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Abstract. We make three independent observations on characterizing effective descent mor-

phisms in the category of topological spaces. The first of them proposes a new modification of

known characterizations of effective descent morphisms of general spaces, while the other two are

devoted to locally finite and Hausdorff spaces, respectively. The Hausdorff case is considered,

as far as we could, at the more general level of relational algebras in the sense of M. Barr.

Introduction

As the Reader might conclude from its title, this note is closely related to our previous note [6].

In fact it consists of three independent additional observations on characterizing effective descent

morphisms in the category Top of topological spaces, presented in three sections, respectively,

as follows:

Just as in [6] and in several other papers we refer to, saying that f : X → Y is an effective

descent morphism in Top we simply mean that the pullback functor

f∗ : (Top ↓ Y )→ (Top ↓ X)

is monadic. In Section 1 we recall two known characterizations of such maps, due to J. Reiterman

and W. Tholen [11] and to M. M. Clementino and D. Hofmann [3], and add a modified version

of the first of them. Since each characterization is quite sophisticated, such an addition seems

to be useful.

Section 2 is devoted to locally finite spaces, and its main purpose is to show that a morphism

there is an effective descent morphism if and only if it is an effective descent morphism in Top.

A counter-example shows that this result does not extend to Alexandrov spaces.

Section 3 is devoted to the ‘opposite extreme’, namely to Hausdorff spaces, and again, a

morphism there is an effective descent morphism if and only if it is an effective descent morphism

in Top. As far as we could, we use there the more general context of relational algebras in the

sense of M. Barr [1]; such an algebra is a Hausdorff algebra if its structure relation is a partial

map. A remark at the end recalls one of the open questions mentioned in [6] and explains that,

as follows from our results, it has affirmative answers in both locally finite and Hausdorff cases.
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1. Reiterman-Tholen and Clementino-Hofmann characterizations of effective

descent morphisms of general topological spaces: a reformulation

For a continuous map f : X → Y of topological spaces, we have:

Theorem 1.1 ([11]). A surjective continuous map f : X → Y is an effective descent morphism

in Top if and only if, for every family of ultrafilters yi on Y converging to yi ∈ Y , i ∈ I, such

that the yi’s converge to y ∈ Y with respect to an ultrafilter u on I, there is an ultrafilter x on

X converging to a point x ∈ f−1(y) such that
⋃
i∈U Ai ∈ x for all U ∈ u, where Ai is the set of

adherence points of the filterbase f−1yi which belong to f−1(yi).

Theorem 1.2 ([3]). A continuous map f : X → Y between topological spaces is of effective

descent if and only if Ult(Ult(f)) is surjective.

Denoting the ultrafilter monad on Top by T = (T, η, µ), we are going to reformulate these

theorems as one theorem (Theorem 1.4 below) expressed in a language that uses only T and the

convergence relations R ⊆ T (X)×X and S ⊆ T (Y )×Y on X and Y , respectively. Following [3],

the map R→ S induced by f will be denoted by f1, while the map T (R)×T (X)R→ T (S)×T (Y )S

induced by f1 will be denoted by f2. That is, f1 = Ult(f) and f2 = Ult(Ult(f)) as defined in [3].

Lemma 1.3. (‘Folklore’) Let

A C
uoo v // B

be a span of sets with a ∈ T (A) and b ∈ T (B). The following conditions are equivalent:

(i) there exists c ∈ T (C) with T (u)(c) = a and T (v)(c) = b;

(ii) D ∈ a⇒ v(u−1(D)) ∈ b.

Proof. (i)⇒(ii): D ∈ a⇒ u−1(D) ∈ c⇒ v−1(v(u−1(D))) ∈ c⇒ v(u−1(D)) ∈ T (v)(c) = b.

(ii)⇒(i): The equalities T (u)(c) = a and T (v)(c) = b hold if and only if, for every D ∈ a

and every E ∈ b, the sets u−1(D) and v−1(E) belong to c. To prove the existence of such c

is to prove that u−1(D) ∩ v−1(E) is always non-empty. And it is indeed non-empty since so is

v(u−1(D)) ∩ E being the intersection of two elements of the filter b. �

Theorem 1.4. Let X = (X,R) and Y = (Y, S) be topological spaces. The following conditions

on a continuous map f : X → Y are equivalent:

(i) f is an effective descent morphism in Top;

(ii) for every (s, (y, y)) ∈ T (S) ×T (Y ) S, there exists (x, x) ∈ R with f(x) = y and ρ2(f−1
1 (U))

in x for each U ∈ s, where ρ2 is the second projection map R→ X;

(iii) for every (s, (y, y)) ∈ T (S) ×T (Y ) S, there exists (x, x) ∈ R with f(x) = y and f1(ρ−1
2 (V ))

in x for each V ∈ x, where ρ2 is as above;

(iv) f2 is surjective, that is, for every (s, (y, y)) ∈ T (S) ×T (Y ) S, there exists

(r, (x, x)) ∈ T (R) ×T (X) R with f(x) = y and T (f1)(r) = s (which also implies

T (f)(x) = y).

Moreover, it can be assumed that for a given (s, (y, y)) ∈ T (S) ×T (Y ) S, the pair (x, x) involved

in conditions (ii), (iii), and (iv) is the same.
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Proof. (i)⇔(iv) is a trivial copy of Theorem 1.2. (ii)⇔(iv) follows from Lemma 1.3 applied to

the span

S R
f1oo

ρ2 // X,

while (iii)⇔(iv) follows from Lemma 1.3 applied to the opposite span. �

Remark 1.5. A careful comparison with Section 5 in [3] could explain that our reformulations

and proof of Theorem 1.4 are hidden there, and, on the other hand, they cover the proof of

Theorem 5.2 of [3]. Not going into the full story, let us only point out the following:

(a) Our Lemma 1.3, which indeed seems to be a known ‘folklore observation’ is actually

useful for several purposes. For example, it easily implies the Beck–Chevalley property

of T , using a much simpler Beck–Chevalley property of the power set functor, namely

the fact that, for a pullback diagram

C
v //

u
��

B

β
��

A
α
// U

and any subset D of A, we have v(u−1(D)) = β−1(α(D)).

(b) The definition of Ai in Theorem 1.1 is equivalent to

(1.i) Ai = {a ∈ X | (∃a∈T (X) (T (f)(a) = yi & (a, a) ∈ R)) & f(a) = yi},

and, for U ∈ u, we can calculate subsequently:

φ(U) = {(yi, yi) | i ∈ U},

f−1
1 (φ(U)) = {(a, a) ∈ R | ∃i∈U (T (f)(a), f(a)) = (yi, yi)},

ρ2(f−1
1 (φ(U))) = {a ∈ X | ∃i∈U ∃a∈T (X) ((T (f)(a), f(a)) = (yi, yi) & (a, a) ∈ R)},

which, together with (1.i), gives⋃
i∈U

Ai = ρ2(f−1
1 (φ(U))),

and easily shows the equivalence of conditions (i) and (ii) in Theorem 1.4, independently

of Theorem 1.2.

2. Locally finite descent

For a topological space X, let R = Ult(X) and T (R) ×T (X) R = Ult(Ult(X)) be as in

Section 1.

Theorem 2.1. The following conditions on a space X = (X,R) are equivalent:

(i) X is locally finite, that is every point in X has a finite neighbourhood;

(ii) X is an Alexandrov space (which means that its set of open subsets is closed under inter-

sections, or, equivalently, its topology is determined by a preorder), in which all minimal

open subsets are finite;

(iii) if (x, x) belongs to R, then the ultrafilter x is principal;

(iv) if (r, (x, x)) belongs to T (R)×T (X) R, then the ultrafilters x and r are principal.
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Proof. (i)⇔(ii) is well known.

(i)⇒(iii): Given (x, x) ∈ R, let X ′ be a finite neighbourhood of x; then X ′ ∈ x and, since X ′

is finite, this implies that x is principal.

(iii)⇒(i): Suppose x is a point in X and u the set of all subsets of X of the form U ∩V , where

U is a neighbourhood of x and V has a finite complement. If x ∈ T (X) contains u as a subset,

then x is a non-principal ultrafilter with (x, x) in R, which is impossible by (iii). Since u is closed

under finite intersections, this means that U ∩ V = ∅ for some neighbourhood U of x and some

V with a finite complement, making U finite.

(iii)⇒(iv): Assuming (iii), if (r, (x, x)) belongs to T (R) ×T (X) R, then x is principal and

T (ρ2)(r) = x. Suppose x is generated by {x′}, that is, x = {U ⊆ X |x′ ∈ U}. We observe:

(a) {x′} ∈ x, and so ρ−1
2 ({x′}) belongs to r.

(b) We already know that (iii) implies (i), and so there exists a finite neighbourhood A of x′.

(c) ρ−1
2 ({x′}) consists of all elements of R of the form (a, x′), and, since every ultrafilter con-

verging to x′ contains all neighbourhoods of x′, each such a contains A.

(d) An ultrafilter containing a finite set must be a principal ultrafilter generated by one of its

one-element subsets.

(e) As follows from (c) and (d), the set ρ−1
2 ({x′}) is finite.

(f) As follows from (a) and (e), r is a principal ultrafilter.

(iv)⇒(iii): For (x, x) ∈ R, choose r with T (ρ2)(r) = x, which is possible since ρ2 is surjective

making T (ρ2) as well. Then (r, (x, x)) belongs to T (R)×T (X) R, and we can apply (iv). �

Let us write

6R = {(x1, x0) ∈ X ×X |x0 ∈ {x1}}, 6(2)
R = {(x2, x1, x0) |x2 6 x1 6 x0} ≈ 6R ×X 6R .

Consider the map

(2.i) 6(2)
R → T (R)×T (X) R

defined by (x2, x1, x0) 7→ (r, (x, x0)), where x = ẋ1 is the ultrafilter on X generated by {x1}, and

r is the ultrafilter on R generated by {(ẋ2, x1)}. It is natural in X, and, from Theorem 2.1, we

easily obtain:

Corollary 2.2. If X is locally finite, then the map (2.i) is bijective.

This gives us a simple characterization of effective descent morphisms of locally finite spaces:

Theorem 2.3. Let X = (X,R) and Y = (Y, S) be locally finite topological spaces. The following

conditions on a continuous map f : X → Y are equivalent:

(i) f is an effective descent morphism in Top;

(ii) f is an effective descent morphism in the category of Alexandrov spaces;

(iii) f is an effective descent morphism in the category of locally finite spaces;

(iv) the map 6(2)
R → 6

(2)
S induced by f is surjective.

Proof. (i)⇔(iv) follows from Theorem 1.4(i)⇔(iv) (i.e., from Theorem 1.2) and Corollary 2.2.

(ii)⇔(iv) is nothing but the characterization of effective descent morphisms of preordered sets

(Proposition 3.4 in [9]).
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(ii)⇒(iii): As follows from a well-known observation in descent theory, e.g. recalled as Corol-

lary 2.7.2 in [10], we only need to prove that, for a pullback diagram

(2.ii) A
g
//

α
��

B

β
��

X
f
// Y

in the category of Alexandrov spaces, B is a locally finite space whenever so are A, X, and Y .

Replacing again Alexandrov spaces with preorders and continuous maps with preorder-preserving

maps, we have to prove that, for every b ∈ B, the set b ↓ = {b′ ∈ B | b′ ≤ b} is finite, whenever

all elements of A, of X, and of Y have such properties. Suppose b ↓ is infinite, and observe:

• Since β(b) ↓ is a finite subset of Y , there exists an infinite subset B′ of b ↓, on which β

is constant; say, β(B′) = {y}.
• Since β is preorder-preserving, we have y ≤ β(b).

• Since f satisfies (ii), it also satisfies (iv). Therefore there exist x′ ≤ x in X with

f(x) = β(b) and f(x′) = y.

• For every b′ ∈ B′, we have (x′, b′) ≤ (x, b) in A = X ×Y B. Since B′ is infinite, this gives

an infinite subset of (x, b) ↓ in A, which is a contradiction.

(iii)⇒(iv): The proof of Proposition 3.4(b)⇒(c) of [9] can be used since A there, which plays

the role of our B, is finite. �

Remark 2.4. (a) Having a simple description of effective descent morphisms in the category

of locally finite spaces might seem surprising since this category does not admit some

coequalizers.

(b) Assuming X and Y in Theorem 2.3 to be not just Alexandrov spaces, but locally finite

spaces, is essential. Indeed, take: Y to be the set of integers with the topology determined

by the usual order; X to be the coproduct of all sets of all three-element subspaces of

Y ; f : X → Y to be induced by the inclusion maps. Then f satisfies condition (iv) of

Theorem 2.3 (which implies that it satisfies condition (ii) there, by Proposition 3.4 of

[9]), but it is not even a descent map (=pullback stable regular epimorphism) in Top,

which can be easily shown using either the convergence approach, or the Day–Kelly

characterization [8] of pullback stable regular epimorphisms in Top.

(c) Similarly to 6(2)
R one can define 6(n)

R = {(xn, ..., x0) |xn 6 ... 6 x0} and, given a con-

tinuous map f : (X,R)→ (Y, S), require the induced map 6(n)
R → 6(n)

S to be surjective

for every natural n. In the case of finite spaces this will characterize triquotient maps

(see [2]), and in the case of locally finite spaces the same follows from Theorem 6.4 in

[3]. However, an obvious modification of the example given in (b) shows that even this

strong condition will not force f to be a descent map in the case of general Alexandrov

spaces.

3. Hausdorff descent

We begin this section with a context considered in [6], where T = (T, η, µ) is an arbitrary

non-trivial monad on Sets, and consider relational T -algebras in the sense of M. Barr [1]. As
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mentioned in [6], they can also be seen as ‘T -preorders’, and they are special cases of reflexive

and transitive lax algebras in the sense of [4] and of more special reflexive and transitive (T, V )-

algebras, also called (T, V )-categories, in the sense of [7]; when T is the ultrafilter monad they

are the same as topological spaces as considered in Sections 1 and 2.

Given a relational T -algebra X = (X,R), let us repeat diagram (2.2) of [6]:

(3.i) T (R)×T (X) R

��

��

��

Ř×T (X) R

��

%%
T (R)

��

��

��

R

�� ��

Ř

zz &&
T 2(X) T (X) X

in which (also repeating from [6]):

• the solid arrows represent R as a span T (X)→ X and T (R) as a span T 2(R)→ T (X),

and then represent the composite of these spans as a span T 2(X)→ X;

• Ř is the relation T 2(X) → T (X) associated with the span T (R) : T 2(X) → T (X), that

is, Ř is simply the image of T (R) in T 2(X)× T (X);

• the dotted arrows are the canonical maps defined accordingly.

Then, given a morphism f : (X,R)→ (Y, S) of relational T -algebras, consider the commutative

diagram

(3.ii) T (R)×T (X) R
f2 //

πX
��

T (S)×T (Y ) S

πY
��

Ř×T (X) R
f̌2

// Š ×T (Y ) S,

in which:

• f2 and f̌2 are induced by f , and they are the same as the maps (2.5) and (2.6), respec-

tively, in [3]; note also that, when T is the ultrafilter monad, f2 is the same as Ult(Ult(f))

used in Section 1.

• πX is the same as the top vertical dotted arrow in (3.i) and πY is the similar canonical

map associated with Y = (Y, S).

Recall that, following the special case of the ultrafilter monad, a relational T -algebra X =

(X,R) is said to be a Hausdorff T -algebra if R is a partial map, that is, if X satisfies the

implication

((x, x), (x, x′) ∈ R)⇒ x = x′
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(of course the algebraic viewpoint would rather suggest to say “partial” instead of “Hausdorff”).

Theorem 3.1. Let f : X → Y be a morphism of relational T -algebras. Then:

(a) if Y is a Hausdorff T -algebra, then f2 is surjective if and only if so is f̌2;

(b) if the functor T has the Beck–Chevalley property, X and Y are Hausdorff T -algebras,

and f is an effective descent morphism in the category of relational T -algebras, then f

is an effective descent morphism in the category of Hausdorff T -algebras.

Proof. (a) is obvious: just note that, when Y is a Hausdorff T -algebra, the map πY involved in

diagram (3.ii) is bijective.

(b): Referring again Corollary 2.7.2 in [10] (similarly to our proof of Theorem 2.3(ii)⇒(iii)),

we only need to prove that, for a pullback diagram (2.ii) in the category of relational T -algebras

with f being an effective descent morphism, B is a Hausdorff T -algebra whenever so are A, X,

and Y . Writing here A = (A,RA), etc., suppose (b, b) ∈ RB and (b, b′) ∈ RB, and observe:

• Since (b, b) ∈ RB and (b, b′) ∈ RB, we have (T (β)(b), β(b)) ∈ RY and

(T (β)(b), β(b′)) ∈ RY , which gives β(b) = β(b′), since Y is a Hausdorff T -algebra.

• Since f is an effective descent morphism, the map RX → RY induced by f is surjective,

as follows e.g. from Theorem 2.4 of [5] (in fact this follows from various results proved

by the same authors before).

• Therefore there exists (x, x) ∈ RX with T (f)(x) = T (β)(b) and f(x) = β(b) = β(b′).

• Since the functor T has the Beck–Chevalley property, there exists a ∈ A with T (α)(a) = x

and T (g)(a) = b.

• Then, since (2.ii) is a pullback diagram, (a, (x, b)) ∈ RA and (a, (x, b′)) ∈ RA.

• Since A is a Hausdorff T -algebra, this gives (x, b) = (x, b′), and so b = b′.

That is, B is a Hausdorff T -algebra. �

Theorem 3.2. For a continuous map f : X → Y of Hausdorff spaces, the following conditions

are equivalent:

(i) f is an effective descent morphism in Top;

(ii) f is an effective descent morphism in the category of Hausdorff spaces;

(iii) f2 is surjective;

(iv) f̌2 is surjective.

Proof. (i)⇔(iii) is a special case of Theorem 1.2 (or of Theorem 1.4(i)⇔(iv), which is the same).

(iii)⇔(iv) is a special case of Theorem 3.1(a). (i)⇒(ii) follows from Theorem 3.1(b). To prove

(ii)⇒(i) we can simply copy the arguments of subsection 4.2 of [11], having in mind that the

space E ×B A constructed there is obviously a Hausdorff space provided so is E. �

Remark 3.3. As follows from Corollary 2.2, when X is a locally finite space, the canonical

maps T (R) → T 2(X) and T (R) → T (X) in diagram (3.i) are jointly monic. Therefore, when

f : X → Y is a continuous map of locally finite spaces, the vertical arrows in diagram (3.ii) are

bijections. It follows that the equivalence of conditions (iii) and (iv) in Theorem 3.2 also holds

for locally finite spaces. Does it hold for general topological spaces? This problem, mentioned

as one of the open problems in [6], is still open.
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