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Abstract The need for reaching environmental
sustainability encourages research on new cellulose-
based materials for a broad range of applications
across many sectors of industry. Cellulosic nanoma-
terials obtained from different sources and with
different functionalization are being developed with
the purpose of its use in many applications, in pure and
composite forms, from consumer products to pharma-
ceutics and healthcare products. Based on previous
knowledge about the possible adverse health effects of
other nanomaterials with high aspect ratio and biop-
ersistency in body fluids, e.g., carbon nanotubes, it is
expected that the nanometric size of nanocellulose will
increase its toxicity as compared to that of bulk
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cellulose. Several toxicological studies have been
performed, in vitro or in vivo, with the aim of
predicting the health effects caused by exposure to
nanocellulose. Ultimately, their goal is to reduce the
risk to humans associated with unintentional environ-
mental or occupational exposure, and the design of
safe nanocellulose materials to be used, e.g., as
carriers for drug delivery or other biomedical appli-
cations, as in wound dressing materials. This review
intends to identify the toxicological effects that are
elicited by nanocelluloses produced through a top-
down approach from vegetal biomass, namely, cellu-
lose nanocrystals and nanofibrils, and relate them with
the physicochemical characteristics of nanocellulose.
For this purpose, the article provides: (i) a brief review
of the types and applications of cellulose nanomate-
rials; (ii)) a comprehensive review of the literature
reporting their biological impact, alongside to their
specific physicochemical characteristics, in order to
draw conclusions about their effects on human health.
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Due to its potential to improve many products and
processes of interest to vital fields such as healthcare,
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energy, environment and manufacturing, the technol-
ogy based on nanomaterials (NMs) has been pointed
as a key enabling technology (European Commission
2009). Many products, already available, have mate-
rials in nanometric dimensions, such as silver, tita-
nium dioxide or synthetic amorphous silica, and many
other NMs are being developed, such as cellulose
nanomaterials (CNMs). The global CNMs market is
projected to grow to €599.9 million by 2023, and thus,
nanocellulose production will have a high economic
impact (ResearchandMarkets, 2018). CNMs have
diverse interesting applications in industry, including
in papermaking, coatings, food, nanocomposite for-
mulations and reinforcement, and potential for inno-
vative biomedical applications, e.g., as drug delivery
carriers, antimicrobial materials, and in tissue repair
and regeneration (Lin and Dufresne 2014). Moreover,
its expanding production and application can lead to
unintentional human exposure, both for workers and
consumers, and concerns about their potential effects
on human health have emerged. A study by Vartiainen
et al. (2011) concluded that worker’s exposure to
particles in the air during grinding and spray drying of
birch cellulose is low or non-existent with the
implementation of appropriate protection equipment
and proper handling (Vartiainen et al. 2011). Another
investigation found that nanocellulose is aerosolized
during centrifugation, handling of dry product, and
production and manipulation of nanocellulose poly-
mer composites, but none of these measures exceeded
the applicable occupational exposure limits (OEL) for
cellulose (Eastlake et al. 2014; Martinez et al. 2013).
The National Institute for Occupational Safety and
Health (NIOSH) recommended exposure limits (REL)
for bulk cellulose particles is 10 mg/m? for total dust
and 5 mg/m’ as a respirable fraction, both expressed
as a time-weighted average (TWA). The Occupational
Safety and Health Administration (OSHA) permissi-
ble exposure limits are 15 mg/m’ and 5 mg/m°, both
as TWA. Currently, there are no OEL or REL for
CNMs. However, based on previous knowledge about
the adverse effects of other nanofibres, e.g., carbon
nanotubes (CNT), it is expected that the high aspect
ratio of some CNMs, such as cellulose nanofibrils
(CNF), and its biopersistency in the lungs (Stefaniak
et al. 2014) increases toxicity, as compared to that of
bulk cellulose. Toxicological studies aim to generate
data that contributes to predict the health effects from
exposure to a given substance, as nanocellulose, thus

allowing to reduce the risk to humans. To identify, in a
short term, the toxicological properties of a substance,
assays in mammalian cell lines (in vitro) or animal
models (in vivo) are currently used (Fig. 1). The data
obtained enables hazard identification, which com-
plements exposure assessment through epidemiolog-
ical studies in the framework of risk assessment.
In vitro toxicological studies are typically conducted
prior to in vivo studies to evaluate if the substance/ma-
terial interacts with the cellular components or its
functions, leading to an imbalance of cell homeostasis
and to a measurable effect.

Conventional toxicological assays evaluate, among
other endpoints, the effects of a substance on cell
viability (cytotoxicity) leading to cell death generally
through apoptosis or necrosis, and the direct or indirect
damaging effects on DNA or chromosomes, such as
gene mutations or chromosomal aberrations, respec-
tively (genotoxicity) that can ultimately lead to
carcinogenicity (Fig. 1). In fact, a major concern
about the potential risks from human exposure to
biopersistent nanofibres, as CNFs and CNTs, is
whether they can be carcinogenic, since analogies
have been established between the biological effects
of CNT and the well-known -carcinogenicity of
asbestos (Kane et al. 2018). Another frequent outcome
of persistent nanofibres is inflammation, an essential
immune response to harmful stimuli, such as patho-
gens, tissues injury, toxicants or radiation, which
enables survival during infection or damage and
maintains tissue homeostasis (Fig. 2). A typical
inflammatory response consists of four components:
inflammatory inducers, the sensors that detect them,
the inflammatory mediators induced by the sensors,
and the target tissues that are affected by the inflam-
matory mediators (Medzhitov 2010). The persistence
of the stimuli or deficiencies causing an excessive or
subnormal inflammatory response may result in
chronic inflammation (Nathan and Ding 2010), which
is a major driver of disease, since it can irreversibly
damage tissues and even lead to carcinogenesis
through secondary genotoxic events mediated by
oxidative stress. Thus, following an inflammatory
process, cellular and molecular events take place to
prevent inflammation perpetuation. Typically, the
peak of the inflammatory response to aspirated fibrous
particulates, including CNT and CNMs, is observed on
days 1-7 and decrease after the first week post-
exposure (Park et al. 2018).
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Phagocytosis of nanofibres results in mitochondrial
damage leading to the production of reactive oxygen
species (ROS). ROS can induce a primary genotoxic
effect, namely, DNA or chromosomal damage. ROS
can also cause lysosome destabilization and conse-
quent cathepsin B release that can further damage
mitochondria. Furthermore, high aspect-ratio nano-
materials can also cause lysosomal rupture and release
of cathepsin B to the cytosol. ROS generation leads to
the oxidation of the redox-active thioredoxin (TXN)
dissociating it from thioredoxin-interacting protein
(TXNIP), and in its free form TXNIP can activate
NLRP3 inflammasome. NLRP3 activation causes
caspase-1 proteolysis of the precursor forms of
cytokines IL-1f and IL-18 that in their active forms
are powerful inducers of inflammation. The later
produces ROS that can secondarily damage DNA
(Adapted from Ventura et al. 2018b).

In vitro

Y —

Culture of one or more cell types
(epithelial, endothelial, fibroblastic, osteoblastic, etc)

OBSERVABLE EFFECTS

Among the assays available for investigating cel-
lular and molecular effects, some have legal-binding
status for regulatory purposes. Moreover, it has been
proposed that an adequate risk analysis of NMs should
incorporate their specific physicochemical properties
into toxicological evaluation (European Parliament
2010), leading to an emergent area of toxicology
designated as nanotoxicology. Accordingly, we have
previously shown that NMs with the same chemistry,
e.g., CNT and titanium dioxide NMs, but differing in
primary properties may Yyield different biological
effects (Louro et al. 2019; Tavares et al. 2014).

With the objective of identifying the toxicological
effects that are elicited by CNMs produced from the
vegetal biomass (top-down approach), either in vivo or
in vitro, which potentially may lead to adverse health
effects, this works describes: i) a brief review on the
types and applications of CNMs; ii) a comprehensive
review of the literature reporting their biological
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Fig. 1 In vitro and in vivo toxicological approaches to study the adverse effects of a substance or material, as CNMs. Adapted from

(Ventura and Silva 2017)
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Fig. 2 Simplified representation of the mechanisms involved in activation of inflammation

impact, including cytotoxicity, oxidative stress,
immunotoxicity, genotoxicity and reprotoxicity,
alongside to their specific physicochemical character-

Overview of nanocellulose production
and applications

istics. Based on the knowledge gathered through the
literature review, the most relevant conclusions about
the impact of these nanofibres on human health are
presented.

Nanocellulose is a natural nanomaterial that derives
from cellulose, which can be extracted from abundant
renewable biomass resources (Dufresne 2012a; Isogai
and Zhou 2019). These cellulosic materials are
described by having nano-sized widths (Dufresne
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2013; Nechyporchuk et al. 2016) and very promising
properties such as excellent mechanical characteris-
tics, chemical stability, biocompatibility and
biodegradability (de Mesquita et al. 2010; Phanthong
et al. 2018). These properties are mainly affected by
the nanocellulose production process and the compo-
sition of biomass resulting in diverse cellulose nano-
materials (CNMs, nomenclature according to ISO/TS
20477: 2017 (ISO 2017)), with different morpholo-
gies, nanostructures and chemical structures (Isogai
and Zhou 2019; Ribeiro et al. 2019).

Currently, there is high interest from academia and
industry on technological discoveries and develop-
ments about nanocellulose, being its extraction from
biomass and its possible applications in various fields
commonly addressed (Phanthong et al. 2018; Ribeiro
etal. 2019). There is a growing number of publications
describing the preparation of various forms of
nanocellulose such as suspensions, water-dispersible
powders, films or nanopapers, hydrogels, and aerogels
(Kargarzadeh et al. 2018) and their applications in
hybrid composite materials (Islam et al. 2018), as drug
delivery systems (Ching et al. 2019; Li et al. 2019), as
food additives (Aaen et al. 2019; Alzate-Arbelaez
et al. 2019), in biocompatible scaffolds for cell culture
(Ojansivu et al. 2019; Or et al. 2019) and in tissue
engineering (Luo et al. 2019; Zhao et al. 2019) among
others.

Types of cellulose nanomaterials and production
methods

Cellulose, as an ancient and important natural poly-
mer, is the base for a new family of CNMs in the form
of nanocellulose to be used in new applications that
were once thought impossible for conventional cellu-
losic materials (Foster et al. 2018; Lin and Dufresne
2014).

Cellulose is a semi-crystalline polymeric material
and encompasses a wide spectrum of nanoscale
cellulosic-based structures existing in natural fibres
having various shapes, sizes, surface chemistries and
properties. CNMs can be isolated from a variety of
sources as wood (hardwood and softwood), seed fibres
(cotton, coir, etc.), grasses (bagasse, bamboo etc.),
bast fibres (flax, hemp, jute, ramie etc.), marine
animals (tunicate, sea squirt, etc.) and algae, or are
generated by fungi, invertebrates and bacteria
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(Kargarzadeh et al. 2018; Nechyporchuk et al. 2016;
Varshney and Naithani 2011) (Fig. 3).

The resulting CNMs extracted from these broad
raw material sources present different degrees of
crystallinity, cellulose I polymorph (e.g., Ia/Ib ratio),
particle aspect ratios, lengths, widths, and cross-
section morphologies due to large differences in the
cellulose biosynthesis processes (Foster et al. 2018).
Regardless of its source, cellulose consists of a white
fibre-like structure, chemically defined as a linear
homopolysaccharide composed of -p-glucopyranose
units linked together by B-1-4-linkages, with no odor
and a density of around 1.5 g/cm”, which are predom-
inantly located in the cell secondary wall and reinforce
an amorphous matrix consisting of lignin, hemicellu-
lose, proteins, extractive organic substances, and trace
elements (Abdul Khalil et al. 2014; Kargarzadeh et al.
2018).

Individual cellulose molecules are assembled in
biomass as elementary fibrils, which are packed into
larger units labeled as microfibrils that, in turn, plug
into fibres (Fengel and Wegener 1983). Elementary
fibrils present a width of about 5 nm whereas the
cellulose nanofibrils have widths ranging from 20 to
50 nm (Lavoine et al. 2012). Each elementary fibril
can be considered as a flexible hair strand with highly
ordered regions (i.e., crystalline), forming the core,
which alternate with disordered domains (i.e., amor-
phous) that are present at the surface (Abdul Khalil
et al. 2014; Azizi Samir et al. 2005; Shmulsky and
Jones 2011) (Fig. 3).

CNMs were recently referred to be grouped into
five broad categories, on the basis of (i) cellulose
source, (ii) extraction/production method, and (iii)
surface chemistry (Foster et al. 2018). Those cate-
gories comprise cellulose nanocrystals (CNCs), cel-
lulose nanofibrils (CNFs), tunicate CNCs (t-CNCs),
algal cellulose (AC), and bacterial cellulose (BC).
While CNCs, CNFs, t-CNCs and AC are produce by
top-down procedures, the BC is synthesized with a
bottom-up procedure from glucose by a family of
bacteria, referred to as Gluconoacetobacter xylinus
(Abdul Khalil et al. 2014; Klemm et al. 2011). In this
review, the focus is on the two main types of
nanocellulose, CNCs and CNFs, which are produced
from wood or agricultural/forest crops and residues.

The extraction of CNMs from wood and their
derivatives generally consists of pre-treatment
step(s) followed by mechanical step(s) (Brinchi et al.
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2013; Foster et al. 2018; Nechyporchuk et al. 2016).
These production steps and their conditions will
directly affect the properties of CNCs and CNFs,
which major differences depend on the proportion of
the amorphous phase and dimensions of the cellulose
fibres (Kargarzadeh et al. 2018). The surface chem-
istry of nanocelulose is determinant in how these
materials interact with their surrounding environment.
The high chemical functionality of CNMs consist of
primary and secondary hydroxyls on the surface,
which may present other chemistries depending on the
process used for their extraction (e.g., sulfate half
ester, carboxylic acid, etc.) (Foster et al. 2018). These
chemical functionalities provide a unique platform for
relatively  straightforward surface modifications
(Habibi 2014) with bio-polymers and yield of cellu-
lose derivatives by grafting to different materials, or
by adding fluorescent tags, nanoparticles, etc. (Hubbe
et al. 2015).

regions and cellulose nanocrystals (CNCs), in the form of
crystalline nanoparticles). Adapted from (Rol et al. 2019)

Cellulose nanocrystals (CNCs)

Throughout the years many terms were used to refer to
cellulose nanocrystals (CNCs), e.g., cellulose whis-
kers, needles, nanocrystalline cellulose, rod-like col-
loidal particles or cellulose microcrystallites (Foster
etal. 2018; Lavoine et al. 2012). CNCs derive from the
crystalline regions within elementary nanofibrils of
cellulose and are isolated from the cellulose amor-
phous domains of these nanofibrils (Bai et al. 2009;
Beck-Candanedo et al. 2005; Garcia de Rodriguez
et al. 2006) (Fig. 3). They exhibit a high degree of
crystallinity (50-90%) (Bras et al. 2011; Zhu et al.
2016) with limited flexibility compared to CNFs and
present an elongated rod-like shape with a width of
3-50 nm, and length from 100 nm to several pm in
length (ISO 2017). Both parameters are dependent on
the cellulose source and extraction conditions (Abdul
Khalil et al. 2014; Habibi et al. 2010; Kargarzadeh
et al. 2018; Nechyporchuk et al. 2016).
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The most commonly used process for the extraction
of CNCs from native cellulose is based on a strong
acid hydrolysis under strictly controlled conditions of
temperature, agitation, and time. Among various
acids, hydrochloric and sulfuric acid have been
extensively used in the extraction process (Roman
and Winter 2004; Yu et al. 2013). In this procedure an
acidic attack through transverse hydrolysis dissolve
the amorphous portions (disordered regions) of cellu-
lose, resulting in the formation of a nanocrystal
structure (Kargarzadeh et al. 2018). During the acid
hydrolysis, negatively charged sulfate groups will be
introduced on the cellulose molecular chain due to the
esterification of hydroxyl groups by sulfate ions,
leading to intermolecular repulsive forces that confer
electrostatic stability to CNCs in polar aqueous
suspensions thus forming stable colloid systems (Das
et al. 2009; Lu and Hsieh 2010; Roman and Winter
2004).

Cellulose nanofibrils (CNF's)

Cellulose nanofibrils (CNFs), also called nanofibril-
lated cellulose (NFC), microfibrillated cellulose
(MFC), cellulose microfibrils (CMF), nanofibrils or
microfibrils, are described as cellulosic nano-scale
fibrils aggregates with high aspect ratio (Foster et al.
2018; Lavoine et al. 2012). The cross-section of CNF
is in the range of 3 to 100 nm and its length is typically
up to 100 pum (ISO 2017), depending on the fibrils
disintegration conditions, which are formed as a result
of cellulose chain-stacking, induced by hydrogen
bonds (Hoeng et al. 2016). It is not easy to determine
the length of CNFs (commonly regarded as higher
than 1 pm) using microscopy techniques. Therefore,
only the information of the CNF fibril width is
generally provided in the literature (Dufresne 2013).
CNFs are generally produced by a mechanically
induced destructuring strategy for cellulosic pulp, for
example, a high-pressure homogenizer (HPH) and/or
grinding before and/or after a chemical or an enzy-
matic pre-treatment (Abdul Khalil et al. 2012; Kar-
garzadeh et al. 2018). The result of this high shear
force process is a highly entangled network of
nanofibrils with both crystalline and amorphous
domains, which confers the morphology of CNFs
with soft and long chains, by liberating the fibrils from
the integral microfibre bundles (Fig. 3) (Habibi et al.
2010; Nechyporchuk et al. 2016; Turbak et al. 1983).
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The production of CNFs through the mechanically
disintegrated strategy, using different types of
mechanical shearing actions that effectively delami-
nate individual nanofibrils from cellulosic fibres
requires large amounts of energy (> 200 kWh/kg)
(Isogai 2013; Isogai et al. 2011; Klemm et al. 2011).
Thus, various mild pre-treatments for wood cellulose
fibres before mechanical disintegration in water have
been developed, such as alkaline (Lv et al. 2010;
Takacs et al. 2000), radiation (Takacs et al. 2000),
chemical (Saito and Isogai 2004; Zhu et al. 2010), and
enzymatic (Hayashi et al. 2005; Henriksson et al.
2007) approaches that remarkably lower the cost and
energy of the process (Tayeb et al. 2018). This is a very
important step as it can promote accessibility,
increases the inner surface area, alters crystallinity,
breaks hydrogen bonds, and boosts the reactivity of
cellulose (Kargarzadeh et al. 2018; Mariano et al.
2014). Catalytic oxidation with 2,2,6,6-tetram-
ethylpiperidine-1-oxyl radical (TEMPO) under aque-
ous conditions has been developed as a pre-treatment
of plant cellulose fibres to efficiently prepare new
nanocelluloses (Isogai et al. 2011; Saito et al. 2006;
Zhou et al. 2018) while reducing the grinding cycles
prior to the vigorous mechanical fibrillation by
homogenization or microfuidization. This TEMPO-
mediated oxidation demonstrated to be advantageous
in terms of reaction selectivity and efficiency, and
proceeds at temperatures lower than conventional
chemical reactions used for introducing carboxyl
groups onto cellulose. Therefore, it can be regarded
as a more sustainable chemistry route regarding
energy consumption (Isogai and Bergstrdm 2018).
The resulting CNFs present a gel-like, shear thinning
and thixotropic behaviour at low solid concentrations
(1-2%) in water, regardless of the production methods
or pre-treatments used (Fang et al. 2014; Kang et al.
2015; Tayeb et al. 2018), which depend also of the
cellulose source.

The biological process used for digesting or mod-
ifying cellulose fibres consists in enzymatic hydrolysis
(Abdul Khalil et al. 2014). Although this pre-treatment
is less aggressive than acid hydrolysis as it can be
performed in mild conditions, it is more time con-
suming (Abdul Khalil et al. 2014; Moniruzzaman and
Ono 2013; Phanthong et al. 2018). The enzymatic
hydrolysis of cellulose occurs due to the synergistic
effect of different enzymes, allied with mechanical
treatments or acid reactants and allows the selective
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hydrolysis of non-crystalline cellulose, which facili-
tates its mechanical disintegration (Engstrom et al.
2006; Piaidkko et al. 2007). Moreover, through this
environmental friendly pre-treatment it is possible to
increase the extent of fine material, as compared to that
of acid hydrolysis (Ribeiro et al. 2019). Thus,
enzymatic pre-treatment seems to be a very promising
method for industrial applications (Lavoine et al.
2012).

Properties and characterization of cellulose
nanomaterials

Considering the heterogeneous nature of CNMs, the
characterization of their physicochemical properties
remains a challenge (Kangas et al. 2014). Neverthe-
less, a range of properties are particularly important
for CNMs, such as their morphology, crystallinity,
surface charge, surface chemistry, rheology, purity,
mechanical properties, among others (Hoeger; Nechy-
porchuk et al. 2016) and there are several key methods
typically used for the characterization of nanocellu-
loses (Ribeiro et al. 2019).

Similar morphologies with various dimensions are
obtained depending upon the source of the cellulose
and the method of production (Lavoine et al. 2012).
Microscopy techniques can be employed for the
analysis of morphology, which involves spatial reso-
lution, orientation and distribution, and provides
information about the size and shape of CNMs
(Hoeger). Optical microscopy (OM) can be used for
a general perspective of their aspect, morphology and
size, and to evaluate the sample size/dimensions
homogeneity (Pohler et al. 2011; Saito et al. 2009).
Nevertheless, higher resolution techniques, such as
scanning electron microscopy (SEM), transmission
electron microscopy (TEM) and atomic force micro-
scopy (AFM) are the main approaches used to
characterize the size of CNFs and CNCs, given that
they provide details of their width and approximate
length (Johansson et al. 2011; Pddkko et al. 2007).
SEM imaging has been used to provide a rough
estimation of dispersion and distribution of nanocel-
lulose, but in the case of CNF, the determination of
length is difficult due to their entanglement and
micrometer-scale (Kangas et al. 2014; Moon et al.
2013). TEM and AFM present higher resolution for
evaluation of details on nanostructures morphology;
although the preparation step of AFM is easier, the

precision and resolution of images are not as good as
those of TEM (Tsukamoto et al. 2013; Zhu et al.
2011).

The determination of surface charge and chemistry
may be combined to follow the extent of chemical
reaction on the surface of CNMs and to monitor the
success of the chemical pre-treatment (Kangas et al.
2014). The surface chemistry of nanocelluloses dic-
tates their colloidal stability, rheological and interfa-
cial properties, and their interactions with other
chemical species. Thus, it is crucial to determine
whether CNCs are produced by acid hydrolysis or
oxidation and by which reagents, or whether CNFs are
TEMPO oxidized, carboxymethylated or have resid-
ual charge groups from hemicelluloses, etc. (Foster
et al. 2018; Moon et al. 2011).

There is limited knowledge about the intrinsic
mechanical properties of CNMs due to their nanome-
ter size combined with limited metrology techniques
available to characterize these organic materials
(Moon et al. 2011). Existing experimental methods
for the evaluation of moduli and tensile strength of
nanocellulose include Wide-angle X-ray scattering
(WAXS), Raman spectra (RS) and AFM (Cacciotti
et al. 2014). For instance, the axial and transversal
moduli of CNFs and CNCs can be experimentally
determined by AFM (Isobe et al. 2011).

Rheological properties of CNMs depend on their
structure, degree of dispersion, and interactions
between the nanomaterial and the solvent or matrix
in a composite system. Viscosity, or the resistance to
flow, is very sensitive to changes in morphology and
composition in a CNM system (Shafiei-Sabet et al.
2012). The characterization of CNMs rheology is
commonly performed to establish relationships
between production process, structure and consequent
properties (Foster et al. 2018). Rheological measure-
ments were also performed for CNFs prepared via
TEMPO-oxidation and showed shear-thinning behav-
ior following a power-law and thixotropic properties,
which are explained through percolation in the fibrils
and flock formation (Lasseuguette et al. 2008).

Different forms of cellulose nanomaterials
and applications

The need for reaching environmental sustainability

has been encouraging research on new cellulose-based
materials for a broad range of applications across
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many sectors of the industry (Fig. 4), thus replacing
conventional petroleum-based materials (Dufresne
2019; Tibolla et al. 2014). Nanocellulose, as a new
environmental friendly material, has been incorpo-
rated into many types of materials, in both pure and
composite forms and holds promise in many different
applications, such as composite biomaterials (Sheikhi
2019; Shoseyov et al. 2019), in energy storage systems
(Kim et al. 2019; Zhu et al. 2016), in gas field drilling
and cementing applications (Balea et al. 2019;
Ramasamy and Amanullah 2019), in textiles (Salah
2013), in functional packaging (Bras and Saini 2017),
as drug delivery systems (Sheikhi et al. 2019) and in
biomedicine (Gatenholm and Klemm 2010; Lin and
Dufresne 2014; Zhang et al. 2019), in food industry,
paper and boards, packaging, environmental protec-
tion and improvement, pharmaceuticals and health-
care (Abitbol et al. 2016; Gotta et al. 2018; Islam and
Rahman 2019; Kargarzadeh et al. 2017; Pachuau
2017; Thomas et al. 2018). There are recent reviews
reporting in further detail the applications of

Energy conservation
and production

Catalytic
membranes

Paper and
cardboard industry

Electronic devices

nanocelluloses (Abitbol et al. 2016; Grishkewich
et al. 2017; Mondal 2017; Tayeb et al. 2018).
Nanocellulose, alone or in hybrid structures with
additional polymers, can present a hydrogel form,
which is defined as highly hydrated chemically or
physically cross-linked network that can be fine-tuned
by surface functionalization and self-assembly pro-
cesses (Thomas et al. 2018). CNCs in water at a
concentration higher than 10 wt % (Urefia-Benavides
et al. 2011) and the hydrogel properties can be
improved through chemical or physical modification
with polymers. As an example, CNCs have been used
to reinforce poly(vinyl alcohol) hydrogels (Han et al.
2014). At low cellulose concentrations, CNF suspen-
sions appear as viscous fluids and can be converted
into hydrogels holding a large amount of water, e.g.,
99.9%, while maintaining their shape (Saito et al.
2011). CNFs as longer and more flexible nanocellu-
loses are more amenable to hydrogels formation in
their pure form and to produce more elastic gels than
CNCs (Thomas et al. 2018). CNFs hydrogels have

Water treatment
and air Filtration

Biomedical
applications

Cosmetics

Pharmaceutical
industry

Sensing devices

Fig. 4 State of the art of applications for new nanocellulose based materials. Adapted from (Barhoum et al. 2017; Thomas et al. 2018)
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been applied as starting materials to spin fibres with
excellent strength properties (Lundahl et al. 2016).

Aerogels are the counterpart of hydrogels with gas
in place of liquids, being highly porous and light
materials. Porous sponge-like materials or CNF aero-
gels with high specific surface area, low density and
high porosity can be obtained by preserving the CNFs
three-dimensional (3D) network during dehydration
(Nechyporchuk et al. 2016). In the same way, aerogels
with high specific surface area and much improved
mechanical resistance, compared with inorganic oxide
based systems, can be obtained from CNCs due to their
favorable mechanical properties (Yang and Cranston
2014).

CNF and CNC suspensions can be further con-
verted to other forms, such as transparent films or
powders and can be integrated into many different
high-performance materials for customer and indus-
trial applications (Barhoum et al. 2017). However, due
to the high hydrophilic character and to the tendency
to irreversibly aggregate while drying, one significant
challenge is to produce dry CNF powder with a
preserved nanoscale structure and re-suspension
capacity, which would provide advantages in storage
and transportation (Nechyporchuk et al. 2016).

Toxicological studies on cellulose nanomaterials

The toxicological properties of CNMs have been
predominantly characterized in vitro, using mam-
malian cell lines that are exposed to increasing
concentrations of the nanomaterial, for a defined
period of time. Several endpoints related to cell death,
activation of the immune response and inflammation,
oxidative stress and genetic damage have been
assessed. These endpoints, together with the physic-
ochemical properties of the CNM and its internaliza-
tion by cells, give important insights about the CNMs
potential adverse effects and related mechanisms, in
living organisms. However, these in vitro bioassays do
not consider the complex and integrated response of a
whole organism and do not allow a direct translation of
the results into human health outcomes. Although the
usage of in vivo studies has been restricted due to
ethical concerns, they provide more valuable infor-
mation about the toxicological properties and potential
health effects that might be expected in man. As there
are much more in vitro then in vivo studies on

nanocellulose-biological systems interactions, and
most of them is focused only on a specific nanocel-
lulose type, the in vitro toxicological studies are first
reviewed for each type of CNM considered, i.e., for
CNCs, and for CNFs. The results of in vitro studies
concerning CNCs and CNFs are summarized in
Tables 1 and 2, respectively, while in vivo studies
are summarized in Table 3.

In vitro studies
Cellulose nanocrystals (CNCs)

Cellular uptake Cellular uptake of CNCs has been
examined in order to evaluate their potential as
carriers for macromolecules (drugs, DNA, etc.)
delivery or as part of toxicological studies. In view
of their application as nanocarriers, two different
studies showed that the level of FITC-labeled CNC
uptake by different mammalian cell lines (epithelial,
endothelial, fibroblasts and macrophages) was quite
low (Roman et al. 2009; Dong et al. 2012). Similarly,
using dark field hyperspectral imaging for bare CNCs
and confocal microscopy for fluoresceinamine-
conjugated CNCs, Hosseinidoust et al. (2015)
reported that only a very limited quantity of six
different CNCs was uptaken by different cell lines,
although a clear time- and dose-dependent
internalization was found. As expected, macrophages
exhibited an uptake capacity four-fold higher than the
non-phagocytic cells. Since the cell membrane of
macrophages was intact, their presence inside the cells
indicated a mechanism of active or passive transport.
Furthermore, the soft, amorphous and highly
carboxylated CNC poles appeared to enhance their
uptake, suggesting that the increase in transport of
CNCs with a higher charge is mediated by an
interaction of these carboxyl-rich chains with the
cell membrane (Hosseinidoust et al. 2015). In the
context of toxicological studies, Erden et al. (2019)
observed murine alveolar MH-S macrophage uptake
of a pristine CNC, being CNCs in gel more
internalized than in powder; the internalization
possibly  occurred through phagocytosis  or
macropinocytosis. A recent study, using spherical
negatively charged FICT-labelled CNC derived from
oil palm empty fruit bunch, revealed negligible
cellular accumulation on either C6 rat glioma or
NIH3T3 murine fibroblasts after 4 h exposure (Shazali
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et al. 2019). Likewise, no CNC uptake was observed
for human alveolar epithelial A549 cells (Menas et al.
2017). Endes et al. (2015) evaluated the specific fibre-
cell interactions of two CNCs, one isolated from
cotton (237 4+ 118; 29 4 13 nm) and another from
tunicate (2244 + 1687; 30 & 8 nm), with an in vitro
multicellular model of lung epithelium using an air—
liquid interface cell exposure system. The interaction
was dose-dependent, with the longer CNCs exhibiting
a lower lung clearance as compared to the shorter
CNCs, since after 48 h they were still visible on the
apical surface of the cell layer, while the short CNCs
were engulfed by the macrophages and cleared from
the cell surface within 24 h post exposure.

In summary, the internalization of CNCs and
accumulation in cells occurs, although at a limited
level. The uptake of these NMs is influenced by its size
and surface properties, e.g., charge, and depends also
on the cell type and function, being higher in
macrophages than in epithelial cells.

Immunotoxicity Inflammasomes comprise a group
of large intracellular multiprotein signalling
complexes that respond to exogenous stimuli and
control the proteolytic activation of interleukins,
namely interleukin (IL)-1f8 and IL-18. It is believed
that needle-like NMs, e.g. CNT, cause the activation
of the NOD-like receptor pyrin domain-containing
3-(NLPR3)-inflammasome through reactive oxygen
species (ROS) production, cathepsin B activity, P2X7
receptor, and Src/Syk tyrosine kinases, inducing IL-1
secretion (Palomaki et al. 2011). CNCs and CNFs
display some characteristics similar to the ones
described for asbestos fibres and CNTs, namely,
their ~ high-aspect  ratio,  insolubility = and
biopersistency and thus may also be able to activate
the NLPR3-inflammasome or other inflammation
pathways (Stefaniak et al. 2014). Other properties,
e.g., surface charge or functionalization may also
affect the ability of CNCs to active an immune
response.

In fact, one cationic modified CNC (50 pg/mL,
24 h exposure) was able to increase IL-1f secretion in
mouse macrophages (J774A.1) and in lipopolysac-
charide (LPS)-primed and non-primed human periph-
eral blood mononuclear cells (PBMNC) (Sunasee
et al. 2015). This increase in IL-1 correlated with the
increase of mitochondrial ROS production and extra-
cellular adenosine triphosphate (ATP) levels

suggesting that it may be associated with its capability
activate the NLRP3 inflammasome. However, the
other cationic CNCs tested did not activate the NLRP3
/IL-1B inflammatory pathway. The difference between
the CNCs was the molar ratio of monomers
(aminoethylmethacrylate (AEM) or aminoethyl-
methacrylamide (AEMA)) to hydroglucose units,
resulting in more or less cationic polymer brushes.
In another study comparing cationic (poly(APMA))
and an anionic (poly(NIPAAm)) functionalized
CNCs, the cationic induced a more robust immune
response associated to NLRP3-inflammasome activa-
tion and increased levels of IL-1f in murine macro-
phages, mainly through decreased mitochondrial
membrane polarization and decreased intracellular
ATP. The anionic CNC induced unspecific immuno-
logical effects, either NLRP3-dependent or indepen-
dent, leading to greater amounts of mitochondrial-
derived ROS and an endoplasmatic reticulum stress
response (Despres et al. 2019).

Concerning the CNC hydrophobicity, an uncoated
hydrophilic CNCs elicited a more robust inflammatory
response than its lignin-coated hydrophobic form
(Yanamala et al. 2016). After 24 h exposure (50 pg/
mL) of human monocyte-derived macrophages (THP-
1 cells) to the uncoated CNC, an increased level of
cytokines and chemokines (IL-1f, IL-2, IL-4, IL-6,
IL-8, IL-9, IL-15, IL-17, granulocyte colony-stimu-
lating factor (GCSF), interferon (INF)-y, eotaxin,
macrophage inflammatory protein (MIP)-10o, MIP-1,
regulated on activation, normal T cell expressed and
secreted (RANTES), interferon y-induced protein 10
(IP10) and tumor necrosis factor (TNF)-o) was
detected; the response was intensified upon 72 h
exposure. Conversely, the hydrophobic CNC only
increased the levels of five of those cytokines at 24 h,
and their levels were normal after 72 h exposure. In
contrast, pristine, cotton-derived CNCs (average
length 135 £ 5 nm; width 7.3 £ 0.2 nm), did not
induce IL-1B and TNF-o in THP-1 cells after 6 h
exposure (30, 100, and 300 pg/mL) (Catalan et al.
2015). Likewise, another study reported that pristine
CNC was not able to induce macrophage polarization,
and MO macrophages expressed only low levels of
cytokines and chemokines. However, macrophages
polarized to M1 expressed high levels of IL-1 among
other cytokines, and altered phagocytic activity
following treatment with the same nanocellulose
(Erdem et al. 2019). Regarding the size influence,
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three CNCs were with different sizes also induced a
robust inflammatory response in A549 cells following
24 h and 72 h exposure, with a direct relationship
between the size of the CNCs and the magnitude of
response (Menas et al. 2017).

The various immune responses triggered by differ-
ent CNCs (Table 1) highlight that differences in
physicochemical characteristics (size, charge, etc.) are
critical to their immunotoxicity and should be taken
into account when considering biomedical applica-
tions or human exposure, e.g., through inhalation.

Cytotoxicity, oxidative damage and
genotoxicity Due to the interest of researchers in
finding the potential of CNCs as drug carriers, in
chemotherapy or in patches, their cytotoxicity has
been investigated in several publications using
different cell lines and different functionalized
CNCs. There was no evident loss of cell viability in
human brain microvascular endothelial cells
(HBMEC) exposed to 10, 25 and 50 pg/mL CNCs
for 24 h, 48 h and 72 h (Roman et al. 2009), in L.929
cells (Ni et al. 2012), and in A549 cells exposed to 1.5,
15 and 40 pg/cm? for 24 h and 72 h (Menas et al.
2017) or to 5-300 pg/mL for 24h and 72 h
(Yanamala et al. 2016). No cytotoxicity (MTT and
LDH assays) was detected for a 0.05 wt% CNC
suspension (0-50 pg/mL for 48 h) tested in several
human (endothelial and epithelial cells; HBMEC,
MCF-10A, MDA-MB-231, MDA-MB-468, KB, PC-3
cells) and mouse cell lines (endothelial cells and
macrophages; bEnd.3, RAW 264.7 cells) and in one
rat fibroblast (C6) cell line (Dong et al. 2012). Only a
slight cytotoxicity was observed in macrophages
exposed to a pristine CNCs, either in gel or in
powder (Erdem et al. 2019). However, (Yanamala
et al. 2016) observed a dose-dependent decrease in
THP-1 cells viability after exposure to 5-300 pg/mL
of hydrophilic (uncoated; width 37 £ 7 nm) or a
hydrophobic (lignin-coated; 47 & 9 nm) CNCs, more
pronounced after 72 h. A recent application of CNCs
bearing negatively charged carboxylic groups in
hydrogel membranes with Na®, Ca®", Mg>" as
gelling cations was developed to use in active
patches for photodynamic therapy of melanoma
(Meschini et al. 2019). The cytotoxicity evaluation
(MTT, morphological changes, organelles integrity)
using two cell lines of melanoma and one cell line of
human primary dermal fibroblasts exposed to the CNC

@ Springer

membrane by direct and indirect contact tests
demonstrated this hydrogel biocompatibility.

Negative results were also reported in another study
that explored the potential of four CNCs of different
sizes and shapes (mean sizes 256 £ 64.8 to
1174 +£ 338.7) to kill NIH3T3 murine embryo fibrob-
lasts or HCT116 colon adenocarcinoma exposed to a
concentration range from 10 to 250 pg/mL (Hanif
etal. 2014), using the WST-1 assay; the authors noted
that the larger one was toxic at high concentration
because it formed a gel that probably blocked cells gas
exchanges. Six different CNCs with different amounts
of carboxyl groups, mostly located on amorphous
carboxylated cellulose chains protruding from the
CNC poles, were tested on the CaCO-2 (human colon
epithelial), HeLa (human cervix epithelial), MDCK
(canine kidney epithelial) and J774 (mouse ascites
macrophage) cell lines over a wide range of concen-
trations (50-300 pg/mL) (Hosseinidoust et al. 2015).
The authors reported a charge-dependent decrease in
mitochondrial activity for charge contents higher than
3.9 mmol/g. Conversely, all CNCs had a negligible
effect on cell membrane integrity, except the CNCs
with the highest charge density that were toxic at a
high concentration. The cytotoxicity of cotton CNC
(average length 135 £+ 5 nm; width 7.3 £ 0.2 nm)
was also evaluated in human bronchial epithelial
BEAS-2B cells exposed to a concentration range of
15-300 pg/mL for 4 h, 24 h, and 48 h (Catalan et al.
2015). The concentration that resulted in 55 4+ 5% cell
death was approximately 100 pg/mL.

Furthermore, considering the widespread use of
cellulose in food industry and its possible substitution
by nanocellulose, DeLoid et al. (2019) evaluated the
in vitro cytotoxicity of CNCs (and CNFs) as a
complement to in vivo endpoints that will be men-
tioned below. To assess the effects of ingested CNC in
the gastrointestinal tract, a tri-culture model of small
intestinal epithelium (CaCO-2, HT29-MTX and Raji
B cells) was exposed to CNC (mean width 27 nm)
after simulating the in vitro digestion. After 24 h
incubation with the digestion products, there was no
changes in cytotoxicity (LDH) or in the monolayer
integrity (trans-epithelial electrical resistance).

No significant cytotoxicity has been reported for
CNCs tested in other cell models, as the S/9 insect
cells and V79 Chinese hamster lung fibroblasts (Male
et al. 2012), L929 mouse fibroblasts (Ni et al. 2012),
C6 rat glioma and NIH373 murine fibroblasts (Shazali
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et al. 2019). New forms of rod-shaped CNCs have
been produced from other vegetal biomass sources, as
raw rubberwood and Kenaf-bast fibre (Tuerxun et al.
2019), and raw wheat bran (Xiao et al. 2019), and all
these CNCs were tested by the MTT assay. The results
showed the capacity of these CNCs to induce cell
death but at very high concentrations, only. In the first
study, a dose-dependent loss of cell viability upon
exposure to macrophages (RAW 264.7) and HaCaT
cells was observed, but without toxicity up to 700 pg/
mL (Tuerxun et al. 2019). In the last one, a dose
dependent decrease of cell viability was also observed
in CaCO-2 cells but only with significant results above
1000 pg/mL (Xiao et al. 2019).

In respect to oxidative stress induction, no signif-
icant decrease in glutathione (GSH) levels, a marker of
oxidative stress, was detected in A549 cells exposed to
three different CNCs (Menas et al. 2017). Nitric oxide
production by RAW?264.7 murine cells was one of the
endpoints tested in the Tuerxun et al. (2019) investi-
gation on the new CNCs from rubberwood and Kenaf-
bast fibres and there was almost a four-fold increase in
the concentration of nitrite in macrophages, which
correlated with their viability loss (Tuerxun et al.
2019). Lower concentrations of CNCs were consid-
ered non-toxic, as the level of induced nitrite was
similar to the one induced by LPS (Tuerxun et al.
2019). ROS production was also assessed in DeLoid
et al. (2019) study of digested CNC, and a small
increase of ROS production was observed with CNCs
at 1.5% w/w, but when this CNCs was dispersed in a
standardized food matrix the effect was no longer seen
(DeLoid et al. 2019).

To the best of our knowledge, only one study has
investigated the genotoxicity of CNCs (Catalan et al.
2015). Human bronchial epithelial BEAS-2B cells
were exposed to cotton CNCs (average length
135 £+ 5 nm; width 7.3 £+ 0.2 nm) in a concentration
range of 2.5-100 pg/mL, and chromosomal damage
was evaluated by the micronucleus assay yielding
negative results.

Taken together, the great majority of studies
addressing the potential of a vast diversity of CNCs
from different origins and with diverse properties to
cause cell death point to the absence of significant
cytotoxic effects and a number of mammalian cell
lines. Nevertheless, some cytotoxic effects were
observed, either at very high concentrations that are
unlikely to be reached in the organism or in

particularly sensitive cells, such as macrophages.
Again, properties like surface charge are important
determinants to consider when producing new CNCs,
especially for biomedical applications.

As already referred, the in vitro toxicological
studies of CNCs are summarized in Table 1.

Cellulose nanofibrils (CNF's)

Cellular uptake Menas et al. (2017) used a specific
staining method to visualize CNFs in A549 cells after
72 h exposure and found that the nanofibres were
mainly localized at the cell boundaries, without the
presence of CNFs inside the cells (Menas et al. 2017).
Similarly, TEM analysis demonstrated no alterations
in cell morphology and no uptake of any of the three
different CNFs tested in THP-1 cells, which showed
no attempts of phagocytosis (Lopes et al. 2017).

Immunotoxicity Colic et al. (2012) described no
inflammatory and immunogenic properties of CNFs
(width 10 — 70 nm) in rat thymocytes and PBMNC. A
panel of 27 cytokines, chemokines, and growth factors
was tested in the Nordli et al. (2016) study of human
dermal fibroblasts or epidermal keratinocytes exposed
to an ultrapure TEMPO-mediated oxidized CNF,
either in solution (50 pg/mL) or in an aerogel form
(Nordli et al. 2016). All results were negative,
indicating the absence of immunotoxicity and
suggesting the potential of this CNF for use as a
wound dressing-material. Similar results were
obtained for a gel or freeze-dried CNF powder tested
in A549 cells exposed to for 24 h and 72 h, by the
same immune response panel (Menas et al. 2017). This
immunoassay was also applied to A549 and THP-1
cells exposed to a hydrophilic (uncoated) and
hydrophobic (lignin-coated) CNF (Yanamala et al.
2016). A significant increase in IL-13, MIP-10, MIP-
1B, IL-6 and IL-15 was observed in THP-1 cells
treated with 50 pg/mL of the hydrophilic CNFs for
24 h, an effect that was absent at 72 h post exposure.
The same concentration of the hydrophobic CNFs was
able to increase the levels of IL-1p, IL-2, IL-4, IL-6,
IL-8, IL-9, IL-15, IL-17, GCSF, IFN-v, eotaxin, MIP-
lo, MIP-1B, and TNF-o in THP-1 cells at 24 h, with
an additional increase in IL-1Ra, IL-10, IL-13, and
glioma-derived growth factor (PDGF)-BB at 72 h
exposure. In contrast, A549 cells did not show any
difference after exposure. Likewise, no induction of
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IL-1PB was detected in a co-culture of A549 cells and
THP-1 cells exposed to three concentrations of CNFs
produced by TEMPO-mediated oxidation of an
industrial bleached Eucalyptus globulus kraft pulp
(Ventura et al. 2018a). No immunotoxicity (TNF-a,
IL-1B, IL-6, IL-10, MIP-lao and IL-12p40) was
observed in mouse RAW 264.7 macrophages after
exposure (30, 100 and 300 pg/mL) to a non-
functionalized CNFs (median width 20-30 nm)
(Vartiainen et al. 2011). On the contrary, a significant
increase in TNF-o and IL-1B was observed in THP-1
cells after 24 h exposure (500 pg/mL) to CNFs
produced from a bleached sulphite softwood
dissolving pulp. However, these CNFs did not induce
secretion of these two pro-inflammatory cytokines after
surface modification to carboxymethylated-CNF and
hydroxypropyltrimethylammonium-CNFs, underlining
the relevance of surface chemistry in the inflammatory
response (Lopes et al. 2017). Ilves et al. (2018) showed
that among three different CNFs produced through an
enzymatic pre-treatment, only the non-functionalized
one, with the shortest width (2-15) and slightly
negative zeta potential was associated to a time-
dependent increase of IL-1B and TNF, and to cell
death (Tlves et al. 2018).

Comparably to what was observed for CNCs, a
consistent immunotoxic effect (or its absence) has not
been found for CNFs, with studies reporting positive
or negative results in several cell lines. This is not
unexpected given that these nanofibrils interaction
with cells are largely dependent of their primary
physicochemical properties and possible modifica-
tions that happen after their dispersion in the cells
culture medium, as well as of the capacity of the cells,
themselves, to uptake the CNFs.

Cytotoxicity, oxidative damage and genotoxi-
city Cytotoxicity assessment has been used to
screen the CNF biocompatibility, and data is already
available for several pristine and functionalized CNFs.
Considering the existing concern about the
resemblance of CNFs with other high-aspect ratio
nanofibres that pose long-term risks to human health
following inhalation, a study by Clift et al. (2011)
compared the cytotoxic and inflammatory effects of
CNFs isolated from cotton (length 0.22 £+ 0.07 pm;
width 15 £ 5 nm) with those of a multi-walled carbon
nanotube (MWCNT) and crocidolite fibres. Three
different human cell types were used, namely
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monocyte-derived macrophages (MDM), dendritic
cells (MDDC) and bronchial epithelial (16HBE14)
cells, as well as a 3D co-culture of these cells to better
mimic the airway wall of the human lung. CNF
induced a dose-dependent citotoxicity (LDH assay)
after 24 h exposure, but at levels below those observed
for the MWCNT and crocidolite. The similarity of
CNFs to CNTs was also emphasized by Menas et al.
(2017) that compared five types of nanocellulose,
including CNF powder in gel (0.9% wt.) and a freeze-
dried CNF powder (1.5, 15 and 45 pg CNF for 24 h
and 72 h) in A549 cells (Menas et al. 2017). Both
CNFs decreased cell viability (Trypan blue exclusion
assay), more significantly after 72 h (40-50%), as
compared to 24 h (10-20%). No cytotoxicity and
oxidative stress was observed in L929 cells exposed to
31.25 pg/mL. to 1 mg/mL CNFs, but a slight
proliferation reduction occurred at concentrations
above 250 pg/mL (Colic et al. 2015). Moreover, no
necrosis and apoptosis was observed in rat thymocytes
and human PBMNC. A study performed by Ventura
et al. (2018a) also found no cytotoxic effects (MTT
and LDH assays) in A549 cells after 24 h exposure
(1.5,3,6,12.5, and 25 ug/cm2) to CNFs produced by
TEMPO-mediated oxidation pre-treatment, but the
highest dose tested was cytotoxic after 48 h exposure
(Ventura et al. 2018a). Interestingly, at this exposure
period, the lowest CNF concentration resulted in a
significant increase in cell viability (MTT assay) while
a more prolonged (8 days) exposure stimulated cells
proliferation and their capacity to form colonies
(clonogenic assay). Lopes et al. (2017) studied the
cytotoxicity of CNFs with two different surface
modifications, carboxymethylated-CNF and
hydroxypropyltrimethylammonium-CNFs, and its
unmodified counterpart, produced from a bleached
sulphite softwood dissolving pulp, using human lung
fibroblast (MRC-5) cells, THP-1 macrophages and
human dermal fibroblasts (HDF) (Lopes et al. 2017).
No cytotoxicity (Alamar blue and LDH) was detected
for the HDF and MRC-5 cells following treatment
with a concentration range of each CNF for 24 h;
THP-1 cells showed an increase in their metabolic
activity in line with the observation by Ventura et al.
(2018a). Amongst the bulk-sized cellulose and the
four different CNFs under study by Ilves et al. (2018),
only one non-functionalized CNFs reduced -cell
viability (LDH) in association with a time-dependent
increase of IL-1f and TNF (Ilves et al. 2018).
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Fibroblasts have been commonly used to evaluate
the CNF cytotoxicity due to its potential as a wound
dressing material. In a study with cotton CNFs (length
85-225 pum; width 6-18 nm), concentrations above
200 pg/mL decreased cell viability of bovine fibrob-
lasts, as assessed by flow cytometry, and, at a
concentration of 2000-5000 pg/mL, there was an
increase in the expression of the stress response genes
HSP70.1, PRDXI and the apoptotic-associated gene
BAX (Pereira et al. 2013). On the contrary, no
cytotoxicity was observed in mouse fibroblasts (3T3)
for CNFs extracted from Eucalyptus and Pinus radiata
pulp, with and without TEMPO-mediated pre-treat-
ment, in both a direct and an indirect contact assay.
However, when modified with the crosslinking agent
polyethyleneimine or the surfactant acetyl trimethy-
lammonium bromide, these CNFs had a clear effect on
cell viability (Alexandrescu et al. 2013). In addition,
human dermal fibroblasts (hDF) exposed to car-
boxymethylated-CNFs,  trimethyalmmonium-CNFs
and the unmodified-CNFs, extracted from bleached
sulphite softwood dissolving pulp, did not evidenced
cytotoxic effects in direct and indirect contact tests,
being the carboxymethylated CNFs the most biocom-
patible (Hua et al. 2014). Nordli et al. (2016)
introduced a modification in TEMPO-mediated oxi-
dation, producing CNFs (width 3.7 4 1.3 nm) from
never dried bleached Pinus radiata pulp fibres with
negligible endotoxin levels (Nordli et al. 2016).
Normal human dermal fibroblasts and human epider-
mal keratinocytes treated with this ultrapure CNFs
either in aerogel or in solution (50 pg/mL for 24 h)
showed that the aerogel induced a decrease of
metabolic activity (MTT assay) of both cell lines,
more evident in keratinocytes than in fibroblasts, but
without evidence of membrane damage (LDH assay).
The CNF solution was not cytotoxic. The decrease
observed in cell metabolic activity was possibly
explained by the increased mechanical stress produced
by the aerogel matrix, leading to a reduction in cell
proliferation without cell death. To investigate if the
hydrophobicity of CNFs had an impact on its
cytotoxicity, Yanamala et al. (2016) studied the
viability (Alamar blue and LDH assays) of A549 cells
and THP-1 cells exposed (5 — 300 pg/mL) to freeze-
dried powders of hydrophilic (uncoated; width
56 £ 14 nm) and hydrophobic forms (lignin-coated;
48 4+ 20 nm) of CNFs (Yanamala et al. 2016). There
was no effect in A549 cells viability, but THP-1 cells

revealed a dose-dependent cell death, higher after 72 h
post-exposure to both CNFs, being the hydrophobic
form more cytotoxic than the hydrophilic one (un-
coated). It should be noted that the lignin coating
decreased the average lengths of the CNF particles that
were more dispersed in TEM/AFM analysis, as
compared to the uncoated CNFs. The agglomeration
of uncoated CNFs can reduce their contact with the
cells, explaining the lower cytotoxicity of the hydro-
philic CNFs. Other vegetal biomass sources of CNFs
or other cellular models have been used without
reportable cytotoxicity. No cytotoxicity was observed
in indirect and direct tests with CNF from Curaua leaf
fibres (width 6.4 £ 4.6 nm) in Vero cells, which
instead showed higher adhesion to the surface and
growing than the untreated culture (Souza et al. 2018).
Tibolla et al. (2019) reported significant cytotoxicity
in CaCO-2 cells exposed to CNCs isolated from
banana peel at concentrations above 2000 pg/mL
(Tibolla et al. 2019). No acute toxicity (highest
tolerated dose and total protein content) and only
sub-lethal effects (RNA synthesis inhibition) was
observed in a human cervix carcinoma (HeLLa229) cell
line exposed for 24 h and 72 h to CNFs from bleached
hardwood kraft pulp (width 20-40 nm), although a
significant decrease in the total protein content was
observed for the highest CNF concentration (Pitkénen
et al. 2014). No cytotoxicity was also detected in the
tri-culture model of small intestinal epithelium used in
the DeLoid et al. (2019) study after 24 h exposure to
intestinal digesta containing CNFs at 0.75 or 1.5%
w/w (DeLoid et al. 2019).

The oxidative damage caused by CNFs, either in
gel or powder, was assessed by the GSH and protein
sulthydryl (SH) levels in A549 cells exposed for 24 h
and 72 h. All the three concentrations tested led to a
dose-dependent significantly decrease in the levels of
GSH and SH at both time points, with lower levels
detected at 72 h, as compared to 24 h, indicating the
induction of oxidative stress (Menas et al. 2017). On
the contrary, no significant increase in intracellular
ROS was observed in THP-1 cells treated with a
pristine, an anionic and a cationic surface-modified
CNFs (Lopes et al. 2017). As already mentioned, ROS
production also was assessed in DeLoid et al. (2019)
study of digested CNCs and CNFs, with no increase of
ROS production upon CNF exposure (DeLoid et al.
2019).
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Concerning  genotoxicity assessment, CNFs
obtained from cotton and curaua were the first to be
evaluated for its genotoxicity in human lymphocytes
(comet assay) and 3T3 cell mouse fibroblasts (de Lima
et al. 2012). Genotoxic effects were observed in cells
exposed to curaud CNFs (mitotic index and DNA
degradation) and to brown cotton CNFs (DNA degra-
dation and DNA damage assessed by the comet assay).
Neither the white, green or ruby cotton showed to be
genotoxic. Importantly, genotoxic effects were
reported by Ventura et al. (2018a) who observed an
increase in the frequency of micronuclei in A549 cells
co-cultured with THP-1 macrophages exposed to 1.5
and 3 pg/cm® of CNFs obtained from bleached
Eucaliptus globulus kraft pulp by TEMPO-mediated
oxidation (width 25.9 nm) (Ventura et al. 2018a). No
DNA damage was detected in the comet assay, with
and without FpG treatment, suggesting that the CNFs
failed to induce DNA damage and oxidative DNA
lesions. The detection of chromosomal damage in this
co-culture model suggests that it can be more sensitive
for detection of genotoxic effects than the conven-
tional cell monocultures.

From the studies described, no clear conclusions
can be drawn about the CNF cytotoxicity, given that
conflicting results have been obtained, ranging from a
complete absence of toxicity up to a moderate
cytotoxic effect. Interestingly, some studies have even
reported increased cell viability in the presence of
CNFs in culture, suggesting that it may be suitable for
use as a matrix for cell growth or tissue regeneration.
Nevertheless, this effect can also raise some concern
as cell hyperproliferation may be associated to a tumor
promoter effect. On the other hand, more studies are
needed to assess the genotoxicity of CNFs, in order to
ascertain their potential carcinogenic effect.

Likewise the in vitro studies of CNC, also the CNF
toxicological studies are resumed in Table 2.

CNC and CNF toxicity in in vivo studies
Nanocellulose absorption

In in vivo studies, the histological examination of
target tissues following animals’ exposure to nanocel-
lulose may allow the identification of fibres’ deposi-
tion patterns. For instance, in the study reported by
Park et al. (2018), microscopic examination of the
bronchoalveolar lavage (BAL) fluid from exposed
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mice revealed that CNMs remained in the lungs
14 days after pharyngeal aspiration, being completely
engulfed by the phagocytes (Park et al. 2018).
Likewise, in another work, the microscopic analysis
of BAL cells from mice exposed through intratracheal
instillation (Hadrup et al. 2019) revealed that CNFs
and CNTs were taken up by alveolar macrophages,
whereas asbestos seemed to penetrate through the cell
membranes causing cytoplasmic extensions. After
28 days post-exposure, CNFs were visualized in the
alveolar region close to terminal bronchioles of
exposed mice, often phagocytosed by macrophages,
or appearing as aggregates larger than macrophages.
In contrast, there was no evident staining of CNFs in
the liver, suggesting that their levels were too low or
that they did not reach the liver after pulmonary
exposure (Hadrup et al. 2019).

Immunotoxicity

Regarding CNCs, the local and systemic inflammatory
potential of two forms of wood derived-CNC in a 10
wt % gel/suspension or in powder was studied by
Yanamala et al. (2014) in adult female C57BL/6 mice
(7-8 week old) exposed by pharyngeal aspiration to
50-200 pg/mouse, and compared to that of asbestos
(Yanamala et al. 2014). Twenty four hours after
exposure, an increase in the total number of cells was
found in the BAL fluid with an accelerated recruitment
of neutrophils, lymphocytes, and eosinophils, and a
dose-dependent increase in polymorphonuclear neu-
trophils (PMN). Overall, exposure to powder CNCs
was able to induce a more prominent increase in BAL
cells, with the accumulation of eosinophils, while
exposure to CNCs in suspension caused higher
oxidative stress. This difference could be partially
due to the differences in the CNC dimensions, since
the range of CNC in suspension was 90.2 + 3.0 nm
(length) and 7.2 & 2.1 nm (width) while in powder
was 207.9 & 49.0 nm (length) and 8.2 £ 2.3 nm
(width). The overall higher levels of PMNs and other
inflammatory cells upon CNC exposure as compared
to asbestos indicated that CNC elicited a more severe
acute inflammatory response. A total of 12 cytokines,
including interleukins (IL-1a, IL-1f, IL-5, IL-6, IL-
12p40), and TNF-a were significantly up-regulated in
CNC-exposed mice, and the majority was also
elevated in the asbestos-exposed ones. On the other
hand, mice exposed to the CNC suspension displayed
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a type 1 T helper cell (Thl) immune response and a
stronger acute inflammatory response while CNC
powder-exposed animals showed type 2T helper cell
(Th2) responses, i.e., an allergic inflammation. Inter-
estingly, the pattern of up-regulated cytokines/
chemokines was less prominent in mice exposed to
asbestos. White blood cells counts were significantly
increased after exposure to both forms of CNC
(200 pg/mouse) what clearly indicates an acute sys-
temic inflammation. These results show that the
morphology and dimensions of CNCs may be critical
factors affecting the type of innate immune inflam-
matory response in lungs and that the immune
response is gender specific.

A posterior study from the same group was
performed with C57BL/6 female and male mice
(7-8 weeks) to explore gender differences in response
to CNC longer exposures (Shvedova et al. 2016). Mice
were exposed by pharyngeal aspiration to wood pulp-
derived CNC (length 158 & 97 nm; width
54 £ 17 nm) 2 times a week for 3 weeks. After
3 months post-exposure (cumulative dose of
240 pg/mouse) a significant rise in total cell numbers
and macrophages was detected in the BAL, with
female mice showing a higher increase in total PMN
and lymphocytes as compared to male mice.
Histopathological analysis and determination of pro-
inflammatory cytokines and chemokines in BAL fluid
showed that female developed a more accentuated
inflammatory response to CNC than male mice. A
similar trend was seen regarding markers of oxidative
stress, in that CNC exposure was associated to a higher
decrease in the antioxidant defense reserves in females
compared to males, although both genders were
affected. Summing up, accelerated oxidative stress,
elevated TGF-P, and collagen deposition in the lungs
of CNC exposed mice were highly expressed in female
compared to male mice, highlighting gender differ-
ences in the pulmonary response to CNC exposure.

Recruitment of neutrophils, macrophages, lympho-
cytes and eosinophils was also observed in the lungs of
female C57Bl/6 mice (7-8 weeks old) exposed by
pharyngeal aspiration to a CNF obtained by TEMPO-
mediated oxidation (length 300-1000 nm; thickness
10-25 nm), indicating an acute inflammatory
response (Catalan et al. 2017). A significant dose-
dependent increase in the mRNA expression of TNF-
o, IL-1B, IL-6, and RANTES was also found at the
highest dose of CNF (200 pg/mouse), although their

protein levels remained unaffected. Park et al. (2018)
assessed the inflammatory responses in the lungs of
BALB/c mice (female, 7-8-week-old) 14 days after
exposure by oropharyngeal aspiration of nanosized
materials with fibrous morphology that included CNF
and CNC (40 and 80 pg per mouse) (Park et al. 2018).
Total cell number, mononuclear phagocytes and PMN
were increased in BAL of the animals exposed to the
highest doses of both nanocelluloses. The amount of
total protein and LDH activity was not increased. At
14 days after exposure, CNC induced low toxicity and
a gradual time-dependent alleviation of inflammation,
and CNF a differentiation of T-cells toward a Thl-
phenotype that was more obvious in high-dose expo-
sure group. The clear demarcation in the clustering
analysis of cytokines induced by CNC and CNF, and
the clustering of CNF with CNT, suggested a differ-
ential pattern of cytokine pathways between fibrous
and crystalline cellulose with the later having more
similarity with those induced by fibrous carbonaceous
nanomaterials.

As mentioned, besides morphology (high aspect
ratio), fibre functionalization is a relevant aspect for
the nanomaterial toxicity. Ilves et al. (2018) studied
four different CNFs obtained from wood-based pulp
and compared their effects with bulk—sized cellulose
fibrils and CNT in female C57BL/6 mice exposed to
10 or 40 pg/mouse of the tested material (Ilves et al.
2018). After 24 h exposure, none of the CNF affected
the macrophage counts, but all induced a significant
influx of neutrophils into the BAL. Moreover, the
bulk-size cellulose and the two non-functionalized
CNEF, all with slightly negative zeta potential, induced
the recruitment of eosinophils to BAL, with the last
two also elevating the lymphocytes. Supporting these
finding, neutrophils and some eosinophils were
detected in lung tissue after treatment with these
CNFs. Compared to CNT, all CNF were less potent in
causing inflammation, but were similar or exceeded
those caused by the bulk material. Moreover, when
compared with the Catalan et al (2017) study that used
the same animal model and the same CNF doses, the
CNFs used by Ilves et a. (2018) had a higher
inflammatory potency (Catalan et al. 2017; Ilves
et al. 2018). Regarding cytokine expression, all
materials up-regulated the expression of IL-6 in lung
tissue, associated to neutrophil trafficking in acute
inflammation. The bulk-sized cellulose and the non-
functionalized CNF elevated the expression of IL-1f,
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but not the carboxymethylated CNF or the carboxylic
acid groups-CNF. The two non-functionalized CNF
also up-regulated TNF-o and IL-13. No marked
immune reaction was observed after 28 days. When
evaluating the presence of agglomerates in lung tissue,
there was no significant reduction of agglomerates of
cellulose materials in the lungs by day 28, as compared
to 24 h, and the two non-functionalized CNF were the
ones with a higher amount. All cellulose materials
reached the alveolar space. Hadrup et al. (2019)
explored whether the pulmonary and systemic toxicity
of CNF could be reduced by its carboxylation (Hadrup
et al. 2019). Female C57BL/6 mice (7-8 weeks old)
were exposed by intratracheal instillation to 6 or 18 pg
CNF obtained from natural wood-based pulp. Since
CNF in dispersion is viscous, exposure by intratra-
cheal instillation may result in a more efficient
alveolar dosing than aspiration. Comparing the CNF
produced with an enzymatic pre-treatment with the
one with a carboxylated 70% crystallinity structure,
they observed that CNF with carboxylated OH groups
induced less inflammation in terms of BAL neu-
trophils and less systemic acute phase response in
terms of the plasma level of SAA3 as compared with
the enzymatic CNF. This observation suggests
involvement of OH groups in the inflammatory and
acute phase responses, and that this may be a strategy
to lower the pulmonary toxicity of CNF. In addition,
the enzymatic CNF appeared to be more potent than
CNT in inducing systemic acute phase response, since
it increased SAA3 levels in plasma at much lower
doses.

Cytotoxicity and oxidative damage

Since cellulose at the micro-scale and its derivatives
have been widely used as a thicker and filler in foods
and drugs, a recent semi-chronic study was performed
to evaluate the toxicological effects of ingested CNF
(DeLoid et al. 2019). Male Wistar Han rats (12 weeks
old) were exposed to a CNF (mean width 64 nm)
produced by mechanical grinding of dried sheets of
softwood bleached kraft fibre, alone or in a food
matrix. In addition, a triculture was used parallel, as
already discussed in the in vitro section. No significant
differences were found in blood counts, haematolog-
ical measurements (haemoglobin concentration,
haematocrit, mean corpuscular volume, mean corpus-
cular haemoglobin, mean corpuscular haemoglobin
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concentration, platelet count or mean platelet volume),
serum markers (total cholesterol, HDL, LDL, free
fatty acid), markers of hepatic function (AST, ALT,
ALP, total protein, albumin), markers of renal function
(total bilirubin, creatinine) or electrolytes (sodium,
potassium, chloride). Histopathology did not reveal
significant findings also, suggesting that CNF has little
acute toxicity and probably can be considered as non-
toxic when ingested in small quantities.

Concerning CNC. an increase of up to 1.63-fold and
1.57-fold in LDH activity, a marker of cell membrane
damage, was found in the lungs of adult female
CS57BL/6 mice after pharyngeal aspiration of a 10 wt
% CNC gel/suspension and in powder, respectively
(Yanamala et al. 2014). Oxidative damage was
evaluated by the presence of 4-hydroxynonenal (4-
HNE) and protein carbonyl formation. A dose-depen-
dent increase in the accumulation of protein carbonyls
was detected upon exposure to CNC, with a higher
effect in the suspension, as compared to the powder
CNC. Both CNC formulations caused an increase in
4-HNE levels, albeit at higher concentrations (100 and
200 pg per mouse). Overall, the magnitude of oxida-
tive damage was more pronounced in the lungs of mice
treated with CNC than in those treated with asbestos
(Yanamala et al. 2014). The same mice exposed by
pharyngeal aspiration to a wood pulp-derived CNC,
two times a week for three weeks, also revealed
pulmonary tissue damage after 3 months post-expo-
sure, as assessed by LDH and total protein activity in
BAL (cumulative dose of 240 pg/mouse) (Shvedova
et al. 2016).

Genotoxicity and gene expression studies

Presently, there are limited in vivo studies document-
ing the genotoxic effects of CNCs. To our knowledge,
the first study was conducted in female C57B1/6 mice
exposed to a TEMPO-mediated oxidation CNF (length
300-1000 nm; thickness 10-25 nm), administrated by
a single pharyngeal aspiration of 10, 40, 80 and
200 pg/mouse (Catalan et al. 2017). After 24 h, DNA
damage was assessed by the comet assay in the BAL
and lung cells, and chromosome damage by the bone
marrow micronucleus assay. A significant increase in
the percentage of DNA in tail was observed at the two
lower doses of CNF in lung cells, whereas no increase
was seen in BAL cells. No effects were detected in the
bone marrow micronucleus assay. Increased DNA
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damage was also observed with an enzymatic non-
carboxilated CNF in lung tissue, and with a carboxy-
lated CNF in BAL fluid of exposed mice, although a
dose-response relationship was not observed (Hadrup
et al. 2019).

Gene expression studies using novel high-through-
put technologies have been a promising tool to unravel
the molecular mechanisms of toxicity, and some
“omics” studies have been already applied to inves-
tigate other nanofibres, such as CNT (Ventura et al.
2018a). Regarding CNMs, Shvedova et al. (2016)
assessed global pulmonary gene expression changes in
the lung tissue of mice 3 months post exposure to
CNC using a high-throughput mRNA microarray
(Shvedova et al. 2016). A total of 845 and 794 of the
22,486 probes were significantly differentially
expressed in male and female mice, respectively, with
68 common differentially expressed genes (DEG) in
both genders. In males, there was enrichment of
intracellular/cytoplasmic genes with roles in biolog-
ical processes focused on cellular development/func-
tion/growth and response to stimuli, and, in females, of
genes localized in extracellular and plasma membrane
regions carrying out biological functions related to cell
adhesion, cellular metabolism/catabolism and inflam-
mation. DEG involvement in carbohydrate/pattern/
polysaccharide and glycosaminoglycan binding were
found to be commonly enriched in both genders. In
males the DEG were involved in circadian rhythm
signaling and in pathways related to cancer and
inflammatory response while in females, DEG were
mostly involved in inflammatory and immune
response signalling. Moreover, the transcription reg-
ulator analysis highlighted significant enrichment of
antioxidant mechanisms triggered in response to
oxidative stress in males upon exposure to CNC, but
not in females.

Reprotoxicity

Spermatogenesis is a process that can be perturbed by
many chemical and physical external environmental
factors, and some studies have already associated
exposure to nanomaterials with decreased sperm
motility and abnormal sperm morphology in male
rodents (Gromadzka-Ostrowska et al. 2012; Guo et al.
2009; Yoshida et al. 2009). Regarding nanocellulose,
only one study was found about the effects of
pulmonary exposure to CNC in the reproductive

system of male mice (Farcas et al. 2016). Adult male
C57BL/6 mice (7-8 weeks) were administered with
40 pg/mouse/day of a wood-pulp-derived CNC
(158 &= 97 nm length, 54 £ 17 nm width and
149.8 £ 2.6 nm hydrodynamic width) by pharyngeal
aspiration, and three months after the last administra-
tion the outcomes on their reproductive system were
evaluated. CNC exposure produced a 40% decline in
spermatozoa counts and 50% decrease in motile sperm
cells. Morphological evaluation of sperm smear
indicated a significantly increase in thin and elongated
head (2.67-fold), club-shaped head (1.5-fold), looping
midpiece (1.57-fold), and bent mid-piece (2.37-fold).
The DNA fragmentation index was significantly
elevated. These changes may be attributed to perox-
idative modification of lipids of sperm plasma mem-
brane and correlated with enhanced MPO activity and
increased accumulation of several cytokines and
chemokines In addition, IL-18, IL-2, IL-12p40, KC,
MCP-1, and TNF-a were higher in serum of exposed
animals, suggesting systemic effects of pulmonary
exposure to CNC. Testicular oxidative damage, par-
ticularly in the epididymis, was also found. Histolog-
ical analysis of testes sections from the CNC-exposed
animals displayed mild to moderate interstitial edema
and frequent dystrophic seminiferous tubules with
arrested spermatogenesis and degenerating spermato-
cytes. Testosterone levels were elevated in testes and
serum of exposed mice, and luteinizing hormone
levels in serum were significantly reduced. This study
clearly associated CNC to reprotoxic effects in mice.

All in vivo toxicological studies of CNC and CNF
are shown in Table 3.

Conclusions

CNMs are promising nanomaterials with a wide range
of possible applications in industry and biomedicine.
However, from this literature review, it is well brought
to light that nanocellulose with different physico-
chemical characteristics elicit different toxicological
effects and further clarification of its main adverse
features is lacking, in order to contribute for a safer-
by-design approach. CNMs in gel or powder trigger
diverse immunological responses, which are possibly
associated to their tendency to agglomerate when
dispersed in body fluids (in vivo) or culture medium
(in vitro). Nanocellulose agglomeration will affect its
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bioavailability, its cellular uptake and the interaction
with the subcellular components. Thus, different
functionalization affecting their hydrophobicity, sur-
face charge and surface chemistry may either facilitate
or difficult the nanocellulose uptake and the interac-
tion of its functional groups with the cell membrane,
affecting the downstream biological responses. Over-
all, nanocellulose uptake into cells is generally low,
with no induction of oxidative stress and no significant
cytotoxic and genotoxic effects. However, macro-
phages that, due to their phagocytic function internal-
ize rod-like CNC, trigger a moderate to severe
inflammatory reaction, which depend on the CNC
functionalization mainly. In contrast, long CNFs
generally are not phagocytized and do not cause an
inflammatory response. However, CNF revealed sig-
nificant genotoxicity, both in vivo (DNA damage)
and in vitro (chromosomal damage). These outcomes
are apparently milder than the ones observed for other
nanofibres, such as some CNT, for which several
rodent studies demonstrated severe adverse effects,
including pulmonary inflammation, interstitial fibro-
sis, granuloma, bronchioloalveolar hyperplasia and
even cancer. Accordingly, in vitro studies evidenced
more consistent cytotoxic, genotoxic and immuno-
toxic effects for CNT, than for the CNMs addressed in
this work. These noticed disparities may be related to
differences in the physicochemical properties of these
two classes of nanofibres, e.g., rigidity or surface
properties, although both display high aspect ratio and
biopersistency On the other hand, gene expression
studies and other new “omics” approaches are still in
its infancy in the field of nanocellulose toxicology and
need to be further developed to give insights into the
cells response against CNMs and consequent effects.
Considering the CNMs physicochemical characteris-
tics (size and surface charge, particularly) it is
essential to design safer CNMs for endless applica-
tions, and to prevent adverse health effects resulting
from oral, dermal or respiratory human exposure, in
order to accomplish safe and sustainable innovative
applications.
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