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A B S T R A C T

An analytical approach is proposed for calculating the sensitivity matrix in inverse gradient-based optimization
problems, enabling the identification of the isotropic and kinematic hardening laws parameters of metal sheets.
The approach was tested for inverse identification problems involving the circular bulge test, the biaxial tensile
test on a cruciform specimen and the reverse shear test, and compared with forward finite differences. The
proposed strategy proved to be accurate and an expeditious alternative to the use of finite differences for
computing the Jacobian matrix, in case the objective function is defined using global variables such as pressure
and force.

1. Introduction

Finite Element Analysis (FEA) is now a well-established computa-
tional tool in the automotive and aeronautics industries for the opti-
mization of metal forming processes. The manufacture of components
with increasingly complex geometries and tight tolerances demands an
increase in accuracy of numerical simulation results. In this sense, the
accurate description of the material behaviour depends not only on the
flexibility of the constitutive model selected for the material, but also
on the strategy adopted to identify its parameters. Identification stra-
tegies are generally seen as optimization problems, where the purpose
is to minimize the difference between computed and experimental
measurements of one or more experiments. Among the inverse strate-
gies, the most common is the Finite Element Model Updating (FEMU)
(Avril et al., 2008; Prates et al., 2016a). FEMU consists on performing
successive finite element simulations of the mechanical test (or tests) in
order to minimize the difference between the experimental and the
numerical measurements. This difference is expressed by an objective
function and its minimization requires efficient and robust optimization
algorithms, which iteratively act on the values of the material para-
meters. Gradient-based optimization algorithms like the Gauss-Newton
and the Levenberg-Marquardt algorithms (Marquardt, 1963) are the
most widely used within inverse identification strategies, as they gen-
erally do not require a very large number of evaluations of the objective
function (Bäker and Shrot, 2013). However, each iteration step involves
the calculation of the gradient of the objective function with respect to
the material parameters (i.e. the Jacobian matrix), which represents the

sensitivity of the computed results from experiments to the parameters
to be identified. Typically, the Jacobian matrix is numerically ap-
proximated by finite differences and, at each iteration, its evaluation
requires at least as many numerical simulations as the number of
parameters to be identified. Adjoint-based methods are also available
for computing the Jacobian matrix (Cooreman, 2008); however, these
methods are not as widely used as finite differences and require im-
plementation in the numerical simulation code, which is not always
possible in case of commercial codes.

Some authors proposed alternative methods for computing the
sensitivities, within the context of inverse identification strategies,
mainly to overcome the potentially high computational costs associated
with the use of finite differences. Endelt and Nielsen (2004), Endelt
et al. (2005), Endelt and Danckert (2009), Cooreman (2008) and
Cooreman et al. (2007) explored the possibility of analytically calcu-
lating the sensitivity matrix for the inverse identification of the yield
criterion and hardening law parameters. Endelt and co-authors pro-
posed a general approach for the inverse identification of material
parameters based on global measurements (i.e. punch force) of circular
or square cup forming processes (Endelt and Nielsen, 2004, Endelt
et al., 2005; Endelt and Danckert, 2009). The use of a gradient-based
algorithm, together with the analytical definition of the sensitivity
matrix, allowed a fast and stable identification of the material para-
meters, with a reduced number of finite element simulations. However,
the large amount of numerical simulation data required for the analy-
tical calculation of the sensitivity matrix makes this type of approach
efficiently usable only when integrated within the code used in the
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numerical simulation; in addition, it is not always possible to imple-
ment subroutines in commercial numerical simulation codes. Moreover,
the data writing and saving can be time and resource consuming and
thus affect the approach efficiency, particularly for numerical models
with a high number of elements. Nevertheless, this type of analytical
formulation is simple, since it avoids considering local variables such as
strain fields. Cooreman (2008) applied a finite element based inverse
method to identify the material parameters describing the plastic be-
haviour of metal sheets, based on mechanical tests of samples with
complex geometries and/or loading conditions. The objective function
expresses the difference between experimental and numerical strain
fields, for several load points, and it is minimized using gradient-based
algorithms. The analytically calculated Jacobian matrix resorts to local
stress and strain data available from the FE simulation. The author
concluded that, in case of homogeneous deformation, the sensitivities
obtained by means of the proposed analytical approach were in
agreement with those obtained through finite differentiation. Other-
wise, in case of complex, heterogeneous deformation, it was no longer
possible to accurately compute the sensitivities, requiring too many
iterations to be competitive with finite differentiation. Bäker and Shrot
(2013) proposed an alternative method for solving inverse identifica-
tion problems using auxiliary quantities, which overcomes the re-
quirement of performing numerical simulations to compute the sensi-
tivity matrix. For this purpose, the experimental and numerical
variables used in the objective function should be proportional to the
auxiliary quantities that are analytically evaluated from the parameters
to be identified. The calculation of the auxiliary quantities is time-
consuming, particularly when a high number of finite elements are
used. Also, the proper choice of the auxiliary quantities can be complex
and requires the proper physical knowledge of the mechanical problem.

This work presents an analytical approach to calculate the sensi-
tivity matrix, for solving inverse problems concerning the identification
of the hardening parameters of metal sheets. This approach resorts to a
small amount of numerical simulation data and allows the stability and
convergence of the optimization procedure. The optimization appeals
to objective functions that express the difference between experimental
and numerical global results (e.g. load or pressure vs. displacement).
The analytical approach is able to compute the sensitivity of the global
variables of the mechanical test, even though heterogeneous deforma-
tion occurs in the specimen. Additionally, the implementation of the
analytical approach aims to be efficient and user friendly, avoiding the
use of large amounts of data and the need to implement subroutines,
even when a high number of finite elements is used. The analytical
approach is stablished using numerical simulations of the circular bulge
test. The sensitivity of pressure vs. pole height results to variations of
the hardening law parameters is evaluated, which allows supporting the
procedure for analytically calculating the sensitivity matrix. The per-
formance of the proposed Jacobian approximation scheme is numeri-
cally tested and its results are compared with those obtained via finite
differences, under three different inverse identification problems in-
volving the use of the following tests: (i) circular bulge test (Reis et al.,
2017a); (ii) biaxial tensile test on a cruciform specimen (Prates et al.,
2014, 2016b) and (iii) reverse shear test (Pereira et al., 2015). The
proposed analytical approach proves to be expeditious in relation to the
finite differences method, within its scope of application that will be
duly defined.

2. Framework

Inverse parameter identification strategies are generally seen as
optimization problems, where the difference between computed and
reference results of one or more experiments is minimized. This dif-
ference is expressed by an objective function, f A( ), and its minimiza-
tion is commonly performed using gradient-based optimization algo-
rithms, which iteratively updates the vector of constitutive parameters
to optimize, A. Objective functions are commonly formulated under

the concept of least squares, as follows:
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Ref are global variables measured at the instant i.

The minimization of f A( ) resorts to the gradient-based Levenberg-
Marquardt algorithm (Marquardt, 1963), expressed as follows:

= ++A A J J J J J r A( diag( )) ( ),s s s1 T T 1 T (2)

where s is the iteration step, J is the Jacobian matrix, r A( )s is the vector
of residuals and is the damping factor, which is updated after each
iteration according to the convergence rate (see Marquardt (1963)).
Each term of the Jacobian matrix, , is defined as:

=J r A A( )/ ,ij i j j (3)

with = …i m1, , and = …j p1, , , where m is the total number of
measuring instants and p is the total number of constitutive parameters;
Aj is the constitutive parameters, with index j, of the vector of con-
stitutive parameters, A. In case the residuals are expressed in terms of
absolute or relative differences, each term of the Jacobian matrix can be
computed via forward finite differences, respectively, as follows:
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where Aj is a small perturbation value on the constitutive parameter,
Aj. The full computation of the Jacobian via finite differences requires
as many numerical simulations of +g A A( )i

Num
j j as the number of

constitutive parameters to be optimized.
In this work, the Levenberg-Marquardt algorithm is used to optimize

the hardening parameters of the elastoplastic constitutive model, as-
suming: (i) the elastic behaviour described by the generalised Hooke's
law; (ii) the plastic behaviour described by Hill’48 yield criterion (Hill,
1948), and isotropic and kinematic hardening described by Swift
(1952) and Lemaitre-Chaboche (1989) laws, respectively. The Hill’48
yield surface is described by:
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where F , G, H , L, M and N are the material parameters describing the
anisotropy of the metal sheet; xx, yy, zz, xy, xz and yz are the
components of the effective stress tensor, , defined in the principal
axes of the orthotropy system and equal to ( and are the
deviatoric Cauchy stress tensor and the deviatoric back-stress tensor,
respectively); Y represents the flow stress and its evolution during de-
formation, =Y Y (¯), is described by the Swift hardening law, written in
the following form:

= +( )Y C Y C( / ) ¯ ,n
n

0
1

(7)

where ¯ is the equivalent plastic strain and C, Y0 and n are the material
parameters describing the hardening behaviour of the metal sheet,
where Y0 is the yield stress. The translational velocity of the yield sur-
face centre, X , is defined by the Lemaitre-Chaboche kinematic hard-
ening model expressed by:

= =C XX X X X
¯

¯, (0) 0,X Sat (8)
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where ¯ is the equivalent plastic strain rate, ¯ is the equivalent stress
and CX and XSat are the kinematic hardening parameters representing,
respectively, the rate of saturation and the saturation value of the ex-
ponential kinematic hardening, which is given by (Prates et al., 2015):

=X X C(1 exp( ¯)).Sat X (9)

3. Analytical approach of the Jacobian matrix: an example

The development of the analytical approach for calculating the
Jacobian matrix is supported by numerical simulation results of the
hydraulic bulge test with circular dies. This mechanical test allows
achieving relatively high values of plastic strain before necking, en-
abling the proposed approach to be tested up to large plastic strain
values.

The numerical model of the circular bulge test was previously de-
veloped and optimized (Reis et al., 2017b). The geometry of the tools
considered in the test is schematically shown in Fig. 1, where
RM = 75 mm is the die radius, R1 = 13 mm is the die profile radius,
RD = 95 mm is the radius of the central part of the drawbead and
RS = 100 mm is the radius of the circular sheet. This geometry was built
based on the experimental bulge test used by Santos et al. (2010).

The tools were described using Bézier surfaces, considering only one
quarter of the geometry due to material and geometrical symmetry
conditions. Additionally, the drawbead geometry was neglected and its
effect was replaced by a boundary condition imposing radial displace-
ment restrictions on nodes placed at a distance equal to RD from the
centre of the circular sheet. The contact with friction between the sheet
and the blank holder and the die was described by the Coulomb law
with a constant friction coefficient of 0.02 (Reis et al., 2017a, 2017b,
2017c). The blank sheet discretization was previously optimized, de-
scribing the central region of the specimen with a regular and uniform
grid discretization in the sheet plane using quadrangular elements, as
represented in Fig. 2 (Reis et al., 2017b). A total of 10584 3D solid 8
node elements with two layers of elements through thickness were used
(see Fig. 2 (b)); the initial sheet thickness is 1.0 mm. All numerical si-
mulations were carried out with the in-house code DD3IMP1 (Menezes
and Teodosiu, 2000; Oliveira et al., 2008), assuming an incremental
increase of the pressure applied to the sheet inner surface.

3.1. Sensitivity analysis

The sensitivity of the circular bulge test results to variations of the
Swift hardening law parameters is studied based on numerical simu-
lations of a fictitious reference material, whose parameters are those
identified for a DP600 dual-phase steel sheet, by Teodosiu and Bouvier
(2001). Three additional materials that differ from the reference ma-
terial by the individual increase of 0.5% in Y0, C and n, are also used
and hereafter designated as “ Y0”, “ C” and “ n”, respectively (see
Table 1). This increment is within the range of typical values used to
compute the Jacobian matrix via finite differences (Cooreman, 2008).
In all materials of this table, the Hill’48 yield parameters were kept
fixed and equal to those of the reference material. The elastic properties
are: Young's modulus, E= 210 GPa and Poisson's ratio, ν = 0.30.

The sensitivity analysis compares, at the same pole height value, the
numerical results of pressure and flow stress at the pole for the re-
ference material with those obtained from the materials designated by
“ Y0”, “ C” and “ n”, in terms of relative differences. Fig. 3 (a) shows
the evolutions of these relative differences with the pole height. Ac-
cording to these results, increasing separately 0.5% in each parameter
Y0, C and n, similarly affects both variables, pressure and flow stress at
the pole. This can be expressed by the following equality between the
relative difference in pressure and flow stress:

+
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where P A( )i
Num

j and +P A A( )i
Num

j j are the pressure values at the pole
height for the instant, i, of the test, respectively for the constitutive
parameters Aj, and for the same constitutive parameter affected by a
small incremental value, +A A( )j j ; Y A A( , ¯ ( ))i j i j and

+ +Y A A A A( , ¯ ( ))i j j i j j are the corresponding flow stresses at the pole
of the bulge test. These stresses can be analytically evaluated from the
hardening law (equation (7)), provided that the equivalent plastic
strains, A¯ ( )i j and +A A¯ ( )i j j , are known (as done in Fig. 3 (a)). Fig. 3
(b) is plotted assuming that + +Y A A A A( , ¯ ( ))i j j i j j is equal to

+Y A A A( , ¯ ( ))i j j i j . According to this figure, the relative difference in
pressure vs. pole height and flow stress vs. pole height are still similar,
as in Fig. 3 (a), and therefore the condition

+ + = +Y A A A A Y A A A( , ¯ ( )) ( , ¯ ( ))i j j i j j i j j i j can also be assumed in
equation (10). A similar approximation has been considered in previous
works (Bäker and Shrot, 2013; Endelt and Danckert, 2009), although
under different types of analysis.

3.2. Proposed approach

Based on the sensitivity analysis previously undertaken, a procedure
is developed to calculate an approximation for the Jacobian matrix. The
sensitivity study mentioned above showed similarities between the re-
lative difference in pressure and flow stress during the bulge test (see
Fig. 3), which led to assume the equality expressed in equation (10).
Generalizing this equation for other global variables (e.g. load), gi

Num,
and assuming that + + = +Y A A A A Y A A A( , ¯ ( )) ( , ¯ ( ))i j j i j j i j j i j ,
equation (10) can be written as follows:

Fig. 1. Mechanical model of the bulge test, with the identification of the
principal dimensions of the tool (Santos et al., 2010).

Fig. 2. Blank sheet discretization: (a) discretization zones with dimensions in
mm; (b) finite elements mesh (Reis et al., 2017b).

1 DD3IMP: Contraction of Deep Drawing 3D IMPlicit finite element code.
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Based in equation (11), equations (4) and (5) can be written, re-
spectively:
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When Aj approaches zero, equations (12) and (13) can be re-
spectively written as:
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The calculation of the terms of the Jacobian matrix by equations
(14) or (15) requires performing one numerical simulation per iteration
for obtaining g A( )i

Num
j and the respective value of the equivalent plastic

strain, A¯ ( )i j , for calculating Y A A( , ¯ ( ))i j i j and Y A A A( , ¯ ( ))/i j i j j. The
flow stress, Y A A( , ¯ ( ))i j i j , is given by the hardening law and the de-
termination of Y A A A( , ¯ ( ))/i j i j j resorts to its partial derivatives, with
respect to each constitutive parameter, Aj. In case of the Swift hard-
ening law (equation (7)), the partial derivatives, Y A A A( , ¯ ( ))/i j i j j, are
given by:
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where ī is the equivalent plastic strain measured at the instant, i, of the
test for the reference vector of constitutive parameters, = YA [ 0, C , n].
The equivalent plastic strain is numerically obtained at a point of the
specimen for which equation (11) is fulfilled. This can occur at distinct
locations of the specimen. Fig. 4 shows the evolution of the relative
difference in pressure and flows stress with the pole height, for the
hardening parameters, Y0, C and n, at different locations of the spe-
cimen. The flow stress evolutions are shown for points located at the
pole and at initial distances of 20, 40 and 60 mm from the pole, which
are respectively designated by “ Y Pole% _ ”, “ Y% _20”, “ Y% _40” and
“ Y% _60”. In this figure, the results of the relative difference in pressure,
“ P% ”, and flow stress at the pole of the bulge, “ Y Pole% _ ” are the same as
those shown in Fig. 3 (b). The relative difference of pressure vs. pole
height and of flow stress vs. pole height, evaluated at these points are
still relatively close, with identical evolutions, enabling the assumption
that equation (11) is suitable. Additionally, other points were success-
fully tested; only those located between the die and the blank holder,
which have relatively small values of plastic strain, are exceptions. In
the case of other mechanical tests, it is recommended to select a point
within a region of relatively high equivalent plastic strain, in order to
evaluate the sensitivity matrix up to high values of plastic deformation.
In contrast, points with relatively small values of plastic strain should
be avoided.

In summary, the proposed approach is valid when equation (11) is

Table 1
Constitutive parameters used for the sensitivity analysis of the circular bulge test results considering relative increments of 0.5% in each parameter.

Designation Y0 [MPa] C[MPa] n F G H =L M N

Reference Material (Teodosiu and Bouvier, 2001) 330.30 1093.00 0.1870 0.5127 0.4975 0.5025 1.5000 1.2729
Y0 331.95 1093.00 0.1870
C 330.30 1098.47 0.1870
n 330.30 1093.00 0.1879

Fig. 3. Relative difference in pressure, “ P_ ”, and flow stress, “ Y_ ”, for the cases Y" 0”, “ C” and “ n”. The flow stresses values were determined as follows: (a)
considering the exact values, i.e. taking into account that + + +Y A A A A Y A A A( , ¯ ( )) ( , ¯ ( ))i j j i j j i j j i j ; (b) assuming that

+ + = +Y A A A A Y A A A( , ¯ ( )) ( , ¯ ( ))i j j i j j i j j i j .
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verified under the assumption that the flow stress at the pole is not
influenced by the variation of the equivalent plastic strain due to the
incremental variation of the hardening law parameters, i.e.

+ + = +Y A A A A Y A A A( , ¯ ( )) ( , ¯ ( ))i j j i j j i j j i j . In this case, the pro-
posed approach allows the analytical determination of the terms of the
work hardening Jacobian matrix using equations (14) or (15).

A similar sensitivity analysis was performed for the parameters of
the Hill’48 yield criterion. Although the approximation presented in
equation (10) is also verified for these parameters, the accurate de-
termination of the terms of the Jacobian matrix (equations (14) and
(15)) is no longer possible when the assumption

+ + = +Y A A A A Y A A A( , ¯ ( )) ( , ¯ ( ))i j j i j j i j j i j is considered. Never-
theless, when the parameters of the yield criterion and the hardening
law are simultaneously optimized, the proposed approach can still be
used to analytically compute the terms of the Jacobian matrix relative
to the hardening parameters. At the same time, forward finite differ-
ences can be used to numerically compute the terms of the Jacobian
matrix relative to the yield criterion parameters.

4. Performance of the analytical approach for the Jacobian matrix

In order to evaluate the performance of the proposed approach,
three different inverse identification strategies were performed, con-
cerning the use of Levenberg-Marquardt algorithm to determine the
constitutive parameters of metal sheets. These inverse identification
procedures, described in literature, are based on the following me-
chanical tests: (i) circular bulge test; (ii) cruciform tensile test; and (iii)
reverse shear test. The data used in the inverse identifications are nu-
merically generated using the constitutive parameters identified, for a
DP600 steel, by Teodosiu and Bouvier (2001). The use of fictitious data
allows the appropriate comparison between the identified and the

reference results, i.e. without the errors associated with experimental
measurements.

4.1. Circular bulge test

The circular bulge test is used to identify the work hardening be-
haviour described by the Swift law. The identification strategy consists
of minimizing the gap between the reference and numerical curves,
pressure vs. pole height, of the circular bulge test. The minimization is
performed by using the Levenberg-Marquardt algorithm, with the fol-
lowing objective function, f A( ):

=
=

f
m

P h P hA( ) 1 ( ( ) ( )) ,
i

m

i i
1

Num Ref 2

(19)

where = YA [ 0, C , n] is the vector of parameters to be optimized;
P h( )iNum and P h( )iRef are respectively the numerical and reference va-
lues of the pressure for a given value of pole height, hi; and m is the
number of measuring instants. Polynomial interpolation is used to as-
sess the numerical and reference pressure values for the same pole
height, (see Reis et al. (2017a)). A total of 1000 measuring instants,
uniformly distributed over the range of pole heights, were used. The
parameters of the Hill’48 criterion are kept fixed during the identifi-
cation. The identification ends when the differences between the nu-
merical and reference values of pressure are unnoticeable, which is
consistent to f A( ) 10 MPa4 .

In order to illustrate the performance of the proposed approach, the
work hardening parameters of the reference material (see Table 1) were
identified. The Jacobian matrix was computed resorting to the proposed
approach and via forward finite differences, with relative increments of
0.05%, 0.5% and 5% in each parameter, hereafter respectively desig-
nated by “FFD_0.05%”, “FFD_0.5%” and “FFD_5%”. In case of the
proposed approach, an interpolation is performed to enable the eva-
luation of the equivalent plastic strain for each pole height. The para-
meters used for the initial estimate and those identified are given in
Table 2. The total number of iterations and numerical simulations used
in the identification are also indicated. Whatever the strategy, the
identified parameters are close to those of the reference material. In
order to take a broad understanding of the differences between the
identified and the reference parameters, Fig. 5 (a) compares the stra-
tegies in terms of work hardening curves. The relative differences in
stress, between the results of any strategy and the reference material,
have an average value less than 0.9%. Fig. 5 (b) presents the evolution
of the objective function value with the accumulated number of nu-
merical simulations, showing that this number is lower for the proposed
strategy. Although, finite differences require a lower number of itera-
tions, the use of a higher number of numerical simulations per iteration
make this approach computationally less efficient than the proposed
approach, as can be observed in Fig. 5 (b). In summary, the use of the
proposed strategy leads to a significant reduction in the total number of
simulations; at least 44.4% when compared to the use of finite differ-
ences, without compromising the identification results.

For a broader comparison of the two types of approach, Fig. 6 shows
the hardening parameters sensitivities as a function of the pole height,
for the first iteration. For the forward finite-differences, the sensitivities

Fig. 4. Relative difference in pressure, “ P% ”, and in flow stress at the pole,
Y Pole"% _ ”, and at points located at an initial distance of 20, 40 and 60 mm from

the pole, which are respectively designated by “ Y% _20”, “ Y% _40” and
“ Y% _60”.

Table 2
Swift law parameters for the initial estimate and those identified by the Levenberg-Marquardt method, resorting to forward finite differences (FFD) and the proposed
approach to compute the Jacobian matrix.

Designation Y0 [MPa] C [MPa] n f A( ) [MPa] Number of Iterations Number of Simulations

Initial Estimate 200.00 980.25 0.300 5.11 – –
FFD_0.05% 335.95 1092.45 0.186 5.54 × 10−5 4 13
FFD_0.5% 330.71 1092.97 0.187 2.48 × 10−7 4 13
FFD_5% 337.01 1091.65 0.186 4.66 × 10−5 3 9
Proposed approach 328.05 1094.90 0.187 5.50 × 10−5 5 5
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(equation (4)) are essentially similar whatever the value of the incre-
ment, although some differences can be observed for high values of pole
height. These differences can be related to round off errors that arise
when forward finite differences with small increments (0.05% and
0.5%) are used. The sensitivities obtained with the proposed approach
(equation (14)) present some discrepancies relatively to those from
forward finite differences, as consequence of the assumptions made for
the proposed approach. Nevertheless, the observed discrepancies lead
to the similar identification result (see Fig. 5 (a)). The only consequence
is the increase of the number of iterations while reducing the total
number of numerical simulations.

The circular bulge test is now used to identify the parameters of the
Swift law, assuming that the isotropic hardening behaviour of the re-
ference material is modelled by a different hardening law, the Voce law
(Voce, 1948). The purpose of this identification is to test the perfor-
mance of the proposed methodology when the behaviour of the mate-
rial is not perfectly described by the law whose parameters are intended
to identify, and thus to analyse a case for which the identification errors
will be greater than in the previous one. The Voce hardening law is
written as follows:

= +Y Y Y Y C( )(1 exp( ¯)),Sat Y0 0 (20)

where Y0, YSat and CY are the material parameters. Table 3 shows these
parameters for the reference material, obtained by fitting points of the

hardening curve plotted from the parameters of Table 1. The para-
meters used for the initial estimate and those identified (via finite dif-
ferences and using the proposed approach) are given in Table 4; the
total number of iterations and numerical simulations used in the
identifications are also indicated. The identification procedure was
terminated when f A( ) stabilizes, which occurs for values of f A( ) close
to 5 × 10−3 MPa. Fig. 7 (a) shows the work hardening curves obtained
using finite differences and the proposed approach, which overlap each
other; the relative differences in stress between the identified work
hardening curves and the reference material have an average value less
than 1.67%. Fig. 7 (b) shows that the total number of required nu-
merical simulations is significantly lower for the proposed strategy, i.e.
a reduction of 64.7% is observed when compared to the use of finite
differences, without compromising the identification results.

4.2. Cruciform test

The cruciform test is now used to identify the Swift hardening law
parameters based on the identification procedure proposed by Prates
et al. (2014). The schematic representation of the cruciform specimen is
shown in Fig. 8. During the test, equal displacements are imposed along
the Ox and Oy axes on the border of the grips (dashed lines in Fig. 8). In
this strategy, the optimization of the work hardening parameters is
carried out by minimizing the gap between the numerical and reference
load vs. displacement curves along the Ox and Oy axes. The Levenberg-
Marquardt method is used to minimize the following objective function,
f A( ):
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where = YA [ 0, C , n F, ] is the vector of parameters to be optimized. F
is a parameter of the Hill’48 criterion (equation (6)) that is simulta-
neously optimized with the hardening law parameters (Y0, C and n),
following the approach suggested by Prates et al. (2014); R d( )Ox

Num
i

and R d( )Ox
Ref

i are respectively the numerical and reference values of the
load in the Ox axis; R d( )Oy

Num
i and R d( )Oy

Ref
i are respectively the nu-

merical and reference values of load in the Oy axes; these load values
are measured for the imposed displacement, di, that is equal for points
“A” (Ox axis) and “B” (Oy axis); m is the total number of instants of
measurement, uniformly distributed over the range of displacements (in

Fig. 5. Inverse identification results from the circular bulge test: (a) Reference and identified work hardening curves (Tables 1 and 2); the initial estimate for all cases
is also shown (Table 2); (b) Evolution of the objective function with the accumulated number of numerical simulations for the different cases.

Fig. 6. Hardening parameters sensitivity as a function of the pole height:
comparison between the proposed approach and the forward finite differences
with increments of 0.05%, 0.5% and 5%.
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this work, m= 100).
The equivalent plastic strains were evaluated in the middle of the

arms of the cruciform specimen, points “C” and “D” of Fig. 8, where the
equivalent plastic strain is relatively high. For these points, equation
(11) was verified and thus the proposed strategy can be applied.
However, in case of the parameter F the assumption

+ + = +Y A A A A Y A A A( , ¯ ( )) ( , ¯ ( ))i j j i j j i j j i j (taken into account on
equation (11)) is no longer acceptable. Therefore, the sensitivity of
parameter F of the Hill’48 criterion is evaluated using finite differences.
The identification procedures ended when the differences between the
numerical and reference values of load are imperceptible, which is
compatible to f A( ) 10 6.

The results of the inverse identifications of the reference material
(Table 1), using the proposed approach and forward finite differences,
are shown in Table 5 and Fig. 9. Also in this test, both types of strategies
provided parameters close to those of the reference material, such that
the relative differences in stress has an average value less than 0.21%.
The identifications resorting to the proposed strategy required 5 itera-
tions, while finite differences involved 4 iterations due to the better
estimation of the Jacobian matrix. Nevertheless, the use of the proposed
strategy leads to a significant reduction of 43.8% in the total number of
numerical simulations.

4.3. Reverse shear test

In this section, the reverse shear test is used to identify the isotropic
and kinematic hardening laws parameters based on the identification

procedure proposed by Pereira et al. (2015). Fig. 10 shows the sche-
matic representation of the shear notched specimen, as proposed by the
authors. The numerical simulations are performed by imposing a dis-
placement along the length direction on points located on the lateral
surfaces that contains point A (Fig. 10) while the opposite surface is

Table 3
Constitutive parameters of the reference material modelled by the Voce hardening law.

Designation Y0 [MPa] YSat [MPa] CY F G H =L M N

Reference material 438.61 932.10 7.70 0.5127 0.4975 0.5025 1.5000 1.2729

Table 4
Swift law parameters for the initial estimate and those identified by the Levenberg-Marquardt method, resorting to forward finite differences (FFD) and the proposed
approach to compute the Jacobian matrix. The reference material follows the Voce hardening law (see Table 3).

Designation Y0 [MPa] C [MPa] n f A( ) [MPa] Number of Iterations Number of Simulations

Initial Estimate 200.00 980.25 0.300 5.40 – –
FFD_0.05% 335.19 1147.73 0.214 5.11 × 10−3 5 17
FFD_0.5% 367.21 1164.43 0.224 4.66 × 10−3 5 17
FFD_5% 358.69 1160.74 0.222 4.66 × 10−3 5 17
Proposed approach 371.25 1165.46 0.225 4.70 × 10−3 6 6

Fig. 7. Inverse identification results from the bulge test: (a) Reference (Voce) and identified (Swift) work hardening curves (Tables 3 and 4); the initial estimate for all
cases is also shown (Table 4); (b) Evolution of the objective function with the accumulated number of numerical simulations for the different cases.

Fig. 8. Geometry and dimensions of the cruciform specimen. Adapted from
Prates et al. (2014).
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fixed (Pereira et al., 2015). The identification of the isotropic and ki-
nematic hardening parameters is carried out by minimizing the differ-
ence between the numerical and reference curves, load vs. displace-
ment, along the loading and reverse paths. The Levenberg-Marquardt
method was used to minimize the following objective function, f A( ):
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where = YA [ 0, C n, XSat , CX ] is the vector of parameters to be opti-
mized (see equations (7) and (8)); R d( )L

Num
i and R d( )L

Ref
i are re-

spectively the numerical and reference values of the load for a given
displacement, di, along the loading path; R d( )RL

Num
i and R d( )RL

Ref
i are

respectively the numerical and reference values of the load along the
reverse path; m and r are the total number of measuring instants along
the loading and reverse paths, respectively. A total of 100 measuring
instants along the range of displacements were used for each path. The
displacement is measured in the edge of the gauge zone, for instance at
point A in Fig. 10; the loading reversal is imposed after a displacement
of 0.34 mm. The identification ended when the differences between the
numerical and reference values of load are unnoticeable, which is
compatible to f A( ) 10 5.

In the previous examples of bulge and cruciform tests, the equality
defined by equation (11) was used to evaluate the Jacobian matrix. In
case of reverse shear test, the stress Yi , in equation (11), should take into
account the kinematic and isotropic hardening effects. For this purpose,
the stress Yi is replaced by Yi in the following equations. The terms of
the Jacobian matrix are now defined by the following equations, re-
spectively, for the case of the residuals being expressed in terms of
absolute or relative differences:
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where Y A A( , ¯ ( ))i j i j is the stress for the constitutive parameters Aj.
In case of one dimensional loading with reversal, equation (8) can

be analytically integrated to obtain the back-stress along the loading
paths, XL, and the reverse loading paths XRL, respectively (Chiang,
2008):

= +X X X X C( )exp( (¯ ¯ )),L
Sat

L
Sat X

L
0 0 (25)

Table 5
Swift parameters for the initial estimate and those identified by the Levenberg-Marquardt method, resorting to forward finite differences (FFD) and the proposed
approach to compute the Jacobian matrix.

Designation Y0 [MPa] C [MPa] n F f A( ) Number of Iterations Number of Simulations

Initial Estimate 200.00 980.25 0.300 0.500 2.31 × 10−1 – –
FFD_0.05% 330.15 1094.44 0.187 0.187 1.65 × 10−7 4 16
FFD_0.5% 330.12 1094.42 0.186 0.186 1.65 × 10−7 4 16
FFD_5% 330.04 1094.43 0.186 0.186 1.68 × 10−7 4 16
Proposed approach 330.64 1094.30 0.186 0.186 1.91 × 10−7 5 9

Fig. 9. Inverse identification results from the cruciform test: (a) Reference and identified work hardening curves (Tables 1 and 5); the initial estimate for all cases is
also shown (Table 5); (b) Evolution of the objective function with the accumulated number of numerical simulations for the different cases.

Fig. 10. Gauge area dimensions of the reverse shear test. Adapted from Pereira
et al. (2015).
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= + +X X X X C( )exp( (¯ ¯ )),Sat
RL

Sat X
RLRL

0 0 (26)

where X L
0 and ¯ L

0 are respectively the back-stress and the equivalent
plastic strain at the beginning of the loading paths (X L

0 and ¯ L
0 are equal

to zero for the first loading path); X RL
0 and ¯ RL

0 are respectively the back-
stress and the equivalent plastic strain at the beginning of the reverse
loading paths.

Taking into account equations (7), (25) and (26) (knowing that
= =X X (¯ ¯ )RL RL

0
L

0 as well as = =X ¯ 0L L
0 0 ), the stress Y A A( , ¯ ( ))i j i j in

the loading path, Y A A( , ¯ ( ))i j i j
L, and reverse path, Y A A( , ¯ ( ))i j i j

RL, are
respectively given by:
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The partial derivatives of Y A A( , ¯ ( ))i j i j with respect to each con-
stitutive parameter of the hardening laws, are given by:
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where Y Y Y Y( , ¯ ( ))/i i0 0 0, Y C C C( , ¯ ( ))/i i and Y n n n( , ¯ ( ))/i i are given
by (16), (17) and (18), respectively; ī is the equivalent plastic strain
measured at a point in the middle of the shear specimen, for instance
point B in Fig. 10, where the equivalent plastic strain is relatively high.
For this point, equation (11) was verified assuming that the flow stress
Yi is now replaced by Yi .

In order to test the proposed strategy, the procedure proposed by
Pereira et al. (2015) is used to identify the parameters of the isotropic
and kinematic hardening laws for the reference material presented in
Table 6. The inverse identification results using the proposed approach
and the forward finite differences for the reference material are shown
in Table 7 and the correspondent curves in Fig. 11 and Fig. 12; the
initial estimates for the isotropic and kinematic laws used in the inverse
identification are also indicated in this table. Both type of strategies
provided parameters close to those of the reference material, such that
the relative differences in equivalent stress and back-stress has an
average value less than 0.46% and 1.12%, respectively. The identifi-
cations resorting to the proposed strategy and forward finite differences
with increments of 0.05% and 0.5% required 5 iterations, while with an
increment of 0.5% involved 4 iterations. In summary, the use of the

proposed strategy lead to a significant reduction in the required number
of simulations, at least 73.7% when compared to forward finite dif-
ferences, without compromising the inverse identification results.

4.4. Final remarks

The proposed strategy proved to be an expeditious alternative to the
use of finite differences for computing the Jacobian matrix, in the
context of the inverse analysis methodologies studied above. Based on
the underlying assumptions, the framework of application of the pro-
posed analytical estimate of the sensitivity matrix can be described as
follows:

• parameters – identification of isotropic and kinematic hardening
laws parameters of metal sheets, such as those considered in this
work, respectively the Swift and Lemaitre-Chaboche laws, but also
of other hardening laws whose application can be explored;

• experiments – when the experimental test imposes conditions such
that the relationship between the load and the local stress is dictated
by the equilibrium rather than from the mechanical behaviour of the
material; such are the cases of the examples presented herein, but
others involving for example torsion or bending can also be con-
sidered. It should be noted that, for the kinematic hardening,
equations (25) and (26) have been developed for experiments that
impose loading in one direction followed by reversing in the op-
posite direction;

• experimental measurements - the objective function should be de-
fined using the evolution during the experimental test of a global
variable, such as load, pressure, torsional or bending moment,
which is directly related to the stress;

• variable for estimating the derivatives – a material point should be
selected to numerically evaluate the equivalent plastic strain, within
a region with a relatively high deformation, enabling the analytical
calculus of the stress derivatives; these derivatives replace those of
the global variable used in the objective function.

In case of inverse analysis methodologies involving for example
other tests and/or global variables it is advisable the prior verification
of the equation (11). In this context, the basic steps of this approach,
which include the test of equation (11), can be summarized as follows:

1 Identify the global variables results used in the objective function
(e.g. load or pressure vs. displacement; torsional or bending moment
vs. rotation or bending angle).

2 Define the analytical formulation (to be derived) for the stress,
which consists of the isotropic hardening law (e.g. equation (7)) or,
in case where kinematic hardening occurs, consists of adding or
subtracting the isotropic and kinematic hardening laws, in direct
and reverse paths respectively (e.g. equations (25) and (26)); in both
cases the analytical formulation for the stress contains the hardening
parameters to be optimized.

3 Analytically evaluate the stresses Y A A( , ¯ ( ))i j i j and
+Y A A A( , ¯ ( ))i j j i j for a point in the specimen with a significant

value of plastic deformation, where A¯ ( )i j is determined for the re-
ference numerical simulation.

4 Test equation (11), by comparing the relative difference in the
global variable (e.g. load, pressure, moment), obtained by numerical
simulations, with the relative difference in stress (step 3).

5 Evaluate the sensitivity matrix using equations (14) or (15).

Table 6
Constitutive parameters of the reference material, taking into account isotropic and kinematic hardening (Teodosiu and Bouvier, 2001).

Designation Y0 [MPa] C [MPa] n XSat [MPa] CX F G H =L M N

Reference material 308.30 790.20 0.132 169.20 15.80 0.5127 0.4975 0.5025 1.5000 1.2729
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5. Conclusions

This work proposes a simple way to compute the Jacobian matrix
for gradient-based optimization algorithms, based on the analytic dif-
ferentiation of the isotropic and kinematic hardening laws of metal
sheets. The proposed strategy was tested by performing inverse iden-
tification strategies using three different mechanical tests, the circular
bulge, biaxial tensile, and reverse shear tests. It proved to be accurate in
computing the sensitivity of global variables for these tests, which in-
volves heterogeneous deformation. The main advantage of the pro-
posed approach is the expeditious calculation of the Jacobian matrix,
since it does not require performing the additional numerical simula-
tions for each parameter, as for finite differences. When compared to

other analytical approaches, the current one only requires the study of
the evolution of the equivalent plastic strain in one or two points, thus
avoiding the use of large amounts of data and the need to implement
subroutines in FE codes. Although the proposed strategy is not suitable
for computing the sensitivities of the numerical results to the yield
criterion parameters, it can be complemented with the use of finite-
differences (or other strategy) for these parameters, reducing the total
number of numerical simulations required to perform the identification
procedure. The strategy applicability can be explored within the con-
text of other mechanical tests/identification procedures/results.
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