 
18-Cova da Beira 
19-Oeste 
20-Grande Lisboa 
21-Península de Setúbal 
22-Médio Tejo 
23-Lezíria do Tejo 
24-Alentejo Litoral 
25-Alto Alentejo 
26-Alentejo Central 
27-Baixo Alentejo 
28-Algarve 

  

 The IEH survey comprises all firms operating in Portugal with more than 100 

employees, plus a representative random sample of firms with 20 to 99 employees.10 For 

reasons of confidentiality restrictions, the raw data from industries with a small number of 

firms (i.e. tobacco products, and coke and refined petroleum products) are not available. 

We also excluded from the dataset firms located in the island regions (i.e. Madeira and 

Azores). Firms with missing observations or unreasonable values (negative values or 

outliers) were also ignored.10 After these procedures, our estimation sample comprises an 

unbalanced panel of 8,074 firms or 32,003 year-firm observations. Table A1 lists the 

industries covered by the study and the corresponding number of firms. 

 

Table A1 Number of firms by industry 

CAE Industry Mean SD Min Max 

1

2
3

4 5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28
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15 Food products and beverages 459  18.5 429 482 

17/18 Textiles and wearing apparel 817 109.8 659 971 

19 Leather and leather products 215  51.8 162 339 

20 Wood and wood products (except furniture) 192  11.8 168 207 

21/22 Pulp, paper, paper products and publishing 207  10.7 191 226 

24 Chemical and chemical products 155    3.9 148 161 

25 Rubber and plastic products   87  12.3   69 105 

26 Other non-metallic mineral products 316  19.7 278 333 

27/28 Basic metals and fabricated metal products 359  18.9 327 387 

29 Machinery and equipment 279  19.8 244 310 

30/31/32/33 Electronic and electrical equipment 159    4.5 154 167 

34/35 Motor vehicles, trailers and other transport equipment 133    8.8 120 147 

36 Furniture, other manufacturing n.e.c. and recycling 178  16.7 146 203 

Notes: The decomposition uses the two-digit level of the Portuguese Classification of Economic Activities 
(CAE Rev. 2.1). At least at this disaggregation level there is a direct correspondence between this 
classification and the classifications of both the European Community (NACE-Rev. 1.1) and the United 
Nations (ISIC Rev. 3.1). Mean values over the period 1996–2004 and standard deviations (SD) of the number 
of firms. 
 

 
Appendix B. Production function results 

We use the two-step system GMM approach to estimate the (log-linear) Cobb-Douglas 

production function at the industry (two-digit) level and compute the firm-level TFP.10 

Given that output elasticities may vary significantly across industries due to differences in 

production technology, we run distinct regressions for each industry. To choose the level 

of industry disaggregation, we strike a balance between ensuring the homogeneity of the 

technology within each industry and preserving a significant number of observations by 

industry. 

 The gross output (Yit) is given by the sum of total revenues from sales, services 

rendered and production subsidies. It is deflated by the producer price index at the 3-digit 

level. The labour (Lit) input is a 12-month employment average. Materials (Mit) include 

the cost of materials and services purchased and were deflated by the GDP deflator. Capital 
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stock (Kit) is measured as the book value of total net assets excluding financial investments 

and cash stock (that is, it includes not only tangible and intangible assets but also other 

elements of the asset side of the balance sheet, such as accounts receivable and inventory, 

all important to the operation of the firm). Output and input monetary variables are 

measured in constant 1996 Euro prices. 

 Table B1 presents the output elasticity parameters for each factor, not imposing 

constant returns to scale. All regressions include year dummies, exit dummy and firm age 

variable. Test statistics for auto-correlation of the error term indicate significant negative 

first-order serial correlation at standard significance levels for all regressions, but no 

significant second-order serial correlation, as expected. The validity of lagged instruments 

dated t–2 (and earlier) is also clearly not rejected by Hansen tests of overidentifying 

restrictions in all estimates (the Sargan test is less clear for some regressions, but generally 

is not robust; Roodman, 2009a). 

 

Table B1. Production function elasticities by industry 

Industry K L M COMFAC 

Food products and beverages 0.088** 0.185*** 0.722*** 0.829 

 (0.041) (0.060) (0.034)  

Textiles and wearing apparel 0.088** 0.222*** 0.570*** 0.981 

 (0.045) (0.051) (0.039)  

Leather and leather products 0.184*** 0.197*** 0.613*** 0.591 

 (0.059) (0.060) (0.041)  

Wood and wood products (except furniture) 0.083* 0.185*** 0.713*** 0.527 

 (0.045) (0.049) (0.034)  

Pulp, paper, paper products and publishing 0.104*** 0.224*** 0.667*** 0.120 

 (0.037) (0.056) (0.046)  

Chemical and chemical products 0.068*** 0.179*** 0.774*** 0.158 

 (0.034) (0.042) (0.036)  

Rubber and plastic products 0.023 0.109* 0.708*** 0.306 

 (0.042) (0.060) (0.045)  

Other non-metallic mineral products 0.107* 0.151*** 0.760*** 0.998 

 (0.060) (0.056) (0.038)  
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Basic metals and fabricated metal products 0.146*** 0.248*** 0.617*** 0.081 

 (0.048) (0.046) (0.043)  

Machinery and equipment 0.262*** 0.229*** 0.511*** 0.248 

 (0.062) (0.077) (0.052)  

Electrical and optical equipment 0.097** 0.127** 0.743*** 0.189 

 (0.045) (0.056) (0.039)  

Motor vehicles and other transport equipment 0.117*** 0.220*** 0.646*** 0.740 

 (0.039) (0.074) (0.038)  

Furniture, manufacturing n.e.c. and recycling 0.091** 0.191*** 0.669*** 0.082 
 (0.043) (0.048) (0.047)  

Notes: Blundell and Bond (1998) two-step system GMM estimates of model (1). In order to save space, only 
the three output elasticities are reported (full results available from authors upon request). COMFAC is a 
minimum distance test of the non-linear common factor restrictions imposed in the restricted model. P-values 
are reported. Results for the restricted model are reported since the COMFAC test is easily passed in all 
regressions at standard significance levels. Year dummies, exit dummy and age variable included. K, L and 
M denote capital, labour and material elasticities, respectively. Robust standard errors are given in 
parentheses. ***, **, and * denote statistical significance at the .01, .05, and .10 levels, respectively. 

 
 Given that the test of common factor restrictions (COMFAC) is easily accepted in 

all regressions, we focus on these results henceforth. Estimates of output elasticities range 

from 0.023 to 0.262 for capital, from 0.109 to 0.248 for labour and from 0.511 to 0.774 for 

material. They are significant at standard levels, except in the case of capital coefficient 

for the rubber and plastic products industry that it does not seem to be statistically 

significant. Constant returns to scale seem to be the prevalent regime in our estimates. They 

are rejected in favour of decreasing returns for only three industries: textiles and wearing 

apparel, rubber and plastic products and manufacturing n.e.c.. 

 

 

Appendix C. Descriptive statistics of variables 

Tables C1 and C2 show, respectively, the descriptive statistics and the correlation matrix 

of variables used in our empirical model (6). As can be seen, the standard deviation is about 

one-third of the respective mean for all variables except that for localization economies, 

which is two-thirds. Even if the between standard-deviation account for a large part this 
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variability, within variation is not negligible, accounting for about 13 to 31% of the 

variability (Table C3). The minimum value for the localization economies variable is 0 (

10  e ), that is, some firms are the sole representative of their industry in their region. 

The heterogeneity in both R&D and KIBS employment across regions is very high: R&D 

employment ranges from 0 (no R&D employment) to 11,990 ( 13929  .e ); the minimum 

KIBS employment is 24 ( 1783.e ) and the maximum is 143,322 ( 87311.e ). Finally, it 

should be further noted that the correlation between proxies of knowledge based 

externalities (i.e. r
tRD  and r

tKIBS ) is significantly high. 

 
Table C1. Descriptive statistics (pooled yearly values) 

Variable Obs. Mean Std. Dev. Skewness Kurtosis Min. Max. 

ita  32,003 3.001 0.900 0.684 2.270 1.139   5.472 

jr
itloc  32,003 0.167 0.1548 1.299 3.608      0   0.622 

jr
tdiv  32,003 2.047 0.294 1.686 5.437 0.490   2.391 

r
trd  32,003 6.448 1.751 -0.318 3.359      0   9.392 

r
tkibs  32,003 7.447 2.302 0.413 2.204 3.178 11.873 

itage  
31,960 2.923 0.749 -0.541 3.660      0   5.069 

 
 

Table C2. Correlation across variables (pooled yearly values) 

 
ita  jr

itloc  
jr

tdiv  
r
trd  

r
tkibs  

jr
itloc  0.592* 1    

jr
tdiv  0.165* 0.211* 1   

r
trd  -0.080* -0.179* 0.482* 1  

r
tkibs  -0.137* -0.260* 0.449* 0.851* 1 

itage  -0.068* -0.052* 0.094* 0.154* 0.143* 

Note: * denotes statistical significance at the .05 level. 
 
 
Table C3 Descriptive statistics (between and within variations) 

Variable  Mean Std. Dev. Min Max Observations 
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ita  overall 3.001 0.900 1.139 5.472 N = 32,003 

between  0.895 1.139 5.323 n = 8074 

within  0.120 0.942 5.083 T-bar = 3.964 

jr
itloc  

overall 0.167 0.155  0 0.622 N = 32,003 

between  0.158  0 0.622 n = 8074 

within  0.017 -0.192 0.625 T-bar = 3.964 

jr
tdiv  

overall 2.047 0.294 0.490 2.391 N = 32,003 

between  0.298 0.607 2.391 n = 8074 

within  0.048 1.196 2.814 T-bar = 3.964 

r
trd  

overall 6.448 1.751 0   9.392 N =   32,003 

between  1.738 0   9.392 n = 8074 

within  0.281 1.463 10.970 T-bar = 3.964 

r
tkibs  

overall 7.447 2.302 3.178 11.873 N = 32,003 

between  2.213 3.178 11.873 n = 8074 

within  0.518 -0.004 14.415 T-bar = 3.964 

 
Appendix D. Econometric issues  

The estimates of model (6) are obtained by applying the two-step system GMM approach. 

All regressions include both year and industry dummies. We estimated the system GMM 

by the two-step estimator because this estimator is robust enough to detect 

heteroskedasticity (Roodman, 2009a). The system GMM easily generates numerous 

instruments that can be mathematically redundant—i.e. containing no new identifying 

information (Arellano and Bover, 1995; Roodman, 2009a). To overcome this well-known 

problem of too many instruments in dynamic panel data GMM, we apply principal 

components analysis (PCA) to produce a smaller instrument set that is maximally 

representative of the original (Roodman, 2009b).10 The proportion of the variance of GMM 

instruments explained by extracted principal components varies between 87.5% and 

93.1%. Moreover, the Kaiser-Meyer-Olkin (KMO) test statistics indicate that the sampling 

of GMM instruments is adequate. 
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 All of the GMM-estimates for the lagged dependent variable lie within the bounds 

set by the OLS and FE (upward-bias and downward-bias, respectively; Blundell and Bond, 

2000; Roodman, 2009a). Additionally, both the Arellano-Bond test statistics for 

autocorrelation and the Hansen test statistics of overidentifying restrictions suggest that 

the models presented in Table 1 yield statistically valid estimates. We used the Hansen test 

instead of the Sargan test in order to test the exogeneity of the instrumental variables 

because the Sargan test is not robust enough to detect heteroskedasticity and 

autocorrelation (Roodman, 2009a). 

 
Appendix E. Classification of manufacturing industries into categories based on R&D 

intensities 

 
 
High-technology industries Medium-high-technology industries 

Aircraft and spacecraft  Electrical machinery and apparatus, n.e.c.  

Pharmaceuticals  Motor vehicles, trailers and semi-trailers  

Office, accounting and computing machinery  Chemicals excluding pharmaceuticals  

Radio, TV and communications equipment  Railroad equipment and transport equipment, n.e.c.  

Medical, precision and optical instruments Machinery and equipment, n.e.c.  

Medium-low-technology industries Low-technology industries 

Building and repairing of ships and boats  Manufacturing, n.e.c.; Recycling  

Rubber and plastics products  Wood, pulp, paper, paper products, printing and publishing 

Other non-metallic mineral products Food products, beverages and tobacco  

Basic metals and fabricated metal products Textiles, textile products, leather and footwear  
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