

José Eduardo Ferreira Flora

CONTAINER-LEVEL INTRUSION DETECTION
FOR MULTI-TENANT ENVIRONMENTS

Dissertation in the context of the Master in Informatics Security
advised by Professor Dr. Nuno Antunes and presented to

Faculty of Sciences and Technology / Department of Informatics Engineering

September 2019

Faculty of Sciences and Tecnology
Department of Informatics Engineering

Container-level Intrusion Detection
for Multi-tenant Environments

José Eduardo Ferreira Flora

Dissertation in the context of the Master in Informatics Security
advised by Prof. Nuno Antunes and presented to the

Faculty of Sciences and Technology / Department of Informatics Engineering.

September 2019

This work is within the informatics security specialization area and was carried out in the
Software and Systems Engineering (SSE) Group of the Centre for Informatics and Systems
of the University of Coimbra (CISUC).

This work is partially supported by the project METRICS (POCI-01-0145-FEDER-032504),
co-funded by the Portuguese Foundation for Science and Technology (FCT) and by the
Fundo Europeu de Desenvolvimento Regional (FEDER) through Portugal 2020 - Programa

Operacional Competitividade e Internacionalização (POCI).
It is also partially supported by the project ATMOSPHERE, funded by the Brazilian
Ministry of Science, Technology and Innovation (51119 - MCTI/RNP 4th Coordinated
Call) and by the European Commission under the Cooperation Programme, H2020 grant
agreement no 777154.

This work has been supervised by Professor Nuno Manuel dos Santos Antunes, Assistant
Professor at the Department of Informatics Engineering of the Faculty of Sciences and
Technology of the University of Coimbra.

i

This page is intentionally left blank.

Acknowledgements

First and foremost, I would like to thank my advisor Professor Nuno Antunes for providing
me with this opportunity. For his patience when I made silly mistakes, and even when I did
not, his wisdom and his willingness and readiness to share with me enlightening thoughts,
perspectives and advice for both work and personal matters and for some reason believing
in me throughout the last almost three years.

In addition, I would like to thank my lab colleagues, specially Nuno Cardoso, Rui Silva,
José Pereira and Inês Valentim for always keeping the mood at the highest and helping
to make the day more pleasant and enjoyable even when things went sideways. For all
the enormous fun and enjoyment during afternoons playing video games, when sometimes
we should be working, and all the stress-breaking after lunch domino matches, those were
very engaging and fun moments.

Furthermore, I would like to thank Ana, although I have not enough words to express
what her presence in my life means, and how this could not have been possible without
her emotional support, care and everyday love, I would say that it is like salt to our food.
Thank you for making me see reason when I was stressed, doubtful or just lazy. I hope
our connection remains with great love and care for a long, long time as it has until now.

Last but not least, I would like to thank my parents all their support and all the sacrifices
they have made throughout their life in order to make this possible, I would not have been
able to achieve it otherwise. Even though they do not fully comprehend what I really do, I
know it makes them very happy and proud each time I achieve my goals. Also, my sisters
a warm thanks for the support and care, for aiding in my development as a person and
making me who I am today, and for always rooting to see me thrive and be happy as well.

iii

This page is intentionally left blank.

Abstract

Cloud computing provides a convenient, on-demand, elastic and
ubiquitous service enabled by high-performance virtualisation sys-
tems among other features. There has been a growth in containers’
use over the last years, even in business-critical scenarios. Their
lightweight, easier and more efficient instantiation empowers not
only an elastic and on-demand use of resources, but also a straight-
forward resource administration. However, the adoption of con-
tainers also increases security risks exacerbated by multi-
tenant environments that should be carefully analysed. Attacks
led by other tenants present in the same infrastructure are particu-
larly concerning, and counter-measures such as intrusion detection
systems should be deployed at container-level.

In this work, we study the effectiveness and applicability of in-
trusion detection techniques in container-based multi-tenant sys-
tems. For this, we propose a methodology based on at-
tack injection that uses representative workloads and at-
tacks exploits in a container-based system, to generate the
traces required to train and test the classifiers. Following the pro-
posed methodology, we devised an experimental campaign to eval-
uate three state-of-the-art and widely used intrusion detection al-
gorithms: BoSC, STIDE, and HMM. A version of MariaDB with
known vulnerabilities was deployed into containers, and submitted
to two variations of the TPC-C workload. In each attack slot, one
of five diverse attacks was executed following the attack injection
procedure. The experiment was also performed in a traditional OS
setup, to study advantages and drawbacks.

The results of the experimental campaign indicate that the al-
gorithms are applicable in this domain since several configurations
obtained very good results in all scenarios: in Docker setups (recall
>=0.98, precision >=0.72), and slightly worse, but yet satisfactory
in LXC. The observed results for the OS setup were worse, indicat-
ing that difficulty of properly defining the monitoring surface. Our
results indicate that anomaly-based intrusion detection is ef-
fective in this environment, leading the way to the application
of other security techniques such as intrusion tolerance.

Keywords

Cloud Security, Security Evaluation, Intrusion Detection, Contain-
ers, Anomaly Detection

v

This page is intentionally left blank.

Resumo

A computação em nuvem fornece um serviço conveniente, on-demand,
elástico e ubíquo, através de sistemas de virtualização de alto
desempenho, entre outros recursos. Houve um crescimento no uso
de containers nos últimos anos, mesmo em cenários críticos para
o negócio. A sua instanciação leve, fácil e eficiente permite não
apenas um uso elástico e on-demand de recursos, mas também
uma administração facilitada. No entanto, a adoção de containers

também aumenta os riscos de segurança agravados pelos
ambientes de multi-tenancy que devem ser analisados cuida-
dosamente. Os ataques realizados por outros inquilinos presentes
na mesma infraestrutura são particularmente preocupantes e me-
didas preventivas, como sistemas de detecção de intrusão, devem
ser implementadas ao nível dos containers.

Neste trabalho, estudamos a eficácia e a aplicabilidade de técnicas
de detecção de intrusão em sistemas multi-tenant baseados em con-

tainers. Para isso, propomos uma metodologia baseada na
injeção de ataques que utiliza cargas de trabalho repres-
entativas e exploração de ataques num sistema baseado em
containers, para gerar os dados necessários para treinar e testar
os classificadores. Seguindo a metodologia proposta, desenvolve-
mos uma campanha experimental para avaliar três algoritmos de
detecção de intrusões de estado da arte e amplamente utilizados:
BoSC, STIDE e HMM. Uma versão do MariaDB com vulnerabil-
idades conhecidas foi colocada em containers e submetida a duas
variações da carga de trabalho do TPC-C. Em cada slot de ataque,
um de cinco ataques representativos foi executado de acordo com
o procedimento de injeção do ataque. A experiência também foi
realizada numa configuração tradicional do sistema operativo, para
estudar vantagens e desvantagens.

Os resultados do trabalho experimental indicam que os algoritmos
são aplicáveis neste domínio, pois várias configurações obtiveram
muito bons resultados em todos os cenários: nas configurações do
Docker (recall >=0,98, precision >=0,72) e um pouco pior, mas
ainda satisfatório no LXC. Os resultados observados para a config-
uração do SO foram piores, indicando a dificuldade de definir ad-
equadamente a superfície de monitorização. Os nossos resultados
indicam que a detecção de intrusões com base em anomalias
é eficaz neste ambiente, abrindo caminho para a aplicação de
outras técnicas de segurança, como tolerância a intrusões.

Palavras-Chave

Segurança na Nuvem, Avaliação de Segurança, Detecção de In-
trusão, Containers, Detecção de Anomalias

vii

This page is intentionally left blank.

Contents

1 Introduction 1
1.1 Contributions . 4
1.2 Document Structure . 4

2 Background and Related Work 7
2.1 Intrusion Detection . 7

2.1.1 Intrusion Detection Approaches . 8
2.1.2 Intrusion Detection Systems . 9
2.1.3 Algorithms for Intrusion Detection 12
2.1.4 Summary . 13

2.2 Evaluation of Intrusion Detection Systems 14
2.2.1 Workloads . 14
2.2.2 Metrics . 18
2.2.3 Summary . 20

2.3 Containers . 20
2.3.1 Containers Concepts . 23
2.3.2 Containers Technologies . 24
2.3.3 Containers Monitoring . 25
2.3.4 Summary . 27

2.4 Security in Containers . 28
2.4.1 Intrusion Prevention and Detection in Containers 28
2.4.2 Security Analysis in Containers . 29
2.4.3 Summary . 29

3 Research Objectives and Approach 31
3.1 Research Objectives . 31
3.2 Relevant Threats to be Addressed . 32
3.3 Research Approach . 33

4 Preliminary Analysis 37
4.1 System Under Monitoring . 38
4.2 Data Collection Tool . 38
4.3 Analyser . 40
4.4 Datasets Analysis . 44

5 Evaluating Intrusion Detection Algorithms in Containerised Systems 49
5.1 Experimental Methodology . 49

5.1.1 Workload Characterisation . 50

ix

5.1.2 Attack Injection . 50
5.1.3 Experimental Procedure . 52
5.1.4 Measures . 53
5.1.5 Experimental Campaign . 54

5.2 Results and Discussion . 56
5.2.1 Overall Results for all Platforms . 56
5.2.2 Train Time Impact Analysis . 58
5.2.3 Train Workload Type Impact Analysis 59
5.2.4 Algorithms Analysis . 60
5.2.5 Generalisation Analysis . 61
5.2.6 ROC and Expected Cost Analysis 63
5.2.7 Analysis of the Report Distribution 67
5.2.8 Analysis of Results per Exploit . 70
5.2.9 Analysis of the Best Cases for each Platform 72

6 Conclusions and Future Work 75

References 76

A Complete Experimental Results for All Platforms 85

B Complete Experimental Results for Expected Cost Analysis for all Plat-
forms 107

x

List of Abbreviations

ANN Artificial Neural Network. 12, 17

BoSC Bags of System Calls. 3, 12, 13, 17, 28, 30, 34, 35, 37, 38, 40–43, 49, 53, 54, 56,
58–72

CVE Common Vulnerabilities and Exposure. 51

CVSS Common Vulnerability Scoring System. 52

DBMS Database Management System. 3, 4, 28, 39, 51, 52

FN False Negative. 53, 54

FP False Positive. 53, 54

HIDS Host-based Intrusion Detection System. 9, 11

HMM Hidden Markov Models. 3, 12, 17, 35, 49, 53, 54, 56, 58–61, 63, 64, 66–68, 70, 72

IDS Intrusion Detection System. 2, 7, 9–14, 16–20, 22, 28, 52

KNN K-Nearest Neighbour. 13, 17, 76

KVM Kernel-based Virtual Machine. 38, 54

MEC Multi-access Edge Computing. 1

ML Machine Learning. 13

NB Naïve Bayes. 13, 17, 76

OCSVM One-Class Support Vector Machines. 13, 17, 76

OS Operating System. 1–3, 9, 10, 22, 24, 27, 29, 33, 34, 38, 55, 56, 75

PoC Proof of Concept. 45, 51, 52

ROC Receiver Operating Characteristic. 19, 63, 64

STIDE Sequence Time-Delaying Embedding. 3, 13, 17, 34, 35, 37, 38, 40–43, 49, 53, 54,
56, 58–68, 70–72

SVM Support Vector Machines. 13, 17

TN True Negative. 53

TP True Positive. 53, 54

xi

UNM University of New Mexico. 28

VM Virtual Machine. 1, 2, 22, 29, 32

xii

List of Figures

Figure 2.1 Intrusion Detection Systems classification (adapted from Fig.2.3 of [11]) 9
Figure 2.2 Network-based IDS deployment modes. 10
Figure 2.3 Exemplification of BoSC and STIDE operation. 14
Figure 2.4 IDSes evaluation workload types (from [18]). 15
Figure 2.5 ROC curve plot example (from [40]). 20
Figure 2.6 Containers evolution timeline. 22
Figure 2.7 Application Containers and System (OS) Containers (from [44]). . . . 23
Figure 2.8 Sysdig components (from [48]). 26
Figure 2.9 Strace operation (from [48]). 27

Figure 3.1 Container-based deployments’ threat model. 33
Figure 3.2 Overview of the followed research approach. 34

Figure 4.1 Architecture for the preliminary analysis of the intrusion detection
applicability. 37

Figure 4.2 Comparison of system calls collected by each tool during 60 minutes. 39
Figure 4.3 Training procedure for STIDE with window 4 of run 1 of 24h collec-

tion for Docker container. 43
Figure 4.4 Training procedure for BoSC with window 5 of run 1 of 10h collection

for LXC container. 43
Figure 4.5 Comparison of unique system calls registered during experiment

datasets creation. 47

Figure 5.1 Overview of the proposed experimental methodology. 50
Figure 5.2 Example of epoch analysis of the results. 53
Figure 5.3 Attack slot classification. 54
Figure 5.4 Experimental procedure and test slots. 55
Figure 5.5 Setup utilised on the experimental campaign. 55
Figure 5.6 ROC curve for classifiers used for Docker deployment testing, for

BoSC and STIDE. 64
Figure 5.7 ROC curve for classifiers used for Docker deployment testing, for

HMM. 65
Figure 5.8 ROC curve for classifiers used for LXC deployment testing. 65
Figure 5.9 ROC curve for classifiers used for OS deployment testing. 66
Figure 5.10 Distribution of the reports for Docker deployment according to the

phase, with WorkloadS (steady workload) on the left and WorkloadN (non-
steady workload) on the right. 68

xiii

Figure 5.11 Distribution of the reports for LXC deployment according to the
phase, with WorkloadS (steady workload) on the left and WorkloadN (non-
steady workload) on the right. 69

Figure 5.12 Distribution of the reports for OS deployment according to the phase,
with WorkloadS (steady workload) on the left and WorkloadN (non-steady
workload) on the right. 69

xiv

List of Tables

Table 2.1 Summary of Intrusion Detection Approaches. 15
Table 2.2 Summary of Intrusion Detection Systems. 16
Table 2.3 Summary of Anomaly detection algorithms [+:advantage �:disadvantage]. 17
Table 2.4 Confusion matrix of IDSes results categorisation. 18
Table 2.5 Workloads summary [+:advantage �:disadvantage]. 21
Table 2.6 Metrics summary [+:advantage �:disadvantage]. 22
Table 2.7 Types of namespaces provided by Linux 23
Table 2.8 Monitoring Tools comparison. 28
Table 2.9 Related work summary. 30

Table 4.1 Response time results for MariaDB when not monitored, monitored
using sysdig and monitored using strace. 39

Table 4.2 Analysis of collected traces. 40
Table 4.3 Docker results for reaching learning steady-state. 41
Table 4.4 LXC results for reaching learning steady-state. 42
Table 4.5 OS Datasets characteristics. 44
Table 4.6 LXC Datasets characteristics. 45
Table 4.7 Docker Datasets characteristics. 46

Table 5.1 List of vulnerabilities used and respective CVE information. 51
Table 5.2 An overview of the results for all platforms, with 24H training time

for BoSC and STIDE and 2H for HMM. 57
Table 5.3 Training Time Analysis for all classifiers for all platforms. 58
Table 5.4 Training Workload analysis for classifiers trained during 24H for BoSC

and STIDE, and 2H for HMM, for all platforms. 59
Table 5.5 Analysis of algorithms window size and decision threshold for all clas-

sifiers for all platforms. 62
Table 5.6 Analysis of training workload generalisation capacity for all platforms. 63
Table 5.7 Expected Cost Analysis for least costly configurations for each platform. 67
Table 5.8 Analysis of results with focus on the Exploits utilised. 71
Table 5.9 Docker deployment best case with 24H for BoSC and STIDE and 2H

for HMM of Training Time. 73
Table 5.10 LXC deployment best case with 24H of Training Time. 74
Table 5.11 OS deployment best case with 24H of Training Time. 74

Table A.1 An overview of the results for all platforms. 85

Table B.1 An overview of the results of expected cost for all platforms. 107

xv

This page is intentionally left blank.

List of Publications

This dissertation is partially based on the work presented in the following publication:

– José Flora, Nuno Antunes, “Studying the Applicability of Intrusion Detection to
Multi-tenant Container Environments”, 15th European Dependable Computing Con-

ference (EDCC 2019), short paper, Naples, Italy, September 17-20, 2019.
– Abstract: The use of containers in cloud-based applications allows for rapid and scal-

able deployments. Containers are lightweight and appealing to be used even in business-
critical systems, but their use implies great security concerns, which are exacerbated in
multi-tenant environments. To mitigate these concerns, techniques such as intrusion
detection are a must, however, in the containers’ context, it has received limited atten-
tion. Thus, it is necessary to define an improved approach to container-level intrusion
detection for multi-tenant environments. In this paper we make a preliminary feasibil-
ity analysis of host-based container-level intrusion detection. For this, we are currently
focusing on achieving a stable container profile definition and the results obtained show
we are following the correct path.

xvii

This page is intentionally left blank.

Chapter 1

Introduction

Cloud computing provides its users a convenient, on-demand, elastic and ubiquit-
ous service enabled by fast wide-area networks, powerful computer servers and high-
performance virtualisation systems [1]. Virtualisation allows physical resources to be
shared by multiple clients of the same cloud service provider through the emulation and
isolation of resources for each customer.

There are two main types of virtualisation: hardware virtualisation and operating system-

level virtualisation [2]. While hardware virtualisation consists in the emulation of hard-
ware for each Operating System (OS) to interact with, OS virtualisation consists in the
emulation of an OS which share the same OS kernel [2]. The virtualisation of hardware can
be achieved in two forms, either in bare metal virtualisation or hosted virtualisation. Bare
metal virtualisation consists in the direct deployment of the hypervisor into the hardware,
whereas for hosted virtualisation, the hypervisor runs on top of the OS [3]. On the other
hand, OS-level virtualisation consist of an abstraction of the application layer through
resource isolation [2]. This isolation is possible due to the use of mechanisms present in the
Linux kernel, such as control groups [4] and namespaces [5]. As a result of these features,
it is possible to execute multiple instances, each one using a set of resources on a single
kernel of a host machine.

Although initially Virtual Machines (VMs) became more popular, there has been a growth
in containers’ use over the last years [6]. This usage and popularity growth is mostly due
to the release of Docker [7], which is a containerisation platform that has been released in
2013. Moreover, the fact that containers are lightweight facilitates its adoption. Containers
have an easier and more efficient instantiation thereby empowering the elastic and on-
demand use of resources. Besides, from a management perspective, containers are also
appealing due to easier resource administration owning to its lighter-weight [8].

Containers have the potential to unlock and/or improve many technological solutions ran-
ging from Mixed-Criticality Systems (MCS) [9] to Multi-access Edge Computing (MEC) [10],
among others. As an example, MEC consists in bringing the cloud computing power closer
to the end-users, and provides certain types of services with near real-time characterist-
ics [10]. Consequently, containers allow an efficient use of the limited computing power
on each MEC device. However, the adoption of containers also increases security risks
that should be carefully analysed [2]. MEC services may contain sensitive information,

1

Chapter 1

and therefore should be carefully evaluated due to data confidentiality and integrity prob-
lems. This is even more concerning when we consider multi-tenancy: in practice, different
application vendors may be running on the same infrastructure, raising concerns of data
separation and performance isolation [10].

The security concerns raised by containers adoption are thus exacerbated in
multi-tenant systems [2, 9, 10]. These tenants, which acquired the resources lawfully,
are in some occasions competing for resources. They may try to perform malicious ac-
tions towards its neighbours or the host itself, which may lead to harmful consequences
when dealing with, e.g., business-critical systems. Vulnerabilities present in the contain-
ers runtime software can cause severe damage if they permit “container escape” scenarios,
where malicious software can attack resources of neighbours containers or the host OS it-
self [2]. This compromising could allow an attacker to explore and access other containers
or monitor their communications. Thus, these vulnerabilities may compromise the integ-
rity, availability or confidentiality of containers within the infrastructure, reason why we
selected the attack injection procedure as a way to understand whether intrusion detection
is an applicable counter-measure to these environments.

In this scenario, it is of utmost importance to put in place counter-measures as a way to
mitigate or, at least, reduce the risk which tenants are exposed to. In this work, we are
particularly concerned with attacks led by other tenants present in the same
container-based infrastructure, and we argue that counter-measures systems should
be deployed at container-level. In particular, intrusion detection systems may have a very
important role in the mitigation of these threats.

Intrusion Detection Systems (IDSes) are one of the most applied security measures to cloud
deployments. Generally, IDSes are deployed at network-level and at host-level. While
network-based IDSes monitor and inspect the packets in transit on a network, host-based
IDSes focus on user/application monitoring on a designated machine [11]. In this work,
we are particularly interested on host-based IDSes since they are effective on cloud infra-
structures [12]. For instance, the use of sequences of system calls to detect intrusions at
host-level is a methodology introduced in 1996 [13] that is still effective and widely-used.
Other approaches, such as neural networks and statistical models, have also been used [14].

Regarding cloud intrusion detection, there has also been some developments in terms of
deployment and monitoring models, for instance distributed IDSes were proposed as a way
to monitor a large and heterogeneous network of computers [15], which is the case of a cloud
infrastructure. Although there are great advances in terms of intrusion detection systems
for VMs, the contributions for container-based systems approaches are limited.
In practice, the existing works are incomplete and hard to generalise, mainly because the
used workloads and/or attacks have substantial issues of representativeness [16, 17].

Several techniques have been proposed for the the evaluation of IDSes [18] in terms of their
ability in detecting attacks. Usually, traces or workloads including malicious activity are
a requirement to perform this evaluation [18]. However, the generation of such traces is
challenging, and to the best of our knowledge, currently there are no publicly available
system call traces from attacks to container-based systems [16]. Attack injection tech-
niques are one possible way to mitigate this issue [19]. This method consists in
the controlled execution of vulnerability exploitation as a way to produce data to feed the

2

Introduction

analyser in order to observe its reaction [20]. It has been successfully applied in the past
to web applications [21] and hypervisors [11, 19], and can help in our efforts as long as we
have representative workloads and we are able to devise or reuse effective attacks.

In this work, we study the effectiveness and applicability of intrusion detection
techniques in container-based multi-tenant systems. For this, we propose a meth-
odology based on attack injection concepts, that uses representative workloads and attacks
exploits in a representative container-based system to generate the traces required for train-
ing classifiers and testing them in order to obtain results. This methodology was conceived
based on the results of the preliminary analysis performed. These results showed the ca-
pacity of Sequence Time-Delaying Embedding (STIDE) and Bags of System Calls (BoSC)
to define a stable profile for each containerisation platform revealing, as expected, a faster
definition of a stable profile when BoSC is used. The preliminary analysis also allowed us
to define the monitoring surface and to select the monitoring tool to be used.

Following this methodology, we devised an experimental campaign to evaluate three
state-of-the-art and widely used intrusion detection algorithms in a container-
based in multi-tenant environment. For this, we adapted the deployment of a version
of the Database Management System (DBMS) MariaDB with known vulnerabilities to
application and OS containers and then we used two variations of the TPC-C benchmark as
workload, and performed an attack injection procedure using five different representative
attacks. Profiles of these deployments were built using the three algorithms (STIDE,
BoSC and Hidden Markov Models (HMM)) as a way to test their performance using the
testing traces, produced through the workload and the injection of attacks, and results
were analysed through metric calculation.

The results of the experimental campaign indicate that the algorithms are applicable in

this domain. In fact, several configurations obtained very good results in all scenarios: in
Docker setups (recall >=0.98 and precision >=0.72) and slightly worse, but yet good in
LXC setups (recall >=0.88 and precision >=0.70). Finally, the volumes of data generated
by LXC prevented the use of the HMM algorithm in its traces and even for Docker it was
necessary to use much smaller sizes of training workloads (30 minutes, 1 hour and 2 hours)
leading to worse results in most cases (recall >=0.79 and precision >=0.66). It is worth to
note that the mentioned results were selected as representative of probable scenarios (see
Section 5.2.5) and that the complete results are discussed throughout Section 5.2.

The experimental campaign included a set of experiments using a virtual machine as setup,
instead of containers. The idea was to understand what would be the difference in the
results, beyond the practical differences in terms of defining the monitoring surface of the
system and in terms of flexibility of deployment, replication and failover. The observed
results for the OS setup were worse than for Docker and LXC (recall >=0.56 and precision
>=0.89). A more complete study with other configurations would be necessary to draw
definitive conclusions, but the results indicate that the difficulty in defining the monitoring
surface can lead to sub-optimal results.

3

Chapter 1

1.1 Contributions

The main contributions of this work are summarised below:

• A preliminary analysis focused on the definition of profiles by different
anomaly detection algorithms (presented in Section 4). This analysis studies the
impact of different parameters on reaching a learning steady-state for profiles, mo-
ment from which we consider the profile as stable enough in order to stop the training
procedure. Therefore, this analysis allowed to understand the best parameters and
configurations to plan and obtain proper methodology instances.

• Proposal of an experimental methodology to evaluate the effectiveness
and applicability of intrusion detection algorithms to containerised sys-
tems (presented in Section 5.1). The proposed methodology allows to study the
applicability and effectiveness based on representative and meaningful metrics which
can be extended in order to fit the use case scenario of each situation. In addition,
it also allows the adaptation to other container infrastructures.

• The creation of datasets containing data collected from containers operat-
ing under representative workloads (presented in Section 4.4). These datasets
provide the basis to train the classifiers and test them and other tools, such as fully-
working IDSes, which aim to work in container environments. All the traces, data
and results are available online and can be used for validation and for future works:
– https://github.com/jeflora/containers-ids-evaluation

• An experimental evaluation of three intrusion detectoin algorithms, in
containerised systems deployed into Docker and LXC technologies (presen-
ted in Section 5.2). In general, the algorithms under test were able to produce better
results for Docker containers than for LXC. The experimental evaluation allowed to
conclude that for Docker containers the classifiers produced higher values for recall
and precision than for LXC while also producing a slightly higher false positives rate.

• A comparison with traditional OS-level deployments as a way to study
possible differences between both technologies and deployment modes
(presented in Section 5.2). The results showed classifiers produced higher values
of recall for containerised systems (LXC and Docker) while for precision and false
positive rate the testing for the traditional OS-level deployment generated more sat-
isfying results. These observations are motivated by the difficulty in defining the
monitoring surface for the OS-level deployment of the DBMS under monitoring.

1.2 Document Structure

The remaining document consists of the following five chapters.

Chapter 2 presents the key concepts necessary to understand this work, explaining the
concept of intrusion detection and the application of intrusion detection systems, as well
as the methodologies for their evaluation. Continuing on to approach the background

4

https://github.com/jeflora/containers-ids-evaluation

Introduction

on containers and monitoring tools, and reviewing some work conducted in the field of
intrusion detection.

Chapter 3 details the objectives of this work, delimits its scope in terms of the relevant
threats to be addressed and introduces the approach followed during the duration of the
dissertation work.

Chapter 4 focuses on the preliminary experiments conducted before the main experi-
mental campaign, regarding the data monitoring tools elicited and tested to select the
most appropriate for this campaign. Moreover we also present the preliminary experiment
focusing on the definition of stable containers profile, and closing with an overview analysis
of the datasets produced.

Chapter 5 consists of the main contribution of this work, detailing the preparation of
the campaign and the setup utilised. It also sheds light on the followed procedure, and its
characteristics such as workload features, metrics used to assess performance and finally
presents the results obtained from different perspectives and their discussion.

Chapter 6 provides closing remarks and summarises the meaning of this work as well as
the future work which can be conducted on top of it.

5

This page is intentionally left blank.

Chapter 2

Background and Related Work

A large body of research has been developed in the last decades in terms of intrusion
detection algorithms, techniques and tools [22]. This includes both commercial and non-
commercial Intrusion Detection Systems (IDSes), which have been developed for many do-
mains, environments and systems. IDSes are frequently deployed in cloud deployments [12],
not only network-level, but also host-level, as many research efforts have been applied in
intrusion detection for virtual machines and hypervisors.

The contributions in terms of container-level approaches are sparse and with limited ability
to generalise. In this chapter we cover the key intrusion detection notions and algorithms
usually used within this field (see Section 2.1), as well as IDSes and methodologies for the
evaluation of these systems (see Section 2.2).

We also describe the key concepts regarding containers’ technology and their monitor-
ing (see Section 2.3). Finally, we discuss relevant related work in terms of security in
container-based systems (see Section 2.4), including the few existing intrusion prevention
and detection systems for the domain (see Section 2.4.1) and also the works of security
analysis, which provide interesting information in terms of the most relevant and dangerous
vulnerabilities (see Section 2.4.2).

2.1 Intrusion Detection

Intrusion Detection has been applied as a security measure for more than two decades [22].
This technique is the process through which events taking place in a computer system or in
a network are monitored and analysed with the main goal of detecting signs of intrusions [1].
Such term is defined as an attempt to compromise the confidentiality, integrity, availability,
or to bypass the security mechanisms of a computer or network [1]. Intrusions are caused
by malicious agents, who have the objective of obtaining unauthorised access to systems,
or authorised systems users, who attempt to gain higher privileges for which they are not
authorised.

7

Chapter 2

2.1.1 Intrusion Detection Approaches

Generally, there are three main approaches to detect attacks to a system or network: misuse
detection, anomaly detection and hybrid detection.

Misuse Detection

This approach consists of a compilation of previously used attack patterns, and utilises
them to identify their occurrence on network traffic or computer system. These attacks,
typically, exploit known vulnerabilities with attacks that have been already used in past
actions.

This approach is very effective in detecting attacks without generating a high number of
false alarms, however, it lacks the possibility to improve its detection span without constant
updates to the signature database. Moreover, the misuse approach permits to quickly and
reliably diagnose the attack tool or technique being utilised, nevertheless, the inability to
adapt and detect variations of known attacks is a great disadvantage.

An example of misuse detection application in practice is the Snort IDS
1.

Anomaly Detection

This technique relies upon the assumption that illegitimate activity, which may take place
in a system or network, differs, in some manner, from the behaviour which characterises
the normal activity of it. Thus, the creation of a profile of a system or network, during le-
gitimate activity, using data, such as the normal behaviour of users or network connections,
allows to detect deviations, therefore, detecting the occurrence of intrusion attempts [23].

These features allow to detect new attacks, without requiring previous knowledge about
them, which can in turn be used to define signatures for misuse detection. Nonetheless, this
approach commonly produces numerous false alarms due to the high difficulty of defining
a stable profile of a system or a network, which requires a broad set of data in order to
produce reliable results.

This intrusion detection approach has been used widely and some examples of its usage
are [24, 25].

Hybrid Detection

The hybrid detection approach uses both misuse detection and anomaly detection meth-
ods [11]. Thus, this method allows to detect both known and unknown attacks.

An example of usage for this detection approach is the work of Modi and Patel [26].

1https://www.snort.org

8

https://www.snort.org

Background and Related Work

2.1.2 Intrusion Detection Systems

An IDS can be referred as a piece software which permits the automation of the intrusion
detection process [11]. Additionally, there are different methods by which IDSes can be
designed, as distributed or not, there are also different monitoring methods, real-time or
polling and the target for which is implemented, host or network.

Target Monitoring Method Architecture

Host based

Network based

Hybrid

Real-time

Polling

Non-distributed

Distributed

Intrusion Detection Systems

Figure 2.1: Intrusion Detection Systems classification (adapted from Fig.2.3 of [11])
.

Monitoring Target

An IDS has a main monitoring target and keeps it under close observation, collecting data
about it and trying to detect intrusion attempts against it. There are two main types of
targets, which are either machines, that is host based, or network based, however, in some
occasions, there is the possibility to monitor both types of targets.

A Host-based Intrusion Detection System (HIDS) monitors the characteristics of
a host and the events happening within it in order to detect malicious activity. This
aspect allows HIDSes to analyse activities with high reliability and precision [23], being
possible to conclude with exactitude the origin of an attack against the Operating System
(OS), namely which users have been involved and which processes were affected. Typically,
these mechanisms utilise OS events, such as system calls or inter-process communication,
and system logs produced during its operation, monitoring them and trying to detect the
existence of malicious actions within them.

These characteristics concede HIDSes the ability to detect code execution attacks by mon-
itoring activities, such as stack and heap usage or system calls issued by a process and file
system violations, through the use of mechanisms as file integrity checking or unauthorised
file access attempts. The main reasons for such results are the ability to monitor local
events and, when the network traffic is encrypted, HIDSes are not affected because the
information is decrypted when it arrives to the destination host. However, these IDSes
are costly to manage due to its well-defined and narrow configuration, working only with
that precise machine, and also occupy storage on the host they are in as well as computing
resources, which may result in performance degradation for the system under monitor-
ing [23].

Among the IDSes which apply host-based intrusion detection are the OSSEC IDS
2 and

2https://www.ossec.net

9

https://www.ossec.net

Chapter 2

Internet

Internal
Network

IDS

scanning
port

(a) Network-based
IDS passive mode
deployment.

Internet

Internal
Network

IDS

(b) Network-based
IDS inline mode de-
ployment.

Figure 2.2: Network-based IDS deployment modes.

the Sagan IDS
3.

A network-based IDS monitors network traffic between devices present in network seg-
ments, analysing the packets of network stack’s layers, such as the transport layer and the
application layer, in order to locate malicious actions. Typically, this type of IDSes is often
deployed in dedicated machines or sensors, which permits to more easily ensure its security
due to the single-task devices are responsible for. These devices are generally placed as a
passive asset on a network, observing a copy of the traffic packet’s data, such as origin and
destination of the packet, and raising alerts, if applicable. However, on some occasions,
IDSes are also placed as any other device present on the network, this is denominated inline

mode, and these analyse actual traffic passing through them. Figure 2.2 depicts these two
modes of deployment.

As a result of its placement, IDSes can gather a huge amount of information regarding the
network in which they are deployed, such as hosts identification, applications communicat-
ing and even the OSes running on the machines. So, all this information can be processed
and logged for forensics procedures to happen when required. Moreover, these security
measures are able to detect application layer, transport layer and network layer reconnais-
sance and attacks, as for instance password guessing, port scanning and IP spoofing [27].
Nonetheless, they cannot analyse encrypted traffic or process fragmented packets and also
face complications to handle high number of packets, for example when a network is very
busy, which may result in undetected attacks [23].

An example of an IDS which monitors network traffic and detects intrusion attempts is
the Suricata IDS

4.

Hybrid IDSes are a combination of the two types of IDSes described above. Typically,
hybrid IDSes are deployed on the host that aims to monitor, as a host-based IDS, [11] and
uses its network connected interfaces to monitor the ongoing traffic. These systems try to
combine the advantages of both network and host-based IDSes.

For instance, Splunk
5 is a system that is able to monitor both network and hosts.

3https://github.com/beave/sagan
4https://suricata-ids.org
5https://www.splunk.com

10

https://github.com/beave/sagan
https://suricata-ids.org
https://www.splunk.com

Background and Related Work

In this work, we are focusing on HIDSes as a manner to closely and efficiently monitor
containers running in a multi-tenant environment on a host.

Monitoring Method

Another characteristic which distinguishes IDSes is the monitoring method applied by it.
Such method can either be real-time, monitoring the events as they happen, or polling, not
intercepting the events when they take place but rather receiving them asynchronously.

IDSes, which monitor events in real-time, analyse system and/or network activities as
they occur [11]. The main advantage of these IDSes is the capability to detect attacks as
they happen but, unfortunately, this results in the addition of some overhead which may
result in performance loss for the system under monitoring. However, the disadvantage
may be compensated by the fact that counter-measures against the attack can still allow
to minimise its damage or even prevent it.

An IDS that monitors events in real-time is, for instance, the Snort IDS
6.

On the other hand, polling IDSes do not intercept ongoing actions with the objective
to obtain information to analyse, instead these devices obtain the required data in other
ways, such as an asynchronous retrieve of system logs or periodically observations of the
monitored system [11]. These systems do not, therefore, introduce any overhead in the
normal flow of information between components of the system under monitoring, but,
inevitably, they cannot produce an alert as soon as the attack takes place, which means
that the damage caused by it can be substantially larger than what it could be, if acted
upon it when first detected.

An IDS that monitors events asynchronously is the OSSEC IDS
7.

Architecture

The architecture of IDSes is also a distinguishing characteristic. An IDS can be either
distributed or non-distributed, being composed of multiple nodes in the first case or by a
centralised component in the last case.

Non-distributed IDSes, also called centralised IDSes, consist of the traditional manner
of an IDS deployment, in other words, the system is deployed locally, either at network or
host level, and performs the intended functions [11]. These devices do not have a global
notion of the machines present in the network segment neither about the network itself,
which might make them less successful in detecting coordinated attacks to a set of hosts.

Any traditional IDS is a good example of a non-distributed IDS, such as Snort IDS
8.

Distributed IDSes consist of multiple intrusion detection sub-systems, denominated
nodes, which exchange relevant data to the detection of possible intrusions. There are
two communication possibilities, the nodes can establish communication links between

6https://www.snort.org
7https://www.ossec.net
8https://www.snort.org

11

https://www.snort.org
https://www.ossec.net
https://www.snort.org

Chapter 2

themselves, such as a peer-to-peer network, or with a centralised node, which aggregates
the data collected by the remaining nodes in order to manage them or conduct further ana-
lysis on the information available [11]. This type of architecture permits to have a global
notion of a network’s or hosts group state, which fills the gap left by the non-distributed
IDSes through sharing information of what is happening in multiple sites.

One of the first distributed IDSes is DIDS [15], which was introduced in 1991.

2.1.3 Algorithms for Intrusion Detection

In this section, the focus relies upon algorithms used for intrusion detection, both for
misuse and anomaly detection. A description and previous uses are following provided.

Algorithms for Misuse Detection

Typically, the misuse based approach to intrusion detection utilises rule-based algorithms.
Such algorithms define the patterns of known attacks and then compare them to new
events, aiming to identify intrusion attempts.

Despite the main IDSes available on industry are misuse based, on this work we are focusing
on the anomaly detection approach, given its adaptive potential through profile definition
and analysis of deviations from it.

Algorithms for Anomaly detection

This sub-section approaches with some detail the algorithms most used for anomaly detec-
tion. In addition, it also provides some examples of previous work of their use in intrusion
detection.

Artificial Neural Networks (ANNs) consist of a graph-like structure with multiple
units of processing (nodes) and weighted connections between them. Each connection’s
weight determines the influence of a node’s value in the outcome of the output node [28].
ANNs’ nodes are divided into three subsets: the input, the middle and the output nodes.
The input nodes are the starting point of the computations which are spread to the middle
processing units through existing connections, finally arriving at the output nodes, where
final results are produced [28].

The Bags of System Calls (BoSC) method is based upon a window sliding over a trace
of system calls utilised to detect intrusions and to define a baseline behaviour database,
which contains bags of system calls considered normal. Bags do not take into account the
order by which the system calls are issued but rather focus on the frequency of each system
call within the window being processed [29].

Hidden Markov Models (HMM) is structured as a set of states, a matrix of emission
probabilities, corresponding to the probability of observing a symbol given the current
state, and a matrix of transition probabilities, which are the probability of transitioning
from a state to another given an observation. This method has also been widely used in

12

Background and Related Work

intrusion detection, where a sequence of events is considered anomalous if the probability
of it belonging to the defined profile is below a certain, user-defined, threshold [30].

K-Nearest Neighbour (KNN) is a Machine Learning (ML) classifier, which after a
training phase, defines a model able to identify anomalous events. This technique is based
on distance heuristics between new data and classified data, as a manner to group the
events into different classes according to event similarity. Specifically, when a new event is
processed the K nearest neighbours to it are calculated and the most frequent label among
them is assigned to the new event [31].

The Naïve Bayes (NB) method is a statistical approach based on the Bayes theorem
and on the assumption that every feature is completely independent. The NB method is a
widely used classifier due to its high scalability and effectiveness. Therefore, this method
allows classifying new events based on previous ones, resulting in the ability to identify
possible intrusions with a given probability [32].

The Sequence Time-Delaying Embedding (STIDE) method is based upon a window
sliding over a trace of system calls utilised to detect intrusions and to define a baseline
behaviour database, which contains the sequences considered normal. This technique was
proposed in 1996 [13] and is still in use today, it maintains the original order of system
calls, contrary to BoSC which is frequency based.

Due to the relevance of BoSC and STIDE in our work, it is of utmost importance to com-
prehend them fully, therefore, Figure 2.3 depicts an example of their usage, similarities and
differences. The image comprehends the step-by-step windows and final normal behaviour
database produced by each algorithm.

Support Vector Machines (SVM) is a classifier method, which can be used to detect
anomalies. On its essence this method uses prior knowledge, acquired upon training, to
divide events into different classes separated by a hyper-plane, which is defined by a number
of support vectors used to define boundaries [33].

In anomaly detection, it is usual that SVM is used with only one class, being known as One-
Class Support Vector Machines (OCSVM), where this class defines the normal behaviour.
OCSVM removes the need to provide anomalous traffic to the model during training.
This characteristic also increases the probability of detecting unknown attacks since it is
not trying to classify them [34].

2.1.4 Summary

In this section, we have approached intrusion detection, covering the approaches that can
be followed to detect intrusion attempts, these are exposed on Table 2.1.

Furthermore, we have also studied IDSes and their main characteristics are exhibited on
Table 2.2.

The anomaly detection algorithms were analysed and a systematisation of advantages and
disadvantages is presented on Table 2.3.

13

Chapter 2

Profiled BoSC
Behaviour DB

Profiled STIDE
Behaviour DB

{1:1, 2:1, 3:1} ; {2:1, 3:2} ;
{2:1, 3:1, 4:1} ; {2:1, 4:2} ;

{2:1, 4:1, 5:1} ; {2:1, 5:1 6:1}

[1, 2, 3] ; [2, 3, 3] ; [3, 3, 2] ;
[3, 2, 4] ; [2, 4, 4]; [4, 4, 2] ;

[4, 2, 5] ; [2, 5, 6]

3 2 4 4 2 5 61 2 3
3 2 4 4 2 51 2 3

1 2

3 2 4 4 21 2 3
3 2 4 41 2 3

3 2 41 2 3

1 2 3
31 2 3

3 21 2 3

BoSC window: {}
STIDE window: []

BoSC window: {1:1, 2:1, 3:1}
STIDE window: [1, 2, 3]

BoSC window: {2:1, 3:2}
STIDE window: [2, 3, 3]

BoSC window: {2:1, 3:2}
STIDE window: [3, 3, 2]

BoSC window: {2:1, 3:1, 4:1}
STIDE window: [3, 2, 4]

BoSC window: {2:1, 4:2}
STIDE window: [2, 4, 4]

BoSC window: {2:1, 4:2}
STIDE window: [4, 4, 2]

BoSC window: {2:1, 4:1, 5:1}
STIDE window: [4, 2, 5]

BoSC window: {2:1, 5:1 6:1}
STIDE window: [2, 5, 6]

Figure 2.3: Exemplification of BoSC and STIDE operation.

2.2 Evaluation of Intrusion Detection Systems

In this section, we present the state of the art regarding evaluation of IDSes. This procedure
is very important in order to understand the performance of a system in detecting intrusion
attempts, thus this section approaches the generation of workloads used to test IDSes, and
metrics and methodologies utilised to assess their performance.

2.2.1 Workloads

In order to evaluate an IDS, it is required to utilise workloads, so that the system has
information to process and, therefore, produce results which can be analysed, Figure 2.4
depicts the structure of workloads’ definition. These workloads can be either benign, which
consist of normal, non-malicious interactions, or malicious, which consist of the former’s
opposite. Moreover, these workloads can be used separately or combined, thus resulting
in three content types for workloads: pure benign, which consist of only non-malicious
activity; pure malicious, constituted of attacks only; and mixed workloads, which
contain both types of data, malicious and non-malicious, and are typically used for realistic
testing scenarios [18].

In addition, workloads can also be categorised according to their form, which can be one of
executable form or trace form. While the executable form is usually used for live testing
an IDS, thus evaluating events as they happen, the trace form consists of live execution
recording, thereby allowing the repetition of the experiment multiple times with the same

14

Background and Related Work

Table 2.1: Summary of Intrusion Detection Approaches.

Intrusion Detection
Intrusion Detection Approaches (Section 2.1.1)
Misuse Detection

• This approach is based on prior knowledge about attacks
• Low false positive rate
• Unable to detect unknown attacks, or variations of known attacks

Anomaly Detection
• Higher false positive rate
• Consists of two phases: a training phase and a detection phase
• Can detect zero day attacks

Hybrid Approach
• Uses known patterns to detect attacks and profiles to detect zero day

• Efficiency is lower when compared to single-technique approaches

Figure 2.4: IDSes evaluation workload types (from [18]).

data. Generally, the trace form is more often utilised due to the fact that executable form
requires an explicit victim environment which can be very expensive to establish [18].

There are two methods to generate pure benign executable workloads, the use of work-
load drivers or their manual generation. Regarding workload drivers, these are typically
utilised to generate pure benign activities, mainly aiming to test the system with different
types of interactions, however, these drivers do not correctly recreate the normal interac-
tions with a system [18]. An example of such workload drivers is the mysqlslap

9 tool, which
allows to perform queries to a MySQL database and permits the user to select multiple
configurations, such as number of requests and clients interacting with the system.

With respect to manual generation, which might be an acceptable alternative to work-
load drivers, it consists of the execution of real tasks by real systems and/or users. This
method allows to overcome the issue faced by workload drivers, that do not generate real-

9https://dev.mysql.com/doc/refman/8.0/en/mysqlslap.html

15

https://dev.mysql.com/doc/refman/8.0/en/mysqlslap.html

Chapter 2

Table 2.2: Summary of Intrusion Detection Systems.

Intrusion Detection Systems
Monitoring Target(Section 2.1.2)
Host based

• Monitors a machine locally
• Analyses information of that machine, such as logs or resource usage

Network based
• Deployed on a dedicated machine, monitoring the ongoing traffic on a network
• Can be deployed either inline or in passive mode

Hybrid
• Can monitor both targets
• Typically deployed at the host target, and uses its network devices to monitor the

network
Monitoring Method (Section 2.1.2)
Real-time

• Monitors events as they happen
• Adds overhead to the normal execution of the target

Polling

• Obtain the data to analyse in an asynchronous manner
• Do not raise alerts when intrusions happen

Architecture (Section 2.1.2)
Non-distributed

• Traditional IDSes, consist of a centralised node
• Do not possess a global notion of what is occurring on the network segment or

machines being monitored
Distributed

• Can detect orchestrated attacks
• Consist of multiple nodes, which share information, normally through a central node

istic activities, since manual generation, if based on a realistic activity model, generates
data similar to what a system in normal operation would do [18]. Nonetheless, with this
approach it is not possible to customise the workload in terms of, for example, activity
intensity.

Changing the focus to pure malicious workload, there are also two approaches, which can
be used to produce them, those are exploit databases and vulnerability and attack in-
jection [18]. For exploit databases, they can be viewed as penetration testing tools,
such as Metasploit

10 or Nessus
11, that have a database for itself, which allows exploiting

known vulnerabilities of certain systems. Moreover, there are also multiple exploit repos-
itories available online, which can be used to gather working proof of concept code that
successfully exploits a known vulnerability.

Focusing on vulnerability and attack injection, a technique based on fault injection,
10https://www.metasploit.com
11https://www.tenable.com/products/nessus/nessus-professional

16

https://www.metasploit.com
https://www.tenable.com/products/nessus/nessus-professional

Background and Related Work

Table 2.3: Summary of Anomaly detection algorithms [+:advantage �:disadvantage].

Algorithms for Anomaly Detection
Artificial Neural Network

+ Robust to outliers
+ Learns feature interaction automatically
� Slow training speed
� Computationally expensive

Bags of System Calls
+ Reduces database size because it is frequency based
� The loss of sequence reference as a consequence of being frequency based

Hidden Markov Models
+ Suitable to be used in application that deal with data based on sequence of feature
� Computationally expensive

K-Nearest Neighbour
+ Fast training
� Slow in the predicting phase
� Requires large size of samples

Naïve Bayes
+ Fast training and prediction phase
� Fails estimating rare occurrence

Sequence Time-Delaying Embedding
+ Takes into account sequence of occurrence
� Database size can grow large if window size is high

Support Vector Machines
+ Good theoretical guarantees regarding over fitting
� Can be inefficient to train, memory-intensive

One-Class Support Vector Machines
+ Does not require malicious workload
� Can be inefficient to train, memory-intensive

it grants the possibility to exploit vulnerabilities added to a certain system. This method
is often used when it is not possible to use publicly available exploits, either because they
do not exist or the vulnerable version of the system under monitoring is not available.

Finally, with regard to trace form generation, there are two methods that allow to gen-
erate any of the three types of workloads (pure benign, pure malicious and mixed), those
are trace acquisition and trace generation. Regarding trace acquisition there are
two possibilities to achieve this. The first is to collect traces from real systems when in
production from organisations, however, companies tend to be unwilling when it comes to
share real data of their systems due to privacy concerns [18]. Secondly, there are publicly
available traces that can be used to train and test the IDSes, however, these traces tend
to be considered outdated due to its long time existence [35]. In connection with trace
generation, there are also two main ways to utilise this technique, that are generating
traces in a testbed environment and the use of honeypots to record interactions with it.

17

Chapter 2

Focusing on the use of a testbed environment, these testing systems can be utilised as a
target for the attacks performed, in order to collect traces, using the techniques described
previously, such as the use of workload drivers and the manual generation method. Still,
this technique may generate traces which are not representative of realistic interactions
with services, since results collected in small environments do not usually apply to larger
ones [36]. As for honeypots, which intend to simulate the operation of real systems, it is
possible to collect the interaction of attackers who interact with them, providing the traces
which are required to evaluate IDSes. Since the actors involved are not aware to the fact
they are interacting with a fake system, this approach permits to generate realistic traces,
despite being harder to classify the traces produced, for instance in terms of attack types.

2.2.2 Metrics

So that it is possible to understand whether an IDS is performing accordingly to what is
excepted, there is a need to compute meaningful metrics values. These metrics allow to
understand, from various perspectives the results obtained, such metrics can be related to
performance and security. This Section aims to outline and explain the metrics usually
utilised when carrying out an IDS evaluation procedure.

Regarding performance metrics, which are not the focus of this work, it refers to the non-
functional properties, such as capacity and resource consumption [37]. The focus of this
work is related to security metrics based on the results produced by an IDS and the ground
truth knowledge about the workload being utilised. Although not all IDSes output results
in a binary form, either normal or anomalous, the ones which produce a different output,
such as a probability or a multi-class classification (different from either anomalous or nor-
mal) are easily converted to this output form. The basis for IDSes evaluation is, therefore,
the comparison of the expected results against the obtained results, which produce four
possible combinations as shown in the confusion matrix depicted in Table 2.4.

Table 2.4: Confusion matrix of IDSes results categorisation.

Expected
Obtained

Normal Malicious
Normal True Negative (TN) False Positive (FP)

Malicious False Negative (FN) True Positive (TP)

The classifications produced by an IDS are categorised into one of the four categories
presented in Table 2.4. When the event baseline classification is normal, that is non-
malicious, and the IDS considers it to be normal then we achieve a true negative category
because the IDS classified the event correctly and it was not an intrusion attempt, but if
the IDS had categorised it as malicious, then it would be categorised as false positive
instead due to a misclassification of a non-malicious event. On the other hand, if an event’s
baseline classification is malicious then the result produced by the IDS is considered as a
false negative when the IDS does not raise an alert and as true positive when it does.
Therefore, based on these four categories, it is possible to define several metrics, as defined
in [38].

Firstly, the proportion of malicious cases classified as malicious denotes the metric Recall,

18

Background and Related Work

also known as true positive rate or sensitivity. Although this metric is only focused on the
anomalies detected, it provides a good understanding on IDSes performance regarding the
detection of the true anomalies.

recall =
TP

P
=

TP

TP + FN
(2.1)

In addition, Precision consists in the ratio between correctly classified malicious events
and all the events classified as malicious by the IDS. However, this metric, as well as recall,
is vulnerable to bias by prevalence and skew [39].

precision =
TP

TP + FP
(2.2)

Moreover, F-Measure, or F1Score, is built upon precision and recall, being the harmonic
mean of both metrics. Although this metric assigns the same cost to true positives and
false positives, it provides a good understanding on which IDS detects high number of
anomalies while reporting a low number of false positives [38].

f �measure = 2⇥ recall ⇥ precision

recall + precision
=

2⇥ TP

2⇥ TP + FN + FP
(2.3)

Finally, False Positive Rate, or miss rate, is the proportion of normal events classified
as anomalous [38].

FPR =
FP

N
=

FP

FP + TN
(2.4)

Furthermore, another very utilised representation for IDS selection is a Receiver Operating
Characteristic (ROC) curve which plots the true positive rate (recall) against the false
positive rate of an IDS with varying configurations, so that it is possible to compare them
and identify the one that fits best.

A ROC curve plot example is available on Figure 2.5.

However, some argue that ROC curves do not take into account all the meaningful and
relevant data to assess the performance of an IDS [41]. Consequently, as a manner to
overcome such limitations, the expected cost analysis was proposed in 2001 [41]. This
approach takes into account not only the ROC but also on cost metrics and the hostil-
ity of the operating environment through the probability of intrusion [41]. Gaffney and
Ulvila, define the expected cost based on the probability of intrusion, thus taking into
account the hostility of the environment, the false positive rate and recall values, and the
cost proportion associated with responding to a non-intrusion and not responding to an
intrusion.

Thus, the expected cost can be calculated through the following equation:

ExpectedCost = Min{C�p, (1� ↵)(1� p)}+Min{C(1� �)p,↵(1� p)} (2.5)

Having: C =
C�

C↵ , ↵ = FPR, (1� �) = Recall, p = P (I) = TP+FN
TP+FN+TN+FP

In our practical work, we are using C = 10, based on previous work [41], which means
that it is ten times more costly to fail to respond to an intrusion than it is to respond
to a non-intrusion. In addition, the formula to calculate the probability of intrusion was
defined taking into account our practical scenario.

19

Chapter 2

Figure 2.5: ROC curve plot example (from [40]).

2.2.3 Summary

In this section, we have exposed the background related to IDSes evaluation, such as
workload types and metrics used. There are mainly three types of workloads, pure benign,
pure malicious and a mix of both. Regarding metrics, we have five different and each
has a purpose.

In this summary, we systematise the advantages and disadvantages of workload generation
manners (Table 2.5) and metrics used to measure IDSes performance (Table 2.6).

2.3 Containers

The basis for containers was introduced on the late 1970’s, more precisely on 1979, when the
chroot [42] system call was introduced into UNIX. This system call enables the modification
of a process’s and its sub-processes’ execution root directory. As a result, it became
possible to isolate processes’ execution, one of the main characteristics of containers -
isolation. Such isolation turned attainable through file-system segregation, partitioning
it into multiple branches and assigning each one to a different process thereby assuring
processes’ inability to access files above their assigned sub-tree. Nevertheless, this was still
the beginning of process isolation.

Later on, in 2000, the FreeBSD Jails 12 was released, almost twenty years after chroot

addition to BSD, and was a big step towards present containers. As a manner to achieve
a complete separation between systems, Jails allowed to partition the BSD system into
multiple independent sub-systems, consisting of a virtualisation of the filesystem, the users

12https://www.freebsd.org/doc/handbook/jails.html

20

https://www.freebsd.org/doc/handbook/jails.html

Background and Related Work

Table 2.5: Workloads summary [+:advantage �:disadvantage].

Workloads
Executable Form
Workload Drivers

+ Allow customisation of the interactions produced
� Do not correctly emulate real interactions with systems

Manual Generation
+ May emulate real systems properly when based on realistic activity models
� Supports no customisation of the workload produced

Exploit Database
+ Ready to use exploits
+ Generates realistic workloads
� Some exploits only work for specific versions of the target which may not be available

anymore
Vulnerability and Attack Injection

+ Permits to inject vulnerabilities on any software version
� Slow process since it requires source code manipulation

Trace Form
Trace acquisition

+ Real world and large size workloads
� Companies are not willing to share traces from production environments due to

privacy issues
� Traces available online may be outdated

Trace generation
+ A testbed allows an easy data classification
+ The use of honeypots may permit to collect real interactions with systems
� The use of testbed environments may result in non-representative workloads
� It is hard to classify traces collected from honeypots

set and the networking subsystem resulting in the possibility to assign a dedicated IP
address [43]. Along with BSD Jails was also introduced the notion of operating system-
level virtualisation.

In the following years, other technologies similar to FreeBSD Jails were released, namely
Linux VServer

13 on 2001, Solaris Containers
14 on 2004 and OpenVZ

15 on 2005. How-
ever, it was not until 2006 that another great step was taken, with the release of Process
Containers by Google. This was designed to be used for limiting, accounting and isolating
resource usage (CPU, memory disk I/O, network) of a group of processes. Later, it was
renamed to control groups (cgroups) and added to the Linux kernel on 2008. In the same
year, LinuX Containers (LXC) were released. Such technology is built upon cgroups and
namespaces, features present in the Linux kernel. While namespaces provide process isola-

13http://linux-vserver.org/Welcome_to_Linux-VServer.org
14https://www.oracle.com/technetwork/server-storage/solaris/containers-169727.html
15https://openvz.org

21

http://linux-vserver.org/Welcome_to_Linux-VServer.org
https://www.oracle.com/technetwork/server-storage/solaris/containers-169727.html
https://openvz.org

Chapter 2

Table 2.6: Metrics summary [+:advantage �:disadvantage].

Metrics
+ Combined are good evaluation mechanisms
+ ROC curves are a great manner to identify the best configuration for IDSes, despite

some limitations
+ The expected cost calculation allows to take into account the hostility of the operation

environment
� Require ground truth to be calculated
� Some metrics, if used isolated, can be misleading

tion into groups, cgroups is responsible for controlling the resource usage for each container
within the main system.

Another important step in containers’ evolution was the release of Docker 16, on 2013, which
really pushed forward the adoption of this technology. Docker really eased application
development and deployment which resulted on massive adoption of containers by cloud
service providers. Service providers, such as Amazon with Amazon Web Services (AWS)
or Microsoft with Azure, have already put forward massive investment in this technology.

Figure 2.6 depicts the evolution described.

1979 2000 2001 2004 2005 2006 2008 2013

chroot added
to UNIX

FreeBSD
Jails

Linux
VServer

Solaris
Containers

Open
VZ

Process
Containers

cgroups added
to Linux

LXC

Docker

Figure 2.6: Containers evolution timeline.

So, this technology is built upon Linux’s namespaces and cgroups, which permits to group a
set of processes and resources, such as memory or CPU, and to isolate them from processes
and resources outside of it. All containers on a host machine share its kernel functionalities,
as a result providing a lightweight virtualisation mechanism.

There are two types of containers as depicted in Figure 2.7.

System Containers are characterised by the virtualisation of a OS that is lighter and
faster to boot than a Virtual Machine (VM). This technology, built upon cgroups and
namespaces, can run multiple services within them as a normal server would. Some ex-
amples are the LXC and OpenVZ technologies.

Application Containers are a step forward of system containers. These are specialised
containers, meant to run only one service (application) at a time. Docker is one of the
examples of this technology.

16https://www.docker.com

22

https://www.docker.com

Background and Related Work

Figure 2.7: Application Containers and System (OS) Containers (from [44]).

2.3.1 Containers Concepts

With respect to concepts, which are provided by containers, the most important are isol-
ation, and resource limitation. These characteristics are achieved due to the use of two
features available in the Linux kernel, namespaces17 and control groups (cgroups)18.

Namespaces create an isolated instance of a global resource, such as user groups or
network devices, by enclosing a system resource into an abstraction available to processes
within a given namespace. This instance is only available to the processes within the
namespace to which it was created for. Therefore, any change made to it only affects
the processes members of the namespace. There are, currently, seven different types of
namespaces, which are analysed on Table 2.7.

Table 2.7: Types of namespaces provided by Linux

Namespace
Type

Description

Cgroup This namespaces type isolates the cgroup root directory
IPC IPC namespaces isolate System V IPC and POSIX message queues
Network Responsible for isolating network devices, stacks, ports, among others
Mount Enclose the mount points
PID Limit the process IDs
User Enforce user and group IDs
UTS Allow the isolation of the hostname and NIS domain name

Regarding cgroups, the other fundamental feature which makes containers possible, these

17http://man7.org/linux/man-pages/man7/namespaces.7.html
18http://man7.org/linux/man-pages/man7/cgroups.7.html

23

http://man7.org/linux/man-pages/man7/namespaces.7.html
http://man7.org/linux/man-pages/man7/cgroups.7.html

Chapter 2

allow the organisation of processes into hierarchical groups whose resource usage can be
monitored and limited as fit. This feature provides an interface through cgroupsfs and
globally handles the aggregation of different processes, furthermore the available kernel
sub-systems control resources, such as CPU and memory, and assure that processes within
a given cgroup do not exceed their limits.

In conclusion, the combined use of both of these features permit to isolate a group of
processes, which result in a container.

2.3.2 Containers Technologies

There are multiple solutions to address containers’ technology. The aim of this section is to
provide some details regarding the most popular and most used containerisation platforms.
Following, the platforms such as LXC and Docker are approached and details are provided.

LinuX Containers

LinuX Containers (LXC) were introduced in 2008, this technology’s main goal is to provide
an OS-level virtualisation so that it is possible to run multiple isolated containers on a
machine. Despite some misconceptions, LXC does not provide virtual machines, instead it
provides a virtual environment that has its own resources, such as CPU and memory, and
the resource control mechanism [45].

In order to provide the service, LXC is based on Kernel namespaces and cgroups, as de-
scribed in Section 2.3.1, Apparmor

19, which is a Mandatory Access Control (MAC), and
SELinux, that is also a MAC focused on system calls and profiles, Kernel capabilities

20,
which provide to assign superuser permissions to users according to their need, and Seccomp

policies, which permit to filter system calls issued by containers.

Moreover, this technology allows to create two types of containers, either unprivileged or
privileged, although the former are considered safer, due to not mapping the root user ID to
the root user ID of the host machine, some Linux distributions require further configuration
to allow their creation [45].

Docker

Docker was first released in 2013, initially named dotCloud and based on LXC Docker
has, however, shifted away from both. Nowadays, this platform is also based on the same
technologies as LXC, such as namespaces and cgroups, but is not an extension of it.

Docker consists of three main components: the Docker Client, the Docker Daemon and
the Docker Registry. Regarding the Docker client, this component is the responsible to
interact with the Docker daemon given the user issued commands, it permits to control
containers instantiation, and management. For the Docker daemon , this component
manages all the containers present on the Docker host and all the images present in its

19https://wiki.ubuntu.com/AppArmor
20https://wiki.archlinux.org/index.php/Capabilities

24

https://wiki.ubuntu.com/AppArmor
https://wiki.archlinux.org/index.php/Capabilities

Background and Related Work

cache. A Docker container is built on a hierarchical combination of multiple images, an
image acts as a template for the container. Typically, an image’s components are defined
through the use of a file named Dockerfile, which allows the developer to define custom
images, by installing libraries required, creating new users and deploying their applications.
With respect to the Docker Registry, this component is a remote one, and acts as
an image repository and distributor because it maintains both base and custom images,
allowing their distribution to other hosts, furthermore it also keeps the different versions
of an image, permitting to select a specific version.

In sum, these are the main reasons why Docker popularity growth has been immense,
their agnostic functioning and the easy and fast deployment of containers have contributed
greatly to it.

2.3.3 Containers Monitoring

After containers are deployed, it arises the need to manage them and maintain them under
observation, so that is possible to understand whether a problem happens and action is
required. As a manner to keep this technology under examination, information about
containers, such as CPU or memory use or even system calls, is used to conclude if the
system is working correctly.

This Section provides an explanation of some monitoring tools which can be adopted in
this context.

Sysdig

This tool [46] instruments machines at the OS level, installing itself into the Linux kernel
and capturing system calls and other OS events. It also provides a command line interface
to easily filter and decode such events so that is possible to extract useful information.
Sysdig can be used in both real-time or in after the fact inspections, through generation
of trace files.

The main features provided by sysdig are its native support for all Linux container techno-
logies, such as Docker and LXC, and providing a “unified, coherent, and granular visibility

into the storage, processing, network, and memory subsystems” [47]. Moreover, it makes
possible system activity trace files creation, thus enabling after the fact analysis. These
files can include the state of the system thereby assuring that the context in which the
capture was performed does not get lost, which is available due to the filtering procedures
that can be used to process the information collected easily.

Sysdig is a multi-component tool which collects the system events by using a probe, called
sydig-probe that is responsible for collecting the events, at kernel level, and stores them
into a shared buffer for later processing by the other components which work at user level.
Following the collection of events, there are two components, libscap and libsinsp, which
read, decode and parse them, by applying for instance high-level filters. Furthermore, act-
ing as a wrapper for all these components is the sysdig component, which is the command
line tool that receives the arguments and performs parsing and management. Figure 2.8
depicts sysdig ’s components and their responsibilities.

25

Chapter 2

Figure 2.8: Sysdig components (from [48]).

strace

This tool [49] consists of a diagnostic, debugging and instructional user space utility man-
aged through a command-line interface for Linux and it can be used to monitor processes
and the Linux kernel, enabling the collection of events such as system calls, signal deliver-
ies, and changes of process state. The operation of strace is made possible due to a Linux
kernel feature known as ptrace.

The main features provided by strace are the possibility to attach to an already running
process, leading to the ability to start monitoring a process at any given time of its execu-
tion, to filter data collected by type of system call, such as file or process, thus gathering
only calls related to file handling and process management, respectively. Additionally, this
tool also permits to trace only system calls events which access to a user-defined path,
to perform a full hexadecimal and ASCII dump of all the data read from/written to file
descriptors and also introduce a system call fault injection.

Despite being mainly process-oriented monitoring tool, strace can also be used to monitor
containers successfully.

The architecture of strace is characterised by the introduction of additional contexts switch-
ing operations. When a system call is executed, there occurs a context switch from user
to kernel mode. However, when strace is monitoring the process executing the call, two
additional context switches occur. That is, this utility uses the ptrace Kernel feature to
interrupt the process every time a system call is executed, collect and decode it and return
the process normal execution [48]. Therefore, strace is performing a blocking collection of
data and compromising the performance of processes being executed. Figure 2.9 depicts
the execution flow of a system call when strace is monitoring the process.

26

Background and Related Work

Figure 2.9: Strace operation (from [48]).

cAdvisor

Container Advisor (cAdvisor) [50] monitors the resource usage and performance character-
istics of running containers. This tool is a daemon which collects, aggregates, processes,
and exports information, in various formats, about running containers [50]. More precisely,
for each container, the tool keeps resource isolation parameters, historical resource usage
and network statistics.

As a main feature, it provides a REST API to perform queries upon and therefore re-
trieve the metrics by it collected. This functionality permits to easily integrate cAdvisor
with an information processor, which achieves a specialised task, keeping modularity and
independence.

Although cAdvisor provides native support for Docker containers [50], its focus is on per-
formance issues such as CPU usage and advice on containers performance [50].

2.3.4 Summary

In this section, we have focused on containers, their history, types and main concepts.
Containers can be of two types, either system containers, which virtualise the complete
OS, or application containers that are specialised containers, meant to run only one
application. Containers are a set of processes that run in an isolated manner with resource
and file system segregation based upon cgroups and namespaces kernel features.

In addition, some containers technologies, such as LXC, which virtualises system contain-
ers, and Docker that is focused on application containers, are also described and studied.
Moreover, the tools to monitor containers were also studied, namely sysdig, strace and
cAdvisor. These tools characteristics are highlighted on Table 2.8.

Additionally, we approached the works performed regarding intrusion detection at container-
level, and to the best of our knowledge, there is the work of Abed et al. [16] and Srinivasan
et al. [17]. However, these works focus their attention on the application running within
the container, monitoring only that application, whereas our intentions are to monitor the
container as a whole, monitoring it from outside instead of collecting data from the inside
and exporting it through mounted volumes into the outside.

27

Chapter 2

Table 2.8: Monitoring Tools comparison.

Tool Main Focus
Collects
System
Calls

Collects
Resource

Usage

Data
Collection
Manner

Native
Support

sysdig Container-oriented " " Passive OS, Docker,
LXC

strace Process-oriented " Active OS
cAdvisor Container-oriented " Passive Docker

2.4 Security in Containers

2.4.1 Intrusion Prevention and Detection in Containers

To the best of our knowledge, there is a limited number of published research works re-
garding intrusion detection at container level. Below we discuss these works including
some that, although may be not intrusion detection, try to provide the same functionality:
detect or avoid security attacks.

In 2015, Abed et. al [16] proposed an IDS for container level, which used BoSC to represent
the normal behaviour database entries. In this work, an anomaly detection based IDS was
proposed, capable of monitoring a container and detect possible intrusion attempts at real
time. During the experimental analysis, the authors claimed to have obtained a TPR of
100% with a FPR of 2%. However, the use of mysqlslap as a benign workload generator
is not a representative manner to emulate real interactions with a Database Management
System (DBMS) and therefore the results produced may not be representative as well.

In 2015, Mattetti et al. [51] contributed with a framework to protect linux containers
and their workloads. For this, they monitored both run and build commands to extract
relevant information in order to generate AppArmor profiles for each container as a way to
protect the host OS and the container. In addition, the authors referred the insignificant
performance impact of their framework.

In 2017, Bila et al. [52] propose a quarantining methodology for vulnerable containers
identified through a vulnerability scanning service in addition, it isolates the compromised
containers from the remaining ones and stores them for further forensic analysis. The
authors also propose a policy manager to allows security professionals to introduce policies
to enforce compliance and isolation.

In 2019, Srinivasan et al. [17] proposed an approach based on the NGram probability.
In addition, the authors used Maximum Likelihood Estimatior and Simple Good Turing
techniques to obtain probabilities of unseen values. They have also conducted practical
experiments, similar to Abed’s, using a docker container with a web application within a
docker container and the University of New Mexico (UNM) dataset as well. The results
showed accuracy values ranging from 87-97%, recall ranging from 78-100% and FPR ran-
ging from 0-14%. Nevertheless, as Abed et al., the authors of this work utilise sqlmap to
exploit the web application which does not generate a realistic since this exploitation tool
is performed through sql injection attacks.

28

Background and Related Work

2.4.2 Security Analysis in Containers

Several works have published security analysis of container technologies. These works
provide very interesting insight in terms of the most frequent and relevant vulnerabilities,
and, in some cases, the reasons behind them. However, these works are not directed to try
to solve those issues, and therefore cannot be compared with the present work.

Experiments have shown that there is an increase in the attack surface exposed in the
host of the Docker server [53]. The authors used a setup of a Docker server machine (with
LXC as the execution driver) and a bare metal server machine. Even when using official
repositories, they concluded that the exposure is due to the vulnerabilities exposed by the
OS images inside the container.

A survey on Docker security and an analysis of its ecosystem was performed in [54]. The
authors analysed the common use cases of docker and concluded that many of the security
issues are due to the incorrect selection of containers instead of VMs, as it is not the correct
selection in many cases.

The sharing of the host OS kernel have been continuously under study due to high reward in
case of its successful compromising. The escalation of privileges achieved through container

escape attacks can cause huge amounts of damage to the infrastructure [55]. In connection
with this concern, Jian et al. propose a defence method in order to prevent contaier escape

attacks in addition to demonstrating it.

In another work, Gao et al. [56] reveal information leaking channels in containers, demon-
strating that adversaries could explore these vulnerabilities in order to compromise the
cloud infrastructure. In addition to demonstrating the existence of information leakage,
they propose a power-based namespace as an alternative to mitigate these concerns.

The empirical analysis presented in [57] analysed all the publicly available information
on Docker security vulnerabilities and concluded that the “most common causes are un-
protected resources and incorrect permissions management” while the “most common con-
sequences are bypass and gain privileges”, issues that are paramount in multi-tenant setups.
The results also showed that existing static code analysis tools are ineffective in detecting
these vulnerabilities.

2.4.3 Summary

In this section, we presented the relevant work conducted with containers security. Our
focus remained in work related to container level intrusion detection, nonetheless we have
also discussed more general security topics as security assessments of docker vulnerabilities
of the proposal of approach to mitigate certain types of attack venues. This provides a
wider notion of container security research work conducted and therefore a more concrete
basis for our work. Although the majority of work with containers is focused on Docker
containerisation platform, some of them could be adapted to work to other containerisation
platforms, such as LXC which some works also focus upon.

The main takeaways for each work are compiled, as a item list, and summarised in order to
explain the main contributions and proposals of each research work as concise and easier

29

Chapter 2

to understand as possible on Table 2.9.

Table 2.9: Related work summary.

Related work
Abed et al. [16]

• Host-based Intrusion Detection
• BoSC as a classifier to detect anomalies

Mattetti et al. [51]
• Monitors build and run of Docker containers
• Builds AppArmor profiles

Bila et al. [52]
• Framework for containers protection
• Quarantines vulnerable container

Srinivasan et al. [17]
• Host-based Intrusion Detection
• Apply NGram classifier

Mohallel et al. [53]
• Compares security of Linux containers with host base OS
• Vulnerability Assessment

Martin et al. [54]
• Analysis of the containers security ecosystem
• Vulnerability Detection

Jian et al. [55]
• Discusses existing security mechanism and security issues of Docker
• Defence against escape attacks

Gao et al. [56]
• Explore Information leak channels
• Propose a two-stage defence approach

Duarte et al. [57]
• Docker Security Assessment
• Static Code Analysis

30

Chapter 3

Research Objectives and Approach

This chapter describes the main objectives of this work, outlining our focus and the defined
manner to achieve it through an approach designed for the effect. Section 3.1 outlines our
goals and provides a description in order to explain them, Section 3.2 highlights the relevant
threats for this work whilst Section 3.3 proposes and explains the approach to achieve the
defined objectives.

3.1 Research Objectives

The main goal of this work is to understand the effectiveness and applicability
of state-of-the-art host-based anomaly detection algorithms to containers de-
ployed in multi-tenant environments. For this, it is required to produced datasets of
both training and testing data regarding the system calls and events produced by contain-
ers deployed in these environments. In addition, we have also to elicit the state-of-the-art
algorithms, train the classifiers by feeding them the data produced and evaluate the testing
data in order to be able to obtain meaningful and representative results.

So, we have defined the following specific goals:

• Design a methodology to evaluate the effectiveness of intrusion detection
algorithms

In order to conduct a systematic evaluation of container deployment, we aim to devise
a rigorous conceptual methodology. This methodology must support and define the
steps to follow during the evaluation procedure as well as be applicable to different
containerisation platforms. In addition, it should be based upon an attack injection
process given its proved application in other fields.

• Study the stable definition of profiles from containers deployed in multi-
tenant environments

As a crucial part of the evaluation procedure, it is necessary to define a stable and
comprehensive profile of the container under monitoring. Therefore, we aim to study
and understand through an exploratory procedure whether or not it is possible to

31

Chapter 3

define a stable profile for containers through the use of the training data produced
for this work.

• Produce representative data to test container-based deployments

Due to a lack of available data for container-level deployments, it is required to
produce data as a venue to evaluate the anomaly detection algorithms. Therefore,
the definition of different and realistic usages of a container in order to produce
data on the form of a trace, usable for training and testing purposes is of utmost
importance.

• Evaluate the effectiveness of host-based intrusion detection algorithms in
containerised systems

Perform an experimental campaign to evaluate the effectiveness of state-of-the-art
intrusion detection algorithms for container-based systems. This evaluation should
report meaningful metrics in this context, such as recall and FPR, in order to extract
representative results to support a decision to whether or not these intrusion detection
is applicable to containers.

3.2 Relevant Threats to be Addressed

Intrusion detection has seen some developments, in terms of deployment and monitoring
mode, such as previously referred distributed intrusion detection system - DIDS [15]. Des-
pite great advances in intrusion detection for Virtual Machines (VMs)-based environments,
container-level approaches have been neglected and work improvements in this context are
still sparse.

As a result, this work emerges due to imminent threats to container-based multi-tenant
cloud deployments [57]. The fact that various containers, with different owners, share
physical components, raises the possibility that some tenants, with malicious intentions,
may try to compromise others’ execution, or even the normal execution of the host machine.

The most probable scenario is that there are no malicious activities developed to obtain
access to the container placed inside the infrastructure. Only after obtaining access the
container becomes malicious, performing mischievous activities and trying to compromise
other tenants. The fact that cloud computing services assume their consumers are trust-
worthy allows an attacker to allocate resources lawfully, as any other customer, and use
them. In other words, in this work, we assume that an agent gains access to computing
resources within a cloud service lawfully and, only after, uses them to carry out illegal and
malicious endeavours.

Therefore, our concerns rely upon the threats presented by these legally allocated resources,
which originally are considered trustworthy despite existing the possibility of having ma-
licious intention towards other tenants or the cloud service infrastructure. Which in fact
stands a great menace to the underlying layers of the cloud service stack and to the normal
execution of other lawfully obtained containers without wicked motivations.

Figure 3.1 depicts the threat model that is to be addressed during this work and that is
described below. As it is possible to observe, we are particularly concerned with mali-

32

Research Objectives and Approach

cious containers that share the infrastructure (multi-tenancy) with non-malicious one(s),
performing three different types of attacks.

Container Engine

Host Operating System

Malicious
Container

Non-Malicious
Container

Attack

Attack

Attack

Figure 3.1: Container-based deployments’ threat model.

Generally, every attack aims to compromise the infrastructure, or its components, and gain
some type of reward, such as more resources or information to which the agent should not
have access.

Regarding the attack to the host machine, a malicious container may try to exploit vulner-
abilities present in the cloud’s stack in order to attain access or gain control of privileged
resources. Typically, these attacks are motivated by the ambition of collecting information
or controlling the manner by which the resources are allocated.

Containers are commonly managed by an orchestration middle-ware, generally called a
container engine. This also acts as an attack venue to achieve the Operating System
(OS) layer, thereby this piece of software may also be compromised in cloud deployments
by rogue containers, assuming the role of a pathway to achieve both of attacks, to the
host machine and to other tenants. Hence, a malicious container would compromise the
container engine in order to make its damage reach further. As a consequence, the attacks
to the engine are a great concern owing to the damage that can come from it being
compromised.

In sum, the major threat to cloud deployment services is the use of their infrastructure to
conduct malicious activities against the infrastructure itself and the other clients who use
it.

3.3 Research Approach

To accomplish the objectives outlined in Section 3.1, we defined a research approach con-
sisting of three main phases. This approach is depicted in Figure 3.2 and described in the
following paragraphs.

Initially, it is required to produce training datasets, collected for 10H and 24H in order to
train classifiers and observe their evolution in the definition of a stable container profile.
For this, we aim to periodically store the state of the normal behaviour database for later
analysis, as explained in section 4.3.

Next, it is required to produce the datasets that are to be used in the evaluation procedure

33

Chapter 3

traces
Preliminary
Analysis

Workload
Selection

Setup
Definition

Monitoring
Tools

Selection
Experiments

(24h+)

Algorithms
Selection

Train
Classifiers profiles

Trained
Classifiers

results

Workload

Attack
Injection

Workload
& Data

Collection

Trace
Splitting

Attack
Selection

Training
traces

[T0,T1]
[T0,T2]
[T0,T3]

attack
traces Testing

Epoch &
Threshold
Analysis

Results
Analysis

+

Figure 3.2: Overview of the followed research approach.

of the algorithms for intrusion detection. For this, we start through the collection of pure
benign traces, from the monitoring of our container target. These traces were produced
during a 24H continuous monitoring and it was collected a set of attributes, such as date
and time, system call issued, the number identifier (id) of the thread responsible for the
invocation and the arguments passed to the function. In addition, the traces were generated
for three platforms, OS, LXC and Docker containers, and for the two different types of
workloads. More details regarding these datasets are provided in Section 4.4.

Still with respect to dataset generation, we were also required to generate the data utilised
for testing the algorithms. Although this procedure is similar to the one conducted for
training data generation, it differs in its time span and attack injection period. In order to
obtain testing datasets, we conducted a procedure during which the target (container) was
monitored for 30 minutes while the workload was being applied and for each occasion, an
attack took place at sensibly 15 minutes after the start of data acquisition. This procedure
was repeated for each one of the five attacks utilised, for each workload type and for each
of the platforms.

Following the end of the data generation phase, we first conducted an exploratory study
of the applicability of a set of algorithms to this context. During this study, we collected
traces for the training procedure during 10H and 24H, using as workload an implementation
of the TPCC On-Line Transaction Processing Benchmark [58] against a MariaDB server
deployed at either a Docker or a LXC container. We utilised our implementations of
Sequence Time-Delaying Embedding (STIDE) and Bags of System Calls (BoSC) to obtain
profiles and assess whether or not they reached steady-state, that is a stable profile of the
containers under monitoring. There was also an analysis of different window sizes, ranging
from 3 to 6 where the number of entries in the normal behaviour database was monitored
during the learning procedure.

Then, we conducted a systematised approach to the evaluation of the different host-based

34

Research Objectives and Approach

anomaly detection state-of-the-art algorithms, namely BoSC, STIDE and Hidden Markov
Models (HMM). During this procedure, multiple models for each algorithm were trained,
specifically, for each training dataset were produced 12 classifiers for BoSC and STIDE
and 3 classifiers for HMM. However, in total, there were 72 models produced for BoSC and
STIDE, due to different window sizes, training times, training workloads and the platforms
monitored whereas there were 6 models produced for HMM (only for Docker due to time
restrictions), although they actually behaved as 24 classifiers after applying the 4 different
thresholds to transform the probability value into a binary decision, either anomalous or
normal. Therefore, overall there were 168 different classifiers trained for the evaluation
phase.

The third phase of our research approach consisted of taking the trained classifiers and
testing the datasets produced in the first phase in order to evaluate its performance. In this
campaign, we tested the all BoSC, STIDE and HMM classifiers against the corresponding
testing datasets and obtained the results. Lastly, the results were analysed with a epochs
approach and the final results produced, which were then compared with the ground truth
in order to compute the selected metrics.

35

This page is intentionally left blank.

Chapter 4

Preliminary Analysis

This chapter provides a preliminary analysis of the three main components of an intrusion
detection procedure, namely the system under monitoring, the data collection tool and the
analyser.

For each component, we conducted a preliminary analysis as a way to make informed de-
cisions. Initially, the selection of the most appropriate monitoring tool from the first set of
tools elicited based upon a monitoring evaluation focusing on the amount of data collec-
ted by each tool and a performance impact on the normal operation of the system under
monitoring. Then, we conducted a preliminary analysis regarding the learning procedure
of Sequence Time-Delaying Embedding (STIDE) and Bags of System Calls (BoSC) from
which we could define with more accuracy and based on experimental results.

As we can observe, Figure 4.1 depicts the interaction between the multiple components.
Firstly, there is a container, containing the services running within it, which is under
monitoring through the utilisation of a tool capable of collecting the system calls issued by
it, among other relevant data. Moreover, the sequence of system calls and data collected
is stored as a trace for future use. The analyser, which consists of an instantiation of
a algorithm for anomaly based intrusion detection, processes the data accordingly, and
produces a normal behaviour database by keeping the relevant data to achieve a definition
of containers profile. Finally, the analyser, when in detection mode, either produces or
does not produce anomaly alerts.

Normal Behaviour
Database

Data
Collection

Tool

System
Call Traces

Analyser

Results
Container

under
Monitoring

Figure 4.1: Architecture for the preliminary analysis of the intrusion detection applicability.

37

Chapter 4

4.1 System Under Monitoring

With respect to the system under monitoring we established, based on previous work
in container intrusion detection [16], the utilisation of MariaDB versions 8.0 and 5.5.28
depending on the procedure being executed to be monitored and profiled.

On the one hand, version 8.0 was deployed into a Docker and into a LXC container, in
order to study the applicability of intrusion detection in this context, more precisely to
study the capacity of the algorithms BoSC and STIDE to define stable profiles of each
container (section 4.3).

On the other hand, version 5.5.28, which was selected due to its known vulnerabilities as
they were required to perform the testing procedure, described in Section 4.4, was deployed
in three different platforms. In addition to Docker and LXC deployments, this version of
MariaDB was also deployed into a Kernel-based Virtual Machine (KVM), as a manner to
emulate a OS-level deployment.

Furthermore, all the deployments were configured according to default MariaDB configur-
ation. A database was created for each deployment and an implementation 1 of the TPC-C
benchmark was utilised to set up the schema and load the data required for all experiments
with 100 warehouses as main configuration.

4.2 Data Collection Tool

To fulfil this component, we selected two tools based on the applicability to our goals,
which are containers monitoring and collection of the system calls issued by them.

The first tool we have elicited is strace [49], because it is present in most Linux systems
and has the ability to attach to processes running on a machine, monitoring and collecting
the system calls by them invoked along with the arguments passed to them.

Secondly, we selected the sysdig [46] utility, since it is a container monitoring and auditing
specialised tool. It allows the collection of traces from containers containing data such as
system calls and other Operating System (OS) events.

Both tools are capable of collecting system calls and other OS events, however, strace is
process-oriented while sysdig is container-oriented, which means that, in our case, sysdig

might be the best choice.

In order to select the most appropriate utility for the task in hands, we conducted some
preliminary experiments to assess their applicability to containers monitoring.

Initially, we monitored the same container using both tools for a one-hour period. During
this period, both tools stored the trace of system calls collected into separated datasets.
Following this collection procedure, the system calls contained within each trace file were
counted in a cumulative manner for each 10 minutes interval. The results obtained are
presented in Figure 4.2.

Through the examination of Figure 4.2 is possible to observe that the sysdig tool is col-
1https://github.com/Percona-Lab/tpcc-mysql

38

https://github.com/Percona-Lab/tpcc-mysql

Preliminary Analysis

Figure 4.2: Comparison of system calls collected by each tool during 60 minutes.

lecting more system calls than strace in the same period of time for the same container.
Although a small difference was expected, the difference observed at the end of the sixty
minutes time period is huge and unexpected. Despite the differences observed in the
amount of system calls, both tools monitor the exact same processes, therefore a closer
and more thorough analysis is required to understand the reason behind the disparity on
system calls amount.

In addition, we conducted an experiment to assess the impact of each data collection
tool in terms of overhead and response time delay. For this experiment, we collected
the results produced by the TPC-C benchmark when utilised against a LXC container,
without a tool collecting the system calls, using sysdig or strace. Each configuration was
repeated 3 times, having each one a period of two hours. This implementation of the
TPC-C benchmark produces as output three measures of the response time of New Order

transactions, the response time 95% percentile, the 99% percentile and the maximum
response time registered during a given interval. The results were averaged for all the 3
repetitions and are presented in Table 4.1.

Table 4.1: Response time results for MariaDB when not monitored, monitored using sysdig

and monitored using strace.

Tool
95%

Response Time
99%

Response Time
Max

Response Time
Without Tool 1594.792 2171.075 2542.056

Sysdig 1727.007 2403.750 2858.827
Strace 1971.791 2749.419 3378.625

The response time values are in milliseconds (ms).

The analysis of the results obtained from TPC-C benchmark allows to comprehend the
impact of both monitoring tools on the response time of the Database Management System
(DBMS). Regarding the 95% percentile case, the response time showed a degradation of
approximately 130 ms when the container was monitored using sysdig whereas the use of
strace caused a degradation of approximately 400 ms. This gap grows even larger when we
analyse the 99% percentile case, where sysdig demonstrates a degradation of nearly 230

39

Chapter 4

ms while strace causes a 580 ms degradation in the response time. With respect to the
average of the worst cases, the gap becomes even clearer for strace, where the response
time differs from the without tool monitoring the container case by nearly 830 ms, while
sysdig has a minor impact by raising the Max response time value by approximately 310
ms.

The main reason behind these results is the operation mode of strace. This tool, as ex-
plained in section 2.3.3, intercepts a system call, interrupting its execution collecting it,
decoding it and resuming its execution. This mode of operation incurs in the addition of
two new context switches for each system call [48], which results in the increase of the
response time as verified on Table 4.1. Although the response time for sysdig also suffers
an increase, it is less significant due to its less intrusive nature, which points out that sysdig

is a better option to collect the system call traces from containers. Therefore, it is the tool
which we are going to utilise during our practical experiments.

4.3 Analyser

In this section we focus on the component which analyses the data in order to either
produce a profile of a container or the results of a trace analysis. The analyser receives
input from the data collection tool in order to construct a container’s profile.

In this preliminary analysis, we were focused on evaluating the evolution of the definition
of a container’s profile when using either BoSC or STIDE. For this, we collected benign
traces from Docker and LXC containers running the MariaDB server application which
received the workload produced by an implementation of the TPC-C On-Line Transaction
Processing Benchmark [58], configured with 100 warehouses and using 50 clients during
workload execution. We conducted two runs of collections for 10 and 24 hours of collection
time period.

Table 4.2 provides an overview of the characteristics of the benign traces collected, contain-
ing the total number of system calls present in the trace as well as the number of unique
ones. Docker traces seem to have on average a set of 35 unique system calls, although three
out of four traces contain 37 unique system calls whereas LXC traces contain, on average,
125 unique system calls. These numbers differ greatly as a result of the type of containers
we are monitoring. While docker containers are application containers, LXC containers are
OS containers (see Section 2), therefore, docker containers have fewer processes running
when compared to LXC, thus producing a less diverse set of unique system calls.

Table 4.2: Analysis of collected traces.

Training
Platform

Run 1 Run 2
Time Unique Total Unique Total

Docker 37 1,303,036,648 29 684,693,069
10H

LXC 116 3,279,400,309 127 2,962,761,415
Docker 37 1,907,494,529 37 3,533,706,363

24H
LXC 129 9,617,350,813 129 10,305,731,175

40

Preliminary Analysis

Following data collection, we trained classifiers of the STIDE and BoSC methods with
window size ranging from 3 to 6 system calls in each. We computed the slope value of the
growth curve, which, in this context, represents the rate of new combinations (windows) of
system calls added to the classifiers’ normal behaviour database during a period of time.

For this, we used the formula 0 6 Sts2�Sts1
ts2�ts1

6 � [19] to decide whether an interval of the
learning process is at learning steady-state. In addition, we consider that the steady-state
of the learning procedure is achieved when the inequality above is satisfied 5 times in a
row for � = 0.15, based on previous experiments conducted on [19]. The results from these
experiments are presented in Table 4.3 for Docker and on Table 4.4 for LXC.

Table 4.3: Docker results for reaching learning steady-state.

Training
Algorithm

Window Run 1 Run 2
Time Size Tmax(s) DB Size Tmax(s) DB Size

10H

STIDE

3 3,000 2,582 3,000 2,345
4 20,700 21,952 24,100 18,625
5 - - - -
6 - - - -

BoSC

3 1,400 1,486 1,900 1,406
4 6,800 6,091 6,400 5,280
5 20,700 19,066 20,800 16,273
6 - - - -

24H

STIDE

3 3,000 2,674 2,700 2,428
4 30,900 22,317 29,800 22,091
5 - - - -
6 - - - -

BoSC

3 1,700 1,649 1,500 1,460
4 5,800 5,898 6,800 5,801
5 26,400 19,214 23,300 18,544
6 34,200 43,942 54,900 49,151

Tmax(s) represents when learning steady-state is reached, DB Size is the number of
entries of the normal database at that moment.

The results are similar in terms of learning steady-state achievement for different plat-
forms. The learning procedures converge to steady-state in approximately 3,000 seconds
for STIDE when utilising a window of size 3 for Docker whereas for window of size 4 the
required time raises to 26,500. The reason behind the increase in the amount of time to
achieve steady-state is due to the enlargement of the window size. On the case of BoSC, the
convergence verified was on average 1,600 seconds for window of size 3, while for window
of size 4 conducted to a convergence after, on average, 6,450 seconds of training. Unlike
STIDE, BoSC also achieved a steady learning state for window 5 within the 10H and, ob-
viously, also for the 24H of training time experiment. For this window size, the classifiers
converged its training after, on average, 22,800 seconds of training. Furthermore, BoSC
also achieves the steady state for classifiers with window 6 but only on the experiment
where the traces of 24H are utilised due to longer data available for training. In this case,
we can observe that on average it takes around 44,550 seconds to achieve a stable profile
for Docker with window 6 of BoSC.

41

Chapter 4

With regard to LXC, the definition of profiles results, in general terms, in similar values to
the ones obtained for Docker container in relation to the different windows that converged
to a steady learning state.

In detail, there are two more entries in Table 4.4, which means that there are two more
classifiers achieving learning steady-state for this case, namely the BoSC classifier with
window 6 achieved a stable profile for the 10H collection for run 2 while STIDE also
achieved a stable profile with window 5 with the 24H training trace for run 1.

Table 4.4: LXC results for reaching learning steady-state.

Training
Algorithm

Window Run 1 Run 2
Time Size Tmax(s) DB Size Tmax(s) DB Size

10H

STIDE

3 3,900 3,177 6,800 3,283
4 10,800 15,692 9,600 15,106
5 - - - -
6 - - - -

BoSC

3 3,900 2,376 6,800 2,487
4 5,500 5,554 6,900 5,526
5 13,800 13,979 19,300 19,783
6 - - 28,200 39,513

24H

STIDE

3 6,800 4,271 4,600 3,490
4 12,100 19,563 24,300 26,312
5 77,700 152,366 - -
6 - - - -

BoSC

3 4,800 2,857 4,600 2,644
4 6,800 6,970 17,400 10,728
5 12,100 16,867 24,300 24,037
6 35,600 42,830 25,200 42,019

Tmax(s) represents when learning steady-state is reached, DB Size is the number of
entries of the normal database at that moment.

STIDE took, on average, 5,375 seconds to reach a stable profile with window 3 while for
window 4 the length of time required was around 14,200 seconds. In addition, it also
achieved the stable profile for window 5 in one occurrence, for run 1 of 24H collection,
where it took 77,700 seconds.

Regarding BoSC, the stable profile was achieved with every window size for almost all
training traces, failing only for run 1 of the 10H training traces. In this analysis, BoSC
achieved a stable profile for window 3 after 5,025 seconds, while window 4 took on average
9,150 seconds. For window 5 it was registered an average time of 17,375 seconds and
29,700 for window 6.

Although it is no surprise that BoSC was, in general, faster than STIDE to achieve a
stable definition of the profile, it was surprising the faster convergence for both algorithms
on some window sizes for LXC when compared to Docker. This may indicate that LXC
traces are less diverse than Docker traces despite of LXC generating more amounts of data
and having a larger set of unique system calls within them 4.2. Another evidence of this
is the achievement of a stable profile for LXC using STIDE with a window of size 5.

42

Preliminary Analysis

Figure 4.3 presents a visual display for the procedure executed for docker, while in Fig-
ure 4.4 we can analyse the procedure for the LXC container. In this figure, the blue
dots represent the moments were the slope is below � and the green dots represent the
four preceding steady-state intervals to the interval where the classifiers reach the learning
steady-state, represented by the red dot.

Figure 4.3: Training procedure for STIDE with window 4 of run 1 of 24h collection
for Docker container.

Figure 4.4: Training procedure for BoSC with window 5 of run 1 of 10h collection
for LXC container.

In sum, the analysis of the results produced permits to conclude that, in the case of STIDE,
we were able to achieve a learning steady-state using window size of 3 and 4, whereas, for
BoSC it was possible to achieve learning steady-state with all window sizes despite requiring
more training time for the larger windows. This means, that the faster configurations to
achieve a learning steady-state, in this case, are the ones using windows of size 3 and 4.
Moreover, the fact that STIDE did not achieve steady-state with windows of size 5 and 6,
in most cases, is due to the fact that is a sequence-based method, theoretically having a
larger set of possibilities for window combinations.

43

Chapter 4

4.4 Datasets Analysis

In this section, we provide an analysis of the datasets produced during the experimental
campaign (Chapter 5). To evaluate the effectiveness of intrusion detection algorithms
on container-based systems, we produced 6 training datasets (2 for each platform: OS,
LXC and Docker) of pure benign data and stored them in order to train the classifier. In
addition, during the attack injection procedure, we collected traces of mixed data that is
both benign and malicious data, in order test the trained classifiers. For each platform we
collected 30 datasets, 3 for each exploit with one of the two workloads running resulting
in a overall total of 90 testing traces.

Following, we provide an analysis of the datasets produced for each platform. The data
presented is the result of the average of the three datasets for each vulnerability exploited.

Table 4.5: OS Datasets characteristics.

Workload
Vulnerability

Exploited
Unique

System Calls
Total

System Calls
Time

Length
Training

WorkloadS 33 851,683,119 24:01:20
WorkloadN 33 694,952,987 24:00:29

Testing

WorkloadS

CVE-2016-6662 38 18,505,855 30:22 min
CVE-2012-5611 64 15,123,094 28:23 min
CVE-2013-1861 67 15,192,527 27:23 min
CVE-2012-5627 31 18,688,826 30:24 min
CVE-2016-6663 35 19,242,165 30:20 min

WorkloadN

CVE-2016-6662 38 18,215,057 30:21 min
CVE-2012-5611 65 14,221,510 28:02 min
CVE-2013-1861 68 14,942,292 27:29 min
CVE-2012-5627 28 18,022,340 30:31 min
CVE-2016-6663 36 13,436,187 30:15 min

Firstly, the analysis of Table 4.5 permits to notice that the training traces has its basis
upon a set of unique system calls with size 33. In addition, the dataset of WorkloadS

contains a larger number of entries, approximately more 200 million than the dataset of
WorkloadN although they only differed on nearly one minute.

With respect to the testing datasets, we can observe a larger set of unique system calls for
the datasets corresponding to the exploitation of vulnerabilities, which cause the restart
of the MariaDB server, namely vulnerabilities identified by CVE-2012-5611 and CVE-
2013-1861. The exploitation of the other vulnerabilities resulted in a smaller number of
unique system calls (a set of 38 for CVE-2016-6662 for both workloads), while vulnerability
CVE-2012-5627 produced a group of 31 different system calls with WorkloadS and 28 with
WorkloadN. This difference in the number of system calls is surprising, since it was expected
a more diverse set of functions invoked with the non-steady workload due to the establishing
and termination of connections related to its unstable nature. Nonetheless, the opposite

44

Preliminary Analysis

Table 4.6: LXC Datasets characteristics.

Workload
Vulnerability

Exploited
Unique

System Calls
Total

System Calls
Time

Length
Training

WorkloadS 108 4,019,284,134 24:00:00
WorkloadN 112 3,110,046,388 24:02:20

Testing

WorkloadS

CVE-2016-6662 86 163,651,213 30:21 min
CVE-2012-5611 95 128,416,414 27:22 min
CVE-2013-1861 93 120,542,507 27:18 min
CVE-2012-5627 88 131,177,302 30:17 min
CVE-2016-6663 97 108,606,545 30:17 min

WorkloadN

CVE-2016-6662 90 102,557,512 30:15 min
CVE-2012-5611 97 91,653,675 27:38 min
CVE-2013-1861 94 95,537,381 27:33 min
CVE-2012-5627 88 115,406,453 30:49 min
CVE-2016-6663 101 94,566,531 30:26 min

was verified. Furthermore, the exploitation of CVE-2016-6663 resulted in a similar amount
of different functions invocation (35 with WorkloadS ; 36 with WorkloadN). Finally, all the
datasets are constituted by a total number of system calls in the range of 13 million to
20 million.

With regard to the datasets produced by LXC containers, Table 4.6, the observation of
the results for training datasets immediately allows to highlight the expected difference
between traces from WorkloadS and WorkloadN. As explained in Section 5.1.1, WorkloadN

is a more unstable workload in terms of active connections oscillation, thus it was expected
to produce a larger variety of system calls.

Regarding testing traces in general, we can observe the expected behaviour of a larger set of
system calls for datasets of WorkloadN, although not very significant. For CVE-2016-6662,
a set of 86 functions was observed for the steady workload whereas WorkloadN produced,
on average, 90 different system calls. The traces of the exploitation of CVE-2012-5611
and CVE-2013-1861 produced similar amounts of system calls while the exploitation of
CVE-2016-6663 produced the larger set of unique functions invoked, 97 for WorkloadS and
101 for WorkloadN. Lastly, by executing the Proof of Concept (PoC) for CVE-2012-5627,
both types of traces produced on average 88 different system calls.

From these results stood out the amount of total system calls produced for each type of
collection. While for training datasets it was registered a number of 4 billion for steady
workload and 3 billion for the non-steady workload, the testing datasets ranged, in length,
from 91 million to 164 million. These large amounts might be justified by the fact that
LXC is an OS containers and has multiple services running at the same time.

The analysis of Table 4.7 provides the comprehension of Docker datasets’ characteristics.
Unlike previous datasets, from OS and LXC, these traces are clearly distinct and more
diverse between the different workloads. The training traces denote a disparity of 28 system

45

Chapter 4

Table 4.7: Docker Datasets characteristics.

Workload
Vulnerability

Exploited
Unique

System Calls
Total

System Calls
Time

Length
Training

WorkloadS 38 687,013,250 47:59:41
WorkloadN 66 786,170,413 48:00:18

Testing

WorkloadS

CVE-2016-6662 36 8,107,429 30:34 min
CVE-2012-5611 88 6,673,828 27:23 min
CVE-2013-1861 88 6,483,013 26:19 min
CVE-2012-5627 24 7,865,766 31:25 min
CVE-2016-6663 80 7,739,002 30:29 min

WorkloadN

CVE-2016-6662 57 7,507,516 30:31 min
CVE-2012-5611 88 6,956,954 28:28 min
CVE-2013-1861 89 6,227,981 28:32 min
CVE-2012-5627 35 7,251,557 30:27 min
CVE-2016-6663 80 6,085,046 30:33 min

calls between them. While the trace from WorkloadS contains 38 distinct functions, the
trace from WorkloadN comprehends 66 unique system calls. The length of the datasets
range from 687 to 786 million for steady and non-steady workloads, respectively.

Regarding the testing traces, the same disparity remains in datasets which resulted from
the exploitation of vulnerabilities CVE-2016-6662 and CVE-2012-5627 when comparing
WorkloadS to WorkloadN. However, the remaining vulnerabilities, when exploited, resulted
in similar amounts of distinct functions. For CVE-2012-5611 88 system calls detected in
both traces, while 80 in both traces for CVE-2016-6663 and 88 and 89 for CVE-2013-1861
with steady and non-steady workloads, respectively. The amounts of total data ranged
from 6 to 8 million.

Figure 4.5 provides a visual comparison of the amount of distinct system calls in each
platforms’ datasets per vulnerability and training. The depicted bar chart intends to
provide a clearer and easier comparison between the different platforms and vulnerabilities
as a manner to explicitly understand the diversity of data among the different deployment
methods.

Although unexpectedly, and as previously observed, the differences between traces collected
from WorkloadS and WorkloadN are not very significant. Despite Docker producing clear-
cut differences, the same could not be observed for either LXC or OS. The observation of
the chart denotes a clear domination of LXC in terms of distinct system calls amounts,
being the more productive in terms of distinct system calls, for every trace.

Typically Docker produces more diverse datasets than OS, although, in specific situations
such as exploitation of CVE-2016-6662 and CVE-2012-5627 with WorkloadS, the opposite
is verified.

In sum, despite OS datasets generate greater amounts of system calls, they are, in average,

46

Preliminary Analysis

0

5

10

15

20
25

30

35

40

45

50

55

60
65

70

75

80

85

90

95
100

105

110

115

Training CVE-2016-6662 CVE-2012-5611 CVE-2013-1861 CVE-2012-5627 CVE-2016-6663 Training CVE-2016-6662 CVE-2012-5611 CVE-2013-1861 CVE-2012-5627 CVE-2016-6663

WorkloadS WorkloadN

No
. o

f U
ni

qu
e

Sy
st

em
 C

al
ls

Vulnerabilities

OS LXC Docker

Figure 4.5: Comparison of unique system calls registered during experiment data-
sets creation.

less diversified than Docker traces, which despite fewer total system calls contain more
unique ones. For LXC occurs a higher diverse number of functions as well as a heavily
higher number of total system calls.

47

This page is intentionally left blank.

Chapter 5

Evaluating Intrusion Detection

Algorithms in Containerised Systems

In this chapter, we focus on the experimental evaluation of state-of-the-art and widely
used anomaly-based intrusion detection algorithms, very utilised in other contexts, for
container-based systems. We start by providing an overview of the proposed experimental
methodology utilised to evaluate the effectiveness and applicability of intrusion detection
algorithms to container-based systems based upon representative and meaningful metrics.
In addition, we explain the attack injection procedure and provide details regarding the
vulnerabilities selected to use during this process as well as the experimental procedure
itself. We also provide explanation regarding the analysis of sequences/windows from the
classifiers results, explaining the epoch analysis and thresholding mechanism. Lastly, we
present the results obtained and discuss from different perspectives.

5.1 Experimental Methodology

Our main goal is to understand whether or not intrusion detection techniques are applicable
in container based systems. We are particularly interested in multi-tenant scenarios, where
one of the tenants exploit vulnerabilities of his neighbour containers or their software, to
attack the infrastructure and the remaining containers.

For this, we designed an experimental methodology based on attack injection, trying to
understand if the intrusion detection algorithms provide interesting results in this context,
and also trying to understand the impact of the different configuration of the algorithms
in the results. Figure 5.1 presents an overview of this methodology.

Initially, we used one of the workloads against the system setup in order to generate the
training traces. These were further used to provide the algorithms with data in order to
build profiles for the corresponding platform. The traces were used incrementally, for Bags
of System Calls (BoSC) and Sequence Time-Delaying Embedding (STIDE) we store the
classifiers at 6H, 12H and 24H whereas for Hidden Markov Models (HMM) due to memory
constrains we trained these classifiers for 30min, 1H and 2H. These classifiers were stored
for later use.

49

Chapter 5

Workload training
traces

Workload

Attack
Injection

Algorithms

Classifier
[T0,T1]

Classifier
[T0,T2]

Classifier
[T0,T3]

Measures
System
Setup

+ testing
traces

Figure 5.1: Overview of the proposed experimental methodology.

Following we conducted the attack injection procedure, by using one of the workloads at
a time and injecting the attack at sensibly the middle of the time interval. This results in
the production of mixed type traces, with benign and malicious data to be used for testing
the classifiers.

Thus, following the production of testing traces and the classifiers training, the testing
phase takes place, through feeding the testing data to the classifiers and generating the
measurements.

5.1.1 Workload Characterisation

In order to perform a representative evaluation of the techniques under test, we used
two different types of workloads. For this, we used an implementation of the TPC-C
transaction processing benchmark [58] with two variations as a manner to emulate distinct
usage profiles. The two workloads are characterised as follows:

• WorkloadS is a steady workload with 50 clients connected to the server, continu-
ously performing the TPC-C transactions.

• WorkloadN is a non-steady workload with an interval of clients ranging from 10
to 90. The workload starts with 10 active connections, and increases the number of
clients by 8 every 3 minutes until it reaches the maximum number of connections.
The life span of each connection is 30 minutes, thus after reaching its peak, it starts
decreasing until 10, again. The process repeats for each hour. In addition, the time
parameters previously referred are configurable, as a way to have the same behaviour
during the collection of testing datasets.

These workloads were selected to provide two very diverse operational profiles, to help us
understand the impact that the type of workload has in the results.

5.1.2 Attack Injection

To assess the detection capabilities of the algorithms under test, we must perform an attack
injection procedure so that we are able to collect the traces produced from these malicious

50

Evaluating Intrusion Detection Algorithms in Containerised Systems

endeavours. For this, we searched the vulnerabilities of the MySQL and MariaDB Database
Management System (DBMS) aiming to find their Proof of Concept (PoC), that is exploits.

We aimed at collecting diverse PoC in terms of consequences, type of attack and exploit-
ation procedure. Therefore, after compiling a set of different PoCs, we selected the ones
which provide us with, both remote and local exploits, through buffer overflows, password
cracking, code execution and condition racing, as a venue to achieve privilege escalation
or cause a denial of service.

As a result, the compiled list of Common Vulnerabilities and Exposure (CVE)s corres-
ponding to each of the collected 5 working PoCs whose details are presented in Table 5.1.
Further information about each vulnerability is provided in the following sub-sections.

Table 5.1: List of vulnerabilities used and respective CVE information.

CVE ID
Access
Type

Vulnerability Type(s) Score PoC Reference

CVE-2012-5611 Remote Execute Code, Overflow 6.5 [59]
CVE-2012-5627 Remote Execute Code 4.0 [60]
CVE-2013-1861 Remote Denial Of Service, Overflow 5.0 [61]
CVE-2016-6662 Remote Execute Code, Bypass 10.0 [62]
CVE-2016-6663 Local Gain privileges 4.4 [63]

CVE-2012-5611

The vulnerability with the CVE-2012-5611 allows remote authenticated users to execute
arbitrary code via a long argument to the GRANT FILE command which causes a stack-
based buffer overflow in the acl_get function and as a consequence it causes the server to
restart [64]. ThePoC, which we collected from [59], exploits this vulnerability by trying to
grant file permissions to a database with a name length of 100,000 characters. This name
length causes a buffer overflow and forces the server to restart.

CVE-2012-5627

The CVE-2012-5627 announces that MariaDB does not modify the salt during multiple
executions of the change_user command within the same connection which makes possible
for remote authenticated users to conduct brute force password guessing attacks [65]. The
PoC, originated from [60], connects to a database and through the use of a password
cracking tool, John, the Ripper

1, which due to a constant salt value it is effective.

CVE-2013-1861

CVE-2013-1861 states that the server allows remote attackers to cause a denial of service
via a crafted geometry feature that specifies a large number of points, which is not properly

1https://www.openwall.com/john/

51

https://www.openwall.com/john/

Chapter 5

handled [66]. Therefore, the PoC, collected from [61], exploits this by providing a large
value, and successfully crashes and forces the server to restart.

CVE-2016-6662

Regarding the vulnerability identified by CVE-2016-6662, it allows users to create arbitrary
configurations and bypass certain protection mechanisms by setting general_log_file to
a my.cnf configuration [67]. This vulnerability is classified with a Common Vulnerability
Scoring System (CVSS) score of 10.0, that is the highest score of the scale and the highest
in our set of vulnerabilities. The PoC (from [62]) we collected, modifies the log file to
my.cnf and injects a change in it, adding a line to force the loading of a dynamic library
after a restart in the DBMS, which proceeds to escalate privileges and provide the attacker
access to a root shell. However, during our experiments, we did not restart the server
and only modified configurations and uploaded the dynamic library, which is actually the
attack led by the attacker.

CVE-2016-6663

The vulnerability identified by CVE-2016-6663 allows local users with certain permis-
sions to gain privileges, through a racing condition attack, through leveraging use of
my_copystat by REPAIR TABLE to repair a MyISAM table [68]. The PoC from [63], tries
to alter the permissions of a given file in order to win the race conditions and, ultimately,
assign the intended permissions to a copy of the shell file as a way to achieve a shell with
the privileges of the mysql user.

5.1.3 Experimental Procedure

The experimental procedure is divided into two stages, analogous to the operating stages
of an anomaly-based Intrusion Detection System (IDS). Thus, the procedure consists of a
training stage and a testing stage, which resulted in the production of the datasets analysed
on Section 4.4. During the training stage, the following procedures were conducted:

1. Loading phase: 16 million insert operation.

2. Collection phase: collect the system calls issued by the container during 24h.

3. Training phase: train the algorithms using the data gathered

With focus on the testing stage, it is conducted according to the following steps:

1. Transaction phase: start one of the two workloads during 30min

2. Injection phase: inject the attack at the determined moment

3. Testing phase: feed the testing data to the trained algorithm

4. Measuring phase: the results were compared with the ground truth and the meas-
urements performed

52

Evaluating Intrusion Detection Algorithms in Containerised Systems

In addition, we had to select some configurations to use during the testing phase, namely,
the different training times, 6h, 12h and 24h, the distinct sizes for the window used by
the algorithms, those are 3, 4, 5 and 6, the number of windows per epoch, 500, 1000 and
5000 and the value for the detection threshold for which we selected 5, 10, 20, 50 and
100. All the values presented were used for BoSC and STIDE whereas the use of HMM
required some slight variations. Specifically, the training time was quite short due to
spacial restrictions, in this case, we defined training times of 30min, 1h and 2h. Moreover,
the window sizes do not apply to this algorithms, therefore are not considered, however,
these classifiers require another configuration parameter, the threshold utilised to decide
whether or not a sequence is anomaly. Thus, for this parameter, we selected the values
of 50, 100, 125 and 150, after an examination of the preliminary results produced. All
other parameters remained utilised with the same values as for BoSC and STIDE. Trying
to mitigate the impact of the non-determinism of this type of experiments, each slot was
repeated 3 times.

5.1.4 Measures

The experiments conducted were characterised through the gathering of information about
the classification produced by the trained algorithms. More concretely, we stored the initial
results produced by the classifiers, that is, the direct result of the window classification
performed by BoSC and STIDE, and the sequence analysis conducted by HMM. While the
first two produced a final result for each window (normal or anomalous), HMM produced
the probability of a sequence belonging to the model, that is, the probability of having
been issued by the container to which the profile belongs. As a consequence, in the case of
HMM, there is an additional step, which consists of applying the thresholds defined above,
in order to produce a final result in the same manner as BoSC and STIDE. These final
results produced during this step are stored for later processing.

Following the previous analysis, we conducted an evaluation of the results produced based
upon an epoch analysis where the parameters epoch size and detection threshold are en-
forced, as depicted in Figure 5.2. So, the results are fragmented into epochs of various
lengths, according to the value of the parameter and these analysed through the frequency
of each possible output (normal or anomalous) within that epoch. After performing the
number of occurrences of each class, the value is compared against the value of the para-
meter detection threshold. Then, when the frequency of anomalous windows/sequences
is greater or equal to the value of the detection threshold, the epoch under analysis is
considered anomalous.

N A A A N N NN N NEpoch Size: 5
Threshold: 2

Epoch 1: Normal
Epoch 2: Anomalous

Figure 5.2: Example of epoch analysis of the results.

At the end of this procedure, we conduct a comparison of the results obtained for each
classifier against the ground truth thus computing the absolute values for True Positives
(TPs), False Positives (FPs), True Negatives (TNs) and False Negatives (FNs), which are
later used to compute the performance metrics defined in Section 2.2.2.

53

Chapter 5

We computed the value of recall, through the use of TP and FN in order to verify whether
the classifiers detect the existing attacks, as well as the value for precision to assess how
precise the results produced are by using TP and FP and FPR to understand the percentage
of FP alarms raised among the true anomalies present in the traces.

pre-attack
phase

attack
phase

pos-attack
phase

Figure 5.3: Attack slot classification.

Moreover, we divided the epoch analysis period into three sections, the pre-attack phase,
the attack phase and the post-attack phase because these sections are important due to
their relation to the computation of the metrics values. Reports of anomalous epochs
registered within the attack phase were classified as TPs (?), while the remaining were
classified as FPs. If no epoch was reported as anomalous during the attack phase, we
classify it as FN.

Finally, the analysis of the performance of classifiers is based upon the metrics computed
through these four absolute values.

5.1.5 Experimental Campaign

This section presents the experimental campaign which follows the methodology described
in the previous section. In this campaign, we conducted an analysis on methods used
for intrusion detection in other contexts [69], namely BoSC and STIDE, regarding their
performance on the container-level context. More precisely, we deployed a MariaDB server
(version 5.5.28) onto a Kernel-based Virtual Machine (KVM), a Docker and a LXC con-
tainer on a machine and performed a series of experiments.

3 training times ⇥ 2 training workloads ⇥ 2 algorithms ⇥ 4 window sizes ⇥ 5

exploits ⇥ 2 testing workloads ⇥ 3 epoch sizes ⇥ 5 detection thresholds

We also conducted a similar experiment for HMM, however, just for the Docker platform.

3 training times ⇥ 2 training workloads ⇥ 1 algorithm ⇥ 4 decision thresholds

⇥ 5 exploits ⇥ 2 testing workloads ⇥ 3 epoch sizes ⇥ 5 detection thresholds

The use of KVM aims to represent a traditional deployment of an application, in this case
MariaDB, at the OS level, as a manner to provide basis for comparison against container
deployments in order to validate the results obtained. In addition, the use of KVM allows
to reset the state of the system without the need to perform a clean installation of an OS.

Figure 5.4 depicts an overview of the tests slots, each test slot consists in a sequence of
three collections of the relevant data from the monitoring target. Each collection consists

54

Evaluating Intrusion Detection Algorithms in Containerised Systems

Test Slot 1 Test Slot 2 Test Slot N

Collection 1 Collection 2 Collection 3

Ramp-up
Time

Start Data
Collection

& Workload

Inject
Attack

Stop Data
Collection

Figure 5.4: Experimental procedure and test slots.

in starting the collection of data and the execution of a workload, and an injection attack
procedure noticeably at the middle of the time period, which in practice means an injection
of the attack at 15min after the start of the collection period, since each one lasts for 30min
that is when the last action is performed, to stop the collection of data.

The Figure 5.5 depicts the setup used during this experimental procedure whose constitu-
ents were a Test Driver and a Container Infrastructure machines.

Responses

Workload

Attacks

Test Driver Container
Infrastructure

Figure 5.5: Setup utilised on the experimental campaign.

The Test Driver is provided with an Ubuntu 16.04.3 LTS 64 bit installation, while taking
advantage of a 3.20GHz CPU, 16GB of RAM and a SSD and HDD. Additionally, this
machine was responsible for executing the training workload and the testing workload as
well as the remote attacks and collect the interval period values to establish the ground
truth for further analyses. The Container Infrastructure machine had installed a 64 bit
version of Ubuntu 18.04.2 LTS making use of a 2.8GHz CPU with 32GB of RAM and
SSD and HDD, wherein the containers under test were located. The traces of system calls
generated by the containers were collected and stored in this machine, for later processing.

To collect the traces of system calls, we utilised the container monitoring tool sysdig [46],
as decided previously. Sysdig is a container-oriented tool that natively supports containers
and allows users to format its output as intended. The containers used in this experimental
campaign was configured using the Ubuntu 14.04 LTS Operating System (OS) and then
the MariaDB version 5.5.28 was installed on it from the sources available at their GitHub
repository 2. The MariaDB server was installed with its default configurations.

2https://github.com/MariaDB/server

55

https://github.com/MariaDB/server

Chapter 5

5.2 Results and Discussion

In this section we present and discuss the results obtained during the experimental cam-
paign. We analyse the results produced for the three platforms, OS, LXC and Docker. The
results are analysed from multiple perspectives, such as training time or training workload
utilised, and throughout the course of the analysis of results some options are selected,
based on observations, namely, truncating the results under analysis according in order to
select the most interesting results.

We start through the analysis of the results produced by classifiers trained with different
workloads and various training times, and then proceed to perform a more focused analysis,
initially, concentrating upon window size, for BoSC and STIDE, and decision threshold for
HMM and then continuing on to analyse the impact of different epoch sizes and detection
thresholds based on its expected cost.

In addition, we also reflect upon the classifiers’ generalisation capacity, that is, the ca-
pacity of detecting intrusions when testing datasets which use a different workload from
the one with which were trained. Moreover, an analysis from the exploits perspective is
also provided as well as an overview of the percentage of anomaly reports from classifiers
according to the phase (see Figure 5.3 of the testing dataset.

The results presented come from the average of the three attack injection procedures within
each test slot to reduce the impact of the non-determinism inherent to these experiments.

5.2.1 Overall Results for all Platforms

In this section, we provide an overview of the results. Table 5.2 provides a synopsis of the
general results, which are fully presented in Appendix A.1.

For this overall analysis, we anchored some parameters as a way to truncate the number
of results thus making them more presentable for this section. The observation of data
presented permits to already perceive interesting results, as for instance, the high precision

values for both BoSC and STIDE when testing for intrusions against OS deployment,
despite lower results for recall when compared to the values obtained in the case of LXC.

For this platform, the results are also pretty satisfactory, where STIDE even reaches 0.999
for precision, for window of size 3, epoch of size 500 and detection threshold of 100, also
achieving a F-Measure of 0.874 for the same configuration. Nonetheless, there are also
unsatisfactory results, such as a precision of 0.285 for STIDE with window of size 5, epoch
size of 5000 and a detection threshold of 100, nevertheless, it stills achieves a very high
recall value of 0.966.

With regard to Docker, there are as well some oscillations, with recall ranging from 0.588
to 1.000, whilst precision varies between 0.471 and 0.914 across the different algorithms
utilised.

Furthermore, in the following sections, we dive deeper into parameter-focused analyses aim-
ing to identify the best configuration which achieves the best results in the cost-effectiveness
paradigm.

56

Evaluating Intrusion Detection Algorithms in Containerised Systems

Table 5.2: An overview of the results for all platforms, with 24H training time for BoSC
and STIDE and 2H for HMM.

Platform Algorithm
Window /

Decision Threshold
Epoch
Size

Detection
Threshold

Recall Precision F-Measure FPR

Docker

BoSC

3
500

20 0.982 0.878 0.927 0.003
100 0.975 0.914 0.944 0.002

5000
20 1.000 0.613 0.760 0.016
100 0.970 0.876 0.920 0.003

5
500

20 1.000 0.832 0.908 0.005
100 0.975 0.912 0.943 0.002

5000
20 1.000 0.534 0.696 0.022
100 0.970 0.826 0.892 0.005

STIDE

3
500

20 0.987 0.869 0.924 0.004
100 0.975 0.914 0.944 0.002

5000
20 1.000 0.592 0.744 0.018
100 0.970 0.870 0.917 0.004

5
500

20 1.000 0.809 0.894 0.006
100 0.975 0.904 0.938 0.003

5000
20 1.000 0.508 0.673 0.025
100 0.970 0.747 0.844 0.008

HMM

100
500

20 0.796 0.868 0.830 0.003
100 0.625 0.892 0.735 0.002

5000
20 0.840 0.486 0.616 0.032
100 0.787 0.702 0.742 0.012

150
500

20 0.654 0.844 0.737 0.003
100 0.588 0.891 0.708 0.002

5000
20 0.707 0.471 0.565 0.029
100 0.653 0.676 0.664 0.011

LXC

BoSC

3
500

20 0.820 0.985 0.895 0.000
100 0.603 0.999 0.752 0.000

5000
20 0.914 0.664 0.769 0.004
100 0.819 0.991 0.897 0.000

5
500

20 0.977 0.672 0.796 0.004
100 0.876 0.978 0.924 0.000

5000
20 0.977 0.314 0.475 0.016
100 0.963 0.487 0.646 0.008

STIDE

3
500

20 0.833 0.963 0.893 0.000
100 0.776 0.999 0.874 0.000

5000
20 0.942 0.533 0.681 0.007
100 0.827 0.973 0.894 0.000

5
500

20 0.979 0.577 0.726 0.006
100 0.943 0.840 0.889 0.002

5000
20 0.979 0.285 0.442 0.021
100 0.966 0.390 0.555 0.013

OS

BoSC

3
500

20 0.629 0.977 0.766 0.000
100 0.593 0.987 0.741 0.000

5000
20 0.664 0.876 0.755 0.001
100 0.586 0.962 0.728 0.000

5
500

20 0.666 0.935 0.778 0.000
100 0.593 0.985 0.740 0.000

5000
20 0.670 0.703 0.686 0.003
100 0.594 0.901 0.716 0.001

STIDE

3
500

20 0.635 0.972 0.769 0.000
100 0.593 0.987 0.741 0.000

5000
20 0.670 0.834 0.743 0.001
100 0.586 0.953 0.726 0.000

5
500

20 0.666 0.886 0.760 0.001
100 0.593 0.981 0.739 0.000

5000
20 0.670 0.631 0.650 0.004
100 0.594 0.826 0.691 0.001

57

Chapter 5

5.2.2 Train Time Impact Analysis

For this analysis, we selected the results produced by the classifiers in function of their
training time. There are three different training times for each classifier, whilst BoSC and
STIDE models were training for 6H, 12H and 24H, HMM models were fed with 30min, 1H
and 2H of training data.

These results (Table 5.3) already allow to comprehend a general better performance, in
terms of recall for algorithms operating on the containers domain. That is, while for OS
deployment mode the value of recall ranges from 0.649 to 0.675, for both LXC and Docker
all values, with the exception of HMM, are above of 0.930, which may indicate that either
the attack patterns stood out more or the profile is not as stable for LXC and Docker as
it is for the OS deployment once FPR is also higher for the container-based deployments.

In addition, it is very clear that, on general terms, HMM perform very poorly, achieving
a precision values in the range of 0.106 to 0.117, however, it still achieves a recall which
ranges from 0.753 to 0.845. This is a clear indication that HMM models are, in general
terms, raising a high number of anomalies from which a great number is without reason as
established by the high value of FPR.

Table 5.3: Training Time Analysis for all classifiers for all platforms.

Platform
Train

Time (H)
Algorithm Recall Precision F-Measure FPR

Docker

6
BoSC 0.990 0.782 0.874 0.007
STIDE 0.990 0.722 0.835 0.009

12
BoSC 0.990 0.786 0.876 0.007
STIDE 0.990 0.742 0.848 0.009

24
BoSC 0.989 0.789 0.878 0.007
STIDE 0.990 0.754 0.856 0.008

30min HMM 0.753 0.106 0.186 0.174
1 HMM 0.769 0.109 0.191 0.173
2 HMM 0.845 0.117 0.206 0.175

LXC

6
BoSC 0.959 0.563 0.709 0.006
STIDE 0.972 0.474 0.637 0.009

12
BoSC 0.950 0.609 0.742 0.005
STIDE 0.965 0.521 0.677 0.008

24
BoSC 0.935 0.661 0.775 0.004
STIDE 0.956 0.585 0.726 0.006

OS

6
BoSC 0.666 0.845 0.745 0.001
STIDE 0.675 0.686 0.680 0.003

12
BoSC 0.657 0.869 0.748 0.001
STIDE 0.667 0.767 0.713 0.002

24
BoSC 0.649 0.894 0.752 0.001
STIDE 0.658 0.812 0.726 0.001

From the training time point of view, there is, nonetheless, a general, clear and undeniable
improvement in the precision values obtaining as well as the FPR registered with the

58

Evaluating Intrusion Detection Algorithms in Containerised Systems

increase of the training time. This affirmation is corroborated through the evolution of
F-Measure values, as its increase is motivated by the increase of precision and stable values
regarding recall. Therefore, it is possible to affirm the increase of training time produces
improved results.

Summary

• Precision and, therefore, F-Measure results improve overtime

• The most appropriate training time for both BoSC and STIDE is the 24H period.

• The most appropriate training time for HMM is the 2H period.

5.2.3 Train Workload Type Impact Analysis

In this section, we perform an evaluation from the training workload perspective, aiming
to comprehend whether or not there is a workload which provides more information thus
allowing to define a more stable profile of the container/application under monitoring and,
therefore, achieve higher detection rates. In this analysis, the results presented on Table 5.4
are filtered by training time after the analysis from the time perspective (see Section 5.2.2),
where concluded the 24H and 2H, for HMM, periods provide the most satisfactory results.

In connection with recall values, we can observe high and constant results, even though
OS deployment mode is in the region of 0.638-0.664, which are quite lower results when
compared to either LXC or Docker (0.928-0.958 and 0.807-0.990, respectively). While
precision values remain in the range of 60-90%, in general, and FPR does not achieve 1%
for BoSC and STIDE, HMM models denote low precision values and high FPR.

Table 5.4: Training Workload analysis for classifiers trained during 24H for BoSC and
STIDE, and 2H for HMM, for all platforms.

Platform
Train

Workload
Algorithm Recall Precision F-Measure FPR

Docker

WorkloadS
BoSC 0.990 0.763 0.862 0.008
STIDE 0.990 0.730 0.840 0.009
HMM 0.807 0.080 0.145 0.256

WorkloadN
BoSC 0.989 0.818 0.895 0.005
STIDE 0.990 0.779 0.872 0.007
HMM 0.883 0.205 0.333 0.094

LXC
WorkloadS

BoSC 0.941 0.693 0.798 0.004
STIDE 0.953 0.604 0.740 0.005

WorkloadN
BoSC 0.928 0.626 0.748 0.004
STIDE 0.958 0.567 0.713 0.006

OS
WorkloadS

BoSC 0.660 0.883 0.756 0.001
STIDE 0.664 0.809 0.729 0.001

WorkloadN
BoSC 0.638 0.905 0.748 0.001
STIDE 0.651 0.814 0.723 0.001

59

Chapter 5

Nevertheless, from the perspective of training workloads’ impact, it clear that for OS and
Docker, the transition from WorkloadS classifiers to WorkloadN classifiers allows them to
augment their precision (e.g., from 0.883 to 0.905, BoSC for OS) and reduce the FPR

(e.g., from 0.008 to 0.005, BoSC for Docker) without compromising recall. However,
unexpectedly, in the case of LXC, the classifier whose results were better, were the ones
trained with WorkloadS. Producing higher recall (e.g., from 0.928 to 0.941, BoSC for
LXC) and precision (e.g., from 0.567 to 0.604, STIDE for LXC) values while also slightly
reducing FPR (e.g., from 0.006 to 0.005, STIDE for LXC).

These observations provide reason to state that the WorkloadN provides more satisfactory
results than WorkloadS, for the case of OS and Docker whereas WorkloadS produces better
results for LXC.

Summary

• The training workload utilised has influence over the results obtained.

• For LXC, results show that WorkloadS permits to achieve higher precision and recall

while reducing FPR.

• For OS and Docker, the use of WorkloadN to train classifiers produces better results
in terms of both precision and FPR.

5.2.4 Algorithms Analysis

For this section’s analysis, we focus upon the window size of BoSC and STIDE and upon
the decision threshold for HMM. For this analysis, we filtered the results by training time,
using 24H for BoSC and STIDE and 2H for HMM. In addition, each row of Table 5.5
consists of 900 entries.

Starting by OS results, we are able to observe a decrease in precision values (from 0.948 to
0.838) for BoSC classifiers while the recall increases from 0.631 to 0.673 with the increase
of the window size from 3 to 6. Although there is an increase from 0.000 to 0.001 when
the window size increases from 3 to 4, the FPR remains unaltered for other window sizes.
STIDE demonstrates a similar behaviour, increasing the recall value from 0.633 to 0.700
while precision decreases from 0.937 to 0.684 with window increase. FPR increases from
0.000 to 0.003.

In connection with LXC, we are able to observe a similar behaviour for both BoSC and
STIDE as well. The values of precision drops (from 0.878 to 0.552, for BoSC and from
0.828 to 0.463, for STIDE) whereas recall increases (from 0.853 to 0.979, for BoSC and
from 0.884 to 0.987, for STIDE) as well as FPR (from 0.001 to 0.006, for BoSC and
from 0.002 to 0.010, for STIDE).

While regarding Docker, we could observe a similar behaviour as well. For both BoSC and
STIDE, we can observe an increase in recall and FPR results while precision drops with
window growth. However, the case is portrayed differently for HMM. When the decision
threshold increases to 100, there is a significant increase in both precision (from 0.039 to

60

Evaluating Intrusion Detection Algorithms in Containerised Systems

0.767) as well as F-Measure (from 0.074 to 0.854) and in addition a major reduction in
the FPR (from 0.679 to 0.008 when the decision threshold grows from 50 to 100.

These observations reasons lie with the fact that an increase in window size causes a greater
increase in the number of possible combinations, which as a consequence, decreases the
stability of the profile defined by BoSC and STIDE classifiers. However, for HMM we
denote a huge increaes and improvement in the results obtained with the exchange of the
decision threshold from 50 to 100. This threshold represents the logarithmic probability
from which sequences start being considered as anomalous. Therefore, this means that the
decision threshold 50 is still very low and most probably within the normal behaviour of
the profile, which causes the huge impact of the raising of the decision threshold. Still, the
behaviour of HMM is not regular since if the decision threshold is increased further, to 125
for instance, the results regress which demonstrates the sensitivity of the parameter.

Summary

• Both the window size and the decision threshold have great impact upon the results
of HMM.

• BoSC and STIDE have a results improvement with the decrease of the window size

• Window size 3 and 4 produce the better results for BoSC and STIDE whereas decision
threshold 100 and 125 are the most satisfactory for HMM

5.2.5 Generalisation Analysis

In this section, we step further into the examination of the impact of each training workload
in the results produced. The results presented on Table 5.6 are filtered by training time,
24H, for BoSC and STIDE, and 2H for HMM, and by window size, for BoSC and STIDE,
using window 3 and 4 whereas HMM uses decision thresholds of 100 and 125.

Here, we aim to analyse the generalisation capacity granted to classifiers by each training
workload type. For this, we cross-out the training and testing workload, analysing the
results produced by classifiers trained with WorkloadS when testing WorkloadN datasets,
and vice-versa, and assessing which performs better.

Focusing on OS deployment, it is possible to observe the improvement on results when
classifiers are trained with the non-steady workload. Data shows better results in terms
of recall and precision as well as lower FPR, for both BoSC and STIDE. The same ob-
servations can be made with Docker, while FPR drops, the value of recall and precision

increases as a result of training classifiers with WorkloadN.

However, for LXC, there are a mixed behaviour. While BoSC classifiers behave differently,
STIDE classifiers demonstrate the same attitude towards the training workload as OS and
Docker classifiers. In this case, BoSC classifiers obtained better results when trained with
WorkloadS, with higher recall and precision whereas STIDE produces superior results when
classifiers are trained with the non-steady workload, in terms of recall and precision.

As expected, the majority of classifiers produce superior results when the applied training

61

Chapter 5

Table 5.5: Analysis of algorithms window size and decision threshold for all classifiers for
all platforms.

Platform Algorithm
WS/

Dec. Thr.
Recall Precision F-Measure FPR

Docker

STIDE

3 0.988 0.814 0.893 0.006
4 0.990 0.786 0.876 0.007
5 0.991 0.745 0.851 0.008
6 0.992 0.682 0.809 0.011

BoSC

3 0.987 0.821 0.896 0.005
4 0.989 0.800 0.885 0.006
5 0.990 0.782 0.874 0.007
6 0.991 0.758 0.859 0.008

HMM

50 0.991 0.039 0.074 0.679
100 0.963 0.767 0.854 0.008
125 0.765 0.745 0.755 0.007
150 0.659 0.729 0.692 0.007

LXC

BoSC

3 0.853 0.878 0.865 0.001
4 0.946 0.704 0.807 0.003
5 0.966 0.607 0.746 0.005
6 0.979 0.552 0.706 0.006

STIDE

3 0.884 0.828 0.855 0.002
4 0.972 0.635 0.769 0.005
5 0.980 0.543 0.699 0.007
6 0.987 0.463 0.631 0.010

OS

BoSC

3 0.631 0.948 0.758 0.000
4 0.640 0.918 0.754 0.001
5 0.652 0.882 0.749 0.001
6 0.673 0.838 0.746 0.001

STIDE

3 0.633 0.937 0.755 0.000
4 0.641 0.880 0.742 0.001
5 0.656 0.806 0.724 0.001
6 0.700 0.684 0.692 0.003

WS: Window Size ; Dec. Thr.: Decision Threshold

workload is non-steady. This behaviour occurs as a consequence of the larger diversity of
the datasets which are collected from the execution of the non-steady workload.

Summary

• All OS and Docker classifier as well as STIDE classifiers for LXC produce higher
results in terms of recall and precision.

• BoSC classifiers trained with the steady workload present higher recall and precision

when compared to BoSC classifiers trained with the non-steady workload.

62

Evaluating Intrusion Detection Algorithms in Containerised Systems

Table 5.6: Analysis of training workload generalisation capacity for all platforms.

Platform
Train

Workload
Test

Workload
Algo Recall Prec. F-Meas. FPR

Docker

WorkloadS WorkloadN
BoSC 0.985 0.729 0.838 0.008
STIDE 0.986 0.720 0.832 0.009
HMM 0.796 0.662 0.723 0.010

WorkloadN WorkloadS
BoSC 0.990 0.863 0.922 0.004
STIDE 0.991 0.850 0.915 0.005
HMM 0.928 0.834 0.878 0.005

LXC
WorkloadS WorkloadN

BoSC 0.896 0.789 0.839 0.002
STIDE 0.924 0.702 0.798 0.003

WorkloadN WorkloadS
BoSC 0.881 0.728 0.797 0.002
STIDE 0.931 0.718 0.811 0.003

OS
WorkloadS WorkloadN

BoSC 0.566 0.896 0.693 0.001
STIDE 0.566 0.869 0.685 0.001

WorkloadN WorkloadS
BoSC 0.692 0.943 0.798 0.000
STIDE 0.692 0.906 0.784 0.001

Algo: Algorithm ; Prec.: Precision ; F-Meas.: F-Measure

• As expected the majority of classifiers trained with WorkloadN produces better res-
ults in terms of recall and precision.

5.2.6 ROC and Expected Cost Analysis

For quite some time, the use of Receiver Operating Characteristic (ROC) curves has been
well accepted, and, in most cases, enough to provide a clear visual comprehension of a
classifier’s performance. As explained in Section 2.2.2, ROC combines FPR and recall to
create a curve containing all the different configurations for such classifier. However, as
this selection manner does not take into account the characteristics of the environment,
it may suffer from bias inherent to both recall and FPR. As a consequence, the expected
cost analysis which uses not only recall and FPR as ROC curves but also the hostility of
the operating environment as a way to try to mitigate the referred biases.

In this section, we present a ROC curves group for each platform, with the exception of
Docker, for which we present two charts with ROC curves due to visual incompatibilities
of ROC curves from BoSC and STIDE with HMM. Moreover, the results presented are
filtered by train time, using 24H for BoSC and STIDE, and 2H for HMM, and the use of a
window size of both 3 and 4, and a decision threshold of either 100 or 125 for HMM.

Due to visual restrictions, for Docker the HMM results and the results from BoSC and
STIDE were put into separate charts.

With regard to the results, for BoSC and STIDE, produced to show on Figure 5.6, it occurs
a range in the values of FPR from 0.002 to 0.013 whereas recall ranges from 0.975 to
1.000. In this case, unlike LXC and OS, the results produced are extremely similar among

63

Chapter 5

different algorithm which use the same configuration.

100
50

20

10
5

100
50

20

10
5

100

50

20

10

5

100
50

20

10

5

0.970

0.975

0.980

0.985

0.990

0.995

1.000

0.001 0.004 0.007 0.010 0.013

TP
R

FPR

Docker-BoSC-500

Docker-BoSC-1000

Docker-STIDE-500

Docker-STIDE-1000

Figure 5.6: ROC curve for classifiers used for Docker deployment testing, for BoSC and
STIDE.

In this case, we can observe better results for the BoSC algorithm with an epoch size of
500 due to the higher growth, achieving higher results of recall while maintaining FPR
low.

The analysis of the set of ROC curves from Figure 5.7 allows to observe the range of results
for FPR from 0.001 to 0.046 and the range of recall values from 0.790 to 0.907. While
the two minor epoch sizes produce a lower values of FPR, the use of HMM with epoch size
of 5000.

In connection with the results visible on the ROC curves for LXC containers, we can ob-
serve, in general terms, a range of 0.00 to 0.007 in terms of FPR, and a recall varying from
0.703 to 1.00, without splitting the results by algorithm. Nonetheless, when observing the
results individually, by algorithm and epoch size, it is clearly noted the rapid ascension of
BoSC classifier with 500 of epoch size, which ranges from 0.703 with a detection threshold
of 100 and achieves a 1.000 recall for a detection threshold of 5. Although all epochs
sizes with detection threshold of 5 achieve a recall value of 1.00, they are distinguishable
through the difference in the value of FPR, which gradually increase with the number of
windows/sequences within an epoch and with the algorithms being used. The analysis of
the ROC curves shows STIDE produces a higher value for FPR comparing to BoSC.

However, in general, the results for FPR are quite small, ranging from 0.000 to 0.007
from the results observed in Figure 5.8. Finally, we can based on ROC decide upon the
best classifier and epoch size configuration for LXC containers, which is the use of BoSC
with an epoch of size 500.

Therefore, we present the set of ROC curves for the OS deployment in Figure 5.9, for
BoSC and STIDE. The Figuredepicts an increase of recall with an increase of the FPR
value. All four classifiers configurations demonstrate achieving lower FPR values when the

64

Evaluating Intrusion Detection Algorithms in Containerised Systems

100

50

20

10 5

100

50

20

10 5

100

50
20 10 5

0.790

0.810

0.830

0.850

0.870

0.890

0.910

0.001 0.006 0.011 0.016 0.021 0.026 0.031 0.036 0.041 0.046

TP
R

FPR

Docker-HMM-500

Docker-HMM-1000

Docker-HMM-5000

Figure 5.7: ROC curve for classifiers used for Docker deployment testing, for HMM.

100

50

20

10
5

100

50

20

10

5

100

50
20

10 5

100

50

20

10
5

0.700

0.725

0.750

0.775

0.800

0.825

0.850

0.875

0.900

0.925

0.950

0.975

1.000

0.000 0.001 0.002 0.003 0.004 0.005 0.006 0.007 0.008

TP
R

FPR

LXC-BoSC-500

LXC-BoSC-1000

LXC-STIDE-500

LXC-STIDE-1000

Figure 5.8: ROC curve for classifiers used for LXC deployment testing.

detection threshold value corresponds to the highest, that is 100. A more in-depth analysis,
clearly depicts the curve for BoSC using an epoch size of 500 as the one which grows faster
and, globaly, results in a smaller FPR that the other for the same configuration despite
achieving the same levels of recall.

For this curve, we are able to observe a range of 0.0001 to 0.0006 for FPR and a recall
within the interval from 0.5927 to 0.6760 for BoSC with an epoch size of 500 whereas for
the curve of STIDE using an epoch size of 1000 the decrease of the detection threshold
value, provokes a larger increase on the FPR.

The FPR values reported for these configurations are quite small, ranging from 0 to 0.0016

65

Chapter 5

while recall ranges from 0.593 to 0.677. In this preliminary example we are able, through
the analysis of results depicted, to select the best configuration of algorithm and epoch
size, from which results the selection of BoSC with an epoch size of 500.

100

50

20

10

5

100
50

20
10

5

100

50

20

10 5

100

50

20
10

5

0.580

0.590

0.600

0.610

0.620

0.630

0.640

0.650

0.660

0.670

0.680

0.0000 0.0003 0.0006 0.0009 0.0012 0.0015 0.0018

TP
R

FPR

OS-BoSC-500

OS-BoSC-1000

OS-STIDE-500

OS-STIDE-1000

Figure 5.9: ROC curve for classifiers used for OS deployment testing.

In order to take into account the hostility of the operating environment, we also conducted
an expected cost analysis as a way to achieve a specific value and proceed to compare the
different classifiers based upon it. After selecting the best results for each combination of
algorithms and epoch size, we condensed the results on Table 5.7 as a comparison manner
for all the configurations defined.

The main aim of this comparison is to select the least costly configuration of algorithm,
epoch size and detection threshold. Therefore, on Table 5.7 we can observe the expected
cost for each configuration, and starting from the OS deployments cost, we can see that the
cost for each option resides in the same region, ranging the values from 0.0305 to 0.0332.
In this case, we are able to select the best performing configuration for BoSC and STIDE,
with a epoch size of 500 and a detection threshold of 5.

Regarding LXC, we obtain costs ranging from 0.0034 to 0.0123. The best results for this
case, are also with the configuration of 500 for epoch size and 5 for detection threshold,
with expected costs of 0.0034 for BoSC and 0.0048 for STIDE.

In connection with Docker, we can observe that HMM results in higher costs than both
BoSC and STIDE. While BoSC and STIDE produce costs ranging from 0.0053 to 0.0118,
HMM results in costs in the region of 0.0318 to 0.0579. Nonetheless, all three algorithms
produce the lowest expected costs for the configuration of epoch size of 500 and detection
threshold of 10.

66

Evaluating Intrusion Detection Algorithms in Containerised Systems

Table 5.7: Expected Cost Analysis for least costly configurations for each platform.

Platform Algorithm
Epoch
Size

Detection
Threshold

P(I) Recall FPR
Expected

Cost

Docker

BoSC
500 10 0.024 1.000 0.005 0.0053
1000 20 0.024 0.989 0.006 0.0082
5000 100 0.025 0.970 0.004 0.0112

STIDE
500 10 0.024 1.000 0.006 0.0057
1000 20 0.024 0.993 0.006 0.0078
5000 100 0.025 0.970 0.004 0.0118

HMM
500 10 0.026 0.895 0.005 0.0318
1000 50 0.027 0.876 0.003 0.0369
5000 50 0.035 0.900 0.024 0.0579

LXC

BoSC
500 5 0.008 1.000 0.003 0.0034
1000 5 0.008 1.000 0.005 0.0054
5000 100 0.008 0.876 0.001 0.0109

STIDE
500 5 0.008 1.000 0.005 0.0048
1000 10 0.008 0.982 0.005 0.0067
5000 100 0.008 0.896 0.004 0.0123

OS

BoSC
500 5 0.009 0.677 0.001 0.0305
1000 5 0.009 0.677 0.001 0.0309
5000 20 0.009 0.667 0.001 0.0329

STIDE
500 5 0.009 0.676 0.001 0.0308
1000 5 0.009 0.677 0.002 0.0314
5000 20 0.009 0.670 0.002 0.0332

Summary

• All results demonstrate that higher detection thresholds produce smaller recall and
FPR values due to necessity of higher number of anomalous windows/sequences.

• All configuration with epoch size of 500 produce the least amount of expected cost.

• The detection thresholds which produce lower expected cost are 5, for OS and LXC,
and 10 for Docker.

5.2.7 Analysis of the Report Distribution

During this section, we aim to analyse the reports produced by the classifiers during the
three different phases of the testing stage. As mentioned earlier, we segmented the testing
stage into three phases: pre-attack phase (previous), attack phase (during) and post-attack
phase (after) (see Figure 5.3 for details). The charts present in this section depict the
distribution of the alarms percentage raised by the classifiers trained with both workloadS

and workloadN.

Data presented in the charts was filtered, as before, by training time, 24H for BoSC and
STIDE and 2H for HMM classifiers, moreover, we have also filtered through the window

67

Chapter 5

size of 3 and 4 for BoSC and STIDE whereas for HMM we selected the decision threshold
of 100 and 125. In addition, we crossed all the information regarding epoch size and
detection threshold as well as algorithms and separated it by training workload, while the
results from classifiers trained with WorkloadS are on left of the chart, the ones trained
with WorkloadN are on the right.

WorkloadS

WorkloadN
0.02%

0.05%

0.10%

0.20%

0.39%

0.78%

1.56%

3.13%

6.25%

12.50%

25.00%

50.00%

100.00%

bosc
w=3 e=500 t=

5

bosc
w=3 e=500 t=

50

bosc
w=3 e=1000 t=

10

bosc
w=3 e=1000 t=

100

bosc
w=3 e=5000 t=

20

bosc
w=4 e=500 t=

5

bosc
w=4 e=500 t=

50

bosc
w=4 e=1000 t=

10

bosc
w=4 e=1000 t=

100

bosc
w=4 e=5000 t=

20

hmm w=100 e=500 t=
5

hmm w=100 e=500 t=
50

hmm w=100 e=1000 t=
10

hmm w=100 e=1000 t=
100

hmm w=100 e=5000 t=
20

hmm w=125 e=500 t=
5

hmm w=125 e=500 t=
50

hmm w=125 e=1000 t=
10

hmm w=125 e=1000 t=
100

hmm w=125 e=5000 t=
20

stid
e w=3 e=500 t=

5

stid
e w=3 e=500 t=

50

stid
e w=3 e=1000 t=

10

stid
e w=3 e=1000 t=

100

stid
e w=3 e=5000 t=

20

stid
e w=4 e=500 t=

5

stid
e w=4 e=500 t=

50

stid
e w=4 e=1000 t=

10

stid
e w=4 e=1000 t=

100

stid
e w=4 e=5000 t=

20

bosc
w=3 e=500 t=

5

bosc
w=3 e=500 t=

50

bosc
w=3 e=1000 t=

10

bosc
w=3 e=1000 t=

100

bosc
w=3 e=5000 t=

20

bosc
w=4 e=500 t=

5

bosc
w=4 e=500 t=

50

bosc
w=4 e=1000 t=

10

bosc
w=4 e=1000 t=

100

bosc
w=4 e=5000 t=

20

hmm w=100 e=500 t=
5

hmm w=100 e=500 t=
50

hmm w=100 e=1000 t=
10

hmm w=100 e=1000 t=
100

hmm w=100 e=5000 t=
20

hmm w=125 e=500 t=
5

hmm w=125 e=500 t=
50

hmm w=125 e=1000 t=
10

hmm w=125 e=1000 t=
100

hmm w=125 e=5000 t=
20

stid
e w=3 e=500 t=

5

stid
e w=3 e=500 t=

50

stid
e w=3 e=1000 t=

10

stid
e w=3 e=1000 t=

100

stid
e w=3 e=5000 t=

20

stid
e w=4 e=500 t=

5

stid
e w=4 e=500 t=

50

stid
e w=4 e=1000 t=

10

stid
e w=4 e=1000 t=

100

stid
e w=4 e=5000 t=

20

Previous During After

Figure 5.10: Distribution of the reports for Docker deployment according to the phase,
with WorkloadS (steady workload) on the left and WorkloadN (non-steady workload) on
the right.

Focusing on the results from the analysis of Docker reports, we can clearly note a wide gap
between the curve of the percentage of reports during the attack phase when compared to
the curve of both pre-attack phase and post-attack phase. While the results of the attack
phase range from 32% to 79.55%, the other two phases range from 0% to 10.56%.

In addition, the analysis of both halfs of the chart, shows without doubt a decrease in
the reports for classifiers trained with the non-steady workload. Classifiers trained with
the WorkloadS produce a range of reports with a percentage ranging from 0% to 10.56%
whereas classifiers fed with data from the non-steady workload for training resulted in a
percentage ranging from 0% to 3.77%. Thus it is possible to conclude that, for Docker,
WorkloadN produces more precise results.

Regarding the report issued for LXC containers, we can observe an almost clear distinction
between the curve for the attack phase and the pre-attack and post-attack phases, with
the exception of 4 points which produce an extremely low percentage of reports. The
configuration of these points holds on an epoch size of 500 and a detection threshold of
100. Once more, this very strict configuration limits the number of anomaly reports raised
due to the high percentage of anomaly windows/sequences required. In these cases, the
percentage of reports drops to a value lower than 0.2%, nonetheless this percentage drop
is also verified for the other two phases of detection, where the percentage of reports drops
to nearly 0% in these cases. With the exception of these outliers, the remaining results
do not exceed the value of 2.4% for pre-attack and post-attack phases whereas during the
attack phase the percentage of reports is, in general, at least, 3.1% and producing at most

68

Evaluating Intrusion Detection Algorithms in Containerised Systems

WorkloadS

WorkloadN
0.00%

0.00%

0.00%

0.00%

0.00%

0.01%

0.01%

0.02%

0.05%

0.10%

0.20%

0.39%

0.78%

1.56%

3.13%

6.25%

12.50%

25.00%

50.00%

100.00%

bosc
w=3 e=500 t=

5

bosc
w=3 e=500 t=

20

bosc
w=3 e=500 t=

100

bosc
w=3 e=1000 t=

10

bosc
w=3 e=1000 t=

50

bosc
w=3 e=5000 t=

5

bosc
w=3 e=5000 t=

20

bosc
w=3 e=5000 t=

100

bosc
w=4 e=500 t=

10

bosc
w=4 e=500 t=

50

bosc
w=4 e=1000 t=

5

bosc
w=4 e=1000 t=

20

bosc
w=4 e=1000 t=

100

bosc
w=4 e=5000 t=

10

bosc
w=4 e=5000 t=

50

stid
e w=3 e=500 t=

5

stid
e w=3 e=500 t=

20

stid
e w=3 e=500 t=

100

stid
e w=3 e=1000 t=

10

stid
e w=3 e=1000 t=

50

stid
e w=3 e=5000 t=

5

stid
e w=3 e=5000 t=

20

stid
e w=3 e=5000 t=

100

stid
e w=4 e=500 t=

10

stid
e w=4 e=500 t=

50

stid
e w=4 e=1000 t=

5

stid
e w=4 e=1000 t=

20

stid
e w=4 e=1000 t=

100

stid
e w=4 e=5000 t=

10

stid
e w=4 e=5000 t=

50

bosc
w=3 e=500 t=

5

bosc
w=3 e=500 t=

20

bosc
w=3 e=500 t=

100

bosc
w=3 e=1000 t=

10

bosc
w=3 e=1000 t=

50

bosc
w=3 e=5000 t=

5

bosc
w=3 e=5000 t=

20

bosc
w=3 e=5000 t=

100

bosc
w=4 e=500 t=

10

bosc
w=4 e=500 t=

50

bosc
w=4 e=1000 t=

5

bosc
w=4 e=1000 t=

20

bosc
w=4 e=1000 t=

100

bosc
w=4 e=5000 t=

10

bosc
w=4 e=5000 t=

50

stid
e w=3 e=500 t=

5

stid
e w=3 e=500 t=

20

stid
e w=3 e=500 t=

100

stid
e w=3 e=1000 t=

10

stid
e w=3 e=1000 t=

50

stid
e w=3 e=5000 t=

5

stid
e w=3 e=5000 t=

20

stid
e w=3 e=5000 t=

100

stid
e w=4 e=500 t=

10

stid
e w=4 e=500 t=

50

stid
e w=4 e=1000 t=

5

stid
e w=4 e=1000 t=

20

stid
e w=4 e=1000 t=

100

stid
e w=4 e=5000 t=

10

stid
e w=4 e=5000 t=

50

Previous During After

Figure 5.11: Distribution of the reports for LXC deployment according to the phase, with
WorkloadS (steady workload) on the left and WorkloadN (non-steady workload) on the
right.

a percentage of 63% of reports.

In addition, we can observe slight increases for cases such as window size of 4 for BoSC and
an epoch size of 5000 with a detection threshold of 5. With this configuration is possible
to note an increase in the percentage of reports from 51.16% (with WorkloadS) to 62.57%
(with WorkloadN).

WorkloadS

WorkloadN
0.00%

0.00%

0.01%

0.01%

0.02%

0.05%

0.10%

0.20%

0.39%

0.78%

1.56%

3.13%

6.25%

12.50%

25.00%

50.00%

100.00%

bosc
w=3 e=500 t=

5

bosc
w=3 e=500 t=

20

bosc
w=3 e=500 t=

100

bosc
w=3 e=1000 t=

10

bosc
w=3 e=1000 t=

50

bosc
w=3 e=5000 t=

5

bosc
w=3 e=5000 t=

20

bosc
w=3 e=5000 t=

100

bosc
w=4 e=500 t=

10

bosc
w=4 e=500 t=

50

bosc
w=4 e=1000 t=

5

bosc
w=4 e=1000 t=

20

bosc
w=4 e=1000 t=

100

bosc
w=4 e=5000 t=

10

bosc
w=4 e=5000 t=

50

stid
e w=3 e=500 t=

5

stid
e w=3 e=500 t=

20

stid
e w=3 e=500 t=

100

stid
e w=3 e=1000 t=

10

stid
e w=3 e=1000 t=

50

stid
e w=3 e=5000 t=

5

stid
e w=3 e=5000 t=

20

stid
e w=3 e=5000 t=

100

stid
e w=4 e=500 t=

10

stid
e w=4 e=500 t=

50

stid
e w=4 e=1000 t=

5

stid
e w=4 e=1000 t=

20

stid
e w=4 e=1000 t=

100

stid
e w=4 e=5000 t=

10

stid
e w=4 e=5000 t=

50

bosc
w=3 e=500 t=

5

bosc
w=3 e=500 t=

20

bosc
w=3 e=500 t=

100

bosc
w=3 e=1000 t=

10

bosc
w=3 e=1000 t=

50

bosc
w=3 e=5000 t=

5

bosc
w=3 e=5000 t=

20

bosc
w=3 e=5000 t=

100

bosc
w=4 e=500 t=

10

bosc
w=4 e=500 t=

50

bosc
w=4 e=1000 t=

5

bosc
w=4 e=1000 t=

20

bosc
w=4 e=1000 t=

100

bosc
w=4 e=5000 t=

10

bosc
w=4 e=5000 t=

50

stid
e w=3 e=500 t=

5

stid
e w=3 e=500 t=

20

stid
e w=3 e=500 t=

100

stid
e w=3 e=1000 t=

10

stid
e w=3 e=1000 t=

50

stid
e w=3 e=5000 t=

5

stid
e w=3 e=5000 t=

20

stid
e w=3 e=5000 t=

100

stid
e w=4 e=500 t=

10

stid
e w=4 e=500 t=

50

stid
e w=4 e=1000 t=

5

stid
e w=4 e=1000 t=

20

stid
e w=4 e=1000 t=

100

stid
e w=4 e=5000 t=

10

stid
e w=4 e=5000 t=

50

Previous During After

Figure 5.12: Distribution of the reports for OS deployment according to the phase, with
WorkloadS (steady workload) on the left and WorkloadN (non-steady workload) on the
right.

69

Chapter 5

With regard to the results produced for the OS deployment, we are able to observe that
during the attack phase there are higher percentage of reports, which was obviously expec-
ted. In this phase, the values registered range from 1.56% to nearly 25%. Although these
percentages are not as high as expected, they are clearly distinguishable from the other
two phases, which report rates are below 1%.

In connection with the attacking phase curve, we observe the lowest percentage at points
where the epoch size is 500 and the detection threshold 100. As a consequence, for an
anomaly report to be issued with such configuration, it is required a level of anomaly higher
than 20% within a given epoch. This configuration is actually the more strict, in terms of
number of windows/sequences anomalous within an epoch. Therefore, this fact combined
with possibly traces not very distinct results in lower report rate.

On the other hand, the highest report rate registered occurs with a configuration utilising
an epoch size of 5000 and a detection threshold of 5. The main reason for this is the
opposite to the one stated before. In this case, we have the most liberal configuration
where it is only required a 0.1% of anomalous windows within a certain epoch to raise an
anomaly alert.

Despite these rates to produce an alert, the curves for pre-attack and post-attack phases
remain low, indicating the isolated act of the attack.

Moreover, despite some slight improvements in the reports percentage on some occasions,
such as STIDE with window of size 4, epoch size of 500 and detection threshold of 5,
all curves seem to have the same behaviour independently of the training workload under
utilisation.

Summary

• The percentage of reports is higher during the attack phase for every platform

• It is possible to note, on some occasions for all platforms, an increase in the percentage
of reports during the attack phase and a decrease during the other two phases

• Docker has the widest gap between the attack phase and the other ones and produces
reports very focused on the attack phase, while rarely reporting anomalies outside of
this scope

5.2.8 Analysis of Results per Exploit

In this section, an exploit-focused analysis is performed in order to comprehend the type
of attacks which are more easily picked up by the classifiers. In addition, the results
presented in Table 5.8 were subjected to filtering by training time and window size and
decision threshold.

For CVE-2016-6662, classifiers seem to perform poorly in detecting the attack. Regarding
LXC and Docker, the almost no classifier surpasses the 50% barrier in both recall and
precision, with the exception of BoSC and STIDE which registered 0.516 and 0.550 for
recall for Docker. In addition, HMM actually reported 0% in both recall and precision for

70

Evaluating Intrusion Detection Algorithms in Containerised Systems

the exploitation of this vulnerability. However, in the case of the OS deployment, we can
observe an average performance given that recall values are 0.558 for BoSC and 0.572
for STIDE whereas the value of precision was 0.726 and 0.647 for BoSC and STIDE,
respectively.

Table 5.8: Analysis of results with focus on the Exploits utilised.

Platform Exploit No. Algorithm Recall Prec. F-Meas. FPR

Docker

CVE-2016-6662
BoSC 0.516 0.324 0.398 0.003
STIDE 0.550 0.308 0.395 0.003
HMM 0.000 0.000 0.000 0.004

CVE-2012-5611
BoSC 1.000 0.680 0.810 0.013
STIDE 1.000 0.669 0.802 0.013
HMM 1.000 0.640 0.780 0.017

CVE-2013-1861
BoSC 1.000 0.789 0.882 0.011
STIDE 1.000 0.779 0.876 0.012
HMM 1.000 0.771 0.871 0.013

CVE-2012-5627
BoSC 1.000 0.954 0.977 0.002
STIDE 1.000 0.952 0.975 0.002
HMM 0.709 0.953 0.813 0.002

CVE-2016-6663
BoSC 1.000 0.918 0.957 0.001
STIDE 1.000 0.912 0.954 0.002
HMM 0.983 0.831 0.901 0.004

LXC

CVE-2016-6662
BoSC 0.386 0.322 0.351 0.002
STIDE 0.440 0.256 0.324 0.003

CVE-2012-5611
BoSC 1.000 0.838 0.912 0.002
STIDE 1.000 0.814 0.898 0.003

CVE-2013-1861
BoSC 1.000 0.451 0.621 0.002
STIDE 1.000 0.341 0.509 0.003

CVE-2012-5627
BoSC 0.608 0.571 0.589 0.002
STIDE 0.695 0.491 0.576 0.003

CVE-2016-6663
BoSC 0.974 0.912 0.942 0.002
STIDE 0.993 0.870 0.927 0.004

OS

CVE-2016-6662
BoSC 0.558 0.726 0.631 0.001
STIDE 0.572 0.647 0.607 0.001

CVE-2012-5611
BoSC 1.000 0.938 0.968 0.001
STIDE 1.000 0.917 0.957 0.001

CVE-2013-1861
BoSC 1.000 0.973 0.986 0.000
STIDE 1.000 0.961 0.980 0.001

CVE-2012-5627
BoSC 0.006 0.275 0.012 0.000
STIDE 0.006 0.216 0.012 0.000

CVE-2016-6663
BoSC 0.999 0.967 0.982 0.000
STIDE 0.999 0.959 0.979 0.000

Furthermore, CVE-2012-5611 and CVE-2013-1861 demonstrate a similar performance for
all classifiers from every platform, with high recall values and precision and low FPR.
Nonetheless, there is an exception with regard to the classifiers of BoSC and STIDE for

71

Chapter 5

LXC, which demonstrate a decrease value for precision, 0,451 for BoSC and 0.341 for
STIDE.

While Docker classifiers easily and with high precision detect both CVE-2012-5627 and
CVE-2016-6663, LXC and OS classifiers struggle to detect the exploitation of CVE-2012-
5627, which is left undetected by the classifiers of the OS deployment, where it was re-
gistered a values of 0.006 for recall and around 20% for precision. Also for CVE-2012-5627,
LXC classifiers produce a recall of 0.608 for BoSC and 0.695 for STIDE whereas for pre-

cision produced 0.571 and 0.491, respectively.

The lack of capacity in detecting the exploit for CVE-2016-6662 resides in the short attack
span and the reduced number of modifications. Nonetheless, at the OS deployment the
detection is pretty successful.

Summary

• The exploitation of CVE-2012-5611, CVE-2013-1861 and CVE-2016-6663 are easily
detected fully, producing recall values in the region of 100%, however in some cases
precision is not as high due to attack consequences which are deemed anomalous but
are outside of the attack span.

• HMM classifier does not detect the CVE-2016-6662 exploitation.

• CVE-2012-5627 produces very diverse results, although for Docker the attack is
clearly detected, for LXC the results are in the region of 50-60% for recall and
precision while for OS the attack is not detected.

5.2.9 Analysis of the Best Cases for each Platform

For this final section, we selected the best configuration for all platforms, in order to
compile in a table the best results for each one. All results presented in the following
tables resulted from a 24H, for BoSC and STIDE and a 2H, for HMM, training period.

In connection to Docker, we are able to observe a nearly constant high value for recall across
all configurations, while precision may suffer on some occasions. The values registered for
recall range from 0.821 to 1.000, whereas precision remains in the interval of 0.549 to
0.838 and FPR ranges from 0.005 to 0.020. For this platform the analysis of Table 5.9
permits to draw the conclusion that the most efficient, in terms of F-Measure, is the BoSC
algorithm with a window of size 3, an epoch size of 500 and a detection threshold of 10.

Focusing on LXC, we can observe high levels of recall for every entry in Table 5.10, having
a range of 0.926 to 1.000, while precision values range from 0.484 to 0.928 and FPR
starting at 0.001 to 0.009. In this case, the highest value for F-Measure is produced with
a BoSC classifier using a window of size 3, an epoch size of 500 and a detection threshold
of 10.

With regard to OS, the analysis of Table 5.11 allows to conclude the incapacity of the
algorithms to overcome the 0.687 barrier for recall values. Nevertheless, these classifiers
achieve very high precision values for the most of configurations, with 0.957 as the highest

72

Evaluating Intrusion Detection Algorithms in Containerised Systems

Table 5.9: Docker deployment best case with 24H for BoSC and STIDE and 2H for HMM
of Training Time.

Algorithm
WS/

Dec. Thr.
Epoch
Size

Detection
Threshold

Recall Prec. F-Meas. FPR

BoSC

3
500

5 1.000 0.770 0.870 0.007
10 1.000 0.830 0.907 0.005

1000
5 1.000 0.685 0.813 0.011
10 1.000 0.756 0.861 0.008

4
500

5 1.000 0.751 0.858 0.008
10 1.000 0.811 0.896 0.006

1000
5 1.000 0.664 0.798 0.013
10 1.000 0.736 0.848 0.009

STIDE

3
500

5 1.000 0.763 0.866 0.008
10 1.000 0.823 0.903 0.005

1000
5 1.000 0.677 0.808 0.012
10 1.000 0.749 0.857 0.008

4
500

5 1.000 0.735 0.848 0.009
10 1.000 0.797 0.887 0.006

1000
5 1.000 0.647 0.786 0.014
10 1.000 0.722 0.839 0.010

HMM

100
500

5 0.965 0.670 0.791 0.013
10 0.965 0.838 0.897 0.005

1000
5 0.959 0.569 0.714 0.020
10 0.959 0.654 0.778 0.014

125
500

5 0.824 0.675 0.742 0.010
10 0.824 0.822 0.823 0.005

1000
5 0.821 0.549 0.658 0.019
10 0.821 0.659 0.731 0.012

one registered for window size of 3, epoch size of 500 and a detection threshold of 10,
where it also resulted in a 0.000 for FPR.

73

Chapter 5

Table 5.10: LXC deployment best case with 24H of Training Time.

Algorithm
Window

Size
Epoch
Size

Detection
Threshold

Recall Prec. F-Meas. FPR

BoSC

3
500

5 0.999 0.820 0.901 0.002
10 0.926 0.928 0.927 0.001

1000
5 0.999 0.701 0.824 0.003
10 0.938 0.832 0.882 0.002

4
500

5 1.000 0.603 0.753 0.005
10 1.000 0.697 0.822 0.003

1000
5 1.000 0.510 0.676 0.007
10 1.000 0.580 0.734 0.006

STIDE

3
500

5 0.999 0.745 0.854 0.003
10 0.929 0.862 0.894 0.001

1000
5 0.999 0.629 0.772 0.005
10 0.964 0.743 0.839 0.003

4
500

5 1.000 0.558 0.716 0.007
10 1.000 0.613 0.760 0.005

1000
5 1.000 0.484 0.652 0.009
10 1.000 0.523 0.687 0.008

Table 5.11: OS deployment best case with 24H of Training Time.

Algorithm
Window

Size
Epoch
Size

Detection
Threshold

Recall Prec. F-Meas. FPR

BoSC

3
500

5 0.666 0.925 0.774 0.000
10 0.666 0.957 0.785 0.000

1000
5 0.666 0.884 0.760 0.001
10 0.666 0.927 0.775 0.000

4
500

5 0.686 0.889 0.775 0.001
10 0.666 0.927 0.775 0.000

1000
5 0.687 0.829 0.751 0.001
10 0.666 0.888 0.761 0.001

STIDE

3
500

5 0.666 0.911 0.769 0.001
10 0.666 0.946 0.781 0.000

1000
5 0.666 0.861 0.751 0.001
10 0.666 0.910 0.769 0.001

4
500

5 0.686 0.828 0.750 0.001
10 0.666 0.891 0.762 0.001

1000
5 0.687 0.752 0.718 0.002
10 0.666 0.834 0.741 0.001

74

Chapter 6

Conclusions and Future Work

The increasing usage of containers for cloud services provides high scalability and the
capability to efficiently manage resources according to current demand. In addition, the
possibility to share physical resources for multiple tenants at a lower level and closer to the
Operating System (OS) contributes to performance improvements. The portability granted
by this technology allows building faster and without taking into account the worries of
underlying technologies, such as the OS. These features encourage its adoption since we live
in a rapidly changing world and the time-to-market is extremely important to companies
and the services they provide.

However, the security concerns widen as the structure is shared by multiple actors and some
might have malicious intentions toward its tenant neighbours. Thus, in addition to the
traditional security concerns, the provider must also be concerned in assuring the identific-
ation of malicious containers and the security of non-malicious ones. Intrusion detection is
a technique with proven results and we argue it is a must have for container-based multi-
tenant environments, where the detection of attacks from and against containers within
the infrastructure is of utmost importance for service providers as well as their customers.

In this work we proposed an experimental methodology to rigorously evaluate the effect-
iveness of intrusion detection algorithms in container-based systems. For this, we adopted
the best practices from system’s performance evaluation such as representative workloads
and state of the art concepts of attack injection. We adapted widely used metrics to be
used, defined representative setups and automated the test execution and results analysis
tasks. This methodology guided the experiments performed in this work.

The results obtained during our experiments provide evidences of the applicability and
effectiveness of state-of-the-art anomaly based intrusion detection algorithms for contain-
erised deployments. The attacks were clearly detected and the results also demonstrate
low false positives reports. The algorithms BoSC and STIDE demonstrated to be effective
with both high recall and high precision while producing low false positives.

HMM was also evaluated, but we only obtained results for Docker containers and in this
case it produced as well high recall values, although not has high as for BoSC and STIDE,
and low false positives, for some configurations as low as BoSC and STIDE. However, the
scalability limitations observed in the algorithm most likely limit its adoption in practice.

75

We also observed that, as expected, the configuration of the intrusion detection algorithm
impacts its performance. This is quite common, as the careful tuning of IDSes is a fre-
quent requirement in other domains. In our experiments, windows of size 3 and 4 performed
better, combined with epochs of length 500 and 1000 with thresholds of 5 and 10. Never-
theless, good results were observed for most of the configurations, evidencing that this is no
product of overfitting effects. In fact, our analysis of generalisation shows that even when
using workloads with different operation profiles, the algorithms achieved good results.

It was also shown that the increase in the training time of classifiers produced better
results, for every algorithms used in the experimental campaign. Although the training
time, for STIDE and BoSC, of 24H produces the most precise results, after 12H of training
the classifiers are already capable of producing acceptable results. This comes into line
with the results of our preliminary study to the definition of stable profiles where, we
achieved steady-state for the learning procedure under 10H, in some occasions.

In general, the results observed were more satisfactory for container deployments when
compared to the traditional OS-level deployment. A more complete study would be ne-
cessary to conclude that intrusion detection performs better in containers than in more
traditional setups, such as virtual machines, but this is not one of our goals. Our experi-
ments were sufficient to understand that while in containers it is quite easy to define the
monitoring surface, and can be done in a highly portable way, in a traditional machine/OS
we need the additional concern of defining this surface, and its incorrect definition may
lead to unsatisfactory results.

Future Work

Future work includes the extension of the evaluation presented in this work by adding
more representative and more complex systems, in order to diversify their range and prove
the generalisation of the technique. In addition, the inclusion of new vulnerabilities and
exploits would also be a great inclusion as a way to increase the representativeness of our
results.

It also includes the extension of the evaluation to other state-of-the-art intrusion detection
algorithms aiming to widen the range of techniques whose applicability to containerised
systems have been studied. Among these algorithms, we can find Naïve Bayes (NB),
One-Class Support Vector Machines (OCSVM) or K-Nearest Neighbour (KNN) due to its
previous usage in this field.

Furthermore, this work may lead to the research of new security counter-measures. For
instance, intrusion tolerance and reaction mechanisms would be a great addition to these
environments. In fact, the containers environment has the necessary characteristics to
instantiate techniques of intrusion tolerance based on replication and intrusion detection:
these would take advantage of the rapid and inexpensive instantiation and reusable char-
acteristics of containers.

Intrusion detection in compositions of containers is also an area that we plan to explore.
The monitoring procedure applied to groups of containers whose operation is connected
may result in the capability of detecting attacks more efficiently due to cross-referencing
information collected from the different related sources.

76

References

[1] Peter Mell and Timothy Grance. The NIST Definition of Cloud Computing. Computer

Security Division, Information Technology Laboratory, National, page 7, September
2011.

[2] Murugiah Souppaya, John Morello, and Karen Scarfone. Application container secur-
ity guide. Technical Report NIST SP 800-190, National Institute of Standards and
Technology, Gaithersburg, MD, September 2017.

[3] K A Scarfone, M P Souppaya, and P Hoffman. Guide to security for full virtualization
technologies. Technical Report NIST SP 800-125, National Institute of Standards and
Technology, Gaithersburg, MD, 2011.

[4] Michael Kerrisk. cgroups - Linux control groups. http://man7.org/linux/
man-pages/man7/cgroups.7.html, October 2018. [Accessed: 2019-01-14].

[5] Michael Kerrisk. namespaces - overview of Linux namespaces. http://man7.org/
linux/man-pages/man7/namespaces.7.html, October 2018. [Accessed: 2019-01-14].

[6] datadoghq. 8 surprising facts about real docker adoption. https://www.datadoghq.
com/docker-adoption/, June 2018. [Accessed: 2019-01-02].

[7] Docker. https://www.docker.com. Accessed: 2019-04-10.

[8] Nick Antonopoulos. Cloud computing: principles, systems and applications. Springer
Berlin Heidelberg, New York, NY, 2017.

[9] Marcello Cinque, Raffaele Della Corte, Antonio Eliso, and Antonio Pecchia. RT-
CASEs: Container-Based Virtualization for Temporally Separated Mixed-Criticality
Task Sets. In 31st Euromicro Conference on Real-Time Systems (ECRTS 2019),
volume 133 of Leibniz International Proceedings in Informatics (LIPIcs), pages 5:1–
5:22, Dagstuhl, Germany, 2019. Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik.

[10] Dario Sabella, Vadim Sukhomlinov, Linh Trang, Sami Kekki, Pietro Paglierani, Ralf
Rossbach, Xinhui Li, Yonggang Fang, Dan Druta, Fabio Giust, Luca Cominardi, Wal-
ter Featherstone, Bob Pike, and Shlomi Hadad. Developing Software for Multi-Access
Edge Computing. ETSI White Paper No. 20, page 38, February 2019.

[11] Aleksandar Milenkoski. Evaluation of Intrusion Detection Systems in Virtualized En-

vironments. PhD thesis, Fakultät für Mathematik und Informatik, 2016.

[12] Yasir Mehmood, Muhammad Awais Shibli, Umme Habiba, and Rahat Masood. In-
trusion Detection System in Cloud Computing: Challenges and opportunities. pages
59–66. IEEE, December 2013.

77

http://man7.org/linux/man-pages/man7/cgroups.7.html
http://man7.org/linux/man-pages/man7/cgroups.7.html
http://man7.org/linux/man-pages/man7/namespaces.7.html
http://man7.org/linux/man-pages/man7/namespaces.7.html
https://www.datadoghq.com/docker-adoption/
https://www.datadoghq.com/docker-adoption/
https://www.docker.com

[13] Stephanie Forrest, Steven A. Hofmeyr, Anil Somayaji, and Thomas A. Longstaff. A
sense of self for unix processes. In In Proceedings of the 1996 IEEE Symposium on

Security and Privacy, pages 120–128. IEEE Computer Society Press, 1996.

[14] Theuns Verwoerd and Ray Hunt. Intrusion detection techniques and approaches.
Computer Communications, 25(15):1356–1365, sep 2002.

[15] Steven R Snapp, James Brentano, Gihan V Dias, Terrance L Goan, L Todd Heberlein,
Che-Lin Ho, Karl N Levitt, Biswanath Mukherjee, Stephen E Smaha, Tim Grance,
Daniel M Teal, and Doug Mansur. DIDS (Distributed Intrusion Detection System) -
Motivation, Architecture, and An Early Prototype. In Proceedings of the 14th national

computer security conference, volume 1, pages 167–176, Washington, DC, 1991.

[16] Amr S. Abed, Charles Clancy, and David S. Levy. Intrusion Detection System for
Applications using Linux Containers. arXiv:1611.03056 [cs], 9331:123–135, 2015.

[17] Siddharth Srinivasan, Akshay Kumar, Manik Mahajan, Dinkar Sitaram, and Sanchika
Gupta. Probabilistic Real-Time Intrusion Detection System for Docker Containers.
In Security in Computing and Communications, pages 336–347. Springer Singapore,
2019.

[18] Aleksandar Milenkoski, Marco Vieira, Samuel Kounev, Alberto Avritzer, and Bryan D.
Payne. Evaluating computer intrusion detection systems. ACM Computing Surveys,
48(1):1–41, sep 2015.

[19] Aleksandar Milenkoski, Bryan D. Payne, Nuno Antunes, Marco Vieira, Samuel
Kounev, Alberto Avritzer, and Matthias Luft. Evaluation of intrusion detection sys-
tems in virtualized environments using attack injection. In International Symposium

on Recent Advances in Intrusion Detection, pages 471–492. Springer, 2015.

[20] Joao Antunes, Nuno Neves, Miguel Correia, Paulo Verissimo, and Rui Neves. Vulner-
ability Discovery with Attack Injection. IEEE Transactions on Software Engineering,
36(3):357–370, May 2010.

[21] Jose Fonseca, Marco Vieira, and Henrique Madeira. Evaluation of Web Security Mech-
anisms Using Vulnerability & Attack Injection. IEEE Transactions on Dependable and

Secure Computing, 11(5):440–453, September 2014.

[22] Guy Bruneau. The History and Evolution of Intrusion Detection. page 8, 2001.

[23] Rebecca Bace and Peter Mell. NIST Special Publication on Intrusion Detection Sys-
tems. NIST Pubs 800-31, NIST, November 2001.

[24] Md Shariful Islam, Korosh Koochekian Sabor, Abdelaziz Trabelsi, Wahab Hamou-
Lhadj, and Luay Alawneh. Masked: A mapreduce solution for the kappa-pruned
ensemble-based anomaly detection system. In 2018 IEEE International Conference

on Software Quality, Reliability and Security (QRS), pages 25–34. IEEE, 2018.

[25] Wael Khreich, Syed Shariyar Murtaza, Abdelwahab Hamou-Lhadj, and Chamseddine
Talhi. Combining heterogeneous anomaly detectors for improved software security.
Journal of Systems and Software, 137:415–429, March 2018.

78

[26] Chirag N. Modi and Dhiren Patel. A novel hybrid-network intrusion detection system
(H-NIDS) in cloud computing. In 2013 IEEE Symposium on Computational Intelli-

gence in Cyber Security (CICS), pages 23–30, Singapore, Singapore, April 2013. IEEE.

[27] K A Scarfone and P M Mell. Guide to Intrusion Detection and Prevention Systems
(IDPS). Technical Report NIST SP 800-94, National Institute of Standards and Tech-
nology, Gaithersburg, MD, 2007.

[28] Anup K Ghosh, Aaron Schwartzbard, and Michael Schatz. Learning Program Behavior
Profiles for Intrusion Detection. Proceedings of the Workshop on Intrusion Detection

and Network Monitoring, page 13, April 1999.

[29] Dae-Ki Kang, D. Fuller, and V. Honavar. Learning classifiers for misuse and anomaly
detection using a bag of system calls representation. In Proceedings from the Sixth An-

nual IEEE Systems, Man and Cybernetics (SMC) Information Assurance Workshop,

2005., pages 118–125, West Point, NY, USA, 2005. IEEE.

[30] C. Warrender, S. Forrest, and B. Pearlmutter. Detecting intrusions using system calls:
alternative data models. In Proceedings of the 1999 IEEE Symposium on Security and

Privacy (Cat. No.99CB36344). IEEE Comput. Soc, 1999.

[31] Yihua Liao and V.Rao Vemuri. Use of K-Nearest Neighbor classifier for intrusion
detection. Computers & Security, 21(5):439–448, October 2002.

[32] Chih-Fong Tsai, Yu-Feng Hsu, Chia-Ying Lin, and Wei-Yang Lin. Intrusion detection
by machine learning: A review. Expert Systems with Applications, 36(10):11994–12000,
December 2009.

[33] Wun-Hwa Chen, Sheng-Hsun Hsu, and Hwang-Pin Shen. Application of SVM and
ANN for intrusion detection. Computers & Operations Research, 32(10):2617–2634,
October 2005.

[34] Barnaby Stewart, Luis Rosa, Leandros A. Maglaras, Tiago J. Cruz, Mohamed Amine
Ferrag, Paulo Simoes, and Helge Janicke. A Novel Intrusion Detection Mechanism for
SCADA systems which Automatically Adapts to Network Topology Changes. EAI

Endorsed Transactions on Industrial Networks and Intelligent Systems, 4(10):152155,
February 2017.

[35] John McHugh. Testing Intrusion detection systems: a critique of the 1998 and 1999
DARPA intrusion detection system evaluations as performed by Lincoln Laborat-
ory. ACM Transactions on Information and System Security, 3(4):262–294, November
2000.

[36] Robin Sommer and Vern Paxson. Outside the Closed World: On Using Machine
Learning for Network Intrusion Detection. In 2010 IEEE Symposium on Security and

Privacy, pages 305–316, Oakland, CA, USA, 2010. IEEE.

[37] Yuxin Meng and Wenjuan Li. Adaptive Character Frequency-Based Exclusive Sig-
nature Matching Scheme in Distributed Intrusion Detection Environment. In 2012

IEEE 11th International Conference on Trust, Security and Privacy in Computing

and Communications, pages 223–230, Liverpool, United Kingdom, June 2012. IEEE.

79

[38] Nuno Antunes and Marco Vieira. On the Metrics for Benchmarking Vulnerability
Detection Tools. In 2015 45th Annual IEEE/IFIP International Conference on De-

pendable Systems and Networks, pages 505–516, Rio de Janeiro, Brazil, June 2015.
IEEE.

[39] David Martin Powers. Evaluation: from Precision, Recall and F-measure to ROC, In-
formedness, Markedness and Correlation. Journal of Machine Learning Technologies,
2(1):37–63, December 2011.

[40] Gareth James, Daniela Witten, Trevor Hastie, and Robert Tibshirani. An Introduction

to Statistical Learning: With Applications in R, volume 103 of Springer Texts in

Statistics. Springer New York, New York, NY, February 2013.

[41] J.E. Gaffney and J.W. Ulvila. Evaluation of intrusion detectors: a decision theory
approach. In Proceedings 2001 IEEE Symposium on Security and Privacy. S&P 2001,
pages 50–61, Oakland, CA, USA, 2001. IEEE Comput. Soc.

[42] Michael Kerrisk. chroot - change root directory. http://man7.org/linux/
man-pages/man2/chroot.2.html, September 2017. [Accessed: 2019-02-23].

[43] Matteo Riondato. Chapter 14. Jails. https://www.freebsd.org/doc/handbook/
jails.html. [Accessed: 2019-02-23].

[44] Gabor Nagy. Operating System Containers vs. Ap-
plication Containers. https://blog.risingstack.com/
operating-system-containers-vs-application-containers/, May 2015. [Ac-
cessed: 2019-02-23].

[45] Linux Containers. https://wiki.archlinux.org/index.php/Linux_Containers,
February 2019. [Accessed: 2019-03-01].

[46] Sysdig, Inc. sysdig. https://sysdig.com/, 2019. [Accessed: 2019-01-24].

[47] Shiv Dhar. Sysdig Overview. https://github.com/draios/sysdig/wiki/
Sysdig-Overview, December 2017. [Accessed: 2019-01-24].

[48] Sysdig vs dtrace vs strace: A technical discussion. https://sysdig.com/blog/
sysdig-vs-dtrace-vs-strace-a-technical-discussion/. Accessed: 2019-07-23.

[49] Michael Kerrisk. strace - trace system calls and signals. http://man7.org/linux/
man-pages/man1/strace.1.html, October 2018. [Accessed: 2019-01-24].

[50] Google, inc. cAdvisor. https://github.com/google/cadvisor, August 2018. [Ac-
cessed: 2019-01-24].

[51] Massimiliano Mattetti, Alexandra Shulman-Peleg, Yair Allouche, Antonio Corradi,
Shlomi Dolev, and Luca Foschini. Securing the infrastructure and the workloads of
linux containers. In 2015 IEEE Conference on Communications and Network Security

(CNS), pages 559–567, Florence, Italy, September 2015. IEEE.

[52] Nilton Bila, Paolo Dettori, Ali Kanso, Yuji Watanabe, and Alaa Youssef. Leveraging
the Serverless Architecture for Securing Linux Containers. In 2017 IEEE 37th Inter-

national Conference on Distributed Computing Systems Workshops (ICDCSW), pages
401–404, Atlanta, GA, USA, June 2017. IEEE.

80

http://man7.org/linux/man-pages/man2/chroot.2.html
http://man7.org/linux/man-pages/man2/chroot.2.html
https://www.freebsd.org/doc/handbook/jails.html
https://www.freebsd.org/doc/handbook/jails.html
https://blog.risingstack.com/operating-system-containers-vs-application-containers/
https://blog.risingstack.com/operating-system-containers-vs-application-containers/
https://wiki.archlinux.org/index.php/Linux_Containers
https://sysdig.com/
https://github.com/draios/sysdig/wiki/Sysdig-Overview
https://github.com/draios/sysdig/wiki/Sysdig-Overview
https://sysdig.com/blog/sysdig-vs-dtrace-vs-strace-a-technical-discussion/
https://sysdig.com/blog/sysdig-vs-dtrace-vs-strace-a-technical-discussion/
http://man7.org/linux/man-pages/man1/strace.1.html
http://man7.org/linux/man-pages/man1/strace.1.html
https://github.com/google/cadvisor

[53] A. A. Mohallel, J. M. Bass, and A. Dehghantaha. Experimenting with docker: Linux
container and base os attack surfaces. In 2016 International Conference on Informa-

tion Society (i-Society), pages 17–21, Oct 2016.

[54] A. Martin, S. Raponi, T. Combe, and R. Di Pietro. Docker ecosystem – vulnerability
analysis. Computer Communications, 122:30 – 43, 2018.

[55] Zhiqiang Jian and Long Chen. A defense method against docker escape attack. In Pro-

ceedings of the 2017 International Conference on Cryptography, Security and Privacy,
pages 142–146. ACM, 2017.

[56] Xing Gao, Zhongshu Gu, Mehmet Kayaalp, Dimitrios Pendarakis, and Haining Wang.
ContainerLeaks: Emerging Security Threats of Information Leakages in Container
Clouds. In 2017 47th Annual IEEE/IFIP International Conference on Dependable

Systems and Networks (DSN), pages 237–248, Denver, CO, USA, June 2017. IEEE.

[57] A. Duarte and N. Antunes. An Empirical Study of Docker Vulnerabilities and of
Static Code Analysis Applicability. In 2018 Eighth Latin-American Symposium on

Dependable Computing (LADC), pages 27–36, 2018.

[58] Tpc-c benchmark. http://www.tpc.org/tpcc/. Accessed: 2019-04-10.

[59] Mysql (linux) - stack buffer overrun (poc). https://www.exploit-db.com/exploits/
23075. Accessed: 2019-04-10.

[60] Oracle mysql / mariadb - insecure salt generation security bypass. https://www.
exploit-db.com/exploits/38109. Accessed: 2019-04-10.

[61] Mysql / mariadb - geometry query denial of service. https://www.exploit-db.com/
exploits/38392. Accessed: 2019-04-10.

[62] Mysql / mariadb / perconadb 5.5.52 / 5.6.33 / 5.7.15 - code execution / privilege
escalation. https://0day.today/exploit/24786.

[63] Mysql / mariadb / perconadb 5.5.x/5.6.x/5.7.x - ’mysql’ system user privilege escal-
ation / race condition. https://www.exploit-db.com/exploits/40678. Accessed:
2019-04-10.

[64] Vulnerability details : Cve-2012-5611. https://www.cvedetails.com/cve-details.
php?t=1&cve_id=CVE-2012-5611. Accessed: 2019-04-10.

[65] Vulnerability details : Cve-2012-5627. https://www.cvedetails.com/cve-details.
php?t=1&cve_id=CVE-2012-5627. Accessed: 2019-04-10.

[66] Vulnerability details : Cve-2013-1861. https://www.cvedetails.com/cve-details.
php?t=1&cve_id=CVE-2013-1861. Accessed: 2019-04-10.

[67] Vulnerability details : Cve-2016-6662. https://www.cvedetails.com/cve-details.
php?t=1&cve_id=CVE-2016-6662. Accessed: 2019-04-10.

[68] Vulnerability details : Cve-2016-6663. https://www.cvedetails.com/cve-details.
php?t=1&cve_id=CVE-2016-6663. Accessed: 2019-04-10.

81

http://www.tpc.org/tpcc/
https://www.exploit-db.com/exploits/23075
https://www.exploit-db.com/exploits/23075
https://www.exploit-db.com/exploits/38109
https://www.exploit-db.com/exploits/38109
https://www.exploit-db.com/exploits/38392
https://www.exploit-db.com/exploits/38392
https://www.exploit-db.com/exploits/40678
https://www.cvedetails.com/cve-details.php?t=1&cve_id=CVE-2012-5611
https://www.cvedetails.com/cve-details.php?t=1&cve_id=CVE-2012-5611
https://www.cvedetails.com/cve-details.php?t=1&cve_id=CVE-2012-5627
https://www.cvedetails.com/cve-details.php?t=1&cve_id=CVE-2012-5627
https://www.cvedetails.com/cve-details.php?t=1&cve_id=CVE-2013-1861
https://www.cvedetails.com/cve-details.php?t=1&cve_id=CVE-2013-1861
https://www.cvedetails.com/cve-details.php?t=1&cve_id=CVE-2016-6662
https://www.cvedetails.com/cve-details.php?t=1&cve_id=CVE-2016-6662
https://www.cvedetails.com/cve-details.php?t=1&cve_id=CVE-2016-6663
https://www.cvedetails.com/cve-details.php?t=1&cve_id=CVE-2016-6663

[69] Chirag Modi, Dhiren Patel, Bhavesh Borisaniya, Hiren Patel, Avi Patel, and Mut-
tukrishnan Rajarajan. A survey of intrusion detection techniques in Cloud. Journal

of Network and Computer Applications, 36(1):42–57, January 2013.

82

Appendices

83

Appendix A

Complete Experimental Results for

All Platforms

Below we list the complete results obtained from our experiments. To make their use and
analysis easier, we provide them available online, in the form of a SQLite database:

– https://github.com/jeflora/containers-ids-evaluation.

Table A.1: An overview of the results for all platforms.

Platform
Train

Time (H)
Algo

Window/

Dec. Thr.

Epoch

Size

Det.

Thr.
Recall Prec. F-Meas. FPR

Docker 30min HMM 50 500 5 1.000 0.028 0.054 0.918
Docker 1 HMM 50 500 5 1.000 0.028 0.054 0.919
Docker 2 HMM 50 500 5 1.000 0.028 0.054 0.927
Docker 30min HMM 50 500 10 1.000 0.037 0.072 0.678
Docker 1 HMM 50 500 10 1.000 0.038 0.072 0.678
Docker 2 HMM 50 500 10 1.000 0.037 0.071 0.697
Docker 30min HMM 50 500 20 0.987 0.048 0.092 0.516
Docker 1 HMM 50 500 20 0.987 0.048 0.092 0.516
Docker 2 HMM 50 500 20 0.987 0.048 0.091 0.518
Docker 30min HMM 50 500 50 0.983 0.049 0.093 0.505
Docker 1 HMM 50 500 50 0.983 0.049 0.093 0.505
Docker 2 HMM 50 500 50 0.983 0.049 0.093 0.505
Docker 30min HMM 50 500 100 0.983 0.049 0.094 0.503
Docker 1 HMM 50 500 100 0.983 0.049 0.094 0.503
Docker 2 HMM 50 500 100 0.983 0.049 0.094 0.503
Docker 30min HMM 50 1000 5 1.000 0.027 0.053 0.996
Docker 1 HMM 50 1000 5 1.000 0.027 0.053 0.996
Docker 2 HMM 50 1000 5 1.000 0.027 0.053 0.996
Docker 30min HMM 50 1000 10 1.000 0.029 0.055 0.953
Docker 1 HMM 50 1000 10 1.000 0.029 0.055 0.953
Docker 2 HMM 50 1000 10 1.000 0.028 0.055 0.962
Docker 30min HMM 50 1000 20 0.995 0.041 0.079 0.645
Docker 1 HMM 50 1000 20 0.991 0.041 0.079 0.645
Docker 2 HMM 50 1000 20 0.991 0.040 0.077 0.669
Docker 30min HMM 50 1000 50 0.979 0.051 0.097 0.508
Docker 1 HMM 50 1000 50 0.979 0.051 0.097 0.509
Docker 2 HMM 50 1000 50 0.979 0.051 0.097 0.509
Docker 30min HMM 50 1000 100 0.979 0.052 0.098 0.505
Docker 1 HMM 50 1000 100 0.979 0.051 0.098 0.505
Docker 2 HMM 50 1000 100 0.979 0.051 0.098 0.506
Docker 30min HMM 50 5000 5 1.000 0.035 0.068 0.999
Docker 1 HMM 50 5000 5 1.000 0.035 0.068 0.999
Docker 2 HMM 50 5000 5 1.000 0.035 0.068 0.999
Docker 30min HMM 50 5000 10 1.000 0.035 0.068 0.999

85

https://github.com/jeflora/containers-ids-evaluation

Appendix A

Table A.1: An overview of the results for all platforms.

Platform
Train

Time (H)
Algo

Window/

Dec. Thr.

Epoch

Size

Det.

Thr.
Recall Prec. F-Meas. FPR

Docker 1 HMM 50 5000 10 1.000 0.035 0.068 0.998
Docker 2 HMM 50 5000 10 1.000 0.035 0.068 0.998
Docker 30min HMM 50 5000 20 1.000 0.035 0.068 0.998
Docker 1 HMM 50 5000 20 1.000 0.035 0.068 0.997
Docker 2 HMM 50 5000 20 1.000 0.035 0.068 0.998
Docker 30min HMM 50 5000 50 1.000 0.035 0.068 0.992
Docker 1 HMM 50 5000 50 1.000 0.035 0.068 0.991
Docker 2 HMM 50 5000 50 1.000 0.035 0.068 0.993
Docker 30min HMM 50 5000 100 0.987 0.057 0.107 0.596
Docker 1 HMM 50 5000 100 0.987 0.057 0.107 0.596
Docker 2 HMM 50 5000 100 0.987 0.055 0.104 0.619
Docker 30min HMM 100 500 5 0.796 0.603 0.686 0.014
Docker 1 HMM 100 500 5 0.796 0.652 0.717 0.011
Docker 2 HMM 100 500 5 0.965 0.670 0.791 0.013
Docker 30min HMM 100 500 10 0.796 0.783 0.789 0.006
Docker 1 HMM 100 500 10 0.796 0.813 0.804 0.005
Docker 2 HMM 100 500 10 0.965 0.838 0.897 0.005
Docker 30min HMM 100 500 20 0.796 0.863 0.828 0.003
Docker 1 HMM 100 500 20 0.796 0.865 0.829 0.003
Docker 2 HMM 100 500 20 0.965 0.885 0.923 0.003
Docker 30min HMM 100 500 50 0.683 0.884 0.771 0.002
Docker 1 HMM 100 500 50 0.767 0.894 0.826 0.002
Docker 2 HMM 100 500 50 0.965 0.913 0.938 0.002
Docker 30min HMM 100 500 100 0.642 0.892 0.747 0.002
Docker 1 HMM 100 500 100 0.642 0.891 0.747 0.002
Docker 2 HMM 100 500 100 0.965 0.923 0.944 0.002
Docker 30min HMM 100 1000 5 0.793 0.494 0.608 0.023
Docker 1 HMM 100 1000 5 0.793 0.546 0.647 0.018
Docker 2 HMM 100 1000 5 0.959 0.569 0.714 0.020
Docker 30min HMM 100 1000 10 0.793 0.600 0.683 0.015
Docker 1 HMM 100 1000 10 0.793 0.642 0.709 0.012
Docker 2 HMM 100 1000 10 0.959 0.654 0.778 0.014
Docker 30min HMM 100 1000 20 0.793 0.799 0.796 0.006
Docker 1 HMM 100 1000 20 0.793 0.811 0.802 0.005
Docker 2 HMM 100 1000 20 0.959 0.827 0.888 0.006
Docker 30min HMM 100 1000 50 0.710 0.871 0.783 0.003
Docker 1 HMM 100 1000 50 0.793 0.881 0.835 0.003
Docker 2 HMM 100 1000 50 0.959 0.888 0.922 0.003
Docker 30min HMM 100 1000 100 0.655 0.884 0.752 0.002
Docker 1 HMM 100 1000 100 0.712 0.892 0.792 0.002
Docker 2 HMM 100 1000 100 0.959 0.910 0.934 0.003
Docker 30min HMM 100 5000 5 0.813 0.319 0.458 0.063
Docker 1 HMM 100 5000 5 0.813 0.401 0.537 0.044
Docker 2 HMM 100 5000 5 0.973 0.422 0.589 0.048
Docker 30min HMM 100 5000 10 0.813 0.421 0.555 0.041
Docker 1 HMM 100 5000 10 0.813 0.471 0.597 0.033
Docker 2 HMM 100 5000 10 0.973 0.492 0.653 0.037
Docker 30min HMM 100 5000 20 0.813 0.449 0.578 0.036
Docker 1 HMM 100 5000 20 0.813 0.490 0.612 0.031
Docker 2 HMM 100 5000 20 0.973 0.509 0.668 0.034
Docker 30min HMM 100 5000 50 0.800 0.541 0.645 0.025
Docker 1 HMM 100 5000 50 0.800 0.563 0.661 0.022
Docker 2 HMM 100 5000 50 0.973 0.582 0.728 0.025
Docker 30min HMM 100 5000 100 0.787 0.702 0.742 0.012
Docker 1 HMM 100 5000 100 0.787 0.678 0.728 0.014
Docker 2 HMM 100 5000 100 0.947 0.693 0.800 0.015
Docker 30min HMM 125 500 5 0.654 0.580 0.615 0.013
Docker 1 HMM 125 500 5 0.683 0.636 0.659 0.010
Docker 2 HMM 125 500 5 0.824 0.675 0.742 0.010
Docker 30min HMM 125 500 10 0.654 0.755 0.701 0.006
Docker 1 HMM 125 500 10 0.683 0.794 0.735 0.005
Docker 2 HMM 125 500 10 0.824 0.822 0.823 0.005
Docker 30min HMM 125 500 20 0.654 0.844 0.737 0.003

86

Complete Experimental Results for All Platforms

Table A.1: An overview of the results for all platforms.

Platform
Train

Time (H)
Algo

Window/

Dec. Thr.

Epoch

Size

Det.

Thr.
Recall Prec. F-Meas. FPR

Docker 1 HMM 125 500 20 0.654 0.846 0.738 0.003
Docker 2 HMM 125 500 20 0.796 0.868 0.830 0.003
Docker 30min HMM 125 500 50 0.626 0.882 0.732 0.002
Docker 1 HMM 125 500 50 0.654 0.883 0.752 0.002
Docker 2 HMM 125 500 50 0.683 0.885 0.771 0.002
Docker 30min HMM 125 500 100 0.614 0.895 0.728 0.002
Docker 1 HMM 125 500 100 0.642 0.898 0.749 0.002
Docker 2 HMM 125 500 100 0.625 0.892 0.735 0.002
Docker 30min HMM 125 1000 5 0.655 0.470 0.548 0.021
Docker 1 HMM 125 1000 5 0.738 0.547 0.628 0.017
Docker 2 HMM 125 1000 5 0.821 0.549 0.658 0.019
Docker 30min HMM 125 1000 10 0.655 0.570 0.609 0.014
Docker 1 HMM 125 1000 10 0.684 0.626 0.654 0.011
Docker 2 HMM 125 1000 10 0.821 0.659 0.731 0.012
Docker 30min HMM 125 1000 20 0.655 0.777 0.711 0.005
Docker 1 HMM 125 1000 20 0.655 0.790 0.716 0.005
Docker 2 HMM 125 1000 20 0.793 0.817 0.805 0.005
Docker 30min HMM 125 1000 50 0.655 0.866 0.746 0.003
Docker 1 HMM 125 1000 50 0.655 0.864 0.745 0.003
Docker 2 HMM 125 1000 50 0.793 0.883 0.836 0.003
Docker 30min HMM 125 1000 100 0.628 0.888 0.735 0.002
Docker 1 HMM 125 1000 100 0.655 0.890 0.755 0.002
Docker 2 HMM 125 1000 100 0.655 0.884 0.752 0.002
Docker 30min HMM 125 5000 5 0.680 0.303 0.419 0.057
Docker 1 HMM 125 5000 5 0.813 0.419 0.553 0.041
Docker 2 HMM 125 5000 5 0.840 0.414 0.555 0.043
Docker 30min HMM 125 5000 10 0.680 0.392 0.498 0.038
Docker 1 HMM 125 5000 10 0.760 0.465 0.577 0.032
Docker 2 HMM 125 5000 10 0.840 0.468 0.601 0.035
Docker 30min HMM 125 5000 20 0.680 0.425 0.523 0.033
Docker 1 HMM 125 5000 20 0.707 0.473 0.567 0.029
Docker 2 HMM 125 5000 20 0.840 0.486 0.616 0.032
Docker 30min HMM 125 5000 50 0.653 0.516 0.576 0.022
Docker 1 HMM 125 5000 50 0.680 0.545 0.605 0.021
Docker 2 HMM 125 5000 50 0.827 0.577 0.679 0.022
Docker 30min HMM 125 5000 100 0.653 0.681 0.667 0.011
Docker 1 HMM 125 5000 100 0.653 0.676 0.664 0.011
Docker 2 HMM 125 5000 100 0.787 0.702 0.742 0.012
Docker 30min HMM 150 500 5 0.626 0.576 0.600 0.012
Docker 1 HMM 150 500 5 0.654 0.638 0.646 0.010
Docker 2 HMM 150 500 5 0.683 0.645 0.663 0.010
Docker 30min HMM 150 500 10 0.626 0.761 0.687 0.005
Docker 1 HMM 150 500 10 0.654 0.802 0.721 0.004
Docker 2 HMM 150 500 10 0.654 0.795 0.718 0.004
Docker 30min HMM 150 500 20 0.626 0.845 0.719 0.003
Docker 1 HMM 150 500 20 0.654 0.850 0.739 0.003
Docker 2 HMM 150 500 20 0.654 0.844 0.737 0.003
Docker 30min HMM 150 500 50 0.626 0.889 0.734 0.002
Docker 1 HMM 150 500 50 0.626 0.886 0.734 0.002
Docker 2 HMM 150 500 50 0.654 0.882 0.751 0.002
Docker 30min HMM 150 500 100 0.599 0.894 0.717 0.002
Docker 1 HMM 150 500 100 0.599 0.893 0.717 0.002
Docker 2 HMM 150 500 100 0.588 0.891 0.708 0.002
Docker 30min HMM 150 1000 5 0.628 0.476 0.542 0.019
Docker 1 HMM 150 1000 5 0.655 0.534 0.589 0.016
Docker 2 HMM 150 1000 5 0.710 0.547 0.618 0.016
Docker 30min HMM 150 1000 10 0.628 0.572 0.599 0.013
Docker 1 HMM 150 1000 10 0.655 0.632 0.644 0.011
Docker 2 HMM 150 1000 10 0.684 0.627 0.655 0.011
Docker 30min HMM 150 1000 20 0.628 0.778 0.695 0.005
Docker 1 HMM 150 1000 20 0.655 0.795 0.718 0.005
Docker 2 HMM 150 1000 20 0.655 0.790 0.716 0.005
Docker 30min HMM 150 1000 50 0.628 0.875 0.731 0.003

87

Appendix A

Table A.1: An overview of the results for all platforms.

Platform
Train

Time (H)
Algo

Window/

Dec. Thr.

Epoch

Size

Det.

Thr.
Recall Prec. F-Meas. FPR

Docker 1 HMM 150 1000 50 0.628 0.873 0.730 0.003
Docker 2 HMM 150 1000 50 0.655 0.868 0.747 0.003
Docker 30min HMM 150 1000 100 0.628 0.892 0.737 0.002
Docker 1 HMM 150 1000 100 0.628 0.892 0.737 0.002
Docker 2 HMM 150 1000 100 0.655 0.888 0.754 0.002
Docker 30min HMM 150 5000 5 0.653 0.301 0.412 0.055
Docker 1 HMM 150 5000 5 0.680 0.382 0.489 0.040
Docker 2 HMM 150 5000 5 0.787 0.405 0.535 0.042
Docker 30min HMM 150 5000 10 0.653 0.394 0.491 0.037
Docker 1 HMM 150 5000 10 0.680 0.445 0.538 0.031
Docker 2 HMM 150 5000 10 0.707 0.436 0.539 0.033
Docker 30min HMM 150 5000 20 0.640 0.421 0.508 0.032
Docker 1 HMM 150 5000 20 0.667 0.467 0.549 0.028
Docker 2 HMM 150 5000 20 0.707 0.471 0.565 0.029
Docker 30min HMM 150 5000 50 0.627 0.553 0.588 0.018
Docker 1 HMM 150 5000 50 0.653 0.587 0.618 0.017
Docker 2 HMM 150 5000 50 0.653 0.560 0.603 0.019
Docker 30min HMM 150 5000 100 0.627 0.681 0.653 0.011
Docker 1 HMM 150 5000 100 0.653 0.690 0.671 0.011
Docker 2 HMM 150 5000 100 0.653 0.676 0.664 0.011
Docker 6 BoSC 3 500 5 1.000 0.769 0.869 0.007
Docker 12 BoSC 3 500 5 1.000 0.770 0.870 0.007
Docker 24 BoSC 3 500 5 1.000 0.770 0.870 0.007
Docker 6 BoSC 3 500 10 1.000 0.828 0.906 0.005
Docker 12 BoSC 3 500 10 1.000 0.829 0.906 0.005
Docker 24 BoSC 3 500 10 1.000 0.830 0.907 0.005
Docker 6 BoSC 3 500 20 0.990 0.872 0.927 0.004
Docker 12 BoSC 3 500 20 0.987 0.878 0.930 0.003
Docker 24 BoSC 3 500 20 0.982 0.878 0.927 0.003
Docker 6 BoSC 3 500 50 0.975 0.910 0.941 0.002
Docker 12 BoSC 3 500 50 0.975 0.910 0.941 0.002
Docker 24 BoSC 3 500 50 0.975 0.910 0.941 0.002
Docker 6 BoSC 3 500 100 0.975 0.914 0.944 0.002
Docker 12 BoSC 3 500 100 0.975 0.914 0.944 0.002
Docker 24 BoSC 3 500 100 0.975 0.914 0.944 0.002
Docker 6 BoSC 3 1000 5 1.000 0.682 0.811 0.012
Docker 12 BoSC 3 1000 5 1.000 0.684 0.812 0.011
Docker 24 BoSC 3 1000 5 1.000 0.685 0.813 0.011
Docker 6 BoSC 3 1000 10 1.000 0.755 0.860 0.008
Docker 12 BoSC 3 1000 10 1.000 0.755 0.861 0.008
Docker 24 BoSC 3 1000 10 1.000 0.756 0.861 0.008
Docker 6 BoSC 3 1000 20 0.990 0.829 0.902 0.005
Docker 12 BoSC 3 1000 20 0.987 0.839 0.907 0.005
Docker 24 BoSC 3 1000 20 0.981 0.840 0.905 0.005
Docker 6 BoSC 3 1000 50 0.975 0.903 0.938 0.003
Docker 12 BoSC 3 1000 50 0.975 0.903 0.938 0.003
Docker 24 BoSC 3 1000 50 0.975 0.904 0.938 0.003
Docker 6 BoSC 3 1000 100 0.975 0.908 0.940 0.002
Docker 12 BoSC 3 1000 100 0.975 0.908 0.940 0.002
Docker 24 BoSC 3 1000 100 0.975 0.908 0.940 0.002
Docker 6 BoSC 3 5000 5 1.000 0.450 0.621 0.031
Docker 12 BoSC 3 5000 5 1.000 0.455 0.625 0.030
Docker 24 BoSC 3 5000 5 1.000 0.456 0.627 0.030
Docker 6 BoSC 3 5000 10 1.000 0.519 0.684 0.024
Docker 12 BoSC 3 5000 10 1.000 0.520 0.684 0.023
Docker 24 BoSC 3 5000 10 1.000 0.521 0.685 0.023
Docker 6 BoSC 3 5000 20 1.000 0.602 0.752 0.017
Docker 12 BoSC 3 5000 20 1.000 0.611 0.759 0.016
Docker 24 BoSC 3 5000 20 1.000 0.613 0.760 0.016
Docker 6 BoSC 3 5000 50 0.970 0.847 0.904 0.004
Docker 12 BoSC 3 5000 50 0.970 0.848 0.905 0.004
Docker 24 BoSC 3 5000 50 0.970 0.848 0.905 0.004
Docker 6 BoSC 3 5000 100 0.970 0.876 0.920 0.004

88

Complete Experimental Results for All Platforms

Table A.1: An overview of the results for all platforms.

Platform
Train

Time (H)
Algo

Window/

Dec. Thr.

Epoch

Size

Det.

Thr.
Recall Prec. F-Meas. FPR

Docker 12 BoSC 3 5000 100 0.970 0.876 0.920 0.004
Docker 24 BoSC 3 5000 100 0.970 0.876 0.920 0.003
Docker 6 BoSC 4 500 5 1.000 0.746 0.855 0.008
Docker 12 BoSC 4 500 5 1.000 0.749 0.857 0.008
Docker 24 BoSC 4 500 5 1.000 0.751 0.858 0.008
Docker 6 BoSC 4 500 10 1.000 0.809 0.895 0.006
Docker 12 BoSC 4 500 10 1.000 0.810 0.895 0.006
Docker 24 BoSC 4 500 10 1.000 0.811 0.896 0.006
Docker 6 BoSC 4 500 20 0.999 0.846 0.916 0.004
Docker 12 BoSC 4 500 20 0.999 0.847 0.917 0.004
Docker 24 BoSC 4 500 20 0.995 0.847 0.915 0.004
Docker 6 BoSC 4 500 50 0.975 0.905 0.939 0.003
Docker 12 BoSC 4 500 50 0.975 0.906 0.939 0.003
Docker 24 BoSC 4 500 50 0.975 0.906 0.939 0.003
Docker 6 BoSC 4 500 100 0.975 0.913 0.943 0.002
Docker 12 BoSC 4 500 100 0.975 0.913 0.943 0.002
Docker 24 BoSC 4 500 100 0.975 0.913 0.943 0.002
Docker 6 BoSC 4 1000 5 1.000 0.657 0.793 0.013
Docker 12 BoSC 4 1000 5 1.000 0.662 0.797 0.013
Docker 24 BoSC 4 1000 5 1.000 0.664 0.798 0.013
Docker 6 BoSC 4 1000 10 1.000 0.733 0.846 0.009
Docker 12 BoSC 4 1000 10 1.000 0.735 0.847 0.009
Docker 24 BoSC 4 1000 10 1.000 0.736 0.848 0.009
Docker 6 BoSC 4 1000 20 0.999 0.788 0.881 0.007
Docker 12 BoSC 4 1000 20 0.999 0.789 0.882 0.007
Docker 24 BoSC 4 1000 20 0.996 0.789 0.881 0.007
Docker 6 BoSC 4 1000 50 0.975 0.888 0.929 0.003
Docker 12 BoSC 4 1000 50 0.975 0.889 0.930 0.003
Docker 24 BoSC 4 1000 50 0.975 0.889 0.930 0.003
Docker 6 BoSC 4 1000 100 0.975 0.906 0.939 0.003
Docker 12 BoSC 4 1000 100 0.975 0.906 0.939 0.002
Docker 24 BoSC 4 1000 100 0.975 0.907 0.939 0.002
Docker 6 BoSC 4 5000 5 1.000 0.416 0.588 0.036
Docker 12 BoSC 4 5000 5 1.000 0.428 0.600 0.034
Docker 24 BoSC 4 5000 5 1.000 0.435 0.607 0.033
Docker 6 BoSC 4 5000 10 1.000 0.494 0.661 0.026
Docker 12 BoSC 4 5000 10 1.000 0.499 0.666 0.026
Docker 24 BoSC 4 5000 10 1.000 0.501 0.668 0.025
Docker 6 BoSC 4 5000 20 1.000 0.548 0.708 0.021
Docker 12 BoSC 4 5000 20 1.000 0.550 0.710 0.021
Docker 24 BoSC 4 5000 20 1.000 0.551 0.710 0.021
Docker 6 BoSC 4 5000 50 0.976 0.778 0.866 0.007
Docker 12 BoSC 4 5000 50 0.973 0.781 0.866 0.007
Docker 24 BoSC 4 5000 50 0.973 0.783 0.867 0.007
Docker 6 BoSC 4 5000 100 0.970 0.855 0.909 0.004
Docker 12 BoSC 4 5000 100 0.970 0.855 0.909 0.004
Docker 24 BoSC 4 5000 100 0.970 0.856 0.909 0.004
Docker 6 BoSC 5 500 5 1.000 0.723 0.839 0.009
Docker 12 BoSC 5 500 5 1.000 0.730 0.844 0.009
Docker 24 BoSC 5 500 5 1.000 0.733 0.846 0.009
Docker 6 BoSC 5 500 10 1.000 0.791 0.884 0.007
Docker 12 BoSC 5 500 10 1.000 0.794 0.885 0.006
Docker 24 BoSC 5 500 10 1.000 0.795 0.886 0.006
Docker 6 BoSC 5 500 20 1.000 0.830 0.907 0.005
Docker 12 BoSC 5 500 20 1.000 0.831 0.908 0.005
Docker 24 BoSC 5 500 20 1.000 0.832 0.908 0.005
Docker 6 BoSC 5 500 50 0.975 0.894 0.933 0.003
Docker 12 BoSC 5 500 50 0.975 0.894 0.933 0.003
Docker 24 BoSC 5 500 50 0.975 0.895 0.933 0.003
Docker 6 BoSC 5 500 100 0.975 0.912 0.942 0.002
Docker 12 BoSC 5 500 100 0.975 0.912 0.943 0.002
Docker 24 BoSC 5 500 100 0.975 0.912 0.943 0.002
Docker 6 BoSC 5 1000 5 1.000 0.626 0.770 0.015

89

Appendix A

Table A.1: An overview of the results for all platforms.

Platform
Train

Time (H)
Algo

Window/

Dec. Thr.

Epoch

Size

Det.

Thr.
Recall Prec. F-Meas. FPR

Docker 12 BoSC 5 1000 5 1.000 0.637 0.778 0.014
Docker 24 BoSC 5 1000 5 1.000 0.642 0.782 0.014
Docker 6 BoSC 5 1000 10 1.000 0.714 0.833 0.010
Docker 12 BoSC 5 1000 10 1.000 0.718 0.836 0.010
Docker 24 BoSC 5 1000 10 1.000 0.721 0.838 0.010
Docker 6 BoSC 5 1000 20 1.000 0.769 0.869 0.007
Docker 12 BoSC 5 1000 20 1.000 0.770 0.870 0.007
Docker 24 BoSC 5 1000 20 1.000 0.771 0.871 0.007
Docker 6 BoSC 5 1000 50 0.975 0.865 0.917 0.004
Docker 12 BoSC 5 1000 50 0.975 0.866 0.917 0.004
Docker 24 BoSC 5 1000 50 0.975 0.866 0.917 0.004
Docker 6 BoSC 5 1000 100 0.975 0.899 0.935 0.003
Docker 12 BoSC 5 1000 100 0.975 0.900 0.936 0.003
Docker 24 BoSC 5 1000 100 0.975 0.900 0.936 0.003
Docker 6 BoSC 5 5000 5 1.000 0.360 0.529 0.045
Docker 12 BoSC 5 5000 5 1.000 0.383 0.553 0.041
Docker 24 BoSC 5 5000 5 1.000 0.396 0.567 0.039
Docker 6 BoSC 5 5000 10 1.000 0.460 0.630 0.030
Docker 12 BoSC 5 5000 10 1.000 0.475 0.644 0.028
Docker 24 BoSC 5 5000 10 1.000 0.481 0.650 0.027
Docker 6 BoSC 5 5000 20 1.000 0.529 0.692 0.023
Docker 12 BoSC 5 5000 20 1.000 0.533 0.695 0.022
Docker 24 BoSC 5 5000 20 1.000 0.534 0.696 0.022
Docker 6 BoSC 5 5000 50 0.994 0.662 0.795 0.013
Docker 12 BoSC 5 5000 50 0.991 0.663 0.795 0.013
Docker 24 BoSC 5 5000 50 0.988 0.665 0.795 0.013
Docker 6 BoSC 5 5000 100 0.970 0.825 0.892 0.005
Docker 12 BoSC 5 5000 100 0.970 0.825 0.892 0.005
Docker 24 BoSC 5 5000 100 0.970 0.826 0.892 0.005
Docker 6 BoSC 6 500 5 1.000 0.677 0.807 0.012
Docker 12 BoSC 6 500 5 1.000 0.690 0.816 0.011
Docker 24 BoSC 6 500 5 1.000 0.701 0.824 0.011
Docker 6 BoSC 6 500 10 1.000 0.770 0.870 0.007
Docker 12 BoSC 6 500 10 1.000 0.775 0.874 0.007
Docker 24 BoSC 6 500 10 1.000 0.779 0.876 0.007
Docker 6 BoSC 6 500 20 1.000 0.818 0.900 0.006
Docker 12 BoSC 6 500 20 1.000 0.819 0.901 0.005
Docker 24 BoSC 6 500 20 1.000 0.820 0.901 0.005
Docker 6 BoSC 6 500 50 0.985 0.882 0.930 0.003
Docker 12 BoSC 6 500 50 0.982 0.882 0.929 0.003
Docker 24 BoSC 6 500 50 0.979 0.882 0.928 0.003
Docker 6 BoSC 6 500 100 0.975 0.906 0.939 0.002
Docker 12 BoSC 6 500 100 0.975 0.907 0.940 0.002
Docker 24 BoSC 6 500 100 0.975 0.907 0.940 0.002
Docker 6 BoSC 6 1000 5 1.000 0.562 0.720 0.019
Docker 12 BoSC 6 1000 5 1.000 0.581 0.735 0.018
Docker 24 BoSC 6 1000 5 1.000 0.599 0.749 0.017
Docker 6 BoSC 6 1000 10 1.000 0.679 0.809 0.012
Docker 12 BoSC 6 1000 10 1.000 0.688 0.815 0.011
Docker 24 BoSC 6 1000 10 1.000 0.696 0.821 0.011
Docker 6 BoSC 6 1000 20 1.000 0.753 0.859 0.008
Docker 12 BoSC 6 1000 20 1.000 0.756 0.861 0.008
Docker 24 BoSC 6 1000 20 1.000 0.758 0.862 0.008
Docker 6 BoSC 6 1000 50 0.984 0.851 0.913 0.004
Docker 12 BoSC 6 1000 50 0.981 0.851 0.912 0.004
Docker 24 BoSC 6 1000 50 0.979 0.851 0.911 0.004
Docker 6 BoSC 6 1000 100 0.975 0.883 0.926 0.003
Docker 12 BoSC 6 1000 100 0.975 0.884 0.927 0.003
Docker 24 BoSC 6 1000 100 0.975 0.884 0.927 0.003
Docker 6 BoSC 6 5000 5 1.000 0.291 0.451 0.062
Docker 12 BoSC 6 5000 5 1.000 0.315 0.480 0.055
Docker 24 BoSC 6 5000 5 1.000 0.338 0.505 0.050
Docker 6 BoSC 6 5000 10 1.000 0.400 0.572 0.038

90

Complete Experimental Results for All Platforms

Table A.1: An overview of the results for all platforms.

Platform
Train

Time (H)
Algo

Window/

Dec. Thr.

Epoch

Size

Det.

Thr.
Recall Prec. F-Meas. FPR

Docker 12 BoSC 6 5000 10 1.000 0.420 0.591 0.035
Docker 24 BoSC 6 5000 10 1.000 0.438 0.609 0.033
Docker 6 BoSC 6 5000 20 1.000 0.499 0.666 0.026
Docker 12 BoSC 6 5000 20 1.000 0.512 0.677 0.024
Docker 24 BoSC 6 5000 20 1.000 0.518 0.683 0.024
Docker 6 BoSC 6 5000 50 1.000 0.640 0.781 0.014
Docker 12 BoSC 6 5000 50 1.000 0.643 0.782 0.014
Docker 24 BoSC 6 5000 50 0.999 0.646 0.784 0.014
Docker 6 BoSC 6 5000 100 0.970 0.773 0.861 0.007
Docker 12 BoSC 6 5000 100 0.970 0.775 0.862 0.007
Docker 24 BoSC 6 5000 100 0.970 0.776 0.862 0.007
Docker 6 STIDE 3 500 5 1.000 0.761 0.864 0.008
Docker 12 STIDE 3 500 5 1.000 0.762 0.865 0.008
Docker 24 STIDE 3 500 5 1.000 0.763 0.866 0.008
Docker 6 STIDE 3 500 10 1.000 0.822 0.903 0.005
Docker 12 STIDE 3 500 10 1.000 0.823 0.903 0.005
Docker 24 STIDE 3 500 10 1.000 0.823 0.903 0.005
Docker 6 STIDE 3 500 20 0.994 0.859 0.922 0.004
Docker 12 STIDE 3 500 20 0.991 0.861 0.921 0.004
Docker 24 STIDE 3 500 20 0.987 0.869 0.924 0.004
Docker 6 STIDE 3 500 50 0.975 0.909 0.941 0.002
Docker 12 STIDE 3 500 50 0.975 0.909 0.941 0.002
Docker 24 STIDE 3 500 50 0.975 0.909 0.941 0.002
Docker 6 STIDE 3 500 100 0.975 0.913 0.943 0.002
Docker 12 STIDE 3 500 100 0.975 0.914 0.943 0.002
Docker 24 STIDE 3 500 100 0.975 0.914 0.944 0.002
Docker 6 STIDE 3 1000 5 1.000 0.674 0.806 0.012
Docker 12 STIDE 3 1000 5 1.000 0.676 0.807 0.012
Docker 24 STIDE 3 1000 5 1.000 0.677 0.808 0.012
Docker 6 STIDE 3 1000 10 1.000 0.748 0.856 0.008
Docker 12 STIDE 3 1000 10 1.000 0.749 0.856 0.008
Docker 24 STIDE 3 1000 10 1.000 0.749 0.857 0.008
Docker 6 STIDE 3 1000 20 0.994 0.805 0.889 0.006
Docker 12 STIDE 3 1000 20 0.991 0.807 0.890 0.006
Docker 24 STIDE 3 1000 20 0.987 0.822 0.897 0.005
Docker 6 STIDE 3 1000 50 0.975 0.902 0.937 0.003
Docker 12 STIDE 3 1000 50 0.975 0.902 0.937 0.003
Docker 24 STIDE 3 1000 50 0.975 0.902 0.937 0.003
Docker 6 STIDE 3 1000 100 0.975 0.908 0.940 0.002
Docker 12 STIDE 3 1000 100 0.975 0.908 0.940 0.002
Docker 24 STIDE 3 1000 100 0.975 0.908 0.940 0.002
Docker 6 STIDE 3 5000 5 1.000 0.443 0.614 0.032
Docker 12 STIDE 3 5000 5 1.000 0.446 0.617 0.032
Docker 24 STIDE 3 5000 5 1.000 0.450 0.621 0.031
Docker 6 STIDE 3 5000 10 1.000 0.511 0.676 0.024
Docker 12 STIDE 3 5000 10 1.000 0.512 0.677 0.024
Docker 24 STIDE 3 5000 10 1.000 0.513 0.678 0.024
Docker 6 STIDE 3 5000 20 1.000 0.574 0.730 0.019
Docker 12 STIDE 3 5000 20 1.000 0.578 0.732 0.019
Docker 24 STIDE 3 5000 20 1.000 0.592 0.744 0.018
Docker 6 STIDE 3 5000 50 0.970 0.838 0.899 0.005
Docker 12 STIDE 3 5000 50 0.970 0.839 0.900 0.005
Docker 24 STIDE 3 5000 50 0.970 0.839 0.900 0.005
Docker 6 STIDE 3 5000 100 0.970 0.868 0.916 0.004
Docker 12 STIDE 3 5000 100 0.970 0.869 0.917 0.004
Docker 24 STIDE 3 5000 100 0.970 0.870 0.917 0.004
Docker 6 STIDE 4 500 5 1.000 0.727 0.842 0.009
Docker 12 STIDE 4 500 5 1.000 0.732 0.845 0.009
Docker 24 STIDE 4 500 5 1.000 0.735 0.848 0.009
Docker 6 STIDE 4 500 10 1.000 0.793 0.885 0.006
Docker 12 STIDE 4 500 10 1.000 0.795 0.886 0.006
Docker 24 STIDE 4 500 10 1.000 0.797 0.887 0.006
Docker 6 STIDE 4 500 20 0.999 0.833 0.908 0.005

91

Appendix A

Table A.1: An overview of the results for all platforms.

Platform
Train

Time (H)
Algo

Window/

Dec. Thr.

Epoch

Size

Det.

Thr.
Recall Prec. F-Meas. FPR

Docker 12 STIDE 4 500 20 0.999 0.833 0.909 0.005
Docker 24 STIDE 4 500 20 0.999 0.835 0.909 0.005
Docker 6 STIDE 4 500 50 0.975 0.896 0.934 0.003
Docker 12 STIDE 4 500 50 0.975 0.897 0.934 0.003
Docker 24 STIDE 4 500 50 0.975 0.898 0.935 0.003
Docker 6 STIDE 4 500 100 0.975 0.912 0.943 0.002
Docker 12 STIDE 4 500 100 0.975 0.912 0.943 0.002
Docker 24 STIDE 4 500 100 0.975 0.912 0.943 0.002
Docker 6 STIDE 4 1000 5 1.000 0.635 0.777 0.014
Docker 12 STIDE 4 1000 5 1.000 0.642 0.782 0.014
Docker 24 STIDE 4 1000 5 1.000 0.647 0.786 0.014
Docker 6 STIDE 4 1000 10 1.000 0.716 0.834 0.010
Docker 12 STIDE 4 1000 10 1.000 0.720 0.837 0.010
Docker 24 STIDE 4 1000 10 1.000 0.722 0.839 0.010
Docker 6 STIDE 4 1000 20 0.999 0.771 0.870 0.007
Docker 12 STIDE 4 1000 20 0.999 0.773 0.871 0.007
Docker 24 STIDE 4 1000 20 0.999 0.774 0.872 0.007
Docker 6 STIDE 4 1000 50 0.975 0.868 0.918 0.004
Docker 12 STIDE 4 1000 50 0.975 0.869 0.919 0.004
Docker 24 STIDE 4 1000 50 0.975 0.870 0.919 0.004
Docker 6 STIDE 4 1000 100 0.975 0.902 0.937 0.003
Docker 12 STIDE 4 1000 100 0.975 0.902 0.937 0.003
Docker 24 STIDE 4 1000 100 0.975 0.903 0.937 0.003
Docker 6 STIDE 4 5000 5 1.000 0.384 0.555 0.041
Docker 12 STIDE 4 5000 5 1.000 0.398 0.569 0.038
Docker 24 STIDE 4 5000 5 1.000 0.409 0.580 0.037
Docker 6 STIDE 4 5000 10 1.000 0.473 0.642 0.028
Docker 12 STIDE 4 5000 10 1.000 0.482 0.651 0.027
Docker 24 STIDE 4 5000 10 1.000 0.487 0.655 0.027
Docker 6 STIDE 4 5000 20 1.000 0.533 0.695 0.022
Docker 12 STIDE 4 5000 20 1.000 0.536 0.698 0.022
Docker 24 STIDE 4 5000 20 1.000 0.537 0.699 0.022
Docker 6 STIDE 4 5000 50 0.979 0.691 0.810 0.011
Docker 12 STIDE 4 5000 50 0.975 0.703 0.817 0.010
Docker 24 STIDE 4 5000 50 0.975 0.737 0.840 0.009
Docker 6 STIDE 4 5000 100 0.970 0.829 0.894 0.005
Docker 12 STIDE 4 5000 100 0.970 0.830 0.894 0.005
Docker 24 STIDE 4 5000 100 0.970 0.831 0.895 0.005
Docker 6 STIDE 5 500 5 1.000 0.655 0.792 0.013
Docker 12 STIDE 5 500 5 1.000 0.670 0.803 0.012
Docker 24 STIDE 5 500 5 1.000 0.684 0.812 0.011
Docker 6 STIDE 5 500 10 1.000 0.755 0.860 0.008
Docker 12 STIDE 5 500 10 1.000 0.761 0.864 0.008
Docker 24 STIDE 5 500 10 1.000 0.765 0.867 0.008
Docker 6 STIDE 5 500 20 1.000 0.805 0.892 0.006
Docker 12 STIDE 5 500 20 1.000 0.807 0.893 0.006
Docker 24 STIDE 5 500 20 1.000 0.809 0.894 0.006
Docker 6 STIDE 5 500 50 0.977 0.874 0.923 0.003
Docker 12 STIDE 5 500 50 0.977 0.874 0.923 0.003
Docker 24 STIDE 5 500 50 0.977 0.875 0.923 0.003
Docker 6 STIDE 5 500 100 0.975 0.903 0.938 0.003
Docker 12 STIDE 5 500 100 0.975 0.903 0.938 0.003
Docker 24 STIDE 5 500 100 0.975 0.904 0.938 0.003
Docker 6 STIDE 5 1000 5 1.000 0.541 0.702 0.021
Docker 12 STIDE 5 1000 5 1.000 0.564 0.721 0.019
Docker 24 STIDE 5 1000 5 1.000 0.583 0.737 0.018
Docker 6 STIDE 5 1000 10 1.000 0.665 0.799 0.013
Docker 12 STIDE 5 1000 10 1.000 0.672 0.804 0.012
Docker 24 STIDE 5 1000 10 1.000 0.681 0.810 0.012
Docker 6 STIDE 5 1000 20 1.000 0.735 0.847 0.009
Docker 12 STIDE 5 1000 20 1.000 0.739 0.850 0.009
Docker 24 STIDE 5 1000 20 1.000 0.742 0.852 0.009
Docker 6 STIDE 5 1000 50 0.977 0.838 0.902 0.005

92

Complete Experimental Results for All Platforms

Table A.1: An overview of the results for all platforms.

Platform
Train

Time (H)
Algo

Window/

Dec. Thr.

Epoch

Size

Det.

Thr.
Recall Prec. F-Meas. FPR

Docker 12 STIDE 5 1000 50 0.977 0.840 0.903 0.005
Docker 24 STIDE 5 1000 50 0.977 0.841 0.904 0.005
Docker 6 STIDE 5 1000 100 0.975 0.872 0.921 0.004
Docker 12 STIDE 5 1000 100 0.975 0.873 0.921 0.004
Docker 24 STIDE 5 1000 100 0.975 0.874 0.922 0.003
Docker 6 STIDE 5 5000 5 1.000 0.255 0.406 0.074
Docker 12 STIDE 5 5000 5 1.000 0.297 0.458 0.060
Docker 24 STIDE 5 5000 5 1.000 0.327 0.493 0.052
Docker 6 STIDE 5 5000 10 1.000 0.395 0.566 0.039
Docker 12 STIDE 5 5000 10 1.000 0.417 0.589 0.036
Docker 24 STIDE 5 5000 10 1.000 0.436 0.608 0.033
Docker 6 STIDE 5 5000 20 1.000 0.486 0.654 0.027
Docker 12 STIDE 5 5000 20 1.000 0.496 0.663 0.026
Docker 24 STIDE 5 5000 20 1.000 0.508 0.673 0.025
Docker 6 STIDE 5 5000 50 0.998 0.627 0.770 0.015
Docker 12 STIDE 5 5000 50 0.996 0.632 0.774 0.015
Docker 24 STIDE 5 5000 50 0.994 0.635 0.775 0.015
Docker 6 STIDE 5 5000 100 0.970 0.742 0.841 0.009
Docker 12 STIDE 5 5000 100 0.970 0.745 0.842 0.008
Docker 24 STIDE 5 5000 100 0.970 0.747 0.844 0.008
Docker 6 STIDE 6 500 5 1.000 0.512 0.677 0.024
Docker 12 STIDE 6 500 5 1.000 0.567 0.724 0.019
Docker 24 STIDE 6 500 5 1.000 0.599 0.749 0.017
Docker 6 STIDE 6 500 10 1.000 0.693 0.819 0.011
Docker 12 STIDE 6 500 10 1.000 0.707 0.829 0.010
Docker 24 STIDE 6 500 10 1.000 0.721 0.838 0.010
Docker 6 STIDE 6 500 20 1.000 0.771 0.871 0.007
Docker 12 STIDE 6 500 20 1.000 0.775 0.873 0.007
Docker 24 STIDE 6 500 20 1.000 0.778 0.875 0.007
Docker 6 STIDE 6 500 50 0.985 0.849 0.912 0.004
Docker 12 STIDE 6 500 50 0.985 0.851 0.913 0.004
Docker 24 STIDE 6 500 50 0.985 0.852 0.914 0.004
Docker 6 STIDE 6 500 100 0.975 0.884 0.927 0.003
Docker 12 STIDE 6 500 100 0.975 0.885 0.928 0.003
Docker 24 STIDE 6 500 100 0.975 0.886 0.928 0.003
Docker 6 STIDE 6 1000 5 1.000 0.366 0.536 0.043
Docker 12 STIDE 6 1000 5 1.000 0.438 0.609 0.032
Docker 24 STIDE 6 1000 5 1.000 0.479 0.647 0.027
Docker 6 STIDE 6 1000 10 1.000 0.579 0.733 0.018
Docker 12 STIDE 6 1000 10 1.000 0.606 0.755 0.016
Docker 24 STIDE 6 1000 10 1.000 0.629 0.772 0.015
Docker 6 STIDE 6 1000 20 1.000 0.694 0.819 0.011
Docker 12 STIDE 6 1000 20 1.000 0.700 0.823 0.011
Docker 24 STIDE 6 1000 20 1.000 0.708 0.829 0.010
Docker 6 STIDE 6 1000 50 0.984 0.804 0.885 0.006
Docker 12 STIDE 6 1000 50 0.984 0.807 0.887 0.006
Docker 24 STIDE 6 1000 50 0.984 0.809 0.888 0.006
Docker 6 STIDE 6 1000 100 0.975 0.843 0.904 0.005
Docker 12 STIDE 6 1000 100 0.975 0.844 0.904 0.004
Docker 24 STIDE 6 1000 100 0.975 0.845 0.905 0.004
Docker 6 STIDE 6 5000 5 1.000 0.108 0.194 0.211
Docker 12 STIDE 6 5000 5 1.000 0.165 0.283 0.129
Docker 24 STIDE 6 5000 5 1.000 0.209 0.346 0.096
Docker 6 STIDE 6 5000 10 1.000 0.239 0.385 0.081
Docker 12 STIDE 6 5000 10 1.000 0.309 0.472 0.057
Docker 24 STIDE 6 5000 10 1.000 0.347 0.515 0.048
Docker 6 STIDE 6 5000 20 1.000 0.413 0.585 0.036
Docker 12 STIDE 6 5000 20 1.000 0.441 0.612 0.032
Docker 24 STIDE 6 5000 20 1.000 0.464 0.634 0.029
Docker 6 STIDE 6 5000 50 1.000 0.583 0.737 0.018
Docker 12 STIDE 6 5000 50 1.000 0.596 0.747 0.017
Docker 24 STIDE 6 5000 50 1.000 0.605 0.754 0.017
Docker 6 STIDE 6 5000 100 0.970 0.702 0.814 0.010

93

Appendix A

Table A.1: An overview of the results for all platforms.

Platform
Train

Time (H)
Algo

Window/

Dec. Thr.

Epoch

Size

Det.

Thr.
Recall Prec. F-Meas. FPR

Docker 12 STIDE 6 5000 100 0.970 0.706 0.817 0.010
Docker 24 STIDE 6 5000 100 0.970 0.710 0.820 0.010

OS 6 BoSC 3 500 5 0.727 0.843 0.781 0.001
OS 12 BoSC 3 500 5 0.666 0.910 0.769 0.001
OS 24 BoSC 3 500 5 0.666 0.925 0.774 0.000
OS 6 BoSC 3 500 10 0.666 0.934 0.777 0.000
OS 12 BoSC 3 500 10 0.666 0.954 0.784 0.000
OS 24 BoSC 3 500 10 0.666 0.957 0.785 0.000
OS 6 BoSC 3 500 20 0.635 0.973 0.769 0.000
OS 12 BoSC 3 500 20 0.635 0.976 0.770 0.000
OS 24 BoSC 3 500 20 0.629 0.977 0.766 0.000
OS 6 BoSC 3 500 50 0.593 0.983 0.740 0.000
OS 12 BoSC 3 500 50 0.593 0.984 0.740 0.000
OS 24 BoSC 3 500 50 0.593 0.984 0.740 0.000
OS 6 BoSC 3 500 100 0.593 0.987 0.741 0.000
OS 12 BoSC 3 500 100 0.593 0.987 0.741 0.000
OS 24 BoSC 3 500 100 0.593 0.987 0.741 0.000
OS 6 BoSC 3 1000 5 0.728 0.767 0.747 0.002
OS 12 BoSC 3 1000 5 0.666 0.855 0.749 0.001
OS 24 BoSC 3 1000 5 0.666 0.884 0.760 0.001
OS 6 BoSC 3 1000 10 0.666 0.870 0.755 0.001
OS 12 BoSC 3 1000 10 0.666 0.918 0.772 0.001
OS 24 BoSC 3 1000 10 0.666 0.927 0.775 0.000
OS 6 BoSC 3 1000 20 0.659 0.948 0.778 0.000
OS 12 BoSC 3 1000 20 0.659 0.961 0.782 0.000
OS 24 BoSC 3 1000 20 0.653 0.962 0.778 0.000
OS 6 BoSC 3 1000 50 0.593 0.978 0.738 0.000
OS 12 BoSC 3 1000 50 0.593 0.979 0.739 0.000
OS 24 BoSC 3 1000 50 0.593 0.979 0.739 0.000
OS 6 BoSC 3 1000 100 0.593 0.983 0.740 0.000
OS 12 BoSC 3 1000 100 0.593 0.983 0.740 0.000
OS 24 BoSC 3 1000 100 0.593 0.984 0.740 0.000
OS 6 BoSC 3 5000 5 0.731 0.518 0.606 0.006
OS 12 BoSC 3 5000 5 0.670 0.616 0.642 0.004
OS 24 BoSC 3 5000 5 0.670 0.678 0.674 0.003
OS 6 BoSC 3 5000 10 0.670 0.635 0.652 0.004
OS 12 BoSC 3 5000 10 0.670 0.729 0.698 0.002
OS 24 BoSC 3 5000 10 0.670 0.770 0.716 0.002
OS 6 BoSC 3 5000 20 0.670 0.782 0.721 0.002
OS 12 BoSC 3 5000 20 0.670 0.857 0.752 0.001
OS 24 BoSC 3 5000 20 0.664 0.876 0.755 0.001
OS 6 BoSC 3 5000 50 0.594 0.910 0.719 0.001
OS 12 BoSC 3 5000 50 0.594 0.937 0.727 0.000
OS 24 BoSC 3 5000 50 0.594 0.939 0.728 0.000
OS 6 BoSC 3 5000 100 0.586 0.957 0.727 0.000
OS 12 BoSC 3 5000 100 0.586 0.958 0.728 0.000
OS 24 BoSC 3 5000 100 0.586 0.962 0.728 0.000
OS 6 BoSC 4 500 5 0.748 0.809 0.777 0.002
OS 12 BoSC 4 500 5 0.748 0.862 0.801 0.001
OS 24 BoSC 4 500 5 0.686 0.889 0.775 0.001
OS 6 BoSC 4 500 10 0.666 0.894 0.763 0.001
OS 12 BoSC 4 500 10 0.666 0.913 0.770 0.001
OS 24 BoSC 4 500 10 0.666 0.927 0.775 0.000
OS 6 BoSC 4 500 20 0.666 0.948 0.782 0.000
OS 12 BoSC 4 500 20 0.659 0.953 0.779 0.000
OS 24 BoSC 4 500 20 0.659 0.955 0.780 0.000
OS 6 BoSC 4 500 50 0.593 0.980 0.739 0.000
OS 12 BoSC 4 500 50 0.593 0.981 0.739 0.000
OS 24 BoSC 4 500 50 0.593 0.981 0.739 0.000
OS 6 BoSC 4 500 100 0.593 0.985 0.740 0.000
OS 12 BoSC 4 500 100 0.593 0.985 0.740 0.000
OS 24 BoSC 4 500 100 0.593 0.986 0.740 0.000
OS 6 BoSC 4 1000 5 0.748 0.721 0.735 0.003

94

Complete Experimental Results for All Platforms

Table A.1: An overview of the results for all platforms.

Platform
Train

Time (H)
Algo

Window/

Dec. Thr.

Epoch

Size

Det.

Thr.
Recall Prec. F-Meas. FPR

OS 12 BoSC 4 1000 5 0.748 0.784 0.766 0.002
OS 24 BoSC 4 1000 5 0.687 0.829 0.751 0.001
OS 6 BoSC 4 1000 10 0.666 0.820 0.735 0.001
OS 12 BoSC 4 1000 10 0.666 0.858 0.750 0.001
OS 24 BoSC 4 1000 10 0.666 0.888 0.761 0.001
OS 6 BoSC 4 1000 20 0.666 0.898 0.765 0.001
OS 12 BoSC 4 1000 20 0.666 0.918 0.772 0.001
OS 24 BoSC 4 1000 20 0.666 0.925 0.775 0.001
OS 6 BoSC 4 1000 50 0.593 0.963 0.734 0.000
OS 12 BoSC 4 1000 50 0.593 0.965 0.734 0.000
OS 24 BoSC 4 1000 50 0.593 0.967 0.735 0.000
OS 6 BoSC 4 1000 100 0.593 0.980 0.739 0.000
OS 12 BoSC 4 1000 100 0.593 0.981 0.739 0.000
OS 24 BoSC 4 1000 100 0.593 0.982 0.739 0.000
OS 6 BoSC 4 5000 5 0.752 0.460 0.571 0.008
OS 12 BoSC 4 5000 5 0.752 0.522 0.616 0.007
OS 24 BoSC 4 5000 5 0.690 0.585 0.633 0.005
OS 6 BoSC 4 5000 10 0.670 0.558 0.609 0.005
OS 12 BoSC 4 5000 10 0.670 0.611 0.639 0.004
OS 24 BoSC 4 5000 10 0.670 0.686 0.678 0.003
OS 6 BoSC 4 5000 20 0.670 0.662 0.666 0.003
OS 12 BoSC 4 5000 20 0.670 0.721 0.694 0.002
OS 24 BoSC 4 5000 20 0.670 0.768 0.715 0.002
OS 6 BoSC 4 5000 50 0.609 0.844 0.707 0.001
OS 12 BoSC 4 5000 50 0.609 0.883 0.721 0.001
OS 24 BoSC 4 5000 50 0.609 0.899 0.726 0.001
OS 6 BoSC 4 5000 100 0.594 0.923 0.723 0.000
OS 12 BoSC 4 5000 100 0.586 0.930 0.719 0.000
OS 24 BoSC 4 5000 100 0.586 0.931 0.719 0.000
OS 6 BoSC 5 500 5 0.776 0.766 0.771 0.002
OS 12 BoSC 5 500 5 0.748 0.779 0.763 0.002
OS 24 BoSC 5 500 5 0.718 0.837 0.773 0.001
OS 6 BoSC 5 500 10 0.686 0.868 0.767 0.001
OS 12 BoSC 5 500 10 0.666 0.874 0.756 0.001
OS 24 BoSC 5 500 10 0.666 0.899 0.765 0.001
OS 6 BoSC 5 500 20 0.666 0.924 0.774 0.001
OS 12 BoSC 5 500 20 0.666 0.931 0.776 0.000
OS 24 BoSC 5 500 20 0.666 0.935 0.778 0.000
OS 6 BoSC 5 500 50 0.616 0.969 0.753 0.000
OS 12 BoSC 5 500 50 0.610 0.971 0.749 0.000
OS 24 BoSC 5 500 50 0.598 0.971 0.740 0.000
OS 6 BoSC 5 500 100 0.593 0.984 0.740 0.000
OS 12 BoSC 5 500 100 0.593 0.984 0.740 0.000
OS 24 BoSC 5 500 100 0.593 0.985 0.740 0.000
OS 6 BoSC 5 1000 5 0.776 0.670 0.719 0.004
OS 12 BoSC 5 1000 5 0.748 0.686 0.716 0.003
OS 24 BoSC 5 1000 5 0.719 0.756 0.737 0.002
OS 6 BoSC 5 1000 10 0.687 0.782 0.732 0.002
OS 12 BoSC 5 1000 10 0.666 0.792 0.724 0.002
OS 24 BoSC 5 1000 10 0.666 0.841 0.743 0.001
OS 6 BoSC 5 1000 20 0.666 0.862 0.752 0.001
OS 12 BoSC 5 1000 20 0.666 0.881 0.759 0.001
OS 24 BoSC 5 1000 20 0.666 0.897 0.765 0.001
OS 6 BoSC 5 1000 50 0.654 0.946 0.773 0.000
OS 12 BoSC 5 1000 50 0.648 0.949 0.770 0.000
OS 24 BoSC 5 1000 50 0.642 0.950 0.766 0.000
OS 6 BoSC 5 1000 100 0.593 0.972 0.736 0.000
OS 12 BoSC 5 1000 100 0.593 0.974 0.737 0.000
OS 24 BoSC 5 1000 100 0.593 0.975 0.737 0.000
OS 6 BoSC 5 5000 5 0.779 0.384 0.514 0.012
OS 12 BoSC 5 5000 5 0.752 0.414 0.534 0.010
OS 24 BoSC 5 5000 5 0.722 0.483 0.579 0.007
OS 6 BoSC 5 5000 10 0.690 0.519 0.592 0.006

95

Appendix A

Table A.1: An overview of the results for all platforms.

Platform
Train

Time (H)
Algo

Window/

Dec. Thr.

Epoch

Size

Det.

Thr.
Recall Prec. F-Meas. FPR

OS 12 BoSC 5 5000 10 0.670 0.533 0.593 0.006
OS 24 BoSC 5 5000 10 0.670 0.614 0.640 0.004
OS 6 BoSC 5 5000 20 0.670 0.609 0.638 0.004
OS 12 BoSC 5 5000 20 0.670 0.640 0.654 0.004
OS 24 BoSC 5 5000 20 0.670 0.703 0.686 0.003
OS 6 BoSC 5 5000 50 0.664 0.779 0.717 0.002
OS 12 BoSC 5 5000 50 0.654 0.804 0.721 0.002
OS 24 BoSC 5 5000 50 0.648 0.832 0.729 0.001
OS 6 BoSC 5 5000 100 0.594 0.886 0.711 0.001
OS 12 BoSC 5 5000 100 0.594 0.897 0.715 0.001
OS 24 BoSC 5 5000 100 0.594 0.901 0.716 0.001
OS 6 BoSC 6 500 5 0.890 0.727 0.800 0.003
OS 12 BoSC 6 500 5 0.830 0.740 0.782 0.003
OS 24 BoSC 6 500 5 0.776 0.781 0.778 0.002
OS 6 BoSC 6 500 10 0.686 0.822 0.748 0.001
OS 12 BoSC 6 500 10 0.686 0.837 0.754 0.001
OS 24 BoSC 6 500 10 0.686 0.862 0.764 0.001
OS 6 BoSC 6 500 20 0.666 0.900 0.765 0.001
OS 12 BoSC 6 500 20 0.666 0.908 0.768 0.001
OS 24 BoSC 6 500 20 0.666 0.917 0.771 0.001
OS 6 BoSC 6 500 50 0.627 0.958 0.758 0.000
OS 12 BoSC 6 500 50 0.627 0.960 0.758 0.000
OS 24 BoSC 6 500 50 0.627 0.961 0.758 0.000
OS 6 BoSC 6 500 100 0.593 0.981 0.739 0.000
OS 12 BoSC 6 500 100 0.593 0.981 0.739 0.000
OS 24 BoSC 6 500 100 0.593 0.981 0.739 0.000
OS 6 BoSC 6 1000 5 0.890 0.611 0.725 0.005
OS 12 BoSC 6 1000 5 0.830 0.635 0.719 0.004
OS 24 BoSC 6 1000 5 0.776 0.684 0.727 0.003
OS 6 BoSC 6 1000 10 0.687 0.731 0.708 0.002
OS 12 BoSC 6 1000 10 0.687 0.749 0.717 0.002
OS 24 BoSC 6 1000 10 0.687 0.791 0.735 0.002
OS 6 BoSC 6 1000 20 0.666 0.821 0.736 0.001
OS 12 BoSC 6 1000 20 0.666 0.833 0.741 0.001
OS 24 BoSC 6 1000 20 0.666 0.858 0.750 0.001
OS 6 BoSC 6 1000 50 0.659 0.924 0.769 0.001
OS 12 BoSC 6 1000 50 0.659 0.931 0.772 0.000
OS 24 BoSC 6 1000 50 0.659 0.932 0.772 0.000
OS 6 BoSC 6 1000 100 0.593 0.959 0.733 0.000
OS 12 BoSC 6 1000 100 0.593 0.962 0.734 0.000
OS 24 BoSC 6 1000 100 0.593 0.963 0.734 0.000
OS 6 BoSC 6 5000 5 0.912 0.300 0.451 0.020
OS 12 BoSC 6 5000 5 0.853 0.340 0.487 0.016
OS 24 BoSC 6 5000 5 0.800 0.387 0.521 0.012
OS 6 BoSC 6 5000 10 0.690 0.431 0.531 0.009
OS 12 BoSC 6 5000 10 0.690 0.474 0.562 0.007
OS 24 BoSC 6 5000 10 0.690 0.540 0.606 0.006
OS 6 BoSC 6 5000 20 0.670 0.568 0.615 0.005
OS 12 BoSC 6 5000 20 0.670 0.586 0.625 0.005
OS 24 BoSC 6 5000 20 0.670 0.653 0.661 0.003
OS 6 BoSC 6 5000 50 0.670 0.717 0.692 0.003
OS 12 BoSC 6 5000 50 0.670 0.740 0.703 0.002
OS 24 BoSC 6 5000 50 0.670 0.778 0.720 0.002
OS 6 BoSC 6 5000 100 0.601 0.841 0.701 0.001
OS 12 BoSC 6 5000 100 0.601 0.856 0.706 0.001
OS 24 BoSC 6 5000 100 0.601 0.866 0.710 0.001
OS 6 STIDE 3 500 5 0.727 0.829 0.775 0.001
OS 12 STIDE 3 500 5 0.666 0.896 0.764 0.001
OS 24 STIDE 3 500 5 0.666 0.911 0.769 0.001
OS 6 STIDE 3 500 10 0.666 0.922 0.773 0.001
OS 12 STIDE 3 500 10 0.666 0.941 0.780 0.000
OS 24 STIDE 3 500 10 0.666 0.946 0.781 0.000
OS 6 STIDE 3 500 20 0.635 0.968 0.767 0.000

96

Complete Experimental Results for All Platforms

Table A.1: An overview of the results for all platforms.

Platform
Train

Time (H)
Algo

Window/

Dec. Thr.

Epoch

Size

Det.

Thr.
Recall Prec. F-Meas. FPR

OS 12 STIDE 3 500 20 0.635 0.972 0.768 0.000
OS 24 STIDE 3 500 20 0.635 0.972 0.769 0.000
OS 6 STIDE 3 500 50 0.593 0.983 0.740 0.000
OS 12 STIDE 3 500 50 0.593 0.983 0.740 0.000
OS 24 STIDE 3 500 50 0.593 0.984 0.740 0.000
OS 6 STIDE 3 500 100 0.593 0.986 0.741 0.000
OS 12 STIDE 3 500 100 0.593 0.987 0.741 0.000
OS 24 STIDE 3 500 100 0.593 0.987 0.741 0.000
OS 6 STIDE 3 1000 5 0.728 0.749 0.738 0.002
OS 12 STIDE 3 1000 5 0.666 0.834 0.741 0.001
OS 24 STIDE 3 1000 5 0.666 0.861 0.751 0.001
OS 6 STIDE 3 1000 10 0.666 0.855 0.749 0.001
OS 12 STIDE 3 1000 10 0.666 0.901 0.766 0.001
OS 24 STIDE 3 1000 10 0.666 0.910 0.769 0.001
OS 6 STIDE 3 1000 20 0.659 0.935 0.773 0.000
OS 12 STIDE 3 1000 20 0.659 0.948 0.777 0.000
OS 24 STIDE 3 1000 20 0.659 0.950 0.778 0.000
OS 6 STIDE 3 1000 50 0.593 0.977 0.738 0.000
OS 12 STIDE 3 1000 50 0.593 0.978 0.738 0.000
OS 24 STIDE 3 1000 50 0.593 0.978 0.738 0.000
OS 6 STIDE 3 1000 100 0.593 0.982 0.739 0.000
OS 12 STIDE 3 1000 100 0.593 0.982 0.740 0.000
OS 24 STIDE 3 1000 100 0.593 0.983 0.740 0.000
OS 6 STIDE 3 5000 5 0.731 0.493 0.589 0.007
OS 12 STIDE 3 5000 5 0.670 0.586 0.625 0.005
OS 24 STIDE 3 5000 5 0.670 0.635 0.652 0.004
OS 6 STIDE 3 5000 10 0.670 0.601 0.633 0.004
OS 12 STIDE 3 5000 10 0.670 0.690 0.679 0.003
OS 24 STIDE 3 5000 10 0.670 0.727 0.697 0.002
OS 6 STIDE 3 5000 20 0.670 0.745 0.705 0.002
OS 12 STIDE 3 5000 20 0.670 0.815 0.735 0.001
OS 24 STIDE 3 5000 20 0.670 0.834 0.743 0.001
OS 6 STIDE 3 5000 50 0.594 0.900 0.715 0.001
OS 12 STIDE 3 5000 50 0.594 0.923 0.723 0.000
OS 24 STIDE 3 5000 50 0.594 0.927 0.724 0.000
OS 6 STIDE 3 5000 100 0.586 0.946 0.724 0.000
OS 12 STIDE 3 5000 100 0.586 0.951 0.725 0.000
OS 24 STIDE 3 5000 100 0.586 0.953 0.726 0.000
OS 6 STIDE 4 500 5 0.748 0.761 0.755 0.002
OS 12 STIDE 4 500 5 0.748 0.810 0.778 0.002
OS 24 STIDE 4 500 5 0.686 0.828 0.750 0.001
OS 6 STIDE 4 500 10 0.666 0.858 0.750 0.001
OS 12 STIDE 4 500 10 0.666 0.879 0.758 0.001
OS 24 STIDE 4 500 10 0.666 0.891 0.762 0.001
OS 6 STIDE 4 500 20 0.666 0.928 0.775 0.000
OS 12 STIDE 4 500 20 0.666 0.935 0.778 0.000
OS 24 STIDE 4 500 20 0.666 0.937 0.779 0.000
OS 6 STIDE 4 500 50 0.593 0.972 0.736 0.000
OS 12 STIDE 4 500 50 0.593 0.974 0.737 0.000
OS 24 STIDE 4 500 50 0.593 0.974 0.737 0.000
OS 6 STIDE 4 500 100 0.593 0.985 0.740 0.000
OS 12 STIDE 4 500 100 0.593 0.985 0.740 0.000
OS 24 STIDE 4 500 100 0.593 0.985 0.740 0.000
OS 6 STIDE 4 1000 5 0.748 0.667 0.705 0.003
OS 12 STIDE 4 1000 5 0.748 0.723 0.735 0.003
OS 24 STIDE 4 1000 5 0.687 0.752 0.718 0.002
OS 6 STIDE 4 1000 10 0.666 0.774 0.716 0.002
OS 12 STIDE 4 1000 10 0.666 0.809 0.731 0.001
OS 24 STIDE 4 1000 10 0.666 0.834 0.741 0.001
OS 6 STIDE 4 1000 20 0.666 0.859 0.751 0.001
OS 12 STIDE 4 1000 20 0.666 0.880 0.758 0.001
OS 24 STIDE 4 1000 20 0.666 0.888 0.762 0.001
OS 6 STIDE 4 1000 50 0.593 0.943 0.728 0.000

97

Appendix A

Table A.1: An overview of the results for all platforms.

Platform
Train

Time (H)
Algo

Window/

Dec. Thr.

Epoch

Size

Det.

Thr.
Recall Prec. F-Meas. FPR

OS 12 STIDE 4 1000 50 0.593 0.946 0.729 0.000
OS 24 STIDE 4 1000 50 0.593 0.947 0.729 0.000
OS 6 STIDE 4 1000 100 0.593 0.976 0.738 0.000
OS 12 STIDE 4 1000 100 0.593 0.977 0.738 0.000
OS 24 STIDE 4 1000 100 0.593 0.978 0.738 0.000
OS 6 STIDE 4 5000 5 0.752 0.389 0.513 0.011
OS 12 STIDE 4 5000 5 0.752 0.448 0.562 0.009
OS 24 STIDE 4 5000 5 0.690 0.490 0.573 0.007
OS 6 STIDE 4 5000 10 0.670 0.516 0.583 0.006
OS 12 STIDE 4 5000 10 0.670 0.563 0.612 0.005
OS 24 STIDE 4 5000 10 0.670 0.621 0.644 0.004
OS 6 STIDE 4 5000 20 0.670 0.614 0.640 0.004
OS 12 STIDE 4 5000 20 0.670 0.663 0.666 0.003
OS 24 STIDE 4 5000 20 0.670 0.701 0.685 0.003
OS 6 STIDE 4 5000 50 0.609 0.768 0.679 0.002
OS 12 STIDE 4 5000 50 0.609 0.804 0.693 0.001
OS 24 STIDE 4 5000 50 0.609 0.817 0.698 0.001
OS 6 STIDE 4 5000 100 0.594 0.884 0.710 0.001
OS 12 STIDE 4 5000 100 0.594 0.898 0.715 0.001
OS 24 STIDE 4 5000 100 0.590 0.899 0.712 0.001
OS 6 STIDE 5 500 5 0.803 0.650 0.719 0.004
OS 12 STIDE 5 500 5 0.775 0.690 0.730 0.003
OS 24 STIDE 5 500 5 0.718 0.734 0.726 0.002
OS 6 STIDE 5 500 10 0.686 0.798 0.738 0.002
OS 12 STIDE 5 500 10 0.666 0.807 0.729 0.001
OS 24 STIDE 5 500 10 0.666 0.828 0.738 0.001
OS 6 STIDE 5 500 20 0.666 0.871 0.755 0.001
OS 12 STIDE 5 500 20 0.666 0.881 0.758 0.001
OS 24 STIDE 5 500 20 0.666 0.886 0.760 0.001
OS 6 STIDE 5 500 50 0.627 0.947 0.754 0.000
OS 12 STIDE 5 500 50 0.627 0.949 0.755 0.000
OS 24 STIDE 5 500 50 0.621 0.951 0.751 0.000
OS 6 STIDE 5 500 100 0.593 0.980 0.739 0.000
OS 12 STIDE 5 500 100 0.593 0.980 0.739 0.000
OS 24 STIDE 5 500 100 0.593 0.981 0.739 0.000
OS 6 STIDE 5 1000 5 0.803 0.515 0.627 0.007
OS 12 STIDE 5 1000 5 0.776 0.575 0.660 0.005
OS 24 STIDE 5 1000 5 0.719 0.631 0.672 0.004
OS 6 STIDE 5 1000 10 0.687 0.702 0.695 0.003
OS 12 STIDE 5 1000 10 0.666 0.718 0.691 0.002
OS 24 STIDE 5 1000 10 0.666 0.756 0.708 0.002
OS 6 STIDE 5 1000 20 0.666 0.795 0.725 0.002
OS 12 STIDE 5 1000 20 0.666 0.811 0.732 0.001
OS 24 STIDE 5 1000 20 0.666 0.827 0.738 0.001
OS 6 STIDE 5 1000 50 0.659 0.894 0.759 0.001
OS 12 STIDE 5 1000 50 0.659 0.902 0.762 0.001
OS 24 STIDE 5 1000 50 0.659 0.904 0.762 0.001
OS 6 STIDE 5 1000 100 0.593 0.951 0.731 0.000
OS 12 STIDE 5 1000 100 0.593 0.955 0.732 0.000
OS 24 STIDE 5 1000 100 0.593 0.957 0.732 0.000
OS 6 STIDE 5 5000 5 0.856 0.191 0.312 0.035
OS 12 STIDE 5 5000 5 0.799 0.266 0.399 0.021
OS 24 STIDE 5 5000 5 0.743 0.326 0.453 0.015
OS 6 STIDE 5 5000 10 0.690 0.401 0.507 0.010
OS 12 STIDE 5 5000 10 0.690 0.455 0.548 0.008
OS 24 STIDE 5 5000 10 0.690 0.519 0.592 0.006
OS 6 STIDE 5 5000 20 0.670 0.547 0.602 0.005
OS 12 STIDE 5 5000 20 0.670 0.580 0.622 0.005
OS 24 STIDE 5 5000 20 0.670 0.631 0.650 0.004
OS 6 STIDE 5 5000 50 0.670 0.691 0.680 0.003
OS 12 STIDE 5 5000 50 0.670 0.719 0.693 0.002
OS 24 STIDE 5 5000 50 0.670 0.745 0.705 0.002
OS 6 STIDE 5 5000 100 0.594 0.809 0.685 0.001

98

Complete Experimental Results for All Platforms

Table A.1: An overview of the results for all platforms.

Platform
Train

Time (H)
Algo

Window/

Dec. Thr.

Epoch

Size

Det.

Thr.
Recall Prec. F-Meas. FPR

OS 12 STIDE 5 5000 100 0.594 0.822 0.689 0.001
OS 24 STIDE 5 5000 100 0.594 0.826 0.691 0.001
OS 6 STIDE 6 500 5 1.000 0.435 0.606 0.012
OS 12 STIDE 6 500 5 0.972 0.550 0.703 0.007
OS 24 STIDE 6 500 5 0.911 0.622 0.739 0.005
OS 6 STIDE 6 500 10 0.686 0.693 0.690 0.003
OS 12 STIDE 6 500 10 0.686 0.736 0.710 0.002
OS 24 STIDE 6 500 10 0.686 0.765 0.723 0.002
OS 6 STIDE 6 500 20 0.666 0.823 0.736 0.001
OS 12 STIDE 6 500 20 0.666 0.831 0.739 0.001
OS 24 STIDE 6 500 20 0.666 0.840 0.743 0.001
OS 6 STIDE 6 500 50 0.635 0.905 0.747 0.001
OS 12 STIDE 6 500 50 0.635 0.910 0.748 0.001
OS 24 STIDE 6 500 50 0.627 0.911 0.742 0.001
OS 6 STIDE 6 500 100 0.593 0.964 0.734 0.000
OS 12 STIDE 6 500 100 0.593 0.966 0.735 0.000
OS 24 STIDE 6 500 100 0.593 0.968 0.735 0.000
OS 6 STIDE 6 1000 5 1.000 0.269 0.424 0.025
OS 12 STIDE 6 1000 5 0.972 0.391 0.557 0.014
OS 24 STIDE 6 1000 5 0.911 0.477 0.626 0.009
OS 6 STIDE 6 1000 10 0.717 0.554 0.625 0.005
OS 12 STIDE 6 1000 10 0.687 0.623 0.654 0.004
OS 24 STIDE 6 1000 10 0.687 0.677 0.682 0.003
OS 6 STIDE 6 1000 20 0.666 0.733 0.698 0.002
OS 12 STIDE 6 1000 20 0.666 0.751 0.706 0.002
OS 24 STIDE 6 1000 20 0.666 0.773 0.716 0.002
OS 6 STIDE 6 1000 50 0.659 0.847 0.741 0.001
OS 12 STIDE 6 1000 50 0.659 0.852 0.743 0.001
OS 24 STIDE 6 1000 50 0.659 0.854 0.744 0.001
OS 6 STIDE 6 1000 100 0.593 0.904 0.716 0.001
OS 12 STIDE 6 1000 100 0.593 0.909 0.718 0.001
OS 24 STIDE 6 1000 100 0.593 0.911 0.718 0.001
OS 6 STIDE 6 5000 5 1.000 0.051 0.097 0.177
OS 12 STIDE 6 5000 5 1.000 0.100 0.182 0.085
OS 24 STIDE 6 5000 5 0.941 0.155 0.266 0.049
OS 6 STIDE 6 5000 10 0.828 0.156 0.262 0.043
OS 12 STIDE 6 5000 10 0.711 0.258 0.379 0.019
OS 24 STIDE 6 5000 10 0.711 0.355 0.474 0.012
OS 6 STIDE 6 5000 20 0.690 0.421 0.523 0.009
OS 12 STIDE 6 5000 20 0.690 0.500 0.580 0.007
OS 24 STIDE 6 5000 20 0.690 0.560 0.619 0.005
OS 6 STIDE 6 5000 50 0.670 0.624 0.646 0.004
OS 12 STIDE 6 5000 50 0.670 0.646 0.658 0.003
OS 24 STIDE 6 5000 50 0.670 0.673 0.671 0.003
OS 6 STIDE 6 5000 100 0.609 0.729 0.664 0.002
OS 12 STIDE 6 5000 100 0.609 0.744 0.670 0.002
OS 24 STIDE 6 5000 100 0.609 0.759 0.676 0.002

LXC 6 BoSC 3 500 5 1.000 0.619 0.765 0.005
LXC 12 BoSC 3 500 5 1.000 0.712 0.832 0.003
LXC 24 BoSC 3 500 5 0.999 0.820 0.901 0.002
LXC 6 BoSC 3 500 10 0.976 0.721 0.829 0.003
LXC 12 BoSC 3 500 10 0.969 0.839 0.899 0.002
LXC 24 BoSC 3 500 10 0.926 0.928 0.927 0.001
LXC 6 BoSC 3 500 20 0.902 0.861 0.881 0.001
LXC 12 BoSC 3 500 20 0.836 0.949 0.889 0.000
LXC 24 BoSC 3 500 20 0.820 0.985 0.895 0.000
LXC 6 BoSC 3 500 50 0.820 0.985 0.895 0.000
LXC 12 BoSC 3 500 50 0.820 0.995 0.899 0.000
LXC 24 BoSC 3 500 50 0.820 0.998 0.900 0.000
LXC 6 BoSC 3 500 100 0.820 0.996 0.899 0.000
LXC 12 BoSC 3 500 100 0.810 0.999 0.895 0.000
LXC 24 BoSC 3 500 100 0.603 0.999 0.752 0.000
LXC 6 BoSC 3 1000 5 1.000 0.523 0.687 0.007

99

Appendix A

Table A.1: An overview of the results for all platforms.

Platform
Train

Time (H)
Algo

Window/

Dec. Thr.

Epoch

Size

Det.

Thr.
Recall Prec. F-Meas. FPR

LXC 12 BoSC 3 1000 5 1.000 0.595 0.746 0.006
LXC 24 BoSC 3 1000 5 0.999 0.701 0.824 0.003
LXC 6 BoSC 3 1000 10 0.978 0.596 0.741 0.005
LXC 12 BoSC 3 1000 10 0.972 0.707 0.819 0.003
LXC 24 BoSC 3 1000 10 0.938 0.832 0.882 0.002
LXC 6 BoSC 3 1000 20 0.953 0.721 0.821 0.003
LXC 12 BoSC 3 1000 20 0.876 0.851 0.863 0.001
LXC 24 BoSC 3 1000 20 0.835 0.948 0.888 0.000
LXC 6 BoSC 3 1000 50 0.838 0.930 0.882 0.001
LXC 12 BoSC 3 1000 50 0.819 0.984 0.894 0.000
LXC 24 BoSC 3 1000 50 0.819 0.996 0.899 0.000
LXC 6 BoSC 3 1000 100 0.819 0.990 0.897 0.000
LXC 12 BoSC 3 1000 100 0.819 0.997 0.900 0.000
LXC 24 BoSC 3 1000 100 0.819 0.999 0.900 0.000
LXC 6 BoSC 3 5000 5 1.000 0.298 0.460 0.019
LXC 12 BoSC 3 5000 5 1.000 0.332 0.498 0.016
LXC 24 BoSC 3 5000 5 0.999 0.393 0.564 0.013
LXC 6 BoSC 3 5000 10 0.978 0.334 0.498 0.016
LXC 12 BoSC 3 5000 10 0.978 0.388 0.556 0.013
LXC 24 BoSC 3 5000 10 0.975 0.492 0.654 0.008
LXC 6 BoSC 3 5000 20 0.965 0.391 0.557 0.012
LXC 12 BoSC 3 5000 20 0.959 0.494 0.652 0.008
LXC 24 BoSC 3 5000 20 0.914 0.664 0.769 0.004
LXC 6 BoSC 3 5000 50 0.939 0.558 0.700 0.006
LXC 12 BoSC 3 5000 50 0.824 0.758 0.790 0.002
LXC 24 BoSC 3 5000 50 0.819 0.928 0.870 0.001
LXC 6 BoSC 3 5000 100 0.824 0.807 0.816 0.002
LXC 12 BoSC 3 5000 100 0.819 0.951 0.880 0.000
LXC 24 BoSC 3 5000 100 0.819 0.991 0.897 0.000
LXC 6 BoSC 4 500 5 1.000 0.508 0.673 0.007
LXC 12 BoSC 4 500 5 1.000 0.546 0.706 0.006
LXC 24 BoSC 4 500 5 1.000 0.603 0.753 0.005
LXC 6 BoSC 4 500 10 1.000 0.556 0.715 0.006
LXC 12 BoSC 4 500 10 1.000 0.616 0.763 0.005
LXC 24 BoSC 4 500 10 1.000 0.697 0.822 0.003
LXC 6 BoSC 4 500 20 0.975 0.634 0.768 0.004
LXC 12 BoSC 4 500 20 0.974 0.723 0.830 0.003
LXC 24 BoSC 4 500 20 0.964 0.825 0.889 0.002
LXC 6 BoSC 4 500 50 0.950 0.825 0.883 0.002
LXC 12 BoSC 4 500 50 0.937 0.924 0.930 0.001
LXC 24 BoSC 4 500 50 0.931 0.977 0.953 0.000
LXC 6 BoSC 4 500 100 0.870 0.970 0.917 0.000
LXC 12 BoSC 4 500 100 0.809 0.993 0.891 0.000
LXC 24 BoSC 4 500 100 0.809 0.997 0.893 0.000
LXC 6 BoSC 4 1000 5 1.000 0.441 0.613 0.010
LXC 12 BoSC 4 1000 5 1.000 0.467 0.637 0.009
LXC 24 BoSC 4 1000 5 1.000 0.510 0.676 0.007
LXC 6 BoSC 4 1000 10 1.000 0.474 0.644 0.008
LXC 12 BoSC 4 1000 10 1.000 0.516 0.681 0.007
LXC 24 BoSC 4 1000 10 1.000 0.580 0.734 0.006
LXC 6 BoSC 4 1000 20 0.977 0.525 0.683 0.007
LXC 12 BoSC 4 1000 20 0.977 0.593 0.738 0.005
LXC 24 BoSC 4 1000 20 0.964 0.685 0.801 0.003
LXC 6 BoSC 4 1000 50 0.963 0.666 0.788 0.004
LXC 12 BoSC 4 1000 50 0.950 0.784 0.859 0.002
LXC 24 BoSC 4 1000 50 0.936 0.899 0.917 0.001
LXC 6 BoSC 4 1000 100 0.936 0.850 0.891 0.001
LXC 12 BoSC 4 1000 100 0.936 0.950 0.943 0.000
LXC 24 BoSC 4 1000 100 0.862 0.985 0.920 0.000
LXC 6 BoSC 4 5000 5 1.000 0.250 0.400 0.023
LXC 12 BoSC 4 5000 5 1.000 0.264 0.418 0.021
LXC 24 BoSC 4 5000 5 1.000 0.288 0.447 0.019
LXC 6 BoSC 4 5000 10 1.000 0.269 0.425 0.021

100

Complete Experimental Results for All Platforms

Table A.1: An overview of the results for all platforms.

Platform
Train

Time (H)
Algo

Window/

Dec. Thr.

Epoch

Size

Det.

Thr.
Recall Prec. F-Meas. FPR

LXC 12 BoSC 4 5000 10 1.000 0.292 0.452 0.019
LXC 24 BoSC 4 5000 10 1.000 0.325 0.491 0.016
LXC 6 BoSC 4 5000 20 0.977 0.298 0.456 0.018
LXC 12 BoSC 4 5000 20 0.977 0.329 0.492 0.015
LXC 24 BoSC 4 5000 20 0.963 0.371 0.535 0.013
LXC 6 BoSC 4 5000 50 0.963 0.361 0.525 0.013
LXC 12 BoSC 4 5000 50 0.963 0.414 0.579 0.010
LXC 24 BoSC 4 5000 50 0.949 0.515 0.668 0.007
LXC 6 BoSC 4 5000 100 0.963 0.441 0.605 0.009
LXC 12 BoSC 4 5000 100 0.949 0.571 0.713 0.005
LXC 24 BoSC 4 5000 100 0.936 0.763 0.841 0.002
LXC 6 BoSC 5 500 5 1.000 0.479 0.648 0.008
LXC 12 BoSC 5 500 5 1.000 0.498 0.665 0.008
LXC 24 BoSC 5 500 5 1.000 0.531 0.694 0.007
LXC 6 BoSC 5 500 10 1.000 0.507 0.673 0.007
LXC 12 BoSC 5 500 10 1.000 0.539 0.700 0.007
LXC 24 BoSC 5 500 10 1.000 0.587 0.740 0.005
LXC 6 BoSC 5 500 20 0.977 0.550 0.704 0.006
LXC 12 BoSC 5 500 20 0.977 0.601 0.744 0.005
LXC 24 BoSC 5 500 20 0.977 0.672 0.796 0.004
LXC 6 BoSC 5 500 50 0.963 0.680 0.797 0.003
LXC 12 BoSC 5 500 50 0.963 0.765 0.853 0.002
LXC 24 BoSC 5 500 50 0.950 0.857 0.901 0.001
LXC 6 BoSC 5 500 100 0.937 0.848 0.890 0.001
LXC 12 BoSC 5 500 100 0.937 0.932 0.934 0.001
LXC 24 BoSC 5 500 100 0.876 0.978 0.924 0.000
LXC 6 BoSC 5 1000 5 1.000 0.421 0.593 0.010
LXC 12 BoSC 5 1000 5 1.000 0.435 0.606 0.010
LXC 24 BoSC 5 1000 5 1.000 0.458 0.628 0.009
LXC 6 BoSC 5 1000 10 1.000 0.443 0.614 0.010
LXC 12 BoSC 5 1000 10 1.000 0.463 0.633 0.009
LXC 24 BoSC 5 1000 10 1.000 0.497 0.664 0.008
LXC 6 BoSC 5 1000 20 0.977 0.469 0.634 0.008
LXC 12 BoSC 5 1000 20 0.977 0.504 0.665 0.007
LXC 24 BoSC 5 1000 20 0.977 0.556 0.709 0.006
LXC 6 BoSC 5 1000 50 0.964 0.553 0.703 0.006
LXC 12 BoSC 5 1000 50 0.964 0.619 0.754 0.005
LXC 24 BoSC 5 1000 50 0.963 0.711 0.818 0.003
LXC 6 BoSC 5 1000 100 0.963 0.680 0.797 0.003
LXC 12 BoSC 5 1000 100 0.936 0.778 0.850 0.002
LXC 24 BoSC 5 1000 100 0.936 0.885 0.910 0.001
LXC 6 BoSC 5 5000 5 1.000 0.235 0.381 0.025
LXC 12 BoSC 5 5000 5 1.000 0.244 0.392 0.024
LXC 24 BoSC 5 5000 5 1.000 0.258 0.411 0.022
LXC 6 BoSC 5 5000 10 1.000 0.251 0.401 0.023
LXC 12 BoSC 5 5000 10 1.000 0.263 0.416 0.022
LXC 24 BoSC 5 5000 10 1.000 0.283 0.442 0.019
LXC 6 BoSC 5 5000 20 0.983 0.268 0.421 0.021
LXC 12 BoSC 5 5000 20 0.977 0.286 0.443 0.019
LXC 24 BoSC 5 5000 20 0.977 0.314 0.475 0.016
LXC 6 BoSC 5 5000 50 0.963 0.315 0.475 0.016
LXC 12 BoSC 5 5000 50 0.963 0.344 0.506 0.014
LXC 24 BoSC 5 5000 50 0.963 0.381 0.546 0.012
LXC 6 BoSC 5 5000 100 0.963 0.367 0.532 0.013
LXC 12 BoSC 5 5000 100 0.963 0.408 0.573 0.011
LXC 24 BoSC 5 5000 100 0.963 0.487 0.646 0.008
LXC 6 BoSC 6 500 5 1.000 0.463 0.633 0.009
LXC 12 BoSC 6 500 5 1.000 0.476 0.645 0.008
LXC 24 BoSC 6 500 5 1.000 0.498 0.664 0.008
LXC 6 BoSC 6 500 10 1.000 0.487 0.655 0.008
LXC 12 BoSC 6 500 10 1.000 0.505 0.671 0.007
LXC 24 BoSC 6 500 10 1.000 0.537 0.699 0.007
LXC 6 BoSC 6 500 20 0.994 0.517 0.680 0.007

101

Appendix A

Table A.1: An overview of the results for all platforms.

Platform
Train

Time (H)
Algo

Window/

Dec. Thr.

Epoch

Size

Det.

Thr.
Recall Prec. F-Meas. FPR

LXC 12 BoSC 6 500 20 0.983 0.547 0.703 0.006
LXC 24 BoSC 6 500 20 0.977 0.594 0.739 0.005
LXC 6 BoSC 6 500 50 0.965 0.602 0.741 0.005
LXC 12 BoSC 6 500 50 0.964 0.664 0.786 0.004
LXC 24 BoSC 6 500 50 0.963 0.742 0.838 0.003
LXC 6 BoSC 6 500 100 0.963 0.744 0.839 0.003
LXC 12 BoSC 6 500 100 0.950 0.823 0.882 0.002
LXC 24 BoSC 6 500 100 0.937 0.902 0.919 0.001
LXC 6 BoSC 6 1000 5 1.000 0.406 0.577 0.011
LXC 12 BoSC 6 1000 5 1.000 0.417 0.589 0.011
LXC 24 BoSC 6 1000 5 1.000 0.433 0.604 0.010
LXC 6 BoSC 6 1000 10 1.000 0.429 0.600 0.010
LXC 12 BoSC 6 1000 10 1.000 0.441 0.612 0.010
LXC 24 BoSC 6 1000 10 1.000 0.463 0.633 0.009
LXC 6 BoSC 6 1000 20 1.000 0.451 0.622 0.009
LXC 12 BoSC 6 1000 20 1.000 0.472 0.641 0.009
LXC 24 BoSC 6 1000 20 1.000 0.506 0.672 0.007
LXC 6 BoSC 6 1000 50 0.966 0.503 0.661 0.007
LXC 12 BoSC 6 1000 50 0.966 0.544 0.696 0.006
LXC 24 BoSC 6 1000 50 0.965 0.605 0.743 0.005
LXC 6 BoSC 6 1000 100 0.963 0.591 0.732 0.005
LXC 12 BoSC 6 1000 100 0.963 0.661 0.784 0.004
LXC 24 BoSC 6 1000 100 0.963 0.753 0.845 0.002
LXC 6 BoSC 6 5000 5 1.000 0.216 0.356 0.028
LXC 12 BoSC 6 5000 5 1.000 0.227 0.370 0.026
LXC 24 BoSC 6 5000 5 1.000 0.239 0.386 0.024
LXC 6 BoSC 6 5000 10 1.000 0.240 0.387 0.024
LXC 12 BoSC 6 5000 10 1.000 0.248 0.398 0.023
LXC 24 BoSC 6 5000 10 1.000 0.262 0.415 0.022
LXC 6 BoSC 6 5000 20 1.000 0.256 0.408 0.022
LXC 12 BoSC 6 5000 20 1.000 0.269 0.424 0.021
LXC 24 BoSC 6 5000 20 1.000 0.290 0.449 0.019
LXC 6 BoSC 6 5000 50 0.966 0.288 0.444 0.018
LXC 12 BoSC 6 5000 50 0.966 0.310 0.469 0.017
LXC 24 BoSC 6 5000 50 0.964 0.338 0.500 0.014
LXC 6 BoSC 6 5000 100 0.963 0.335 0.498 0.015
LXC 12 BoSC 6 5000 100 0.963 0.361 0.525 0.013
LXC 24 BoSC 6 5000 100 0.963 0.397 0.562 0.011
LXC 6 STIDE 3 500 5 1.000 0.581 0.735 0.006
LXC 12 STIDE 3 500 5 1.000 0.651 0.789 0.005
LXC 24 STIDE 3 500 5 0.999 0.745 0.854 0.003
LXC 6 STIDE 3 500 10 0.986 0.658 0.789 0.004
LXC 12 STIDE 3 500 10 0.980 0.758 0.855 0.003
LXC 24 STIDE 3 500 10 0.929 0.862 0.894 0.001
LXC 6 STIDE 3 500 20 0.967 0.783 0.865 0.002
LXC 12 STIDE 3 500 20 0.882 0.890 0.886 0.001
LXC 24 STIDE 3 500 20 0.833 0.963 0.893 0.000
LXC 6 STIDE 3 500 50 0.830 0.962 0.891 0.000
LXC 12 STIDE 3 500 50 0.828 0.991 0.902 0.000
LXC 24 STIDE 3 500 50 0.828 0.997 0.904 0.000
LXC 6 STIDE 3 500 100 0.828 0.995 0.904 0.000
LXC 12 STIDE 3 500 100 0.818 0.998 0.899 0.000
LXC 24 STIDE 3 500 100 0.776 0.999 0.874 0.000
LXC 6 STIDE 3 1000 5 1.000 0.499 0.666 0.008
LXC 12 STIDE 3 1000 5 1.000 0.550 0.709 0.007
LXC 24 STIDE 3 1000 5 0.999 0.629 0.772 0.005
LXC 6 STIDE 3 1000 10 0.988 0.552 0.708 0.007
LXC 12 STIDE 3 1000 10 0.988 0.633 0.772 0.005
LXC 24 STIDE 3 1000 10 0.964 0.743 0.839 0.003
LXC 6 STIDE 3 1000 20 0.967 0.643 0.773 0.005
LXC 12 STIDE 3 1000 20 0.945 0.763 0.844 0.002
LXC 24 STIDE 3 1000 20 0.878 0.885 0.881 0.001
LXC 6 STIDE 3 1000 50 0.949 0.856 0.900 0.001

102

Complete Experimental Results for All Platforms

Table A.1: An overview of the results for all platforms.

Platform
Train

Time (H)
Algo

Window/

Dec. Thr.

Epoch

Size

Det.

Thr.
Recall Prec. F-Meas. FPR

LXC 12 STIDE 3 1000 50 0.830 0.953 0.887 0.000
LXC 24 STIDE 3 1000 50 0.827 0.989 0.901 0.000
LXC 6 STIDE 3 1000 100 0.827 0.979 0.897 0.000
LXC 12 STIDE 3 1000 100 0.827 0.995 0.903 0.000
LXC 24 STIDE 3 1000 100 0.827 0.998 0.905 0.000
LXC 6 STIDE 3 5000 5 1.000 0.289 0.448 0.021
LXC 12 STIDE 3 5000 5 1.000 0.314 0.478 0.019
LXC 24 STIDE 3 5000 5 0.999 0.356 0.525 0.015
LXC 6 STIDE 3 5000 10 0.988 0.317 0.480 0.018
LXC 12 STIDE 3 5000 10 0.988 0.356 0.523 0.015
LXC 24 STIDE 3 5000 10 0.976 0.418 0.585 0.012
LXC 6 STIDE 3 5000 20 0.967 0.362 0.526 0.015
LXC 12 STIDE 3 5000 20 0.961 0.420 0.584 0.011
LXC 24 STIDE 3 5000 20 0.942 0.533 0.681 0.007
LXC 6 STIDE 3 5000 50 0.966 0.467 0.630 0.009
LXC 12 STIDE 3 5000 50 0.899 0.618 0.732 0.005
LXC 24 STIDE 3 5000 50 0.832 0.816 0.824 0.002
LXC 6 STIDE 3 5000 100 0.942 0.668 0.782 0.004
LXC 12 STIDE 3 5000 100 0.829 0.870 0.849 0.001
LXC 24 STIDE 3 5000 100 0.827 0.973 0.894 0.000
LXC 6 STIDE 4 500 5 1.000 0.507 0.672 0.008
LXC 12 STIDE 4 500 5 1.000 0.525 0.689 0.008
LXC 24 STIDE 4 500 5 1.000 0.558 0.716 0.007
LXC 6 STIDE 4 500 10 1.000 0.534 0.696 0.007
LXC 12 STIDE 4 500 10 1.000 0.566 0.723 0.007
LXC 24 STIDE 4 500 10 1.000 0.613 0.760 0.005
LXC 6 STIDE 4 500 20 0.978 0.578 0.726 0.006
LXC 12 STIDE 4 500 20 0.978 0.630 0.767 0.005
LXC 24 STIDE 4 500 20 0.977 0.699 0.815 0.004
LXC 6 STIDE 4 500 50 0.967 0.711 0.819 0.003
LXC 12 STIDE 4 500 50 0.955 0.792 0.866 0.002
LXC 24 STIDE 4 500 50 0.943 0.875 0.908 0.001
LXC 6 STIDE 4 500 100 0.943 0.873 0.907 0.001
LXC 12 STIDE 4 500 100 0.943 0.945 0.944 0.000
LXC 24 STIDE 4 500 100 0.926 0.984 0.954 0.000
LXC 6 STIDE 4 1000 5 1.000 0.449 0.619 0.010
LXC 12 STIDE 4 1000 5 1.000 0.461 0.631 0.010
LXC 24 STIDE 4 1000 5 1.000 0.484 0.652 0.009
LXC 6 STIDE 4 1000 10 1.000 0.469 0.639 0.010
LXC 12 STIDE 4 1000 10 1.000 0.489 0.657 0.009
LXC 24 STIDE 4 1000 10 1.000 0.523 0.687 0.008
LXC 6 STIDE 4 1000 20 0.979 0.495 0.658 0.008
LXC 12 STIDE 4 1000 20 0.979 0.531 0.689 0.007
LXC 24 STIDE 4 1000 20 0.977 0.584 0.731 0.006
LXC 6 STIDE 4 1000 50 0.967 0.584 0.728 0.006
LXC 12 STIDE 4 1000 50 0.967 0.651 0.778 0.004
LXC 24 STIDE 4 1000 50 0.967 0.740 0.838 0.003
LXC 6 STIDE 4 1000 100 0.967 0.713 0.821 0.003
LXC 12 STIDE 4 1000 100 0.955 0.811 0.877 0.002
LXC 24 STIDE 4 1000 100 0.943 0.903 0.922 0.001
LXC 6 STIDE 4 5000 5 1.000 0.256 0.408 0.025
LXC 12 STIDE 4 5000 5 1.000 0.265 0.419 0.024
LXC 24 STIDE 4 5000 5 1.000 0.278 0.435 0.022
LXC 6 STIDE 4 5000 10 1.000 0.271 0.427 0.023
LXC 12 STIDE 4 5000 10 1.000 0.282 0.440 0.022
LXC 24 STIDE 4 5000 10 1.000 0.303 0.465 0.020
LXC 6 STIDE 4 5000 20 0.979 0.286 0.442 0.021
LXC 12 STIDE 4 5000 20 0.979 0.307 0.468 0.019
LXC 24 STIDE 4 5000 20 0.977 0.337 0.501 0.016
LXC 6 STIDE 4 5000 50 0.966 0.339 0.502 0.016
LXC 12 STIDE 4 5000 50 0.966 0.370 0.535 0.014
LXC 24 STIDE 4 5000 50 0.966 0.409 0.575 0.012
LXC 6 STIDE 4 5000 100 0.966 0.396 0.562 0.013

103

Appendix A

Table A.1: An overview of the results for all platforms.

Platform
Train

Time (H)
Algo

Window/

Dec. Thr.

Epoch

Size

Det.

Thr.
Recall Prec. F-Meas. FPR

LXC 12 STIDE 4 5000 100 0.966 0.438 0.603 0.011
LXC 24 STIDE 4 5000 100 0.966 0.517 0.673 0.008
LXC 6 STIDE 5 500 5 1.000 0.465 0.635 0.010
LXC 12 STIDE 5 500 5 1.000 0.483 0.652 0.009
LXC 24 STIDE 5 500 5 1.000 0.505 0.671 0.008
LXC 6 STIDE 5 500 10 1.000 0.503 0.669 0.008
LXC 12 STIDE 5 500 10 1.000 0.515 0.680 0.008
LXC 24 STIDE 5 500 10 1.000 0.536 0.698 0.007
LXC 6 STIDE 5 500 20 1.000 0.527 0.690 0.008
LXC 12 STIDE 5 500 20 0.988 0.545 0.703 0.007
LXC 24 STIDE 5 500 20 0.979 0.577 0.726 0.006
LXC 6 STIDE 5 500 50 0.967 0.589 0.732 0.006
LXC 12 STIDE 5 500 50 0.967 0.636 0.767 0.005
LXC 24 STIDE 5 500 50 0.967 0.697 0.810 0.004
LXC 6 STIDE 5 500 100 0.967 0.711 0.819 0.003
LXC 12 STIDE 5 500 100 0.967 0.776 0.861 0.002
LXC 24 STIDE 5 500 100 0.943 0.840 0.889 0.002
LXC 6 STIDE 5 1000 5 1.000 0.393 0.564 0.013
LXC 12 STIDE 5 1000 5 1.000 0.417 0.589 0.012
LXC 24 STIDE 5 1000 5 1.000 0.443 0.614 0.011
LXC 6 STIDE 5 1000 10 1.000 0.446 0.617 0.011
LXC 12 STIDE 5 1000 10 1.000 0.456 0.627 0.010
LXC 24 STIDE 5 1000 10 1.000 0.470 0.640 0.010
LXC 6 STIDE 5 1000 20 1.000 0.466 0.636 0.010
LXC 12 STIDE 5 1000 20 1.000 0.479 0.648 0.009
LXC 24 STIDE 5 1000 20 0.979 0.495 0.658 0.008
LXC 6 STIDE 5 1000 50 0.969 0.502 0.661 0.008
LXC 12 STIDE 5 1000 50 0.967 0.532 0.687 0.007
LXC 24 STIDE 5 1000 50 0.967 0.577 0.723 0.006
LXC 6 STIDE 5 1000 100 0.967 0.577 0.723 0.006
LXC 12 STIDE 5 1000 100 0.967 0.627 0.761 0.005
LXC 24 STIDE 5 1000 100 0.967 0.693 0.807 0.004
LXC 6 STIDE 5 5000 5 1.000 0.154 0.266 0.047
LXC 12 STIDE 5 5000 5 1.000 0.192 0.322 0.036
LXC 24 STIDE 5 5000 5 1.000 0.240 0.387 0.027
LXC 6 STIDE 5 5000 10 1.000 0.245 0.393 0.026
LXC 12 STIDE 5 5000 10 1.000 0.259 0.411 0.024
LXC 24 STIDE 5 5000 10 1.000 0.271 0.426 0.023
LXC 6 STIDE 5 5000 20 1.000 0.270 0.425 0.023
LXC 12 STIDE 5 5000 20 1.000 0.277 0.434 0.022
LXC 24 STIDE 5 5000 20 0.979 0.285 0.442 0.021
LXC 6 STIDE 5 5000 50 0.969 0.290 0.446 0.020
LXC 12 STIDE 5 5000 50 0.967 0.309 0.469 0.018
LXC 24 STIDE 5 5000 50 0.967 0.335 0.498 0.016
LXC 6 STIDE 5 5000 100 0.966 0.339 0.502 0.016
LXC 12 STIDE 5 5000 100 0.966 0.363 0.528 0.014
LXC 24 STIDE 5 5000 100 0.966 0.390 0.555 0.013
LXC 6 STIDE 6 500 5 1.000 0.279 0.437 0.022
LXC 12 STIDE 6 500 5 1.000 0.335 0.502 0.017
LXC 24 STIDE 6 500 5 1.000 0.431 0.602 0.011
LXC 6 STIDE 6 500 10 1.000 0.448 0.619 0.010
LXC 12 STIDE 6 500 10 1.000 0.474 0.643 0.009
LXC 24 STIDE 6 500 10 1.000 0.505 0.671 0.008
LXC 6 STIDE 6 500 20 1.000 0.505 0.671 0.008
LXC 12 STIDE 6 500 20 1.000 0.517 0.682 0.008
LXC 24 STIDE 6 500 20 1.000 0.535 0.697 0.007
LXC 6 STIDE 6 500 50 0.969 0.542 0.695 0.007
LXC 12 STIDE 6 500 50 0.969 0.566 0.715 0.006
LXC 24 STIDE 6 500 50 0.967 0.604 0.743 0.005
LXC 6 STIDE 6 500 100 0.967 0.622 0.757 0.005
LXC 12 STIDE 6 500 100 0.967 0.668 0.790 0.004
LXC 24 STIDE 6 500 100 0.967 0.724 0.828 0.003
LXC 6 STIDE 6 1000 5 1.000 0.168 0.287 0.042

104

Complete Experimental Results for All Platforms

Table A.1: An overview of the results for all platforms.

Platform
Train

Time (H)
Algo

Window/

Dec. Thr.

Epoch

Size

Det.

Thr.
Recall Prec. F-Meas. FPR

LXC 12 STIDE 6 1000 5 1.000 0.219 0.360 0.030
LXC 24 STIDE 6 1000 5 1.000 0.335 0.502 0.017
LXC 6 STIDE 6 1000 10 1.000 0.343 0.511 0.016
LXC 12 STIDE 6 1000 10 1.000 0.388 0.560 0.013
LXC 24 STIDE 6 1000 10 1.000 0.442 0.613 0.011
LXC 6 STIDE 6 1000 20 1.000 0.444 0.615 0.011
LXC 12 STIDE 6 1000 20 1.000 0.457 0.627 0.010
LXC 24 STIDE 6 1000 20 1.000 0.470 0.640 0.010
LXC 6 STIDE 6 1000 50 0.970 0.473 0.636 0.009
LXC 12 STIDE 6 1000 50 0.970 0.488 0.649 0.009
LXC 24 STIDE 6 1000 50 0.970 0.512 0.670 0.008
LXC 6 STIDE 6 1000 100 0.967 0.520 0.676 0.008
LXC 12 STIDE 6 1000 100 0.967 0.549 0.701 0.007
LXC 24 STIDE 6 1000 100 0.967 0.590 0.733 0.006
LXC 6 STIDE 6 5000 5 1.000 0.037 0.072 0.219
LXC 12 STIDE 6 5000 5 1.000 0.050 0.095 0.163
LXC 24 STIDE 6 5000 5 1.000 0.100 0.181 0.077
LXC 6 STIDE 6 5000 10 1.000 0.076 0.140 0.104
LXC 12 STIDE 6 5000 10 1.000 0.108 0.195 0.070
LXC 24 STIDE 6 5000 10 1.000 0.206 0.342 0.033
LXC 6 STIDE 6 5000 20 1.000 0.184 0.310 0.038
LXC 12 STIDE 6 5000 20 1.000 0.229 0.372 0.029
LXC 24 STIDE 6 5000 20 1.000 0.269 0.423 0.023
LXC 6 STIDE 6 5000 50 0.976 0.274 0.427 0.022
LXC 12 STIDE 6 5000 50 0.970 0.280 0.435 0.021
LXC 24 STIDE 6 5000 50 0.970 0.296 0.453 0.020
LXC 6 STIDE 6 5000 100 0.966 0.302 0.460 0.019
LXC 12 STIDE 6 5000 100 0.966 0.320 0.481 0.017
LXC 24 STIDE 6 5000 100 0.966 0.344 0.507 0.016

105

This page is intentionally left blank.

Appendix B

Complete Experimental Results for

Expected Cost Analysis for all

Platforms

Below we list the complete expected cost result obtained from the analysis.

Table B.1: An overview of the results of expected cost for all platforms.

Platform Algo
Epoch
Size

Det.
Thr.

P(I) Recall FPR.
Expected

Cost
Docker BoSC 500 5 0.024 1.000 0.008 0.0076
Docker BoSC 500 10 0.024 1.000 0.005 0.0053
Docker BoSC 500 20 0.024 0.988 0.004 0.0066
Docker BoSC 500 50 0.024 0.975 0.002 0.0083
Docker BoSC 500 100 0.024 0.975 0.002 0.0082
Docker BoSC 1000 5 0.024 1.000 0.012 0.0117
Docker BoSC 1000 10 0.024 1.000 0.008 0.0082
Docker BoSC 1000 20 0.024 0.989 0.006 0.0082
Docker BoSC 1000 50 0.024 0.975 0.003 0.0088
Docker BoSC 1000 100 0.024 0.975 0.002 0.0085
Docker BoSC 5000 5 0.025 1.000 0.032 0.0309
Docker BoSC 5000 10 0.025 1.000 0.024 0.0238
Docker BoSC 5000 20 0.025 1.000 0.018 0.0180
Docker BoSC 5000 50 0.025 0.971 0.006 0.0126
Docker BoSC 5000 100 0.025 0.970 0.004 0.0112
Docker STIDE 500 5 0.024 1.000 0.008 0.0081
Docker STIDE 500 10 0.024 1.000 0.006 0.0057
Docker STIDE 500 20 0.024 0.993 0.004 0.0058
Docker STIDE 500 50 0.024 0.975 0.003 0.0085
Docker STIDE 500 100 0.024 0.975 0.002 0.0082
Docker STIDE 1000 5 0.024 1.000 0.013 0.0124
Docker STIDE 1000 10 0.024 1.000 0.009 0.0087
Docker STIDE 1000 20 0.024 0.993 0.006 0.0078

107

Appendix B

Table B.1: An overview of the results of expected cost for all platforms.

Platform Algo
Epoch
Size

Det.
Thr.

P(I) Recall FPR.
Expected

Cost
Docker STIDE 1000 50 0.024 0.975 0.003 0.0092
Docker STIDE 1000 100 0.024 0.975 0.003 0.0086
Docker STIDE 5000 5 0.025 1.000 0.034 0.0331
Docker STIDE 5000 10 0.025 1.000 0.025 0.0248
Docker STIDE 5000 20 0.025 1.000 0.020 0.0192
Docker STIDE 5000 50 0.025 0.973 0.007 0.0134
Docker STIDE 5000 100 0.025 0.970 0.004 0.0118
Docker HMM 500 5 0.026 0.895 0.012 0.0383
Docker HMM 500 10 0.026 0.895 0.005 0.0318
Docker HMM 500 20 0.026 0.880 0.003 0.0340
Docker HMM 500 50 0.026 0.824 0.002 0.0475
Docker HMM 500 100 0.026 0.795 0.002 0.0547
Docker HMM 1000 5 0.027 0.890 0.020 0.0491
Docker HMM 1000 10 0.027 0.890 0.013 0.0427
Docker HMM 1000 20 0.027 0.876 0.005 0.0389
Docker HMM 1000 50 0.027 0.876 0.003 0.0369
Docker HMM 1000 100 0.027 0.807 0.003 0.0551
Docker HMM 5000 5 0.035 0.907 0.046 0.0768
Docker HMM 5000 10 0.035 0.907 0.036 0.0670
Docker HMM 5000 20 0.035 0.907 0.033 0.0647
Docker HMM 5000 50 0.035 0.900 0.024 0.0579
Docker HMM 5000 100 0.035 0.867 0.014 0.0599
LXC BoSC 500 5 0.008 1.000 0.003 0.0034
LXC BoSC 500 10 0.008 0.962 0.002 0.0049
LXC BoSC 500 20 0.008 0.890 0.001 0.0094
LXC BoSC 500 50 0.008 0.873 0.000 0.0100
LXC BoSC 500 100 0.008 0.703 0.000 0.0232
LXC BoSC 1000 5 0.008 1.000 0.005 0.0054
LXC BoSC 1000 10 0.008 0.968 0.004 0.0060
LXC BoSC 1000 20 0.008 0.898 0.002 0.0099
LXC BoSC 1000 50 0.008 0.876 0.000 0.0101
LXC BoSC 1000 100 0.008 0.840 0.000 0.0125
LXC BoSC 5000 5 0.008 0.999 0.016 0.0157
LXC BoSC 5000 10 0.008 0.987 0.012 0.0130
LXC BoSC 5000 20 0.008 0.938 0.008 0.0129
LXC BoSC 5000 50 0.008 0.882 0.004 0.0129
LXC BoSC 5000 100 0.008 0.876 0.001 0.0109
LXC STIDE 500 5 0.008 1.000 0.005 0.0048
LXC STIDE 500 10 0.008 0.965 0.003 0.0063
LXC STIDE 500 20 0.008 0.905 0.002 0.0099
LXC STIDE 500 50 0.008 0.885 0.001 0.0102
LXC STIDE 500 100 0.008 0.851 0.000 0.0126
LXC STIDE 1000 5 0.008 1.000 0.007 0.0070

108

Complete Experimental Results for Expected Cost Analysis for all Platforms

Table B.1: An overview of the results of expected cost for all platforms.

Platform Algo
Epoch
Size

Det.
Thr.

P(I) Recall FPR.
Expected

Cost
LXC STIDE 1000 10 0.008 0.982 0.005 0.0067
LXC STIDE 1000 20 0.008 0.928 0.003 0.0095
LXC STIDE 1000 50 0.008 0.897 0.001 0.0101
LXC STIDE 1000 100 0.008 0.885 0.000 0.0101
LXC STIDE 5000 5 0.008 1.000 0.019 0.0188
LXC STIDE 5000 10 0.008 0.988 0.016 0.0168
LXC STIDE 5000 20 0.008 0.959 0.012 0.0152
LXC STIDE 5000 50 0.008 0.899 0.007 0.0150
LXC STIDE 5000 100 0.008 0.896 0.004 0.0123
OS BoSC 500 5 0.009 0.676 0.001 0.0305
OS BoSC 500 10 0.009 0.666 0.000 0.0312
OS BoSC 500 20 0.009 0.644 0.000 0.0330
OS BoSC 500 50 0.009 0.593 0.000 0.0376
OS BoSC 500 100 0.009 0.593 0.000 0.0376
OS BoSC 1000 5 0.009 0.677 0.001 0.0309
OS BoSC 1000 10 0.009 0.666 0.001 0.0315
OS BoSC 1000 20 0.009 0.660 0.000 0.0318
OS BoSC 1000 50 0.009 0.593 0.000 0.0378
OS BoSC 1000 100 0.009 0.593 0.000 0.0377
OS BoSC 5000 5 0.009 0.680 0.004 0.0340
OS BoSC 5000 10 0.009 0.670 0.002 0.0336
OS BoSC 5000 20 0.009 0.667 0.001 0.0329
OS BoSC 5000 50 0.009 0.601 0.001 0.0381
OS BoSC 5000 100 0.009 0.586 0.000 0.0394
OS STIDE 500 5 0.009 0.676 0.001 0.0308
OS STIDE 500 10 0.009 0.666 0.001 0.0313
OS STIDE 500 20 0.009 0.651 0.000 0.0325
OS STIDE 500 50 0.009 0.593 0.000 0.0376
OS STIDE 500 100 0.009 0.593 0.000 0.0376
OS STIDE 1000 5 0.009 0.677 0.002 0.0314
OS STIDE 1000 10 0.009 0.666 0.001 0.0318
OS STIDE 1000 20 0.009 0.663 0.001 0.0317
OS STIDE 1000 50 0.009 0.593 0.000 0.0378
OS STIDE 1000 100 0.009 0.593 0.000 0.0377
OS STIDE 5000 5 0.009 0.680 0.005 0.0354
OS STIDE 5000 10 0.009 0.670 0.003 0.0343
OS STIDE 5000 20 0.009 0.670 0.002 0.0332
OS STIDE 5000 50 0.009 0.601 0.001 0.0385
OS STIDE 5000 100 0.009 0.588 0.000 0.0393

109

