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Abstract

Medical breakthroughs nowadays depend almost entirely on scientific research
which relies in elaborating numerous hypotheses and running them through
continuous and exhausting processes and experiments. These processes usu-
ally generate large amounts of data which are normally processed and treated
with standard statistical methods that do not live up to the demands imposed
by the technological advances that demark our era. Doxorubicin (DOX) is
an antitumor anthracycline antibiotic used for treating several types of can-
cer, such as breast cancer, Hodgkin’s disease and leukemia. Although mi-
tochondrial disruption is an early and sensitive marker of DOX cardiotoxic-
ity, how metabolic stress contributes to the development of cardiomyopathy
still needs to be clarified. To address this problem, an experimental dataset
was built at the MitoXT laboratory using a model of metabolic inhibition
of perfused hearts from Saline (SAL) and DOX-treated Wistar rats to iden-
tify metabolic alterations caused by an acute DOX treatment. The hearts
were removed and perfused with three di↵erent energy substrates such as
glucose, Galactose plus Glutamine (GG) and Octanoate plus Malate (OM).
Separately, glycolytic (Iodoacetate (IODO)) and oxidative phosphorylation
(Rotenone (ROT) or Potassium Cyanide (KCN)) inhibitors were added to
the distinctive metabolic perfusion bu↵ers, aiming at detecting mitochondrial
defects in the DOX-treated group. In this work we applied techniques and
computational tools to organise and mine the generated data in order to ex-
pose hidden patterns. Our conclusions suggest the exclusion of the protocol
concerning the hearts perfusion with OM, confirming the original analysis.
Additionally, we suggest that to spare time, means and animals, future exper-
iments could only execute the glucose perfusion protocol. We also suggested
that ANT and LDH transcripts expression, absolute weight di↵erence, and
Peroxisome proliferator-activated receptor-gamma coactivator (PGC-1alpha)
ratio are the most relevant features to be considered for this problem. Fi-
nally, we established a classifier capable of an automatic distinction between
DOX- and SAL- treated groups. Thus, we not only contributed to a better
understanding of how metabolic stress contributes to the development of car-
diomyopathy, by selecting which parameters show greater disparity between
treatments, but we also confirmed that a detailed data analysis driven by Ma-
chine Learning allows a better exploration of these biological datasets enabling
new discoveries and breakthroughs in this field.

Keywords: Machine Learning, Data Analysis, Drug Toxicity, Doxorubicin
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Resumo

Hoje em dia, progressos na área da medicina são quase sempre influenciados
pela investigação cient́ıfica, a qual se apoia na elaboração de hipóteses e pro-
cessos experimentais para as validarem. Geralmente, estes processos geram
grandes quantidades de dados, os quais são, posteriormente, processados e
tratados com o aux́ılio de métodos estat́ısticos tradicionais, ficando, muitas
vezes, aquém das expectativas impostas pelos avanços tecnológicos que mar-
cam a nossa era. A Doxorubicina (DOX) é um fármaco antitumoral utilizado
no tratamento de diversos tipos de cancro, como cancro da mama, doença
de Hodgkin’s e leucemia. E embora a disrupção mitocondrial seja um indi-
cador senśıvel e precoce da cardiotoxicidade provoca pela DOX, subsiste ainda
sobre debate a razão pela qual o stress metabólico contribui para o desen-
volvimento de cardiomiopatia. Assim foi elaborado, no laboratório Mito-XT,
um modelo de inibição metabólica em corações perfundidos de ratos Wistar,
tratados com solução salina ou com DOX, de modo a evidenciar as alterações
metabólicas causadas por este fármaco. Os corações foram removidos e per-
fundidos com três substratos card́ıacos diferentes: glucose, galactose e glutam-
ina, e octanoato e malato. Separadamente, foram adicionados, aos distintos
tampões metabólicos da perfusão, os inibidores glicoĺıticos (iodoacetato), e de
fosforilação oxidativa (rotenona e cianeto) com o objetivo de detectar defeitos
metabólicos ocultos nos grupos tratados com o fármaco. Assim, neste estudo
aplicaram-se diversas técnicas e ferramentas computacionais, incluindo algo-
ritmos de aprendizagem automática, com o objetivo de expor padrões descon-
hecidos nos dados recolhidos, analisando e estruturando o dataset, de forma
a estabelecer, também, um classificador capaz de distinguir automaticamente
os grupos tratados com e sem DOX. As conclusões deste trabalho, verificaram
a análise original dos dados, confirmando a exclusão do protocolo de per-
fusão correspondente ao substrato octanoato e malato, devido a não mani-
festar quaisquer conclusões relevantes. Adicionalmente, sugerimos que para
poupar tempo, fundos e animais se deveria, apenas, implementar o protocolo
relativo à perfusão com glucose. Verificámos, também, que os parâmetros mais
importantes para o problema em questão são: a informação genética relativa
aos transcriptos ANT e LDH, a informação proteica e a diferença dos pesos
das amostras. Deste modo, este trabalho não só revelou informação impor-
tante referente à contribuição do stress metabólico para o desenvolvimento
cardiomiopatia, visto que foram selecionadas as features que melhor identi-
ficam as amostras tratadas com e sem o fármaco, como também confirmou
que uma análise detalhada, utilizando abordagens provenientes de Machine
Learning (ML), permitem uma melhor exploração de datasets biológicos, rev-
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elando novas informações que podem levar aos progressos inicialmente men-
cionados.
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Chapter 1

Introduction

1.1 Motivation and Objectives

We live in an era where the machines are constantly evolving, becoming more

intelligent by learning from data that has been collected over the years and

from our everyday routines. Thus, today there is an increasing e↵ort for ac-

quiring the power of processing our data through Machine Learning (ML)

implementations, in order to obtain meaningful conclusions and make accu-

rate predictions. Everyone wants to predict the future by learning the modern

magic of ML algorithms and Artificial Intelligence.

Nowadays, medical breakthroughs depend almost entirely on scientific research

which relies on elaborating numerous hypotheses and running them through

continuous and rigorous processes and experiments. These processes usually

generate large amounts of data which are normally treated with standard sta-

tistical methods that might not take into account relationships between ap-

parently unrelated features, leading to a possible missing out on important

information and hidden patterns.

In the 1960s, researchers started to investigate a drug called Doxorubicin

(DOX) (also known as Adriamycin). Di Marco et al. conducted a study where

they demonstrated the high therapeutic potential of this new drug. [4]

These days, DOX is often prescribed for treating several types of cancers,

such as breast cancer, Hodgkin’s disease and leukemia. However, it has been

shown that the clinical use of this drug is limited due to its dose-dependent

cardiomyopathy.[5]
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2 CHAPTER 1. INTRODUCTION

Bearing in mind this limitation, several studies and experiments have been

made in order to explain the possible mechanisms behind DOX’s cardiomy-

opathy. A project was developed with the MitoXT laboratory, where and

experiment was performed with the purpose of unveiling how metabolic stress

contributes to the development of cardiomyopathy, using a model of metabolic

inhibition in perfused hearts from Saline (SAL) and DOX-treated Wistar

rats.[6]

The data obtained during these experiments was analysed solely using standard

statistic methods leaving a window of opportunity to apply modern techniques,

such as ML.

The main goal of this work is to use a data driven approach, in order to perform

an deeper analysis of the dataset gathered, in order to confirm the previous

studies conclusions [6], and possibly uncover additional information that might

have been missed by the use of traditional statistical methods.

We also propose and implement a ML model capable of classifying rats that

were treated with DOX or SAL, using the biological information available.

In the end, our dataset investigation results confirmed the original analysis.

We also concluded that to spare time, funds and animals, the protocol con-

cerning the substrate Octanoate plus Malate (OM) hearts perfusion should be

excluded, since it was proved not to add relevant information to our purpose,

and only the glucose perfusion should be implemented, since it provided the

most relevant information.

Moreover we concluded that the most important parameters for this investi-

gation were the Adenine nucleotide translocator (ANT) and Lactate dehydro-

genase (LDH) transcripts expression, the absolute weight di↵erence, and the

PGC-1alpha ratio, due to their contribution to our models classification and

clear alterations found in each treatment correlation results concerning these

features. Concerning the classification phase, our models were capable of an

automatic distinction of DOX- and SAL- treated groups.

Thus, we not only contributed to a better understanding of how metabolic

stress influences the development of cardiomyopathy, by selecting which pa-

rameters show greater disparity between treatments, but we also confirmed

that a detailed data analysis driven by ML allows a better exploration of

these biological datasets, enabling new discoveries and breakthroughs in this

field.
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Additionally, this work will address the di�culties found in processing the

data into the correct structure, capable of fitting each model’s requirements.

Examples of these obstacles are label incoherencies, missing values and poorly

structured data. In Chapter 5, a possible systematization of the experimental

data structuration process will be suggested .

1.2 Structure

This report will be divided in 7 chapters. Chapter 2 will be addressing the

biologic context of the original problem from which we collected our data. It is

divided in 6 sections describing all steps concerning the problem elaboration,

description, the experimental protocol and the measurements taken and finally

some conclusions taken from the original analysis. Chapter 3 holds the state of

art revision of the computational techniques used nowadays. It is also divided

in 6 sections concerning the di↵erent procedures that can be implemented.

Chapter 4 deals with the experimental setup, selection and transformation the

original data into our functional dataset, as well as the data cleaning process.

Chapter 5 includes our results and their discussion, thus it is divided by the

exploratory process results, followed by classification ones. Chapter 6 contains

the lessons learned during the data selection and transformation phase, which

resulted from some misstructuration and contextualization of the original data.

Finally, Chapter 7 concerns our work final conclusions, and next steps to take

in our implementation.





Chapter 2

Biological Context

2.1 Doxorubicin Role in Cardiotoxicity

Doxorubicin (DOX) (Figure 2.1) is an anthracycline quinone antibiotic, used

for treating several types of cancers, such as breast cancer, Hodgkin’s dis-

ease and leukemia. Its clinical use is, however, limited by its dose-dependent

cardiomyopathy. [5]

Figure 2.1: DOX chemical structure.

Since the first in vivo studies of its administration on cancerous animals, DOX

promoted inhibition of neoplastic proliferation and subsequent increase of the

animal survival rate.[5]

Some studies showed that the target of DOX toxicity is the cardiac tissue,

which is enriched with mitochondria.[7] They also suggest that one of the

reasons why the heart muscle is more susceptible to oxidant-induced damage

results from the presence of low levels of antioxidant enzymes, such as catalase,

in myocytes.[7]

5
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Moreover, DOX accumulates into mitochondria over time, therefore, the selec-

tive toxicity of DOX to the heart was attributed to the selective damage to

cardiac mitochondria. [5] [7]

After a single or course of therapy with DOX, acute injuries corresponding to

the induced cardiac toxicity may occur. [8]

On the other hand, chronic side e↵ects are more serious, irreversible, and

involve the development of cardiomyopathy and ultimately congestive heart

failure. Early-onset, chronic cardiotoxicity usually occurs within a year of

treatment, persisting or even progressing after the treatment cessation, lead-

ing to chronic dilated cardiomyopathy in adult patients and to restrictive car-

diomyopathy in pediatric patients. On the other hand, late-onset progressive

cardiotoxicity results in ventricular dysfunction, heart failure, and arrhythmias

years or even decades after chemotherapy occurred, suggesting the need for a

continuous follow-up of the cardiac status of patients who received anthracy-

clines. [8]

Acute toxicity can a↵ect the treatment result, since it occurs from a few min-

utes to a week of treatment. Whilst sub-chronic and chronic e↵ects appear

after treatment and can result not only of the compound acute toxicity, but

also of the cellular adaptations the treatment e↵ect. Thus, firstly, it should be

clarified whether this compound has or has not acute toxicity.

2.2 Dataset Context and Biological protocol

Although mitochondrial disruption is an early and sensitive marker of DOX

cardiotoxicity, how metabolic stress contributes to contributes to the later de-

velopment of cardiomyopathy remains to be explored. To address this problem,

an experimental dataset was generated using a model of metabolic inhibition

in perfused hearts from Saline (SAL) and DOX-treated Wistar rats.

Concerning the protocol, for the DOX treatment model, sixteen-week-old male

Wistar rats (n=46-50/group) were injected with a single dose of 20 mg/kg DOX

or the equivalent volume of the vehicle solution of NaCl 0.9% (i.p), for the SAL

treatment mode. Both treatments rats were sacrificed after 24 hours.[6]

Additionally, there were two groups of Wistar rats to be considered:

• Nonperfused (NP) hearts: the rats were treated, sacrificed and the hearts
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were removed but not perfused;

• Time Control (TC): the rats were treated, sacrificed and the hearts were

perfused only with substrate, without addition of inhibitors.

The animals were then sacrificed, the hearts were removed and perfused using

a Langendor↵ apparatus with one of the distinct cardiac substrates:

� Glucose

� Galactose plus Glutamine (GG)

� Octanoate plus Malate (OM)

Separately, glycolytic (Iodoacetate (IODO)) and oxidative phosphorylation

(Potassium Cyanide (KCN) or Rotenone (ROT)) inhibitors were added to

the di↵erent metabolic perfusion bu↵ers, aiming at exposing undercover mito-

chondrial defects in DOX-treated group.

Glucose Galactose plus Glutamine Octanoate plus Malate

KCN IODO ROT KCN IODO ROT KCN IODO ROT

SAL 6 6 5 5 6 3 6 4 5

DOX 6 6 5 6 6 5 6 4 5

Total 34 31 30

Table 2.1: Number of rats per substrate and inhibitor perfusion combination.

After perfusion, several metabolic and mitochondrial proteins were selected

and semi-quantified by Western blotting.[9] mRNA levels were also obtained

by RT-PCR technique.[10]

2.2.1 Injections Timeline

Figure 2.2, contains an explicative representation of the injections timeline

during the hearts perfusion with both substrate and inhibitors.
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Figure 2.2: Injections timeline during perfusion.

Initially, the hearts were perfused for 10 minutes with the bu↵er for calibration

purposes. Afterwards, the substrate was injected and the hearts were perfused

again during 10 minutes. Then, 5 di↵erent injections of inhibitor, separated

by 5 minutes perfusions, followed. The concentration of inhibitor increased

gradually at each injection, as shown in table 2.2. Finally, the heart was

again perfused with the substrate for 10 minutes more in order to evaluate its

recovery from the inhibitors injections.

1st 2nd 3rd 4th 5th 6th 7th

Cyanide (mM) - 0.05 0.1 0.2 0.3 0.5 -

Iodoacetate (uM) - 12.5 25 50 75 100 -

Rotenone (uM) - 0.25 0.5 0.75 1 1.5 -

Table 2.2: Concentration of the inhibitors KCN, IODO and ROT, per injection.

At the end of each injection, the heart pressure values were measured for 30

seconds and registred.

2.2.2 Collected Data

In order to detect undercover mitochondrial defects in the DOX-treated group

the following parameters were measured per animal:

� Heart and body weight;

� Tibia size;

� Heart physiology parameters: heart pressure, substrate flow, recupera-

tion flow;
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� Protein expression (Peroxisome proliferator-activated receptor-gamma

coactivator (PGC-1alpha), Mitochondrial transcription factor A (TFAM)

and Ubiquitin);

� mRNA expression (Adenine nucleotide translocator (ANT), Hypoxia-

inducible factor 1alpha (Hif-1alpha) and Lactate dehydrogenase (LDH)).

2.3 Preliminary Conclusions

2.3.1 Acute Model: Glucose as substrate

In the acute model DOX treatment, hearts perfused with glucose su↵ered a

decline in the number of heart beat and rate pressure product (RPP) when

IODO was added, contrarily to the ones with ROT or KCN as inhibitors.

2.3.2 Acute Model: Galactose plus Glutamine as sub-

strate

Perfusion with the GG substrate, inhibitor titration decreased the heart rate,

despite that the decrease in the RPP was more evident adding IODO and KCN

in SAL vs DOX group.

2.3.3 Acute Model: Octanoate plus Malate as substrate

Adding OM resulted in decreased heart rate an RPP in the presence of the

inhibitors, working equality for each of them. However, these results weren’t

suficiente considering the other two protocols, so OM substrate should be ex-

cluded.

When the glycolytic and mitochondrial proteins were semi-quantified by West-

ern blotting, alterations in the proteins involved in mitochondrial biogenesis

and autophagy were observed in DOX hearts perfused with inhibitors. Look-

ing at the conclusions, the data from the acute model appears to suggest that

hearts from DOX-treated animals have improved function in the presence of

metabolic inhibitors, an indication that DOX triggers metabolic adaptations
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that results in a lower susceptibility to mitochondrial and glycolytic inhibi-

tion.



Chapter 3

Machine Learning

Machine Learning (ML) is about extracting knowledge from data. It is the art

of guiding computers to learn without being explicitly programmed for it, in

other words, autonomously.[11]

Nowadays, data is crucial for the advance of many scientific fields and, when

treated correctly, has a great influence within both commercial applications

and scientific studies. A more engineer-oriented point of view, states that a

computer program is said to learn from experience, E, aiming at some task, T,

and some performance measure, P, if its performance on T, as measured by P,

improves with experience. [12]

Thus, ML algorithms can learn from input/output information. Depending on

how this is implemented, they can be divided into two main types of learning:

Supervised and Unsupervised.

Supervised Learning requires giving the algorithm the training to consist of

pairs of input and desired output to take as example and to generalize for

the desired outcome, gaining the ability to generate a human-free, accurate,

output for an unprecedented input.[13]

One the other hand, for Unsupervised Learning the training set consists of

unlabelled inputs, it does not require any previous knowledge of what the out-

comes should be. Thus, its input information only has descriptive information

(no labels). Consequently, this process is more challenging than supervised

learning, since now the algorithm must learn on its own , with no examples to

compare with the result.[13]

This type of learning is the preferential choice when a given dataset has dif-

11
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ferent kinds of information and the main goal is to explore possible hidden

patterns that can lead to unknown relationships between samples.

3.1 Common challenges

Usually a dataset is composed by a number of observations, called samples,

and each sample is described by features. When dealing with supervised prob-

lems, datasets also include the variables allowing the samples to be distin-

guished/grouped and therefore classified - Labels.

Even for the simplest problems, a large amount of data is required for most

ML algorithms to work accurately. Data shortage means fewer examples for

our algorithm to rely on and learn from, possibly resulting in an incorrect

generalization of the problem and devious classification.

However, a dataset can be filled with samples and still be unfitting for the prob-

lem. This happens to large datasets brimming with nonrepresentative training

data resulting in a poor outcome of the algorithm with a compromised accu-

racy. As such it is important to have a training set that is representative of the

problem at hand, whether we are applying supervised learning or unsupervised

learning. [14]

3.2 Data Analysis Metrics

Before implementing any kind of transformation, it is useful to summarize each

feature of our data into a single statement called a descriptive statistic. As

the name suggests, descriptive statistics describes a particular quality of the

data they summarize.

There are two general categories: the measures of central tendency and mea-

sures of spread.

Concerning data centralization:

• Mean: arithmetic average of a set of numbers, or distribution;

µ =

P
x

n
(3.1)
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Where n is the number of observations.

• Median: value in the center of the data distribution;

• Mode: most frequent value(s).

And concerning data distribution/spread:

• Standard deviation: measure of how spread numbers are;

� =

sPn
i=1 (xi � µ)2

n� 1
(3.2)

Where n is the number os observations.

• Variance: measure of how far each value in the data set is from the

mean.

�2 =

Pn
i=1 (xi � µ)2

n� 1
(3.3)

3.3 Data Visualization

Another way of analysing the data is through data visualization. A visual-

ization has to accurately convey the data, and should not mislead or distort

the viewer interpretation of what is being presented. Visualizing data involves

taking data values and convert them in a systematic and logical way into the

visual elements that make up the final graphic. [1] Thus, it is an important

step in the exploratory process, because it allows a clearer interpretation of

the data, its distribution and its tendencies, as well as facilitating comparison

between features.

There are many data visualization techniques and choosing one has to take

into account the type, the scale and the distribution of the data along with

the purpose of the visualization. One remarkable example of visualisation

tools are the Boxplots (Figure 3.1). They are simple yet informative, and they

work well when plotted next to each other allowing the visualization of many

distributions at once, making them easier to compare. [1]
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Figure 3.1: Anatomy of a boxplot - on the left there are a cloud of points and on the right
the corresponding boxplot. Taken from [1]

This form of representing the data is intuitive: the line in the middle of the

boxplot represents the median, and the box encloses the middle 50% of the

data. The whiskers are represented as the vertical lines extending upwards

and downwards from the box extending either to the maximum and minimum

values of the data or to the maximum/minimum values that fall within 1.5

times the height of the box, whichever yields the shorter whisker. Data points

that fall above or below 1.5 times the height of the box are called outliers and

are usually represented as individual dots.[1]

Similar to boxplots, there are violin plots which can also be used to picture

the data density and will accurately represent bimodal data whereas a boxplot

will not.

3.4 Data Preprocessing

Preprocessing the data is the first step one has to perform, before applying

any analysis. A careless disregard of this step can have a major impact on the

algorithm and compromise its outcome. Thus, a good understanding of the

existing preprocessing techniques will provide us with the knowledge of which

is the one that best suits our solution. For example, problems with a large

dataset, data filtering and data elimination should be the best approaches, as

well as feature selection and reduction techniques which will help reducing the

dimensionality of the data allowing the algorithm to operate faster and more

e�ciently.[15][16]
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3.4.1 Data Cleaning

One of the first steps through preprocessing is to consider each value and its

accurateness towards the context of the problem in hands.

• Data Irregularities

Looking through the dataset, knowing the context of the its information,

should help identify inconsistencies and illegal values within the data.

This analysis is only straightforward if the analyst has a good background

knowledge of the problem at hand. As such, this part of the analysis

is usually conducted with the assistance of a domain expert, capable

of providing insightful information to distinguish between an incorrect

value and an abnormal value.

• Outliers Detection

Outlier detection plays an essential role in the detection of abnormal

observations. The removal of the faulty values should help cleanse the

data and decontaminating its e↵ect on the data set. [17]

However, in some cases, it can have a di↵erent interpretation, and the

outlier provides important information about the problem at hand. As

such, the analysis of these values needs to be done with care.

There are three fundamental approaches to the problem of outlier detec-

tion:

� Identification of the outliers without prior knowledge of the data

(analogous to unsupervised learning). This method processes the

data as a static distribution, locates the most isolated points, and

flags them as potential outliers. Therefore, this approach assumes

that errors are separated significantly from the ’normal’ data and

will appear as outliers. [17]

� Modeling both normality and abnormality which requires pre-labelled

data, tagged as normal or abnormal. This approach is analogous to

supervised classification since the algorithm has prior knowledge of

what is normal and what is not, classifying the input accordingly.

[17]

� Modeling only normality or in a very few cases abnormality. The
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algorithm knows previously what is normal but must figure out

what is not.

• Missing Values

Incomplete data is a common issue regarding real world datasets. When

processing unknown data, it is important to consider some factors such

as:

� human error: a value is missing because it was deleted or not reg-

istered;

� not applicable: the feature is not valid for a given instance, e.g., it

does not exist for a given instance;

� irrelevance: the designer of the training set does not take a certain

value to consideration because it is not relevant (so-called don’t-care

value). [16]

When dealing with a large dataset, it is normal to reject a sample con-

taining missing information. However, with a small number of samples

it is important to find ways of keeping them so that we do not lose any

information.

Considering this problem, there are some missing values handling tech-

niques, such as, imputation, which substitutes the missing value with

another one. There are some imputation techniques described in the lit-

erature, being one of the most common the imputation using the average

of the correspondent feature. Imputation is, however, only recommended

when the number of missing values is very small.

3.4.2 Data Transformation

Many ML algorithms have better performance rates when all features have

a close scale and similar distribution. In order to achieve these conditions,

there are a vast number of methods to choose from, depending on the type

of the algorithm we want to implement and the feature values we will be

applying.

• Standardization/Scaling

Standardize generally means changing the values so that the distribution
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standard deviation from the mean equals one. Its outcomes are very close

to a normal distribution, centred around µ = 0, and with a deviation of

� = 1, where µ is the mean and � is the standard deviation. This way all

features should have the same magnitude. Standard scores (also called z

scores) of the samples are calculated by:

z =
xi � µ

�
(3.4)

where x is the value to be normalized and z is the normalized value of x.

• Min-Max scaling

This technique, on the other hand, normalizes the data such that all

features are exactly between 0 and 1. For each feature it follows the

formula:

xnorm =
xi � xmin

xmax � xmin
(3.5)

It should, however, be applied for the cases where the distribution is not

Gaussian or when the standard deviation is very small. [3]

3.4.3 Dimensionality Reduction

Some datasets have a common issue of excessive dimension. This problem

tampers with both visualization and data processing. To overcome it, there are

some techniques that can be applied in order to find an approximated version

of the original dataset using fewer features. Example of these techniques are

feature extraction and/or feature selection methods.

Feature Reduction

The main goal behind feature reduction is to find a new subset of dimen-

sions by combining the original ones, without losing considerable information.

There are two main methods concerning this technique: Principal Components

Analysis (PCA) and Linear Discriminant Analysis (LDA).[18]

Both these methods are linear transformation techniques that can be used to

reduce the number of dimensions in a dataset.[19]
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• Principal Components Analysis (PCA)

PCA is considered an unsupervised method since it does not use the

output information.[18] It can also be defined as a process for compressing

a significant amount of data into something that captures the essence of

the original data. Pursuing a meaningful way to reduce the dimension

of the data by focusing on the di↵erences between samples and ways to

combine them.

PCA states that there is a principal component for each dimension of the

data. The first component contains the maximum variance, the second

component contains the second maximum variance and so on.

Thus, PCA tries to find a small number of dimensions that are as in-

teresting as possible, where the concept of interesting is measured by

the amount that the data varies along each dimension.[20] Hence, it will

select only a subset of new features contingent on its importance for

explaining the data.

• Linear Discriminant Analysis (LDA)

LDA is a supervised dimensionality reduction technique used for maxi-

mizing class separability.[19] It also looks for linear combinations of input

variables that best explain the data, however, whereas PCA finds com-

ponents of maximum variance in a dataset, LDA focus on the compo-

nents that are useful for discriminating data, maximizing the separability

among known information.[19]

So LDA projects the data on to a di↵erent space that optimizes the sep-

aration between di↵erent groups of samples, by maximizing the distance

between means and the minimizing the variation (scatter) within each

group.

Although PCA and LDA are the most used methods, there are other pro-

cedures that can be applied for feature extraction, such as Multidimensional

Scaling (MDS), which is relatively similar to PCA, and Singular Value Decom-

position (SVD).

Feature Selection

The primary objective behind feature selection is to select a relevant and infor-
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mative subset of features by removing the irrelevant and redundant ones.

This process helps understanding our data, since it diminishes the e↵ect of

over dimensionality, lowering computational requirement and improving the

predictor performance. [21] To achieve this result there are di↵erent methods to

considerer, grouped by filter methods, wrapper methods and embedded

methods. [22]

Filter methods

Filter methods main purpose is to rank the features according to their rele-

vance, giving each one a score and removing the ones that are not within a

certain threshold. As such, ranking methods can be considered filtering meth-

ods since they are applied before classification to filter out the less significant

features.[22]

These methods include correlation coe�cients, information gain, mutual infor-

mation, plus more traditional statistical tests such as T-test and Chi-squared.

• Correlation Criteria

Correlation coe�cients measure how strong the relationship between two

variables is. If two features are highly positively correlated, they have

similar information, thus keeping just one will reduce the dimension of

the dataset without losing important information.

One of the simplest and most commonly used criteria of correlation is the

Pearson’s correlation coe�cient. It shows the linear relationship between

two sets of data.The correlation between variables x and y is given by:

r =

P
(xt � x̄)(yt � ȳ)pP

(xt � x̄)2
pP

(yt � ȳ)2
[23] (3.6)

Correlation values variate between -1 and 1. Thus, a correlation coe�-

cient near 1 has two input variables that are highly correlated, whilst a

-1 value means that for every positive increase in one variable, there is a

negative decrease of the other, having a strong negative linear relation-

ship. Zero means that exists weak or non-existing relationship.

[24]

• Mutual Information (MI) Alternative to Correlation Criteria, MI is

also an e�cient filter method. MI is a measure of statistical independence
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that can obtain any kind of relationship between random variables, in-

cluding nonlinear relationships.

Additionally, MI is invariant under space transformations. Thus, it mea-

sures the amount of information that one variable has with another. This

definition is very useful within the context of feature selection because it

allows the quantification of feature subset relevance. [22]

Given two discrete random variables x1 and x2, their mutual informa-

tion, I(x1,x2), is defined in terms of their probabilistic density functions

(p(x1), p(x2), and p(x1,x2)): [25]

I(x1, x2) =

Z Z
p(x1, x2)log

p(x1, x2)

p(x1)p(x2)
dx1dx2 (3.7)

Where MI is zero when x1 and x2 are statistically independent.

• Kruskal Wallis

Kruskal Wallis is a non-parametric statistical test that considers the dif-

ferences among three or more independent sampled groups on a single,

non-normally distributed continuous variable. This test gives informa-

tion about each feature relevancy, considering their discriminative power.

[26]

The Kruskal Wallis null hypothesis verifies if two or more variables come

from the same distribution, meaning they have the same median, assum-

ing that the shape of the distribution is the same. The H parameter

measure is approximately chi-square distributed. So the probability of

getting a particular value of H, if the null hypothesis is true, is the P

value corresponding to a chi-square equal to H. Higher values of H sug-

gest higher discriminative power. [27]

These methods do not incorporate the learning phase, therefore they are rela-

tively robust against overfitting.

Wrapped methods

Wrapped methods bind the feature selection around the algorithm, using dif-

ferent combinations to predict the benefits of adding or removing a feature

from the subset used. Hence, they search through the space of feature subsets

calculating the estimated accuracy of the algorithm for each feature aiming to

find the best optimization. [28]
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These methods usually take higher computational power since they use learn-

ing machines as a black box to score subsets of features according to their

predictive power. However, they do not incorporate knowledge about the spe-

cific structure of the classification or regression function, thus they can be

combined with any learning machine.[28]

• Recursive Feature Elimination (RFE)

RFE is one of the most common Wrapper methods, since it performs

dimensionality reduction given an algorithm. It assigns the weights and

the rankings to each input feature while training the algorithm, removing

the one with the smallest weight result. This process repeats until it

achieves a single feature subset.[28]

Thus, RFE has no e↵ect on correlation methods since the ranking crite-

rion is computed with information about a single feature. [29]

Filters and wrappers di↵er mostly by the evaluation criteria. It is usually

established that filters do not engage in any kind of machine learning, whereas

wrappers use the performance of a learning algorithm which is trained using a

given feature subset. [30]

Embedded Methods

In contrast to filter and wrapper approaches, embedded methods do not sep-

arate the learning phase from the feature selection one. They perform feature

selection in the process of training the data, without splitting into training

and testing sets. Thus, structure of the class of functions under consideration

plays a crucial role. [31]

Some of the most common methods are Forward Selection with Least Squares

and Decision Trees (see in section 3.5).

3.5 Time Series

Some datasets have observations that were taken chronologically. For example,

annual birth rates datasets, daily stock prices datasets, and so on. These

time-ordered sequences of observations are called Time Series. [32] Thus, a

time series is a set of observations, each one being recorded at a specific time

t.[33]
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Usually, a time series comprises di↵erent components: a trend-cycle compo-

nent, T, a seasonality component, S, and a remainder component, also called

noise, R (which includes all the remaining parts).[23]

Thus, a time series decomposition can be written as:

yt = Tt + St +Rti (3.8)

where y is the data and t the time period.[23]

Trend :general component that exists when there is a long-term increase or

decrease in the data. It does not have to be linear. [23]

Seasonal : general component that exists when a time series is a↵ected by

seasonal factors such as the time of the year or the day of the week. Seasonality

is always of a fixed and identified frequency. [23]

Usually, a time series involves large quantities of data, since the values are

being recorded during a specific period of time. Thus, if the purpose is to look

for turning points in a series and interpret any changes in direction, its better

to use the trend-cycle component. [23] A classical decomposition of the time

series is to use a Moving Average (MA) method to estimate the trend-cycle

from seasonal data and take considerations about the tendency of the time

series.

Moving Average (MA) - MA of order m can be written as:

Tt =
1

m

j=�kX

k

yt+j (3.9)

with order m = 2k +1. Which represents, the estimate of the trend-cycle at

time is obtained by averaging the values of the time series within k periods

of t. By applying MA to the data, it eliminates some of the randomness,

leaving a smooth trend-cycle component. Thus, the order, m, determines the

smoothness of the trend-cycle estimate. [23]

3.6 Learning Algorithms

There are numerous ways of constructing a ML Algorithm. Depending on the

task, we can use di↵erent learning approaches: supervised, semi-supervised,
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and unsupervised.

Every algorithm requires some kind of input data that should be divided into

training and test sets. The training set contains the input data that will be

used by the learning algorithm to fit the model to the problem at hand. The

testing set is used afterwards and its main goal is to evaluate the generalisation

ability of the ML model, i.e., to assess the capacity of the model to work beyond

the data used for training.

3.6.1 Supervised Machine Learning Algorithms

Supervised learning is one of the most commonly used types of machine learn-

ing. These algorithms are used whenever one wants to predict a certain out-

come from a given input, having annotated examples of what that outcome

could be. Thus, the goal is to model the relationship between the measured

features and the associated labels of the data, so that it can accurately make

predictions of which labels should be attributed to new sets of data. [2]

This is further subdivided into classification and regression tasks.[34]

Classification vs Regression

Classification is usually associated with prediction of discrete categories. Some-

times this is separated into binary classification, which has only two classes

as input, and multiclass classification, which handles more than two classes.

It is important to note that binary classification is often referred as having a

positive class and a negative one. However, in this context, positive does not

mean value or gain, but the object we want to classify. Contrarily, negative

class refers to the class of the samples that do not represent the object in

study.

On the other hand, regression tasks apply to predictions involving continuous

quantities as labels. So, if there is some kind of continuity between the outputs

of the algorithm performing classification, then it is considered a regression

problem. [34]

Decision Trees

Decision Tree (DT) (Figure 3.3) are versatile ML algorithms capable of fitting

and visualizing complex datasets. Fundamentally, they learn a hierarchy of

if/else questions and answers, leading to a decision, as shown in the upcoming
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figure.[2]

Figure 3.2: Decision Tree taken from [2].

The method implemented by decision trees begins with splitting the input

dataset into subsets based on the result of testing an attribute. Afterwards,

each new node of the tree is labeled with a new attribute to be tested, and

its branches are labeled with their corresponding values. Thus, each new node

of the tree splits the instance space into two or more sub-spaces, according to

the di↵erent values of input attributes. This process ends when splitting is no

longer an option or does not add any more value to the prediction (the only

variable left for testing is the target).[2].

Through this process the algorithm classifies the samples by sorting them down

the tree, starting in the root node, testing the attribute specified by this node,

and then moving down the tree branches responding to each test until it finds

the node containing the same value as the target variable, thus containing its

classification. [35]

Decisions trees are great for exploratory knowledge discovery since they do not

require any previous knowledge or parameter setting and can handle high di-

mensional data. However, they are more suited to regression problems, where

the goal is to predict the value of a continuous attribute, since performing clas-

sification with few samples will result in a higher error probability. [12]

Random Forest

The Random Forest (RF) algorithm can be described as a collection of deci-
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sion trees, where each tree is slightly di↵erent from the other. The main goal

of applying RF is to add the random factor to the building process of each

tree in order to ensure they are di↵erent from each other. This process can

also be referred to as subspace sampling.[36] To each individual tree prelimi-

nary prediction probability is given. In the end, the final prediction is made

considering all predictions probabilities.[2]

3.6.2 Unsupervised Machine Learning Algorithms

Unsupervised algorithms learn without any supervision. The goal is not to

predict something but to discover interesting patterns between samples by

exploring the distribution of the feature space.

Depending on the problem to address, one main technique to be applied is

Clustering. Clustering Methods are meant to discover subgroups (or clusters)

in the dataset. As an unsupervised learning class, they have no knowledge of

what the output should be or the classification of the input. Thus, the main

objective of these methods is to look for a way of distinguishing the data and

group the samples considering their similarities. [37]

This is not a simple process, to define which samples are somewhat equal,

there must be a criterion to that equality. This is often a domain-specific con-

sideration based on prior, usually theoretical, knowledge of the input dataset.

[38]

There are two best-known clustering approaches: K-means and Hierarchical

Clustering. The interested reader can refer to [37].

3.7 Evaluation

After implementing the learning algorithms it is important to evaluate their

performance and test their capacity to correctly classify the test data. In

order to assess the classifier’s performance there are some metrics and methods

that can be applied to the output that can be divided into classification and

regression performance methods.

Classification Performance Metrics
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Confusion Matrices (CF) break the performance results up into their correctly

and incorrectly predicted components for the two or more given classes. Which

means, it reports how many times the classifier predicts a recurrence wrongly

and how many times it predicts a nonrecurrence wrongly.[3]

It is represented as a table with four di↵erent combinations (considering a 2

classes problem) of predicted and actual values, as shown in the upcoming

figure.

Figure 3.3: Confusion Matrix scheme.

• Accuracy: ratio of correct predictions, positive or negative, considering

the entire predictions set.

Accuray =
TP + TN

TP + TN + FP + FN
(3.10)

• Sensitivity or Recall: portion of correct positive predictions, consid-

ering all true positives existent. It traduces the capacity of the algorithm

to predict which cases are actually positive.

Recall =
TP

TP + FN
(3.11)

• Specificity: similar to recall, it is the fraction of true negatives predicted

by the classifier, considering all true negatives, reflecting the capacity of

the algorithm to predict which cases are actually negative.

Specificity =
TN

TN + FP
(3.12)

• Precision: ratio of positive predictions that are actually true, consider-
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ing all positive predictions (correct or not).

Precision =
TP

TP + FP
(3.13)

• F1-Score: ponderation between precision and recall. A good value of

F1-score suggests that the ratio of false positives and false negatives is

low, which implies that there were few errors in the classification.

• ROC Curve: Receiver Operating Characteristic Curve (Figure 3.4).

ROC is a graphical tool for visualizing the performance of learning algo-

rithms. The ROC curve horizontal axis (x axis) denotes the false-positive

rate FPR (1 - specificity) and the vertical axis (the y axis) denotes the

true-positive rate TPR (sensitivity) of a classifier. Thus, ROC analysis

shows the relationship between the sensitivity and the specificity of the

classifier. [3]

Figure 3.4: ROC Curve scheme taken from [3]

The area the total area under the ROC curve, abbreviated as AUC, represent-

ing the performance of the classifier averaged over all the possible cost ratios.

[3] A good classifier performance will have an AUC value close to 1 (if equals

to 1, then the classifier perfectly predicted all samples). However, a 0.5 AUC

the algorithm is has the same accuracy as tossing a coin. The upcoming figures

displays the ROC curve and the measures associated.





Chapter 4

Experimental Setup

4.1 Data Collection

To further study the cardiotoxic consequences of Doxorubicin (DOX), re-

searchers at the MitoXT laboratory performed di↵erent experiments using

Wistar rats treated either with Saline (SAL) or DOX injections. This project

will focus on a data driven analysis of the results obtained with the acute pro-

tocol. The experiments’ results were stored in di↵erent spreadsheet files which

will be the aim of the following chapters analysis. Hence, it is important to

understand how it was gathered and stored, before addressing how it should

be processed and transformed into useful datasets.

� (Pre) Initial weight of the rat, in grams;

� (Post) Final weight of the rat, in grams;

� (Post) Tibia size of the rat, in centimeters;

� (Post) Recuperation flow, ml per minute;

� (Post) Heart weight (after its removal), in grams;

� (Post) Substrate flow, ml per minute;

� (Post) Weight of heart tissue stored in RNAlater.

Considering the rats submitted to perfusion with substrate and inhibitor, both

pre- and post-weight and size measures were saved in a single spreadsheet file.

Since we had three di↵erent substrates, this resulted in three di↵erent sheets,
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one for each perfusion. Each sheet contains six tables aggregated in pairs by

inhibitor, with the values measured for each rat.

Thus, figure 4.1, shows an example of a table concerning the measures of the

rats saved in the sheet ’Galactose plus Glutamine’ within the ’Weights’ Excel

file.

Figure 4.1: Spreedsheet tables of each rats pre perfusion information.

The rats that did not survive the treatment are marked with the symbol ’-’ as

a value of each measure.

As mentioned previously in Chapter 2, during perfusion the Heart Pressure

values of each injection last 30 seconds were registred using the Origin 8.5

software.

Each heart was submitted to perfusion with seven di↵erent substrate-inhibitor

injections. These recordings were then exported to a spreadsheet, resulting in

a total ninety-five files with seven columns each, and a total of 3761 values

of heart pressure and seven additional columns with the corresponding time

(from 0 to 30 seconds), as shown in figure 4.2.

Figure 4.2: Spreedsheet table of each rats heart pressure values for each injection during
perfusion.



Measures obtained after perfusion:

• Transcript information, of 4 pairs of samples combinations, concern-

ing the transcripts Adenine nucleotide translocator (ANT), Hypoxia-

inducible factor 1alpha (Hif-1alpha) and Lactate dehydrogenase (LDH);

• Protein information, of 4 pairs of samples combinations, concerning

the proteins Peroxisome proliferator-activated receptor-gamma coactiva-

tor (PGC-1alpha) and Mitochondrial transcription factor A (TFAM).

For the transcript information, values were obtained after PCR analysis for the
transcripts ANT, Hif-1alpha and LDH, and saved in three di↵erent files, one
for each PCR plate. Within the files, there were di↵erent sheets concerning
the measures of each transcript. In each sheet the values were separated by
di↵erent tables regarding the substrate-inhibitor combination during perfusion.
Figure 4.3, shows the tables built in the Hif-1alpha sheet, for the Plate 1
file. The first line of the tables shows the substrate-inhibitor combination,
for example, ’G+Rotenone (ROT)’ stands for the Glucose substrate combined
with ROT inhibitor.

Figure 4.3: Spreedsheet tables of the transcript expression information.

Finally, the data acquired through the Western Blot technique for the proteins
PGC-1alpha and TFAM, was stored in other three di↵erent files, one per
substrate. Each file contained one PGC-1alpha sheet and one TFAM sheet,
both with di↵erent tables for the values of each sample. Each one of these
tables was grouped by inhibitor. Figure 4.4 displays the PGC-1alpha sheet of
the Octanoate plus Malate (OM) substrate file, showing three di↵erent tables,
corresponding to each three inhibitors samples.
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Figure 4.4: Spreedsheet tables of the protein information.

In summary, there are a total of 102 excel files, containing the following
information:

� 95 files with the heart pressure values;

� 1 file with the weight information, with 3 di↵erent sheets concerning the
substrate, each with 6 tables regarding the inhibitors and the treatment;

� 3 files for the 3 di↵erent PCR plates of the transcript information, with
di↵erent sheets concerning the genes, and di↵erent tables depending on
the sample’s perfusion combination;

� And, 3 files for the protein information, with one sheet per protein, and
di↵erent tables with the correspondent samples.

Concerning the control rats, the same parameters were measured but in dif-
ferent conditions. There were two groups of control: Time Control (TC) and
Nonperfused (NP), and each samples size is described in tables 4.1 and 4.2,
respectively.

NP
SAL DOX Total

Weights Information - - -
Heart Pressure Values - - -
Transcript Information 4 4 8
Protein Information 6 6 12

Table 4.1: Number of NP rats.
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TC

Glucose
Galactose

+ Glutamine
Octanoate
+ Malate

Total

SAL DOX SAL DOX SAL DOX SAL DOX
Weights Information 4 2 2 2 2 2 8 6
Heart Pressure Values 4 6 4 5 4 6 12 17
Transcript Information 4 4 4 4 4 4 12 12
Protein Information - - - - - - - -

Table 4.2: Number of TC rats.

Concerning the TC rats, they were treated and perfused only with the sub-
strates (four injections each) in order to understand if the hearts were capable
of supporting perfusion without collapsing. Thus, there were additional 29
sheets concerning the heart perfusion measures and each sheet contains four
tables, per injection similar to figure 4.2 table. Before perfusion the weights
were measured and afterwards the transcript information was obtained. Both
parameters were stored in files, per substrate, similar to the figures 4.1 and 4.3
respectively.

The NP rats were treated with either DOX and SAL solutions then they were
sacrificed so that their protein and transcript information could be collected.
Thus, there was no perfusion and therefore no heart perfusion values for these
rats. The files concerning the parameters concerning this protocol are struc-
tured similar to figure 4.4 and 4.3.

4.2 Dataset Construction

In order to use the collected data, it is necessary to process and store it fol-
lowing a standard procedure. The final structure of the data should be simple
and clear, each row should correspond to each sample, and the measures that
explain the problem should match the columns. To ease the analysis categor-
ical labels, such as Treatment, Inhibitor and Substrate, were transformed
using the following mapping mechanism:

Original Value Transformation

Treatment
SAL 0
DOX 1

Substrate
Glucose 1
Galactose plus Glutamine (GG) 2
OM 3

Inhibitor
Potassium Cyanide (KCN) 1
Iodoacetate (IODO) 2
ROT 3

Table 4.3: Treatment, Inhibitor and Substrate transformation.

To explore di↵erent data combinations and types of analysis, the data was
selected and aggregated by: Weights, heart pressure, transcript information
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and protein information. Concerning the aggregation by weights, there were
several parameters taken from the Weight files described in the previous sec-
tion and represented in figure 4.1. Advised by the experts at the MitoXT
laboratory, the measurements regarding the substrate and recuperation flows
were excluded due the presence of a considerable amount of missing values,
and the RNALater weight feature, concerning the weight of heart tissue stored
in RNAlater, was also rejected since it was not relevant for the problem in
hands.

These values were used to create two di↵erent datasets. One dataset joining
each sample weights information for the TCs, and another for the main dataset,
which combines all features (columns) for all samples (rows), for the acute
protocol, as seen in figure 4.5.

Figure 4.5: Structure of the TC weights dataset and the beginning of the main dataset
which continues to figure 4.6.

With the help of the experts at MitoXT laboratory, four additional features
were selected to be part of the exploration of possible relationships and ten-
dencies between features. Two of the additional features were obtained by
subtracting each rat’s weight (equations 4.1 and 4.1):

WeightDifference = Finalweight� InitialWeight (4.1)

AbsWeightDifference = |FinalWeight� InitialWeight| (4.2)

Both features goal was to understand the magnitude of weight variation after
each protocol and each treatment. Thus, the Weight Di↵erence feature
allowed us to understand if the weights decreased or increased, and was only
included in the weights dataset. The Absolute Weight Di↵erence feature
was only included in the main dataset (figure 4.6). The other two features
resulted in the division of the heart weight and the tibia size by the final
weight of each rat.

The addition of these features had the purpose of understanding if the treat-
ment had a direct or indirect influence in the weights of the rats, and if this
influence happened for all protocols. By dividing the initial features by the
final weight, the resulting values will represent the variation of that feature
and can then be compared with the other rats results.
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Figure 4.6: Addition of features Abs Weight, Heart Weight/Final Weight and Tibia
Size/Final Weight. Continues to table showed in figure 4.7.

Concerning the aggregation by Heart Pressure values we built several datasets
following two di↵erent structures. The first structure was built in order to
visualize the time series tendencies, without any statistic transformation, of the
heart pressure values during perfusion with di↵erent inhibitor concentrations.
Thus it combines the ID, Treatment, Inhibitor, Time, Heart Pressure and
Injection number for each sample (figure 4.7).

Figure 4.7: Structure of the 3 datasets corresponding to heart pressure values timeseries.
Dimensions: 816137 rows x 6 columns, for each substrate.

It is necessary to transform the data, in order to correlate the heart pressure
with the remaining features. Thus, the mean, median and standard deviation
were calculated for each injection value, and for all values combined, resulting
in 3 additional features for each situation. These new features were then added
to the dataset joining all features (table of figure 4.8).

Figure 4.8: Continuation of figure 4.6. Addition of calculated features concerning the
Heart Pressure values’ mean, median and std. Continuation to figure 4.9

Additionally, concerning the transcript information, aggregation the ANT,
Hif-1alpha and LDH transcript expression values were selected and those which
were from rats perfused with both substrate and inhibitor were added as fea-
tures to the main dataset. The values from TC rats were joined in a new
dataset: TC transcript expression information dataset. The transcript infor-
mation of NP rats was also joined in a di↵erent dataset.
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Figure 4.9: Continuation of figure 4.8. Addition of transcript information selected values.
Ends in figure 4.10

Finally, protein information related to PGC-1alpha and TFAM from rats per-
fused with both substrate and inhibitor, completed the main dataset. The
Ubiquitin protein information was not enough to be considered for the analy-
sis, thus it was excluded. In addition, the protein values of the NP rats were
joint in a new dataset: NP rats protein information dataset.

Figure 4.10: Continuation of figure 4.9. Addition of protein information features. End of
main dataset structure.

4.3 Data Cleaning

After carefully selecting and structuring the data, it is necessary to go through
each component to understand the correct transformations that need to be
applied to attain the best model performance and to maximize the information
gain.

As mentioned in Chapter 3, data cleaning is a very important step, consid-
ering each value and its accurateness towards the problem’s context. Thus,
in this section we will be analysing our features possible missing values and
outliers.

4.3.1 Missing values

The first phase of this process was to understand whether incomplete informa-
tion exists. A general analysis during data selection showed that the protein
information had very few values concerning the ubiquitin ratio. Therefore, this
was not considered as a feature.

However, concerning the features that were actually selected and did not
presented obvious missing information, there were other missing values that
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needed to be found and treated accordingly. Thus, we performed a careful
analysis to each feature.

The first analysed feature was the Heart Pressure values due to its large amount
of values. Our analysis revealed that there were about 0.1% of information
missing, thus we replaced it by the feature mean.

The ANT trasncript expression feature, from the TC transcript information
dataset, had a missing value corresponding to a SAL-treated rat injected with
GG substrate. In table 4.2, it is possible to confirm that this feature only
has 4 rats. Thus, applying imputation to replace the missing value would
avoid removing the sample, although it would also have great influence in our
visualization of the problem. The final decision was to remove the sample from
the dataset in question.

4.3.2 Outlier Detection

Outlier detection plays an essential role in detecting abnormal observations of
data values. However, in a biological dataset, such as the one in hands, outlier
values are frequent and may be relevant to understand the problem. Thus,
they were not removed.
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Chapter 5

Results and Discussion

5.1 Exploratory Analysis

In order to find possible hidden patterns in the data, an exploratory analysis
was made.

Looking for new information, we applied several data visualization techniques,
di↵erent descriptive analysis parameters, time series analysis, feature correla-
tion and mutual information analysis to our datasets.

5.1.1 Descriptive analysis and Data Visualization

The first set of features to be analyzed were the measures taken before perfusion
using the dataset concerning the Time Control (TC) rats information and the
main dataset information.

As previously mentioned, the main goal of the TC protocol was to understand
whether the hearts could survive through the entire perfusion procedure. Thus,
this protocol hearts were only perfused with the substrate.

5.1.1.1 Pre perfusion

The first step was to perform a descriptive analysis of each feature using the
metrics described in section 3.2 of chapter 3 and which values are shown in
supplementary table A.1.

Our initial analysis of the weights for all rats showed that there are no con-
siderable alterations between the initial weight and the final weight of the
rats of each treatment, which matches the original conclusions, figure 5.1 left
panel.
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However, as mentioned previously, we created two additional features in order
to perform a deeper exploration of the existent alterations and decided to plot
the same results as before considering these variations.

In fact, the graph on the right of figure 5.1 shows that while Saline (SAL)-
treated rats weight variation fell under +/- 4 grams, Doxorubicin (DOX) in-
jected rats weights variation reached 10 or more grams.

Figure 5.1: Barplot analysis of initial weight vs the final weight per treatment (left).
Barplot analysis of the absolute di↵erence of the weights (right).

A boxplot analysis of the weights di↵erence (figure 5.2) not only confirmed that
the change but it also indicates the the DOX-treated rats weight variations for
most cases reveals a decrease of the weight reaching up to a minus 25 grams
variation.

Figure 5.2: Boxplot analysis of the weight di↵erence feature.
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Additionally, figures A.1 and A.2 of Appendix A, show a boxplot analysis of
Heart weight / Final Weightand Tibia Size / Final Weight results, respec-
tively. None of the figures show noticeably di↵erences between DOX and SAL
groups.

5.1.1.2 Post perfusion: transcript information

The original analysis, done by Filipa Carvalho, suggested that in Nonperfused
(NP) hearts from rats treated with DOX, Adenine nucleotide translocator
(ANT) expression values were significantly reduced compared to the ones
treated with SAL. This analysis also concluded that this feature presented
higher values in hearts perfused with glucose and decreased for the ones per-
fused with Galactose plus Glutamine (GG), concerning the TC protocol, with-
out discriminating treatments.

Regarding the addition of inhibitors, the original analysis showed that Hypoxia-
inducible factor 1alpha (Hif-1alpha) expression values were higher for DOX-
treated hearts perfused with glucose and Iodoacetate (IODO) inhibitor. Both
GG and Octanoate plus Malate (OM) substrates combined with cyanide in-
hibitor had higher ANT expression values concerning DOX-treated rats. Fi-
nally, Lactate dehydrogenase (LDH) expression of DOX hearts only increased
in the presence of the substrate OM combined with inhibitor Potassium Cyanide
(KCN).

In order to explore these features and confirm the original conclusions, we
used three datasets: the NP rats transcript information dataset; the TC rats
transcript information dataset and the main dataset.

Table A.3 (see appendix) and figure 5.3 contain the results regarding the ANT
expression of TC hearts and of the hearts perfused with both substrates and
inhibitors. The NP hearts transcripts expression descriptive information is
displayed in table A.2 of the appendix.
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Figure 5.3: Boxplot analysis of the ANT transcript expression feature.

Regarding the NP hearts, Panel 1 shows that the SAL-treated group had higher
values compared to the DOX-treated group, which had already been observed
in previous studies.

Looking at the boxplot analysis of the TC rats’ values (graphics 2, 3 and 4)
showed that, similar to the original, this tendency was maintained solely for
the rats perfused with the substrate GG (panel 3). As for the glucose substrate
(panel 2), the DOX group showed a great increase, exceeding the one observed
for SAL, which was also observed by the previous studies. The remaining
substrate showed no considerable alterations between treatments.

Finally, panels 5, 6 and 7 represent the analysis of the hearts also perfused
with inhibitor. Panel 5, corresponds to glucose results and shows that, inde-
pendently of the inhibitor, DOX group values were higher compared to the
SAL ones maintaining the TC results. Thus, the ANT expression results were
not a↵ected by glucose inhibition, which was already confirmed by the original
analysis.

For the remaining substrates, the results concerning the KCN group showed
a substantial increase of DOX-treated hearts values, especially in the ones
of the OM substrate, compared to TC protocol, also matching the original
analysis.

Thus, our ANT expression results analysis matched the original analysis.

Proceeding to analyzing the Hif-1alpha results, table A.4 and figure 5.4 must
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be considered.

Figure 5.4: Boxplot analysis of the Hif-1alpha transcript expression feature. The blue
boxplots correspond to SAL group and the yellow boxplots to the DOX one.

NP hearts (panel 1), showed no di↵erences of this feature values concerning
the DOX-treated hearts and compared to the SAL group. However, this is
only true regarding TC hearts perfused with glucose or GG substrates, for
panels 2 and 3, where the values for both treatments prevailed very similar,
which matched the original analysis. One the other hand, concerning the OM
substrate, the results suggest a great increase of the DOX group values (table
A.4, panel 3), which was not observed by the previous studies.

Concerning the hearts also perfused with inhibitors, IODO inhibitor displayed
higher values for the DOX group when perfused with glucose, surpassing the
SAL group, TC and NP protocol results and confirming the original analysis,
which stated that this result supported the ’idea that DOX hearts promote
adaptations in glycolysis’[6].

Additionaly, the rats perfused with the remaining substrates and combined
with KCN inhibitor, showed a great increase for the DOX-treated hearts for
the OM+KCN substrate boxplot. Regarding the OM inhibition, the Rotenone
(ROT) boxplot showed a considerable decrease in DOX-treated group, com-
pared to all the remaining groups. Both of these analyses were not considered
in the original research.

To finalize our transcript information analysis, figure 5.5 contains the boxplots

43



graphs regarding the LDH expression results and table A.5 its descriptive
analysis.

Figure 5.5: Boxplot analysis of the LDH transcript expression feature.The blue boxplots
correspond to SAL group and the yellow boxplots to the DOX one.

The boxplots concerning NP hearts (panel 1) suggest that LDH expression
had no alteration between treatments, although the DOX group has greater
variance when compared to SAL. This e↵ect was already observed in the
original study. .

The same happened for panels 2 and 4 of the TC rats perfused with glucose
and OM, respectively, but not for panel 3, regarding the GG substrate. This
substrate showed an increase in the DOX treated group results, when compared
to the NP panel and the SAL group. The original conclusions suggest that for
GG, none of the TC results show considerable di↵erences.

Observing all graphs, only combination OM plus KCN showed a considerable
increase in the DOX hearts results. Despite both ROT and KCN inhibition
with GG substrate also showing a great increase, the variance of the values is
too high, compromising our conclusions. The same happened for the combi-
nation IODO+G results.

In the end, all transcript information feature values had similar responses for
the same protocols and compared to the original analysis. Our results for
the NP rats matched the original analysis, since ANT expression results also
were substantially lower for DOX hearts, whilst LDH had similar values and
Hif-1alpha expression had a mild increase.
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Concerning the ANT feature, the original results also showed a significant in-
crease in the DOX hearts group, regarding all combinations of the glucose
perfusion, and regarding the KCN combination with the remaining two sub-
strates.

As for the Hif-1alpha results, we also concluded that perfusion with the pairs
G+IODO and GG+KCN or OM+KCN showed higher values for DOX treated
hearts, which the previous studies stated as the support of the ’idea that
DOX hearts promote adaptations in glycolysis’[6]. To conclude, we added that
the OM inhibition with ROT showed an abnormal decrease in DOX results,
compared to all the remaining graphs.

Finally, regarding LDH feature, the results were also similar to the original
ones, since we also found an increase of the DOX hearts LDH expression for the
KCN inhibition of the OM substrate, which the original analysis also concluded
that this showed ’that KCN promotes susceptibility in DOX hearts including
toxicity’[6].

5.1.1.3 Post perfusion: protein information

For this analysis we considered two datasets: the NP rats protein information
dataset and the main dataset. Each feature was analyzed individually and
afterwards these conclusions were compared to the original ones.

Figure 5.6 contains the graphs related to the Peroxisome proliferator-activated
receptor-gamma coactivator (PGC-1alpha) ratio boxplot analysis and tables
A.6 and A.7(appendix) the correspondent values.

Figure 5.6: Boxplot analysis of the PGC-1alpha ratio feature. The blue boxplots corre-
spond to SAL group and the yellow boxplots to the DOX one.

NP hearts of rats treated with SAL solution showed lower values when com-
pared to the ones treated with DOX and had greater variance (panel 1). This
contradicts the original analysis, which stated that, for both Mitochondrial
transcription factor A (TFAM) and PGC-1alpha, DOX hearts results were
lower.
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We did in fact confirmed, however, that for DOX treatment group all perfused
hearts results decreased comparing to the to the NP results. Which, the origi-
nal analysis conclued as a prove for the ’down-regulation e↵ect of the inhibitors
on protein content’[6], it also made all the suggestions for both PGC-1alpha
and TFAM ratios generalized for all inhibitors.

However our figure shows that there are some considerable di↵erences for hearts
perfused with KCN and IODO inhibitors, which had higher values for the rats
treated with SAL solution (panels 2, 3 and 4), particularly concerning the
substrate GG perfusion, where the DOX boxplots for these inhibitors had
really low values, contrary to the NP results conclusion. Thus, we conclude
that these the inhibitors which more contribute for the ’down-regulation on
protein content’[6].

On the other hand, the rats whose hearts were perfused with ROT inhibitor
showed an increase of the PGC-1alpha ratio values of DOX-treated hearts
compared to the ones treated with SAL, independent of the substrate.

Finally, the TFAM ratio values boxplot analysis can be observed in figure
5.7.

Figure 5.7: Boxplot analysis of the TFAM ratio feature. The blue boxplots correspond to
SAL group and the yellow boxplots to the DOX one.

The first panel of this figure suggests that the NP hearts, whose rats were
treated with saline solution, had lower values, although more separated, com-
pared to rats treated with DOX, contradicting the original analysis.

However, the remaining graphs suggest that this feature values are lower for
the perfused hearts compared with TC, which is confirmed by the descriptive
analysis, A.7, suggesting the perfusion caused a great stress concerning this
feature. Confirming the original analysis, which did not consider each inhibitor
individual analysis.

For both substrates glucose and GG, DOX-treated hearts TFAM values de-
creased considerably in the presence of IODO. Besides this analysis, there were
no other relevant conclusions to be taken, since the panels 2, 3 and 4 do not
show any pattern concerning the substrate and inhibitors comparison.
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In the end, we verified almost all original conclusions. Additionally, our analy-
sis also suggest a great decrease of both features results concerning the perfu-
sion protocol compared to NP protocol. Additionally, within the NP protocol
we do not consider that DOX hearts results were lower than SAL ones. We
also discovered that for both PGC-1alpha and TFAM results, IODO and KCN
inhibiton showed the lowest values for the DOX group, specially IODO, con-
tributting greatly for the ’down-regulation on protein content’. Additionally,
we also consider that PGC-1alpha values from hearts perfused with ROT were
greater for DOX hearts compared with the SAL-treated ones.

After analysing pre and post perfusion features it is time to consider the mea-
surements taken during this procedure.

5.1.1.4 Heart Pressure Values - Time Series Analysis

In chapter 2 section 2.4, it is mentioned that at the end of each injection,
the heart pressure values were measured for 30 seconds and recorded. The
measurement resulted in a set of features with about 3k values per injection,
per sample. Hence, in order to explore this feature, we first decided to analyse
it without applying any kind of statistical transformation.

Thus, we plotted both DOX and SAL values for each substrate of the TC
protocol (figure 5.8), and of the main dataset without discriminating inhibitors
(figure 5.9). Lighter color lines represent the SAL values whilst darker colors
represent DOX values.

Figure 5.8: Heart Pressure values per injection, for DOX and SAL group for each substrate
of the TC protocol.

Figure 5.9: Heart Pressure values per injection, for DOX and SAL group for each substrate
of the main dataset.
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In fact, it is possible to see di↵erences between the treatment values. Since
the main goal of the TC protocol was to understand if the hearts were capable
of tolerating the injections, figure 5.8 confirms that they can. It also shows
that using OM as substrate, the DOX-treated group su↵ered a considerable
functional decline, which was already stated in the conclusions of the original
thesis.

However, contrary to the GG conclusions, where the authors stated that no
di↵erences were found between groups, panel 2 of figure 5.8 shows that the
DOX-treated hearts presented lower values compared to SAL ones. As for G
substrate TC results, the original analysis concluded that the first injections
showed higher values for the DOX group, which is also suggested in panel 1 of
figure 5.8.

For the main dataset result, the OM perfusion graphs suggest that both groups
values decreased considerably compared to TC outcomes of the same substrate
(panel 3 figure 5.9).

However, for the remaining graphs there are no clear di↵erences nor tendencies
between treatments, protocol or injection, thus it is necessary to approach the
problem di↵erently.

Thus, the next step was to plot the same graphs of the main dataset but
discriminating the inhibitors (figure 5.10) and also, in order to explore the
time series tendencies for this measure, plot the graphs considering the time
column for the x axis and not the injections.

Figure 5.10: Heart Pressure values per injection, for DOX and SAL group for each sub-
strate of the main dataset. The blue lines correspond to the SAL group and the yellow
line to the DOX one.

In chapter 3.5, it is stated that ’a classical decomposition of the time series is to
use a Moving Average (MA) method to estimate the trend-cycle’. In fact, figure
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5.11 shows the same values raw, left graphic, and using MA transformation,
right graphic, show that MA allows us to have a better understating of the
overall time series tendencies. Thus, we applied this transformation to our
data and plotted the time series for each injection, per sample pair, figures
A.9 to A.58 of the attachments.

Figure 5.11: Heart Pressure time series plot for injection 1, with MA transformation(left)
and without(right).

After analyzing figure 5.10, concerning the general results for each combina-
tion, and supplementary figures A.9 to A.58 concerning each pair time series
tendency, some conclusions were taken in comparison to the original thesis
analysis of the heart rate values taken from the same heart pressure values we
are using.

Regarding the glucose perfusion, the original analysis concluded that the heart
rate decreased when the IODO concentration increased, however panel 2 of fig-
ure 5.10 shows this only happens for injections 1 to 5, since the 6th injection
and the recovery phase show some increase in these values for both SAL and
DOX groups. This increase is explained by supplementary figures A.12 and
A.14, concerning the pairs 4 and 6 of SAL and DOX hearts, perfused with
glucose substrate combined with IODO inhibitor, and where both groups re-
covered.

As for the remaining two inhibitors, KCN and ROT, panels 1 and 3 do not
exhibit a generalisation of this tendency, since the time series analysis of each
ID pair showed di↵erent responses within the same combination.

As for panels 4, 5 and 6, concerning the substrate GG perfusion with KCN,
IODO and ROT, respectively, the original analysis concluded that, generally,
for IODO and KCN SAL group heart pressures were more a↵ected during
perfusion.

Panel 4 suggests that SAL hearts almost did not survive, whilst DOX hearts
retained consist heart pressures throughout the procedure, which is supported
by the individual plots, since none of the SAL group hearts for the pairs
corresponding to the KCN and GG combination recovered (supplementary
figures A.28 to A.32). IODO values were the ones reaching higher values for
DOX-treated hearts, also confirmed by each pair plot (supplementary figures
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A.33 to A.38), in which almost every DOX sample showed recovery, contrary
to SAL hearts.

The last three panels, 7, 8 and 9, represent the OM perfusion with the in-
hibitors KCN, IODO and ROT, respectively. The original analysis concluded
that none of the SAL or DOX hearts recovered for the IODO and ROT groups.
Appendix figures A.44 to A.58, show that this is only accurate for the ROT
results, since 2 of the 4 IODO pair plots showed recovery in DOX-treated
hearts.

Looking at the results from a more generalist perspective, some conclusions
could be taken. For example, the majority of samples heart pressure values
being lower when injected with inhibitors compared to the TC results. Con-
cerning the recovery graphs for the di↵erent substrates, only glucose perfused
hearts showed significant recovery rates, opposite to OM substrate, for which
more than half the SAL and DOX hearts did not recover, and the GG perfu-
sion scenario where graphs show that only 2/14 SAL and 8/17 DOX hearts
recovered. Finally, regarding each inhibitor’s group recovery, ROT hearts were
the ones which performed worse, since only 6/17 SAL and 7/17 DOX hearts
recovered. As for KCN perfusion almost all hearts recovered, specially the
ones injected with glucose substrate (13/13).

Overall, the analysis present great disparities between samples of the same
combination, compromising any general conclusions. Thus, in order to improve
the results and conclusions, an increase of the experimental sample size is
required.

5.1.2 Correlation

The next step of your exploratory analysis was understanding if our features
were related. Hence, we decided to do a correlation analysis, which helps us to
discover linear relationships between features and their influence in the treat-
ment. This will later help us in the development of an Machine Learning (ML)
model to distinguish between DOX-treated rats and SAL-treated ones.

This analysis was divided in di↵erent phases. The first phase was to understand
the features relationship with the treatment, giving information about which
would help our classifier to distinguish between groups. So that then we could
analyze those features relationships with the remaining ones and perhaps find
new patterns.

Regarding the Glucose group, supplementary figure A.3 (panels 1 and 2) con-
tains all features correlation analysis, including the treatment, for 4 di↵erent
groups: DOX group, SAL groups, DOX-SAL group values and for groups
combined. Figure 5.12, (panels 1, 2, 3) contains the ones which had the most
interesting results, divided by inhibitor, and a 4th one concerning all glucose
perfused data.
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Figure 5.12: Glucose group features correlation analysis regarding the Treatment.

From the last panel of figure 5.12, one can conclude that the Hif-1alpha and the
ANT expression features are those which will better contribute to distinguish
SAL from DOX samples. For panels 1,2 and 3, the ANT feature shows a strong
relationship with the Treatment, especially for the KCN inhibitor results (0.9),
panel 2. As for the Hif-1alpha feature, the relationship is only strong for
inhibitors IODO and KCN.

Since, ANT and Hif-1alpha expression were the features which showed better
relationship with the treatment, thus it is also important to understand which
other features are related to them. Thus, we need to analyse figure 5.13, which
contains the correlation information for the selected features concerning the
SAL-treated group, first panel, and the DOX group, second panel.

Figure 5.13: Glucose group features correlation analysis regarding the SAL and DOX
treatments.

A first look at the graphs suggests that these features show di↵erent relation-
ships between SAL and DOX groups. In panel 2, concerning the SAL group,
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there is a negative correlation between all transcripts expression features and
the Tibia size divided by the final weight, contrary to the results shown for
the DOX group (graph 2), which shows no correlation at all.
Additionally, these graphs also show di↵erent correlations concerning the PGC-
1alpha ratio feature with the weights features, since it showed a negative cor-
relation in the DOX group and no correlation for the SAL group

Using the same logic as before, figure A.4 shows the results of the correlation
analysis with the GG substrate, figure 5.14 the same results but selecting the
most interesting ones regarding the Treatment, and figure 5.15 the correlation
information concerning the SAL-treated group and the DOX group.

Figure 5.14: GG group features correlation analysis regarding the selected features.

Figure 5.15: GG group features correlation analysis regarding the SAL and DOX treat-
ments.

Analyzing panel 4 of figure 5.14, disregarding the inhibitors, we concluded
that the features with considerable correlation with the Treatment are Abso-
lute Weight Di↵erence (0.68) and the Tibia size over the final weight feature
(around 0.5).
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All inhibitors show some correlation between the Treatment and the Abs
Weight. For both ROT and the KCN, this correlation is considerable and
almost perfect for the KCN (0.72 and around 1.00, respectively).

Concerning the remaining features, panel 3, concerning the ROT inhibitor,
shows interesting contradictions to the other two inhibitors, since PGC-1alpha
ration has a strong positive correlation (+0.77) with the treatment, whilst for
IODO and KCN it has a considerable negative relationship (-0. 54 and -0.74,
respectively), which also happens for the TFAM ratio feature results. Addi-
tionally, ROT’s group also show a near perfect negative correlation concerning
the Heart Weight division by the final weight and the Treatment, and a consid-
erable negative correlation with both LDH and Hif-1alpha expression features
(around -0.5 and -0.61, respectively), whilst the remaining inhibitors groups
had no correlation at all.

Regarding the feature’s relationships per treatment, the results showed great
di↵erences between the SAL group and the DOX group (figure 5.15). Again,
if we consider the values for PGC-1alpha, the DOX group has negative corre-
lation between this feature and all weights features, whilst SAL group has no
correlation. For the TFAM ratio feature the opposite happens since it has a
positive correlation with the Weights features, which means that TFAM could
also be valuable for classifying DOX samples.

Last but not least, the OM all features correlation is presented in figure A.5,
figure 5.16 the features concerning the Treatment, and figure 5.17 regarding
DOX and SAL groups di↵erences.

Figure 5.16: OM group features correlation analysis regarding the SAL and DOX treat-
ments.
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Figure 5.17: OM group features correlation analysis regarding the SAL and DOX treat-
ments.

Figure 5.16 displays very similar results to the previously analyzed substrate.
The same features, Abs Weight and Tibia size divided by the Final Weight,
show considerable correlation with the treatment, panel 1. This remains true
for all inhibitors, panels 1, 2 and 3.

Again, the IODO and KCN plots, panels 1 and 2 respectively, show negative
relationships between PGC-1alpha and the Treatment, although not as strong
as the GG+IODO and GG + KCN results. This inhibitors’ group also show a
near perfect negative correlation concerning the Heart Weight division by the
final weight and the Treatment, whilst the reaming inhibitors groups had no
correlation at all.

Concerning the transcripts information, the Hif-1alpha expression feature also
shows some negative correlation for the ROT’ group, and none for the remain-
ing ones. In addition, the G+IODO panel shows considerable positive relation
between ANT transcript expression and the Treatment, whilst for the remain-
ing substrates this feature has no correlation at all with the Treatment.

As for figure 5.17, concerning the features relationships di↵erences between
treatments, the results are not very interesting compared to the remaining
substrates.

Figure 5.16 considerations also did not add relevant information to our anal-
ysis, because they were very similar to the ones already made, this substrate
protocol should be disregarded from the experience, saving time, money and
animals that could be used to increase the remaining protocols samples size.
This decision was also taken in the original thesis. Additionally, we also con-
sidere that, with more samples, we could prove that only one perfusion proto-
col is needed, the glucose protocol, since it is the one providing more relevant
information.
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5.1.3 Mutual Information

Previously we analysed how our features are linearly related by applying Pear-
son’s correlation and plotting each graph correspondent to the di↵erences be-
tween treatments results and each feature correlation concerning the treat-
ment.

Then, it was necessary to consider nonlinear relationships, thus we decided to
do a Mutual Information (MI) analysis. Supplementary figures A.6, A.7 and
A.8 correspond to each substrate MI analysis. Each figure has 3 graphics, the
first two represent the MI results for DOX group and SAL group, respectively,
and remaining graphic MI results concerning all samples.

None of the graphics show relevant di↵erences between DOX and SAL group
results. And for substrates GG and OM there is also no MI between the
Treatment and the remaining features.

Although, figure A.6 graphic 3, show a slight increase of MI results between
the transcript information and the Treatment (around 0.5), though, in our
opinion, not relevant enough.

Through this section, it has become clear that since the available features reveal
di↵erent information for each treatment, it should be possible to distinguish
between DOX and SAL-treated samples. Next section we will be analyzing
two di↵erent classification models and their evaluation.

5.2 Classification

After a careful analysis of all features individually and their relationship with
each other, we decided to analysed the discriminative capacity of the features
available, by designing an ML model to distinguishing between DOX-treated
samples and SAL ones.

We used two di↵erent algorithms: Decision Tree (DT) and Random Forest
(RF). Our data was split into train and test datasets. To find the optimal
combination of parameters, we used the GridSearchCV function, available in
the python library sklearn, and applied it to our training data.

GridSearchCV stands for grid search cross validation. One of this funtion’
input parameters is the estimator, where we can define the model to be imple-
mented. Depending on the selected model, we can vary the kernel options to
be tested by defining them in the param grid. The param grid is a list of all
the model parameters we want to test. It uses K-fold cross validation in order
to determine the hyper parameters values set that provide the best accuracy
levels for our model.
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From the GridSearchCV application, we configured our models to the following
parameters.

Random Forest

� n estimators = 10, which represents the number of trees in the forest;

� max depth = 4, which represents the depth of each tree in the forest;

� criteria = ’entropy’, where the supported criteria are ’gini’ for impurity
and ’entropy’ for information gain. These methods are used to select
which attribute would be placed at the root node or the internal node.

� max feature = ’auto’, meaning the number of features to consider when
looking for the best split is the square root of our features number.

Decision Tree

� max depth = 4, representing the depth of the tree;

� min samples split = 50;

� criteria = ’gini’, criteria used to select which attribute would be placed
at the root node or the internal node.

After choosing the optimal parameters combination for each model, we ap-
plied them to the test dataset. Figures 5.18 and 5.19 contain the confusion
matrices of each algorithm outcome and tables 5.1 the results of the evaluation
metrics.

Figure 5.18: RF Confusion Matrix.
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Figure 5.19: DT Confusion Matrix.

Random Forest Decision Tree
Accuracy 0.88 0.78
Specificity 0.90 0.60
Precision 0.875 0.66
Sensitivity 0.875 1.00
Cross Validation Mean Accuracy 75 70

Table 5.1: Classification Performance Evaluation Metrics.

Both algorithms performed well concerning the DOX samples classification,
since RF only missed one sample and DT got every sample right. Concerning
the SAL group, the RF had similar results, missing only one sample classifi-
cation, however DT performed worse, with an 60% of SAL samples correctly
classified.

A K Fold cross validation was implemented to our training data, for 30 runs,
and the mean of the scores was considered in order to verify our algorithms
accuracy. Thus, the RF classification mean accuracy given by this implemen-
tation is 75% and for the DT 70%.

After analyzing each feature contribution for each classifier and concerning the
correlation investigation, we concluded that the most important measures to be
taken were the ANT and LDH expression, the Abs Weight for their correlation
with the Treatment and classification contribution, and the PGC-1alpha ratio
due to the clear di↵erences found between each treatment correlation results
concerning this feature.

These are promising results, however the capacity of our classification methods
can only be confirmed by an increase of our sample size.
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Chapter 6

Lessons Learned

6.1 Context

Most times, data is created, treated and processed during the experimental
phase and years later it is necessary to reuse it, for example, to confirm the
original problem or to complement other experiments. However, constructing
a new dataset from this data has been proved to be a hard and unpleasant
process due to the lack of consistency and standardization.

Usually, researchers start their investigation with a problem, then develop a
theory to solve it and finally apply a continuous trial and error process to
prove it. During this process, di↵erent kinds of variables and combinations are
tested resulting in numerous sets of values, which will then be treated and pro-
cessed according to the researcher’s necessities. To do so, the researcher has to
come up with ways to store the values produced, without wasting experimental
time.

Because an experiment usually has di↵erent phases of testing, the consistency
of the data registration will depend on di↵erent factors, for example:

� the urge of the procedure. Procedures where the researcher has limited
time to register the results will end up with sloppy measurements tables,
where most variables are not logically labeled;

� need to display the data. If the investigator needs to show the data to
others, it will probably be stored in a more intuitive and understandable
way;

� how meticulous the researchers is. Usually, on the first phases of testing,
the data is stored in concise tables and graphics. However, for experi-
ments that take a great amount of time, the consistency will eventually
disappear resulting in unstandardized tables;

� how the data is obtained. Some experiments require the use of specific
equipment for recording data. Thus, the automatic exporting of this data
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to an excel file will hardly match the methodology used when inserting
the values directly in an excel table, formatted by the researcher.

Thus, when a di↵erent person wants to treat data from an exterior experi-
mental setup, its format is essential to understand the connection between the
variables and how the dataset should be constructed.

More important, the context of the data needs to be clear. It needs to be
correctly labeled as well as it needs to be well explained, so that one can
understand which measurements can be associated with which same sample
and which cannot. It is essential to preserve the experimental context, in
order to avoid misinterpretations and misconceptions of the data. A careless
and unintuitive structuration of the data will force the investigator to spend a
great deal of time in data cleaning and will most probably result in an incorrect
feature selection and an unfitting construction of the dataset.

In chapter 4, we presented a review on how the data was delivered and how
it was processed into functional datasets. During this phase some di�culties
were found considering the problem described previously, thus the next section
will be addressing these issues and what would be the good practices to help
prevent them.

6.2 Good Practices

During data processing, two types of problems were found: problems concern-
ing data consistency and concerning data structure.

As previously mentioned, data consistency is the most important factor to cor-
rectly construct a dataset from experimental data, so that one can understand
which measurements can be associated with each sample and which cannot.
Since the data used in this project came from a practical experiment, involving
di↵erent trials and di↵erent kinds of data, such as timeseries, some inconsisten-
cies were expected due to the aspects mentioned in the previous section. Thus,
this section will contain an analysis of those problems and the best solutions
to avoid them.

For example, as described in section 4.1, every sample had an ID such as
’SAL1’, where the word corresponded to the treatment and the number cor-
responded to the rats pair. Thus, there were two IDs with the same number:
one corresponding to the rat treated with Saline (SAL) and the other to the
rat treated with Doxorubicin (DOX). However, through the analysis of the
resulting spreadsheets some inconsistencies occurred.

Figure 6.1 corresponds to the weights measures spreadsheet of rats belonging
to the Time Control (TC) protocol, and figure 6.2 corresponds to the weights
measures of the rats which hearts were perfused with glucose and Iodoacetate
(IODO).
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Figure 6.1: Original weights measures spreadsheet of rats belonging to the TC protocol.

Figure 6.2: Weights measures original spreadsheet of the rats which hearts were perfused
with glucose and IODO.

The highlighted area in figure 6.1, shows that there were some issues con-
cerning the SAL1 and SAL2 IDs, since bellow them there are two similar IDs
(SAL1 ll and SAL2 ll) and a note to replace SAL2 with the SAL2 ll. However,
there is no instruction for the remaining IDs. Concerning the second table,
figure 6.2, the same IDs of table 6.1 were found, but corresponding to a dif-
ferent protocol, thus to di↵erent rats. Which means that these IDs were not
unique, and identifying each rat in our dataset with the given IDs could lead
to di↵erent protocols aggregation and miss correspondence between features
and samples.

Thus, the first lesson to learn from this analysis, is that a clear and unique
ID format should be established, from the beginning of the experiment, and
applied for every sample disregarding the protocol. The description of this
format should accompany the data, for example, in a support text file that
could easily be read by others accessing it.

In addition, each column corresponds to a di↵erent measurement, and although
most column names are clear, if the researcher treating the data is not in the
same field of study field, this may create some confusion. Thus, our second
advice is to also include each parameter type and description in the support
text file.

Regarding problems found due to data structuration, the first advice is to
prefer practicality and coherence over esthetic. For instance, the previous
figure 6.1 table shows some rows and columns that are merged and although it
is visually more appealing and avoids repetition, when imported to a dataset
using a di↵erent format the result will probably be similar to figure 6.3, which
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is the importation result of table from figure 6.1 using python pandas library
for data frames.

Figure 6.3: Importation result of table from figure 6.4 using python pandas library for
data frames.

Thus, the simpler it is, the easier will be to adapt to other analysis and soft-
ware. Moreover, for spreadsheets with multiple tables, such as shown in figure
6.4, the result will be similar but more catastrophic.

Figure 6.4: Spreedsheet tables of the transcript expression information. Also present in
figure 4.3.

Whereas for figure 6.3 we just had to drop the unwanted columns, and each
column value would correspond to the same rat (thus, to the same row). For
figure 6.4, the same row contains information about at least two di↵erent rats,
thus the most likely solution would be to separate the tables by hand into
di↵erent spreadsheets and then import them into the program.

Again, the best structuration solution would be the simplest possible, without
loosing logic. The ideal scenario is to think of every program as just columns
and rows, without merging tools, and that each row can only contain infor-
mation about the same observation, so that the columns correspond to the
features of the experiment, meaning the measurements, and the rows corre-
spond to each sample.
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Finally, after deciding on how to best structure the data. It is very important
to standardize the chosen format. For instance, considering figure 6.3, even
if the program importation is not clear and one has to build a code to fix it,
if the structure is the same for all spreadsheets this repairing code could be
applied over and over until the dataset is complete.

In the end, these advices resulted from the di�culties found through the origi-
nal experimental data spreadsheets processing to functional data frames. Their
application should spare time for both researcher and the person who collected
the data, since they would not have to explain and confirm each step of the
transformation process.
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Chapter 7

Conclusion and Future Work

The main goal of this project was to expose possible hidden patterns concerning
an experiment whose purpose was to unveil the clinical of Doxorubicin (DOX)’s
cardiotoxicity using a model of metabolic inhibition in perfused hearts from
Saline (SAL)- and DOX-treated Wistar rats.

From the data collected in this process we had to build and structure a func-
tional dataset capable of being analyzed by di↵erent computational tools, in-
cluding Machine Learning (ML) Algorithms.

The goal was then to not only find new conclusions but also to implement an
algorithm capable of distinguishing rats treated with DOX from rats treated
with SAL solutions.

During the dataset construction a series of problems emerged concerning the
original data structuration and format. Thus, chapter 6. addressed these
issues and aims at providing directions to what we think are good practices to
help prevent them.

Concerning the dataset analysis, most of our conclusions confirmed the results
of the original work. We have also shown that the perfusion with glucose had
the most interesting results and the one with Octanoate plus Malate (OM)
added no relevant information to our purpose. Thus, our analysis indicates
that, to spare time, means and animals, we could only execute one perfusion
protocol, which is the glucose protocol.

Completly new from the previous study, we implemented a correlation analysis
and ML algorithms to better understand our features relationships and to dis-
tinguishing rats treated with DOX from rats treated with SAL solutions.

Concerning our problem’ features relationships, during correlation analysis we
concluded that the most important parameters for this investigation were the
Adenine nucleotide translocator (ANT) and Lactate dehydrogenase (LDH)
transcripts expression for their correlation with the treatment and their con-
tribution to the classification algorithms confirmed by their strong correlation
with the treatment; the absolute weight di↵erence, which not only showed
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great contribution to the algorithms classification, but also presented consid-
erable di↵erences between SAL treated rats results and DOX ones; and finally
Peroxisome proliferator-activated receptor-gamma coactivator (PGC-1alpha)
ratio due to the clear alterations found in each treatment correlation results
concerning this feature.

Then, we implemented two di↵erent ML algorithms: Decision Trees and Ran-
dom Forests. Our data was split into train and test datasets and using the train
one, a grid search was implemented in order to optimize the algorithms’ input
parameters. To this dataset an additional cross validation analysis was made
in order to help us assess their performance. After optimization, the models
were applied to the test set and both their performance was evaluated.

Both our algorithms were able to classify correctly the DOX group, with a
sensitivity of 88% for the RF model and 100% for the DT model. However,
concerning the SAL group classification DT specificity fell to 60%. In the end,
RF model performed considerably better with an accuracy of 88%, whereas
DT model accuracy was 78%.

It is safe to say that we confirmed that not only DOX’ treatment a↵ects the
rat’s metabolic system, but also that it is possible to have an automatic model
capable of distinguishing both treatment groups. Thus, a detailed data analysis
driven by ML allows a better exploration of this biological datasets enabling
new discoveries and breakthrough in this field.

This work was featured in one of the most prestigious european conferences
on clinical investigation, in which it was orally presented and an abstract
on Uncovering hidden patterns in biological datasets to identify metabolic
alterations caused by acute and sub-chronic DOX treatments was published.
For more information, the reader should acess
https://onlinelibrary.wiley.com/doi/10.1111/eci.13108

Despite our algorithms’ classification which was capable of distinguish DOX-
treated rats from the SAL ones, these results are limited by our small sample
size. Thus, part of this project future work will be to find more examples to
complement our dataset.

As mentioned in section 2.3, concerning the biological context, there were
two general protocols implemented in Filipa’s PhD thesis: the acute protocol,
which was the basis of our work, and a sub-chronic protocol. Hence, the next
phase of this project is to implement a similar analysis but with the sub-chronic
that and hopefully prove that it can complement our dataset and help train
our model.

This work was funded by: PTDC/BTM-SAL/29297/2017,POCI-01-0145-FEDER-
029297.
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Appendix A
Mean Median STD RANGE

SAL DOX SAL DOX SAL DOX SAL DOX

Weight
Di↵erence

G -1.412 -5.059 -3.0 -6.0 4.542 4.038 [-6 ; 11] [-12 ; 2]
GG -2.142 -13.588 -2.5 -13.0 4.975 7.567 [-10 ; 10] [-29 ; -2]
OM 1.667 -12.875 1.0 -13.0 4.220 6.249 [-6 ; 10] [-24 ; 1]

Heart Weight
/ Final Weight
(x10�3)

G 3.1 3.2 3.1 3.2 0.3 0.2 [2.60 ; 4.70] [2.90 ; 3.70]
GG 3.0 3.0 3.0 3.0 3.0 3.0 [2.60 ; 3.49] [2.70 ; 3.41]
OM 2.89 2.82 2.91 2.80 0.19 0.24 [2.50 ; 3.35] [2.48 ; 3.21]

Tibia Size
/ Final Weight
x10�3

G 11.10 10.85 10.85 11.59 0.65 0.92 [10.20 ; 12.89] [9.77 ; 13.25]
GG 10.00 10.63 9.99 10.59 0.43 0.68 [9.23 ; 10.77] [9.65 ; 11.71]
OM 9.92 10.75 10.00 10.61 0.67 0.59 [8.89 ; 10.89] [9.97 ; 12.38]

Table A.1: Descriptive analysis of the features Weight Di↵erence, Heart Weight/ Final
Weight and Tibia Size/Final Weight.

Figure A.1: Boxplot Analysis of Heart Weight/FinalWeight feature.

Figure A.2: Boxplot Analysis of Tibia Size/Final Weight feature.
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NP
Mean Median STD Range

SAL DOX SAL DOX SAL DOX SAL DOX
ANT Exp
Expression

1.00 0.302 0.847 0.229 0.458 0.198 [0.637 ; 1.669] [0.166 ; 0.585]

HIF Exp
Expression

1.00 1.234 0.936 1.267 0.342 0.237 [0.710 ; 1.418] [0.952 ; 1.452]

LDH Exp
Expression

1.00 0.896 0.765 0.937 0.482 0.336 [0.746 ; 1.723] [0.503 ; 1.208]

Table A.2: Descriptive analysis of the NP dataset transcript information.

ANT Transcript Expression
Glucose Galactose plus Glutamine Octanoate plus Malate

Mean Meadian Std Mean Meadian Std Mean Median Std

KCN
SAL 1.000 1.024 0.451 0.750 0.732 0.714 1.000 0.536 1.157
DOX 1.744 1.650 0.444 1.359 1.377 1.015 2.980 2.980 1.256

IODO
SAL 1.000 1.031 0.173 0.939 0.978 0.292 1.000 1.025 0.088
DOX 1.547 1.581 0.771 0.534 0.405 0.324 0.957 0.957 0.013

ROT
SAL 1.000 0.553 0.974 1.00 0.813 0.570 1.000 1.129 0.408
DOX 1.401 1.323 0.679 0.713 0.698 0.154 0.831 0.453 0.994

Total
SAL 1.000 1.031 0.383 0.887 0.813 0.506 1.000 1.025 0.615
DOX 1.579 1.474 0.592 0.868 0.689 0.672 2.056 0.964 2.498

TC
SAL 1.000 0.957 0.274 0.750 0.766 0.638 1.00 1.047 0.535
DOX 2.103 0.638 2.171 0.342 0.339 0.149 1.185 1.167 0.769

Table A.3: Descriptive analysis of the ANT expression feature values for TC and main
datasets.

HIF Transcript Expression
Glucose Galactose plus Glutamine Octanoate plus Malate

Mean Meadian Std Mean Meadian Std Mean Median Std
SAL 1.000 0.998 0.162 0.750 0.929 0.511 1.000 1.032 0.287

KCN
DOX 1.120 1.086 0.327 1.327 1.375 0.328 1.540 1.571 0.369
SAL 1.000 1.064 0.196 1.000 1.060 0.160 1.000 0.949 0.124

IODO
DOX 1.726 1.748 0.349 0.774 0.791 0.063 0.990 1.008 0.227
SAL 1.000 0.994 0.176 1.00 1.158 0.276 1.000 1.023 0.427

ROT
DOX 1.401 1.275 0.679 0.969 0.905 0.447 0.689 0.538 0.339
SAL 1.000 1.044 0.161 0.909 1.028 0.342 1.000 0.950 0.288

Total
DOX 1.381 1.337 0.390 1.046 0.893 0.386 1.015 1.057 0.471
SAL 1.000 0.955 0.310 0.994 0.801 0.433 0.750 0.530 0.891

TC
DOX 0.923 0.934 2.171 1.009 1.020 0.067 2.639 1.844 2.541

Table A.4: Descriptive analysis of the Hif-1alpha expression feature values for TC and
main datasets.

LDH Transcript Expression
Glucose Galactose plus Glutamine Octanoate plus Malate

Mean Meadian Std Mean Meadian Std Mean Median Std
SAL 1.000 1.010 0.251 1.000 0.993 0.133 1.000 1.019 0.200

KCN
DOX 1.016 1.010 0.153 1.305 1.386 0.237 1.370 1.365 0.039
SAL 1.000 1.007 0.075 0.967 1.085 0.399 1.000 0.976 0.152

IODO
DOX 1.175 1.141 0.508 0.893 0.926 0.443 0.956 0.907 0.214
SAL 1.000 0.981 0.306 1.000 1.081 0.228 1.000 1.002 0.315

ROT
DOX 1.152 1.103 0.520 1.212 1.241 0.171 0.739 0.722 0.135
SAL 1.000 1.027 0.210 0.988 1.048 0.252 1.000 0.976 0.215

Total
DOX 1.111 1.103 0.380 1.137 1.241 0.332 0.993 0.900 0.305
SAL 1.000 1.013 0.821 0.999 0.970 0.466 0.750 0.959 0.530

TC
DOX 1.295 1.292 0.565 1.320 1.403 0.280 2.185 0.836 2.825

Table A.5: Descriptive analysis of the LDH expression feature values for TC and main
datasets.

Mean Median STD Range
SAL DOX SAL DOX SAL DOX SAL DOX

PGC1alpha
Ratio

0.404 0.715 0.406 0.771 0.306 0.360 [0.048; 0.806] [0.082 ; 1.179]

TFAM
Ratio

0.833 1.283 0.834 1.543 0.554 0.650 [0.083 ; 1.407] [0.070 ; 1.787]

Table A.6: Descriptive analysis of the TC dataset protein information.
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Mean Median STD RANGE
SAL DOX SAL DOX SAL DOX SAL DOX

PGC1alpha
Ratio

G 0.328 0.274 0.266 0.142 0.195 0.142 [0.030 ; 0.678] [0.168 ; 0.621]
GG 0.241 0.183 0.221 0.452 0.145 0.180 [0.00 ; 0.476] [0.00 ; 0.523]
OM 0.339 0.353 0.302 0.353 0.163 0.189 [0.180 ; 0.900] [0.088 ; 0.792]

TFAM
Ratio

G 0.251 0.205 0.224 0.160 0.187 0.162 [0.069; 0.776 ] [0.059; 0.627]
GG 0.562 0.322 0.499 0.202 0.471 0.221 [0.000 ; 1.843] [0.000 ; 0.813]
OM 0.258 0.233 0.223 0.186 0.164 0.139 [0.062 ; 0.765] [0.059; 0.483]

Table A.7: Descriptive analysis of the protein information features for the main dataset.

Figure A.3: Glucose group all features correlation analysis.
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Figure A.4: GG group all features correlation analysis.
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Figure A.5: OM group all features correlation analysis.
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Figure A.6: Glucose group features mutual information analysis.

Figure A.7: GG group features mutual information analysis.
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Figure A.8: OM group features mutual information analysis.

Figure A.9: G+IODO Time series ID1. Figure A.10: G+IODO Time series ID2.
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Figure A.11: G+IODO Time series ID3. Figure A.12: G+IODO Time series ID4.

Figure A.13: G+IODO Time series ID5. Figure A.14: G+IODO Time series ID6.
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Figure A.15: G+ROT Time series ID7. Figure A.16: G+ROT Time series ID8.

Figure A.17: G+ROT Time series ID9. Figure A.18: G+ROT Time series ID10.
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Figure A.19: G+ROT Time series ID11. Figure A.20: G+KCN Time series ID13.

Figure A.21: G+KCN Time series ID14. Figure A.22: G+KCN Time series ID15.
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Figure A.23: G+KCN Time series ID14. Figure A.24: G+KCN Time series ID15.

Figure A.25: G+KCN Time series ID16. Figure A.26: G+KCN Time series ID18.
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Figure A.27: G+KCN Time series ID18. Figure A.28: GG+KCN Time series ID19.

Figure A.29: GG+KCN Time series ID21. Figure A.30: GG+KCN Time series ID22.
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Figure A.31: GG+KCN Time series ID23. Figure A.32: GG+KCN Time series ID24.

Figure A.33: GG+IODO Time series ID25. Figure A.34: GG+IODO Time series ID26.
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Figure A.35: GG+IODO Time series ID27. Figure A.36: GG+IODO Time series ID28.

Figure A.37: GG+IODO Time series ID29. Figure A.38: GG+IODO Time series ID30.
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Figure A.39: GG+ROT Time series ID31. Figure A.40: GG+ROT Time series ID34.

Figure A.41: GG+ROT Time series ID33. Figure A.42: GG+IODO Time series ID35.
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Figure A.43: GG+ROT Time series ID36. Figure A.44: OM+IODO Time series ID37.

Figure A.45: OM+IODO Time series ID38. Figure A.46: OM+IODO Time series ID39.
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Figure A.47: OM+IODO Time series ID40. Figure A.48: OM+ROT Time series ID43.

Figure A.49: OM+ROT Time series ID44. Figure A.50: OM+ROT Time series ID45.
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Figure A.51: OM+ROT Time series ID46. Figure A.52: OM+ROT Time series ID47.

Figure A.53: OM+ROT Time series ID48. Figure A.54: OM+KCN Time series ID49.

88



Figure A.55: OM+KCN Time series ID51. Figure A.56: OM+KCN Time series ID52.

Figure A.57: OM+KCN Time series
ID53.

Figure A.58: OM+KCN Time series
ID54.
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