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Resumo 

 

A compreensão do corpo humano tem sido uma luta desde que a humanidade desenvolveu um 

sentido crítico à vida. As proteínas são um elemento chave no normal funcionamento do nosso 

organismo e intervém na maioria dos processos biológicos que existem em todos os seres vivos. A 

sua associação, designada Interação Proteína-Proteína, pode regular a sua expressão, mas também 

aumentar o seu número de funções, bem como maximizar ou reduzir o seu impacto. 

Estas interações são de incalculável valor quando considerado o fator benéfico que podem ter para 

a crua de doenças e prevenção das mesmas. 

No contexto da Descoberta e Implementação de Fármacos, o custo e tempo de síntese de uma nova 

molécula viável, que sobreviva aos ensaios clínicos e à aprovação das agências reguladoras, afirma-

se como um dos problemas centrais para a indústria farmacêutica que se tem voltado para a 

Bioinformática como uma alternativa mais rápida e barata. 

A pesquisa realizada nesta tese pretende ser a base de contexto no qual os Alvos Terapêuticos se 

devem desenvolver para alcançar esta redução de custos. A abordagem aplica Algoritmos de Deep 

Learning, especificamente Autoencoders e Máquinas de Vetores de Suporte, a conjuntos de dados 

de interações conhecidas e é capaz de reconhecer novos pares de proteínas que interagem num 

mesmo organismo ou no contexto interespécies.  

Apesar dos métodos não serem novos, esta abordagem introduz o conceito de uso de erros no 

encoding dos Autoencoders como dimensões para classificação das entradas como pares de 

proteínas que interagem ou não interagem. 

Os resultados preliminares mostram um elevado AUC na previsão, alcançando 0.970 para o 

organismo humano, mas com alguns desvios não justificados quando considerada a relação 

filogenética que precisam de ser analisados em trabalho futuro dentro da mesma espécie e em 

contexto interespécie.  

 

Palavras-chave: Bioinformática, Desenvolvimento de Fármacos, Interação Proteína-Proteína, 

Autoencoders 
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Abstract 

 

The understanding of the human body has always been a struggle since humanity has developed a 

critical sense to life. Proteins are a key element in the normal functioning of our organism and 

intervene in most of the biological processes that exist in all living beings. Their association, 

designated Protein-Protein Interactions, can regulate their expression but also increase the 

number of functions, as well as maximizing or reducing their impact. 

These interactions are of invaluable worth when considering the benefic factor they can have in 

the healing of diseases and their prevention.  

In the context of Drug Discovery and Deployment, the cost and time of synthesizing a new viable 

molecule, which survives clinical trials and regulatory agencies approval, stand as the core 

problems for the pharmaceutical industry which has turned the focus to Bioinformatics as a 

possible cost and time saving alternative. 

The research made in this thesis intends to be the base of context to which the Drug Targeting must 

be developed to reach this goal of cost reduction. The approach applies Deep Learning Algorithms, 

specifically Autoencoders and Support Vector Machines, to datasets of known interactions and is 

able to discover new protein pairs that interact within the same organism or interspecies. 

While the methods are not new, this approach introduces a concept of the use of the errors in the 

prediction of the Autoencoders as features to classify the inputs as Interacting or Non-Interacting 

pairs of proteins. 

The preliminary results show high AUC in the prediction reaching 0.970 for the human organism, 

but with some unjustified deviations considering the phylogenetic relationships that need to be 

analyzed in future work both within the same species and interspecies trials.  

 

Key-words: Bioinformatics, Drug Development, Protein-Protein Interactions, Autoencoders 
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1 Introduction 
 

Humanity has always focused efforts to the development of therapies that can endure its resistance 

to harmful chemical agents present in nature and how its consumption could increase the quality of 

life and its durability. 

The evolution of botany made the study focused on the biological characteristics of each organism, 

and the later development of bioinformatics has revolutionized what is known as the Drug 

Development Process [1]. 

 

Drug Development is the set of activities in which natural or artificial molecules are developed, 

tested and approved as therapeutic agents [2]. This process has turned from the biological search to 

the artificial synthesis considering the evolution of the Interaction Models, which can reduce the 

number of molecules to be tested in the earlier stages, as well as the amount of raw materials 

necessary for the experiments. 

 

Proteins are the backbone for most of the biological processes that are developed in any living 

organisms, as well as most of the structural functions. Without their existence, and the interactions 

they establish, life would not be possible. These keen macromolecules, composed of amino acid 

sequences, are therefore the target of many investigators in the field of chemistry, biochemistry, 

biology, medicine and bioinformatics.  

Proteins interact with DNA using their ability to replicate or inhibit the expression of a certain gene, 

with carbohydrates and lipids conditioning the way they are processed, with molecules such as 

oxygen allowing cells to perform metabolic pathways, and with other proteins creating complexes 

that perform millions of different functions [3]. 

 

Bioinformatics, being the field responsible for the connection of raw biological data to specific 

knowledge about a given biological process, is also focused in a substantial share of its efforts to 

proteins and their interactions, intending to reduce the time and resources needed for the detection 

of key elements in a protein interaction and the function that each protein and the interaction 

between them perform in a given environment. 

Through gene and protein sequencing, expression and detection of interactions, Bioinformatics has 

been able to reduce the time and cost of the study of several processes by simulating based on 

already known processes and increasing the confidence of positive predictions as likely to be 

confirmed in laboratory procedures [4]. 

However, understanding the results and models that Bioinformatics gives is still a barrier to the 

development of other areas, or the full application of the findings these experiments produce. 
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Protein Interactions are one of the main topics of research by Bioinformatics, concerning the 

relationship between proteins and the way those interactions generate repercussions in the 

biochemical pathways in the human body [5]. 

These interactions are as important as proteins themselves, amplifying, diminishing or creating new 

functions through their actions. Protein interactions are what allows for the indirect interference of 

synthesized molecules in the human body performing the three types of effects mentioned. 

 

These general concepts are the basis for the work developed in this thesis. From them, all the 

hypothesis and concepts in this document were developed to ensure that the final focus of drug 

development optimization is kept. 

 

The first concept recreated, also essential to the understanding of the work developed, is the 

Pipeline. Although it is used primarily in Drug Development, it reaches areas which do not interfere 

with the specific subject of this theme. The Pipeline is the flow model created to ensure that every 

trained network and every chosen parameter in the set of experiments created is not lost. As 

components part of the Pipeline are, by order, the dataset, Encoding Method, Dimension Reduction 

Architecture, Classifier and Metrics of evaluation. The variation of these models is the general 

study object in which all experiments are inserted. 

 

As final result of the work developed, a family of models for the Pipeline was created, resorting to 

computational methods that evaluate the probability of Protein Pairs binding in different contexts 

of the ones already found, or in the same contexts but with different connections. The identified 

interactions using this Pipeline are then applied to Drug Development, with the intention of 

maximizing accuracy and efficiency in the discovery of new molecules with therapeutic 

applications. 

1.1 Motivation 

The use of Bioinformatics and Computational Models in the context of protein interactions is still 

a recent field but with stable growth in search, sponsored by Research Centers and Drug Research 

Companies. The D4 project is a European Project focused on Deep Drug Discovery and 

Deployment to which Computational Models are the main focus [6]. 

 

Nowadays, Drug Development is mainly focused on new molecules synthesized through laboratory 

processes opposing to the classical drug development techniques that consisted in applying new 

found organism properties, especially outside of the Animalia kingdom. New plants, fungus and 
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bacteria provided for most of the medicine until the massification of the laboratory process now 

implemented, a cheaper method compared to the necessary endeavors to find new natural solution, 

result of the increased level of knowledge about drugs and species. 

 

This process is however still expensive, with Drug Development cost statistics showing that, for 

each good, viable molecule, as much as 16,000 molecules and 2.87 billion dollars are spent [7]. 

Besides the economic aspect of this problem, we need still to consider the scarcity of some of the 

raw material to build these molecules, which make lab tests impossible in large quantities for the 

cases that the elements necessary are not abundant on Earth or need a substantial level of reshaping 

to become appealing to Drug Development [8]. 

 

D4 project intends to simplify Drug Development in the early stages of molecule testing, creating 

computational models that successfully reduce the number of molecules to be tested in the process. 

In a single hand, both biologic and economic resources are spared to intensive and deregulated use, 

when a model predicts that certain pair of proteins will surely not comply with each other.  

This work intends to understand the relationship between macromolecules, proteins, that can feed 

important information to protein-drug interaction models later in the Drug Development Pipeline. 

1.2  Objectives 

The main goal is to develop a computational model for protein-protein interactions, giving the 

necessary flexibility and know how to also allow the construction of other models, by creating a 

conceptual line of model design for interaction prediction. To reach this goal, several steps were 

followed: 

1. Study of Machine Learning approaches to protein-protein interaction prediction; 

2. Study of biological processes, attaining the foundational properties of proteins and amino 

acids to be selected as features; 

3. Dataset and feature selection, and encoding strategies applied to protein and amino acid 

properties; 

4. Study of Autoencoders structures and its different variations; 

5. Model training and testing in benchmark datasets; 

6. Analysis of the model in interspecies context. 
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These steps are described in the chapters of this thesis intending to show the workflow of this thesis 

in the past year of work. 

The final goal is to achieve a family of models that can predict protein interactions, considering the 

organism it relates to, and allow for the information to be used in benchmark contributions in 

interspecies interactions, which can open the way for new protein interaction networks, contribute 

for drug development as new test raw materials, and using already known molecules as resource 

for other possible interactions. 

1.3  Document Structure 

To improve the understanding of the document throughout its reading, this chapter presents this 

Master Thesis structure, a description to each Chapter and the phase of work it complies with. 

 

Chapter 1. Introduction – This chapter contextualizes the Thesis in the field of Bioinformatics 

and Protein Interaction, and the professional characteristics. 

 

Chapter 2. 1 Protein-Protein Interaction Problem – Contextualizes the Protein-Protein 

Interaction problem in a biological background approach, as a support for the knowledge attained 

to the computational phase. 

 

Chapter 3. State of the Art for Protein interaction Detections – An overview of the previous 

and proposed methods, with the description of its structure, and the benefits or prejudices regarding 

the problem of protein interactions. 

 

Chapter 4. datasets and Methods – Description of the initial datasets and preprocessing methods, 

as well as the used algorithms and specific precautions taken in the context of the problem.  

 

Chapter 5. Experiments and Results – This chapter focus on the workflow in each experiment 

performed, as well as the outcomes they create to the next experiments. 

 

Chapter 6. Discussion and Conclusions – Interpretation of the results obtained, and the data 

collected in the experiments as a mean to achieve the intended purpose of this thesis. 

 

Chapter 7. Final Considerations and Future Work – Suggestions of improvement on the work 

developed in the thesis, as well as presentation of the options to continue this work in the same or 

other directions. 
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2 Protein-Protein Interaction Problem 
 

The problem described in this chapter, the one that this work intends to reflect upon, is a 

classification problem. We intend to receive, through a designed model, the result of the following 

function: 

 

𝑦 = 𝑖𝑛𝑡𝑒𝑟𝑎𝑐𝑡𝑖𝑜𝑛𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑜𝑟(𝑓𝑒𝑎𝑡𝑢𝑟𝑒𝑠(𝑝1), 𝑓𝑒𝑎𝑡𝑢𝑟𝑒𝑠(𝑝2))          (1) 

 

In this scenario, interactionPredictor is the model and the features to select will depend on the 

study based on biological and computational backgrounds. Proteins are represented by p1 and p2, 

arbitrarily. In the design of the model and experiments, the Drug Development was approached and 

studied as a base. 

2.1  Drug Development 

Drug Development, illustrated by Figure 1, is the general process of drug discovery and approval, 

which can lead up to 10.5 years and require investments of minimum 1.8 billion dollars [9]. These 

facts are of substantial worrisome, since the insurgence of new diseases, especially the ones that 

are transmittable, have enormous impacts in social and economic aspects of society, augmented in 

developing countries. 

 

Figure 1 Drug Development General Process. 
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In Figure 1, the Research and Clinical Stage are divided, since the area of actuation is different 

from development to regulatory stage, respectively. Target ID is the process in which the researcher 

manages to locate the molecule that is related to the disease intended to study, validated in the 

second step. In the following stage, a Lead is identified to reach to that protein, suffering a process 

of optimization until optimum connection between Lead and Target. 

The Clinical Stage focus on the approval by regulatory agencies, with Phase I being an adaption of 

the developed drug to the adequate doses in healthy individuals, Phase II as the first trials in 

unhealthy individuals, with small numbers of volunteers. This stage, as it can be noticed, is the one 

with the lowest approval rating. The following Phase III is a conceptual validation in larger number 

of patients, and Phase IV can be introduced in already approved drugs to monitor the evolution of 

the patients, in a market scale. 

 

The Drug Development Research Stage, schematized in Figure 2, is the focus of the present thesis, 

in which the problem described by Equation 1 will have an impact. With a 5 year mean duration, it 

is the focused Stage by Bioinformatics and Pharmaceutical Industries, since Drug Trials are 

required and of low flexibility. 

With a success of 1 in 16,000 tested molecules to be viable for Drug Trials, Research Stage has 

been continuously improved by the assistance of Computational Methods. The sequencing of the 

human genome, for example, enable Biomarkers, one of the strategies that increased the success 

rate of Drug Development, with a difference from non-Biomarker to Biomarker use of 8.4% to 

25.9%, respectively [9]. 

 

 

In this Stage, we can differentiate several types of tested molecules, which are then submitted to 

Drug Trials: 

• New Molecular Entities – new molecules synthesized 

• Biologic Entities – derived from Nature or naturally produced substances 

• Non-New Molecular Entities – adaptation of drugs to new disease 

 

These different types of entities have different approval rates, ranging from 6.2% to 11.5% and 

22.6%, respectively [9]. Is in the Biological Entities that Protein-Protein Interactions have the 

Figure 2 Drug Discovery Overview with and without Data Mining assistance, representing its main 6 

steps, that are grouped in the two main stages previously mentioned 
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biggest and more direct impact, since they have direct influence in all biological environments, and 

their role in the normal functioning of every organism. However, the models created in Protein-

Protein Interactions are of positive influence in models of Drug Target Interaction.  

2.2  Proteins 

Proteins are macromolecules composed by chains of amino acid sequences that perform most of 

the biological processes in any organism. They are created through processes of transcription and 

translation. 

As the protein evolves and adds amino acids to its sequence, a more pressuring environment is 

created surrounding the said sequence, pushing it to fold and conform according to the micro 

biochemical conditions that each environment and amino acid connected creates [10]. 

 

These conformations, folding and otherwise movements and primary interactions between amino 

acids create different levels of structure, from primary to quaternary protein structure, as shown in 

Figure 3. 

 

Primary structures consist on the amino acid sequence, with one-dimension information. In 

secondary structure, three-dimensional information exists, with an indication of how the amino 

Figure 3 Primary to Quaternary Structure representation (Source: Pearson Education, 2010) 
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acids relate between them using high and low strength connections. Tertiary structures are the result 

of every interaction in a single peptide chain. Many proteins end in this level of complexness. 

However, others need to be inserted in a protein complex. Quaternary structures are these 

complexes of several peptide chains, that perform a function in the organism [10]. 

 

2.2.1 Primary Structure 

 

Primary structure, as defined previously, have one-dimension data, the amino acid sequence. Being 

a simple description of a protein, it presents as the backbone of all other features it possesses. All 

other structures, secondary to quaternary, have the basis in it, and its properties. 

As the amino acid sequence is augmented, all the biochemical factors in the set of amino acids 

already present are influencers to the next amino acid positioning, and how it will shape the 

secondary structure. 

Therefore, the data analyzed in structures other than primary want to summarize the information 

that primary structure gives, i.e. if a given protein has a pH of 5.7, it is because the conformation 

and pH’s of the primary structure led to this overall result, and not an intrinsic property of the 

protein. 

2.3  Protein function 

Each protein, depending on its conformation, is designed to perform a different function in the 

organism. Function is dependent of a net of factors including: 

a) Surrounding Environment 

In biological environments, there are certain variables that enable or disable mechanisms. 

Temperature, concentration and pH are some of the variables that play major roles as constraint to 

the functions and interactions that protein and their complexes execute in the said environment, and 

even make them obsolete, as in the case of the denaturation of proteins [10]. 

b) Internal presence of each amino acid 

This factor is the given relation that each amino acid has with the sequence. This factor can be 

observed in different ways: extreme, relative and positional [11]. 

The extreme approach is the feed of the number of amino acids, not considering any other factor of 

the sequence. 

In the relative approach, we get a sense of the whole of the sequence and we lower the level of 

pureness of the factor introducing it as a percentage of the total number of bioproducts. 
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And in the positional approach, we introduce another important relationship giving position an 

important role. The existence of 30 samples of lysine in the beginning of the sequence or spread 

throughout the protein should be considered differently in the application of this approach. 

Each approach has its pros and cons, presented latter in feature selection and encoding strategies. 

c) Conformation 

Conformation is one of the fundamental features for the protein complexes structure determination. 

It is the shape that a given protein or amino acid sequence takes in a certain environment. The 

adaptation to these biochemical circumstances results in subtill or enormous changes that will 

derive in different complexes or functions depending on the environment. This characteristic is one 

of the biggest arguments against a simplistic approach to a protein, based solely on the amino acid 

sequence, for the creation of bioinformatic models [12]. 

d) Protein Complex 

The composition of these proteins is mainly defined by their folding and their conformation. The 

association of chains between the same protein are also important for the definition of the biological 

activity. 

There are several factors that affect these two characteristics, such as pH, concentration of each 

component, the size of the amino acids, and so on. 

A protein complex is, therefore, an association of amino acid chains or proteins that, considering 

the surrounding environment, have coupled in specific sites creating a single active unit. 

This active unit, in most cases, is the true executer or conditioner of a given process in the organism 

[13]. 

2.4  Protein-Protein Interaction 

In human proteome, based on UniProt [14], there are nearly 70,000 proteins in human organism. 

Bibliography varies differently from this number, considering or not the influence of splicing in the 

formation of proteins with different properties. Therefore, the number of proteins ranges from 

20,000 to 140,000. The number of combinations of proteins, in these extremes, is 200 million or 

9.8 billion, respectively. 

For any real number however, it is known that the number is far too large to be tested in laboratory 

experiments. If we go to a different dimension, of the interspecies domain, UniProt presents 158 

million different estimated proteins. This would result in 1.25 E16 combinations. 
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This term relates to a specific coupling or complex of proteins that complement each other in the 

development of a function, or in the inhibition of one. This process is conditioned by the 

surrounding environment, since the coupling of two proteins depends on the conformation they 

assume. As described before, conformation is relevant to protein interactions and the formation of 

complexes, since the interactions between certain amino acids can only occur if they are accessible 

and the point of contact is in the ideal conditions of coupling. 

 

Other factors are of special relevance to the existence or conditioning of an interaction, considered 

even as regulatory means to the interaction or decoupling of proteins in the respective 

environments. 

For example, high levels of concentration of a protein can induce the interaction, given the necessity 

to discard that element and generate an equilibrium, or degrade the interaction as a strategy to 

increase its low concentration, if the opposite situation occurs. 

On the other hand, the concentration of other proteins has similar effects. If other proteins or 

subtracts are present in higher concentrations, then the interaction is more likely to occur [15]. 

 

The structure of a protein, with the solvent accessible area and larger or smaller number of ligands 

is also a characteristic considered as essential [16]. As well as the difference or similarity between 

the ligands present is a connected influence factor. 

 

Chemical factors are also subject to other interferences, such as covalent modifications in the 

proteins and amino acids that compose them  [17]. These factors are also connected to physical 

factors, such as the electric fields surrounding the proteins that interact [18]. 

 

2.4.1 Hotspot 

 

Hotspots are known interaction zones, characterized by sequences or chemical conditions, derived 

from specific folding, which have a high probability of attracting other protein interaction spots 

[19]. These regions are subject to study and modeling despite the heavy computational weight 

involved in the several steps (from sequencing, to folding, to hotspot recognition) since they have 

high value in protein detection. 

 

All the terms discussed in the previous segments have a foundational role in PPI detection, 

especially in computational model development. All of them have been used as a hypothesis for 

the improvement of feature selection and engineering or differentiating weights for classifiers, as 

described in the State of the Art. 
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3 State of the Art for Protein Interaction Detection 
 

The problem of Protein Interaction Detection, and the foundation for this master thesis, has been 

the object of many approaches. Form biological methods to computational model developments, 

this chapter is dedicated to finding the best results in the field, focusing on the ones that have a 

resemblance to Autoencoders structures. The general Protein Interaction Detection problem is 

described in the workflow in Figure 4. 

 

The Pipeline starts with the establishment of a protein pair to be tested for an interaction. Through 

one of the possible methods to implement, the Laboratory testing determines the existence of an 

interaction or not, feeding that information to the curated dataset for its storing and availability for 

study. 

These curated datasets, based on the Biochemical methods, are then applied to the field of 

Bioinformatics, where the diverse algorithms are trained and tested in order to develop models that 

can be applied to the full set of interactions and protein pairs that exist in the different proteomes. 

The application of these models in such large scale, enables the creation of gigantic databases 

containing predicted interactomes. These interactomes are, however, uncertified by biochemical 

methods. The intention is to predict interactions that are tested using those methods, and certified, 

building more examples to add in the curated datasets. 

 

The first database specialized in Protein Interactions was the Protein Interaction Database, created 

in 2000. Since then, the number of publications has increased and with them, the number of 

Figure 4 Representation of the Protein Interaction Detection Problem and the Pipeline used for 

the development of Curated and Predicted Interaction Databases 
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databases curated and non-curated [20]. The main literature curated datasets are BIND, BioGRID, 

DIP, HPRD, IntAct, MINT. These databases consider proteins from several organisms, with the 

exception of HPRD, exclusively of Human interactions. The fact that they are literature curated 

implies a similarity between the number of interactions, despite the different requirements, reaching 

20 to 30,000 protein samples and between 50 and 100,000 interaction samples. 

On the other hand, prediction databases follow the process described, based on the existing curated 

datasets. Since the models of Protein Interaction prediction is different between databases, the 

number of interactions have high sparsity, between 200,000 and 88 million samples. The main 

predicted databases are MiMI, PIPs, OPHID, STRING and UniHI. 

3.1 Feature Selection  

Incorporating all these specificities, an analogy is conceived to the three main feature selection 

strategies. While filter methods need no incorporation of learning algorithms to define the subset 

of features used [21], wrapped and embedded methods have different approaches. 

 

Wrapped feature selection can be divided in forward or backward selection, depending if the set of 

features is obtained by the addition or removal, respectively, of dimensions dependent on their 

performance in a basic learning algorithm [22]. 

 

The embedded methods consider weights for all features, adapting their weight in each iteration of 

a performance assessment, with some of these reaching 0, making the feature irrelevant [23]. 

3.2 Biochemical Methods  

In the field of Protein Interaction Detection, only laboratorial methods, known as biochemical 

methods, present nearly 100% of accuracy. However, these methods are ordinarily expensive and 

waist a significant part of available resources and raw material. 
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Bimolecular fluorescence complementation 

 

This method consists in adding two different, but complementary, molecules to the studied proteins. 

If the molecules interact, the two counterparts of the fluorescent element interact as well, creating 

a detectable luminescent effect that certifies the existence of interaction [24]. 

Tandem affinity purification 

 

Based on immunoprecipitation, this strategy uses tags introduced in a given cell or biological 

environment. The tags create a differential of weight that allow steps of purification through 

centrifugation. The results of these purifications consist in the target protein and their interactors, 

which can be latter identified by mass spectrometry or gel electrophoresis [25]. 

 

Proximity Ligation Assay 

 

Considering antibodies’ reaction to proteins, this method reacts to a connection of proteins by 

creating a ring with the antibodies with bio probes designed in laboratory. These probes contain 

DNA and they start a process called rolling-circle amplification, in which DNA polymerases 

increase the size of the molecule. The detection of the interaction is possible by this effect, given 

that the resulting molecule increases size until up to 1000 times [26]. 

 

Co-Immunoprecipitation 

 

This process follows the premises of the above, creating a connection between a known protein, 

and its antibody. The antibody sticks to the known molecule, which is interacting with unknown 

proteins. The full complex is extracted and analyzed through Western blotting, discriminating 

which proteins are present in the final solution, part of the interactome of the original known protein 

[27]. 

 

Relevance for bioinformatic models 

 

As bioinformatic models are based on the results given by biochemical methods, we need to 

extrapolate the functioning of the latter to the first. 

 

Common to not only these, but to all biochemical models, is adjacent the idea that the sum of the 

features is what gives a signal of interaction, whether it is a fluorescence, increased size effect or 

precipitation of molecules. This statement may sound obvious, but it excludes the extrapolation that 

a given protein, by itself, may determine which is its interactome. The cause for this unavailability 

is the fact that any proteins are dependent on the environment in which the interaction occurs to be 

available or not for interaction. 
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The second important point is the existence of a third element, traditionally an antibody. In 

bioinformatic models, the existence of this entity needs to be simulated. This approach is usually 

not implemented since the models already work with the intended proteins and don’t have to isolate 

them from the crowd of proteins in a given environment. 

3.3  Computational Models 

Given the necessity for a better selection of proteins to be tested in laboratory, bioinformatic 

investigators have dedicated a lot of effort in the discovery of new models that can successfully 

predict interactions based in known features. 

Nowadays, a prevalence of machine and deep learning approaches have the most  important share 

of ongoing work in the field, given the recent developments in those areas [28]. 

Different articles in the Machine Learning branch of bioinformatics have tested different 

algorithms, favoring Random Forest algorithms, Support Vector Machines, K-Nearest Neighbors, 

Autoencoders and Ensemble Algorithms. 

 

 

3.3.1 Random Forest 

 

Random Forest algorithms are developed using decision tree-based processes, where multiple trees 

are trained and built to acknowledge the problem. Each tree is divided in true and false in each 

feature, with values and biases that affect the decision and are adapted in every iteration. The 

majority class voted in the decision trees is the final label attributed to each protein pair. As Figure 

5 shows, Random Forest algorithms base their final probability attribution in the satisfaction of 

several conditions to which the highest correspondent in all decisions is the selected class.  

Using these classifiers, Bi-Qing Li et. Al used two and three-dimensional protein features to predict 

PPI with 78.99% of sensitivity [29], while the prediction of protein to mRNA binding sites by Zhi-

Ping Liu et. Al reached 82.4% accuracy [30]. 
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3.3.2 Artificial Neural Networks 

 

These networks have the possibility to create unlimited layers of functions that transform a given 

input feature space in a single output with the desired outcome. In the case at study, the final layer 

should be a one-dimensional layer, with 0 and 1 corresponding to the prediction of interaction or 

not. This layer is the result of the connections between intermediate layers and functions learned in 

the training stages and followed by the test datasets. 

As we can see in Figure 6, the input can be of a dimension that does not comply with the hidden 

layers of the Neural Networks, since the layers between the input and the output need to store 

information and functions that are developed in the training of the algorithm, in each cell. 

 

 

In these networks, several methods including autoencoders have been used, achieving state of the 

art results year after year. 

Figure 5 Schematic Representation of Random Forest and the result obtained using probabilities. 

Figure 6 Artificial Neural Network General Structure, with the Hidden Layers it contains. The 

blue squares represent the input and the output is represented by the blue triangles. 
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The use of the Discrete Cosine Transform is also a development, coupled with an SVM and k-NN 

classifiers, achieving performances of 84% in AUC metrics [31]. 

In the deployment of Position Specific Scoring Matrices, other works have used Principal 

Component Analysis and Evolutionary Networks, obtaining 94.1% and 80% accuracy in testing 

datasets, respectively [11].  

 

 

3.3.3 K – Nearest Neighbors 

 

The Classification problem in the context of protein interactions possesses two classes. This means 

that, if a separation surface exists, two neighbors must always be from the same class, with 

exception of the surface itself. Nearest Neighbors Algorithms take this process and apply it to a k 

number of neighbors, i.e. if k = 5, and the five nearest neighbors have a majority of class A, then 

the point considered will also be labeled as A. 

In the context of protein interactions, it was used by Liang Lan using multi protein data sources to 

train and classify protein interactions based on their characteristics, achieving 84.8% of AUC [32]. 

It was also used in few thousand interactions by Mario Guarracino, achieving 98.11% with 1-NN 

classifier [33]. 

 

3.3.4 Support Vector Machines 

 

As classification algorithms, Support Vector Machines are widely used in the area of Machine 

Learning. The goal of these Machines is to create hyperplanes that manage to separate classes with 

maximum distance between them, resorting to the perpendicular vectors to the distance between 

dots of different classes. 

This method has been used in the field of PPI, associated with evolutionary properties, to improve 

the accuracy to 90.57% accuracy [34]. 

 

3.3.5 Ensemble Algorithms 

 

In Protein-Protein Interaction detection, several algorithms also try to ensemble different 

approaches. The most common techniques involve the combination of Support Vector Machines as 

a classifier, after the use of an algorithm as a first filter of the features. Works such as “Prediction 

of protein-protein interactions from amino acid sequences with ensemble extreme learning 

machines and principal component analysis” show the complement between two different 

structures, and not the mainly used for this problem, with an accuracy of 87.50% [35]. 

Stacked Autoencoders have also been used with SVM ensemble, with 97.07% area under the curve. 
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Other works used coupling strategies between Linear Discriminant Analysis and Random Forest, 

Ensemble Autoencoders, Simple Classifiers with Random Forests. All these structures have 

achieved result in the magnitude of 80% at least [36]. 

 

3.4  Autoencoder Methods 

The central approach of this thesis is focused on autoencoders, machine learning structures that try 

to encode a certain input in one or several hidden layers of reduced dimension (in most cases, being 

denoising the exception), and then decode it with the maximum level of confidence, reducing the 

error of the final reconstruction, as demonstrated by Figure 7 and its equation. 

The reduction demonstrated in the figure is one of the key elements of Autoencoders. In the lower 

dimension Hidden Representation, this Neural Network is capable of storing the necessary 

information and then reconstruct it, generating X’ from X. 

 

𝑖𝑛𝑝𝑢𝑡 ⟶  𝐻𝐿 = 𝑒𝑛𝑐𝑜𝑑𝑖𝑛𝑔(𝑖𝑛𝑝𝑢𝑡) ⟶ 𝑜𝑢𝑡𝑝𝑢𝑡, 𝑒𝑟𝑟𝑜𝑟 = 𝑑𝑒𝑐𝑜𝑑𝑖𝑛𝑔(𝐻𝐿, 𝑖𝑛𝑝𝑢𝑡) 

 

Autoencoders have many functions for the encoding and decoding of the input and the hidden 

layer(s) allowing for a search of parameters. Besides, different structures of autoencoders exist, as 

mentioned below. If a comprehensive autoencoder structure is found for feature encoding, we can 

work with the Hidden Representation to feed a classifier of our choosing. 

 

 

 

 

Figure 7 Simple representation of a standard Autoencoder structure, with 

the input and output (X and X’) and the Hidden Representation (Y). 
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3.4.1 Denoising Autoencoders 

 

Denoising autoencoders work with corrupted inputs and try to reconstruct the original input based 

on similar inputs that have been encoded and decoded. The objective function to be reduced is the 

error between a corrupted and an uncorrupted input. 

In Figure 8, a representation of this type of autoencoders show that a corrupted input in 𝑥̇ can be 

interpreted and completed with the use of the network built with the full feature representation. 

This type of Autoencoders presented promising results in the field of image de-noising, and in 

broader terms, in all the processes of increase the robustness of features [37]. 

 

 

 

 

3.4.2 Autoencoder Ensemble 

 

Some works have used ensemble of structures, including autoencoders. This assembling may be 

between autoencoders or autoencoders and other networks, such as Extreme Learning Machines, 

or Support Vector Regression. These strategies have showed promising results in the field of time 

series analysis [38]. 

As Figure 9 shows, the autoencoders are lined-up in a unique-level ensemble to which each 

autoencoder attributes a label. 

In the case of Autoencoder ensemble, the strategy may be named as a Stacked Autoencoder, if the 

input of the ensemble is the previous Hidden Representation obtained. 

Figure 9 Representation of an Ensemble Autoencoder. 

Figure 8 Representation of a Denoising Autoencoder, where ẋ is the corrupted representation. 
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3.4.3 Variational Autoencoders 

 

In Bioinformatics, variational autoencoders have also been used for our proposed applications, but 

with different approaches. The variational component is added in the stages signaled in orange, the 

stage that interpret the responses as mean and standard deviation (respectively down and up in 

Figure 10. 

Cancer drug targeting has benefited from research using these autoencoders that instead of fixed 

feature values, learn the distribution of values, and return a mean and standard deviation values in 

which the models are then based [39]. 

 

3.4.4 Stacked Autoencoders 

 

There are also exploratory works in the field of sequence-based Protein-Protein Interaction that use 

Stacked Autoencoders, structures that consist in more than one hidden-layer, building several 

encoding functions to reach a maximum stretched representation. 

In Figure 11 the sequence of Hidden Representations is visible, reaching maximum efficacy in the 

Z field. This type of Neural Network implementation needs to pay special attention to the error 

propagation in the prediction of the several autoencoders 

The results obtained in Protein-Protein Interactions showed results in line with the current state of 

the art on this field [40]. 

 

 

  

Figure 10 Representation of a Variational Autoencoder 

Figure 11 Representation of a Stacked Autoencoder 
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3.5  Protein Representation and Classification Strategies 

 

In the development of computational models, each structure is correspondent to a biological 

component or set of components, implicating a correlation in which both biologists, informatics 

and bioinformatics make a direct relation to what a system or component means in each model. 

This way, a biologist can correct a computer scientist in the model it composes or understanding 

what he needs to do differently in his work to achieve better performances with the help of the 

developed and tested models. 

 

Considering the general combined knowledge of each area, the following correspondences can be 

established: 

 

 

a) Sequence representation and encoding 

 

Sequence representation is the baseline of the work, representing a protein. The encoding method 

chosen, which ever it is, represents a single protein, in its individual state, and not considering any 

other protein in the process. 

 

b) Pair Label 

 

The label of each given pair is the equivalent to bind or does not bind, attributing 1 to the first and 

0 to the latter. In biological applications, this interaction would be detected using measurements of 

environmental change or by a fluorescent indicator. 

 

c) Concatenation of encoding methods 

 

The result obtained from the concatenation of matrices intends to represent the protein pair as one. 

Although the sum of properties had also been considered, it would lead to the loss of information 

regarding the individual properties of each protein, and this sum of properties, if relevant, can still 

be found in Dimension Reduction or Classifier search. 

The concatenation of encoding methods also allows for the exploration of the properties of each 

protein individually. 

 

d) Dimension Reduction 

 

The use of dimension reduction techniques, such as Autoencoders, is involved in the representation 

of proteins or protein pairs. Dimension reduction can be compared to the use of different lenses in 

the observation of these characteristics. A more direct or indirect approach doesn’t change the 
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protein, but the properties we can see in it, or the degree in which we see them. The choice of 

protein characteristics or combinations is a natural process in the field of biology, that takes several 

forms in the field of bioinformatics, such as dimension reduction. 

It can also be compared to the summarization of features, as described in the Primary Structure 

Subtitle (see Section 2.2.1), that the secondary to quaternary structure analysis give to the biologist 

and bioinformatics. 

 

e) Classification models training 

 

The environment in which proteins are synthesized and interact is complex, and hard to describe in 

chemical factors, as so many have influence, such as percentage of water, temperature and pH. 

These factors combined will be the description of the environment in various forms. In simplistic 

terms, a correspondence can be found between each Neural Network or Computational Model 

function, and a given environment factor. 

The creation of models to each component of a single organisms would lead to lack of information, 

increased complexity and contexts impossible to analyze given the number of proteins in some 

environments. 

Therefore, given the proteins that interact in certain macro environments (in this case, organisms), 

the intention is to predict which environment exists in the said organism. This is the biological 

equivalent to training a classification model, in which the classification model represents the 

organism itself (and its biochemical factors). 

 

f) Classification Model Testing 

 

This stage is artificial, representing a biological simulation. Its correspondence is the creation of 

man-made environments, considering the models built in Training, and use protein pairs already 

known to interact or not to test if the environment is the same, giving validity to the biochemical 

factors found. 

In Bioinformatics, it is the validation of the functions of the model trained, which are applied to 

already known pairs that bind or do not bind. 

 

g) New pairs test 

 

After the classification model testing, random or directed (conditioned) tries are made to test new 

pairs of proteins that will interact in the context of the trained model. This is the bioinformatic 

equivalent to the experimentation, in the same biological environment (organism), of new protein 

pairs.  
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h) Interspecies Benchmark  

 

We know that many biochemical factors are similar between species and, depending on the level 

of correlation of two species, a pair given to two organisms can have the same result (bind or does 

not bind). This stage intends to simulate, not only the same pairs, but different pairs. This means 

that we take a trained model (an organism) to which several features (protein pairs) are fed and the 

result can be the same or different, giving information to the potential in each organism. Or even 

achieving results of proteins never found in the same organism, opening doors to proteins of some 

organisms interact with proteins of other organisms, in the latter. 
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4 Datasets and Methods 
 

This chapter focuses on the processes used to go from the original datasets, HitPredict and BioGrid, 

to the result of the classifiers, describing the methods used in each step, the inputs and outputs, with 

respect for the correspondence made in the previous Chapter. 

4.1 Software 

The methods and datasets were implemented and processed, respectively, using MATLAB [42], a 

computing environment developed by MathWorks specialized in numeric calculations, specifically 

matrixes, hence the prefix MAT. 

In the analysis of the final tables and datasets as well as small calculations, software Microsoft 

Excel was also used, as well as in the creation of graphics and colored tables. 

4.2 Datasets 

 

4.2.1 HitPredict dataset 

 

The original dataset is composed with the ID’s of the human family of UniProt. Taking those ID’s, 

we programmatically access to the HitPredict Database, with nearly 17,000 protein examples being 

inserted in the database [43]. 

From the HitPredict Database, we extract, for each protein, an Interaction Matrix, described as 

followed in Table 1. 

 

Inter ID UP Expe. Method Score Annotation Sc Int Confidence 

558263 Q9UQL6 HDAC5 Small-scale 0.46 0.60 0.527 High 

484618 P52952 NKX25 Small-scale 0.42 0.60 0.501 High 

290816 B4DJ51 B4DJ51 High-throughput 0.44 0.50 0.470 High 

547134 Q9GZU8 F192A High-throughput 0.38 0.55 0.458 High 

145728 P61289 PSME3 High-throughput 0.38 0.23 0.258 Low 

Table 1 Example of Interaction Matrixes obtained from HitPredict 
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Each interaction is identified by the field Inter, a cut for the word Interaction, and makes a 

differentiation for every interaction at Hit Predict Platform, identified or curated by the Experience 

identified in the “Expe” field, with a large or small-scale level experience (small-scale vs high-

throughout) and a confidence level attributed in the Score field. The UniProt ID of the second 

protein (the one that the original matrix protein interacts with) is present at the ID UP. 

 

The Score Interaction (second to last column) is an attribute developed by the HitPredict authors 

that consists in attributing an higher coefficient to more recognized experimental methods of 

determination of interaction or higher number of experiences. 

The threshold for the definition of an interaction as of “High Confidence” is 0.281. Below that, the 

interaction is considered of “Low Confidence”, as described by the article in which the platform is 

based on [43]. 

In the selection of pairs for the final dataset, we divided the set in the negative and positive 

approaches. 

 

Positive approach 

The positive set of pairs is formed using the following steps: 

1. Selection of a protein; 

2. Interaction Matrix of the protein using the HitPredict programmatic access; 

3. Selection of the pair with the highest Interaction Score, verifying that it is above the 0.281 

threshold 

 

Negative approach 

The negative set of pairs is formed using the following steps: 

1. Selection of a protein; 

2. Interaction Matrix of the protein using the HitPredict programmatic access; 

3. Selection of another random protein ID; 

4. Verification that the new protein is not present in the Interaction Matrix. 

 

Final HitPredict dataset 

The final dataset consists in a balanced dataset of 16,672 pairs of protein ID’s, 8,336 with positive 

approach and 8,336 negative approaches. With the ID’s chosen, we retrieve the sequence from the 

UniProt Database, and store it in a structure. 

This dataset is the base for the encoding options that create three different datasets based on the 

Encoding methods. 
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4.2.2 BioGrid dataset 

 

The BioGrid datasets is based on the BioGrid Downloadable dataset [44]. In this dataset, each 

interaction is described in the form of a 1x3 array with the UniProt taxonomy identifier, and two 

UniProt Protein ID’s [14]. The dataset contains only positive interactions, and no Negatome was 

used in the research. 

 

The total number of processed organisms present in the dataset was 52, and it accounted for 90,697 

different proteins and 2,008,893 Protein-Protein Positive Interactions, of the 8.2 billion possible 

(from the cross interaction of all proteins). From those 52 organisms, were excluded the ones with 

lowest amounts of data, generating a high threshold of 30,000 interactions to limit the processing, 

and a lower threshold of 35 to ensure that the data was significant. The one exception was the 

Human dataset, in which more proteins were selected, since it is the one with most interaction, 

more interest to the clinical studies, and to which we want to compare all other datasets. Figure 12  

shows the size of all the datasets used, in which the lower threshold of 35 can also be observed. In 

order to increase its interpretation, values in the vertical axis are represented in a base 10. 

 

 

The final dataset was composed by 26 organisms presented in a table in Annex 3, with the number 

of positive interactions for each considered. 

 

4.2.3 Preprocessing and Negative Pairs Generation 

 

Each dataset consisted in the definition of a structure in which the positive pairs in the datasets 

were generated by the extraction of both UniProt sequences, based on the UniProt ID’s in the 

original BioGrid dataset. 

Figure 12 Organisms by number of positive interactions and the red 

bottom size limit of 35 positive interactions per dataset. 
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The negative pairs were generated using two random indexes. The first index extracted an ID from 

the original dataset, and the second ID would be verified not to be an interaction with the first 

chosen protein. After that, both UniProt sequences would be extracted in the same procedure 

described before. 

 

 

4.2.4 UniProt Programmatic Access 

 

UniProt is the Universal Protein Database [14]. It is referenced as one of the top leading protein 

banks, supporting validity to the data produced and stored in it, with high levels of curated datasets. 

To access the database, a command was used to receive the FASTA file format, through the use of 

urlread function, and the ID’s obtained in each of the previous datasets described. After the 

reception and decryption of the FASTA File, the preprocessing and encoding methods were applied 

[45]. 

FASTA format is a general descriptor of a protein or DNA/RNA, used to store basic characteristics 

of amino acid or nucleic acid chains, such as the name of the protein or gene, and the sequence. It 

starts by the character ‘>’ and is followed by the main characteristics. In the line below, the 

sequence is inserted resorting to the amino acid single-letter code (Annex 4). 

 

4.2.5 Overlapping between datasets 

 

Several protein interactions are characterized by their presence in several organisms, being a 

measure of the similarity between organisms and their complexity. A small study was conducted 

between all the 26 studied datasets of interactions, representing the overlapping between them. 

Since protein ID’s are different for each protein in different animals, the search was conducted 

through the sequence and not through the protein ID. 

The results are presented in Figure 13, which is also present in the Annex 5 with higher precision 

values. 
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Figure 13 Overlapping matrix between organisms’ datasets. 

 

Figure 13 shows all the 26 datasets correspondence, where green means that the overlapping is total 

(every dataset contains itself entirely), yellow means that the overlapping is different from 0%, and 

red means the overlap is nonexistent. No overlapping result (in yellow) is over 0.77%, reason to 

why we can consider that the datasets are independent, and don’t interfere with the final results 

obtained. 

 

Although some datasets have considerable overlap in the overall datasets, the fact that the most 

complex organisms are truncated to 30 000 interactions, and the interactions are randomly chosen 

across the dataset, makes the overlap difficult to occur. Therefore, we can present here datasets that 

do not overlap in organisms that have phylogenetic relationship, but to which the common 

interactions were not considered. This evidence shows that the datasets meet the criteria for the 

experiments. 

4.3 Feature Engineering 

The definition of a point in space or the representation of an object require the use of features. The 

quantity and quality of the features used are of key importance to the classifier later applied. A 

feature must always be measurable, in order to be understood by a classifier or neural network and 

should be as independent as possible. 

Measurability is the opposite of the intended effect with dimension reduction, in which all the focus 

shifts to the quantity of features, their quality and independency, specially the latter. If any 

10090 10116 10298 10359 10376 11676 227321 237561 284812 333760 3702 37296 3847 39947 511145 559292 6239 7227 7955 83332 8355 9031 9606 9823 9913 9986

10090 1,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,001 0,000 0,000 0,000

10116 0,001 1,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000

10298 0,000 0,000 1,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000

10359 0,000 0,000 0,000 1,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000

10376 0,000 0,000 0,000 0,000 1,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000

11676 0,000 0,000 0,000 0,000 0,000 1,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000

227321 0,000 0,000 0,000 0,000 0,000 0,000 1,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000

237561 0,000 0,000 0,000 0,000 0,000 0,000 0,000 1,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000

284812 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 1,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000

333760 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 1,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000

3702 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 1,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000

37296 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 1,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000

3847 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 1,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000

39947 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 1,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000

511145 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 1,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000

559292 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 1,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000

6239 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 1,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000

7227 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 1,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000

7955 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 1,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000

83332 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 1,000 0,000 0,000 0,000 0,000 0,000 0,000

8355 0,000 0,002 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 1,000 0,000 0,000 0,000 0,000 0,000

9031 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 1,000 0,000 0,000 0,000 0,000

9606 0,001 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 1,000 0,000 0,000 0,000

9823 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 1,000 0,000 0,000

9913 0,008 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,005 0,000 1,000 0,000

9986 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 1,000
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dependency is found by a dimension reduction algorithm, it is aggregated in a single feature, 

increasing its quality, and decreasing its measurability and understandability. 

 

The specificity of the selection of the features leads to thorough studies of the existing properties 

and which should be the main features used in the work developed. 

 

The approach used in feature selection can be holistic or individual. Both have positive and negative 

points which should be analyzed, and then considered, taking the characteristics described before 

in account. 

 

4.3.1 Protein related features 

 

Features related to a holistic approach of the proteins have a deeper understanding of the 

environment that surrounds a protein, considering the set of amino acids that are part of the 

sequence and the biochemical properties as a sum. 

 

The main properties considered were: 

a) Amino Acid Composition - composed by 20 features, in which every value is the count of 

all numbers [46]; 

b) Dipeptide Composition – composed by 400 features, in which every pair of two followed 

amino acids are counted [47];  

c) Conjoint Triad – composed by 343 features, representing a head count of all the triplets 

existing after the encoding according to specific groups of amino acids (see Annex 2), 

which are divided in 7 categories [48]; 

d) Autocovariance – composed by a matrix calculated by a variable number of properties, in 

which time series are taken in consideration in the evaluation of the original features [49]; 

e) N-grams – composed by different number of features depending on the value to n, but to 

which the structure is similar to Dipeptide and Conjoint Triad if n = 2 or 3, respectively 

[50]; 

f) Motifs – pieces of protein information encoded by other strategies or in textual input, that 

characterize strong ligand zones in the proteins [21]; 

 

Analyzing these features, we can capture the holistic view of each protein, with the surplus, in some 

cases, that the properties of the amino acids are part of the formula or count made by the method. 

However, a holistic view misses some of the individual characteristics of the amino acids still, and 

many times releases the components from the sequential nature, making general sums of the full 

quantity of the amino acids presents, considering or not their properties in the overall. 
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4.3.2 Amino acids related features 

 

Regarding the individual features of amino acids, we could think of a near infinite number of 

properties. Since they are analyzed individually and considering the study of amino acids has been 

thorough regarding their importance in protein functions, and life in general, all its properties can 

be measured with high precision and each of them could be a feature. The general table of chemical 

properties for each amino acid is described in Annex 1. 

 

The main physical properties of the amino acids are: 

• Net Charge Index of Side Chains 

• Volume of side chain 

While the main chemical properties are: 

• Polarity 

• Polarizability 

• Hydrophobicity 

• Hydrophilicity 

• Solvent accessible surface area 

4.4  Encoding 

For the encoding of the dataset, three different strategies were used, based on two different encoding 

methods. 

 

4.4.1 Conjoint Triad 

 

Conjoint Triad Method was created in 2007 [48] with the intention of describing proteins in a 

simple descriptive and fixed array, in which both holistic and specific amino acid characteristics 

have weight in the classifier chosen. 

 

The Conjoint Triad method allows for the identification of trios of amino acids with certain 

properties, according to previously designed tables, in annexes Y. 

  

The previous 7 labels are then attributed to each sequence, creating an integer sequence. We then 

proceed to create groups of three amino acids, with an advance of 1. We create a 7x7x7 matrix, 

with a “xyz” coordinate for each trio. 

The matrix is then introduced in a structure for each matrix. 
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4.4.2 Autocovariance 

 

Autocovariance is a statistical measure introduce in the early 1900’s in which the values of a vector 

can be assessed in a time-series approach [49]. 

Using the formula explained in the article, a 7x30 matrix for each protein sequence, the final matrix 

is calculated for  that is then introduced in a structure for storage. The formula is: 

 

𝐴𝐶𝑙𝑎𝑔,𝑗 =
1

𝑛 − 𝑙𝑎𝑔
∑(𝑋𝑖,𝑗 − ∑ (𝑋𝑖,𝑗)

𝑛−𝑙𝑎𝑔

𝑖=1

) × (𝑋𝑖+𝑙𝑎𝑔,𝑗 − ∑(𝑋𝑖,𝑗)

𝑛

𝑖=1

) 

𝑛−𝑙𝑎𝑔

𝑖=1

 

 

• Lag is an arbitrary number here defined as 30, since it is the number used in previous works 

• X is the vector of properties 

• Properties are defined by the table in annex 1. 

 

4.4.3 Mixed Encoding 

 

The Mixed Encoding strategy involves the concatenation of both previous encoding methods, 

creating a 553-long sequence of doubles. 

4.5  Autoencoder Approach 

Our main approach is built on the Autoencoder Hidden Representation [42]. These structures intend 

to reduce the dimension of a given dataset, without losing capability of regenerating the input. 

Depending on their structure, several approaches using these networks have been used in 

bioinformatics and other applications. 

 

 

4.5.1 Contextualization of Autoencoders 

 

During the development of the thesis, a study was made, in the context of Autoencoder’s structure 

development and familiarization, in which several parameters were studied. The paper sustained 

the idea that Autoencoders can achieve high accuracies in the prediction of Protein functions (and 

families). 

The use of Autoencoder function have the obligation to establish a Hidden Layer size. A fixed 

number of hidden sizes would ease the evaluation of a classifier but create other problems such as 
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approaches in which the hidden size would be higher than the original dimension. Therefore, a 

percentage-based approach was taken, and the best results were achieved using a 10% Hidden 

Representation related to the original input size, reason to why this will be the reference value for 

the use of these structures [41].  

 

 

4.5.2 Encoding and Decoding Transfer Function combinations 

 

In the choice of parameters in the Autoencoder structure, two main points create the deepest 

differences of programming and in the outcome generation. 

The encoding transfer function and decoding transfer function, considering the hyperparameters 

that may be optimized, are what defines the learning process of the algorithm. Therefore, their 

understanding is critical in achieving a good performance. 

 

Logistic Sigmoid Transfer Function - LogSig 

 

𝑦 =  
1

1 + 𝑒−𝑥
 

 

 

Saturating Linear Transfer Function – SatLin 

 

𝑦 =  {

−1, 𝑖𝑓 𝑥 <  −1
𝑥, 𝑖𝑓 𝑥 ≥  −1 𝑒 𝑥 ≤ 1

1, 𝑖𝑓 𝑥 > 1
 

 

4.5.3 Use of Negative and Positive Autoencoders 

 

The use of Autoencoders presupposes the ability by it of the representation of an entity with fewer 

characteristics than the original ones, achieving dimension reduction by a two-function 

determination (encoding and decoding transfer functions). Therefore, the Autoencoder is a set of 

function that can attribute characteristics of an entity to a certain point, with a margin of error. The 

biggest the margin of error, less likely it is that the autoencoder is an appropriate function to 

represent the point intended. 

In this work, a system was developed where two different autoencoders are trained for each 

combination of Encoding and Decoding Transfer Functions,  
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4.5.4 Errors and Hidden Representations as two different sub-methods 

 

The analysis of an autoencoder leads to different possible interpretations of its Hidden 

Representation. The widely used approach is the Hidden Representation prediction using the model 

trained, where it is applied the following logic sequence: 

a) The reference point is the origin of the Autoencoder, i.e., is the point where the 

Autoencoder predicts the medium point; 

b) Applying the model, all points around the reference point are categorized in each of its 

features; 

c) The final features (reduced dimension) of each point are now the new features to be 

classified in later stages. 

 

However, using the errors of a Hidden Representation, and as the classifier input, the logic sequence 

is different: 

a) The reference points are the origins of each Autoencoder; 

b) The point at study is measured, but the only feature to be stored is the distance to the origin 

(error) of each Autoencoder; 

c) The distances to all autoencoders (errors) trying to find my features are the features to 

classify. 

 

 

 

 

The logic sequence in both approaches is represented in Figure 14, where the difference can be 

seen, in two dimensions, between the use of a Positive (AEPos) and a Negative (AENeg) 

Autoencoder to predict all the features, or just the error (function e) in predicting the point X to be 

analyzed. 

Figure 14 Difference between Error and Hidden 

Representation Sub-methods. 
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The final result of these approaches is dimensionally different as the use of Autoencoders to obtain 

the errors makes the number of features equal to the number of Autoencoders used and the 

representation in new coordinates increases that number to the product between the number of 

Autoencoders and the dimensions of the Hidden Representation. 

The final dimension in this figure is 2 in the error approach and 4 in the Hidden Representation. 

But in our case study, with 8 autoencoders and their Hidden Representation choice, the difference 

is from 8 to 68, respectively. 

 

 

 

4.6  Support Vector Machine Approach 

Our main studied classifiers are Support Vector Machines. They are dependent of certain 

parameters which can be predetermined or searched in grid values. The main introduced 

specifications are Kernel Functions and Kernel Values. 

 

4.6.1 Kernel Functions and Values  

 

Kernel functions are the ones that establish the shape of the hyperplane that separates classes. The 

used Kernel functions are linear, gaussian and polynomial. 

 

Linear kernel determines that the margin must be predetermined as a single valued angle in relation 

to the origin axis. 

𝑘(𝑥𝑖⃗⃗  ⃗, 𝑥𝑗⃗⃗  ⃗) =  (𝑥𝑖⃗⃗  ⃗ ∙ 𝑥𝑗⃗⃗  ⃗)
𝑑

 

 

Gaussian kernel is an exponential function determined margin: 

 

𝑘(𝑥𝑖⃗⃗  ⃗, 𝑥𝑗⃗⃗  ⃗) = exp (−𝛾‖𝑥𝑖⃗⃗  ⃗ − 𝑥𝑗⃗⃗  ⃗‖
2
), 

 

where the distance is multiplied by the box constraint value (𝛾), in an exponential function. 

 

Polynomial kernels, on another approach, determine the vectors through the use of a polynomial 

order to exponentiate the dot product to. The use of d = 1 is the equivalent to the use of linear 

kernel. 



Strategies of Autoencoders in the Prediction of Protein-Protein Interactions 34 

𝑘(𝑥𝑖⃗⃗  ⃗, 𝑥𝑗⃗⃗  ⃗) =  (𝑥𝑖⃗⃗  ⃗ ∙ 𝑥𝑗⃗⃗  ⃗)
𝑑

 

 

 

4.6.2 Hyperparameter Optimization 

 

To assist the use of the parameters to each model, the values can be search in grid parameters, to 

obtain lower values of the objective function determined, which represents higher values of AUC. 

 

 

4.7  Long Short-Term Memory Networks 

Long Short-Term Memory Networks [51] are recurrent neural networks built to face time-series 

modeling improving the results of other RNN’s in that specific field. 

LSTM contain memory blocks where the model is learned, taking the input and output gates 

dynamics of multiplication and their errors to a certain number of inputs behind, creating a forget 

gate that doesn’t allow for the backpropagation to go on until the beginning of the sequence. 

 

The properties from Long Short Term Memory Networks make them sequence adaptable. 

However, since the size of every sequences are different, we need to perform additional 

preprocessing in these types of Network inputs. 

In order to lose less information, or having to add the fewer empty characters possible, the first step 

is to order the sequences by size and padding the sequences into mini batches to which the 

sequences have the same tailored size. The final preprocessing required is to split sequences that 

overshoot the batches. 

As Figure 15 represents, the five compositions of LSTM that follow have different functions. The 

sequence input deals with the padded sequences and introduces them to the LSTM in its core. The 

Fully Connected layers ensure that every neuron in the LSTM layer is connected, ensuring all final 

states obtained in the memory blocks are considered in the final classification. 

Figure 15 Long Short-Term Memory Network Layers and the hidden stages it 

represents in the calculation of the final LSTM Algorithm 
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The development of Autoencoders, being the focus of this thesis, was considered as a hypothesis 

to be compared to other methods, such as LSTM, which was studied in the following approaches:  

 

 

 

a) Train Sequence (Sequence to Sequence) to recognize category 

 

Sequence to Sequence Long Short-Term Memory Networks classify the input sequence regarding 

sequence labels. These sequence labels are categories or sequences of classes that LSTM predict. 

These sequences have an important role in automatic translation algorithms. 

 

b) Train Sequence (Sequence to Sequence) to recognize hotspots 

 

As described above, training sequences may imply the result of a sequence not described before, 

and not pre-labeled. These unsupervised learning machines may present new solutions to 

previously unknown sequences. 

 

c) Train Sequence (Sequence to Label) to recognize interactions 

 

This is the most direct type of LSTM to the problem approached. Using raw text inputs, we classify 

the sequences using the LSTM function at MATLAB. The output labels are 0 or 1, according to the 

training of the datasets. 

4.8  Metrics 

The final challenge in the organization of the experiments and selection of methods to apply was 

the choice of the metrics to use. 

In the papers read as preparation of the Thesis, and in the general literature, several metrics were 

used, including Binary Confusion Matrixes (with Sensitivity and Sensibility), F1-Score, Area 

Under the ROC Curve (AUC) and Accuracy. 

 

Confusion Matrixes are used to evaluate the number of true and false class labeling using a certain 

model. They can be multidimensional or binary, according to the number of classes used in the 

problem. Since Protein Interaction is a binary problem, the used notation is: True Positives (TP), 

the case of a positive interaction being labeled as positive; False Positives (FP), when a negative 
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interaction is labeled as positive; True Negatives (TN), when a negative interaction is labeled as 

negative; and False Negative (FN), when a positive interaction is labeled as negative. 

 

Metric Equation based on Confusion Matrixes 

Sensitivity 
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 

Specificity 
𝑇𝑁

𝑇𝑁 + 𝐹𝑃
 

F1-Score 
2 × 𝑇𝑃

2 × 𝑇𝑃 + 𝐹𝑃 + 𝐹𝑁
 

Accuracy 
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝐹𝑁 + 𝑇𝑁 + 𝐹𝑃
 

Table 2 Equations of the metrics analyzed as possible candidates 

Area Under the ROC Curve (AUC) 

This metric is a performance measure which integrates the Receiver Operating Characteristics 

Curve, the graphic between True Positive Ratio (sensitivity) and False Positive Ratio (1 – 

specificity). 

 

To reach the best possible combination of metrics, their equations were analyzed considering the 

following prerequisites: 

 

1. The highest number of True Positives and True Negatives is desirable 

The best possible outcome is that the prediction of proteins is of the highest accuracy possible, 

allowing for the lowest quantity of tests needed, and to build confidence on the model. 

2. The lowest number of False Positives is desirable 

 

 

False Positives and False Negatives in Drug and Protein Interaction Models 

 

Drug trials, and protein interactions trials need to be conservative in the amount of resources used. 

Though the desired outcome is to predict with the highest accuracy possible the highest number of 

predictions, the presence of this principle obliges to the importance of reducing False Positives in 

the preparation of trials. In the building of the model, this is only a fact since the datasets used are 

balanced, halving each of the true and positive labels. 
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5 Experiments and Results 
 

As explained in Chapter 2. Protein-Protein Interaction Problem, the intended model to find is the 

equivalent to the interactionPredictor, in the equation 

 

𝑦 = 𝑖𝑛𝑡𝑒𝑟𝑎𝑐𝑡𝑖𝑜𝑛𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑜𝑟(𝑓𝑒𝑎𝑡𝑢𝑟𝑒𝑠(𝑝1), 𝑓𝑒𝑎𝑡𝑢𝑟𝑒𝑠(𝑝2)) 

 

The planning of the experiments respects this initial equation, describing several steps to be 

followed, to achieve the best possible model. Since the model was, from the very beginning, thought 

as an ensemble, several experiments were performed to decide which optimized model could be 

built with the sequence: 

 

1. Encoding Method Experiment   EME 

2. Dimension Reduction Experiment  DRE 

3. Classifier Training Experiment   CTE 

 

The convolution of these three experiments translated in the final obtained Pipeline is the equivalent 

to the following equation: 

 

𝑦 = 𝐶𝑇𝐸 (𝐷𝑅𝐸 (𝐸𝑀𝐸(𝑓𝑒𝑎𝑡𝑢𝑟𝑒𝑠(𝑝1), 𝑓𝑒𝑎𝑡𝑢𝑟𝑒𝑠(𝑝2)))),  with y = {0,1} 

 

This Chapter addresses all the experiments performed as well as their findings, explaining the 

implications they have in the experiments developed later in the Pipeline. 

This equation, and the model predicted, is then applied to the final benchmark dataset, BioGrid.  

5.1 Final Experiments Schematics 

The set of functions needs to be chained in a general scheme, such as the described in Figure 16, in 

order to organize the results and the best function in each experiments stage. 

 

In the development of the four experiments, we need to extract the best result for each, without 

losing the ability to adapt to new organisms the methods we develop. Since we have two datasets, 

in which we have two different goals, we need to design a schematic for the HitPredict dataset 

(Figure 16) and another for the Interspecies & Benchmark Experiment (Figure 17). 
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In Figure 16, we see that the HitPredict dataset is the first step of the experiments, with reduced 

application, but of exploratory nature in Encoding, Dimension Reduction and Classifier Stages. 

The main goal of this dataset is to provide viable information of the first two factors, enabling the 

findings related to the Classifiers in the General Experiment of the BioGrid dataset. 

 

The experiments involved are the Encoding Method Experiment, Dimension Reduction Experiment 

and Classifier Training Experiment. 

 

 

 

 

In the second Stage of Experiments, with BioGrid dataset, there are trials regarding the Classifier 

Training Experiment and the Interspecies & Benchmark Experiment. Although already shown that 

the Conjoint Triad Method, and the Autoencoders, were chosen as the methods to be applied in the 

first two experiments, evidences will be presented as to why they were chosen. 

 

The sequence followed in this second stage, as shown by Figure 17 is started by the extraction of 

an organism as Training Dataset in which 70% of the interactions are selected. The interactions are 

encoded using Conjoint Triad Method which is delivered to an Autoencoder. This Autoencoder is 

Figure 17 General Scheme of Experiments with BioGrid dataset, using Conjoint Triad and 

storage of models to be tested in other organisms. 

Figure 16 HitPredict dataset Experiment 
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trained using all 4 combinations described before, in order to obtain the Hidden Representations as 

well as the Errors. All these final features are trained in a classifier that ensured that the metric is 

stored within a structure, as well as the model. 

Then, a second organism is chosen as testing. If the second organism is the same as the first, the 

process is followed using the remaining 30% of the interactions. Otherwise, the process tests the 

model obtained in the first stage in the whole dataset and stores it in a final “Results Storage” 

structure. 

 

All the aspects regarding the functions of the Autoencoder, the Classifier Training and the Model 

Storage and use are adapted, since different organisms require different parameters in the same 

Neural Networks and Classifiers. 

To this purpose, we use the hyperparameter optimization in every first stage training, in order to 

specialize the Autoencoder in the organism intended. 

 

This means that, though the Encoding Method and Metrics maintain through all thesis, we need to 

evaluate for each organism tested in the Interspecies and Benchmark Experiment the 

hyperparameters used, with an optimization process. 

5.2  Encoding Method Experiment 

Encoding Method Experiment was the first designed. The experiment was only realized using the 

BioGrid dataset, in which we based our model. 

Considering the methods chosen in Chapter 2 following the Amino Acid Principles, we considered 

three main options: 

 

1. Conjoint Triad Method   CT 

2. Autocovariance Method   AC 

3. Mixed Encoding Method  AC + CT 

 

The experience involved a simple autoencoder testing, with an analysis of the prediction accuracy 

that the function returns, and the average of 10 experiments for each of the 4 combinations possible 

and their standard deviation. 

 

First results were obtained regarding the choice of the Encoding Method Experience. EME is the 

first round of experiments, and the results in Table 3 were obtained. 
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Encoding Method AUC 

AC 0.63811 ± 0.21655 

CT 0.77413 ± 0.22512 

AC + CT 0.53380 ± 0.26706 

 

Table 3 Results of the Encoding Method Experience with simple SVM 

 

Despite the Mixed Encoding Method being the concatenation of Autocovariance and Conjoint 

Triad the junction is an average of the double of the dimension, hardening the composition of a 

separation hyper plan as the Curse of Dimensionality predicts, especially in the datasets with lower 

number of protein interaction samples. 

Following these results, the Encoding Method used was Conjoint Triad, with a fixed-length of 343 

features for each protein, as explained before. 

5.3  Dimension Reduction Experiment 

Dimension Reduction Experiment, or DRE, was the following stage of experiments to be thought. 

While EME was performed in isolated form, DRE was tested with the Classifier Training 

Experiment, since the ensemble of both deep-machine learning approaches could result in different 

ways in their sum, as they would individually. This forced to a joint evaluation of the algorithms 

that resulted in no prejudice to each experiment and higher confidence in the values obtained. 

Using the Conjoint Triad method as Encoding Method, two main approaches were used: 

Autoencoders and Long Short-Term Memory. 

 

5.3.1 Autoencoders 

 

As described before, Autoencoders manage to find functions that reproduce the input at the output, 

finding redundancies in data that can be evaluated as independent, but in which some unknown 

relations may occur. 

 

Considering the results of the contextualization in the study for autoencoders, the general 

specificities to the Autoencoder training are: 

• Hidden Size: 10% of the input size 

o Since each protein is encoded in a 343-double array, then the hidden layer will 

have size (343 * 2) * 0.10 ≈ 68 
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• Sparsity Proportion: 0.01 

 

Based on these general parameters, we evaluated all the others, intending to find the best 

combination possible of encoding and decoding transfer functions. 

 

5.3.1.1 HitPredict dataset 

 

As presented in Figure 16, the main focus of HitPredict dataset was the choice and validation of 

the Encoding Method, between the three strategies implemented, and their performance in a chosen 

classifier. This classifier consisted in a Support Vector Machine of linear kernel. The second stage 

is the one focused on this section. 

 

• Area Under the Curve  =  0.9892 ± 0.0131 

• Accuracy    =  0.9880 ± 0.0122 

• Specificity    =  0.9894 ± 0.0134 

• Sensitivity    =  0.9867 ± 0.0129 

 

 

5.3.1.2 BioGrid dataset 

 

As mentioned before, and present in Figure 17, BioGrid dataset is also used for the training and 

testing in the Benchmark Experiments. 

The graphic at Figure 18 shows the results for all the combinations tried, including the four two-

combinations and the error approaches. 

 

 

Though these are not the final results of the improved models, there are significant values in some 

of the organisms analyzed in Figure 18. 

In the overall analysis, the results are the ones present on Table 4: 

Figure 18 Autoencoders Combinations and Errors AUC 
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Combination LL LS SL SS Errors 

AUC 0.830 0.803 0.816 0.644 0.836 

# Best Approach 4 1 3 0 12 

 

Table 4 Mean AUC and best approach of the organisms’ results 

 

The final determined approach to the Support Vector Machines Inputs was the Errors. The decisive 

factors were the Area Under the Curve mean, but also the number of organisms in which the use of 

errors is the best approach (see Table 5) and the fact that the number of times that the errors are 

better than the mean of the of the traditional approaches is 22 in the 26 organisms. 

A concluding fact is also the dimension inserted in the classifier in which the errors reduce from 68 

to only 8 the number of dimensions used. 

5.4 Results for the Ensemble Experiment 

Despite the selection of a Dimension Reduction technique and a Classifier as two different 

mechanisms in the same general Pipeline, the results need to be analyzed in the Ensemble all 

together, to ease the analysis of the implications of the Hidden Representation strategies in the Final 

Classifiers. This was a necessary effort considering the implications seen in other sections, such as 

the Encoding Method Experiment, where the method with higher degree of information – Mixed 

Encoding – produced results below the subsets of Autocovariance and Conjoint Triad. 

In these experiments, only the BioGrid dataset was used, and no one configuration for a classifier 

was used, being described in the different experiments the approach and configurations for each. 

 

5.4.1 Autoencoders + Long Short Term Memory Networks 

 

As a preliminary study, the results found low potential in the development of this structure as a 

dimension reduction technique, but also as a classifier. In this work, LSTM processed features were 

the resulting approaches (both error and Hidden Representation) from the Autoencoder. The results 

obtained, in the accuracy of sequence to label predict, were: 

 

• Using the Hidden Layer from the AE  = 0.6105 

• Using the 8 Errors Combination  from AE = 0.6512 
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The approach used LSTM was its Sequence to Label form, as the intention was to classify the 

protein interactions as positive or negative. 

 

5.4.2 Long Short Term Memory + Support Vector Machines 

 

This experiment used LSTM as the dimension reduction technique with LSTM Sequence to 

Sequence generation. These features were then delivered to the Autoencoder, with implementation 

of Hyperparameters Optimization in the training process, tuning different parameters of the classier 

to each different dataset for generalization. The best optimization possible was tried to find, using 

a Grid Search algorithm in MATLAB Support Vector Machine function to optimize C (Box 

Constraint) and Gamma (Kernel Scale). 

 

The results obtained were: 

• Box Constraint     = 1.6481 

• Kernel Scale     = 261.17 

• Area Under the Curve   = 0.8012 

 

 

5.4.3 Autoencoder + Support Vector Machines 

 

The use of autoencoders in the first stage of the ensemble intends to capture the relations between 

properties of proteins and then feed them to a classifier, in this case Support Vector Machines, that 

differentiates the overall characteristics of the protein pair. As the two approaches of Hidden 

Representation and Errors were implemented, a comparison was possible between them, which 

would validate or undermine the results found before (Table 4) that favored Errors Representation. 

 

Hidden Layer Representations 

Using the four representations, an Autoencoder was built with the following result and parameters: 

• Box Constraint   = 0.0033 

• Kernel Scale   = Not Aplicable 

• Kernel Function   = Polinomial, with Order 2 

• Area Under the Curve  = 0.7560 
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Errors Representation 

As projected in the experiments, the use of the errors of the eight autoencoders built were used in 

the prediction by SVM, with the following parameters and results: 

• Box Constraint   = 421.8252 

• Kernel Scale   = 0.5020 

• Kernel Function   = Gaussian 

• Area Under the Curve  = 0.9704 

 

In both approaches, Hyperparameters Optimization was implemented, to which Figure 19 is the 

representation. 

 

 

5.4.4 Autoencoder + K-Nearest Neighbors 

 

The principle behind the utilization of autoencoders in the first stage is the same as in the previous 

ensemble model, and the K-Nearest Neighbors was implemented as a point of reference to the 

improvement of the prediction of interactions using our approaches (namely Errors and Hidden 

Representation), since it is one of the already used classifiers in the literature. 

 

Following the same principle of Grid Search in the best approach possible, both Hidden 

Representation and Errors of Autoencoders as the inputs for the classifier, achieving the results 

bellow. 

 

 

 

 

Figure 19 Hyperparameter Optimization in SVM. The Z axis is equal to 1-AUC, while X and Y 

correspond to the Kernel Scale and Box Constraint tested. 
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Hidden Layer Representations 

Using the four representations, we built an Autoencoder with the following results: 

• Number of Neighbors  1 

• Distance   Euclidean 

• Distance Weight  Equal 

• Area Under the Curve  0.8534 

 

Errors Representation 

• Number of Neighbors  3 

• Distance   Euclidean 

• Distance Weight  Equal 

• Area Under the Curve  0.9335 

 

 

5.4.5 Ensemble general results 

 

Outside of the approach in which Long Short-Term Memory Networks Sequence to Sequence were 

the first input, all of the ensemble strategies were submitted to both inputs: Errors and Hidden 

Representation. 

 

The overall results are shown in table 6, where we can distinguish that the highest Area Under the 

Curve strategy is the Autoencoder + Support vector Machines, with Errors of Representation as 

features to the classifier. 

 

 

 

 

Ensemble AE + LSTM LSTM + SVM AE + SVM AE + KNN 

Hidden 

Representation 
0.610 0.801 0.756 0.853 

Errors of 

Representation 
0.651 ----- 0.970 0.934 

Table 5 General Table of AUC for the Ensemble 
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5.5 Classifier Training Experiment 

Classifier Training Experiment, or CTE, consisted in the final perfecting of the classifier, in the last 

stage of the experiments. While nearly all of the solutions performed were tested as described in 

the previous section, the approach of Long Short Term Memory Sequence to Label, as an overall 

method that would reduce dimension reduction and classifier in one single step, was not. 

 

5.5.1 Long Short-Term Memory Sequence to Label 

 

As stated before, as Long Short Term Memories have a dedicated sequential approach, their 

relevance in the field of Bioinformatics is of particular interest in the sequencing experiments. 

Many encoding methods remove the time sequence feature from the datasets when not present in 

the original encoding method. 

 

 

5.5.1.1 Protein related features 

 

In the LSTM approach testing, and using the features described in Chapter 3, we managed to 

evaluate the contributions that this structure could give to the prediction of interactions. 

 

 

 

Building on the metrics intended to find, as described at Chapter 4, we take the confusion matrix 

before and calculate the following: 

• Accuracy    0.8296 

• Specificity    0.8456 

• Sensitivity    0.8136 

 

 

5.5.1.2 Amino acid related features 

Using the amino acid related features described in section and using the features as the sequential 

input to the LSTM Network, we achieved lower results, as shown in confusion matrix below (Table 

7). 

Predicted Real 

 Interaction No Interaction 

Interaction 2114 466 

No Interaction 386 2034 

 2500 2500 

Table 6 Protein Related features results 
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Building on the metrics intended to find, as described at Chapter 4, we take the confusion matrix 

before and calculate the following: 

• Accuracy    0.7828 

• Specificity    0.7932 

• Sensitivity    0.7724 

 

Since the encoding method chosen is of holistic view of the protein, the time feature is already not 

present. Therefore, to ensure that the characteristics of the amino acids are evaluated in the same 

way, not losing the time feature, the approach was not implemented, feeding the sequence directly 

into the LSTM. 

 

Intending to compare with the results obtained in other classifying methods, we built experiments 

in the HitPredict dataset with 5 000 samples in the testing dataset. 

 

Classifier SVM LSTM 

Encoding CT AC CT + AE AC + AE ---- 

AUC 0.762 0.711 0.801 0.725 0.775 

Table 8 Area Under the Curve using Substitution of Amino Acids vs SVM 

5.6  Interspecies and Benchmark Experiment 

In the aftermath of the HitPredict Experiments and the first experiments with BioGrid dataset, a 

hypothesis was theorized about the possibility of predicting Proteins Interactions between 

organisms, with the goal of predicting which proteins may interact in different organisms, and 

which proteins, from different organisms, could interact in each organism. 

 

The main challenges in interspecies relations are related to the difference in study and complexity 

of organisms. The most evidential example is the yeast (Saccharomyces cerevisiae), an organism 

Predicted Real 

 Interaction No Interaction 

Interaction 1983 569 

No Interaction 517 1931 

 2500 2500 

Table 7 Amino Acid related feature results  
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less complex than most mammals, but due to its interest in investigation, it has much more data 

and, specifically, interactions detected and tested. 

 

The research in this area, of interspecies relations, has been the object of different approaches, but 

is a recent field, with low data comparisons to adequate. 

 

In this stage of experiments, both K-Nearest Neighbors algorithms and Support Vector Machines 

were used, as a mean of comparison to assess if the capabilities of discrimination have the same 

degree of improvement in interspecies PPI as they have in intraspecies PPI. 

In both experiments, the application of methods was similar. The experiment involved a cycle of 

testing the models developed in the Classifier Training Experiment in each organism. 

 

 

5.6.1 K-Nearest Neighbors Classifier 

 

The K-Nearest Neighbors Classifier is one of the most used in the literature, and in the development 

of the Interspecies Experiment, it was tested and improved using Hyperparameter Optimization. 

 

The first test was made using the five biggest organisms in the dataset. This first sample was of 

high improvement and Grid Search, achieving the results found in Table 8. 

 

 

The organisms found in the table, by species ID’s, have the following correspondence: 

• 3702  Arabidopsis thaliana  Arabidopsia 

• 7227  Drosophila Monogaster  Fruit Fly 

• 9606  Homo Sapines   Human dataset 

• 10090  Mus Muculus   Domestic Mouse 

• 559292  Sacharomisae Cerevisae  Yeast 

 

 

 

 

KNN Experiment 

  Test dataset 

3702 7227 9606 10090 559292 

T
ra

in
in

g
 

d
a
ta

se
t 

 

3702 0.934 0.751 0.504 0.671 0.595 

7227 0.543 0.949 0.525 0.512 0.980 

9606 0.809 0.575 0.853 0.722 0.875 

10090 0.568 0.558 0.501 0.849 0.838 

559292 0.875 0.596 0.543 0.878 0.851 

Table 9 Interspecies AUC of the 5 main organisms’ datasets (K-NN) 
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As the results allowed for low extrapolations while attaining high accuracies in some of the cases, 

we augmented the sample to all the approved 26 organisms’ datasets, to which we achieved the 

results, in color table, in Table 10. The table with higher number of decimal precision points is 

present in Annex 6. 

 

  

 

5.6.2 Support Vector Machines 

 

With basis in this table, the experiments described in the Interspecies & Benchmark Experiment 

were designed to correspond to the same organisms. Considering this effort, the following results 

were obtained from Interspecies Experiment.  

 

Since the experiment conducted attained good results, it was extended to the other 26 datasets with 

the results, in color table, in Table 12. The table with higher number of decimal precision points is 

present in Annex 7. 

 

 

Interspecies Trial  
Test dataset 

3702 7227 9606 10090 559292 

T
ra

in
in

g
 

d
a
ta

se
t 

3702 0.996 0.811 0.599 0.825 0.658 

7227 0.643 0.973 0.672 0.544 0.989 

9606 0.983 0.516 0.970 0.870 0.957 

10090 0.756 0.612 0.514 0.863 0.893 

559292 0.932 0.782 0.639 0.970 0.964 

Table 11 Interspecies AUC of the 5 main organisms’ datasets (SVM) 

10090 10116 10238 10359 10376 11676 227321 237561 284812 333760 3702 37296 3847 39947 511145 559292 6239 7227 7955 83332 8355 9031 9606 9823 9913 9986

10090 0.849 0.529 0.693 0.807 0.897 0.660 0.609 0.901 0.678 0.907 0.568 0.743 0.757 0.780 0.893 0.838 0.808 0.558 0.796 0.516 0.702 0.879 0.501 0.728 0.635 0.525

10116 0.594 0.677 0.523 0.841 0.863 0.655 0.683 0.578 0.510 0.904 0.507 0.744 0.914 0.913 0.746 0.639 0.621 0.553 0.706 0.649 0.810 0.502 0.614 0.761 0.503 0.675

10298 0.503 0.535 0.828 0.864 0.904 0.774 0.500 0.506 0.641 0.811 0.593 0.972 0.607 0.788 0.716 0.643 0.530 0.658 0.867 0.564 0.848 0.752 0.504 0.785 0.581 0.583

10359 0.566 0.541 0.837 0.953 0.982 0.790 0.501 0.612 0.501 0.818 0.570 0.978 0.753 0.792 0.503 0.639 0.592 0.509 0.879 0.523 0.780 0.562 0.662 0.502 0.577 0.797

10376 0.570 0.587 0.960 0.800 0.985 0.664 0.621 0.587 0.535 0.928 0.592 0.929 0.696 0.814 0.746 0.546 0.524 0.573 0.851 0.542 0.680 0.785 0.510 0.708 0.605 0.792

11676 0.536 0.576 0.785 0.849 0.911 0.888 0.783 0.796 0.552 0.891 0.609 0.626 0.912 0.641 0.765 0.594 0.528 0.650 0.576 0.510 0.512 0.811 0.570 0.726 0.538 0.812

227321 0.659 0.583 0.551 0.523 0.691 0.510 0.608 0.695 0.557 0.629 0.596 0.511 0.529 0.740 0.766 0.583 0.547 0.539 0.589 0.571 0.609 0.640 0.527 0.687 0.569 0.715

237561 0.563 0.516 0.584 0.713 0.612 0.660 0.622 0.825 0.628 0.699 0.505 0.818 0.714 0.739 0.739 0.580 0.618 0.681 0.559 0.597 0.580 0.827 0.597 0.881 0.503 0.732

284812 0.533 0.570 0.564 0.528 0.778 0.541 0.612 0.694 0.852 0.753 0.613 0.526 0.616 0.570 0.553 0.661 0.525 0.622 0.544 0.539 0.523 0.592 0.525 0.668 0.616 0.622

333760 0.521 0.539 0.787 0.874 0.914 0.528 0.576 0.800 0.521 0.922 0.562 0.798 0.677 0.891 0.561 0.585 0.545 0.539 0.694 0.531 0.540 0.653 0.532 0.560 0.551 0.705

3702 0.671 0.574 0.654 0.633 0.609 0.526 0.569 0.634 0.608 0.899 0.934 0.810 0.689 0.875 0.715 0.595 0.687 0.751 0.585 0.586 0.553 0.739 0.504 0.885 0.579 0.682

37296 0.608 0.514 0.843 0.898 0.808 0.709 0.512 0.694 0.543 0.838 0.577 0.789 0.779 0.865 0.687 0.589 0.774 0.654 0.748 0.526 0.695 0.596 0.510 0.503 0.522 0.694

3847 0.608 0.648 0.976 0.893 0.956 0.743 0.671 0.838 0.613 0.985 0.546 0.945 0.684 0.934 0.779 0.650 0.582 0.672 0.876 0.679 0.812 0.879 0.571 0.779 0.734 0.574

39947 0.670 0.602 0.789 0.886 0.925 0.544 0.619 0.644 0.553 0.908 0.667 0.784 0.633 0.969 0.581 0.600 0.578 0.506 0.801 0.618 0.676 0.682 0.642 0.536 0.588 0.789

511145 0.561 0.514 0.836 0.949 0.808 0.775 0.669 0.755 0.724 0.836 0.605 0.990 0.680 0.705 0.638 0.626 0.651 0.656 0.846 0.617 0.746 0.807 0.630 0.797 0.735 0.598

559292 0.878 0.536 0.729 0.691 0.512 0.526 0.544 0.538 0.641 0.669 0.875 0.745 0.517 0.502 0.607 0.851 0.547 0.597 0.658 0.566 0.648 0.615 0.543 0.525 0.508 0.652

6239 0.585 0.536 0.882 0.861 0.977 0.591 0.588 0.563 0.609 0.814 0.511 0.711 0.794 0.830 0.538 0.588 0.576 0.501 0.641 0.576 0.771 0.626 0.503 0.561 0.561 0.528

7227 0.512 0.527 0.574 0.832 0.706 0.594 0.555 0.678 0.697 0.939 0.543 0.589 0.636 0.662 0.528 0.981 0.584 0.949 0.665 0.596 0.560 0.505 0.525 0.591 0.626 0.819

7955 0.581 0.526 0.643 0.850 0.794 0.616 0.575 0.543 0.527 0.814 0.598 0.671 0.733 0.924 0.660 0.525 0.552 0.554 0.676 0.596 0.569 0.626 0.648 0.517 0.508 0.604

83332 0.540 0.510 0.821 0.762 0.925 0.503 0.581 0.697 0.693 0.882 0.607 0.779 0.642 0.894 0.555 0.571 0.563 0.508 0.731 0.642 0.616 0.604 0.586 0.562 0.519 0.796

8355 0.562 0.506 0.876 0.803 0.830 0.762 0.536 0.639 0.650 0.881 0.601 0.966 0.818 0.842 0.773 0.609 0.638 0.616 0.866 0.588 0.773 0.748 0.589 0.775 0.729 0.745

9031 0.613 0.562 0.859 0.797 0.814 0.617 0.574 0.893 0.778 0.816 0.634 0.943 0.763 0.748 0.865 0.500 0.662 0.523 0.814 0.546 0.722 0.715 0.635 0.751 0.716 0.573

9606 0.722 0.525 0.673 0.786 0.879 0.665 0.572 0.616 0.698 0.615 0.809 0.532 0.628 0.679 0.757 0.875 0.540 0.575 0.643 0.687 0.692 0.700 0.853 0.747 0.532 0.619

9823 0.579 0.531 0.897 0.819 0.975 0.896 0.657 0.643 0.546 0.848 0.581 0.934 0.710 0.800 0.683 0.582 0.653 0.692 0.672 0.538 0.787 0.722 0.687 0.698 0.640 0.545

9913 0.515 0.590 0.807 0.826 0.958 0.783 0.503 0.787 0.505 0.849 0.516 0.830 0.646 0.751 0.805 0.532 0.608 0.517 0.638 0.590 0.692 0.705 0.663 0.755 0.558 0.556

9986 0.531 0.538 0.518 0.776 0.713 0.807 0.660 0.586 0.520 0.980 0.654 0.695 0.837 0.606 0.602 0.565 0.628 0.500 0.631 0.635 0.528 0.555 0.505 0.598 0.618 0.777

Table 10 AUC of Interspecies testing with K-NN 
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To prove the model in all its approaches, another round of verifications was made, without 

Hyperparameter Optimization, in which all the approaches regarding the combination of Encoder 

and Decoding Transfer Functions were tested and assessed in AUC. 

 

 

 

 

 

We can therefore conclude that, for the mean of all datasets tested, and the four combinations and 

errors approach, the one with the highest mean AUC is the Errors, as validated by the last results 

in Figure 20.  

 

 

 

Combination LL LS SL SS Errors 

AUC 0,856 0,817 0,837 0,644 0,858 

Table 13 Mean results of AUC for all organisms 

Figure 20 Validation Results for the Combinations and Errors approach 

10090 10116 10238 10359 10376 11676 227321 237561 284812 333760 3702 37296 3847 39947 511145 559292 6239 7227 7955 83332 8355 9031 9606 9823 9913 9986

10090 0.863 0.599 0.728 0.993 0.934 0.856 0.773 0.902 0.861 1.000 0.756 0.884 0.792 0.852 0.948 0.893 0.820 0.612 0.859 0.563 0.820 0.947 0.514 0.902 0.771 0.711

10116 0.633 0.802 0.652 0.849 0.922 0.841 0.717 0.533 0.524 0.989 0.554 0.837 0.917 0.914 0.812 0.512 0.796 0.535 0.778 0.500 0.825 0.654 0.505 0.884 0.631 0.689

10298 0.578 0.588 0.984 1.000 0.997 0.895 0.694 0.693 0.767 1.000 0.547 0.998 0.750 0.957 0.803 0.510 0.708 0.518 0.944 0.625 0.865 0.904 0.514 0.898 0.702 0.739

10359 0.592 0.592 0.990 0.981 0.985 0.853 0.649 0.639 0.541 1.000 0.600 0.999 0.875 0.965 0.621 0.553 0.764 0.509 0.900 0.625 0.810 0.725 0.508 0.578 0.642 0.870

10376 0.572 0.599 0.981 0.999 0.995 0.841 0.680 0.736 0.588 1.000 0.554 1.000 0.854 0.961 0.849 0.507 0.723 0.514 0.894 0.500 0.860 0.865 0.501 0.836 0.747 0.797

11676 0.601 0.526 0.979 0.985 0.970 0.919 0.902 0.805 0.506 1.000 0.519 0.665 0.979 0.543 0.796 0.552 0.653 0.511 0.588 0.500 0.513 0.933 0.515 0.911 0.546 0.896

227321 0.501 0.533 0.605 0.602 0.805 0.662 0.643 0.887 0.721 0.511 0.543 0.678 0.583 0.770 0.794 0.528 0.563 0.501 0.519 0.563 0.564 0.756 0.501 0.853 0.573 0.791

237561 0.609 0.619 0.717 0.746 0.728 0.530 0.528 0.944 0.821 0.889 0.537 0.936 0.743 0.758 0.776 0.515 0.690 0.509 0.617 0.563 0.705 0.939 0.522 0.938 0.639 0.856

284812 0.603 0.575 0.626 0.581 0.830 0.567 0.540 0.753 0.876 0.885 0.528 0.661 0.771 0.531 0.591 0.512 0.564 0.509 0.726 0.563 0.696 0.763 0.527 0.849 0.523 0.669

333760 0.532 0.570 0.928 0.975 0.967 0.652 0.569 0.812 0.647 1.000 0.504 0.865 0.715 0.934 0.580 0.589 0.517 0.532 0.860 0.563 0.539 0.660 0.516 0.760 0.513 0.883

3702 0.825 0.551 0.504 0.732 0.515 0.657 0.576 0.671 0.550 0.910 0.996 0.863 0.806 0.918 0.866 0.658 0.688 0.811 0.609 0.563 0.559 0.861 0.599 0.920 0.556 0.726

37296 0.616 0.614 0.950 0.992 0.982 0.796 0.680 0.502 0.570 1.000 0.569 0.983 0.847 0.871 0.706 0.541 0.779 0.520 0.863 0.563 0.785 0.781 0.520 0.600 0.671 0.843

3847 0.572 0.672 0.998 1.000 0.997 0.823 0.503 0.866 0.532 1.000 0.584 0.972 0.800 0.977 0.813 0.507 0.708 0.517 0.887 0.719 0.830 0.882 0.508 0.969 0.778 0.657

39947 0.512 0.512 0.958 0.997 0.997 0.728 0.655 0.531 0.574 1.000 0.532 0.978 0.757 1.000 0.770 0.544 0.593 0.527 0.905 0.750 0.778 0.751 0.511 0.542 0.670 0.819

511145 0.642 0.609 0.986 0.999 0.978 0.906 0.739 0.932 0.811 1.000 0.583 0.995 0.840 0.895 0.733 0.553 0.779 0.507 0.869 0.563 0.831 0.960 0.521 0.960 0.817 0.599

559292 0.970 0.515 0.771 0.738 0.650 0.646 0.553 0.649 0.529 0.858 0.932 0.832 0.500 0.570 0.530 0.964 0.643 0.782 0.806 0.500 0.547 0.552 0.639 0.556 0.581 0.685

6239 0.646 0.550 0.980 0.955 0.994 0.752 0.698 0.640 0.563 0.994 0.589 0.892 0.903 0.832 0.716 0.550 0.706 0.530 0.834 0.625 0.841 0.719 0.506 0.604 0.634 0.694

7227 0.544 0.516 0.582 0.947 0.866 0.663 0.583 0.689 0.768 1.000 0.643 0.589 0.701 0.828 0.688 0.989 0.531 0.973 0.728 0.500 0.569 0.641 0.672 0.680 0.523 0.838

7955 0.535 0.514 0.780 0.938 0.956 0.558 0.549 0.531 0.618 0.956 0.539 0.844 0.799 0.973 0.667 0.645 0.533 0.536 0.855 0.625 0.680 0.666 0.521 0.578 0.569 0.594

83332 0.545 0.554 0.885 0.957 0.964 0.613 0.608 0.727 0.744 1.000 0.528 0.799 0.708 0.918 0.620 0.617 0.533 0.543 0.756 0.500 0.510 0.588 0.500 0.751 0.503 0.871

8355 0.564 0.639 0.989 1.000 0.997 0.829 0.630 0.731 0.548 1.000 0.573 0.999 0.840 1.000 0.857 0.500 0.716 0.521 0.918 0.563 0.800 0.908 0.512 0.889 0.772 0.759

9031 0.637 0.600 0.989 0.977 0.977 0.801 0.662 0.933 0.866 0.919 0.560 0.995 0.792 0.883 0.958 0.521 0.762 0.528 0.866 0.563 0.817 0.867 0.519 0.938 0.789 0.553

9606 0.870 0.527 0.767 0.924 0.912 0.512 0.522 0.662 0.847 0.801 0.983 0.596 0.778 0.852 0.772 0.957 0.538 0.516 0.813 0.813 0.730 0.715 0.970 0.849 0.604 0.652

9823 0.632 0.613 0.985 0.994 1.000 0.916 0.662 0.821 0.684 1.000 0.579 1.000 0.875 0.875 0.839 0.549 0.809 0.500 0.852 0.500 0.817 0.859 0.508 0.800 0.783 0.699

9913 0.569 0.600 0.985 1.000 0.979 0.833 0.676 0.873 0.517 1.000 0.587 0.989 0.750 0.898 0.961 0.597 0.699 0.513 0.763 0.500 0.802 0.892 0.504 0.942 0.753 0.633

9986 0.508 0.569 0.521 0.960 0.890 0.815 0.719 0.707 0.622 1.000 0.526 0.877 0.910 0.715 0.704 0.535 0.675 0.534 0.718 0.563 0.673 0.747 0.502 0.516 0.642 0.895

Table 12 AUC of Interspecies testing with SVM 
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6 Discussion and Conclusions 
 

After the results obtained from the experiments in previous chapter, an overview of the strategies 

implemented, and their extent is necessary to conclude the best possible model for the prediction 

of Interspecies PPI. 

This chapter focus on those results comparing them to the prevailing literature and State of the Art, 

and addressing some data retrieved but not analyzed in the previous chapters, coordinating them 

with both biological aspects, and the objectives of this thesis. 

6.1 Protein-Protein Interaction Prediction 

The first objective was the production of a model that could predict Protein Interactions in the 

Human Organism. This goal was achieved based on model-based predictions using the HitPredict 

dataset and testing them in BioGRID as a benchmark dataset. 

 

The novelty in our approach is the use of Autoencoder Errors to predict these interactions, instead 

of using the traditional Hidden Representation approach. Comparing both approaches, all results 

lead to the conclusion that the use of errors attains more information. In the eyes of a computer 

scientist, this means a flip of tables in the way an autoencoder can be used for classification and 

not as a reduced representation. This implies that a given point in high dimensional space, if 

evaluated from different perspectives, can be viewed as a class belonging point or not, in which the 

Autoencoder is the center of the class or cluster. 

 

If the point is near the cluster (low error) it means that the Autoencoder (positive or negative 

trained) predicts with high precision that point, therefore it may belong to its class (positive or 

negative). If, however, the point has an high value error, it may imply that it does not belong to the 

class in which the Autoencoder was trained. 

 

This simple view must be then added three times, since this approach is used in the four possible 

combinations described in 4.5 Autoencoder Approach. As this approach is used only 2 times in 4 

different perspectives, the number of features that the classifier needs to differentiate is low, giving 

advantage in the hyper plan determination when compared to the 68-feature input space that the 

Hidden Representation strategy has. 
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The results obtained are not the best intended for our datasets, and represent preliminary hypothesis, 

to be tested with further efforts. However, as Table 14 shows, they are comparable to the State of 

the Art, surpassed only by the Stacked Autoencoder method by Sun et al. 2017 [52], some 

information can still be retrieved from them and how to proceed with the models developed. 

 

Reference Algorithm Training ACC 

J. Shen et al [48] SVM 0.830 

Y. Guo et al [53] SVM 0.904 

X.-Y. Pan  [54] LDA-RDF 0.979 

Y.-N. Zhang [55] CS-SVM 0.940 

Z. You [56] ELM 0.848 

Z. You [57] SVM 0.920 – 0.974 

T. Sun  [52] SAE 0.972 

Our Model AE (errors) - SVM 0.989 

Table 14 Accuracies of the work developed in HitPredict dataset by 

comparison with other state of the art methods 

 

The Pipeline designed takes shape by forming a connection between organisms. And the connection 

is obvious between some characteristics of the datasets found. 

6.2 Organism’s Specificities 

During the experiments several data were stored in order to analyze them in the Conclusions, not 

only related to a single organism, but to the relations between them. 

As we can see in Figure 21, there is a mixed relation between the sizes of the datasets and their 

AUC. This data is coherent with the fact that smaller datasets are easier to fit into a classification 

model, but bigger datasets also have higher discrimination power. 

Figure 21 Graphic of the Size of the dataset (base 10 axis) and respective AUC by organism 
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The disparity lead to the search for the phylogenetic relationships. Phylogeny is one of the measures 

of similarity between organisms, being related to common ancestors, and to which protein 

interactions and common proteins is one of the measurable features. 

 

Considering this, we developed a Phylogenetic tree, resorting to the web platform TimeTree [58], 

in which the input species names generate a phylogeny tree, shown in Figure 22. 

 

 

The intention was to find if these relationships could explain some of the disparity in some of the 

organisms. Using the known organisms and their phylogenetic relationship, we rearranged the 

results obtained in the Interspecies and Benchmark Experiment, obtaining the following Table 15 

for the SVM classifier. 

Figure 22 Phylogenetic relationship between organisms considered resorting to the 

TimeTree web platform. 

10090 

10116 

9986 

9606 

9823 

9913 

9031 

8355 

7955 

6239 

7227 

227321 

237561 

559292 

284812 

3702 

3847 

83332 

10090 10116 9986 9606 9823 9913 9031 8355 7955 6239 7227 227321 237561 559292 284812 3702 3847 83332

10090 0.863 0.599 0.711 0.514 0.902 0.771 0.947 0.820 0.859 0.820 0.612 0.773 0.902 0.893 0.861 0.756 0.792 0.563

10116 0.633 0.802 0.689 0.505 0.884 0.631 0.654 0.825 0.778 0.796 0.535 0.717 0.533 0.512 0.524 0.554 0.917 0.500

9986 0.508 0.569 0.895 0.502 0.516 0.642 0.747 0.673 0.718 0.675 0.534 0.719 0.707 0.535 0.622 0.526 0.910 0.563

9606 0.870 0.527 0.652 0.970 0.849 0.604 0.715 0.730 0.813 0.538 0.516 0.522 0.662 0.957 0.847 0.983 0.778 0.813

9823 0.632 0.613 0.699 0.508 0.800 0.783 0.859 0.817 0.852 0.809 0.500 0.662 0.821 0.549 0.684 0.579 0.875 0.500

9913 0.569 0.600 0.633 0.504 0.942 0.753 0.892 0.802 0.763 0.699 0.513 0.676 0.873 0.597 0.517 0.587 0.750 0.500

9031 0.637 0.600 0.553 0.519 0.938 0.789 0.867 0.817 0.866 0.762 0.528 0.662 0.933 0.521 0.866 0.560 0.792 0.563

8355 0.564 0.639 0.759 0.512 0.889 0.772 0.908 0.800 0.918 0.716 0.521 0.630 0.731 0.500 0.548 0.573 0.840 0.563

7955 0.535 0.514 0.594 0.521 0.578 0.569 0.666 0.680 0.855 0.533 0.536 0.549 0.531 0.645 0.618 0.539 0.799 0.625

6239 0.646 0.550 0.694 0.506 0.604 0.634 0.719 0.841 0.834 0.706 0.530 0.698 0.640 0.550 0.563 0.589 0.903 0.625

7227 0.544 0.516 0.838 0.672 0.680 0.523 0.641 0.569 0.728 0.531 0.973 0.583 0.689 0.989 0.768 0.643 0.701 0.500

227321 0.501 0.533 0.791 0.501 0.853 0.573 0.756 0.564 0.519 0.563 0.501 0.643 0.887 0.528 0.721 0.543 0.583 0.563

237561 0.609 0.619 0.856 0.522 0.938 0.639 0.939 0.705 0.617 0.690 0.509 0.528 0.944 0.515 0.821 0.537 0.743 0.563

559292 0.970 0.515 0.685 0.639 0.556 0.581 0.552 0.547 0.806 0.643 0.782 0.553 0.649 0.964 0.529 0.932 0.500 0.500

284812 0.603 0.575 0.669 0.527 0.849 0.523 0.763 0.696 0.726 0.564 0.509 0.540 0.753 0.512 0.876 0.528 0.771 0.563

3702 0.825 0.551 0.726 0.599 0.920 0.556 0.861 0.559 0.609 0.688 0.811 0.576 0.671 0.658 0.550 0.996 0.806 0.563

3847 0.572 0.672 0.657 0.508 0.969 0.778 0.882 0.830 0.887 0.708 0.517 0.503 0.866 0.507 0.532 0.584 0.800 0.719

83332 0.545 0.554 0.871 0.500 0.751 0.503 0.588 0.510 0.756 0.533 0.543 0.608 0.727 0.617 0.744 0.528 0.708 0.500

Table 15 AUC of Interspecies testing with SVM ordered by phylogenetic relationship.  
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The expected result would be a confluence of higher AUC in the diagonal of the Table, which is 

not the obtained. We know, from previous results in the experiments that the relationship between 

datasets follows the relation in two main points: 

 

1. Organisms with larger dataset size predict small and medium size dataset organisms, as 

well as themselves, with high accuracy, but not large size dataset organisms; 

2. Organisms with lower dataset size cannot predict medium or large size organism, but can 

predict organisms of similar structure and themselves; 

 

But the quantification of these relationships could bring some explanation to the obtained results. 

In the case of the size of the datasets, the relation between the datasets was evaluated by the 

logarithm of the proportion between datasets (Table 16) and the Phylogenetic distance was 

evaluated using the binary encoding of the nodes, in which each node represents a digit 1 or 0 

considering it moves down or up from the node it originates (Table 17). Therefore, the tables 

obtained are presented below. 

 

 

 

 

10090 10116 9986 9606 9823 9913 9031 8355 7955 6239 7227 227321 237561 559292 284812 3702 3847 83332

10090 0.000 1.509 4.996 -0.319 6.480 4.335 4.119 3.209 4.262 0.125 0.000 6.135 4.338 0.000 0.000 0.000 6.725 6.595

10116 -1.509 0.000 3.487 -1.828 4.972 2.827 2.610 1.700 2.753 -1.384 -1.509 4.626 2.829 -1.509 -1.509 -1.509 5.217 5.087

9986 -4.996 -3.487 0.000 -5.315 1.485 -0.661 -0.877 -1.787 -0.734 -4.871 -4.996 1.139 -0.658 -4.996 -4.996 -4.996 1.730 1.600

9606 0.319 1.828 5.315 0.000 6.799 4.654 4.438 3.528 4.581 0.444 0.319 6.454 4.657 0.319 0.319 0.319 7.044 6.914

9823 -6.480 -4.972 -1.485 -6.799 0.000 -2.145 -2.362 -3.271 -2.219 -6.356 -6.480 -0.346 -2.143 -6.480 -6.480 -6.480 0.245 0.115

9913 -4.335 -2.827 0.661 -4.654 2.145 0.000 -0.217 -1.126 -0.074 -4.210 -4.335 1.799 0.003 -4.335 -4.335 -4.335 2.390 2.260

9031 -4.119 -2.610 0.877 -4.438 2.362 0.217 0.000 -0.910 0.143 -3.994 -4.119 2.016 0.219 -4.119 -4.119 -4.119 2.607 2.477

8355 -3.209 -1.700 1.787 -3.528 3.271 1.126 0.910 0.000 1.053 -3.084 -3.209 2.926 1.129 -3.209 -3.209 -3.209 3.517 3.386

7955 -4.262 -2.753 0.734 -4.581 2.219 0.074 -0.143 -1.053 0.000 -4.137 -4.262 1.873 0.076 -4.262 -4.262 -4.262 2.464 2.334

6239 -0.125 1.384 4.871 -0.444 6.356 4.210 3.994 3.084 4.137 0.000 -0.125 6.010 4.213 -0.125 -0.125 -0.125 6.601 6.471

7227 0.000 1.509 4.996 -0.319 6.480 4.335 4.119 3.209 4.262 0.125 0.000 6.135 4.338 0.000 0.000 0.000 6.725 6.595

227321 -6.135 -4.626 -1.139 -6.454 0.346 -1.799 -2.016 -2.926 -1.873 -6.010 -6.135 0.000 -1.797 -6.135 -6.135 -6.135 0.591 0.461

237561 -4.338 -2.829 0.658 -4.657 2.143 -0.003 -0.219 -1.129 -0.076 -4.213 -4.338 1.797 0.000 -4.338 -4.338 -4.338 2.388 2.258

559292 0.000 1.509 4.996 -0.319 6.480 4.335 4.119 3.209 4.262 0.125 0.000 6.135 4.338 0.000 0.000 0.000 6.725 6.595

284812 0.000 1.509 4.996 -0.319 6.480 4.335 4.119 3.209 4.262 0.125 0.000 6.135 4.338 0.000 0.000 0.000 6.725 6.595

3702 0.000 1.509 4.996 -0.319 6.480 4.335 4.119 3.209 4.262 0.125 0.000 6.135 4.338 0.000 0.000 0.000 6.725 6.595

3847 -6.725 -5.217 -1.730 -7.044 -0.245 -2.390 -2.607 -3.517 -2.464 -6.601 -6.725 -0.591 -2.388 -6.725 -6.725 -6.725 0.000 -0.130

83332 -6.595 -5.087 -1.600 -6.914 -0.115 -2.260 -2.477 -3.386 -2.334 -6.471 -6.595 -0.461 -2.258 -6.595 -6.595 -6.595 0.130 0.000

Table 16 Natural logarithm of the proportion between the datasets’ size. 

1022 10116 9986 9606 9823 9913 9031 8355 7955 6239 7227 227321 237561 559292 284812 3702 3847 83332

10090 0.000 0.000 0.695 1.390 2.087 2.788 2.788 3.497 4.223 4.257 4.292 5.059 4.328 4.366 5.139 6.015 6.238 7.624

10116 0.000 0.000 0.694 1.389 2.086 2.787 2.787 3.497 4.222 4.256 4.291 5.059 4.328 4.366 5.139 6.014 6.237 7.624

9986 -0.695 -0.694 0.000 0.695 1.392 2.093 2.093 2.802 3.528 3.562 3.597 4.365 3.634 3.671 4.445 5.320 5.543 6.930

9606 -1.390 -1.389 -0.695 0.000 0.697 1.398 1.398 2.107 2.833 2.867 2.902 3.669 2.939 2.976 3.750 4.625 4.848 6.234

9823 -2.087 -2.086 -1.392 -0.697 0.000 0.701 0.701 1.410 2.136 2.170 2.205 2.972 2.241 2.279 3.052 3.928 4.151 5.537

9913 -2.788 -2.787 -2.093 -1.398 -0.701 0.000 0.000 0.709 1.435 1.469 1.504 2.271 1.540 1.578 2.351 3.227 3.450 4.836

9031 -2.788 -2.787 -2.093 -1.398 -0.701 0.000 0.000 0.709 1.435 1.469 1.504 2.271 1.540 1.578 2.351 3.227 3.450 4.836

8355 -3.497 -3.497 -2.802 -2.107 -1.410 -0.709 -0.709 0.000 0.726 0.760 0.795 1.562 0.831 0.869 1.642 2.518 2.741 4.127

7955 -4.223 -4.222 -3.528 -2.833 -2.136 -1.435 -1.435 -0.726 0.000 0.034 0.069 0.836 0.105 0.143 0.916 1.792 2.015 3.401

6239 -4.257 -4.256 -3.562 -2.867 -2.170 -1.469 -1.469 -0.760 -0.034 0.000 0.035 0.802 0.071 0.109 0.882 1.758 1.981 3.367

7227 -4.292 -4.291 -3.597 -2.902 -2.205 -1.504 -1.504 -0.795 -0.069 -0.035 0.000 0.767 0.036 0.074 0.847 1.723 1.946 3.332

227321 -5.059 -5.059 -4.365 -3.669 -2.972 -2.271 -2.271 -1.562 -0.836 -0.802 -0.767 0.000 -0.731 -0.693 0.080 0.956 1.179 2.565

237561 -4.328 -4.328 -3.634 -2.939 -2.241 -1.540 -1.540 -0.831 -0.105 -0.071 -0.036 0.731 0.000 0.038 0.811 1.686 1.910 3.296

559292 -4.366 -4.366 -3.671 -2.976 -2.279 -1.578 -1.578 -0.869 -0.143 -0.109 -0.074 0.693 -0.038 0.000 0.773 1.649 1.872 3.258

284812 -5.139 -5.139 -4.445 -3.750 -3.052 -2.351 -2.351 -1.642 -0.916 -0.882 -0.847 -0.080 -0.811 -0.773 0.000 0.875 1.099 2.485

3702 -6.015 -6.014 -5.320 -4.625 -3.928 -3.227 -3.227 -2.518 -1.792 -1.758 -1.723 -0.956 -1.686 -1.649 -0.875 0.000 0.223 1.609

3847 -6.238 -6.237 -5.543 -4.848 -4.151 -3.450 -3.450 -2.741 -2.015 -1.981 -1.946 -1.179 -1.910 -1.872 -1.099 -0.223 0.000 1.386

83332 -7.624 -7.624 -6.930 -6.234 -5.537 -4.836 -4.836 -4.127 -3.401 -3.367 -3.332 -2.565 -3.296 -3.258 -2.485 -1.609 -1.386 0.000

Table 17 Natural logarithm of the distance between datasets. 
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In both cases, there is no direct correlation between either one of the tables and Table 15. Therefore, 

no conclusion can be presented to describe the relationship that these organisms have between them 

when predicting interactions in interspecies context. 

 

There is, however, some evidence that phylogenetic relationships influence the results, as it is 

shown in maximum level in the case of Mycobacterium tuberculosis, with UniProt ID 83332, which 

represents itself as a low volume dataset organism (41 positive interactions), but is one of the lowest 

accurately predicted species in the experiments, inferring the phylogenetic distance that Figure 22 

shows. This can be a starting point for further work using these results and the approach developed 

in this thesis. 

 

6.3 Model Constructed 

The final model constructed is the followed Pipeline, to which the best results were obtained in the 

training and testing datasets. Interspecies protein-protein interaction results are extremely hard to 

compare, since they are a recent field of work in Bioinformatics. 

 

Taking the best option in each step of the Pipeline, we can create a chronology of the methods to 

use having as initial step a dataset of protein ID’s: 

 

1) Extraction of the sequence and application of the Conjoint Triad Encoding Method; 

2) Application of the four autoencoders structure in the post-encoding dataset; 

3) Retrieval of the errors, concatenation and training of the SVM; 

4) Storage of the model and organism trained and its accuracy. 

 

If intended another approach, and the starting point is an already trained model and a protein pair 

or a set of protein ID’s, the sequence continues: 

 

5) Insertion of a protein ID’s pair, and the intended organism; 

6) Retrieval of the sequence and preprocessing using Conjoint Triad Method; 

7) Using of the stored organism Model to predict the interaction. 
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Therefore, the built Pipeline related to HitPredict dataset could be synthetized in the flow of Figure 

23. 

 

 

And the Pipeline to the BioGrid Interspecies Problem could be generalized into the structure 

represented in Figure 24. 

 

 

This structure allows for the classification of organisms in their relation, but also test the 

interactome of a new found or tested organism, in order to develop its positioning in the phylogeny 

tree with several organisms. In Figure 24, training organism would be Organism A and B the one 

tested. 

However, the Pipeline allows for a single organism to be tested against all organisms, creating lists 

of similarities that can be used in the development of new drugs. 

 

Figure 24 Final Pipeline Constructed for BioGrid Interspecies problem with the testing of 

different datasets to test and storage of models, applied to other organisms. 

Figure 23 Pipeline generated for one species classification using the HitPredict Dataset, the 

Conjoint Triad Method and Hyperparameter Optimization in the Classifier. 
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In a final consideration about the model Pipeline constructed, few points need to be explained 

through the scheme, such as: 

 

1. Encoding Method and Area Under the Curve are immutable in the Pipeline; 

2. Autoencoders and Support Vector Machines need to be optimized in the Hyperparameters 

search, using the specific function, and corresponding to each training organism; 

3. The use of the model must be preferential in a descent level of complexity in the organisms, 

since low-complex organisms have more difficulties in predict higher in the hierarchy 

organisms.  

 

The use of non-optimized models following these rules can lead to invalid results, creating false 

expectations in the laboratory experiments, and to the spending of rare resources and money. 
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7 Final Considerations and Future Work 
 

In the development of this work, some interesting relationships can be found between organisms, 

and the research that was developed, as well as the methodologies and principles followed can be 

referenced in three topics. 

 

The first, related to the objectives of this thesis, was fulfilled, as we came up with a defined Pipeline 

to predict protein interactions both in one organism, and interspecies, with results that equal, at 

least, the current literature, and that give space for the development of techniques that use the errors 

of Neural Networks, this case Autoencoders, as features to be introduced in a classifier. This 

approach is not a novelty but introduces a new look at the potential of neural networks, as clustering 

algorithms, with the exchange and analogies possible between them. The ensemble of classifiers 

can overcome problems such as dimensionality in a basic problem such as Protein Interaction 

prediction 

 

The second, in the parallelism between the biochemical and bioinformatic approaches made in 

Chapter 3, can be a positive step forward in the openness of Bioinformatics to all the researchers in 

the field of biology allowing the entrance in new fields. 

 

And for the last, the models and equations developed may help in the creation of a more complex 

tool, with the following characteristics / functions, as well as others thought: 

 

1) Insertion of two protein ID’s 

a) Output the existence of interactions 

2) Insertion of a protein pair (or several) ID’s and an Organism taxonomy ID 

a) Output the interaction prediction for each pair based on the Organism’s dataset 

3) Insertion of several interactions and an Organism taxonomy ID 

a) Increase the dataset of known protein interactions and retrain a model 

4) Insertion of new Organism taxonomy ID and its dataset of interactions 

 

But the development can and should be implemented in new datasets and organisms, resorting to 

phylogeny as an initial choice and filter factor and using high complexity level organisms as the 

first in line to test the similarities between organisms. 

 

The search for interactions must be however amplified and complexified. The non-existence of a 

triple protein interaction database debilitates the response by bioinformatics, biochemists and 

pharmaceutical industries in the field of Drug Discovery [59]. These interactions could be the next 

strong step for computational models as they also grow in complexity.  

 



Strategies of Autoencoders in the Prediction of Protein-Protein Interactions 60 

In a final consideration, the work in the field of Protein Interactions can show where the dangers 

for the human body are installed, creating a map of organisms and proteins that are likely to interact 

with our proteins. 

This information can be used in both prevention of diseases and in the Drug Development process, 

including new biologic macromolecules in the role of testing drugs, finding natural substitutes to 

medicine with high probability of secondary effects occurrence and decreasing the synthesis of 

man-made drugs, returning to a symbiosis between the environment and humanity, and the 

exploitation of some rare raw materials. 
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Annexes 
 

Annex 1 - Table of Physic-chemical properties of amino acids 

 

aa. H1 H2 NCI P1 P2 SASA V  

A 0.620 -0.500 0.007 8.100 0.046 1.181 27.500 

C 0.290 -1 -0.037 5.500 0.128 1.461 44.600 

D -0.900 3 -0.024 13.000 0.105 1.587 40.000 

E -0.740 3 0.007 12.300 0.151 1.862 62.000 

F 1.190 -2.500 0.038 5.200 0.290 2.228 115.500 

G 0.480 0 0.179 9.000 0.000 0.881 0.000 

H -0.400 -0.500 -0.011 10.400 0.230 2.025 79.000 

I 1.380 -1.800 0.022 5.200 0.186 1.810 93.500 

K -1.500 3 0.018 11.300 0.219 2.258 100.000 

L 1.060 -1.800 0.052 4.900 0.186 1.931 93.500 

M 0.640 -1.300 0.003 5.700 0.221 2.034 94.100 

N -0.780 2 0.005 11.600 0.134 1.655 58.700 

P 0.120 0 0.240 8.000 0.131 1.468 41.900 

Q -0.850 0.200 0.049 10.500 0.180 1.932 80.700 

R -2.530 3 0.044 10.500 0.291 2.56 105.000 

S -0.180 0.300 0.005 9.200 0.062 1.298 29.300 

T -0.050 -0.400 0.003 8.600 0.108 1.525 51.300 

V 1.080 -1.500 0.057 5.900 0.140 1.645 71.500 

W 0.810 -3.400 0.038 5.400 0.409 2.663 145.500 

Y 0.260 -2.300 117.300 6.200 0.298 2.368 0.024 

 

H1: hydrophobicity; H2: hydrophilicity; NCI: net charge index of side chains; P1: polarity; P2: polarizability; 

SASA: solvent accessible surface area; V: volume of side chains;  

 

 

 

Annex 2 - Table of Amino acid classification for CT encoding 

 

Number Amino Acids 

1 Ala, Gly, Val 

2 Ile, Leu, Phe, Pro 

3 Tyr, Met, Thr, Ser 

4 His, Asn, Gln, Trp 

5 Arg, Lys 

6 Asp, Glu 

7 Cys 
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Annex 3 - Table of 26 Organisms Processed 

 

UniProt 

ID 
Scientific Name Common Name 

Nr of Positive 

Interactions 

10090 Mus Musculus Mouse 30 000 

10116 Rattus Norvegicus Rat 6 637 

10298 Human herpesvirus 1 Human Herpes Virus 330 

10359 Human cytomegalovirus Human Herpes Virus 5 285 

10376 Epstein-Barr virus HHV 4 1 074 

11676 HIV  3 471 

227321 Emericella nidulans Aspergillus nidulans 65 

237561 Candida albicans Yeast 392 

284812 Schizosaccharomyces pombe Fission yeast 30 000 

333760 Human papillomavirus  145 

3702 Arabidopsis thaliana  Arabidopsia 30 000 

37296 Human herpesvirus 8  319 

3847 Glycine max Soybean; Glycine hispida 36 

39947 Oryza sativa subsp. japonica Rice 49 

511145 
Escherichia coli str. K-12 

substr. MG1655 
 96 

559292 Saccharomyces cerevisiae Baker's yeast 30 000 

6239 Caenorhabditis elegans  26 483 

7227 Drosophila melanogaster Fruit fly  30 000 

7955 Danio rerio  423 

83332 Mycobacterium tuberculosis  41 

8355 Xenopus laevis  1 212 

9031 Gallus gallus  488 

9606 Homo Sapiens  41 273 

9823 Sus scrofa  46 

9913 Bos taurus  393 

9986 Oryctolagus cuniculus Rabbit 203 
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Annex 4 – Amino Acid Code 

 

Amino acid Three letter code One letter code 

Alanine ala A 

Arginine arg R 

Asparagine asn N 

Aspartic acid asp D 

Asparagine or aspartic acid asx B 

Cysteine cys C 

Glutamic acid glu E 

Glutamine gln Q 

Glutamine or glutamic acid glx Z 

Glycine gly G 

Histidine his H 

Isoleucine ile I 

Leucine leu L 

Lysine lys K 

Methionine met M 

Phenylalanine phe F 

Proline pro P 

Serine ser S 

Threonine thr T 

Tryptophan trp W 

Tyrosine tyr Y 

Valine val V 
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Annex 5 - Overlapping matrix between organisms’ datasets 

 

10090
10116

10298
10359

10376
11676

227321
237561

284812
333760

3702
37296

3847
39947

511145
559292

6239
7227

7955
83332

8355
9031

9606
9823

9913
9986

10090
100,00%

0,02%
0,00%

0,00%
0,00%

0,00%
0,00%

0,00%
0,00%

0,00%
0,00%

0,00%
0,00%

0,00%
0,00%

0,00%
0,00%

0,00%
0,00%

0,00%
0,00%

0,00%
0,07%

0,00%
0,01%

0,00%

10116
0,12%

100,00%
0,00%

0,00%
0,00%

0,00%
0,00%

0,00%
0,00%

0,00%
0,00%

0,00%
0,00%

0,00%
0,00%

0,00%
0,00%

0,00%
0,00%

0,00%
0,03%

0,00%
0,02%

0,00%
0,00%

0,00%

10298
0,00%

0,00%
100,00%

0,00%
0,00%

0,00%
0,00%

0,00%
0,00%

0,00%
0,00%

0,00%
0,00%

0,00%
0,00%

0,00%
0,00%

0,00%
0,00%

0,00%
0,00%

0,00%
0,00%

0,00%
0,00%

0,00%

10359
0,00%

0,00%
0,00%

100,00%
0,00%

0,00%
0,00%

0,00%
0,00%

0,00%
0,00%

0,00%
0,00%

0,00%
0,00%

0,00%
0,00%

0,00%
0,00%

0,00%
0,00%

0,00%
0,00%

0,00%
0,00%

0,00%

10376
0,00%

0,00%
0,00%

0,00%
100,00%

0,00%
0,00%

0,00%
0,00%

0,00%
0,00%

0,00%
0,00%

0,00%
0,00%

0,00%
0,00%

0,00%
0,00%

0,00%
0,00%

0,00%
0,00%

0,00%
0,00%

0,00%

11676
0,00%

0,00%
0,00%

0,00%
0,00%

100,00%
0,00%

0,00%
0,00%

0,00%
0,00%

0,00%
0,00%

0,00%
0,00%

0,00%
0,00%

0,00%
0,00%

0,00%
0,00%

0,00%
0,00%

0,00%
0,00%

0,00%

227321
0,00%

0,00%
0,00%

0,00%
0,00%

0,00%
100,00%

0,00%
0,00%

0,00%
0,00%

0,00%
0,00%

0,00%
0,00%

0,00%
0,00%

0,00%
0,00%

0,00%
0,00%

0,00%
0,00%

0,00%
0,00%

0,00%

237561
0,00%

0,00%
0,00%

0,00%
0,00%

0,00%
0,00%

100,00%
0,00%

0,00%
0,00%

0,00%
0,00%

0,00%
0,00%

0,00%
0,00%

0,00%
0,00%

0,00%
0,00%

0,00%
0,00%

0,00%
0,00%

0,00%

284812
0,00%

0,00%
0,00%

0,00%
0,00%

0,00%
0,00%

0,00%
100,00%

0,00%
0,00%

0,00%
0,00%

0,00%
0,00%

0,00%
0,00%
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Annex 6 - AUC of Interspecies testing with K-NN 
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Annex 7 - AUC of Interspecies testing with SVM 
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0,6
0,671139

0,843132

3847
0,571531

0,671773
0,9975

1
0,996751

0,823351
0,503401

0,865636
0,531696

1
0,583809

0,97157
0,8000

0,976563
0,813333

0,507213
0,707595

0,517449
0,886837

0,71875
0,830407

0,881901
0,507657

0,968889
0,778123

0,656738

39947
0,512205

0,511949
0,9576

0,997358
0,997029

0,727788
0,655329

0,531213
0,573698

1
0,53202

0,978
0,756944

1,0000
0,77

0,543554
0,593258

0,526797
0,904722

0,75
0,77836

0,750937
0,511064

0,542222
0,670362

0,818939

511145
0,642257

0,609341
0,9859

0,998679
0,97805

0,905557
0,739229

0,931629
0,81135

1
0,583258

0,99543
0,840278

0,894531
0,7333

0,552765
0,779291

0,506676
0,869472

0,5625
0,830858

0,95997
0,520852

0,96
0,816891

0,598855

559292
0,97

0,514642
0,7712

0,738142
0,649656

0,645943
0,553288

0,648633
0,52868

0,857778
0,9324

0,832395
0,5

0,570313
0,53

0,9637
0,642854

0,7815
0,806126

0,5
0,546617

0,551946
0,6389

0,555556
0,581244

0,685484

6239
0,646382

0,550491
0,98025

0,954684
0,993741

0,752264
0,698413

0,640309
0,562761

0,99358
0,588958

0,892231
0,902778

0,832031
0,715556

0,550099
0,7055

0,529664
0,833572

0,625
0,840585

0,719145
0,506269

0,604444
0,634348

0,694199

7227
0,5439

0,516159
0,5819

0,947417
0,865502

0,662581
0,582766

0,689061
0,768181

1
0,6428

0,589223
0,701389

0,828125
0,687778

0,9886
0,530986

0,9725
0,727693

0,5
0,56945

0,641168
0,6723

0,68
0,523409

0,837669

7955
0,534942

0,514446
0,7796

0,937772
0,955851

0,557921
0,548753

0,530618
0,618164

0,955556
0,538726

0,843979
0,798611

0,972656
0,666667

0,644583
0,532716

0,536464
0,8553

0,625
0,679737

0,666204
0,52114

0,577778
0,569239

0,593913

83332
0,544668

0,554346
0,8851

0,957062
0,963807

0,612547
0,60771

0,726813
0,743998

1
0,527966

0,798703
0,708333

0,917969
0,62

0,616836
0,533216

0,542702
0,756243

0,5000
0,509612

0,587533
0,500364

0,751111
0,503496

0,871488

8355
0,56379

0,639389
0,9891

1
0,997479

0,829433
0,630385

0,730975
0,54811

1
0,572922

0,998725
0,840278

1
0,856667

0,500098
0,71609

0,520902
0,918054

0,5625
0,8000

0,907724
0,511701

0,888889
0,77205

0,758845

9031
0,63658

0,600272
0,9888

0,977408
0,977494

0,801045
0,662132

0,932818
0,865785

0,918519
0,559845

0,994792
0,791667

0,882813
0,957778

0,520672
0,761592

0,528016
0,866285

0,5625
0,817234

0,8667
0,519374

0,937778
0,788645

0,55307

9606
0,8703

0,527203
0,767

0,924032
0,911779

0,512074
0,521542

0,661712
0,846884

0,800988
0,9826

0,595813
0,777778

0,851563
0,772222

0,9568
0,537596

0,5161
0,812955

0,8125
0,730291

0,714887
0,9704

0,848889
0,604053

0,652445

9823
0,632015

0,612986
0,9847

0,99379
0,99978

0,91626
0,662132

0,821046
0,683744

1
0,578954

1
0,875

0,875
0,838889

0,549117
0,80913

0,500227
0,852367

0,5
0,817347

0,859225
0,507681

0,8000
0,782713

0,699011

9913
0,568571

0,599724
0,9846

1
0,97898

0,833358
0,675737

0,873365
0,516635

1
0,587098

0,988734
0,75

0,898438
0,961111

0,59696
0,699003

0,512689
0,762812

0,5
0,802454

0,89236
0,503555

0,942222
0,7530

0,633455

9986
0,507734

0,568913
0,5215

0,960497
0,88958

0,814711
0,718821

0,707491
0,622437

1
0,525849

0,877458
0,909722

0,714844
0,704444

0,535193
0,674825

0,533974
0,718392

0,5625
0,672794

0,746726
0,501781

0,515556
0,641974

0,8947


