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Abstract 

Cancer is one of the more significant causes of mortality worldwide. The impact of 

environmental factors and the growing adoption of risk behaviours have contributed to the 

high incidence of cancer, especially in low-income countries, where access to screening, early 

diagnosis, treatment or palliative care is limited. Furthermore, the high tumour heterogeneity 

and biological complexity make drug-resistance an overwhelming problem. Overcoming this 

problem can be achieved by finding new and low-cost therapeutic alternatives that do not 

involve taking the extremely pricy path of original drug R&D. The development of new 

combinatory therapies is a commonly used cheaper solution that requires fewer clinical 

experiments when compared to the development process of new drugs, and that often 

increases the efficacy and reduces the probability of drug resistance. In the last years, the rises 

of new high-throughput OMICs technologies have made possible the acquisition of large 

amounts of OMICs data, allowing the unprecedented characterization of cancer biology and 

behaviour. Dealing with these massive amounts of data so that prolific biological 

interpretations can be extracted that may aid in the development of more targeted therapies 

has been a daunting task. Machine Learning (ML) methods are increasingly popular cheaper 

and faster approaches used to analyse OMICs and integrate this knowledge with other cancer-

related data.  

In this work, we propose a new ML model for the prediction of an innovative 

combinatory therapeutic solution, developed using OMICs data that characterize cancer cell 

lines (specifically expression, methylation and copy number variation) and structural and 

physico-chemical properties of drugs approved by the FDA for cancer chemotherapy. The 

best performing approach, an ensemble model comprising a Deep Neural Network, a Random 

Forest and a Support Vector Machine, achieved 0.74 accuracy, 0.75 precision and 0.90 recall 

and was suited for the prediction of new combinations for chemotherapy by reliably 

performing drug screening assays and eliminating less advantageous candidates. We went 

further ahead and developed also a new database of Membrane Proteins, the most common 

targets for chemotherapy, and analyse their main interfacial features and characteristics. This 

database is indeed an important tool for future studies regarding the subject of this work. 

Keywords: Cancer, Combination Therapy, OMIC sciences, Chemotherapy, Machine 

Learning.  
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Resumo 

O cancro é uma das causas mais significativas de mortalidade em todo o mundo. O impacto de 

fatores ambientais e a crescente adoção de comportamentos de risco têm contribuído para a alta 

incidência de cancro, especialmente em países subdesenvolvidos, onde o acesso ao diagnóstico 

precoce, ao tratamento ou aos cuidados paliativos é limitado. Além disso, a elevada heterogeneidade 

e a complexidade biológica das células tumorais tornam a resistência à terapia um problema emergente. 

Uma das alternativas para combater o problema das resistências é encontrar estratégias terapêuticas 

alternativas de baixo custo que não envolvam todas as etapas do processo complexo e oneroso da 

investigação e desenvolvimento de novos fármacos. O desenvolvimento de novas terapias 

combinatórias, uma abordagem que aumenta a eficácia e reduz a probabilidade de resistência aos 

fármacos, é uma solução frequentemente utilizada e relativamente acessível, que requer menos ensaios 

clínicos em comparação com o desenvolvimento de novos medicamentos. A ascensão de tecnologias 

Ómicas de elevado rendimento possibilitaram a aquisição de grandes quantidades de dados, desde a 

génomica, transcriptómica, proteómica até à metabolómica, que têm permitindo caracterizar as células 

tumorais do ponto de vista biológico e funcional. No entanto, lidar com esta enorme quantidade de 

dados, de modo a que possam ser extraídos conhecimentos biológicas proveitosos que possam ajudar 

no desenvolvimento de terapias mais direcionadas, é uma tarefa complexa. Os métodos de 

Aprendizagem Computacional (AC) são abordagens cada vez mais populares e baratas, para a análise 

de dados de Ómicas e na integração desse conhecimento com outros dados relacionados com o 

cancro. 

Neste trabalho, propomos um novo modelo de AC para a previsão de novas soluções de 

terapias combinatórias, recorrendo para isso a dados de Ómicas que caracterizam as linhas celulares 

de tumores (especificamente para dados de expressão, metilação e variação do número de cópias) e 

às propriedades físico-químicas e estruturais de fármacos aprovados pela FDA para quimioterapia no 

cancro. A abordagem com melhor desempenho, um Ensemble Model composto por uma Deep Neural 

Network, uma Random Forest e uma Support Vector Machine, obteve uma accuracy de 0.74, precision de 

0.75 e recall de 0.90. Este modelo possibilitou a previsão de novas combinações terapêuticas através 

da realização de ensaios de screening de fármacos conducentes à eliminação de candidatos menos 

vantajosos. Além disso fomos mais ambiciosos e desenvolvemos uma nova base de dados de Proteínas 

Membranares (os alvos mais comuns para a quimioterapia) que contém as suas principais características 

e das suas interfaces. Esta base de dados é uma ferramenta importante para estudos futuros no âmbito 

deste trabalho. 

 

Palavras-chave: Cancro, Terapia Combinatória, Ciências Ómicas, Quimioterapia, 

Aprendizagem Computacional. 



 

 

  



 
IX 

Contents 

AGRADECIMENTOS III 

ABSTRACT V 

RESUMO VII 

LIST OF ABBREVIATIONS XI 

AMINO-ACID NOMENCLATURE XIII 

LIST OF TABLES XV 

LIST OF FIGURES XVII 

INTRODUCTION XIX 

1.1 CONTEXT AND OBJECTIVES XIX 
1.2 STRUCTURE OF THE DISSERTATION XX 

CHAPTER 1. BACKGROUND 1 

1.1 CANCER IN NUMBERS 1 
1.2 BIOLOGY OF CANCER 3 
1.3 CANCER TREATMENT AND DRUG RESISTANCE 4 
1.3.1 COMBINATORY THERAPEUTICS 7 
1.4 ARTIFICIAL INTELLIGENCE AND MACHINE LEARNING 11 
1.4.1 USE OF MACHINE LEARNING IN DATA-DRIVEN DECISIONS 11 

CHAPTER 2. MATERIALS AND METHODS 21 

2.1 CHEMOTHERAPEUTIC COMBINATORY EFFECT PREDICTION 21 
2.1.1 DATA MINING 22 
2.1.2 MACHINE LEARNING 28 
2.2 THOROUGH ASSESSMENT OF MEMBRANE PROTEIN DIMER INTERFACES 29 
2.2.1 RAW DATA COLLECTION 30 



 
X 

2.2.2 DATA PRE-PROCESSING 30 
2.2.3 FEATURE MINING 32 
2.2.4 DATABASE CONSTRUCTION 33 

CHAPTER 3. RESULTS AND DISCUSSION 34 

3.1 PREDICTION OF THE COMBINATORY EFFECT OF CHEMOTHERAPEUTIC DRUGS 34 
3.1.1 OVERVIEW OF THE DATASET STRUCTURE 34 
3.1.2 DEVELOPMENT AND EVALUATION OF COMBINATORY THERAPY MODELS 40 
3.2 ASSESSMENT OF MEMBRANE PROTEIN DIMER INTERFACE CHARACTERISTICS 44 
3.2.1 MEMBRANE PROTEIN DIMER COMPOSITION 44 
3.2.2 CHARACTERISTICS OF INTERFACIAL RESIDUES 46 
3.2.3 WEB APP ACCESSIBILITY 46 

CHAPTER 4. CONCLUSIONS AND FUTURE PERSPECTIVES 47 

REFERENCES 49 

APPENDIX 1 66 

ANNEXES 68 

  



 
XI 

List of Abbreviations 

AI ...................... Artificial Intelligence 

ADME .............. Absorption, Distribution, Metabolism, and Excretion 

ANN ................ Artificial Neural Network 

ATC ................. Anatomical Therapeutic Chemical 

CCLE ............... Cancer Cell Line Encyclopaedia 

CI ...................... Combination Index 

CNV ................. Copy Number Variation 

COSMIC ......... Catalogue of Somatic Mutations in Cancer 

DNA ................ Deoxyribonucleic Acid 

DNN ................ Deep Neural Network 

DT .................... Decision Trees 

EC50 ................ Half Maximal Effective Concentration 

EMA ................. European Medicines Agency 

FDA .................. United States Food and Drug Administration 

GDSC .............. Genomics of Drug Sensitivity in Cancer 

HSA .................. Highest Single Agent 

IC50 ................. Half Maximum Inhibitory Concentration 

ICGC ............... International Cancer Genome Consortium 

ML ..................... Machine Learning 

MP .................... Membrane Protein 

NCI-60 ............ National Cancer Institute 60 

PCA .................. Principal Component Analysis 

PPIs ................... Protein-Protein Interactions 

R&D ................. Research and Development 

RF ..................... Random Forests 

RNA ................. Ribonucleic Acid 

RSEM ................ RNA-Seq by Expectation Maximization 

SMILES ............. Simplified Molecular Input Line Entry System 

SVM .................. Support Vector Machines 

TCGA .............. The Cancer Genome Atlas 

ZIP .................... Zero Interaction Potency 



 

 

  



 
XIII 

Amino-acid Nomenclature 

Amino-acid One Letter Code Three Letter Code 

Alanine A Ala 

Cysteine C Cys 

Aspartic Acid D Asp 

Glutamic Acid E Glu 

Phenylalanine F Phe 

Glycine G Gly 

Histidine H His 

Isoleucine I Ile 

Lysine K Lys 

Leucine L Leu 

Methionine M Met 

Asparagine N Asn 

Proline P Pro 

Glutamine Q Gln 

Arginine R Arg 

Serine S Ser 

Threonine T Thr 

Valine V Val 

Tryptophan W Trp 

Tyrosine Y Tyr 

  



 

 

  



 
XV 

List of Tables 

Table 1-1: Examples of synergistic and additive effects of drug combinations applied to cancer
 ........................................................................................................................................................................ 9 

Table 2-1: Number of cell lines for type of input OMICs data ...................................................... 24 

Table 2-2: List of drugs comprised in the final dataset divided according to Anatomical 
Therapeutic Chemical (ATC) Classification ....................................................................................... 24 

Table 2-3: Cell lines comprised in the final dataset divided according to cancer type ............. 26 

Table 2-4: Number of features according to the type of molecular descriptor from MORDRED
 ...................................................................................................................................................................... 27 

Table 2-5: Confusion matrix summarizing the four types of outputs. ......................................... 29 

Table 3-1: Overview of the constitution of the datasets according to the class assignment 
method ........................................................................................................................................................ 35 

Table 3-2: Test performance metrics of different ML algorithms built using the NCI-
ALMANAC dataset. ................................................................................................................................. 41 

Table 3-3: Test performance metrics of DNN trained with the five different synergy 
classification methods. ............................................................................................................................. 42 

Table 3-4: Evaluation of the ensemble model combining DNN, RF and SVM models in Table 6
 ...................................................................................................................................................................... 42 

  



 

 

  



 
XVII 

List of Figures 

Figure 2-1. Global map representing the estimated mortality and incidence rates of cancer for 
2018 ............................................................................................................................................................... 2 

Figure 2-2: New therapeutic molecules targeting cancer approved by FDA and EMA between 
1995 and 2018 and the number of new molecules approved by the FDA per billion US dollars 
spent on research and development between 1950 and 2009 ........................................................ 5 

Figure 2-3: The drug development process and the industrial property granting procedure .. 6 

Figure 2-4: Schematic representation of the mechanisms underlying combinatory 
chemotherapy .............................................................................................................................................. 8 

Figure 2-5: Dose-effect curves and isobologram analysis ................................................................ 11 

Figure 2-6: Machine Learning types mentioned in this section ...................................................... 13 

Figure 2-7: Concepts of underfitting, generalization and overfitting ............................................ 15 

Figure 2-8: Linear model representation ............................................................................................. 16 

Figure 2-9: Support Vector Machines, in the case of linearly separable data ............................. 16 

Figure 2-10: Decision Trees and Random Forests  .......................................................................... 17 

Figure 2-11: Network machine learning models ............................................................................... 18 

Figure 3-1: Overall workflow of the material and methods used in this work .......................... 22 

Figure 3-2: Overall representation of MENSAdb .............................................................................. 30 

Figure 3-3: Overall distribution of the dataset ................................................................................... 31 

Figure 4-1: Combinatory effect classification according to the use of five different models .. 36 

Figure 4-2: Hierarchical clustering dendrogram of all anticancer drugs included in the final 
dataset ......................................................................................................................................................... 38 

Figure 4-3: Divisive Clustering used for evaluation of cancer multi-omics related features. .. 40 

Figure 4-4: Accuracy per type of cancer cell ...................................................................................... 44 

Figure 4-5: Structural and physico-chemical properties of MPs and their interactions ........... 45 

 
  



 

 

  



 
XIX 

 

 

Introduction 

The objective of this chapter is to perform an introduction to the context of the problem 

that led to the development of this research work and presents its main objectives.  

1.1 Context and Objectives 

Cancer is one of the leading causes of mortality worldwide (Bray et al., 2018) and its 

incidence is growing, as developing countries continue to adopt unhealthy Western lifestyles 

(Jemal et al., 2010). Furthermore, the increased mortality in those countries’ emphases the 

importance of the development of affordable cancer therapeutics (Bountra, Lee and Lezaun, 

2017), as people and countries with less financial resources have no access to cancer screening, 

early diagnosis, treatment or palliative care. From an industry perspective, developing new 

drugs and putting them into the market is extremely expensive. Using already developed drugs 

but with new purposes is a common undertaken posture by the Pharma Industry (Ashburn and 

Thor, 2004). Consequently, the discovery of new combinatory chemotherapeutic strategies is 

gaining momentum as a reliable solution to overcome cancer drug resistance (Garcia and 

Odaimi, 2017; Kalemkerian, 2016).  

The development of new high-throughput technologies and computational tools backed 

the emergence of a large volume of OMICs data (Bennett et al., 2005; Siva, 2008) that is 

currently used to characterize the high biological complexity of cancer cells. However, dealing 

with this volume of data is only possible through the use of Machine Learning (ML) and data 

analysis tools. Academia and industry are, nowadays, starting to take advantage of these new 

tools, like computation- and automation-based pipelines (Schneider, 2017) to try to extract 

relevant data from these OMICs knowledge. Some studies attempted to integrate this 

knowledge with other cancer- and drug-related data to predict the combinatory effects of 
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well-established drugs, although most of these works are still in an early beginning and include 

very limited data. 

This work aimed to build a new ML model that uses cancer multi-omics and structural 

drug-related data. This model is a new screening tool for affordable cancer treatment solutions 

that can quickly point out new therapeutic alternatives by accurately predicting the 

combination effect of drug combinations submitted for analysis. 

1.2 Structure of the Dissertation 

Apart from this introductory chapter, this dissertation is divided into four chapters 

according to the following: 

• Chapter 1: Background, to clarify how this work’s importance for the current 

knowledge and advancement of cancer treatment with an emphasis on multi-

omics data and Machine Learning approaches; At the end, we also propose 

solutions to solve the problem and expected contributions. 

• Chapter 2: Materials and Methods with a detailed description of the pipeline of 

this work, focused on the two main objectives; 

• Chapter 3: Results and Discussion to summarize the outcomes drown from this 

research work. Parallel to results, an overview of the analysis and interpretation 

is supplemented, making an evaluation that takes into consideration the main 

objective of this work and considers current literature; 

• Chapter 4: Conclusions and Future Work, to describe a summary of the study, 

briefly examining its impact, limitations and future work.  
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Chapter 1. Background 

1.1 Cancer in Numbers 

Non-transmissible diseases are thought to be responsible for most global deaths. Cancer 

is one of the leading causes of mortality, and the most significant barrier to increasing overall 

life expectancy worldwide (Bray et al., 2018). World Health Organization (WHO) estimates 

that, in 2018, cancer caused approximately 10 million deaths (Ferlay et al., 2018). This 

organization also states that cancer assumes polarized incidence towards developed countries, 

as exposed in  

Figure 1-1 A, which suggests an association of this disease with ageing as well as a strong 

relationship with risk factors and behaviours usually present in those countries. These factors 

include tobacco consumption, exposure to occupational carcinogens, diet, obesity, and 

environmental factors, among others (Toporcov, Wü and Filho, 2018; Vineis and Wild, 2014). 

On the other hand, in developing countries, data published by the same organization states 

that 5.7 million people died from cancer, even though incidence is lower in those countries 

(Jahan, 2016). This fact emphasises the burden of economic power in health, as people with 

less financial resources have no access to cancer screening, early diagnosis, treatment or 

palliative care. This tendency is also illustrated in the estimates for 2018, as displayed in  

Figure 1-1 B. Moreover, this incidence pattern is also slowly changing due to the 

adoption of unhealthy Western lifestyles by developing regions, which, in conjunction with 

environmental and infectious agents, represent a major concern (Jemal et al., 2010). 

Nevertheless, only 15% of the world’s population is included in cancer registries (Bray et al., 

2017, 2018), restricting the possibilities of attaining statically accurate data reports (Ginsburg 

et al., 2012). Under these rates, global policymakers expressed commitment to apply efforts 
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on controlling and reducing the outcomes of the cancer epidemic (Prager et al., 2018). In 2017, 

the World Health Assembly approved a resolution known as the “Cancer Resolution” as a 

mean of promoting access to cancer treatment and care to all, emphasizing the need to invest 

in cost-effective medicines and therapeutic strategies (Cancer prevention and control in the 

context of an integrated approach, 2017). In line with this integrated strategy, the United States 

of America announced the “Cancer Moonshot” Initiative, which provides financial support for 

the research and development of new and accessible therapeutic strategies for cancer (Lowy 

et al., 2016; Mayer and Nasso, 2017). In Europe, under the Horizon 2020 framework, the 

European Union offers funding for the development of technologies that embody, among other 

objectives, advancing current knowledge and therapeutics in cancer, particularly from the 

development of personalized medicine, using big data and artificial intelligence (AI) (Horizon 

2020 Work Programme 2020 - Health, demographic change and wellbeing, 2018). 

 

Figure 1-1. Global map representing the estimated mortality (A) and incidence (B) rates of cancer for 2018. The data used to 
produce these maps was recovered from the International Agency for Research on Cancer (Ferlay et al., 2018). 

Early and accurate detection of cancer is a crucial element for a better prognosis and 

treatment success (Chen et al., 2006; Pellino et al., 2018; Tang et al., 2017). The world has seen 

considerable improvements in the understanding of the underlying biology and treatment of 
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cancer over the years, as new imaging (Fan et al., 2017) and molecular techniques are rapidly 

developed and improved. New biomarkers were also discovered, and its usage was approved 

for regulatory purposes (Elbehery and Azzazy, 2014; Han, Wang and Sun, 2017; Tang et al., 

2017).  

1.2 Biology of Cancer 

Cancer is a complex group of diseases characterized by the presence of abnormal cells 

with uncontrolled growth that can invade nearby tissues. This factor is mainly caused by 

genetic changes that often include mutations, such as insertions and deletions in DNA; changes 

in expression rates (due to changes in sequence of promoters and enhancers); copy number 

variations (CNV); changes in methylation; and chromosomal translocations (Harris and 

McCormick, 2010). The sum of these genetic, as well as other non-genetic alterations, further 

explain the notable tumour heterogeneity and plasticity (Hanahan and Weinberg, 2000) that, 

associated with the tumour microenvironment, can significantly impact the cell phenotypic 

behaviour (Hanahan and Weinberg, 2011). Even so, the exact molecular mechanisms 

underlying cancer initiation, growth, metastasis and resistance to therapy are still poorly 

understood. 

With the development and improvement of high-throughput technologies and 

computational tools, as well as the downfall of prices of both kinds of instruments (Bennett et 

al., 2005; Siva, 2008) a large volume of cancer OMICs1 data is emerging. In fact, genomic data 

is estimated to generate from 2 to 40 Exabytes (1.1 × 1012 Megabytes) of information per 

year by 2025 (Stephens et al., 2015), which makes it the most significant domain of Big Data in 

the near future (competing against data produced by sciences like Astronomy, or big social 

networks like Twitter and YouTube). New data produced by technologies like mass-

spectrometry (e.g. deep -proteomics and -metabolomics), next-generation sequencing (e.g. 

whole exome sequencing, whole genome sequencing, chromatin immunoprecipitation 

sequencing, RNA-sequencing, bisulfite sequencing) or microarray enabled the generation of 

biological data at different levels (e.g. genomic, transcriptomic, proteomic and more recently 

epigenomic and metabolomics) (Bozic et al., 2013). These genetic profiles can accurately 

identify and characterize different tumours and cell lines (Gandara et al., 2015), further 

                                            
1 OMICs data refers to a field of study in biological sciences that uses high-throughput technologies able 

to explore the role, relationships and actions of various types of cellular molecules, such as the genes (genomics), 
mRNA (transcriptomics) proteins (proteomics) or metabolites (metabolomics) that make up the cells of an 
organism (Debnath et al., 2010). 
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demonstrating the huge complexity and diversity of human malignancies (Balmain, Gray and 

Ponder, 2003).  

Nowadays, the integration of multi-OMICs approaches is a powerful weapon able to 

dissect the complex cancer biological mechanisms and to uncover the molecular signatures 

concerning cellular phenotypes. The first project of high-throughput cancer cell line screening 

was the National Cancer Institute 60 project (NCI-60) (Shoemaker, 2006), which started in 

1984 and during approximately 20 years, screened 60 cancer cell lines against small molecules 

to identify novel anticancer compounds (Sharma, Haber and Settleman, 2010). The XXI 

century saw the birth of projects focused on extending the knowledge brought by NCI-60, 

screening even more cells lines and drugs with the help of new emerging techniques (e.g. the 

Genomics of Drug Sensitivity in Cancer (GDSC) (Yang et al., 2012); and the Cancer Cell Line 

Encyclopedia (CCLE) (Barretina et al., 2012)). On the other hand, large international projects, 

such as the International Cancer Genome Consortium (ICGC) (Zhang et al., 2011) or The 

Cancer Genome Atlas (TCGA) (Akbani et al., 2014), started accommodating patient tumour 

multi-OMICs information at an unprecedented scale (specifically genomic, methylomic, 

transcriptomic and proteomic data). Moreover, smaller projects with other purposes, such as 

the Catalogue of Somatic Mutations in Cancer (COSMIC), began to store and display somatic 

mutations information and related details from dispersed oncological databases and 

publications. The integration and analysis of these data can be performed using manual 

statistical techniques, although it is a very costly and time-consuming process. Consequently, 

the use of other approaches (e.g. ML) capable of dealing with this high volume of available data 

are of utmost importance and will be further discussed in section 1.4. 

1.3 Cancer Treatment and Drug Resistance 

Drug approvals in oncology by the American regulatory agency, Food and Drug 

Administration (FDA), boosted in recent years. In 2017, 18 new chemical entities reached the 

market, including utterly new molecules such as copanlisib, a small PI3K inhibitor (ALIQOPATM 

– Bayer AG) for relapsed follicular lymphoma. Furthermore, 13 new uses of existing cancer 

therapies were also approved (Heymach et al., 2018), such as nivolumab, an anti-PD1 

monoclonal antibody (OPDIVO® – Bristol-Myers Squibb Co.), for new stages of melanoma; 

and hepatocellular, colorectal and urothelial carcinomas. This trend was also followed by EMA 

during the same period, as displayed in Figure 2-2 A. Developing new drugs and putting them 

into the market is extremely expensive, perhaps explaining the lack of interest from the 

pharmaceutical industry in new drug R&D (DiMasi, Grabowski and Hansen, 2016). The 
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number of drugs arriving to shelfs compared to the investment made on research and 

development processes has lowered significantly (Scannell et al., 2012), as expressed in Figure 

1-2 B. Nonetheless, the demand for affordable new drugs continues growing (Bountra, Lee 

and Lezaun, 2017). 

 

Figure 1-2: A) New therapeutic molecules targeting cancer approved by FDA and EMA between 1995 and 2018. Data 
corresponding to FDA approvals were retrieved from CenterWatch (FDA Approved Drugs in Oncology, 2019), data 
corresponding to EMA approvals were retrieved from the European Union Open Data Portal (Medicine data: European public 
assessment reports (EPAR) for veterinary medicines, 2018). B) The number of new molecules approved by the FDA per billion 
US dollars (inflation-adjusted) spent on research and development between 1950 and 2009 (Adapted from Scannet et al., 
2012). 

The drug development process is not only costly, but also very time consuming, reducing 

the time on which a drug is under industrial protection (Abrantes-Metz, Adams and Metz, 

2004; DiMasi, 2001), and therefore decreasing the profit from launching it to the market (see 

Figure 1-3) (Sinha and Vohora, 2018). As means of withstanding these factors, pharmaceutical 

companies are turning themselves to alternative ways of proposing new medicines and 

therapeutics, that include the focus on precision medicine (Dugger, Platt and Goldstein, 2017), 

open-source R&D (Munos, 2006), drug repositioning (Ashburn and Thor, 2004), production 

of biologics (Munos, 2009), and the use of computation- and automation-based pipelines to 

analyse cancer-associated data (Schneider, 2017).  
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Figure 1-3: The drug development process and the industrial property granting procedure. 

Cancer treatment depends largely on the type and stage of the tumour. Among the 

different available treatments (surgery, radiation, stem cell transplant, chemo-, immuno-, and 

hormone- therapy), surgery continues to be the primary treatment for most solid tumours, a 

process that, besides being very invasive, cannot eradicate the disease entirely due to poor 

cellular differentiation in most tumours (Chabner and Roberts, 2005). In the past, most 

conventional therapies treated cancer as a homogeneous disease with several drugs targeting 

random DNA, inducing a non-specific DNA-damaging cytotoxic mechanism. However, these 

drugs were not usually targeted to cancer cells, which, in higher concentrations, may result in 

serious side effects to the patient (Kummar et al., 2006; Lotfi-Jam et al., 2008). Currently, 

mechanisms of action of anticancer drugs are based upon entirely different approaches (Patel 

et al., 2014). Most of these drugs act on well-defined targets or biological pathways based on 

the molecular and cellular characteristics of cancer cells, therefore improving cancer 

treatability. More than half of all known drugs on the market target membrane proteins (MPs) 

or in some cases, their ligands. In cancer, MPs are highly relevant since they usually suffer 

modifications (e.g. changes in protein composition of membranes, protein expression or 

glycosylation) during tumorigenesis, making them suitable biomarkers either for diagnosis or 

therapy (Grimm et al., 2011; Kampen, 2011). However, one of the major drawbacks for the 

use of MPs as biomarkers is that the structure and function of most of them are still poorly 

understood, with less than 4% of the crystal structures present in Protein Data Bank (statistics 

from July 1st, 2019) (Berman, Henrick and Nakamura, 2003). Therefore, the development of 

new tools and the determination of more structures that can further characterize MPs is of 

utmost importance since it will allow exploiting new cancer therapies.  
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Although conventional chemotherapy and targeted antineoplastic drugs are still used and 

effective in most of the cases, the rise of drug resistance is currently an overwhelming problem 

(Chen and Malhotra, 2015; Igney and Krammer, 2002). Cancer resistance to 

chemotherapeutics can be divided in two general categories: intrinsic or acquired. Intrinsic 

resistance occurs before any exposure to treatment and can be present in roughly 50% of all 

cancer patients (Verheul et al., 1998; Zahreddine and Borden, 2013). These mechanisms can 

include resistance-mediating factors that pre-exist in tumour cells, or host factors such as 

poor absorption and rapid metabolism, that often lead to the reduction of total concentration 

of the drug in the gastrointestinal tract and bloodstream (Foo and Michor, 2014). Acquired 

resistance, on the other hand, occur in sensitive cells following the administration of 

chemotherapy, being mainly caused by mutations in cancer cells and other adaptive responses 

such as increased expression of the therapeutic target and activation of compensatory 

signalling pathways (Davis, Chen and Shin, 2008). Furthermore, other chemo-resistance 

factors can also contribute to chemoresistance such as intra-tumour heterogeneity (by 

positive selection of a minor drug-resistant tumour subpopulation), tumour 

microenvironment, epigenetic changes and cross-talk2 (Hu et al., 2016). These resistance 

mechanisms support the urgent need of new or alternative approaches for cancer treatment, 

including the association of two or more chemotherapeutic agents (discussed in section 2.3.1). 

1.3.1 Combinatory Therapeutics 

The pharmacological concerns involving efficacy and safety of monochemotherapy 

associated with the tumour heterogeneity, microenvironment and interconnection of multiple 

disease pathways make this an inadequate and insufficient approach to treat cancer (Ibrahim 

et al., 2012; Miao and Huang, 2015). Alternatively, combination chemotherapy, or 

polychemotherapy (simultaneous administration of two or more chemotherapeutic drugs), is 

a common treatment to avoid some of the disadvantages of monochemotherapy and 

overcome cancer drug resistance (Garcia and Odaimi, 2017; Kalemkerian, 2016). In opposition 

to monochemotherapy, combination therapy can modulate different targets and signalling 

pathways simultaneously (Hu et al., 2016), mainly due to the diverse physico-chemical and 

structural characteristics of each drug (Figure 1-4). These polychemotherapeutic 

strategies follow a set of defined rules, including nonoverlapping toxicity of drugs in 

combination, non-cross resistance and mandatory enhancement of cell kill efficacy (Mayer and 

                                            
2 Cross-talk refers to cross regulation of two biological entities (Dogterom and Koenderink, 2019). 
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Janoff, 2007). Additionally, the positive effect of polytherapy can be further enhanced by 

modulating the delivery system that conveys this cocktail of drugs by, for example, designing 

nanoparticle delivery systems that improve stability and circulation time in the bloodstream; 

targeting specific tissues or cells; or improving intracytoplasmic delivery (Simões et al., 2004).  

 

Figure 1-4: Schematic representation of the mechanisms underlying combinatory chemotherapy. 

Combination therapies are also required to be approved by regulatory agencies, similarly 

to mono-therapeutic strategies (Webster, 2016). Supplementary Table 1 lists currently 

approved combinatory chemotherapeutic strategies for most types of cancer. According to 

the Loewe additivity model (Loewe and Muischnek, 1926) polychemotherapy can be separated 

into three groups depending on the therapeutic effects generated, and the targets and 

pathways involved: synergistic, additive and antagonistic. In synergistic effects, the 

administration of drugs in combination is greater than the summed effects of the drugs in 

monotherapy, and the targets or pathways tackled by these drugs must be different. Additive 

effects occur when the administration of drugs in combination is greater than or equal to the 

summed effects of the drugs in monotherapy, and the targets or pathways involved may be 

the same. Examples of these kinds of effects are portrayed in Table 1 A drug combination is 

classified as antagonist if the presence of one molecule interferes in the mechanism of action 

of others in the combination, cancelling its therapeutic effect mostly by binding to the target 

without producing therapeutic response (Kenakin, 2012). 
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Table 1-1: Examples of synergistic and additive effects of drug combinations applied to cancer. 

Drug A Drug B Combinatory Mechanism 
Synergistic Effects 

Oxaliplatin 
• DNA adduct - binds GG, 

AG and TACT sites 
(Chaney et al., 2004); 

• Causes DNA strand break 
and non-DNA initiated 
apoptosis (Woods and 
Turchi, 2013); 

• Effect of oxaliplatin’s DNA 
adduct may be partially 
reduced by certain mutant 
DNA TOP1 acting on 
DNA adduct to generate 
different topoisomers 
(Kobayashi et al., 1993). 

Irotecan 
• DNA TOP1 inhibitor 

(Koizumi et al., 2004). 
 

• Irotecan acts as an adjuvant of oxaliplatin by 
inhibiting DNA TOP1 partially offsetting the 
counteractive activity of mutant enzymes (Koizumi 
et al., 2004). 

Additive Effects 

Doxorubicin 
• DNA intercalator – binds AT 

regions (Kellogg, Scarsdale 
and Fornari, 1998). 

Trabectedin 
• Interacts with DNA repair 

system - forms covalent 
guanine adducts in DNA 
minor groove (Zewail-Foote 
et al., 2001). 

 

• Both affect DNA in a non-interfering way, 
expanding the therapeutic effect (Pautier et al., 
2015). 

Through the years, multiple methods were proposed to classify the combinatory 

chemotherapeutic effect apart from the Loewe additivity method (Loewe and Muischnek, 

1926). These newer methods include median-effect (Chou-Talalay Method) (Chou, 2010), Bliss 

independence (Bliss, 1939), Highest Single-Agent approaches (HSA) (Foucquier and Guedj, 

2015) and Zero Interaction Potency (ZIP) (Yadav et al., 2015). Through the referred methods 

it is possible to calculate Combination Index (CI) and classify the combination effect as additive, 

synergistic or antagonistic (Chou and Talalay, 1984), following the concept designed by Loewe 

and colleagues in 1926. 

Median-effect and Loewe additivity approaches calculate CI (Equation 1-1) comparing 

the administered doses and the IC50 or EC503  of each drug, represented as & . These 

                                            
3 Half Maximal Inhibitory Concentration (IC50) and Half Maximal Effective Concentration (EC50) indicate 

how much of a particular drug or other substance is needed (measure of the potency) to inhibit a specific biologic 
process (or component of a process). IC50 is the concentration of a drug/substance required to produce 50% 
inhibition in vitro (Brody, 2018). EC50 is the concentration of an agonist that produces 50% of the maximal 
possible effect of that agonist (Neubig, 2003). 
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approaches bear in mind the dose equivalence principle (for a given effect, dose a of drug A is 

equivalent to dose ba of drug B, and reciprocally) and the sham combination principle (ba can be 

added to any other dose b of drug B to give the additive effect of the combination). In the 

Loewe additivity method, the additive effect of drugs A and B depends on the individual dose-

effect curves of each drug (Equation 1-2), also assuming that the drugs have a constant potency 

ratio, R (' = )*). Experimentally, dose-effect curves with constant potency ratio (Figure 1-5 A) 

have a ratio of doses at every level of effect and are parallel on a log-dose scale, having equal 

individual maximum effects (Foucquier and Guedj, 2015; Tallarida, 2012). From this, it is 

possible to define a relationship between the dose pairs from the combination cocktail and 

each individual drug dose (Equation 1-3). The types of combinatory effects can be drawn by 

calculating CI (Equation 1-4 and 1-5) and by representing the data in an isobologram (Figure 

1-5 B). In addition to the method proposed by Loewe, the median-effect approach considers 

two more components: the ratio of cancer cells affected by the drugs and a new constant 

bearing the influence of sigmoidicity of the dose-effect curve. +, =  .)&) + .*&*  

where DA and DB are the doses of drugs A and B; and pA and pB are the IC50/EC50 of each drug respectively 
Equation 1-1 011234(6 + 7) = 0)(6 + 67) = 0*(76 + 7) = 0)*  

where EA, EB and EAB are the measured effects on the dose-effect curve of drug A, B and combined respectively 
Equation 1-2 6 + 67 = ) ⟺ 6 + 7 × ' = ) ⟺ 6 + 7 × )* = ) Equation 1-3 6) + 7* = 1 Equation 1-4 6) + 7* = +, Equation 1-5 
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Figure 1-5: Dose-effect curves and isobologram analysis. A) represents the dose-effect curves of drugs A and B separated by 
the logarithm of the constant R. B) represents an isobologram analysis of the combination of drugs A and B, from which the 
combinatory effect can be drawn calculating the CI. 

The other mentioned methods (Bliss independence and Highest single agent) follows a 

much reductive way. Bliss independence allows the calculation of CI by comparing the effect 

of the single drug in the given doses with the observed inhibitory effect of the same dose 

combination (Equation 1-6 and 1-7). On the other hand, by using HSA, CI is obtained 

comparing the maximum effect of the single drugs with the inhibitory effect of the combination 

(Equation 1-8). At last, the ZIP model takes advantage of both Loewe and Bliss models by 

comparing the dose-response shift between individual drugs and their combinations. 06<< = 06 + 07(1 − 06)  Equation 1-6 +, = 06<<0>7?2@A2<  Equation 1-7 

+, = B6C(06, 07)067  Equation 1-8 

1.4 Artificial Intelligence and Machine Learning 

1.4.1 Use of Machine Learning in Data-Driven Decisions 

As presented in the previous sections, newly developed high-throughput OMICs 

platforms, among other technological advances, made possible the acquisition of a large 

amount of biological cancer data like never seen before. The integration of different types of 

complex and high-dimensional drug-omics cancer data (from the cell to drug and phenotype) 

is of utmost importance for understanding cancer’s complex biological system and uncovering 

key altered pathways, that can further help to improve the patient outcomes by designing 

Drug A
Drug B

log(R)

Combination effect

A B

log(Dose)

%
 E

ffe
ct

Dose-effect curves with constant potency ratio (R)A

Additivity
(CI = 1)

Synergism
(CI < 1)

Antagonism
(CI > 1)

(0, B)

(B, 0)

Dose of Drug A

Do
se

 o
f D

ru
g 

B

Isobologram analysisB



 
12 

more targeted therapies. Integrating, organizing and interpreting this vast amount of data and 

knowledge to uncover important biological finding is almost impossible using only manual 

analysis. Computational techniques, in particular ML, a subset of Artificial Intelligence (AI) has 

been a common approach to overcome the technical barriers of dealing with big data analysis 

(Auffray et al., 2016; Ritchie et al., 2015). These methodologies help to bridge the gap to the 

wet lab, appealing to the scientific community as a less costly and time-effective approach 

(Zhang et al., 2017). 

Concerning AI, its definition has evolved from a human-centred perspective (in a sense 

in which Machine Intelligence should mimic the Humans’ thinking and behaviour) to a more 

rational viewpoint, on which the machine, mainly applying a combination of mathematics and 

engineering, can automate a set of activities, such as decision-making, problem-solving and 

learning (Russell and Norvig, 2010). From a general perspective, the process of learning implies 

that the agent is improving its performance on tasks as it observes the world (Murray, 2003). 

This procedure depends on the prior knowledge of the agent, the representation of the 

knowledge that the agent has access to and the availability of feedback to learn from. 

The learning concept is transferred to machines via ML, thus avoiding the need of 

explicitly programming a machine to perform a specific task. The agent (in this case, the 

machine) performs calculations on a given set of descriptive data to make a statistical 

representation of those records by automatically recognizing patterns within it (Bishop, 2006). 

This representation is compared to the available knowledge on the subject in analysis and, if 

they match, it generalizes to unknown examples taking into the account the previous learning 

procedure (Pastur-Romay et al., 2016). A common way of classifying ML types is according to 

the availability of learning feedback through labelled data as Unsupervised, Supervised and 

Semi-Supervised, being the first two the most frequently used and further detailed in the next 

sections (Putin et al., 2018). Furthermore, Reinforcement Learning can be found as another 

type of ML. However, in this case, the machine learns from a series of rewards or punishments.  

The organization of the next sections takes into consideration the design of the 

algorithm and the learning process of each method with a further explanation of the basic 

parts and characteristics of each one (Figure 1-6). 
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Figure 1-6: Machine Learning types mentioned in this section. 

1.4.1.1 Unsupervised Learning 

In Unsupervised Learning the machine draws predictions from datasets by simply 

observing raw and unlabelled input data  (Becker and Plumbley, 1996). Datasets contain 

samples, also called instances4, containing descriptors of the samples, commonly known as 

features5 (Mohri, Rostamizadeh and Talwalkar, 2012) (e.g. a dataset comprising descriptors of 

genes, like length of telomers or percentage of CpG islands). The most known Unsupervised 

Learning method is Clustering (Russell and Norvig, 2010). Nevertheless, other approaches of 

unsupervised learning include Anomaly Detection and some types of Neural Networks. 

Clustering, or cluster analysis, is roughly defined as grouping samples of a given dataset 

by some criterion of similarity. However, this criterion varies according to the objective of 

the analysis (Estivill-Castro, 2002). Clustering can be performed using Hierarchical or 

Partitioning methods (Ferligoj and Batagelj, 1983; Fraley and Raftery, 1998). Hierarchical 

methods progressively divide the samples into groups arranged in according to similarities 

between them. This clustering method can be performed either top-down, by progressively 

grouping different instances, thus forming a large group that accommodates the whole smaller 

groups (Agglomerative Hierarchical Clustering), or bottom-up, by iteratively splitting the 

instances into smaller groups, creating new and more specific groups at each step (Divisive 

                                            
4 Instance (example, case or record) refers to a single object of the dataset from which a model will be 

learning or predicting. 
5 Feature (attribute, field or variable) is referred as a descriptive characteristic of an instance. 
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Hierarchical Clustering). Partitioning methods relocate samples by moving them from one 

cluster to another. The simplest and most commonly used model for Partitioning clustering is 

the E -means algorithm (Jain, 2010), which often requires a number of F  clusters (+1, +2, . . . , +F) to be set by the user. This kind of clustering procedures iteratively relocates 

samples between the clusters until a certain error criterion is minimized, classifying them as 

Error Minimization Algorithms. Ultimately, this error criterion measures the “distance” of 

each instance to its representative value (a point in the centre of the group called the centroid) 

(Wagstaff et al., 2001). Commonly, the model employs the Sum Squared Error (Equation 1-9) 

to determine the error and to split data into the defined clusters (Rokach and Maimon, 2005). GG0 = ∑ (JK − 1(CK))2MK−1  , 

where JK is the K4ℎ representative value and 1(CK) the predicted value of JK. Equation 1-9 

1.4.1.2 Supervised Learning 

In Supervised Learning, the agent learns by receiving feedback from a set of examples of 

labelled data (e.g. a dataset comprising descriptors of genes and labels that classify each sample 

with the type of cancer which they belong to). After fitting 6  the training set, usually 

corresponding to 70% of the whole dataset (since the other 30% remain reserved for the test 

set - model evaluation), the algorithm can predict the label associated with new and unseen 

samples using descriptors that characterize it. Supervised Learning algorithms are used to solve 

problems associated with regression – if labels are numbers contained within a certain 

continuous domain (e.g. prediction of IC50 of drugs), or classification – if labels are categorical 

(which also contains binary labels) and finite (e.g. predicting the possible target of different 

drugs according to its morphological features). Generalizing this concept, for a given set of O 

examples (C1, J1), (C2, J2), . . . , (CO, JO) where CK, JK are descriptors and label, respectively, of 

the K4ℎ sample and J = 1(C). The Supervised Learning model P must discover a hypothesis 

function ℎ, where ℎ(C) ~ 1(C) (Russell and Norvig, 2010). The accuracy of the final model 

(based on the best hypothesis) is evaluated by comparing it with descriptors and labels of the 

test set which comprises new samples from the same dataset used to train it (these instances 

cannot be used to train the model). If P can successfully predict the labels from this new 

unknown set, it means that it can generalize (Behzad et al., 2009), thus accomplishing its 

purpose. However, two major problems can occur if the model is incapable of generalizing: 

Underfitting or Overfitting. Underfitting occurs when the model is incapable of finding 

                                            
6 Fitting is the process of adjusting the hypothesis (ℎ) to the data used to train the model. 
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noteworthy patterns in the training set. On the other hand, overfitting is observed when it is 

over-trained, thus memorizing the training set without being capable of generalizing to new 

examples (Aalst, van der et al., 2010; Kouvaris et al., 2015) (Figure 1-7).  

 

Figure 1-7: Concepts of underfitting, generalization and overfitting. 

1.4.1.2.1 Linear Models 

Linear models are simple algorithms that are based on linear relationships between 

samples’ attributes (features) and their labels (classes). These models can make good 

predictions if data is linearly separable, in a much quicker way than nonlinear classifiers (Yuan, 

Ho and Lin, 2012), since the relationship between features and classes (Equation 1-10), a 

vector commonly represented as R(C), is monodimensional (Equation 1-11). This is illustrated 

in Figure 2-8, where a linear function ℎ is separating two regions ('1, '2) where, in this case, 

samples corresponding to two target classes must reside. Thus, in practice, samples in '1 

(above ℎ) belong to class “A” and samples in '2 (below ℎ) belong to class “B”. A similar 

approach is taken for multiple classes but, instead, each region is defined by two linear 

functions (Bishop, 2006). On the other hand, linear models can also be used for regression 

purposes. However, in this case, the outputs’ space is defined by ℎ(C) itself. ℎ(C) = STR(C) + 7, 
where ST is a weight vector and 7 is a bias value 

Equation 1-10 R(C) = C Equation 1-11 

 

Underfitting Good Generalization Overfitting
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Figure 1-8: Linear model representation. The x-axis represents the ϕ(x) vector, the y-axis represents the calculated h value 
for each x. 

Examples of linear models include Support Vector Machines (SVM) (Cortes and Vapnik, 

1995). Nevertheless, SVMs create representations of multidimensional R(C), instead of dealing 

with monodimensional features’ spaces. This method represents each sample (CK, JK) in a 

hyperspace of M dimensions; thus, each data point is defined by the M dimensions of the 

features within the vector CK (Equation 1-12) (Ziegel et al., 2007). These data points are placed 

in specific regions of the dataspace, such that a hyperplane can separate two regions which 

assume values of ±1 assigned to JK, used to classify the instance as +1 if the sample belongs to 

the class or −1 if the instance is classified as something else. SVM’s designation comes from 

the calculation of two margins by each side of the hyperplane splitting the two regions. These 

margins are defined to maximize the distance between the hyperplane and the closest data 

point, or points if there are more than one (called support vectors) (Figure 1-9). By applying 

this method, the number of hyperplanes capable of splitting the data points is significantly 

reduced, giving the algorithm its optimal stability. CK = (C0, C1, C2, C4, . . . , CM) Equation 1-12 

 

Figure 1-9: Support Vector Machines, in the case of linearly separable data. Highlighted in red and blue are the data points of 
each region. 

Support Vectors
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1.4.1.2.2 Network Models 

Most currently used network-based ML algorithms are based on Decision Trees (DTs) 

and Artificial Neural Networks (ANNs). Decision Trees require less parameter tuning and 

offer an often-quicker ML solution (James et al., 2013). However, they show less robustness 

and tend to lead to overfitting (Bramer, 2007). These methods predict the label associated 

with an instance by making it sequentially travel from root nodes (C0) to leaf nodes (CM) 
(Figure 1-10 – A). In each node, the successor node is chosen by splitting the input space 

according to predefined values or according to the set of labels most capable of lowering the 

uncertainty of a given feature (Russell and Norvig, 2010). Random Forests (RF) are classifiers 

built with a collection of DTs organized in ensemble7 (Figure 1-10 – B). The training dataset 

travels across all trees. The final classification is the predicted by the majority of these trees 

(Shalev-Shwartz and Ben-David, 2014). 

 

Figure 1-10: Decision Trees (A) and Random Forests (B). 

The perceptron, first proposed by Frank Rosenblatt in 1958 (Rosenblatt, 1958), is a type 

of binary classifier and is the basis of the principle regarding ANN architecture. Perceptron’s 

mimic the multipolar neural cells found in the brain: the inputs resemble the dendrites found 

in the cell body, the sum and threshold function the axon, and the output the axon terminals 

of the neurons (Figure 1-11 - A). Conceptually, both perceptron’s and ANNs are networks 

composed of nodes connected by edges (a graph-based model). These edges have 

                                            
7 An ensemble of classifiers is a set of classifier models whose individual decisions are combined in some 

way (typically by weighted or unweighted voting) to classify new examples (Dietterich, 2000; Zhou, 2012). 
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weights (S) that determine the strength of the connection and propagate activation values 

across the network (Figure 1-11). 

 

Figure 1-11: Network machine learning models. A) Representation of a perceptron. B) Example of Deep Artificial Neural 
Network. * Although the only represented objective is classification, ANNs can perform other kinds of tasks. Figure created 
using resources from Freepick.com. 

A supervised perceptron algorithm decides if a particular input belongs to a specific class 

by analysing a set of features relative to the sample in analysis. These features are multiplied 

by weights S, and the product of all features by its weights is summed, resulting in activation 6. In the case of the first perceptron, the final output is given by a hard threshold function 

(Equation 1-13), although nowadays we can find a broader set of activation functions besides 

hard thresholds (Russell and Norvig, 2010). The output of this function is used to classify the 

instance as positive, if the sample belongs to the class (1(6) = +1), or negative otherwise (1(6) = −1). The model learns from changes in S , resulting from a loss function (W), in a 

process called backpropagation (Bishop, 2006) (Figure 1-11 - A). Backpropagation works as 

the model is presented with the same samples’ multiple times (learning epochs8) by means of 

adjusting S.  1(6) = {+1, 6 ≥ 0−1, 6 < 0 Equation 1-13 

                                            
8 One epoch consists of one full training cycle on the training set. Once every sample in the set is 

presented to the model, it restarts in the beginning of the training dataset, introducing the second epoch. 
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ANNs can assume a large variety of architectural differences that may arise from the 

number of nodes composing the network, as well as the layers on which those nodes are 

contained. Simpler models include single-layer neural networks, which are built only by the 

input and output layers, a type of architecture on which the earlier mentioned perceptron is 

comprised. ANN are data-driven models (Schwabacher, 2005), nevertheless, the same model 

cannot be used in all datasets (Young et al., 2015). Hyperparametrization allows ANNs to be 

tuned and achieve better prediction results depending to the problem in analysis. For example, 

models may also contain more layers, namely hidden layers connecting the inputs to the 

outputs. If an ANN comprehends more than one hidden layer, it is considered a Deep Neural 

Network (DNN). Neural networks may present more than one target variable. In categorical 

problems, in which the objective is to classify instances in more than two classes, the number 

of output neurons corresponds to the number of classes defining the data. Neural Networks 

may further assume two fundamentally distinct forms of performing error propagation and be 

classified accordingly, as feed-forward neural networks or recurrent neural networks (Figure 

1-11 - B). Feed-forward Neural Networks have its edges establishing connections in only one 

direction – from the inputs “upstream” to the outputs “downstream”, without recording any 

other internal state, rather than the weights in each edge. In contrast, recurrent neural 

networks allow the connection of nodes located within the same layer using a technology 

named long short-term memory (Chen et al., 2018), saving more internal data and functions 

than feed-forward neural networks (Hochreiter and Schmidhuber, 1997), which make them 

especially useful for problems involving processes (eg. speech recognition). As in the 

perceptron, ANNs learn by fitting changes in the weight vectors performed by a chosen loss 

function (in fact, ANNs are also called multilayer perceptrons). These functions often depend 

on the comparison between the value predicted by the model and the real class (inputted by 

the user). This aspect represents a problem in hidden layers as the training data does not 

mention the output given by these. The solution to this problem is based on the back-

propagation of the error calculated in the output layer, thus creating a gradient of the loss 

function to readjust the weights in each hidden layer (Li et al., 2012).  Loss functions and the 

function used to adjust the weight vectors according to it (called optimizer) are also 

hyperparameters. Further hyperparameters include learning rate (the rate in which weight 

vectors are updated) and learning rate decay (the ratio to which learning rate is updated in 

each epoch). 

Selecting the right supervised machine learning model depends on the problem that the 

user is willing to solve, as there is a wide variety of mathematical structures to deal with 
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different type and quantity of data, computational complexity, et cetera (Jordan and Mitchell, 

2015). In the last few years, different supervised ML methods were used in OMICs data to 

predict the best therapeutic strategy based on the genomic profile of the patient (Kalari et al., 

2018), disease-related loci (Leal et al., 2019), patient prognosis (Feng et al., 2019; Kim, Oh and 

Ahn, 2018; Long et al., 2019; Yu et al., 2019),  disease biomarkers (Bravo-Merodio et al., 2019) 

and best treatment combination scores (Gilvary, Dry and Elemento, 2019; Janizek, Celik and 

Lee, 2018). Although these methods use OMICs information as features for training ML 

models, in most cases the use of these data is restricted to only one type of information (e.g. 

genomic, transcriptomic, proteomic). Furthermore, commonly used datasets present a 

reduced number of samples and a high number of attributes, which may raise concerns 

regarding the generalization ability of those models. Besides OMICs data, some studies have 

developed ML methods with data from physico-chemical and structural properties of 

anticancer agents to predict Absorption, Distribution, Metabolism, and Excretion (ADME) 

properties, to identify new uses for existing drugs (repurposing) or even to identify new drug 

candidates (drug discovery). To take full advantage of the vast repertoire of features that may 

be related with cancer biology and behaviour, we propose as main objective, to build a ML 

model capable of predicting anticancer drug combinations for chemotherapy, by using not only 

physico-chemical and structural properties of these agents but also multi-omics features, filling 

a gap in the use of multi-source data.  
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Chapter 2. Materials and Methods 

This chapter provides the material and methods used in this study. It is split into two 

parts: i) the construction of a Chemotherapeutic Combinatory Effect Prediction ML model 

and ii) the thorough assessment of drug targets, Membrane Protein Dimer Interfaces, 

structural and genomic-conservation characteristics. 

2.1 Chemotherapeutic Combinatory Effect Prediction 

An in-depth explanation of the methods used in the construction of a Chemotherapeutic 

Combinatory Effect ML model is addressed herein. In particular, the combinatory drug 

phenotypic data acquisition from NCI-ALMANAC (Holbeck et al., 2017), the mining of these 

drug features using the Python package Mordred (Moriwaki et al., 2018) and the OMICs data 

retrieval from CCLE database (Barretina et al., 2012) (Figure 3-1). The handling and pre-

processing of these data and the overall model construction and deployment using Scikit Learn 

(Pedregosa et al., 2011) is also presented. 

 



 
22 

 

Figure 2-1: Overall workflow of the material and methods used in this work. 

2.1.1 Data Mining 

2.1.1.1 Raw Data Retrieval  

2.1.1.1.1 Cancer Drug Combination Data 

Raw data containing the combinatory effect of drug pairs were obtained from NCI-

ALMANAC via bulk-download through “https://dtp.cancer.gov/ncialmanac/” (Holbeck et al., 

2017). This dataset includes response data (cell killing and growth inhibition) of 104 FDA-

approved drugs tested in combination across the 59 cell lines involved in the NCI-60 project 

(Shoemaker, 2006), making a total of 300.091 drug pair/cell line combinations. Drug sensitivity 

assays were performed at the NCI's Frederick National Laboratory for Cancer Research, the 

Stanford Research Institute, and the University of Pittsburgh. For each assay, cells were 

cultivated for 48 hours, in a 3 × 3 concentration matrix (three concentration values for each 

drug in combination). From these records, we retrieved the cell growth percentage and 

combination benefit scores to be used in subsequent steps. Cell growth percentage values 

correspond to the percentage of growth of the cell’s lines in the presence of a drug 

combination. Combination benefit scores were calculated using a modified version of Bliss 

Independence (further detailed in section 3.1.1.2.1) (Bliss, 1939) (Equation 2-1). +G =  ∑ ^)&*_ − `&,_  
where ^)&*_  is the growth fraction after administration of drug ) at a concentration & and drug * 

at a concentration _; and ` the control. Equation 2-1 
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2.1.1.1.2 Drug Physico-chemical Properties 

Each drug obtained from NCI-ALMANAC was analysed to extract their physico-

chemical and structural features. The Simplified Molecular Input Line Entry System (SMILES) 

strings of each drug (Weininger, 1988), which were obtained by a manual query in PubChem 

(Kim et al., 2019), were used as a mean of getting a machine-interpretable representation of 

those molecules. The molecules comprising atoms with unusual valence values were analysed 

using ChemAxon Chemicalize Tool (Chemicalize, 2019) and were kept according to the most 

common chemical species at physiological conditions. Using the Python package Mordred 

(Moriwaki et al., 2018), we obtained for each SMILE a total of 1.825 molecular descriptors 

represented by numerical values, corresponding to 48 different types of features. 

2.1.1.1.3 Genomic Data 

Genomic features from each of the 59 cell lines, including Cell Line Annotation, 

Expression, CNV and Methylation, were obtained via bulk download from CCLE website 

(https://portals.broadinstitute.org/ccle/data) (Barretina et al., 2012). OMICs data were not 

accessible for all cancer cell lines, so we only retrieved available information (Table 2-1). The 

annotation of the 48 cell lines corresponding to 9 tumour types (Blood, Brain, Breast, Colon, 

Kidney, Lung, Ovarian, Prostate, and Skin) originated an array of 16.394 genes. The total 

number of genes was then used to access the information concerning Expression, CNV and 

Methylation data, although, for a few genes, these data were not available (Table 2-1).  

Expression data from RNA-Seq transcript quantification is normalized by RNA-Seq by 

Expectation Maximization (RSEM) (file: CCLE_RNAseq_rsem_genes_tpm_20180929.txt.gz) 

and generated an array of 14.410 gene expression measurements corresponding to 48 cell 

lines. Copy number variation from Affymetrix SNP6.0 Arrays was normalized by the most 

similar HapMap normal samples (file: CCLE_copynumber_byGene_2013-12-03.txt) 

originating an array of 15.367 genes from 49 cell lines. Methylation data derived by 

quantification of CpG islands using Reduced Representation Bisulfite Sequencing (RRBS) (file: 

CCLE_RRBS_tss_CpG_clusters_20181022.txt.gz) created an array of 10.021 genes from 46 

cell lines. Contrarily, mutation data was programmatically retrieved via automated queries 

using the Selenium WebDriver Python package (Muthukadan, 2011). Fifteen kinds of mutations 

were retrieved (splice sites, silent, nonsense, in frame insertions, in frame deletions, frame 

shift insertions, frame shift deletions, de novo start out-of-frame, missense, start codon single 

nucleotide polymorphisms, nonstop, start codon insertions, stop codon insertions, stop codon 

deletions and start codon deletions) from a total of 16.394 genes among 48 of the 59 cell lines.  
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Table 2-1: Number of cell lines for type of input OMICs data. 

Type of OMICs Data No. of Cell Lines No. of Genes 

Expression 48 14.410 

Copy Number Variation 49 15.367 

Methylation 46 10.021 

Mutations 48 16.394 

 

2.1.1.2 Data Pre-processing 

The final dataset comprised three different types of input data: i) the genomic 

background of the 59 individual cell lines represented by the different OMICs, ii) the chemical 

properties of the drugs and iii) their corresponding combinatory effect responses. All feature 

columns comprising missing data were ignored in future steps. At the end of the data retrieval 

stage, the dataset comprised 102 drugs, 45 cell lines (a total of 226.297 samples), described 

using 1.244 drug-related features and 56.192 genomic descriptors (the final drugs and cell lines 

are displayed in Table 3 and Table 4).  

 

Table 2-2: List of drugs comprised in the final dataset divided according to Anatomical Therapeutic Chemical (ATC) 
Classification (World Health Organisation, 2019) (continues in the next page). 

Drugs Comprised in the Dataset 
Anthracyclines and related substances 

Daunorubicin Doxorubicin Mitoxantrone Valrubicin 

Anti-estrogens 

Fulvestrant Tamoxifen   

Detoxifying agents for antineoplastic treatment 

Amifostine Dexrazoxane   

Folic acid analogues 

Methotrexate Pemetrexed Pralatrexate  

Nitrogen mustard analogues 

Bendamustine Chlorambucil Cyclophosphamide Ifosfamide 

Mechlorethamine Melphalan   

Nitrosoureas 
Carmustine Lomustine Streptozocin Uracil mustard 

Other alkylating agents 

Dacarbazine Pipobroman Temozolomide Triethylenemelamine 

Other antineoplastic agents 

Altretamine Arsenic trioxide Bortezomib Estramustine 

Irinotecano Hydroxyurea Mitotane Pentostatin 
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Romidepsin Topotecan Tretinoin Vismodegib 

Vorinostat    

Other cytotoxic antibiotics 

Bleomycin Ixabepilone Mitomycin Plicamycin 

Other immunosuppressants 

Lenalidomide Thalidomide   

Platinum compounds 

Carboplatin Cisplatin Oxaliplatin  

Podophyllotoxin derivatives 

Etoposide Teniposide   

Drugs Comprised in the Dataset (Cont.) 
Protein kinase inhibitors 

Axitinib Crizotinib Dasatinib Erlotinib 

Everolimus Gefitinib Imatinib Lapatinib 

Nilotinib Pazopanib Ruxolitinib Sorafenib 

Sunitinib Vandetanib Vemurafenib  

Purine analogues 

2-Fluoro Ara-A Cladribine Clofarabine Mercaptopurine 

Nelarabine Thioguanine Azacitidine Capecitabine 

Cytarabine Decitabine Floxuridine Fluorouracil 

Gemcitabine    

Taxanes 

Cabazitaxel Docetaxel Paclitaxel  

Vinca alkaloids and analogues 

Vinblastine Vincristine Vinorelbine  

Other Classification 

Abiraterone Allopurinol Aminolevulinic acid Busulfan 

Celecoxib Dactinomycin Imiquimod Megestrol 

Methoxsalen Procarbazine Raloxifene Sirolimus 

Thiotepa Zoledronic   
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Table 2-3: Cell lines comprised in the final dataset divided according to cancer type. 

Cancer Type Cell Line Cancer Type Cell Line 

Blood 

HL-60(TB) 

Lung 

A549/ATCC 

K-562 EKVX 

RPMI-8226 HOP-62 

SR HOP-92 

Brain 

SF-268 NCI-H23 

SF-295 NCI-H322M 

SF-539 NCI-H460 

SNB-75 NCI-H522 

U251 

Ovarian 

DU-145 

Breast 

BT-549 IGROV1 

HS 578T OVCAR-3 

MCF7 OVCAR-4 

MDA-MB-231/ATCC OVCAR-8 

MDA-MB-468 PC-3 

T-47D SK-OV-3 

Colon 

HCT-116 

Skin 

LOX IMVI 

HCT-15 MALME-3M 

KM12 SK-MEL-28 

SW-620 SK-MEL-5 

Kidney 

786-0 UACC-257 

A498 UACC-62 

ACHN   

CAKI-1   

UO-31   

    

2.1.1.2.1 Class Assignment 

The growth percentage and combination benefit values acquired from NCI-ALMANAC 

were converted into binary values, representing the classification of drug combinations as 

synergistic or antagonistic. Each class assignment value (synergistic, antagonistic or additive 

effect) was obtained using five different methods (NCI-ALMANAC, Bliss, Loewe, HSA and 

ZIP) and evaluated independently. Classes using NCI-ALMANAC were assigned according to 

the mean value of the combination benefit score of each combination screening (mean of the 

combination score across all concentrations of the drug combination pairs) included in the 

raw dataset. Bliss, Loewe, HAS and ZIP scores were calculated using the R package 

SynergyFinder (He et al., 2018). The binary classes, 3 (3 ∈ {0,1}), were assigned according to 

the score ? in each method so that if the score was positive or zero an antagonistic or additive 
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effect is attributed, respectively. If the score was negative, a synergistic effect is assigned 

(Equation 2-2). 3 = {0, ? ≥ 01, ? < 0  Equation 2-2 

2.1.1.2.2  Feature Validation and Selection 

Drug-related features were evaluated via Divisive Hierarchical Clustering using the 

Python package Scikit-learn (Pedregosa et al., 2011). Physico-chemical features regarding the 

tested drugs were characterized through descriptive statistics. Features with zero variance 

across the full group of drugs or having missing values in any of the samples were excluded 

from further procedures. This proceeding reduced the number of drug-related features to 

714 of the 1.244 initial descriptors distributed across 26 groups (Table 2-4). 

 

Table 2-4: Number of features according to the type of molecular descriptor from MORDRED. 

Number of Features per Kind 
Atom-bond connectivity 2 ADME 2 

Acidity/Basicity 2 Molecular Operating Environment  54 

Aromatic 2 Path Count 21 

Atom Count 16 Polarizability 2 

Autocorrelation 181 Ring Count 139 

Bond Counts 9 Rotatable Bonds 1 

Carbon Orbital 9 Wildman-Crippen Index 2 

Constitutional 14 Topological Charge 22 

Eccentric Connectivity Index 1 Topological Index 11 

Energy State 158 Topological Polar Surface Area 2 

Fragment Complexity 1 Walk Count 21 

Framework 1 Weight 2 

Hydrogen Bonds 2 Information Content 37 

Genomic features were evaluated using E-means Agglomerative Clustering through the 

Python package Scikit-learn (Pedregosa et al., 2011) in order to check the machines’ ability to 

find patterns within that data. The number of clusters used in this method were chosen in line 

with the results of the “Elbow” Method (Appendix 1). Data was evaluated independently 

according to the type of genomic data (methylation, CNV, expression and mutations). Principal 
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Component Analysis (PCA)9 was additionally used to independently reduce the dimensionality 

of genomic features. 

2.1.1.2.3 Feature Scaling 

Feature values were scaled across the whole dataset. For each feature type, values were 

normalized (Equation 2-3) and standardized (Equation 2-4). C′ = C − min	(C)max  (C) − min	(C) Equation 2-3 C′′ = C − Cj  C and j are the mean and standard variation, respectively. 
Equation 2-4 

2.1.2 Machine Learning 

2.1.2.1 Model Architectures 

All the ML models (DNN, RF, SVM and Ensemble) were built using the Python package 

Scikit Learn (Pedregosa et al., 2011). Each of the evaluated models was fitted with a training 

set corresponding to 70% of the full dataset. The remaining 30% were used as a test set for 

model evaluation. A grid-based search was first applied in order to find the best suited 

hyperparameters (learning-rate, learning-rate decay, loss functions and optimizers) by 

recursively testing and evaluating the created models. 

2.1.2.2 Model Evaluation 

Different performance metrics were used to evaluate the test set of the ML models: 

accuracy (633), precision (&@23), recall (@23) (Moreira et al., 2017), Area Under the Receiver 

Operating Characteristics Curve (ROC AUC) (Fawcett, 2002) and Mean Squared Error (MSE) 

(Landis and Koch, 1977). The calculation of the first four metrics implies the use of four 

concepts obtained by comparing the predicted outputs and the target classes: true positives (Tk) – number of samples classified as positive in the dataset and prediction; false negatives (lO) − number of samples classified as positive in the dataset but classified as negative in the 

prediction; false positives (lk) - number of samples classified as negative in the dataset but 

classified as positive in the prediction; and true negatives (TO) - number of samples classified 

as negative in the dataset and prediction (Table 2-5) (Homenda and Pedrycz, 2018). Accuracy 

                                            
9 Principal Component Analysis (PCA) is a multivariate dimensionality reduction technique that represents 

several variables into new orthogonal variables called Principal Components (PC), extracting the most important 
information (Abdi and Williams, 2010).  
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measures the error rate of the model by calculating the mean of the ratio between the 

predicted outputs and the classes assigned in the dataset of each sample (Equation 2-5). On 

the other hand, precision and recall, evaluate true and false events. Precision is the fraction of 

detections reported by the model that were correct (Equation 2-6); recall is the fraction of 

true events that were detected (Equation 2-7). Both metrics can be aggregated into one single 

metric: F-score (Equation 2-8). The ROC AUC (Equation 2-9) is the total area under the ROC 

curve. On a ROC curve, recall is plotted in the J axis and selectivity (?2m) (Equation 2-10) is 

plotted in the C axis. Mean Squared Error (Equation 2-11) measures the average squared 

difference between the estimated values and what is predicted.  

 

Table 2-5: Confusion matrix summarizing the four types of outputs. 

  Actual 
  Positive Negative 

Predicted 
Positive True Positives False Positives 

Negative False Negatives True Negatives 

 633 =  Tk + TOTk + TO + lk + lO Equation 2-5 &@23 =  TkTk + lk Equation 2-6 @23 =  TkTk + lO Equation 2-7 l − ?3>@2 =  2 ∙ &@23 ∙ @23&@23 + @23  Equation 2-8 'o+ )p+ =  ∫ @23(?2m(C)) <C10  Equation 2-9 ?2m =  TOTO + lk Equation 2-10 PG0 =  1M ∑(CK − CK̅)2MK=1  Equation 2-11 

2.2 Thorough Assessment of Membrane Protein Dimer Interfaces 

In this section we addressed the approaches developed to assemble a new dataset 

containing information and characterization of the interfacial region of MPs called MEmbrane 

protein dimer Novel Structure Analyser database (MENSAdb). The overall pipeline for this 

section is schematized in Figure 2-2. 
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Figure 2-2: Overall representation of MENSAdb. 

2.2.1 Raw Data Collection 

Experimental structures were obtained from MPSTRUC – Membrane Proteins of Know 

3D Structure (from http://blanco.biomol.uci.edu/mpstruc/) (White, 2009). This database 

contains 167 unique transmembrane proteins (TMs) (figures at September 2018) (including a-

helix and b-barrel TMs), mostly obtained from crystal structures.  

2.2.2 Data Pre-processing 

2.2.2.1 Sample Filtering 

All non-transmembrane, monomeric and monotopic proteins were discarded. Dimers 

in which one of the chains was a soluble protein, single MPs interacting with soluble small 

peptides, pores and proteins with small organic or non-organic ligands were excluded. 

Furthermore, structures comprising unknown residues, structures with many incomplete 

amino-acids, or structures with interfaces highly interacting with lipids were also disregarded. 

Additionally, sequences were filtered to ensure at most 35% sequence redundancy in each 

interface, preventing repeated complexes, using the PISCES web-server (Wang and Dunbrack, 

2003). The final dataset was composed of ~63% homodimers and ~37% heterodimers. 
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2.2.2.2 Dimer Combination Extraction 

An analysis of the PDB files correspondent to the proteins contained within the dataset 

was performed in order to assess all dimer combinations. The final dataset was composed of 

201 protein dimer combinations. 

2.2.2.3 Structure Standardization 

PyMOL (DeLano, 2015), Modeller (Webb and Sali, 2016) and Visual Molecular Dynamics 

(Humphrey, Dalke and Schulten, 1996) scripts, as well as manual curation were used to identify 

and remove residues outside the transmembrane domain; reverse mutated non-standard 

amino-acids; model incomplete structures; and add hydrogens to the structures. 

2.2.2.4 Interface Assessment 

Relative solvent accessibility (RSA) (Equation 2-12) is defined as the ratio between an 

amino-acid Accessible Surface Area ()G)T>46m) and its corresponding area in a Gly-X-Gly 

peptide ()G)smJ−t−smJ). Database of Secondary Structure assignment for all Proteins (DSSP) 

(Touw et al., 2015) was used to calculate RSA. Residues above a 0.20 RSA cut-off were 

considered as surface residues (Lins, Thomas and Brasseur, 2003). From a total of 91.861 

residues, 55.008 were considered surface residues after applying that method. All the residues 

in a pairwise distance between any atom of each chain in analysis were considered an interfacial 

residue, thus splitting surface residues into two classes: interfacial residues (15.277) and non-

interfacial residues (39.731) (Figure 3-3). 'G) =  )G)T>46m)G)smJ−t−smJ Equation 2-12 

 

 

Figure 2-3: Overall distribution of the dataset. 

All Residues in Dataset

Surface Residues

Interfacial
Residues

91 861 55 008 15 277
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2.2.3 Feature Mining 

2.2.3.1 Evolutionary Conservation 

Evolutionary conservation of the various residues was performed using Jensen-Shannon 

divergence (JSD) (Lin, 1991) measure of the Position-Specific Scoring Matrix (PSSM). This 

PSSM matrix was calculated using PSI-BLAST (Altschul et al., 1997). 

2.2.3.2 Accessible Surface Area 

Position-Specific Scoring Matrix was used to assess ASA, RSA, measurements in the 

complexed )G)3>B&) and monomeric )G)@2m) forms of the protein complexes. The results of 

those measurements were multiplied by the Sander and Rost amino-acid constants10 (Ala: 106, 

Arg: 248, Asn: 157, Asp: 163, Cys:135, Gln: 198, Glu: 194, Gly: 84, His: 184, Ile: 169, Leu: 165, 

Lys: 205, Met: 188, Phe: 197, Pro: 136, Ser: 130, Thr: 142, Trp: 227, Tyr: 222, Val: 142) (Rost 

and Sander, 1994). Two additional metrics were issued to further clarify ASA values: variation 

of ASA from the monomeric to the complexed forms (DASA) (Equation 2-13) and a 

measurement that which allows the differentiation of residues with equal DASA but with 

different absolute monomer )G)@2m) (Equation 2-14) (Martins et al., 2014). ∆)G) =  )G)3>B& − )G)B>M Equation 2-13 )G)@2m = ∆)G))G)B>M Equation 2-14 

2.2.3.3 Temperature Factor 

Biopython (Cock et al., 2009), which is a python package, was used to assess the 

temperature factor (B-factor) of each amino-acid in analysis. An environmental B-factor 

measure (by issuing the mean of the B-factors of all amino-acids in a -5 – X – +5 sliding 

window) was also calculated to characterize the micro-environment of the proteins’ residues. 

2.2.3.4 Interfacial Interactions’ Description 

BINANA-Binding Analyzer (Durrant and Mccammon, 2011), a python implemented 

algorithm, which characterizes protein complexes, was used to mine close11, hydrophobic and 

hydrogen contacts, salt-bridges and p-interactions established between residues in the 

interfacial region of the protein. 

                                            
10 Amino-acid nomenclature (correspondence between full name, one letter and three letter codes) is 

available on page 12. 
11 Close contacts include the number of pairs of atoms formed within 2.5 and 4.0 Å distance radius. 
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2.2.3.5 Descriptor Scaling 

Since the composition of the dataset was not equally distributed across the three classes 

of MPs presented here, we defined a correction factor (+1634>@) (Equation 2-15) based on the 

concept of propensity score calculation, as presented by Huang (Huang, 2014). This factor is 

defined as the ratio between the frequency of occurrence of residue K in each one of the 

classes (1K3m6?) and the frequency of occurrence of the total number of amino-acids in that class 

(1K4>4 ). The obtained MP class-specific +1634>@  was used to correct the various metrics 

described in the Results section by multiplying them by their respective +1634>@ (except for )G)@2m). +1634>@ = 1K3m6??1K4>4  Equation 2-15 

2.2.4 Database Construction 

2.2.4.1 Descriptive Statistics 

For all plots, residues are ordered by increasing hydrophobicity based on the Kyte and 

Doolittle hydropathy index (Kyte and Doolittle, 1982). Descriptive statistics such as three 

quartiles (Q1, Q2 and Q3), average and standard deviation were obtained using Pandas 

(McKinney, 2010), a Python package. All the reported p-values were calculated through SciPy 

(https://docs.scipy.org/), using an independent Student’s & -test. Further statistics were 

calculated for amino-acids sets that were split according to the hydrophilic and hydrophobic 

potential as: charged – Asp, Glu, Lys, Arg; positively charged – Lys, and Arg; negatively charged 

– Asp and Glu; polar – Ser, Thr, Asn, Gln, Tyr and His; non-polar – Ala, Val, Ile, Leu, Met, Phe 

and Trp; aromatic – Phe, Trp and Tyr. Cys, Gly and Pro were not included in those subsets. 

2.2.4.2 Web App Construction 

Data resulting from this work was made available through a web application which was 

built using Python’s Flask-based Dash visualization framework (by Plotly (Collaborative data 

science, 2015)). The application provides graphical and tabular data formats for visual inspection 

and download. Real-time query features are supported by a MongoDB backend, which enables 

the application to query, filter and aggregate the dataset in multiple meaningful ways.  
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Chapter 3. Results and Discussion 

In this chapter we listed the results of the various analyses thoroughly explained in 

Chapter 3. The results, and corresponding critical discussion, are divided in two sections: i) 

construction of the ML model to predict the combinatory effects of anticancer drugs; ii) 

depiction of a new database describing physico-chemical features of MPs and their interfacial 

regions. 

3.1 Prediction of the Combinatory Effect of Chemotherapeutic Drugs 

3.1.1 Overview of the dataset structure 

The final processed dataset comprised 1.643 features of expression values, CNV and 

methylation from 45 cell lines covering 9 cancer types and the corresponding combinatory 

effect of 102 drugs. The input data used in the training set comprised 158.408 instances (70%) 

while the remaining 67.889 (30%) were reserved for the test set for model evaluation. 

3.1.1.1 Combinatory response definition by class assessment 

Different methods (NCI-ALMANAC, HSA, Loewe, Bliss and ZIP) were used to assess 

the combinatory response of drugs. Concerning the obtained results, we can highlight the 

variability in class assessment between the different methods. This variability produced 

datasets with different total lengths due to the presence of missing values that forced those 

instances to be excluded in ML algorithms (Figure 3-1 A and Table 3-1). 
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Table 3-1: Overview of the constitution of the datasets according to the class assignment method. 

Method used for class 
assessment 

No. instances of the final 
dataset 

Synergistic 
Effect 

Additive or Antagonist 
Effect 

NCI-ALAMANC 226.297 154.879 71.418 

Loewe 101.064 61.087 39.977 

Bliss 189.864 73.493 116.371 

HSA 189.864 93.803 96.061 

ZIP 194.972 101.787 93.185 

 

Concerning the results of the class assessment,  Figure 3-1 B shows that the use of HSA 

and ZIP models produced more balanced datasets (with the roughly same proportions of 

synergy- and antagonism-classified classes). However, the use of NCI-ALMANAC and Loewe 

models produced unbalanced datasets towards synergistic effects (2:1 and 3:2, respectively), 

and Bliss an unbalanced dataset towards antagonistic effects (4:7). The five methods presented 

in this work represent statistical approaches for calculating expected dose-response 

relationships in combination therapies (Fitzgerald et al., 2006; Sun, Vilar and Tatonetti, 2013), 

and are focused exclusively on empirical observations that disregard the theoretical concepts 

of synergy and antagonism. 

It is very time consuming to verify which model is theoretically more accurate. The 

models used to predict combinatory effects of drugs do not consider drug-target relationships 

of the drugs neither the precise target expression analysis concerning the tested cell lines. 

Nevertheless, although we were not able to assess the best model, the obtained results (class 

assessment) can successfully be used to build an ML model focused on predicting the 

combinatory effect of drugs,  since  the primary clinical objective of anti-cancer chemotherapy 

is a reduction in cellular proliferation leading to cell death. In agreement with this rationale 

and bearing in mind that ML models produce better results as data increases, the most useful 

method would be the one that produces more results. Consequently, the better method 

would be the one that assumes a more straightforward mathematical framework, since it 

presents a smaller chance of originating missing values, thus originating a larger dataset more 

suitable for ML training. For instance, the dataset obtained using Loewe additivity method, 

which is a more complex mathematical framework (summarized in chapter 2) that depends 

on fitting the effects of each drug on a dose-effect curve, originated a smaller dataset with a 

large quantity of missing data. On the other hand, using the method proposed by Holbeck and 

colleagues in NCI-ALMANAC, a simplified version of the Bliss independence method was 

applied, thus originating a larger dataset that does not include any missing values. 
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Figure 3-1: Combinatory effect classification according to the use of five different models (NCI-ALMANAC, HSA, Loewe, 
Bliss and ZIP). A) displays the number of classes in each dataset (top) while also showing how many of those class assignments 
are shared among the various datasets (bottom). B) density plots displaying the distribution of the two classes in each dataset 
(A represents the fraction of samples classified as Antagonistic or Additive, and S represents the fraction of samples classified 
as Synergistic). 

3.1.1.2 Evaluation of drug-related features 

Evaluation of drug-related data (structural and physico-chemical features) was 

performed by hierarchical clustering to assess if those descriptors could describe each drug in 

the dataset in a meaningful way. This method exposed similarities in drug-related features 

across the different molecules included in the dataset, thus validating the use of these data and 

the computers’ capability of noticing relevant patterns from them. Drugs with close structural 

and physico-chemical similarities appear grouped in the dendrogram (Figure 3-2): clofarabine 

and cladribine (adenine-like structures that have the same mechanism of action (Harned and 

Gaynon, 2008)); melphalan and chlorambucil (both drugs are nitrogen mustards that disrupt 
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DNA, preventing uncoiling and further synthesis and transcription, thus blocking DNA 

replication and cell proliferation (Furlanut and Franceschi, 2003; Loeber et al., 2008; Rai et al., 

2000)); allopurinol and mercaptopurine (both drugs are purine analogues that prevent the de 

novo pathway of purine ribonucleotide synthesis (Elgemeie, 2003; Reiter et al., 1983; Yang et 

al., 2016)); ifosfamide and cyclophosphamide (both DNA alkylating agents (Zalupski and Baker, 

1988)), carboplatin and oxaliplatin (both platinum-based chemotherapy drugs (Knox et al., 

1986)); and doxorubicin and daunorubicin (both are anthracycline antibiotics widely used in 

chemotherapy (Alves et al., 2017; Ghirmai et al., 2005)). Similarities between drugs that do not 

share analogous structures but are classified as belonging to the same ATC class can also be 

found (e.g. vincristine, vinblastine and eribulin).  

The similarities identified between anticancer drugs using the physico-chemical features 

mined by Mordred show that this method allows the inference of key features that can be 

related with the therapeutic mechanism of action. In available literature, attempts to 

characterize drugs focus mostly on molecular fingerprints not explicitly contemplated in 

Mordred. For example, Morgan fingerprints (Morgan, 1965) were used by Sidorov et al. 

(Sidorov et al., 2019), producing similar results to the hierarchical clustering analysis presented 

here. However, Morgan fingerprints present a simplistic approach when compared to Mordred 

descriptors as they only characterize molecules from a topological point of view (Rogers and 

Hahn, 2010).  
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Figure 3-2: Hierarchical clustering dendrogram of all anticancer drugs included in the final dataset. 

 

Dactinomycin
Plicamycin
Sirolimus
Everolimus
Docetaxel
Paclitaxel
Cabazitaxel
Pipobroman
Mitotane
Thalidomide
Lenalidomide
2−Fluoro Ara−A
Cladribine
Clofarabine
Altretamine
Vorinostat
Imiquimod
Nelarabine
Dexrazoxane
Pentostatin
Letrozole
Chlorambucil
Melphalan
Hydroxyurea
Thioguanine
Fluorouracil
Mercaptopurine
Allopurinol
Decitabine
Floxuridine
Az acit idine
Lomustine
Streptozocin
Uracil mustard
Cyclophosphamide
Ifosfamide
Methoxsalen
Zoledronic acid
Triethylenemelamine
Busulfan
Am ifostine
Thiotepa
Dacarbazine
Temozolomide
Ca rmustine
4’−Epiadriamycin
Etoposide
Teniposide
Valrubicin
Fulvestrant
Ixabepilone
Romidepsin
Capecitabine
Ruxolit inib
Vismodegib
Celecoxib
Axitinib
Exemestane
Mitomycin
Tretinoin
Anastrozole
Megestrol acetate
Abiraterone
Mitoxantrone
Nilotinib
7−Ethyl−10−hydroxycam ptothecin
Dasatinib
pralatrexate
vemurafenib
Vandetanib
Bortezomib
Sunitinib (free base)
Cr izotinib
Methotrexate
Gefitinib
Mechlorethamine hydrochloride
Am inolevulinic acid hydrochloride
Arsenic trioxide
Cisplatin
bendam ustine hydrochloride
Procarbazine h ydrochloride
Cytarabine hydrochloride
Gemcitabine hydrochloride
Carboplatin
Oxaliplatin
Pemetrexed Disodium
Estramustine phosphate
Daunorubicin hydrochloride
Doxorubicin hydrochloride
Idarubicin hydrochloride
Raloxifene hydrochloride
Topotecan hydrochloride
Pa zopanib hydrochloride
Quinacrine hydrochloride
Erlotinib hydrochloride
Vinorelbine tartrate
Lapatinib ditosylate
Bleomycin sulfate
Ta moxifen citrate
Sorafenib tosylate
Imatinib mesylate
Eribulin mesylate
Vinblastine sulfate
Vincristine sulfate



 
39 

3.1.1.3 Evaluation of multi-OMICs related features 

The relevance of multi-OMICs related features was assessed via independent clustering 

analysis of the four types of OMICs data (Expression, Methylation, CNV and Mutation) 

acquired before any pre-processing was made. Concerning the results of k-means clustering 

for evaluation of genomic data, we first assess the optimal number of clusters for each type of 

feature according to the elbow method. Five different clusters were chosen for analysing 

Mutations and Methylation; and six clusters for evaluating CNV and Expression data (Figure 

3-3). In the case of mutations, 44 samples were attributed to 1 cluster; the remaining four 

samples were distributed across 1 cluster each. In the case of methylation, 29 samples were 

assigned to the first cluster, 10 to the second cluster, three samples to the third cluster, and 

the remaining four samples were equally distributed across the two remaining clusters. 

Regarding CNV, 20 samples were allocated to the first cluster, 16 samples were distributed 

across the second cluster, one sample to the third cluster, and the remaining 12 samples were 

equally distributed across the three remaining clusters. At last, expression clustering analysis 

allocated 20 samples in the first cluster, ten samples in the second cluster, eight samples in the 

third cluster, six samples in the fourth cluster, three samples in the fifth cluster and 1 sample 

in the remaining cluster.  

Such results indicate that Expression, Methylation and CNV data allow the distinction of 

different cell lines from each other, as the vast majority of instances do not overlap in the 

analysis. On the other hand, mutation data analysed in this work were not suitable as a mean 

of characterizing those cells since most instances were assigned to one cluster. One of the 

reasons could be related with the fact that we can have changes in the way genes are switched 

on and off without having actual modifications in their DNA sequence, greatly supporting the 

significant role of epigenetics in the phenotype of cancer cells (Breindel et al., 2017; Gupta et 

al., 2019; Yuan, Norgard and Stanger, 2019). However, this conclusion cannot be taken as a 

staple. Other works in literature were successful using mutation data in cancer related studies. 

Yuan and colleagues proposed a DNN-based model for the prediction of cancer types using 

mutation data (Yuan et al., 2016), Wood and colleagues proposed a specific SVM model for 

prediction of tumour-specific mutations (Wood et al., 2018) and Chang and his team proposed 

a ML model for single-drug repositioning for cancer (Chang et al., 2018). In all these works, a 

deep pre-processing of mutation data was performed, often by comparing cancer cell mutation 

data with data collected from healthy cells. This analysis often leads to the selection of driver 

mutations (mutations that endow selective growth advantages, and thus promote cancer 

development), disregarding more common passenger mutations (mutations that show no 
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phenotypic effects on the cancer cell) (Pon and Marra, 2015; Ushijima and Asada, 2010). The 

fact that, in this work, we included driver and passenger mutations coupled with the methods 

that were not enough to highlight major differences within that data, motivated its exclusion 

from our ML model development and deployment.  

 

Figure 3-3: Divisive Clustering used for evaluation of cancer multi-omics related features. 

3.1.2 Development and Evaluation of Combinatory Therapy Models  

Recently, some groups are making efforts to develop models that could predict tumour 

drug sensitivity using classic ML methods, although mostly focused on single drug screening 

responses (Chang et al., 2018; Chiu et al., 2018; Mobadersany et al., 2018). With the release 

of NCI-ALMANAC database (Gayvert et al., 2017; Gilvary, Dry and Elemento, 2019; Sidorov 

et al., 2019), and more recently AstraZeneca-DREAM (Bansal et al., 2014; Menden et al., 2019), 

it is now possible to integrate data from drug combination sensitivity assays. Here, we 

developed a model using ML methods to predict the combinatory effect of chemotherapeutic 

drugs based on the integration of multi-omics (expression, CNV, methylation) profiling of cell 

lines, drug-related features and the corresponding combinatory effects. 
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The development of the model was performed using three different ML approaches: 

Deep Neural Networks, Random Forest and SVM Classifiers. These methods were compared 

based on their ability to predict whether a drug combination produces synergistic, or 

additive/antagonistic effects (Table 3-2). Using firstly the classes obtained from the NCI-

ALMANAC, our most extensive database, combination benefit score ML models were trained 

and evaluated. Evaluation results showed that DNN outperforms the remainder tested 

methods in most metrics; namely, test accuracy and MSE, with 0.73 and 0.27 respectively. On 

the other hand, RF beat other methods on ROC AUC and precision, with 0.67 and 0.77, 

respectively; SVM showed better performance in recall, and consequently in f-score, with 0.93 

and 0.81, respectively. It was expected for a DNN model to outperform RFs and SVMs since 

it is in principle better able to handle higher volumes of data (Xue-Wen Chen and Xiaotong 

Lin, 2014; Zhang et al., 2018), besides supporting tuning (by defining hyperparameters) that 

may increase its performance (Chen et al., 2018). Nevertheless, none of the models shows 

bad evaluation results since the majority of metrics are figured above 0.70. Some recent works 

have also been able to develop models to predict combinatory effects of chemotherapy drugs. 

Preuer et al. presented a RF model achieving slightly better accuracy results (Preuer et al., 

2018). However, in this case, the use of accuracy, as an evaluation metric, can disguise the real 

performance of the model due to the fact of performing a mean operation across the results 

(Chawla, 2009). Our model presents a high value of precision, (0.77) which excludes the 

possibility of overfitting, outperforming results present in the literature of 0.57 at the model 

proposed by Preuer et al. 

 

Table 3-2: Test performance metrics of different ML algorithms built using the NCI-ALMANAC dataset. 

Model acc ROC AUC MSE prec rec f-score 

DNN 0.7343 0.6676 0.2657 0.7635 0.8697 0.8131 

RF 0.7168 0.6706 0.2832 0.7741 0.8107 0.7920 

SVM 0.7154 0.6080 0.2845 0.7209 0.9336 0.8136 

acc = accuracy; ROC AUC = Area Under the Receiver Operating Characteristics Curve; MSE = Mean Squared Error; prec = precision; rec 
= recall; Gini = Gini coefficient 

 

Besides the original drug class assignment from NCI-ALMANAC, the results from the 

other four models (Bliss, HSA, Loewe and ZIP) were also independently tested using DNN 

(Table 3-3), as it was shown to be the best overall performing model in the results displayed 

above. From the five used classification models, the best performance was obtained with the 
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one trained against the dataset that used the combination benefit scores acquired through 

NCI-ALMANAC. Data from NCI-ALMANAC outperformed all the other synergy calculation 

methods in all metrics, empowering the No-Free-Lunch Theorem from Wolpert: “The best 

classifier may not be the same for all the datasets” (Meester, 2009). These performance results 

would seem odd results at first glance since most of the other datasets are more balanced 

than NCI-ALMANAC. However, the number of missing values assigned during the class 

calculation procedure may have caused too small datasets that do not allow the development 

of a good generalizing model. 

 

Table 3-3: Test performance metrics of DNN trained with the five different synergy classification methods. 

Model acc ROC AUC MSE prec rec f-score 

Bliss 0.6416 0.5908 0.3584 0.5649 0.3587 0.4388 

HSA 0.6451 0.6255 0.3549 0.6111 0.4843 0.5404 

Loewe 0.6492 0.5981 0.3508 0.6636 0.8474 0.7443 

NCI-ALMANAC 0.7343 0.6676 0.2657 0.7635 0.8697 0.8131 

ZIP 0.6232 0.6214 0.3768 0.6485 0.5098 0.5709 
acc = accuracy; ROC AUC = Area Under the Receiver Operating Characteristics Curve; MSE = Mean Squared Error; prec = precision; rec 
= recall; Gini = Gini coefficient 

 

The evaluation results obtained from the three ML models (DNN, RF and SVM) (Table 

3-2) suggest that combining the three methods to build one standalone model would create a 

better performing model. A hard-voting ensemble model (with a similar structure to the 

ensemble decision trees that compose RF) aggregating the three ML models was trained and 

tested with the NCI-ALMANAC dataset. This new model obtained slightly better results, 

achieving 0.7404, 0.9051 and 0.8226 in accuracy, precision and f-score, respectively (Table 

3-4). In fact, previous studies (Singh, Rana and Singh, 2018) using ensemble models, report 

better results when applying those methods in comparison to the individual algorithms used 

for model development (Moreira et al., 2017). 

 

Table 3-4: Evaluation of the ensemble model combining DNN, RF and SVM models in Table 6. 

Model acc ROC AUC MSE prec rec f-score 

Ensemble 0.7404 0.6593 0.2596 0.7539 0.9051 0.8226 

acc = accuracy; ROC AUC = Area Under the Receiver Operating Characteristics Curve; MSE = Mean Squared Error; prec = precision; rec 
= recall; Gini = Gini coefficient 
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An in-depth assessment of the DNN model accuracy (trained using the NCI-ALMANAC 

dataset) per ATC classification and per type of cell line was performed. Drugs classified as 

“Other Alkylating Agents” had a best overall test performance (0.80 ± 0.08), followed by 

“Nitrogen mustard analogues” (0.76 ± 0.04), “Nitrosoureas” (0.75 ± 0.04) and “Purine 

analogues” (0.75 ± 0.03). On the other hand, “Anthracyclines and related substances” (0.66 ± 

0.06), “Other cytotoxic antibiotics” (0.66 ± 0.06) and “Platinum compounds” (0.64 ± 0.08) 

returned the lowest accuracy results. Evaluation results per ATC classification could be in-

depth analysed in Supplementary Table 2. Concerning the results of model accuracy per cell, 

colon cancer cells presented the best overall accuracy (0.74 ± 0.03), followed by kidney cancer 

cells (0.73 ± 0.02) and ovarian cancer cells (0.73 ± 0.02). In opposition, blood cancer cells (in 

this case, representative of haematological malignancies within the dataset) present the worst 

accuracy evaluation (0.70 ± 0.04) (Figure 3-4). This result denotes the significant differences 

between solid tumour cells and their haematological counterparts, assuming a possible source 

of entropy within the dataset that may prevent the model from achieving more significant 

results. The model may also interpret the smaller number of samples of haematological 

malignancies cell lines and their genomic background as noise, which may be also contributing 

for the obtained results. In fact, in contrast with solid tumours, that are abnormal mass of 

cells, haematological malignancies that move through blood and lymph, present specific 

genomic backgrounds and interactions with the tumour microenvironment (Zhou, 2005). A 

possible solution would be to handle each type of cancer cells independently, splitting the data 

into two different datasets. Moreover, similar results can also be found in the literature. 

Differences between models’ performance according to the type of cancer from which the 

data are acquired (from solid or haematological malignancies) were also observed by the 

model proposed by Sidorov et al. (Sidorov et al., 2019). Further cell line evaluation results per 

type of cancer cell line can be in-depth analysed in Supplementary Table 3.  
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Figure 3-4: Accuracy per type of cancer cell line.  

3.2 Assessment of Membrane Protein Dimer Interface Characteristics 

The objective of this part of the research work was to create a comprehensive real-time 

web-application exposing a broad array of fundamental structural and physico-chemical 

features of a curated collection of membrane protein dimer structures and their interfacial 

regions, the MEmbrane protein dimer Novel Structure Analyser database (MENSAdb). Due 

to the importance of MPs as targets of more than half of all current drugs on the market, the 

mining of these new data describing MPs interfaces could provide additional features that can 

be added to the combinatory effect model presented and discussed in section 4.1 to further 

enhance the performance.  

3.2.1 Membrane protein dimer composition 

The overall residue distribution in Figure 3-5 shows that MPs dimers have a higher 

content of hydrophobic and aromatic residues, such as leucine, alanine, valine, glycine, 

isoleucine and phenylalanine that account for 55% of all detected residues. This high 

hydrophobic content was also previously reported in several studies (Eilers et al., 2002; 

Saidijam, Azizpour and Patching, 2018; Ulmschneider and Sansom, 2001).  
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Figure 3-5: Structural and physico-chemical properties of MPs and their interactions. (A) – residue distribution of the 
translocator membrane protein (PDBid: 4UC1) from Rhodobacter sphaeroides (Li et al., 2015). (B1) – residue composition of 
the dataset. (B2) – evolutionary conservation scores. Amino-acid nomenclature (correspondence between full name, one 
letter and three letter codes) is available on page 12. 

The overall distribution of individual residues of MPs by amino acid type (Figure 3-5 B1 

and B2) shows that GAS residues (Glycine, Alanine, Serine) (Zhang et al., 2015) are particularly 

enriched at the MPs non-surface. These small residues are the strong driving force for 

membrane folding (Zhang et al., 2009). As expected, charged residues are excluded from the 

MPs non-surface. The propensities for charged and polar residues at interfaces are 

intermediate between those for non-surface and non-interface surfaces. Residue distributions 

are in close agreement with several studies demonstrating that Protein-Protein Interactions 

(PPIs) are mostly hydrophobic (e.g., leucine, isoleucine) in nature, with some aromatic residues 

(e.g., phenylalanine and tyrosine) and yield a buried non-polar surface area (Ulmschneider and 

Sansom, 2001; Yan et al., 2008).  

Evolutionary conservation of protein sequences is a key feature for understanding what 

are the functionally and structurally important residues in protein-protein interfaces. We used 

JSD dissimilarity score, in which values close to 0 mean a similar distribution whereas scores 

of 1 corresponds to totally discordant distributions. Figure 3-5 B2 reveals that the highest JSD 

corrected values differences are for the more conserved GAS residues in the non-surface, and 

the non-polar residues in the interface.  
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Average B-factor12 values (by residue and using a five-residue window) measure the 

fluctuation of an atom around its mean position. Various authors have suggested that for 

soluble PPIs lower B-factors values for interfacial residues are indicative of lower flexibility 

(Chakravarty et al., 2015; Jones and Thornton, 1995; Liu, Jiang and Zhou, 2010). We observed 

a decrease in corrected B-factor values of the interfacial residues compared to the non-

interfacial surface ones (5.71 ± 6.10 vs 6.25 ± 6.16; p-value=5.12×10-20), putting their average 

closer to the non-surface MP residues (6.02 ± 5.69). Also, interfacial surface and non-surface 

positively charged residues are the most dissimilar (3.74 ± 2.86 vs 1.19 ± 0.96; p-

value=2.63×10-140). The same holds true for environmental B-factor. These observations agree 

with findings attained for soluble PPIs (Chakravarty et al., 2015). 

3.2.2 Characteristics of interfacial residues 

Identification and characterization of critical features of membrane dimer PPIs can 

provide important clues to pinpoint residues or interactions, important for drug development 

and repurposing. For this, additional interfacial structural characteristics were quantified to 

better understand MPs dimers. Concerning the intermolecular atomic contacts per amino-

acid type, we observed that the aromatic residues (corrected contacts at 4 Å: 0.56 ± 0.61) are 

much more prone to establish close contacts at short distance than other residues. Arg was 

also highlighted in our results (corrected contacts at 4 Å: 0.75 ± 0.82).  

Additionally, although MP residues reside in an apolar (low dielectric) environment 

(Lomize et al., 2007; Zhang, Witham and Alexov, 2011), both salt-bridges between charged 

residues and hydrogen-bonds through almost all amino-acids are common to stabilize the 

interface and promote complex formation. Hydrogen-bonds measured here involving both 

side-chains and backbone are particularly important for polar (corrected according to 

Equation 2-15: 0.01±0.03) and charged residues (corrected values: 0.01±0.03) but also for 

aromatic ones (corrected values: 0.01±0.02), in particular Tyr (corrected values: 0.01±0.03) 

and Trp (corrected values: 0.01±0.01). 

3.2.3 Web App Accessibility 

Data resulting from this work are available through the MENSAdb Web App, accessible 

at http://www.moreiralab.com/resources/mensadb, where further information can be 

accessed.   

                                            
12 This metric is exclusive to crystal-based structures. 
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Chapter 4. Conclusions and Future Perspectives 

The first objective of this research project was to apply AI techniques, particularly ML 

algorithms, to predict the combinatory effect of anticancer drugs using structural and physico-

chemical information from each molecule and biological knowledge acquired through high-

throughput OMICs technologies from cancer cell lines. For the first part of this work, NCI-

ALMANAC provided raw drug combination data, and CCLE presented CNV, Expression, 

Methylation and Mutation data from cancer cell lines. Concerning the characterization of the 

drugs contained in NCI-ALMANAC, this information was mined in-house using Mordred. 

After pre-processing, clustering methods were used to evaluate the quality and relevance of 

that data, highlighting the important role of genomic data for the characterization of cell 

phenotypes.  

Four ML models were built and tested: a DNN, a RF, a SVM, and an Ensemble model 

combining the last three. The best performing model, the Ensemble model, achieved 0.74 

accuracy, 0.75 precision and 0.90 recall, attaining results capable of predicting new 

combinations for chemotherapy by performing drug screening assays and eliminating less 

advantageous candidates, especially in the case of solid tumours. It was also possible to 

understand how numeric vectors describing such intangible entities like small molecules or 

genomic information of living cells can allow so abstract things as computers to draw human-

like conclusions from biological data. According to the obtained results, we can conclude that 

our model has a lot of potential for implementation in the development of future drug 

combinations, outperforming others in literature in terms of reliability and generalizability.  

Better results may, nevertheless, be achieved. Firstly, by splitting the dataset into solid 

tumours and haematological malignancies, and training independently the model we can 

achieve better results. Secondly, by performing further experiments with a larger dataset that 
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comprises more drugs and more cell lines, will allow to better tune the proposed ML models. 

Thirdly, maintaining the same dataset, other directions can also be explored in future research, 

namely by using other kinds of data, like other types of OMICs (e.g., proteomics and 

metabolomics), action mechanism pathways and target-related data. We began to track that 

path towards producing new target-related features by creating MENSAdb, a database, and a 

user accessible Web App, containing data describing the interfacial region of MPs - the 

molecular target of most FDA-approved drugs. Furthermore, new ML architectures, like 

graph-based data and neural networks models (Bui, Ravi and Ramavajjala, 2017; Duvenaud et 

al., 2015; Ramazzotti et al., 2019), can also be used to pass knowledge into the computer in 

new and more comprehensive ways. Further testing to the existing model can also be achieved 

by performing a screening of currently unknown combinatory therapeutic strategies and an in 

vitro and in vivo assessment of the best candidates from that procedure, acting as true biological 

validation of the model herein presented. 

This work originated one publicly available pre-print article (available at 

https://arxiv.org/abs/1902.02321) (Matos-Filipe et al., 2019) that will be submitted in the near 

future, a peer-reviewed book chapter (available at 

https://link.springer.com/protocol/10.1007/978-1-4939-9161-7_21) (Preto et al., 2019) and a 

conference proceeding presented at the 2018 Meeting of Young Structural Computational Biology 

Researchers. I am also involved in two peer-reviewed book-chapters, “Prediction and targeting 

of GPCR oligomer interfaces” and “Deep Learning: the nodes of biological data on the edge 

of technology”, to be published in Progress in Molecular Biology and Translational Science 

(Elsevier) and Methods in Molecular Biology (Springer Science), respectively, in the end of 2019. 

Additionally, I am also involved in a peer-reviewed original research article as co-first author: 

“Membrane protein dimer Novel Structure Analyser (MENSA)”, to be published by the end 

of this year. 

 

  



 
49 

References 

AALST, W. M. P. VAN DER et al. - Process mining: a two-step approach to balance between 

underfitting and overfitting. Software & Systems Modeling. ISSN 1619-1366. 9:1 (2010) 87–111. 

doi: 10.1007/s10270-008-0106-z. 

ABRANTES-METZ, Rosa M.; ADAMS, Christopher; METZ, Albert D. - Pharmaceutical 

Development Phases: A Duration Analysis. SSRN Electronic Journal. ISSN 1556-5068. (2004). 

doi: 10.2139/ssrn.607941. 

AKBANI, Rehan et al. - A pan-cancer proteomic perspective on The Cancer Genome Atlas. 

Nature Communications. ISSN 2041-1723. 5:1 (2014) 3887. doi: 10.1038/ncomms4887. 

ALTSCHUL, Stephen F. et al. - Gapped BLAST and PSI-BLAST: A new generation of protein 

database search programs. Nucleic Acids Research. ISSN 03051048. (1997). doi: 

10.1093/nar/25.17.3389. 

ALVES, Ana Catarina et al. - Daunorubicin and doxorubicin molecular interplay with 2D 

membrane models. Colloids and Surfaces B: Biointerfaces. ISSN 09277765. 160 (2017) 610–

618. doi: 10.1016/j.colsurfb.2017.09.058. 

ASHBURN, Ted T.; THOR, Karl B. - Drug repositioning: Identifying and developing new uses 

for existing drugs. Nature Reviews Drug Discovery. ISSN 14741776. 3:8 (2004) 673–683. doi: 

10.1038/nrd1468. 

AUFFRAY, Charles et al. - Making sense of big data in health research: Towards an EU action 

plan. Genome Medicine. ISSN 1756-994X. 8:1 (2016) 71. doi: 10.1186/s13073-016-0323-y. 

BALMAIN, Allan; GRAY, Joe; PONDER, Bruce - The genetics and genomics of cancer. Nature 

Genetics. ISSN 1061-4036. 33:S3 (2003) 238–244. doi: 10.1038/ng1107. 

BANSAL, Mukesh et al. - A community computational challenge to predict the activity of pairs 

of compounds. Nature Biotechnology. ISSN 1087-0156. 32:12 (2014) 1213–1222. doi: 

10.1038/nbt.3052. 

BARRETINA, Jordi et al. - The Cancer Cell Line Encyclopedia enables predictive modelling of 

anticancer drug sensitivity. Nature. ISSN 0028-0836. 483:7391 (2012) 603–607. doi: 

10.1038/nature11003. 

BECKER, Suzanna; PLUMBLEY, Mark - Unsupervised neural network learning procedures for 

feature extraction and classification. Applied Intelligence. ISSN 0924-669X. 6:3 (1996) 185–203. 

doi: 10.1007/BF00126625. 

BEHZAD, Mohsen et al. - Generalization performance of support vector machines and neural 

networks in runoff modeling. Expert Systems with Applications. ISSN 0957-4174. 36:4 (2009) 



 
50 

7624–7629. doi: 10.1016/J.ESWA.2008.09.053. 

BENNETT, Simon T. et al. - Toward the $1000 human genome. Pharmacogenomics. ISSN 

1462-2416. 6:4 (2005) 373–382. doi: 10.1517/14622416.6.4.373. 

BERMAN, Helen; HENRICK, Kim; NAKAMURA, Haruki - Announcing the worldwide Protein 

Data Bank. Nature Structural Biology. ISSN 10728368. (2003). doi: 10.1038/nsb1203-980. 

BISHOP, Christopher M. - Pattern Recognition and Machine Learning. 2. ed. New 

York : Springer Science+Business Media, LLC, 2006. ISBN 0387310738.  

BLISS, Chester Ittner - The toxicity of poisons applied jointly. Annals of Applied Biology. 

ISSN 17447348. 26 (1939) 585–615. doi: 10.1111/j.1744-7348.1939.tb06990.x. 

BOUNTRA, Chas; LEE, Wen Hwa; LEZAUN, Javier - A New Pharmaceutical Commons: 

Transforming Drug Discovery. (2017) 

BOZIC, Ivana et al. - Evolutionary dynamics of cancer in response to targeted combination 

therapy. eLife. ISSN 2050-084X. 2 (2013). doi: 10.7554/elife.00747. 

BRAMER, Max - Avoiding Overfitting of Decision Trees. In Principles of Data Mining. 

London : Springer London, 2007. ISBN 9781447148845. p. 119–134. 

BRAVO-MERODIO, Laura et al. - -Omics biomarker identification pipeline for translational 

medicine. Journal of Translational Medicine. ISSN 1479-5876. 17:1 (2019) 155. doi: 

10.1186/s12967-019-1912-5. 

BRAY, F. et al. - Cancer Incidence in Five Continents, Vol. XI (electronic version) 

[On Line], atual. 2017. [Accessed 28 mar. 2019]. Available at WWW:<URL:http://ci5.iarc.fr>. 

BRAY, Freddie et al. - Global cancer statistics 2018: GLOBOCAN estimates of incidence and 

mortality worldwide for 36 cancers in 185 countries. CA: A Cancer Journal for Clinicians. ISSN 

00079235. 68:6 (2018) 394–424. doi: 10.3322/caac.21492. 

BREINDEL, Jerrica L. et al. - Epigenetic Reprogramming of Lineage-Committed Human Mammary 

Epithelial Cells Requires DNMT3A and Loss of DOT1L. Stem Cell Reports. ISSN 22136711. 9:3 

(2017) 943–955. doi: 10.1016/j.stemcr.2017.06.019. 

BRODY, Tom - Drug Class Analysis. In FDA’s Drug Review Process and the Package 

Label. Academic Press, 2018. ISBN 978-0-12-814647-7. p. 441–511. 

BUI, Thang D.; RAVI, Sujith; RAMAVAJJALA, Vivek - Neural Graph Machines: Learning Neural 

Networks Using Graphs. arXiv. (2017) 9. doi: 1703.04818. 

Cancer prevention and control in the context of an integrated approach - [On 

Line], [Accessed 30 mar. 2019] Geneva : World Health Assembly, 2017. Available at 

WWW:<URL:http://www.who.int/nmh/events/2015/technical-note-en.pdf?ua=1> 

Cancer Research UK - [On Line], atual. 2019. [Accessed 14 may. 2019]. Available at 

WWW:<URL:https://www.cancerresearchuk.org/>. 



 
51 

CHABNER, Bruce A.; ROBERTS, Thomas G. - Chemotherapy and the war on cancer. Nature 

Reviews Cancer. ISSN 1474-175X. 5:1 (2005) 65–72. doi: 10.1038/nrc1529. 

CHAKRAVARTY, Devlina et al. - Changes in protein structure at the interface accompanying 

complex formation. IUCrJ. ISSN 20522525. (2015). doi: 10.1107/S2052252515015250. 

CHANEY, Stephen G. et al. - Protein interactions with platinum-DNA adducts: From structure 

to function. Journal of Inorganic Biochemistry. ISSN 0162-0134 (2004). doi: 

https://doi.org/10.1016/j.jinorgbio.2004.04.024. 

CHANG, Yoosup et al. - Cancer Drug Response Profile scan (CDRscan): A Deep Learning Model 

That Predicts Drug Effectiveness from Cancer Genomic Signature. Scientific Reports. ISSN 

20452322. 8:1 (2018) 1–11. doi: 10.1038/s41598-018-27214-6. 

CHAWLA, Nitesh V. - Data Mining for Imbalanced Datasets: An Overview. In Data Mining 

and Knowledge Discovery Handbook. Boston, MA : Springer US, 2009. ISBN 9780387098234. 

p. 875–886. 

CHEMAXON. - Chemicalize [On Line] (2019). Available at WWW:<URL: 

https://chemicalize.com/>  

CHEN, Hongming et al. - The rise of deep learning in drug discovery. Drug Discovery 

Today. ISSN 1359-6446. 23:6 (2018) 1241–1250. doi: 10.1016/J.DRUDIS.2018.01.039. 

CHEN, Lan; MALHOTRA, Anshoo - Combination Approach: the Future of the War Against 

Cancer. Cell Biochemistry and Biophysics. ISSN 1085-9195. 72:3 (2015) 637–641. doi: 

10.1007/s12013-015-0549-0. 

CHEN, Yue et al. - Synthesis and evaluation of a technetium-99m-labeled 

diethylenetriaminepentaacetate-deoxyglucose complex ([ 99m Tc]-DTPA-DG) as a potential imaging 

modality for tumors. Applied Radiation and Isotopes. 64 (2006) 342–347. doi: 

10.1016/j.apradiso.2005.08.004. 

CHIU, Yu-Chiao et al. - Predicting drug response of tumors from integrated genomic profiles by 

deep neural networks. arXiv. ISSN 8750-7587. (2018). doi: 10.1152/japplphysiol.01617.2011. 

CHOU, Ting-Chao - Drug Combination Studies and Their Synergy Quantification Using the 

Chou-Talalay Method. Cancer Research. ISSN 0008-5472. 70:2 (2010) 440–446. doi: 10.1158/0008-

5472.CAN-09-1947. 

CHOU, Ting-Chao; TALALAY, Paul - Quantitative analysis of dose-effect relationships: the 

combined effects of multiple drugs or enzyme inhibitors. Advances in Enzyme Regulation. ISSN 

0065-2571. 22 (1984) 27–55. doi: 10.1016/0065-2571(84)90007-4. 

COCK, P. J. A. et al. - Biopython: freely available Python tools for computational molecular 

biology and bioinformatics. Bioinformatics. ISSN 1367-4803. 25:11 (2009) 1422–1423. doi: 

10.1093/bioinformatics/btp163. 



 
52 

PLOTLY - Collaborative data science [On Line] Montreal, QC. (2015). Available at 

WWW:<URL: https://plot.ly/>  

Comprehensive Cancer Information - National Cancer Institute - [On Line], 

atual. 2019. [Accessed 14 may. 2019]. Available at WWW:<URL:https://www.cancer.gov/>. 

CORTES, Corinna; VAPNIK, Vladimir - Support-Vector Networks. Machine Learning. ISSN 

15730565. 20:3 (1995) 273–297. doi: 10.1023/A:1022627411411. 

DAVIS, Mark E.; CHEN, Zhuo; SHIN, Dong M. - Nanoparticle therapeutics: an emerging 

treatment modality for cancer. Nature Reviews Drug Discovery. ISSN 1474-1776. 7:9 (2008) 

771–782. doi: 10.1038/nrd2614. 

DEBNATH, Mousumi et al. - Omics Technology. In Molecular Diagnostics: Promises 

and Possibilities. Dordrecht : Springer Netherlands, 2010. ISBN 9789048132614. p. 11–31. 

SCHRÖDINGER, LLC - The PyMOL Molecular Graphics System [On Line]. New York, 

NY, (2019) Available at WWW:<URL: https://www.schrodinger.com/>  

DIETTERICH, Thomas G. - Ensemble Methods in Machine Learning. Springer, Berlin, Heidelberg, 

2000. ISBN 9783540450146. p. 1–15. 

DIMASI, Joseph A. - Risks in new drug development: Approval success rates for investigational 

drugs. Clin Pharmacol Ther. 69 (2001) 297–307. doi: 10.1067/mcp.2001.115446. 

DIMASI, Joseph A.; GRABOWSKI, Henry G.; HANSEN, Ronald W. - Innovation in the 

pharmaceutical industry: New estimates of R&D costs. Journal of Health Economics. ISSN 

18791646. 47 (2016) 20–33. doi: 10.1016/j.jhealeco.2016.01.012. 

DOGTEROM, Marileen; KOENDERINK, Gijsje H. - Actin–microtubule crosstalk in cell biology. 

Nature Reviews Molecular Cell Biology. ISSN 1471-0072. 20:1 (2019) 38–54. doi: 

10.1038/s41580-018-0067-1. 

DUGGER, Sarah A.; PLATT, Adam; GOLDSTEIN, David B. - Drug development in the era of 

precision medicine. Nature Reviews Drug Discovery. ISSN 1474-1776. 17:3 (2017) 183–196. 

doi: 10.1038/nrd.2017.226. 

DURRANT, Jacob D.; MCCAMMON, J. Andrew - BINANA: A Novel Algorithm for Ligand-

Binding Characterization. (2011). doi: 10.1016/j.jmgm.2011.01.004. 

DUVENAUD, David et al. - Convolutional Networks on Graphs for Learning Molecular 

Fingerprints. arXiv. (2015). doi: http://arxiv.org/abs/1509.09292. 

EILERS, Markus et al. - Comparison of helix interactions in membrane and soluble α-bundle 

proteins. Biophysical Journal. ISSN 00063495. (2002). doi: 10.1016/S0006-3495(02)75613-0. 

ELBEHERY, Ali H. A.; AZZAZY, Hassan M. E. - Nanoparticle-based detection of cancer-

associated RNA. Wiley Interdisciplinary Reviews: Nanomedicine and 

Nanobiotechnology. ISSN 19395116. 6:4 (2014) 384–397. doi: 10.1002/wnan.1266. 



 
53 

ELGEMEIE, Galal - Thioguanine, Mercaptopurine: Their Analogs and Nucleosides as 

Antimetabolites. Current Pharmaceutical Design. ISSN 13816128. 9:31 (2003) 2627–2642. doi: 

10.2174/1381612033453677. 

ESTIVILL-CASTRO, Vladimir - Why so many clustering algorithms. ACM SIGKDD 

Explorations Newsletter. ISSN 19310145. 4:1 (2002) 65–75. doi: 10.1145/568574.568575. 

FAN, Wenpei et al. - Nanotechnology for Multimodal Synergistic Cancer Therapy. Chemical 

reviews. (2017). doi: 10.1021/acs.chemrev.7b00258. 

FAWCETT, T. - Using rule sets to maximize ROC performance. In Proceedings 2001 IEEE 

International Conference on Data Mining. IEEE Comput. Soc, 2002. ISBN 0-7695-1119-8 

FDA Approved Drugs in Oncology - [On Line], atual. 2019. [Accessed 1 apr. 2019]. 

Available at WWW:<URL:https://www.centerwatch.com/drug-information/fda-approved-

drugs/therapeutic-area/12/oncology>. 

FENG, Chunlai et al. - Gene Expression Data Based Deep Learning Model for Accurate 

Prediction of Drug-induced Liver Injury in Advance. Journal of Chemical Information and 

Modeling. ISSN 1549-9596. (2019) acs.jcim.9b00143. doi: 10.1021/acs.jcim.9b00143. 

FERLAY, J. et al. - Global Cancer Observatory: Cancer Today [On Line], atual. 2018. 

[Accessed 19 mar. 2019]. Available at WWW:<URL:https://gco.iarc.fr/today/>. 

FERLIGOJ, Anuška; BATAGELJ, Vladimir - Some types of clustering with relational constraints. 

Psychometrika. ISSN 0033-3123. 48:4 (1983) 541–552. doi: 10.1007/BF02293878. 

FITZGERALD, Jonathan B. et al. - Systems biology and combination therapy in the quest for 

clinical efficacy. Nature Chemical Biology. ISSN 1552-4450. 2:9 (2006) 458–466. doi: 

10.1038/nchembio817. 

FOO, Jasmine; MICHOR, Franziska - Evolution of acquired resistance to anti-cancer therapy. 

Journal of theoretical biology. ISSN 1095-8541. 355 (2014) 10–20. doi: 

10.1016/j.jtbi.2014.02.025. 

FOUCQUIER, Julie; GUEDJ, Mickael - Analysis of drug combinations: current methodological 

landscape. Pharmacology research & perspectives. ISSN 2052-1707. 3:3 (2015) e00149. doi: 

10.1002/prp2.149. 

FRALEY, Chris; RAFTERY, AE E. - How many clusters? Which clustering method? Answers via 

model-based cluster analysis. The computer journal. ISSN 0010-4620, 1460-2067. 41:8 (1998) 

578–588. doi: 10.1093/comjnl/41.8.578. 

FURLANUT, M.; FRANCESCHI, L. - Pharmacology of Ifosfamide. Oncology. ISSN 0030-2414. 

65:2 (2003) 2–6. doi: 10.1159/000073350. 

GANDARA, D. R. et al. - Squamous Cell Lung Cancer: From Tumor Genomics to Cancer 

Therapeutics. Clinical Cancer Research. ISSN 1078-0432. 21:10 (2015) 2236–2243. doi: 



 
54 

10.1158/1078-0432.CCR-14-3039. 

GARCIA, Gwenalyn; ODAIMI, Marcel - Systemic Combination Chemotherapy in Elderly 

Pancreatic Cancer: a Review. Journal of Gastrointestinal Cancer. ISSN 1941-6628. 48:2 (2017) 

121–128. doi: 10.1007/s12029-017-9930-0. 

GAYVERT, Kaitlyn M. et al. - A Computational Approach for Identifying Synergistic Drug 

Combinations. PLOS Computational Biology. ISSN 1553-7358. 13:1 (2017) e1005308. doi: 

10.1371/journal.pcbi.1005308. 

GHIRMAI, Senait et al. - Synthesis and radioiodination of some daunorubicin and doxorubicin 

derivatives. Carbohydrate Research. ISSN 00086215. 340:1 (2005) 15–24. doi: 

10.1016/j.carres.2004.10.014. 

GILVARY, Coryandar; DRY, Jonathan R.; ELEMENTO, Olivier - Multi-task learning predicts drug 

combination synergy in cells and in the clinic. bioRxiv. (2019) 576017. doi: 10.1101/576017. 

GINSBURG, Ophira M. et al. - The global cancer epidemic: opportunities for Canada in low- and 

middle-income countries. CMAJ : Canadian Medical Association journal = journal de 

l’Association medicale canadienne. ISSN 1488-2329. 184:15 (2012) 1699–704. doi: 

10.1503/cmaj.111131. 

GRIMM, D. et al. - Diagnostic and Therapeutic Use of Membrane Proteins in Cancer Cells. 

Current Medicinal Chemistry. ISSN 09298673. (2011). doi: 10.2174/092986711794088344. 

GUPTA, Piyush B. et al. - Phenotypic Plasticity: Driver of Cancer Initiation, Progression, and 

Therapy Resistance. Cell Stem Cell. ISSN 19345909. 24:1 (2019) 65–78. doi: 

10.1016/j.stem.2018.11.011. 

HAN, Xiao; WANG, Junyun; SUN, Yingli - Circulating Tumor DNA as Biomarkers for Cancer 

Detection. Genomics, Proteomics & Bioinformatics. ISSN 1672-0229. 15:2 (2017) 59–72. doi: 

10.1016/J.GPB.2016.12.004. 

HANAHAN, Douglas; WEINBERG, Robert A. - The hallmarks of cancer. Cell. ISSN 0092-8674. 

100:1 (2000) 57–70. doi: 10.1016/S0092-8674(00)81683-9. 

HANAHAN, Douglas; WEINBERG, Robert A. - Hallmarks of cancer: the next generation. Cell. 

ISSN 1097-4172. 144:5 (2011) 646–74. doi: 10.1016/j.cell.2011.02.013. 

HARNED, Theresa M.; GAYNON, Paul S. - Treating refractory leukemias in childhood, role of 

clofarabine. Therapeutics and clinical risk management. ISSN 1176-6336. 4:2 (2008) 327–

36. doi: 10.2147/tcrm.s2941. 

HARRIS, Timothy J. R.; MCCORMICK, Frank - The molecular pathology of cancer. Nature 

Reviews Clinical Oncology. ISSN 1759-4774. 7:5 (2010) 251–265. doi: 10.1038/nrclinonc.2010.41. 

HE, Liye et al. - Methods for High-throughput Drug Combination Screening and Synergy Scoring. 

Humana Press, New York, NY, 2018. ISBN 9781493974931. p. 351–398. 



 
55 

HEYMACH, John et al. - Clinical Cancer Advances 2018: Annual Report on Progress Against 

Cancer From the American Society of Clinical Oncology. Journal of clinical oncology : official 

journal of the American Society of Clinical Oncology. ISSN 1527-7755. 36:10 (2018) 1020–

1044. doi: 10.1200/JCO.2017.77.0446. 

HOCHREITER, Sepp; SCHMIDHUBER, Jürgen - Long Short-Term Memory. Neural 

Computation. ISSN 0899-7667. 9:8 (1997) 1735–1780. doi: 10.1162/neco.1997.9.8.1735. 

HOLBECK, Susan L. et al. - The National Cancer Institute ALMANAC: A Comprehensive 

Screening Resource for the Detection of Anticancer Drug Pairs with Enhanced Therapeutic Activity. 

Cancer Research. ISSN 0008-5472. 77:13 (2017) 3564–3576. doi: 10.1158/0008-5472.CAN-17-

0489. 

HOMENDA, Władysław; PEDRYCZ, Witold - Pattern recognition : a quality of data 

perspective. Wiley Publishing, Inc., 2018. ISBN 9781119302827.  

HORIZON 2020 - Work Programme 2020 - Health, demographic change and wellbeing. [On 

Line]. Available at WWW:<URL: https://ec.europa.eu/programmes/horizon2020/en/h2020-

section/health-demographic-change-and-wellbeing>  

HU, Quanyin et al. - Recent advances of cocktail chemotherapy by combination drug delivery 

systems. Advanced Drug Delivery Reviews. ISSN 0169-409X. 98 (2016) 19–34. doi: 

10.1016/J.ADDR.2015.10.022. 

HUANG, Hui-Ling - Propensity Scores for Prediction and Characterization of Bioluminescent 

Proteins from Sequences. PLoS ONE. ISSN 1932-6203. 9:5 (2014) e97158. doi: 

10.1371/journal.pone.0097158. 

HUMPHREY, William; DALKE, Andrew; SCHULTEN, Klaus - VMD: Visual molecular dynamics. 

Journal of Molecular Graphics. ISSN 02637855. (1996). doi: 10.1016/0263-7855(96)00018-5. 

IBRAHIM, Nuha et al. - Molecular targeted therapies for cancer: Sorafenib monotherapy and its 

combination with other therapies (Review). Oncology Reports. ISSN 1021335X. 27:5 (2012) 1303–

1311. doi: 10.3892/or.2012.1675. 

IGNEY, Frederik H.; KRAMMER, Peter H. - Death and anti-death: tumour resistance to 

apoptosis. Nature Reviews Cancer. ISSN 1474-175X. 2:4 (2002) 277–288. doi: 10.1038/nrc776. 

JAHAN, Selim - Human Development Report 2016 - Human Development for 

Everyone. The United Nations Development Program, 2016 

JAIN, Anil K. - Data clustering: 50 years beyond K-means. Pattern Recognition Letters. . 

ISSN 0167-8655. 31:8 (2010) 651–666. doi: 10.1016/J.PATREC.2009.09.011. 

JAMES, Gareth et al. - Tree-Based Methods. In An Introduction to Statistical Learning. 

ISBN 9781461471387. p. 303–335. 

JANIZEK, Joseph D.; CELIK, Safiye; LEE, Su-In - Explainable machine learning prediction of 



 
56 

synergistic drug combinations for precision cancer medicine. bioRxiv. (2018) 331769. doi: 

10.1101/331769. 

JEMAL, A. et al. - Global Patterns of Cancer Incidence and Mortality Rates and Trends. Cancer 

Epidemiology Biomarkers & Prevention. ISSN 1538-7755. 19:8 (2010) 1893–1907. doi: 

10.1158/1055-9965.epi-10-0437. 

JONES, S.; THORNTON, J. M. - Protein-protein interactions: a review of protein dimer 

structures. Progress in biophysics and molecular biology. ISSN 0079-6107. 63:1 (1995) 31–

65.  

JORDAN, M. I.; MITCHELL, T. M. - Machine learning: Trends, perspectives, and prospects. 

Science. ISSN 0036-8075. 349:6245 (2015) 255–260. doi: 10.1126/SCIENCE.AAA8415. 

KALARI, Krishna R. et al. - PANOPLY: Omics-Guided Drug Prioritization Method Tailored to 

an Individual Patient. JCO Clinical Cancer Informatics. ISSN 2473-4276. 2:2 (2018) 1–11. doi: 

10.1200/CCI.18.00012. 

KALEMKERIAN, Gregory P. - Combination chemotherapy for relapsed small-cell lung cancer. 

The Lancet Oncology. ISSN 14702045. 17:8 (2016) 1033–1035. doi: 10.1016/S1470-

2045(16)30160-7. 

KAMPEN, Kim R. - Membrane proteins: The key players of a cancer cell. Journal of 

Membrane Biology. ISSN 00222631. (2011). doi: 10.1007/s00232-011-9381-7. 

KELLOGG, Glen E.; SCARSDALE, J. Neel; FORNARI, Frank A. - Identification and hydropathic 

characterization of structural features affecting sequence specificity for doxorubicin intercalation into 

DNA double-stranded polynucleotides. Nucleic Acids Research. ISSN 03051048. 26:20 (1998) 

4721–4732. doi: 10.1093/nar/26.20.4721. 

KENAKIN, Terry P. - Drug Antagonism. In Pharmacology in Drug Discovery. Elsevier, 

2012. ISBN 9780123848567. p. 51–80. 

KIM, Minseon; OH, Ilhwan; AHN, Jaegyoon - An Improved Method for Prediction of Cancer 

Prognosis by Network Learning. Genes. ISSN 2073-4425. 9:10 (2018) 478. doi: 

10.3390/genes9100478. 

KIM, Sunghwan et al. - PubChem 2019 update: improved access to chemical data. Nucleic 

Acids Research. ISSN 0305-1048. 47:D1 (2019) D1102–D1109. doi: 10.1093/nar/gky1033. 

KNOX, R. J. et al. - Mechanism of cytotoxicity of anticancer platinum drugs: evidence that cis-

diamminedichloroplatinum(II) and cis-diammine-(1,1-cyclobutanedicarboxylato)platinum(II) differ only 

in the kinetics of their interaction with DNA. Cancer research. ISSN 0008-5472. 46:4 Pt 2 (1986) 

1972–9.  

KOBAYASHI, S. et al. - Singly-linked catenation and knotting of cisplatin-DNA adduct by DNA 

topoisomerase I. Nucleic acids symposium series. ISSN 02613166. 29 (1993) 137–138.  



 
57 

KOIZUMI, Fumiaki et al. - Synergistic interaction between the EGFR tyrosine kinase inhibitor 

gefitinib (‘Iressa’) and the DNA topoisomerase I inhibitor CPT-11 (irinotecan) in human colorectal 

cancer cells. International Journal of Cancer. ISSN 00207136. 108:3 (2004) 464–472. doi: 

10.1002/ijc.11539. 

KOUVARIS, Kostas et al. - How Evolution Learns to Generalise: Principles of under-fitting, over-

fitting and induction in the evolution of developmental organisation. arXiv. (2015). 

doi:  http://arxiv.org/abs/1508.06854 

KUMMAR, Shivaani et al. - Drug development in oncology: classical cytotoxics and molecularly 

targeted agents. British Journal of Clinical Pharmacology. ISSN 0306-5251. 62:1 (2006) 15–

26. doi: 10.1111/j.1365-2125.2006.02713.x. 

KYTE, Jack; DOOLITTLE, Russell F. - A simple method for displaying the hydropathic character 

of a protein. Journal of Molecular Biology. ISSN 00222836. 1982). doi: 10.1016/0022-

2836(82)90515-0. 

LANDIS, J. Richard; KOCH, Gary G. - The Measurement of Observer Agreement for 

Categorical Data. Biometrics. ISSN 0006341X. 33:1 (1977) 159. doi: 10.2307/2529310. 

LEAL, Luis G. et al. - Identification of disease-associated loci using machine learning for genotype 

and network data integration. Bioinformatics. ISSN 1367-4803. (2019). doi: 

10.1093/bioinformatics/btz310. 

LI, Fei et al. - Crystal structures of translocator protein (TSPO) and mutant mimic of a human 

polymorphism. Science. ISSN 10959203. (2015). doi: 10.1126/science.1260590. 

LI, Jing et al. - Brief Introduction of Back Propagation (BP) Neural Network Algorithm and Its 

Improvement. In Advances in Computer Science and Information Engineering. Springer, 

Berlin, Heidelberg, 2012. ISBN 9783642302237. p. 553–558. 

LIN, Jianhua - Divergence measures based on the Shannon entropy. IEEE Transactions on 

Information Theory. ISSN 00189448. 37:1 (1991) 145–151. doi: 10.1109/18.61115. 

LINS, Laurence; THOMAS, Annick; BRASSEUR, Robert - Analysis of accessible surface of 

residues in proteins. Protein science : a publication of the Protein Society. ISSN 0961-

8368. 12:7 (2003) 1406–17. doi: 10.1110/ps.0304803. 

LIU, Rong; JIANG, Wenchao; ZHOU, Yanhong - Identifying protein–protein interaction sites in 

transient complexes with temperature factor, sequence profile and accessible surface area. Amino 

Acids. ISSN 0939-4451. 38:1 (2010) 263–270. doi: 10.1007/s00726-009-0245-8. 

LOEBER, Rachel et al. - Cross-linking of the DNA repair protein O6-alkylguanine DNA 

alkyltransferase to DNA in the presence of antitumor nitrogen mustards. Chemical Research in 

Toxicology. ISSN 0893228X. 21:4 (2008) 787–795. doi: 10.1021/tx7004508. 

LOEWE, S.; MUISCHNEK, H. - Über Kombinationswirkungen. Archiv für Experimentelle 



 
58 

Pathologie und Pharmakologie. ISSN 00281298. 114 (1926) 313–26. doi: 10.1007/BF01952257. 

LOMIZE, Andrei L. et al. - The role of hydrophobic interactions in positioning of peripheral 

proteins in membranes. BMC Structural Biology. ISSN 14726807. (2007). doi: 10.1186/1472-

6807-7-44. 

LONG, Nguyen et al. - High-Throughput Omics and Statistical Learning Integration for the 

Discovery and Validation of Novel Diagnostic Signatures in Colorectal Cancer. International 

Journal of Molecular Sciences. ISSN 1422-0067. 20:2 (2019) 296. doi: 10.3390/ijms20020296. 

LOTFI-JAM, Kerryann et al. - Nonpharmacologic Strategies for Managing Common 

Chemotherapy Adverse Effects: A Systematic Review. Journal of Clinical Oncology. ISSN 0732-

183X. 26:34 (2008) 5618–5629. doi: 10.1200/JCO.2007.15.9053. 

LOWY, Douglas et al. - Cancer moonshot countdown. Nature Biotechnology. ISSN 1087-

0156. 34:6 (2016) 596–599. doi: 10.1038/nbt.3616. 

MARTINS, J. M. et al. - Solvent-accessible surface area: How well can be applied to hot-spot 

detection? Proteins: Structure, Function and Bioinformatics. ISSN 08873585. 82:3 (2014). 

doi: 10.1002/prot.24413. 

MATOS-FILIPE, Pedro et al. - MENSADB: A Thorough Structural Analysis of Membrane Protein 

Dimers. arXiv. (2019). doi: http://arxiv.org/abs/1902.02321 

MAYER, Deborah K.; NASSO, Shelley Fuld - Cancer moonshot: What it means for patients. 

Clinical Journal of Oncology Nursing. ISSN 1538067X. 21:2 (2017) 141–142. doi: 

10.1188/17.CJON.141-142. 

MAYER, L. D.; JANOFF, A. S. - Optimizing Combination Chemotherapy by Controlling Drug 

Ratios. Molecular Interventions. ISSN 1534-0384. 7:4 (2007) 216–223. doi: 10.1124/mi.7.4.8. 

MCKINNEY, Wes - Data Structures for Statistical Computing in Python. In PROC. OF THE 

9th PYTHON IN SCIENCE CONF (SCIPY 2010) [On Line]. Available at 

WWW:<URL: https://conference.scipy.org/proceedings/scipy2010/mckinney.html> 

Medicine data: European public assessment reports (EPAR) for veterinary 

medicines - [On Line]. European Union, 2018, atual. 2018. [Accessed 1 apr. 2019]. Available at 

WWW:<URL:https://data.europa.eu/euodp/data/dataset/veterinary-medicines-published-by-the-

ema>. 

MEESTER, Ronald - Simulation of biological evolution and the NFL theorems. Biology & 

philosophy. ISSN 0169-3867. 24:4 (2009) 461–472. doi: 10.1007/s10539-008-9134-x. 

MENDEN, Michael P. et al. - Community assessment to advance computational prediction of 

cancer drug combinations in a pharmacogenomic screen. Nature Communications. ISSN 2041-

1723. 10:1 (2019) 2674. doi: 10.1038/s41467-019-09799-2. 

MIAO, Lei; HUANG, Leaf - Exploring the Tumor Microenvironment with Nanoparticles. In 



 
59 

Cancer treatment and research. 166. p. 193–226. 

MOBADERSANY, Pooya et al. - Predicting cancer outcomes from histology and genomics using 

convolutional networks. Proceedings of the National Academy of Sciences. ISSN 0027-

8424. 115:13 (2018) E2970--E2979. doi: 10.1073/pnas.1717139115. 

MOHRI, Mehryar; ROSTAMIZADEH, Afshin; TALWALKAR, Ameet - Foundations of 

Machine Learning. MIT Press, 2012. ISBN 9780262018258.  

MOREIRA, Irina S. et al. - SpotOn: High Accuracy Identification of Protein-Protein Interface Hot-

Spots. Scientific Reports. ISSN 20452322. (2017). doi: 10.1038/s41598-017-08321-2. 

MORGAN, H. L. - The Generation of a Unique Machine Description for Chemical Structures-A 

Technique Developed at Chemical Abstracts Service. Journal of Chemical Documentation. 

ISSN 0021-9576. 5:2 (1965) 107–113. doi: 10.1021/c160017a018. 

MORIWAKI, Hirotomo et al. - Mordred: a molecular descriptor calculator. Journal of 

Cheminformatics. ISSN 1758-2946. 10:1 (2018) 4. doi: 10.1186/s13321-018-0258-y. 

MUNOS, Bernard - Can open-source R&D reinvigorate drug research? Nature Reviews 

Drug Discovery. ISSN 14741776. 5:9 (2006) 723–729. doi: 10.1038/nrd2131. 

MUNOS, Bernard - Lessons from 60 years of pharmaceutical innovation. Nature Reviews 

Drug Discovery. ISSN 14741776. 8:12 (2009) 959–968. doi: 10.1038/nrd2961. 

MURRAY, Peter - Organisational learning, competencies, and firm performance: empirical 

observations. The Learning Organization. ISSN 0969-6474. 10:5 (2003) 305–316. doi: 

10.1108/09696470310486656. 

MUTHUKADAN, Baiju - Selenium with Python [On Line]. (2011). Available at: WWW:<URL: 

https://selenium-python.readthedocs.io/>  

NEUBIG, Richard R. - International Union of Pharmacology Committee on Receptor 

Nomenclature and Drug Classification. XXXVIII. Update on Terms and Symbols in Quantitative 

Pharmacology. Pharmacological Reviews. ISSN 0031-6997. 55:4 (2003) 597–606. doi: 

10.1124/pr.55.4.4. 

PASTUR-ROMAY, Lucas et al. - Deep Artificial Neural Networks and Neuromorphic Chips for 

Big Data Analysis: Pharmaceutical and Bioinformatics Applications. International Journal of 

Molecular Sciences. ISSN 1422-0067. 17:8 (2016) 1313. doi: 10.3390/ijms17081313. 

PATEL, Jyoti D. et al. - Clinical Cancer Advances 2013: Annual Report on Progress Against 

Cancer From the American Society of Clinical Oncology. Journal of Clinical Oncology. ISSN 

0732-183X. 32:2 (2014) 129–160. doi: 10.1200/JCO.2013.53.7076. 

PAUTIER, Patricia et al. - Trabectedin in combination with doxorubicin for first-line treatment 

of advanced uterine or soft-tissue leiomyosarcoma (LMS-02): a non-randomised, multicentre, phase 2 

trial. The Lancet Oncology. ISSN 1470-2045. 16:4 (2015) 457–464. doi: 10.1016/S1470-



 
60 

2045(15)70070-7. 

PEDREGOSA, Fabian et al. - Scikit-learn: Machine Learning in Python. Journal of Machine 

Learning Research. ISSN 15337928. 12:Oct (2011) 2825–2830.  

PELLINO, Gianluca et al. - Noninvasive Biomarkers of Colorectal Cancer: Role in Diagnosis and 

Personalised Treatment Perspectives. Gastroenterology Research and Practice. ISSN 1687-

6121. 2018 (2018) 1–21. doi: 10.1155/2018/2397863. 

PON, Julia R.; MARRA, Marco A. - Driver and Passenger Mutations in Cancer. Annual Review 

of Pathology: Mechanisms of Disease. ISSN 1553-4006. 10:1 (2015) 25–50. doi: 

10.1146/annurev-pathol-012414-040312. 

PRAGER, Gerald W. et al. - Global cancer control: responding to the growing burden, rising 

costs and inequalities in access. ESMO Open. 3:2 (2018) e000285. doi: 10.1136/esmoopen-2017-

000285. 

PRETO, António J. et al. - Structural Characterization of Membrane Protein Dimers. In Protein 

Supersecondary Structures. Humana Press, New York, NY, 2019. ISBN 9781493991617. p. 

403–436. 

PREUER, Kristina et al. - DeepSynergy: predicting anti-cancer drug synergy with Deep Learning. 

Bioinformatics. ISSN 1367-4803. 34:9 (2018) 1538–1546. doi: 10.1093/bioinformatics/btx806. 

PUTIN, Evgeny et al. - Reinforced Adversarial Neural Computer for de Novo Molecular Design. 

Journal of Chemical Information and Modeling. ISSN 15205142. 58:6 (2018) 1194–1204. 

doi: 10.1021/acs.jcim.7b00690. 

RAI, Kanti R. et al. - Fludarabine Compared with Chlorambucil as Primary Therapy for Chronic 

Lymphocytic Leukemia. New England Journal of Medicine. ISSN 0028-4793. 343:24 (2000) 

1750–1757. doi: 10.1056/NEJM200012143432402. 

RAMAZZOTTI, Daniele et al. - Learning mutational graphs of individual tumour evolution from 

single-cell and multi-region sequencing data. BMC Bioinformatics. ISSN 1471-2105. 20:1 (2019) 

210. doi: 10.1186/s12859-019-2795-4. 

REITER, Sebastian et al. - On the metabolism of allopurinol. Biochemical Pharmacology. 

ISSN 00062952. 32:14 (1983) 2167–2174. doi: 10.1016/0006-2952(83)90222-8. 

RITCHIE, Marylyn D. et al. - Methods of integrating data to uncover genotype–phenotype 

interactions. Nature Reviews Genetics. ISSN 1471-0056. 16:2 (2015) 85–97. doi: 

10.1038/nrg3868. 

ROGERS, David; HAHN, Mathew - Extended-Connectivity Fingerprints. Journal of 

Chemical Information and Modeling. ISSN 1549-9596. 50:5 (2010) 742–754. doi: 

10.1021/ci100050t. 

ROKACH, Lior; MAIMON, Oded - Clustering Methods. In Data Mining and Knowledge 



 
61 

Discovery Handbook. New York : Springer-Verlag, 2005. p. 321–352. 

ROSENBLATT, Frank - The perceptron: A probabilistic model for information storage and 

organization in the brain. Psychological Review. . ISSN 0033295X. 65:6 (1958) 386–408. doi: 

10.1037/h0042519. ISBN 9780387254654 

ROST, Burkhard; SANDER, Chris - Conservation and prediction of solvent accessibility in 

protein families. Proteins: Structure, Function, and Genetics. ISSN 0887-3585. 20:3 (1994) 

216–226. doi: 10.1002/prot.340200303. 

RUSSELL, Stuart J.; NORVIG, Peter - Artificial Intelligence: A Modern Approach. 3. 

ed. New Jersey : Pearson Education, Inc., 2010. ISBN 9780136067382.  

SAIDIJAM, Massoud; AZIZPOUR, Sonia; PATCHING, Simon G. - Comprehensive analysis of the 

numbers, lengths and amino acid compositions of transmembrane helices in prokaryotic, eukaryotic 

and viral integral membrane proteins of high-resolution structure. Journal of Biomolecular 

Structure and Dynamics. ISSN 0739-1102. 36:2 (2018) 443–464. doi: 

10.1080/07391102.2017.1285725. 

SCANNELL, Jack W. et al. - Diagnosing the decline in pharmaceutical R&D efficiency. Nature 

Reviews Drug Discovery. ISSN 14741776. 11:3 (2012) 191–200. doi: 10.1038/nrd3681. 

SCHNEIDER, Gisbert - Automating drug discovery. Nature Reviews Drug Discovery. . 

ISSN 1474-1776. 17:2 (2017) 97–113. doi: 10.1038/nrd.2017.232. 

SCHWABACHER, Mark - A Survey of Data-Driven Prognostics. In Infotech@Aerospace. 

Reston, Virigina : American Institute of Aeronautics and Astronautics, 26 Sep. 2005. ISBN 

9781624100697 

SHALEV-SHWARTZ, Shai; BEN-DAVID, Shai - Understanding Machine Learning. 

Cambridge : Cambridge University Press, 2014. ISBN 9781107298019.  

SHARMA, Sreenath V.; HABER, Daniel A.; SETTLEMAN, Jeff - Cell line-based platforms to 

evaluate the therapeutic efficacy of candidate anticancer agents. Nature Reviews Cancer. ISSN 

1474-175X. 10:4 (2010) 241–253. doi: 10.1038/nrc2820. 

SHOEMAKER, Robert H. - The NCI60 human tumour cell line anticancer drug screen. Nature 

Reviews Cancer. ISSN 1474-175X. 6:10 (2006) 813–823. doi: 10.1038/nrc1951. 

SIDOROV, Pavel et al. - Predicting synergism of cancer drug combinations using NCI-ALMANAC 

data. Frontiers in Chemistry. ISSN 2296-2646. 7 (2019) 509. doi: 10.3389/FCHEM.2019.00509. 

SIMÕES, Sérgio et al. - On the formulation of pH-sensitive liposomes with long circulation times. 

Advanced Drug Delivery Reviews. ISSN 0169-409X. 56:7 (2004) 947–965. doi: 

10.1016/J.ADDR.2003.10.038. 

SINGH, Harpreet; RANA, Prashant Singh; SINGH, Urvinder - Prediction of drug synergy in 

cancer using ensemble-based machine learning techniques. Modern Physics Letters B. ISSN 0217-



 
62 

9849. 32:11 (2018) 1850132. doi: 10.1142/S0217984918501324. 

SINHA, Sandeep; VOHORA, Divya - Drug Discovery and Development. In Pharmaceutical 

Medicine and Translational Clinical Research. Elsevier, 2018. ISBN 9780128021033. p. 19–

32. 

SIVA, Nayanah - 1000 Genomes project. Nature Biotechnology. ISSN 1087-0156. 26:3 

(2008) 256–256. doi: 10.1038/nbt0308-256b. 

STEPHENS, Zachary D. et al. - Big Data: Astronomical or Genomical? PLOS Biology. ISSN 

1545-7885. 13:7 (2015) e1002195. doi: 10.1371/journal.pbio.1002195. 

SUN, X.; VILAR, S.; TATONETTI, N. P. - High-Throughput Methods for Combinatorial Drug 

Discovery. Science Translational Medicine. ISSN 1946-6234. 5:205 (2013) 205rv1-205rv1. doi: 

10.1126/scitranslmed.3006667. 

TALLARIDA, Ronald J. - Revisiting the Isobole and Related Quantitative Methods for Assessing 

Drug Synergism. Journal of Pharmacology and Experimental Therapeutics. ISSN 1521-

0103. 342:1 (2012) 2–8. doi: 10.1124/jpet.112.193474. 

TANG, Yong et al. - Biomarkers for early diagnosis, prognosis, prediction, and recurrence 

monitoring of non-small cell lung cancer. OncoTargets and Therapy. ISSN 11786930. 10 (2017) 

4527–4534. doi: 10.2147/OTT.S142149. 

TOPORCOV, Tatiana N.; WÜ, Victor; FILHO, Nsch - Epidemiological science and cancer 

control. Clinics. 73 (2018). doi: 10.6061/clinics/2018/e627s. 

TOUW, Wouter G. et al. - A series of PDB-related databanks for everyday needs. Nucleic 

Acids Research. ISSN 13624962. 2015). doi: 10.1093/nar/gku1028. 

ULMSCHNEIDER, Martin B.; SANSOM, Mark S. P. - Amino acid distributions in integral 

membrane protein structures. Biochimica et Biophysica Acta - Biomembranes. ISSN 

00052736. (2001). doi: 10.1016/S0005-2736(01)00299-1. 

USHIJIMA, Toshikazu; ASADA, Kiyoshi - Aberrant DNA methylation in contrast with mutations. 

Cancer Science. ISSN 13479032. 101:2 (2010) 300–305. doi: 10.1111/j.1349-7006.2009.01434.x. 

VERHEUL, Henk M. W. et al. - Clinical implications of drug resistance. In Drug Resistance 

In The Treatment of Cancer. Cambridge : Cambridge University Press, 1998. p. 199–231. 

VINEIS, Paolo; WILD, Christopher P. - Global cancer patterns: causes and prevention. The 

Lancet. ISSN 01406736. 383:9916 (2014) 549–557. doi: 10.1016/S0140-6736(13)62224-2. 

WAGSTAFF, K. et al. - Constrained k-means clustering with background knowledge. In 

Eighteenth International Conference on Machine Learning 

WANG, Guoli; DUNBRACK, Roland L. - PISCES: a protein sequence culling server. 

Bioinformatics. ISSN 1367-4803. 19:12 (2003) 1589–1591. doi: 10.1093/bioinformatics/btg224. 

WEBB, Benjamin; SALI, Andrej - Comparative Protein Structure Modeling Using MODELLER. In 



 
63 

Current Protocols in Bioinformatics. Hoboken, NJ, USA : John Wiley & Sons, Inc., 2016 v. 54. 

p. 5.6.1-5.6.37. 

WEBSTER, Rachel M. - Combination therapies in oncology. Nature Reviews Drug 

Discovery. ISSN 1474-1776. 15:2 (2016) 81–82. doi: 10.1038/nrd.2016.3. 

WEININGER, David - SMILES, a chemical language and information system. 1. Introduction to 

methodology and encoding rules. Journal of Chemical Information and Modeling. ISSN 

1549-9596. 28:1 (1988) 31–36. doi: 10.1021/ci00057a005. 

WHITE, Stephen H. - Biophysical dissection of membrane proteins. Nature. ISSN 00280836. 

459:7245 (2009) 344–346. doi: 10.1038/nature08142. 

WOOD, Derrick E. et al. - A machine learning approach for somatic mutation discovery. 

Science translational medicine. ISSN 1946-6242. 10:457 (2018) eaar7939. doi: 

10.1126/scitranslmed.aar7939. 

WOODS, Derek; TURCHI, John J. - Chemotherapy induced DNA damage response: 

convergence of drugs and pathways. Cancer biology & therapy. ISSN 1555-8576. 14:5 (2013) 

379–89. doi: 10.4161/cbt.23761. 

WORLD HEALTH ORGANISATION - Guidelines for ATC Classification and DDD 

Assignment 2019. (2019) 22. ed. ISBN 17264898.  

XUE-WEN CHEN; XIAOTONG LIN - Big Data Deep Learning: Challenges and Perspectives. 

IEEE Access. ISSN 2169-3536. 2 (2014) 514–525. doi: 10.1109/ACCESS.2014.2325029. 

YADAV, Bhagwan et al. - Searching for Drug Synergy in Complex Dose-Response Landscapes 

Using an Interaction Potency Model. Computational and structural biotechnology journal. 

ISSN 2001-0370. 13 (2015) 504–13. doi: 10.1016/j.csbj.2015.09.001. 

YAN, Changhui et al. - Characterization of Protein–Protein Interfaces. The Protein Journal. 

ISSN 1572-3887. 27:1 (2008) 59–70. doi: 10.1007/s10930-007-9108-x. 

YANG, Wanjuan et al. - Genomics of Drug Sensitivity in Cancer (GDSC): a resource for 

therapeutic biomarker discovery in cancer cells. Nucleic Acids Research. ISSN 0305-1048. 41:D1 

(2012) D955–D961. doi: 10.1093/nar/gks1111. 

YANG, Yang et al. - Improvement in the Anticancer Activity of 6-Mercaptopurine 

&lt;i&gt;via&lt;/i&gt; Combination with Bismuth(III). CHEMICAL & PHARMACEUTICAL 

BULLETIN. ISSN 0009-2363. 64:11 (2016) 1539–1545. doi: 10.1248/cpb.c15-00949. 

YOUNG, Steven R. et al. - Optimizing deep learning hyper-parameters through an evolutionary 

algorithm. In Proceedings of the Workshop on Machine Learning in High-

Performance Computing Environments - MLHPC ’15. New York, New York, USA : ACM 

Press, 2015. ISBN 9781450340069 

YU, Hui et al. - Architectures and accuracy of artificial neural network for disease classification 



 
64 

from omics data. BMC Genomics. ISSN 1471-2164. 20:1 (2019) 167. doi: 10.1186/s12864-019-5546-

z. 

YUAN, Guo-Xun; HO, Chia-Hua; LIN, Chih-Jen - Recent Advances of Large-Scale Linear 

Classification. Proceedings of the IEEE. ISSN 0018-9219. 100:9 (2012) 2584–2603. doi: 

10.1109/JPROC.2012.2188013. 

YUAN, Salina; NORGARD, Robert J.; STANGER, Ben Z. - Cellular Plasticity in Cancer. Cancer 

Discovery. ISSN 2159-8274. 9:7 (2019) 837–851. doi: 10.1158/2159-8290.CD-19-0015. 

YUAN, Yuchen et al. - DeepGene: an advanced cancer type classifier based on deep learning and 

somatic point mutations. BMC Bioinformatics. ISSN 1471-2105. 17:S17 (2016) 476. doi: 

10.1186/s12859-016-1334-9. 

ZAHREDDINE, Hiba; BORDEN, Katherine L. B. - Mechanisms and insights into drug resistance 

in cancer. Frontiers in pharmacology. ISSN 1663-9812. 4 (2013) 28. doi: 

10.3389/fphar.2013.00028. 

ZALUPSKI, M.; BAKER, L. H. - Ifosamide. JNCI Journal of the National Cancer 

Institute. ISSN 0027-8874. 80:8 (1988) 556–566. doi: 10.1093/jnci/80.8.556. 

ZEWAIL-FOOTE, Maha et al. - The inefficiency of incisions of ecteinascidin 743-DNA adducts 

by the UvrABC nuclease and the unique structural feature of the DNA adducts can be used to explain 

the repair-dependent toxicities of this antitumor agent. Chemistry and Biology. ISSN 10745521. 

8:11 (2001) 1033–1049. doi: 10.1016/S1074-5521(01)00071-0. 

ZHANG, Junjun et al. - International cancer genome consortium data portal-a one-stop shop for 

cancer genomics data. Database. ISSN 17580463. (2011) bar026. doi: 10.1093/database/bar026. 

ZHANG, Lu et al. - From machine learning to deep learning: progress in machine intelligence for 

rational drug discovery. Drug Discovery Today. ISSN 1359-6446. 22:11 (2017) 1680–1685. doi: 

10.1016/J.DRUDIS.2017.08.010. 

ZHANG, Qingchen et al. - A survey on deep learning for big data. Information Fusion. ISSN 

1566-2535. 42 (2018) 146–157. doi: 10.1016/J.INFFUS.2017.10.006. 

ZHANG, Shao Qing et al. - The membrane- and soluble-protein helix-helix interactome: Similar 

geometry via different interactions. Structure. ISSN 18784186. (2015). doi: 

10.1016/j.str.2015.01.009. 

ZHANG, Yao et al. - Experimental and Computational Evaluation of Forces Directing the 

Association of Transmembrane Helices. Journal of the American Chemical Society. ISSN 

0002-7863. 131:32 (2009) 11341–11343. doi: 10.1021/ja904625b. 

ZHANG, Zhe; WITHAM, Shawn; ALEXOV, Emil - On the role of electrostatics in protein-

protein interactions. Physical biology. ISSN 1478-3975. 8:3 (2011) 035001. doi: 10.1088/1478-

3975/8/3/035001. 



 
65 

ZHOU, Jianbiao - The role of the tumor microenvironment in hematological malignancies and 

implication for therapy. Frontiers in Bioscience. ISSN 10939946. 10:1–3 (2005) 1581. doi: 

10.2741/1642. 

ZHOU, Zhi-Hua - Ensemble Methods. Chapman and Hall/CRC, 2012. ISBN 

9781439830055.  

ZIEGEL, Eric et al. - Numerical Recipes: The Art of Scientific Computing. 3. ed. 

Cambridge : Cambridge University Press, 2007. ISBN 9780521880688.  

 

  



 
66 

Appendix 1 

“Elbow” Method 

The elbow method was designed to find the appropriate number of clusters depending 

on the data in analysis. By applying this method, one assures that he picks the number of 

clusters that reduce the variation between the samples within the cluster (represented by the 

Within-cluster Sum of Squares – WCSS (Appendix Equations 1 and 2). v+GG =  ∑ ∑ wKE(CK − CE)2MEK=1FE=1  
where F is the number of clusters, ME is the number of elements in the Eth 

cluster, wKE is an indicator function 

 

Appendix Equation 1 

wKE =  {1, CK ∈ 3my?42@ E0, CK ∉ 3my?42@ E Appendix Equation 2 

 

 Method: 

1. Compute the F-means clustering algorithm for different number of F (usually 

between 1 and 10); 

2. For each F , calculate the total WCSS; 

3. Plot the curve of F against WCSS; 

4. The location of a bend (an “elbow”) in the curve is generally considered the 

appropriate number of clusters (Appendix Figure 1). 

 

Appendix Figure 1: Explanation of the "Elbow" method. 
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Annexes 
Supplementary Table 1: Summary of all available combination chemotherapeutics, their active substances and the types of 
cancer suited for treatment. This data was manually curated from the United States’ National Cancer Institute Portal 
(Comprehensive Cancer Information - National Cancer Institute, 2019) and from the Cancer UK Portal (Cancer Research UK, 2019). 

Drug Designation a Active Substances Cancer Types Suited for 
Treatment 

ABVD Doxorubicin Hydrochloride + Bleomycin + Vinblastine 
Sulphate + Dacarbazine Hodgkin Lymphoma 

ABVE Doxorubicin Hydrochloride + Bleomycin + Vinblastine 
Sulphate + Etoposide Phosphate Hodgkin Lymphoma 

ABVE-PC 
Doxorubicin Hydrochloride + Bleomycin + Vinblastine 

Sulphate + Etoposide Phosphate + Prednisone + 
Cyclophosphamide 

Hodgkin Lymphoma 

AC Doxorubicin Hydrochloride + Cyclophosphamide Breast Cancer 

AC-T Doxorubicin Hydrochloride + Paclitaxel + Cyclophosphamide Breast Cancer 

ACE Adriamycin + Cyclophosphamide + Etoposide Lung Cancer 

ADE Cytarabine (Ara-C) + Daunorubicin Hydrochloride + 
Etoposide Phosphate 

Myeloproliferative 
Neoplasms 
Leukaemia 

BEACOPP 
Doxorubicin Hydrochloride + Bleomycin + Vincristine 

Sulphate + Etoposide Phosphate + Procarbazine 
Hydrochloride + Cyclophosphamide + Prednisone 

Hodgkin Lymphoma 

BEAM Carmustine + Etoposide + Cytarabine + Melphalan Hodgkin Lymphoma 
Non-Hodgkin Lymphoma 

BEP Bleomycin + Cisplatin + Etoposide Phosphate Ovarian Cancer 
Testicular Cancer 

BUMEL Busulfan + Melphalan Hydrochloride Neuroblastoma 

CAF Doxorubicin Hydrochloride + Fluoroacil + 
Cyclophosphamide Breast Cancer 

CAPOX Capecitabine + Oxaliplatin Colon and Rectal 
CARBO MV Carboplatin + Methotrexate + Vinblastine Bladder Cancer 

CARBOPLATIN-
ETOPOSIDE Carboplatin + Etoposide 

Small Cell Lung Cancer 
Small Cell Bladder Cancer 
Small Cell Cervical Cancer 

CARBOPLATIN-TAXOL Paclitaxel + Carboplatin Lung Cancer 
Ovarian Cancer 

CAV Cyclophosphamide + Doxorubicin + Vincristine Lung Cancer 
CAVE Cyclophosphamide + Doxorubicin + Vincristine + Etoposide Small Cell Lung Cancer 

CEM Melphalan Hydrochloride + Carboplatin + Etoposide 
Phosphate Neuroblastoma 

CEV Vincristine Sulphate + Carboplatin + Etoposide Phosphate Retinoblastoma 

CHLVPP Chlorambucil + Vinblastine + Procarbazine + Prednisolone Hodgkin Lymphoma 

CHOP Doxorubicin Hydrochloride + Vincristine Sulphate + 
Prednisone + Cyclophosphamide 

Non-Hodgkin Lymphoma 
Leukaemia 

CISPLATIN-
FLUOROURACIL-
TRASTUZUMAB 

Cisplatin + Fluorouracil + Trastuzumab Gastric Cancer 



 
69 

Drug Designation a Active Substances Cancer Types Suited for 
Treatment 

CISPLATIN-TEYSUNO Cisplatin + Teysuno Gastric Cancer 
CMF Methotrexate + Fluoroacil + Cyclophosphamide Breast Cancer 
CMV Cisplatin + Methotrexate + Vinblastine Bladder Cancer 

COPDAC Dacarbazine + Vincristine Sulphate + Prednisone + 
Cyclophosphamide Hodgkin Lymphoma 

COPP Procarbazine Hydrochloride + Vincristine Sulphate + 
Prednisone + Cyclophosphamide 

Hodgkin Lymphoma 
Non-Hodgkin Lymphoma 

COPP-ABV 
Procarbazine Hydrochloride + Vincristine Sulphate + 

Doxorubicin Hydrochloride + Bleomycin + Prednisone + 
Cyclophosphamide + Vinblastine Sulphate 

Hodgkin Lymphoma 

CTD Cyclophosphamide + Thalidomide + Dexamethasone Myeloma 

CVP Vincristine Sulphate + Prednisone + Cyclophosphamide Non-Hodgkin Lymphoma 
Leukaemia 

CX Cisplatin + Capecitabine Various 

DHAP Dexamethasone + Cytarabine + Cisplatin Non-Hodgkin Lymphoma 
Hodgkin Lymphoma 

DOXIFOS Doxorubicin + Ifosfamide Soft Tissue Sarcoma 
EC Epirubicin + Cyclophosphamide Breast Cancer 

ECARBOX Epirubicin + Carboplatin + Capecitabine Gastro Oesophageal Cancer 

ECF Epirubicin + Cisplatin + Fluorouracil Gastro Oesophageal Cancer 

ECX Epirubicin + Cisplatin + Capecitabine Gastro Oesophageal Cancer 
EOF Epirubicin + Oxaliplatin + Fluorouracil Gastro Oesophageal Cancer 
EOX Epirubicin + Oxaliplatin + Capecitabine Gastro Oesophageal Cancer 

EPOCH Etoposide Phosphate + Vincristine Sulphate + Doxorubicin 
Hydrochloride + Prednisone + Cyclophosphamide Non-Hodgkin Lymphoma 

ESHAP Etoposide + Methylprednisolone + Cytarabine + Cisplatin 
Hodgkin Lymphoma 

Non-Hodgkin Lymphoma 
Myeloma 

FAD Fludarabine + Doxorubicin + Dexamethasone Low Grade Lymphoma 

FCR Fludarabine + Cyclophosphamide + Rituximab Chronic Lymphocytic 
Leukaemia 

FEC Fluorouracil + Epirubicin Hydrochloride + Cyclophosphamide Breast Cancer 

FEC-T Fluorouracil + Epirubicin Hydrochloride + Cyclophosphamide 
+ Docetaxel Breast Cancer 

FLUOROURACIL (5FU)-
CISPLATIN Cisplatin + Fluorouracil 

Anal Cancer 
Head and Neck Cancer 
Oesophageal Cancer 

FLUOROURACIL (5FU)-
MITOMYCIN C Fluorouracil + Mitomycin C Anal Cancer 

FMD Fludarabine + Mitoxantrone + Dexamethasone Non-Hodgkin Lymphoma 

FOLFIRI Leucovorin Calcium + Fluorouracil + Irinotecan 
Hydrochloride Colon and Rectal Cancer 

FOLFIRI-BEVACIZUMAB Leucovorin Calcium + Fluorouracil + Irinotecan 
Hydrochloride + Bevacizumab Colon and Rectal Cancer 

FOLFIRI-CETUXIMAB Leucovorin Calcium + Fluoroacil + Irinotecan Hydrochloride 
+ Cetuximab Colon and Rectal Cancer 

FOLFIRINOX Leucovorin Calcium + Fluorouracil + Irinotecan 
Hydrochloride + Oxaliplatin Pancreatic Cancer 
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Drug Designation a Active Substances Cancer Types Suited for 
Treatment 

FOLFOX Leucovorin Calcium + Fluorouracil + Oxaliplatin Colon and Rectal Cancer 

GEMCAP Gemcitabine Hydrochloride + Capecitabine Pancreatic Cancer 

GEMCARBO Gemcitabine Hydrochloride + Carboplatin 

Non-Small Cell Lung 
Cancer 

Bladder Cancer 
Advanced Breast Cancer 

Ovarian Cancer 

GEMCITABINE-CISPLATIN Gemcitabine Hydrochloride + Cisplatin 

Bladder Cancer 
Cervical Cancer 

Lung Cancer 
Malignant Mesothelioma 

Ovarian Cancer 
Pancreatic Cancer 

GEMCITABINE-
OXALIPLATIN Gemcitabine Hydrochloride + Oxaliplatin Pancreatic Cancer 

GEMTAXOL Gemcitabine Hydrochloride + Paclitaxel Breast Cancer 
Bladder Cancer 

HYPER-CVAD 
Cyclophosphamide + Vincristine Sulphate + Doxorubicin 

Hydrochloride + Dexamethasone + Methotrexate (optional) 
+ Cytarabine (optional) 

Non-Hodgkin Lymphoma 

HYPER-CVAD (ALL) 
Cyclophosphamide + Vincristine Sulphate + Doxorubicin 

Hydrochloride + Dexamethasone + Methotrexate (optional) 
+ Cytarabine (optional) 

Leukaemia 

ICE Ifosfamide + Carboplatin + Etoposide Phosphate Hodgkin Lymphoma 
Non-Hodgkin Lymphoma 

JEB Carboplatin + Etoposide Phosphate + Bleomycin Ovarian Cancer 
Testicular Cancer 

MIC Mitomycin + Ifosfamide + Cisplatin 
Non-Small Cell Lung 

Cancer 
Oesophageal Cancer 

MMM Mitoxantrone + Mitomycin C + Methotrexate Breast Cancer 

MOPP Mechlorethamine Hydrochloride + Vincristine Sulphate + 
Procarbazine Hydrochloride + Prednisone Hodgkin Lymphoma 

MPT Melphalan + Prednisolone + Thalidomide Myeloma 

MVAC Methotrexate + Vinblastine Sulphate + Doxorubicin 
Hydrochloride + Cisplatin Bladder Cancer 

MVP Mitomycin + Vinblastine Sulphate + Cisplatin 
Lung Cancer 

Mesothelioma 
Breast Cancer 

OEPA Vincristine Sulphate + Etoposide Phosphate + Prednisone + 
Doxorubicin Hydrochloride Hodgkin Lymphoma 

OFF Oxaliplatin + Fluoroacil + Leucovorin Calcium Pancreatic Cancer 

OPPA Vincristine Sulphate + Procarbazine Hydrochloride + 
Prednisone + Doxorubicin Hydrochloride Hodgkin Lymphoma 

PAD Bortezomib + Doxorubicin Hydrochloride + Dexamethasone 
Multiple Myeloma and 

Other Plasma Cell 
Neoplasms 

PC Paclitaxel + Carboplatin 
Ovarian Cancer 
Cervical Cancer 

Small Cell Lung Cancer 



 
71 

Drug Designation a Active Substances Cancer Types Suited for 
Treatment 

PCV Procarbazine Hydrochloride + Lomustine + Vincristine 
Sulphate Brain Tumours 

PE Etiposide + Cisplatin 
Small Cell Lung Cancer 

Germ Cell Cancers 
Small Cell of the Neck of 

the Womb 

PEB Cisplatin + Etoposide Phosphate + Bleomycin Ovarian Cancer 
Testicular Cancer 

PMITCEBO Prednisolone + Mitoxantrone + Cyclophosphamide + 
Etiposide + Bleomycin + Vincristine Non-Hodgkin Lymphoma 

POMB/ACE Cisplatin + Vincristine Sulphate + Methotrexate + Bleomycin 
+ Actinomycin + Cyclophosphamide + Etoposide Testicular Cancer 

R-CHOP Rituximab + Cyclophosphamide + Doxorubicin 
Hydrochloride + Vincristine Sulphate + Prednisone Non-Hodgkin Lymphoma 

R-CVP Rituximab + Cyclophosphamide + Vincristine Sulphate + 
Prednisone Non-Hodgkin Lymphoma 

R-DHAP Rituximab + Dexamethasone + Cytarabine + Cisplatin Non-Hodgkin Lymphoma 

R-EPOCH Rituximab + Etoposide Phosphate + Prednisone + Vincristine 
Sulphate + Cyclophosphamide + Doxorubicin Hydrochloride Non-Hodgkin Lymphoma 

R-ESHAP Rituximab + Etoposide + Methylprednisolone + Cytarabine + 
Cisplatin Lymphoma 

R-GCVP Rituximab + Gemcitabine + Cyclophosphamide + Vincristine 
Sulphate + Prednisolone Hodgkin Lymphoma 

R-ICE Rituximab + Ifosfamide + Carboplatin + Etoposide Phosphate Non-Hodgkin Lymphoma 

STANFORD V 
Mechlorethamine Hydrochloride + Doxorubicin 

Hydrochloride + Vinblastine Sulphate + Vincristine Sulphate + 
Bleomycin + Etoposide Phosphate + Prednisone 

Hodgkin Lymphoma 

TAC Docetaxel + Doxorubicin Hydrochloride + 
Cyclophosphamide Breast Cancer 

TIP Paclitaxel + Cisplatin + Ifosfamide Testicular Cancer 

TPF Docetaxel + Cisplatin + Fluorouracil Head and Neck 
Stomach (Gastric) Cancer 

VAC Vincristine Sulphate + Dactinomycin + Cyclophosphamide Ovarian Cancer 
Soft Tissue Sarcoma 

VAD Vincristine Sulphate + Doxorubicin Hydrochloride + 
Dexamethasone Myeloma 

VAI Vincristine Sulphate + Actinomycin + Ifosfamide Ewing's sarcoma 

VAMP Vincristine Sulphate + Doxorubicin Hydrochloride + 
Methotrexate + Prednisone Hodgkin Lymphoma 

VEIP Vinblastine Sulphate + Ifosfamide + Cisplatin Ovarian Cancer 
Testicular Cancer 

VIDE Vincristine Sulphate + Ifosfamide + Doxorubicin 
Hydrochloride + Etoposide Phosphate Ewing's Sarcoma 

VIP Etoposide + Ifosfamide + Cisplatin Testicular Cancer 

XELIRI Capecitabine + Irinotecan Hydrochloride 
Colon and Rectal 

Oesophageal 
Stomach (Gastric) Cancer 

XELOX Capecitabine + Oxaliplatin Colon and Rectal 
a, Drug designation is represented in most of the cases by the first capital letter of each active substance (2nd column) in the 
combination. 
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Supplementary Table 2: DNN evaluation results per drug. 

Name ATC Class acc auc f-score MSE rec prec 

Methotrexate Folic acid analogues 0,7695 0,5009 0,8693 0,2305 0,9880 0,7760 

Busulfan Alkyl sulfonates 0,7619 0,5843 0,8556 0,2381 0,9479 0,7797 

Thioguanine Purine analogues 0,7665 0,5271 0,8655 0,2335 0,9897 0,7689 

Mercaptopurine Purine analogues 0,6907 0,5194 0,8119 0,3093 0,9631 0,7017 

Mechlorethamine 
hydrochloride 

Nitrogen mustard 
analogues 0,8128 0,5606 0,8934 0,1872 0,9805 0,8206 

Allopurinol 
Preparations inhibiting uric 
acid production 0,7568 0,5052 0,8603 0,2432 0,9751 0,7697 

Dactinomycin Actinomycines 0,6713 0,6666 0,7054 0,3287 0,7391 0,6746 

Chlorambucil 
Nitrogen mustard 
analogues 0,7344 0,5640 0,8384 0,2656 0,9708 0,7378 

Thiotepa Ethylene imines 0,8125 0,5403 0,8944 0,1875 0,9863 0,8182 

Melphalan 
Nitrogen mustard 
analogues 0,7787 0,5206 0,8738 0,2213 0,9836 0,7860 

Triethylenemelamine 
Non-
classifyed/Experimental 0,6458 0,6230 0,7190 0,3542 0,8056 0,6493 

Altretamine 
Other antineoplastic 
agents 0,8902 0,5000 0,9419 0,1098 1,0000 0,8902 

Quinacrine hydrochloride 
Non-
classifyed/Experimental 0,6954 0,5713 0,8043 0,3046 0,9298 0,7087 

Aminolevulinic acid 
hydrochloride 

Sensitizers used in 
photodynamic/radiation 
therapy 

0,7706 0,5095 0,8693 0,2294 0,9852 0,7778 

Fluorouracil Pyrimidine analogues 0,7255 0,5000 0,8409 0,2745 1,0000 0,7255 

Plicamycin 
Other cytotoxic 
antibiotics 0,6361 0,6209 0,5465 0,3639 0,5056 0,5948 

Pipobroman Other alkylating agents 0,7129 0,6370 0,8013 0,2871 0,8918 0,7275 

Cyclophosphamide 
Nitrogen mustard 
analogues 0,7788 0,4923 0,8756 0,2212 0,9847 0,7883 

Mitomycin 
Other cytotoxic 
antibiotics 0,7218 0,6286 0,8141 0,2782 0,9310 0,7232 

Floxuridine Pyrimidine analogues 0,7697 0,5284 0,8673 0,2303 0,9853 0,7746 

Hydroxyurea 
Other antineoplastic 
agents 0,7132 0,5346 0,8255 0,2868 0,9459 0,7322 

Uracil mustard Nitrosoureas 0,8021 0,5000 0,8902 0,1979 1,0000 0,8021 

Mitotane 
Other antineoplastic 
agents 0,6516 0,5178 0,7805 0,3484 0,9412 0,6667 

Dacarbazine Other alkylating agents 0,8788 0,5000 0,9355 0,1212 1,0000 0,8788 

Methoxsalen Psoralens for systemic use 0,8392 0,5064 0,9123 0,1608 0,9924 0,8442 
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Name ATC Class acc auc f-score MSE rec prec 

Vinblastine sulfate 
Vinca alkaloids and 
analogues 0,6816 0,6693 0,7316 0,3184 0,7830 0,6866 

Cytarabine hydrochloride Pyrimidine analogues 0,7235 0,5693 0,8282 0,2765 0,9462 0,7364 

Thalidomide 
Other 
immunosuppressants 0,7057 0,4938 0,8261 0,2943 0,9631 0,7232 

Vincristine sulfate 
Vinca alkaloids and 
analogues 0,6136 0,6212 0,6200 0,3864 0,6992 0,5569 

Megestrol acetate Progestogens 0,6383 0,6061 0,7385 0,3617 0,6667 0,8276 

Procarbazine 
hydrochloride 

Methylhydrazines 0,7500 0,5460 0,8518 0,2500 0,9701 0,7592 

Lomustine Nitrosoureas 0,7475 0,5024 0,8530 0,2525 0,9367 0,7831 

Daunorubicin 
hydrochloride 

Anthracyclines and related 
substances 0,6343 0,6205 0,5294 0,3657 0,5714 0,4932 

Streptozocin Nitrosoureas 0,7419 0,5465 0,8471 0,2581 0,9965 0,7366 

Arsenic trioxide 
Other antineoplastic 
agents 0,6438 0,5559 0,7554 0,3563 0,8408 0,6857 

Azacitidine Pyrimidine analogues 0,6692 0,6102 0,7668 0,3308 0,9079 0,6636 

Cladribine Purine analogues 0,7395 0,6638 0,8208 0,2605 0,8554 0,7889 

Ifosfamide 
Nitrogen mustard 
analogues 0,7513 0,5239 0,8549 0,2487 0,9716 0,7632 

2-Fluoro Ara-A Purine analogues 0,7527 0,5935 0,8475 0,2473 0,9470 0,7669 

Cisplatin Platinum compounds 0,6357 0,6396 0,6332 0,3643 0,5865 0,6880 

Tretinoin 
Other antineoplastic 
agents 0,6995 0,6281 0,7893 0,3005 0,8655 0,7254 

Teniposide 
Podophyllotoxin 
derivatives 0,6601 0,6523 0,7045 0,3399 0,7045 0,7045 

Doxorubicin 
hydrochloride 

Anthracyclines and related 
substances 0,7483 0,6747 0,8304 0,2517 0,8230 0,8378 

Bleomycin sulfate 
Other cytotoxic 
antibiotics 0,6284 0,5691 0,7295 0,3716 0,7915 0,6766 

Paclitaxel Taxanes 0,6143 0,6143 0,6215 0,3857 0,6333 0,6101 

Decitabine Pyrimidine analogues 0,7010 0,6004 0,8000 0,2990 0,8761 0,7360 

bendamustine 
hydrochloride 

Nitrogen mustard 
analogues 0,7045 0,5742 0,8097 0,2955 0,8927 0,7409 

Etoposide 
Podophyllotoxin 
derivatives 0,7615 0,7302 0,8243 0,2385 0,8133 0,8356 

Dexrazoxane 
Detoxifying agents for 
antineoplastic treatment 0,6992 0,5024 0,8213 0,3008 0,9770 0,7083 

Tamoxifen citrate Anti-estrogens 0,6933 0,6720 0,7525 0,3067 0,7917 0,7170 

Pentostatin 
Other antineoplastic 
agents 0,7013 0,4963 0,8233 0,2987 0,9739 0,7131 
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Name ATC Class acc auc f-score MSE rec prec 

Sirolimus 
Selective 
immunosuppressants 0,7052 0,6885 0,7574 0,2948 0,8029 0,7167 

Carboplatin Platinum compounds 0,6443 0,5597 0,7579 0,3557 0,8816 0,6646 

Valrubicin 
Anthracyclines and related 
substances 0,6096 0,6078 0,5746 0,3904 0,5423 0,6111 

Oxaliplatin Platinum compounds 0,6298 0,5769 0,7262 0,3702 0,7755 0,6828 

Mitoxantrone 
Anthracyclines and related 
substances 0,6522 0,5461 0,2000 0,3478 0,1154 0,7500 

Amifostine 
Detoxifying agents for 
antineoplastic treatment 0,7273 0,5052 0,8376 0,2727 0,9007 0,7827 

Temozolomide Other alkylating agents 0,8000 0,5938 0,8824 0,2000 0,9507 0,8232 

Imiquimod Antivirals 0,8179 0,5185 0,8989 0,1821 0,9894 0,8235 

Carmustine Nitrosoureas 0,7260 0,5669 0,8304 0,2740 0,9425 0,7421 

Clofarabine Purine analogues 0,7382 0,6183 0,8315 0,2618 0,9453 0,7421 

Vinorelbine tartrate 
Vinca alkaloids and 
analogues 0,6897 0,6500 0,5424 0,3103 0,5000 0,5926 

Topotecan hydrochloride 
Other antineoplastic 
agents 0,6978 0,5708 0,8056 0,3022 0,9147 0,7198 

Gemcitabine 
hydrochloride 

Pyrimidine analogues 0,8101 0,5222 0,8940 0,1899 0,9961 0,8109 

Docetaxel Taxanes 0,6742 0,6742 0,7038 0,3258 0,6742 0,7362 

7-Ethyl-10-
hydroxycamptothecin 

Non-
classifyed/Experimental 0,6856 0,6226 0,7749 0,3144 0,8077 0,7447 

Bortezomib 
Other antineoplastic 
agents 0,6707 0,5595 0,7816 0,3293 0,8608 0,7158 

Nelarabine Purine analogues 0,8182 0,6834 0,8869 0,1818 0,9739 0,8142 

Pemetrexed Disodium Folic acid analogues 0,7313 0,5018 0,8421 0,2687 0,9412 0,7619 

Vorinostat 
Other antineoplastic 
agents 0,7087 0,7013 0,7491 0,2913 0,7463 0,7519 

Estramustine phosphate 
sodium 

Other antineoplastic 
agents 0,8027 0,6995 0,8722 0,1973 0,9305 0,8208 

Capecitabine Pyrimidine analogues 0,7481 0,6346 0,8371 0,2519 0,9598 0,7422 

Exemestane Aromatase inhibitors 0,5517 0,5270 0,6389 0,4483 0,6866 0,5974 

Gefitinib Protein kinase inhibitors 0,7528 0,6447 0,4762 0,2472 0,3846 0,6250 

Erlotinib hydrochloride Protein kinase inhibitors 0,6831 0,6632 0,7466 0,3169 0,8385 0,6728 

Fulvestrant Anti-estrogens 0,6711 0,6336 0,7487 0,3289 0,7807 0,7192 

Anastrozole Aromatase inhibitors 0,8043 0,5557 0,8883 0,1957 0,9890 0,8063 

Letrozole Aromatase inhibitors 0,6633 0,6518 0,7179 0,3367 0,7925 0,6563 

Celecoxib Sulfonamides 0,6765 0,6649 0,7250 0,3235 0,7632 0,6905 
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Name ATC Class acc auc f-score MSE rec prec 

Zoledronic acid Bisphosphonates 0,7827 0,5000 0,8781 0,2173 1,0000 0,7827 

Dasatinib Protein kinase inhibitors 0,6327 0,6319 0,6159 0,3673 0,6159 0,6159 

Everolimus Protein kinase inhibitors 0,7341 0,7319 0,7624 0,2659 0,7476 0,7778 

Pazopanib hydrochloride Protein kinase inhibitors 0,8974 0,5000 0,0000 0,1026 0,0000 0,0000 

Imatinib mesylate Protein kinase inhibitors 0,7732 0,6416 0,8571 0,2268 0,8919 0,8250 

Lapatinib ditosylate Protein kinase inhibitors 0,7385 0,7112 0,7958 0,2615 0,8363 0,7590 

Nilotinib Protein kinase inhibitors 0,7406 0,6572 0,8265 0,2594 0,8239 0,8291 

Sorafenib tosylate Protein kinase inhibitors 0,7313 0,6178 0,8244 0,2687 0,8970 0,7627 

Lenalidomide 
Other 
immunosuppressants 0,7500 0,4853 0,8571 0,2500 0,9706 0,7674 

Ixabepilone 
Other cytotoxic 
antibiotics 0,6525 0,5890 0,7500 0,3475 0,8084 0,6995 

Raloxifene hydrochloride 
Selective estrogen 
receptor modulators 0,6400 0,5000 0,0000 0,3600 0,0000 0,0000 

Abiraterone 
Other hormone 
antagonists and related 
agents 

0,6087 0,5798 0,4490 0,3913 0,5000 0,4074 

Sunitinib (free base) Protein kinase inhibitors 0,7658 0,5797 0,8591 0,2342 0,9505 0,7837 

vemurafenib Protein kinase inhibitors 0,6703 0,6633 0,7115 0,3297 0,7551 0,6727 

Romidepsin 
Other antineoplastic 
agents 0,6499 0,6191 0,4937 0,3501 0,3959 0,6555 

pralatrexate Folic acid analogues 0,7389 0,5000 0,8499 0,2611 1,0000 0,7389 

Vismodegib 
Other antineoplastic 
agents 0,6230 0,5429 0,7356 0,3770 0,8000 0,6809 

Crizotinib Protein kinase inhibitors 0,6503 0,5954 0,7444 0,3497 0,8137 0,6860 

Axitinib Protein kinase inhibitors 0,7045 0,5223 0,1333 0,2955 0,0769 0,5000 

Vandetanib Protein kinase inhibitors 0,4643 0,5000 0,0000 0,5357 0,0000 0,0000 

vemurafenib Protein kinase inhibitors 0,7358 0,6656 0,8250 0,2642 0,7857 0,8684 

Cabazitaxel Taxanes 0,8000 NaN NaN 0,2000 NaN 0,0000 

Ruxolitinib Protein kinase inhibitors 0,5370 0,5662 0,6575 0,4630 0,9600 0,5000 

acc = accuracy; ROC AUC = Area Under the Receiver Operating Characteristics Curve; MSE = Mean Squared Error; prec = precision; 
rec = recall; Gini = Gini coefficient 
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Supplementary Table 3: DNN evaluation results per cell line. 

Cell Line Disease Cancer 
Type acc ROC 

AUC f-score MSE rec prec 

HL-60(TB) Adult acute myeloid 
leukemia Blood 0,6673 0,6617 0,7034 0,3327 0,7258 0,6824 

SR Anaplastic large cell 
lymphoma Blood 0,6579 0,6587 0,6537 0,3421 0,6752 0,6336 

RPMI-8226 Plasma cell myeloma Blood 0,6785 0,6655 0,7302 0,3215 0,7375 0,7230 

K-562 Chronic myelogenous 
leukemia Blood 0,6926 0,6347 0,7779 0,3074 0,8174 0,7420 

SF-295 Glioblastoma Brain 0,7599 0,6857 0,8359 0,2401 0,8655 0,8082 

SNB-75 Glioblastoma Brain 0,7194 0,6924 0,7804 0,2806 0,8068 0,7557 

SF-539 Gliosarcoma Brain 0,6908 0,6473 0,7689 0,3092 0,7946 0,7448 

SF-268 Astrocytoma Brain 0,7268 0,6876 0,7945 0,2732 0,8371 0,7560 

U251 Astrocytoma Brain 0,7769 0,7174 0,8445 0,2231 0,8671 0,8230 

T-47D Invasive ductal 
carcinoma Breast 0,6897 0,6521 0,7665 0,3103 0,7665 0,7665 

HS 578T Invasive ductal 
carcinoma Breast 0,7069 0,6467 0,7899 0,2931 0,8309 0,7529 

MDA-MB-
231/ATCC Breast adenocarcinoma Breast 0,6804 0,6283 0,7657 0,3196 0,7905 0,7424 

7 MCF Invasive ductal 
carcinoma Breast 0,7262 0,6713 0,8034 0,2738 0,8264 0,7817 

BT-549 Invasive ductal 
carcinoma Breast 0,7145 0,6736 0,7873 0,2855 0,8029 0,7722 

MDA-MB-468 Breast adenocarcinoma Breast 0,6759 0,6694 0,7137 0,3241 0,7408 0,6885 

HCT-116 Colon carcinoma Colon 0,7085 0,6371 0,7958 0,2915 0,8356 0,7596 

SW-620 Colon adenocarcinoma Colon 0,7360 0,6577 0,8206 0,2640 0,8288 0,8127 

KM12 Colon carcinoma Colon 0,7500 0,5930 0,8455 0,2500 0,8526 0,8385 

HCT-15 Colon adenocarcinoma Colon 0,7660 0,6982 0,8398 0,2340 0,8532 0,8269 

786-0 Renal cell carcinoma Kidney 0,6957 0,6725 0,7609 0,3043 0,7543 0,7675 

ACHN Papillary renal cell 
carcinoma Kidney 0,7031 0,6786 0,7644 0,2969 0,7913 0,7392 

CAKI-1 Clear cell renal cell 
carcinoma Kidney 0,7518 0,6746 0,8348 0,2482 0,8212 0,8489 

A498 Renal cell carcinoma Kidney 0,7344 0,6867 0,8065 0,2656 0,8299 0,7843 
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Cell Line Disease Cancer 
Type acc ROC 

AUC f-score MSE rec prec 

UO-31 Renal cell carcinoma Kidney 0,7324 0,6697 0,8109 0,2676 0,8443 0,7800 

NCI-H460 Large cell lung 
carcinoma Lung 0,7295 0,7060 0,7885 0,2705 0,7918 0,7853 

HOP-92 Non-small cell lung 
carcinoma Lung 0,7488 0,6458 0,8351 0,2512 0,8639 0,8081 

NCI-H322M Minimally invasive lung 
adenocarcinoma Lung 0,7312 0,6673 0,8120 0,2688 0,8223 0,8020 

HOP-62 Lung adenocarcinoma Lung 0,7385 0,7071 0,8021 0,2615 0,8083 0,7959 

EKVX Lung adenocarcinoma Lung 0,7440 0,6749 0,8240 0,2560 0,8309 0,8172 

NCI-H522 Lung adenocarcinoma Lung 0,7234 0,6743 0,7978 0,2766 0,8292 0,7688 

A549/ATCC Lung adenocarcinoma Lung 0,7321 0,6862 0,8092 0,2679 0,7919 0,8274 

NCI-H23 Lung adenocarcinoma Lung 0,6777 0,6446 0,7505 0,3223 0,7946 0,7111 

IGROV1 Ovarian endometrioid 
adenocarcinoma Ovarian 0,7228 0,6745 0,7986 0,2772 0,8090 0,7885 

OVCAR-4 High grade ovarian 
serous adenocarcinoma Ovarian 0,7513 0,6600 0,8357 0,2487 0,8404 0,8311 

OVCAR-3 High grade ovarian 
serous adenocarcinoma Ovarian 0,7418 0,6627 0,8244 0,2582 0,8433 0,8065 

SK-OV-3 Ovarian serous 
cystadenocarcinoma Ovarian 0,7197 0,6637 0,7980 0,2803 0,8374 0,7622 

OVCAR-8 High grade ovarian 
serous adenocarcinoma Ovarian 0,7210 0,6622 0,8009 0,2790 0,8268 0,7766 

DU-145 Prostate carcinoma Prostate 0,7091 0,6864 0,7687 0,2909 0,7840 0,7540 

PC-3 Prostate carcinoma Prostate 0,6849 0,6427 0,7631 0,3151 0,7969 0,7321 

MALME-3M Melanoma Skin 0,7304 0,6929 0,7991 0,2696 0,8062 0,7921 

UACC-62 Melanoma Skin 0,6594 0,6431 0,7205 0,3406 0,7147 0,7265 

SK-MEL-5 Cutaneous melanoma Skin 0,6730 0,6493 0,7383 0,3270 0,7604 0,7174 

SK-MEL-28 Cutaneous melanoma Skin 0,7313 0,6506 0,8163 0,2687 0,8501 0,7851 

UACC-257 Melanoma Skin 0,7136 0,6489 0,7986 0,2864 0,8090 0,7885 

LOX IMVI Amelanotic melanoma Skin 0,7382 0,6670 0,8206 0,2618 0,8245 0,8167 

acc = accuracy; ROC AUC = Area Under the Receiver Operating Characteristics Curve; MSE = Mean Squared Error; prec = precision; 
rec = recall; Gini = Gini coefficient 

 


