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Abstract

We extend basic regularity of the free boundary of the obstacle prob-
lem to some classes of heterogeneous quasilinear elliptic operators with
variable growth that includes, in particular, the p(x)-Laplacian. Under
the assumption of Lipschitz continuity of the order of the power growth
p(x) > 1, we use the growth rate of the solution near the free bound-
ary to obtain its porosity, which implies that the free boundary is of
Lebesgue measure zero for p(x)-Laplacian type heterogeneous obstacle
problems. Under additional assumptions on the operator heterogeneities
and on data we show, in two different cases, that up to a negligible singular
set of null perimeter the free boundary is the union of at most a countable
family of C* hypersurfaces: i) by extending directly the finiteness of the
(n —1)-dimensional Hausdorff measure of the free boundary to the case of
heterogeneous p-Laplacian type operators with constant p,1 < p < oo; i)
by proving the characteristic function of the coincidence set is of bounded
variation in the case of non degenerate or non singular operators with
variable power growth p(z) > 1.

1 Introduction

In [2] Caffarelli remarked that the quadratic growth of the solution from the
free boundary of the obstacle problem for the Laplacian implies an estimate of
the (n — 1)-dimensional Hausdorff (H"~!) measure of the free boundary and a
stability property. This result has a simple generalization to second order linear
elliptic operators with Lipschitz continuous coeflicients and regular obstacles,
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as observed by one of the authors in [23], page 221. This generalization allows
the extension of those properties to the free boundaries of C''! solutions of the
obstacle problem for certain quasilinear operators of minimal surfaces type (see
Theorem 7:5.1 of [23], page 246). These results are important since they are first
steps for the higher regularity of the free boundary in obstacle-type problems
(see the recent monograph [22] for problems with Laplacian).

In an earlier work [I] in the framework of homogeneous non degenerate
quasilinear operators that allow solutions to the obstacle problem with bounded
second order derivatives, Brézis and Kinderlehrer have obtained the first result
on the regularity of the free boundary in any spatial dimension: under a nat-
ural nondegeneracy condition on the data, the coincidence set of the solution
with the obstacle has locally finite perimeter (see Corollary 2.1 of [1]). As an
important consequence, by a well-known result of De Giorgi (see [12], page 54),
the free boundary 9{u > 0} may be written, up to a possible singular set of
null perimeter (i.e. of |[Vx{uso0}|[-measure zero) as a countable union of C*
hypersurfaces.

On the other hand, it was shown by Karp, Kilpeldinen, Petrosyan and
Shahgholian [I5], for the p-obstacle problem, with constant p,1 < p < oo,
that the free boundary is porous with a certain constant 6 > 0, that is, there
exists ro > 0 such that for each € 0{u > 0} and 0 < r < 7, there exists a
point y such that Bs,(y) C By(x)\ 0{u > 0}. The porosity of the free boundary
is a consequence of the controlled growth of the solution from the free bound-
ary. This interesting property was also established in [4] in the p(z)-Laplacian
framework and is now extended here to the more general class of heterogeneous
quasilinear degenerate elliptic operators in Sobolev spaces of variable exponent
p(z),1 < p(z) < co.

However, porosity is only a first step in the regularity of the free boundary
and, for instance, does not prevent it of being a Cantor-type subset. But since
a porous set in R™ has Hausdorff dimension strictly smaller that n (see [20]
or [27]), it follows that the free boundary has Lebesgue measure zero, which
allows us to write the solution of the obstacle problem as an a.e. solution of
a quasilinear elliptic equation in the whole domain involving the characteristic
function x40} of the non-coincidence set (see Theorem 3.1 below, that extends
earlier results in [3] and [4], respectively, for the A-obstacle and p(x)-obstacle
problems). This property is important to show, under general nondegeneracy
assumptions on the data, the stability of the non-coincidence set in Lebesgue
measure as a consequence of the continuous dependence of their characteristic
functions. As a consequence of our results, we can extend this property to more
general quasilinear obstacle problems, including for instance, Corollary 1.1 of
[6], Theorem 4 of [24] and Theorem 2.8 of [25].

Hausdorff measure estimates were obtained directly for homogeneous non-
linear operators of the p-obstacle problem (2 < p < 00) by Lee and Shahgholian
[17], for general potential operators by Monneau [I9] in a special case corre-
sponding to an obstacle problem arising in superconductor modelling with con-
vex energy, and by three of the authors in [6] to the so called A-obstacle in
Orlicz-Sobolev spaces, that includes a class of degenerate and singular elliptic



operators larger than the p-Laplacian (1 < p < o). Essentially with similar
estimates obtained in [6], the later work [28] reobtained the same results for
a slightly different class of homogeneous quasilinear elliptic operators that in-
cludes also the p-Laplacian case.

As it is well-known from geometric measure theory, the importance of the
estimate on the (n — 1)-dimensional Hausdorff measure of the free boundary lies
in the fact that, by a result of Federer, it implies that the non-coincidence set
{u > 0} is a set of locally finite perimeter. A main result of our present work is
the extension of properties on the "~ !-measure of the free boundary to a more
general class of heterogeneous quasilinear elliptic operators which includes a non
degenerate variant of the p(x)-Laplacian and extensions of the heterogeneous
p-Laplacian with 1 < p < co constant. The first result, following the Brézis and
Kinderlehrer approach, will be a consequence of the new result, even for linear
operators, on the local bounded variation of the coincidence set in the heteroge-
neous obstacle problem. By well known results, the estimate on the perimeter
of the (free) boundary is equivalent to the H"~!-measure of the essential (free)
boundary, which is also called the measure-theoretic (free) boundary (see [8],
page 208). The free boundary points that are not in the essential free boundary
have ||Vx{u>0} [|-measure zero or, equivalently, null perimeter. In the second case
of a possibly degenerate or singular heterogeneous operator with p constant we
extend the Caffarelli direct approach following the developments of [I7] and [6].
However, we were unable to prove this for the case of the p(x)-obstacle problem,
though we conjecture its essential free boundary has still finite "~ !'-measure
under similar assumptions.

Unlike the classical obstacle problem that admits C'*! solutions, where the
extensions of the regularity of the free boundary from the Laplacian to the min-
imal surface type heterogeneous operators were simpler and did not require a
new technique, the passage from the homogeneous case to the quasilinear het-
erogeneous obstacle problem raises several nontrivial difficulties. In particular,
one has more a complicated form of the Harnack inequality, when we pass from
the p-Laplacian to the variable p(x)-type operators, which seems is not appli-
cable to the analysis of the free boundary regularity in the general framework
that we now describe.

Let © be a bounded open connected subset of R”, n > 2, f € L*°(Q) and
g € WHPO(Q) N L®(Q), g > 0. We consider the quasilinear obstacle problem
(a(-)-obstacle problem) with a zero obstacle:

Au :=div(a(z,Vu)) = f(z) in {u> 0},
>0 in
u=g on 0%,

where we denote by {u >0} :={z € Q: wu(z) > 0} the non-coincidence set.

The weak formulation of this problem is given by the following variational



inequality

Find u € K, such that :

(P) /Q(a(x,vu)'V(U—U)‘f'f(x)(v_u))dx >0 Vv € Ky,

where K, ={ve W'O(Q) : v-ge Wol’p(')(ﬂ), v>0 aeinQ}, pis
a measurable real valued function defined in ) and satisfying for some positive
numbers p_ and p

1<p_<p(z) <psr <oo, z€f (1.1)

The space W, P (Q) is defined as the closure of C§°(€2) in W12()(Q), where
WP0)(Q) is the variable exponent Sobolev space

WO (Q) — {u e1PMQ) : Vue (LP(-)(Q))n}

and LPO)(Q) = {u : Q — R measurable : p(u) = / lu(z)|P™®) dz < oo }
Q

is equipped with the Luxembourg norm
ull oo = inf{/\ >0 @ plu/N) <1 }
W1P()(Q) is equipped with the norm

[ullwroer = llullzee) + 1Vl Lo,

where
n

IVull oy =

=1

ou
6:51-

Lr()

By B, (z) we shall denote the open ball in R™ with center  and radius r. The

conjugate of p(z), defined by p(’;()zll, will be denoted by g(z). If the center of a

ball is not mentioned, then it is the origin.

We assume that the function a :  x R® — R" is such that a(x,0) = 0 for
a.e. ¢ € ), and satisfies the structural assumptions with x € [0, 1] and some
positive constants ¢, ¢1, c2, namely [9]

" Oa; p()-2
> aﬁ_(sc,n>§i§j2co(n+|nl2) TP, (1.2)
igj=1 1
"L | da; p(w)—2
> (5w < calot p?) (1.3
ij=1 J




fora.e.z € Q ae.n=(n,n2,...,M,) € R"\{0} and for all £ = (&1, &a,...,&,) €
R™, and

|a($17n) _a($2777)| (14)
p(zy)—1 p(zg)—1

< caler = [(n 1) E T+ (e 1) E T [ s+ )2

for z1,29 € Q, n € R™\ {0}.

Remark 1.1. Assumptions (L2), (L3) imply [7], [26], for some positive con-
stants c3, ¢4 and cs

a(,€) - €= c3(k+ )PP and  a(z, )] < ealr + €))7

We therefore include the quasilinear operator
p(z)—2
Au = div (M(;v) (k+|Vul?) Vu). (1.5)

for a bounded Lipschitz positive function or definite positive matriz M (x) uni-
formly in x € Q.

Remark 1.2. The special case k = 0 corresponds to the heterogeneous p(x)-
Laplacian operator, which is singular for p(x) < 2 and degenerate for p(x) >
2. Note that ([LA) requires p(x) to be also Lipschitz continuous (see condition
@I0)). In the case of the heterogeneous p-Laplacian, corresponding to the case
p— =py =p in (L), with a Lipschitz coefficient M (z) the assumption (LA) is
satisfied without the logarithm term and reduces, for all x1,z9 € 1, to

la(z1,m) — a(z2,n)| < calwr — za|[nP 1.

First, we recall the following existence and uniqueness result [11], [25].

Proposition 1.1. Assume that f € L) (Q) and g € WP (Q)NL®(Q). Then
there exists a unique solution u to the problem (P).

We may prove the following proposition exactly as in Proposition 1.2 of [4].

Proposition 1.2. If u is the solution of (P) then

) f20imQ = 0<u<]|glre in .
it) Au= f in D'({u > 0}).
i11) fXqus0y < Au < f a.e. in Q.

Remark 1.3. Equation ii) and inequalities iii) of Proposition were estab-
lished in [25], in the framework of entropy solutions, under the condition:

essirelg(ql () — (p(xz) — 1)) > 0, where q1(z) = % and qo(x) = n?ég) p;jl.




Remark 1.4. If f > 0 in Q or f € LS (Q), we know from Proposition
that u is bounded and Au is locally bounded in Q. Moreover, if p(x) is Holder
continuous, and a(x,§) satisfies (LA)-LA), then we have [, u € Cllo’?(Q), for

some a € (0,1).

In this work we extend classical local properties of the solution and of its free
boundary to this more general framework. For k = 0, in section 2, we establish
the growth rate of a class of functions to the heterogeneous case and, in section
3, we obtain the exact growth rate of the solution of the problem (P) near the
free boundary, from which we deduce its porosity. These results extend those
for the p-Laplacian [15] and for the p(z)-Laplacian [4]. As a direct consequence,
the first inequality of 4ii) of Proposition [[2is in fact an equation:

Au = fxqusoy a.e. in Q.

In section 4, also with x = 0 and constant exponents 1 < p < oo, we obtain
directly the finiteness of the 7"~ '-measure of the free boundary for a larger class
of p-obstacle type problems that includes degenerate or singular heterogeneous
operators, which dependence on x has bounded second order derivatives. Finally,
in the case k > 0, in section 5, we extend a second order regularity result for the
solution of the Dirichlet problem to the class of quasilinear operators following
[5]. This is used in section 6 to obtain, in that case with x > 0, the local
bounded variation of Au for the solution u of the respective obstacle problem,
which generalizes the bounded variation estimates of [I] and yields the control
of the H" !-measure of the essential free boundary, under the nondegeneracy
assumption on f.

2 A class of functions on the unit ball

In this section we assume that x = 0, and in all what follows we assume that p
is Lipschitz continuous, that is, there exists a positive constant L such that

Ip(z) —p(y)| < Llx —y|  Va,y € Q. (2.1)

We study a family F, = F,(n,co,c1, 2, p—, p+, L) of solutions of problems de-
fined on the unit ball By. More precisely, u € F, if it satisfies:

u € WHrO)(By), u(0) =0,
0<u<1l in By, | Aul| oo (By) < 1.

Condition u(0) = 0 makes sense, since from [9] we know that u € C\u%(By),
for some a € (0,1). In particular, there exist two positive constants a =
a(n,cg,c1,c2,p—,py, L) and C = C(n, g, c1, c2,p—, p+, L) such that

||U||cl,a(§3/4) < C, Yu € Fa. (2.2)

The following theorem gives a growth rate of the elements in the class F,.



Theorem 2.1. There exists a positive constant Cy = Co(n, cg, c1,¢2,D—, P4, L)
such that, for every u € F,, we have

0 < u(z) < Colz|®, Va € By,

where gy = ——2 1 is the conjugate of po = p(0).

Pbo —
Let us first introduce some notations. For a nonnegative bounded function

u, we define the quantity S(r,u) = sup u(z). We also define, for each u € Fy,
reB,
the set

M(u) = {j e N: 22827771 u) > S(277 u)}.
Then we have

Lemma 2.1. If M(u) # (), then there exists a constant ¢y depending only on n,
co, €1, C2, p—, p+ and L such that

S(2777 ) < ép(279)%, Vu € F,, Vj € M(u).

Proof. Arguing by contradiction, we assume that Vk € N there exists u, € F,
and ji € M(ug) such that

S(279 7 ) = k(279%) P, (2.3)
Consider the function ]
on(z) = ug(277%x)
T 8270 )
defined in B;. By definition of v and M(uy), we have
S(Q_jk,uk) q .
O<Uk<m<2o in By,
sup vg(z) =1, ve(0) = 0.
CEGEl/g
) 2=k
Now, let pr(x) = p(279%x), s, = Se T and define for (z,£) € By x R"
_ . 1
a*(z, &) = P g (27 Ik g, gg). (2.4)
We claim that
| Apvg ()| := |div(a® (z, Vo (2)))] = 0 as &k — oo, (2.5)

Then one can easily verify that
Agvg(z) = 2 Ik Szk(m)_l(Auk)(Qijka')
+ 279k (ln(sk))szk(w)_la(27j’“3:, Vug (2774 2))Vp(2~ 9% 2).



Using the structural assumptions (second inequality in Remark[[[T]) and the fact
that uy, € Fq, and [Vp[pe(q) < L (by I)), this leads to

[Ao()] < 277557 e L2775 In(sy) | )7 Wy (277 ) (2) L

Since up > 0 in By, uk(0) = 0, and ui € C'(Bjs4), we have Vuy(0) = 0.
Combining this result and ([Z2]), we get

VEEN, VzeB |[Vup(27/*x)| < C(277%)*
It follows that

|Agor(x)| < 27+ sP 711 4 ¢y L(C)PE O In(sy,)|(279%) @@ -1) - (2.6)

Note that S(277% 71, ug) = ug(z1), for some z € By, —1. Since ux(0) = 0 and
up € C'(B3,4), we deduce that

S(Q_j’“_l,uk) < Clzi| € c27 =1,
Consequently, we obtain

2=k 2=k 2
= — 2 — = — = .
kTS, uy) ~ Ozl ¢ M

We recall from [4] that there exist positive constants ¢; = ¢ («, po, 1) and é; =
¢o(a, L, po, pt) such that

—jiya(pr(@)-1) ! C2
[ In(s)[(277%) < Jpo—1’

< e amd 27T <

Vk € N,

which together with ([2.6) gives (Z.5]).

Lemma 2.2. With the notation above, the mapping a”(z,€) defined in ([2.4)
satisfies all structural conditions (with the same constants as a(x,&)). Moreover,
we have uniformly in (z,£) € By x By, for any M > 0

dak
£ <Lp—=0 as k— oo (2.7)
J
Proof. 1t is easy to see that
"\ dak I ;S |
“(z,m&i& = s — (277, —n)&i&;
WZZI i, (586 WZZI A G e
pr(z)—2
> s L €

colnlPH ) 721¢]2,



2. | dak } - () — Oa; 1
0 x, = S 2 Jk _
ig;; o, @) ig;; - 3na( 7 )
x)—2
_ Clsm( 2| 1 pi ()
X k Sk
= oy,

Now, to prove (2.1]), we use the second inequality in Remark [Tl and (4]

day & ( pr@)-1 o 1
i N (270, —
O0x; ‘B;Ej <Sk i * skg)
z)— _ 1
< |v<szk<> Yllas(2, )|
k
1| Oa; . 1
2~ Jk Pk L(2 Tk —
+ Sk ax] ( ‘T’ 5)
) ;Dk(m) 1
< C4L2_Jk8§k( |1n Sk |‘—
) pr(z)—1
+ 2022_“5?@)71 é ln
Sk
= <C4L2 I In(sp)| + 2¢227 J’“‘ln ‘)|§|p’c L= L,
On the other hand,
2 fe e 1| S| = 27 g1 n(le]) — In(sy)
Sk

< 27Pg - 1|11f1(|§|)|
279 In(sy,) [+

+

The first term uniformly goes to zero (for (x,&) € By x By, for any M > 0) when
k — oo. Since 277%|In(sy)| — 0 as k — 0 ([4]), so does the second term. O

Therefore, the pointwise limit of a*(x,£) does not depend on :

a*(x,€) — al€),

where @ is a vector field satisfying the same structural assumptions (L2), (L3),
with p(z) replaced by pg = p(0).

Conclusion of the proof of Lemma 21l By taking into account the uniform
bound of v, (1), and the fact that py satisfies (ILT) and 21 with the same
constants, we deduce [9] that there exist two positive constants ¢ and C, inde-
pendent of k, such that vy € C19(Bj,4) and ||vk||01,5(§g/4) < C, for all k > k.
It follows then from the Ascoli-Arzella’s theorem that there exists a subse-
quence, still denoted by v, and a function v € oL (§3/4) such that vy — v



in C' (Bs/4), for any &' € (0,6). Moreover, it is clear that v satisfies (in the
weak sense)

le(d(v’U)) =0 in 33/4, v = 0 in Bg/4,
sup v(z) =1, v(0) = 0.
IEBl/g

By the strong maximum principle (see [I4], for instance) we have necessarily

v =0 in Bs,,, which is in contradiction with sup wv(z) = 1.
1631/2
(|

Proof of Theorem 2.1. The theorem is proved by induction. Using Lemma [2.1]
the proof follows step by step as the one of Theorem 2.1 of [4] O

3 Porosity of the free boundary for x =0

In this section we also assume x = 0 and that there exist positive constants A,
A, such that,

0< A< f<A<oo, ae. in. (3.1)

The following lemma and Theorem 2Tl give the exact growth rate of the solution
of the problem (P) near the free boundary. This extends to the heterogeneous
a(x,n)-case with k = 0 the results established in [2] for the Laplacian and
generalized in [I5] for the p-Laplacian, as well as for the A-Laplacian in [3] and
for the homogeneous p(x)-Laplacian in [4].

Lemma 3.1. Suppose that u € WPO)(Q) is a nonnegative continuous function
satisfying
Au=f in D'({u>0}).

Then there exists v« > 0 such that for eachy € {u > 0} and r € (0,7.) satisfying
B, (y) C Q, we have for an appropriate constant C(y) > 0

)
sup u > C’(y)?"P(py)y*1 + u(y).
637‘(9)

Proof. Tt is enough to prove the result for y € {u > 0}. For each y, we consider
the function defined by

p(y)
v(z) == v(x,y) = Cy)|z — y|P®-T,

where C(y) is to be chosen later.
We claim that there exists r, > 0 such that

Vre (0,ry), YyeQ, Ve B.(y)CQ Av < A\ (3.2)

10



To prove [B.2), we compute Vv and the divergence of a(z, V,v):
i (a(e,¥0) = div (ot CON@ 31" e )

- - 8@1- 8@1- 6’[1}]‘
= yw+2%ymaﬁw

i=1 ij=1

- 8@1- _ "
= o FCWa)le —y|" 2 > (61-3‘
(zi —yi)(z; — yj)) da;

|z —y? on;’

+ (ay) -2
where w(z) == C(y)a(y)lz — 1102z — y).
Therefore, using the structural assumptions (L3)), (L4), we get
|div(a(z, Vv))| < 262|w|p(1)_1| In |w||

x)—1 — z)— —
+ c¢1max(1,q(y) — 1)(O(y)q(y))p( ) |z — y| @@~ DP)=2)+aly) -2
= Sl + SQ.

To estimate S, we write

Si = 2cw/"™ 7 In(|w])]
= 20(C (y)Q(y))p(m) = I(”(w)‘”(“”‘”!1n(C(y)Q(y))+(Q(y)—1)1n|:v—y|\
< 2e(g(®)" 7O )" e -y 0@ D) 1\1n (Cw)ay))]
+2e2(a(y) — D (CW)aw))"" |z yl(p(m) D=0 1n(|a — y|)|

Since rInr — 0, when r — 0, then S; can be made as small as we wish, if z is
close to y, and C(y) is small enough. To estimate So, we first observe that

|z — y|(q(y)—1)(p(ac)—2)+Q(y) 2|z —y| P =)

and for |z — y| <r< 1 we have
o — BT _ S w(la—y)) o perlemullin(le—uDl iG],
and since
S = a max(l,q(y)—1)(O(y)q(y))p(z lz—y |%)p(y)
< ¢ max(1,q(y) — 1)(O(y)q(y))p(z)ﬂepilrlln(r)\7

Sy also can be made small, if 7 and C(y) are small enough.
It is clear now that ([B2]) holds.

Now let € > 0 and consider the following function u.(z) = u(x) — (1 — €)u(y).

11



We have from B.1))-(32)

Aue=Au=f>2A>Av in B.(y)N{u>0}.
Moreover,
ue=—(1—eu(y) <O<v on (9{u>0})NB(y).
If we also have
ue<v on (0B.(y))N{u> 0},

then we get by the weak maximum principle
ue<v in B.(y)N{u> 0}

But u(y) = eu(y) > 0 = v(y), which constitutes a contradiction.

So there exists z € (9B, (y)) N {u > 0} such that u.(z) > v(z). Since v is radial,
we get

sup (u— (1 —e€)u(y)) = sup ue > sup Ue = Ue(2)
9Br(y) 9Br(y) 9By (y)N{u>0}

)
> v(2) = C(y)rrwT.
Letting € — 0, we get
r(y)

sup 4 = sup u = C(y)rr®-T + u(y).
B-(y) 0Br(y)

O

Denoting by u the solution of the problem (P) of the Introduction, we may
now prove the main result of this section: the porosity of the free boundary
oH{u >0} N
We recall that a set £ C R™ is called porous with porosity d, if there is an g > 0
such that

Ve e E, Vre(0,rg), JyeR"™ suchthat Bs(y)C B.(z)\E.

A porous set of porosity § has Hausdorff dimension not exceeding n— cd™, where
¢ =c(n) > 0 is a constant depending only on n. In particular, a porous set has
Lebesgue measure zero (see [20] or [27] for instance).

Theorem 3.1. Let 7. be as in Lemma B, R € (0,7.) and xg € Q such that
Byg(zo) C Q. Then d{u > 0} N Br(xo) is porous with porosity constant de-
pending only on n,p_,p4, L, co,c1,¢2, A\, A, R, and ||g||r=. As an immediate

consequence, we have

Au= fX{u>0y a.e. in €.

We need first a lemma.

12



Lemma 3.2. Let R > 0 and xo € Q such that Byg(xg) C Q._We consider, for

Yo € Bar(zo) N{u =0} and M > 0, the functions defined in By by

+ R

A6 = alyo + Rz, Me), a(z) = S ), (33)
MR

Then we have u € Fz, for all R < Ry = % and M > My = %, where Fz s

defined as in Section 2 with the operator corresponding to a.

Proof. First, note that @ and u are well defined, since we have Bgr(yy) C

Bsgr(zg) C 2. Moreover, we have u(0) = 13(;](2 =0, and for M > HQLLDO, we
have 0 <u < 1in Bj.

Note that a(z, £) satisfies all structural conditions (not necessarily with the same
constants as for a) with p(z) := p(yo + Rz) instead of p.

Next, one can easily verify that @ satisfies

Au = div(a(z, Vu(z)))
= div(a(yo + Rz, Vu(yo + Rz)))
= R(Au)(yo+ Rz) < RA <1

if R< Ry = %, and we conclude that w € F; for all M > My and R < Ry. O

Proof of Theorem Bl Now, to prove the theorem, we argue as in [4]. Let r,
be as in Lemma [B] and R, = min(r, Ry). Let then R € (0, R.) be such that

Bir(zo) € Q, and let x € E = 9{u > 0} N Br(xp). For each 0 < r < R, we

have B, (z) C Bar(xo) C Q. Let y € 9B, (x) such that u(y) = sup wu. Then we
9B, (x)

have by Lemma 3]

() (x)
u(y) = Cérpfm%l +u(z) = Cérpfm%l. (3.4)
Hence y € Bag(zo) N {u > 0}. Denoting by d(y) = dist(y, Bar(zo) N {u = 0})
the distance from y to the set Bagr(xo) N{u = 0}, we get from Lemma 2] and
Lemma [B.2], for a constant Cy

r(yo)

u(y) < Cold(y)) 7ot (3.5)

Then we deduce from (B.4))-([B.3) that

P(wo)

Chriti =T < uly) < Cold(y)) 7T, (3.6)

which, by using the Lipschitz continuity of p(x), leads to (see the proof of
Theorem 3.1 in [4])
d(y) = or,

where § > 0 is some constant smaller than one and depending only onn,p_,p, L,
Cp, C1, C2, /\7 A, R, and Hg”Loo
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Let now y* € [x,y] such that |y — y*| = dr/2. Then we have [4]
Bgr(y*) C Bsr(y) N Br(z).

Moreover, we have
Bs,(y) N By (z) C {u > 0},

since Bs;(y) C By(y)(y) C {u > 0} and d(y) > or.
Hence we obtain

B;,.(y*) C Bsy(y) N Br(z) C Br(z) \ 0{u >0} C B.(z) \ E.

s
2

O

Note that as a consequence of Theorem 2] and Lemma [3.2] we may also

obtain a more explicit growth rate of the solution u of the problem (P) near the
free boundary.

Proposition 3.1. Let Ry > 0 be as in Lemma 3.2, R € (0, Ry) and xg €
such that u(xo) = 0 and Bag(zo) C Q. Then there exists a positive constant Cy
depending only on n, p_,py, L, A, co, c1, c2, and ||g||L~ such that we have

~ p(zg)
u(z) < Colz — xo| PED T Vx € Br(zo).

Proof. Let R and xy be as in the proposition. Consider the functions a(y, £)
and u(y) defined in Lemma B2} for M > 0. By Lemma 2] there exists M
such that for all M > My we have @ € F5. Applying Theorem [ZT] for M = M,
and R = Ry, we obtain for a positive constant Cy > 0 depending only on n,

p*7p+aLa Co, C1, C2 ()
(0
u(y) < Coly|™™=1  Vy € By.

Taking y = % for z € Br(zg), we get

CoMoR, (z0) C (z0) ~ (x0)
uw) < D50 g sttt = gl g5 = Gl — ol

p(zg)—1 p(zg)—1
RO RO

O

4 The Obstacle Problem of p-Laplacian Type in
a Heterogeneous Case

In this section we consider still the case of K = 0 and we assume the exponent p
is a constant, 1 < p < oo. For simplicity, since the results are local, we restrict
ourselves to the unit ball, and assume that

0<f<A<oo ae. in By, (4.1)
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and additionally, Vf € MJ' (By), which means that there exists a positive
constant Cy such that

/ |Vflde < Cor™™t, Vr e (0,3/4). (4.2)
In particular ([&2) is satisfied, if f € C%1(By).

We assume that a satisfies (I2) for k = 0, and satisfies for two positive
constants cg and cq, for a.e. (z,n) € Q x R".

n 82ai _
G| < ol (43)
i,5=1 Lt
aQCLk _
‘anax.(x’”)’ < calnlP2. (4.4)
i,5,k=1 e

Note that [@4) implies (I3) and that (@3] implies that a satisfies

n

>

ik=1

8ak
8171'

(w,m‘ < ol (45)

which is the equivalent of (I4)), when p is constant, as in Remark 1.2.

4.1 Some auxiliary lemmas for a class of functions on the
unit ball

We consider the solutions of the following class of problems

u € WHP(By) N Che(By),

div (a(z, Vu(z))) = f(z) in {u> 0} N By,
0 S U S MO in Bl,

0 € 9{u > 0},

]'—a(.) .

where M is a positive constant.

We introduce for each € € (0, 1), the unique solution of the following approx-
imating problem

ue—UEWOI’p(Bl), (4.6)

div (ae(:zz, Vué)) = fHc(u.) in By, '

where H, is an approximation of the Heaviside function defined by H,(v) :=
+
v

min(1, *=), and a. is given by:

p—2

€Co p_= n
ae(xan) = a(%n) + 7(6—’_ |77|2) : n, € Qa ne R™.

15



Note that a. satisfies (IL2)- (3] for k = ¢, because a satisfies the same inequal-
ities for kK = 0. Moreover taking into account (£3)-([£4), we can easily verify
that we have for a.e. (z,17) € Q x R"

n 66
> |G| < ale+ i)' @)
i,k=1
- 82(1‘ p—1
€1 < 2y 25t -
> axiazj@,n)}_%(eﬂm) , (1)
i,j=1
- 82a€k
< .
Py o) < eale ) (1.9

First, we observe [7], [26] that there exist two constants o € (0,1) and
M; > 1 depending only on n, p, cg, c1, c2, A, and My such that u. € C’llof( 1)
and

||Ue||cl,a(§3/4) < M. (4.10)

In particular, if we set t. = (€ +|Vu.|?)'/2, then we can assume without loss of
generality, that
[tell oo (By)0) < M. (4.11)

Adapting part of the proof of Proposition 2.1 in [6], we see that there exists a
subsequence, still denoted by u. such that

Ue = u in C]oc (By) forall 8 € (0,q). (4.12)
Moreover, we know from Theorem [4.1] that
uc € W??(Bs,4). (4.13)

For each r € (0,1/2) and € € (0, 1), we introduce the following quantity
1 p—
E.(r,v) = — / [(e+ |V’U|2)T2|D2U|]2
|B:| /B,

The first result is an estimate of F.(1/2, uc).

Lemma 4.1. Assume that p is constant, [ satisfies (II)-{E2), and that a
satisfies (L2)-@3)) for k =0, and [@3)-@3l). Then we have for any e € (0,1)

34/ + ca)? + 2c3¢))
27cZ min(1,p — 1)?

21 /

n : > Vfldx.

cgmm(l,p—l)lBl/zIH ell2= 540 33/4| |

2(p—1)
|BB/4|||t ”Loo (B3/4)

E.(1/2,ue) <

(4.14)

To prove Lemma [Tl we need the following lemma:
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Lemma 4.2. Let G be a smooth odd nondecreasing function, and { a nonneg-
ative smooth function with compact support in By. Then we have

/ CQZG’ (e, ) 1P 2| Vitey, |2 da
B1 .

<Vney | (Gt D u| |V (| da
B

+c3 CGt )P dr + ¢4 CG(t )P 2| D?u|dx
B1 Bl

+vn | CG(t)|Vf|da. (4.15)
B,

Proof. Let G and ¢ be as in the lemma. Note that [20]
uc € W»?(Bsy). (4.16)

Next, differentiating the equation in (4.0 with respect to x; for each i =1,...,n
we obtain
div ((ac(®, Vue))a,) = (fHe(ue))e, in D'(By). (4.17)

Computing the derivative of a.(x, Vu,) with respect to x;, we get

(ae(z, Ve))s, = gzﬁ (2, Vo) + Dyac(z, Vi) - Vuey, ae.in By (4.18)

Using Cauchy-Schwarz inequality and the fact that a. satisfies (IL3]) with k = e,
we obtain

0 (
|D77£LE(I, vue) ViUez,| = ‘ Z 2 I vue uem ey

< Z‘aaé (@, Vi) | [tz |
< (Z ‘BGEk (x, Vi) )|Vum|
< e+ |Vu? )T|Vu6m|. (4.19)

Using Cauchy-Schwarz inequality and the fact that a. satisfies (L3]) with k = e,
we obtain

da. -
82 (2, Vu)| < e+ |Vul?) = . (4.20)

It follows from (@I6]) and ({I8)-(E20) that we have
(ac(x, Vue))e, € L*(Bsja). (4.21)
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Now, let ¢ = (2G(uey,). Since
Vo = G (tew,) Ve, + 2(G(uez,)VC  in By, (4.22)

we see from (AI6), (@22)) and the smoothness of G and ¢, that we have ¢ €
H'(Bj;,). Taking into account ([2I) and using ¢ as a test function in (€I7),
we get

/B (ae(x,Vue))mi V(PG ten,))da
) fml (ue)c G(uez )dx ; / CQfHé (Ue)uezi G(ueml)dft

B27- (:Eo)

which leads by (Imb, #22) and the monotonicity of He, to

Oae
/ (8;‘2 (x,Vue) + Dypac(z, Vue) - Vuémi).(CG’(uezi)Vuezi + G(uémi)VC) dx
B i

< - fziHE(ué)CQG(ufmi)dI
B
or

CG' (teg; ) Dpae(z, Vue) - Ve, . Ve, dz

B
< - G(Uez,)Dpac(x, Vue) - Ve, . V(dz
B
_/ 0% (1 Vue) -V (CCue,)) de
B (9(Ei ) € €T;
Joi He(ue) PG (e, )da. (4.23)

Adding the inequalities from ¢ = 1 to i = n, in (£23)), we get

/ ¢ Z G’ (tez; ) Dyae(z, Vue) - Ve, Viteg, dx
B1

%

g/ S G tew) 1Dy, Vite) - Vit |Vl
B1 i

_Z/B ng(x,Vue).V(cG(um))dw

Z f% (UG (Ueg, )dx (4.24)
Moreover, since a. satisfies (2] with x = €, we have
8a6k
Dyac(x, Vue) - Ve, - Viey, = Z (7, V) Uer o, Uer,z;
~ 075
k.j

> cple+ |Vu5|2)pTﬁ|VuEmi 2

(4.25)
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The fact, that a. satisfies also (L3)) with x = € implies

|Dna€(:z, Vue) - Ve, - V(| |Dna€(3:, Vue) - Ve, | - [V(|

<
< e+ V)2 [Vue,||VC).  (4.26)

It follows from ([@24))-([@26) that
/ ¢ G uen e+ [Vl 5 Ve, [2de
By ;

Scll/B ZdG(uéml)

%

—Z/ 6(16 (z, Vue). V(3G (uey,))dx
Bl

Z R (1) G (tie, ) da. (4.27)

e+ |Vu5|2)p%2 [Vies,

V{|dx

To handle the second term in the right hand side of (@27, we integrate by parts

Oa

(2, Vue) - V(P Glue,)) do = — P G(ue,) div (ﬁ
B Ox; By

oz, (x, Vu€)> dx.

(4.28)
Note that we have

0? 0?
= Z a;; (x, Vue) + k (@, Vue) “ Uegjay. (4:29)

O0xL0x; o 0n;0z;
Using (&G)-(@7), we obtain
- 82ak
O] eatt™! 4.
Z 92,02, (z, Vue)| < esth™ (4.30)

i,k=1

n

>

ik,j=1

Combining (£2])-([@30), we get

<c C |G(Uez )

B

62%

< e, t?72| D%, 4.31
G < cat? | D% (4.31)

(ZE, vue) : vuemj

Oa ,
/Bl axl (‘I Vue) (C G(ufml))dx

2| D?uc|dx.(4.32)

P~ 1d3:—|—04/ |G (tex,;)
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Regarding the last term in the right hand side of [@27]), we have since |G(ucy, )| <
|G (te)]

Z’ /B Fos Ho(1) (PG e, ) der

< / CQZU%HG(UG%)ldx
B4 i
< Vi [ QG fde (439
B,
Taking into account (L2T), [A32) and [33]), we obtain
06/ ¢ ZG/(uezi)t€72|vuezi|2d$
B, i

< Vndy CG(te)tE™?| D?uc||V(|dz
B1

o3 | ClGIE  datces | CG(t)tE 3 D%uclda
B B

vV /B C(G(t)||V f|dz.
which is ({@I5). O

Proof of Lemma[dIl. We consider ¢ € D(Bs/4) such that

0<¢<1 in Bgy

C =1 in B1/2

V(I <4 in By,
We shall consider the two possible cases.

1% Case: 1 < p < 2.

Let G(t) = (e + tz)pTizt. Then we have:

p — 2)t?

0=+t F 1+ BT ] > 0= e =

Setting t. = (e 4 |Vuc|>)'/? and s = (€ + |Uex,
and |V(] < 4, we get from (ZI3)

2)1/2 and the fact that 0 < ¢ < 1

depyn+cy 1,p—2| 2
Y SPTHP T2\ Vue,, [Pdr < 17/ CPT ™% D% u|dx
/B1 ; ° “ T oa-1) Jg Tt ‘
c
+
o

_ n 7
o [ e o [ v
1 0 1
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Using Young’s inequality, we get since ( = 0 outside Bg/4

40/1\/ﬁ tc (tf_ltf_2|D2u€|dx < (40/1\/ﬁ + 04)2 / tg(lﬂ—l)dx
B34

cop—1) Jp, 2c7(p — 1)
1
+3 C[tr~2|D?u | da. (4.35)
B,

Taking into account (E34)-(.35), the monotonicity of #*=2 and the fact that
¢ =1in By, we obtain

/ [tP~2| D?u,|]?dx < (4 v/m + ea)? + 2esch(p — 1) / 2=y
B2 ‘ B B34 ‘

i (p— 1)
N / »
TR AL P11V f|da. 4.36
Gw-1Js,, " V! (4.36)

274 Case: p>2.
Let G(t) = t. Then we get from (@15

4civ/n+e
P2 D?u 2 dx < # Ctt?~?|D?u|dx

B 0 B
28 wan+ Y[ 2 vilda. (4.37)
CO Bl CO B1

Using Young’s inequality, we get since ¢ = 0 outside Bj 4

(4chv/n + c4)? / 2dz
B34

dei/n+ ¢y
/ 2662

/ Ct P 2| D?u|dx <
€o B

1
+3 : CtP~2| D% u, |2 da. (4.38)
1

Taking into account (4.37)-(#.38) and the fact that ¢ = 1 in By /5, we obtain

(4t v/ + c1)® + 2c3¢) / tPda
B3,y

/2

/ tP=2|D?u Pdr <
Bis %

2Vn

7
0 B34

+ te|V f|da. (4.39)
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Using the monotonicity of #?~2 and ([#39), we get

2
/ {t572|D2u5|} dzr = / tP=2P=2| D%y | dx
B2 B2

<te ||Loo(B3/ )/B -2 D2y, |? dz
1/2

(4ci/m + ca)? + 2¢3¢y(p — 1)
< &a 0 lIte ||Lm (B )0) tPdx
/4

/2
Co

2
NG ) / |V f|dx
CO B34

o (AdVn + ca)? + 2¢5¢h 2(p—1)
= 2 |BS/4|||t ”Loo (Bs,a)
€6

2\/_
[[tello 33/4)/3 |V flda. (4.40)
3/4

Combining (£30) and (£A40), the lemma follows. O

Remark 4.1. Using [@3), @II)), we deduce from Lemma 1l that we have for
all e € (0,1)

(46/1\/_—|—C4) + 2c3¢,
cZmin(1,p — 1)2

2
Vi Mf_l/ IV fldz < Ch,
) Bs)s

comin(l,p—1

_1)

Ec(1/2,us) < |Bs/4|M

where Cy is a positive constant depending on n, p, ¢}, ¢}, cs, ca, M1 and Cy.

Now we estimate E(r, u.).

Lemma 4.3. If the conditions of Lemmald]l are satisfied, then we have for all
e€ (0,1) and r € (0,1/2)

UGt el 2o =) g e 20D
2n 2 (p — 1)%r B/atertine(Bsya)

N
+ Ity [ IVH2r)lda.
B34

E.(r,ue) <

co(p = 1| Byyz|27 1

ue(2rz)
2r

Proof. Let € € (0,1) and r € (0, 3). We consider the function u,(z) =
defined in B;. By definition, u., is the unique solution of the problem

2r

Uer — Uy € Wol’p(Bi)
div(aer(x, Vuer)) = frHe(uer) in B,
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(27":1:)

where u,(z) = , fr(x) = 2rf(2rz), and aer(z,m) = ac(2rz,n) are func-

tions defined in B; , with u, a solution of the following class of problems

ur € WHP(By) N CH(By),

div (ar(z, Vur(2))) = fr(x) in {u, >0} N By,
0 <wur <M in By,

0 € 9{u, > 0},

Far():

and where M; is the positive number in (£I0).

Indeed, first it is obvious that 0 € 8{u, > 0}, u, € WHP(By) N CH*(By),
and that we have from (£I10)

IVurllLoe(Bs,0) = IVullLoo(s,, ) < M1,  Yu € Fa,(y, (4.41)
Moreover, we have

div (ar(z, Vu,)) (z) = div (a(2rz, Vu(2rz)))
=2rf(2rz) = f-(z) in {u(rz) >0} = {u.(z) >0},

and from (@A), we have since u,-(0) =0
1 d 1 .
0<up(z) = / EuT(tx) dt = / Vu(2trz) -xdt < My Vz € Bj.
0 0

Next, we observe that f, satisfies (41)-([4.2) with the constants 2rA and 2rCy,

aer(z,n) satisfies (L2)-(L3)) with k = ¢ and ([@3)-(L5) with the constants cf,
¢y, 2rea, c3, ¢y and p. Obviously, the constants 2rA, 2rCy, 2rcs, 4r? 03 and 27cy

are bounded above respectively by A, Cy, ca, c3 and ¢4 for r € ( ) Setting
ter = (e + |Vue(2rz)|?)Y/?, and applying Lemma E1] to u.,, we obtain

3n(4cv/n + ¢a)? + 2e3cy(p — 1)

(12, ) < o Baallta 2208
+w+%uwnmw / [ vpi
or
B(1/20) < SUAE P2 200 = D gy, )
+#\ﬁzl/lﬂter|hm(33/ )/3 |V f(2rz)|dz. (4.42)
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Note that

E(r,u.) = érl/ [(e—l—|Vu5(x)|2)%4|D2uE(x)|}2dI

|
1 2\2=2, 42 2
= Bl ) [(e + [Vue(2rz)|?) = | D?ue(2rz)|]” do
1/2

1 1 p=2 2
= — (e + |Vuc(2rz)|*) = |2rD%u(2r2)|]” dx
4r? |Bl/2| B1/2 [ }

E(1/2,ue)

Taking into account (4.42)-([4.43) and (4.14), we get
3" (4ch v/ + c4)? + 2c3¢) 2p—1)
Eelrue) < 27 +2¢Z min(1,p — 1)%r |B3/4|”t””L£’ (Bs/a)
2y/n /
+ - er||7 oo Vf(2rz)|dx.
(L, p— DBl oo [, V7@
or
3”(46’1\/5 =+ 64) —+ 26300( ) 2 P 1)
Ee(ryue) < 27 +2¢2 min(1,p — 1)%r |BB/4|Ht"HL°° (Bs/a)
vn /
€T [eS) d
+ ¢y min(L,p — 1)|Br /a2 1" It ||L (Bsa) » |V f(x)|dx
which completes the proof of the lemma. o

4.2 Hausdorff measure of the free boundary for x =0

In this section we extend the local finiteness of the (n—1)-dimensional Hausdorff
measure of the free boundary for a heterogeneous operator of p—Laplacian type.
This property was obtained only in homogeneous cases, for the p—QObstacle prob-
lem in [2] with p = 2, in [I7] for p > 2, and more generally for the A—Obstacle
problem [6] that includes the case 1 < p < oo (see also [28]). The new difficulty
is in the control of the additional = dependence of the quasilinear coefficients
a; = a;(x,n), requiring the additional assumptions (4.3) and (4.4).

Theorem 4.1. Assume that a satisfies (L2) with k = 0 and @3), (E4), and
that f is nonnegative and locally bounded in Q, Vf € M} (). Then for each
A > 0, the free boundary of the a(-)—obstacle problem (P) is locally of finite
(n — 1)-dimensional Hausdorff measure in {f(xz) > A}.

Due to the local character of Theorem 1] it is enough to give the proofs for
the solutions of the class of problems F,(.), which for convenience, we state in
the next two theorems. For this purpose, we assume that f satisfies

0<A<f aein Bj. (4.44)
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Theorem 4.2. Assume that f satisfies [@I)-@2) and (@), and that a satis-
fies C2) (with k = 0) and (E3)-@E4). Then there exists a constant C depending
only on n, p, co, c1, c2, c3, ¢4, A, A, Mo and Cy such that for each u € Fq(.y,
for each xo € 0{u > 0} N By/y and r € (O, i), we have

H" 1 (0{u > 0} N B,.(x0)) < Cr" L.

In order to prove the theorem, we need two lemmas.

Lemma 4.4. Assume that a satisfies (IL2)) (with k = 0) and [@3)-E4), and
that f satisfies ([@.2), [@44). Then we have

_ 2 83 5
HZ(ue) < P 2|D2u€|] +)\_2215§(p 1)

Proof. Since AH(u.) < fHc(uc), we get by recalling (£.7) and the fact that
ac satisfies (L3) with k =€

n ] n ]
Oal Oal

AH(ue) < div(ae(x,Vue)): B—(x,VuE)—l— Z 8—€($,VU5)Uemi1j
=1 Ot ij=1 9"

" | dal " | dal

< —= Vue = ,V € €T T

< |G e+ X |ge Vo
i= i,j=
" | dal ( "L | dal ) 9

< “(z,Vue)| + —<(z, Vue D u,
; axi( ) ”2231 377j( )| )] |

p—1

P p—2
202(6 + |Vu6|2) T4+ (e—i— |Vu€|2) > |D%u|
= 2cotP™! + & tP72| D).
It follows that

)‘2He2(ue) < SCgtz(p_l) + 20/12f£p_2)|D2u6|2

or
202 o 8c2 _
H2(u.) < )\—;[tf %|D%u.|] +/\—22tf(” b,

O

Lemma 4.5. Assume that [ satisfies [@I))-(@2), @Zd). Assume also that a
satisfies (L2) (with k = 0) and [@3)-@A). Then there exists a positive constant
C depending only on n, p, co, c1, c2, A\, Mo and Co such that for each u € F 4.y,
any 0 € (0,1) and r € (0,1/4) with Ba,(x0) C By and xo € By N O{u > 0},
we have

L™(O05 N By(w0) N {u > 0}) < Cor" 1,

where Os = {|Vu| < 5ﬁ} N Bijs.
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Proof Let u € Fo), x0 € BijaNo{u > 0}, 0 € (0,1) and r € (0,1/4) with
BQT(JJQ) C Bl.

For each € € (0,1) and 1 = 2P~1§, we consider the function

(64_77&)”2;2771,—5 if t> 77?_11
G(t) = max((e+t2)p772,(e+nﬁ)p772)t if |¢] < nr- =
—(e—l—nﬁ)%ﬁmﬂil if t< —77?*1.
We have G(0) = 0, and G is Lipschitz continuous with
+2)"7 14 2227 L i p<2
G'(t) = (€ L L, Xit<nm 1y . P ) (4.45)
—1\ 75—
(e +n7 ) 2 X{\t|<np_£1} if p>2.
We also have
IG(t)| < (e+n7 1) Vi (4.46)

We denote by u. the solution of the problem (A6l and we consider a function
¢ € D(Bar(0)) such that

0< ¢ <1lin Byr(z9), ¢=11in B.(x0), |V < 2 in Ba,(z0), (4.47)
T

First we have from (ZI5)
/ ¢? ZG’ Uer, P2 Vten, |
By

< V/ne} CG(t P2 | D?u ||V |da
B

+es [ GG e ey | CG(t )P 2| D?u|dx
B1 Bl

dx

+vn | CG(t)|Vflde. (4.48)
B

Taking into account ([@4H)-([[@47) and the fact that {|Vu.| < nﬁ} C {|thea;| <
np_il }, we obtain from (£48])
/ L (D
By (z0)N{|Vue|<nP-T}
2/nc}

<—via = tP=2|D%u,|d
min(1, p — 1)rc;, 6+n /132T | D el d

+.c—3 _|_77p 1 / tp 1d$L'
min(1,p — 1)cg Bar (o)

bt ()T [ Dt
min(1,p — 1)c Bay (z0)

NG

2 p—1
— (e + nﬁ 2 / Vf dx. 4.49
min(1,p — 1) ( ) Bay(w0) V7] ( )
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Using the Schwarz inequality and Remark 1] we get

/ [tf_2|D2u€|]d:1:
BT(I())

: (/B%(%) 12d”"”)1/2'( /BZT(%) [t€_2|D2ue|]2dx)l/ ’

< |Bar |2 (| Bay (w0) | Ee(2r,uc)) /2
< |Bor| (Be(1/2,u0))? < \/Cy|Bay|. (4.50)

Combining (£.49)-([.50), we get since €,n € (0,1)

/BT(mo)ﬂ{|Vue<77P11}
C3
+ min(1,p — 1) (

min(1, p — 1)rc

1
/ P~ tdx
Bzr(mo)

c - (e+nﬁ)p771\/02|32r|

+ min(1,p — 1)c
min(1, p — 1)
or

/Br(zo)ﬂ{|Vue<77P_11}

p—1

< (6+77%) 2 \/62(

= min(1,p—1)c L

—1

<_(6+77%) § \/0_2(

= min(1,p — 1)cj L

p—1

p—1

v (e—f—nﬁ) 2 /B ( )|Vf|dw.

2/ncj
r

2y/ncj
r

[t572|D2u6|]2d:v

—|—C4)|B2T|—|—Cg/ t€71d$+\/ﬁ
Bar(x0) Bar(z0)

+ 04) | By | + c3|Boy | MP™! + \/ﬁcorn_l}

2
€e+nr-1) * r _
= u 2\/56/1\/ CQ —+ \/EOO “+ T|B2|(63Min 1 —+ C4)j| Tn_l.

min(1,p — 1)

Since Os C {|Vu.| < nﬁ} and

/ tf(”_l)dw <
B, (Io)ﬁOg

<

tf(”_l)dw
/Bmwom{|we|<np_ll}

(e + n%)p71|B1|r",
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2 4 p—1
[tf*2|D2u€|]2dx§¢(e+n%) 2 /Cs|Bay|

[V lde]

(4.51)



we get from ([@E]]) by using (EI1)

2 /2 8 2
/ H2(uc) < c; / [tfo|D2u6H2dx + %/ 2P~ Dy
B,(20)NOs A B, (20)n0s A J B, (20)n0s
2 /2 2
< 021 / . [t572|D2u5|]2d:17—|— 8—022 L t2r Dy
A% JB (@) {|Vuc<n 71} A* J B, (20)n{| Ve | <n7=1}

8c3 2 \p-1 n
< )\—22(64-77?*1)17 | By|r
p=1

2P (e + nﬁ) 2
A2min(1,p — 1)¢}

[Wﬁca VCs +VnCy + 7| Ba|(es MY ™" + ¢4) |1

(4.52)

Letting € — 0 in (£52), we obtain

n 86% 2 n

L"(Os N By(xo) N {u>0}) < Vn | By |r
202 _ _

+)\2 min(l ; — 1)6077[2\/501\/ CQ + \/EOO + T’|B2|(63Min ! + C4) " 1,

which leads to
L"(O5 N By(z0) N {u > 0}) < Cor" 1,
where C' is a positive constant depending on n, p, cg, 1, €3, ¢4, A, M7 and Cj.
O

Proof of Theorem 2 Let r € (0, %), Br(zo) C By with zg € d{u > 0} N By 2
and § > 0. Let E be a subset of R™ and s € [0, 00). The s-dimensional Hausdorff
measure of F is defined by

H*(F) = lim Hj(F) = sup Hj (E),
6—0 5>0

where

H(E) = inf { ia(s) (dmmT(Oﬂ)) |EC G C;, diam(C;) < 5},

j=1 j=1

7.‘_5/2

)= TEaT1)
We argue as in the proof of Theorem 1.5 of [6]. More precisely, let E = 0{u >

0}NB,(z) and denote by (B‘;(Ii))iel a finite covering of E, with x; € 0{u > 0}

and P(n) maximum overlapping.

From the proof of Theorem [3.1] there exists a constant ¢ such that

I'(s) = / e "t*"1dt for s > 0 is the Gamma function.
0

Viel 3Ty, € Bs(x;) : Begs(yi) C Bs(x;) N {u >0} N Os.
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We deduce from Lemma that

> LM(By)cgs" > LM(Beos(yi)) < > L™ (Bs(wi) N {u > 0} N Oy)
i€l el el
< P(n)L™(Bs(x;) N {u>0}N0s) < P(n)Cér™ 1,

where C' > 0 is the constant from Lemma [£.5] This leads to

ol diam(Bs(z:)\""" _ a(n 1) nCrn—1 — gyl
2. 1>(42 ) =BT e e

$0
HP 71 (0{u > 0} N By.(zp)) < Cr" L.

Letting 6 — 0, we obtain

H1(0{u > 0} N B, (20)) < Cr L.

5 Second order regularity for « > 0

Here we extend a second order regularity result to non degenerate operators
similar to the one established in [5] in the p(x)—Laplacian framework.

For k > 0, we consider the family of problems

div (a(z,Vu)) = f in Q,
{ U z(g ) on 01, (5-1)

where f € L®(Q) and g € W20 (Q).
We will assume that a(z,n) satisfies (L2)-(4) and that p satisfies (1),
@d). By a solution of (5.1 we mean a function u € WP()(Q) satisfying

/a(m, Vu) - VE da = —/ fedz, vEe Wyt (@),
Q Q
u—gewy(Q).

By the classical theory of monotone operators, we know that problem (.1
has a unique solution. Moreover, the solution of (BI) is known to have Cll.f
regularity [9]. In this section, we are concerned with second order regularity.
This kind of regularity is classical for p-Laplace type operators with p constant.
We refer, for example to [I3] Theorem 8.1, Theorem 6.5 of [I§] and [26]. To
establish the VVI?)C2 estimate, we shall apply the method based on the difference
quotients Ay, as in the above references, and [5] in the case of the p(z)-Laplacian.

We will denote by ||v]|s the usual norm of functions in L*°(2). Note that,

recalling Remark [[.T] also by Theorem 4.1 of [I0], since f € L*°((2), the solution
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of (B) is locally bounded ie. u € L2 (§2). We shall assume here that u €
L°°(Q). More precisely, there exists a positive constant M such that ||ul|.c < M.
Since p is Lipschitz continuous, then for each Q' C 2, we have from [J] that

lullcra@y < C,

where « = a(n,p—,py, L, M, || f|lo) and C = C(n,p—, p+, L, M, || f]| 00, d(2, 2))
are positive real numbers.

First, let us define for each h # 0 and each vector e5 (s = 1,...,n) of the
canonical basis of R™ | the difference quotient of a function ¢ by

x + hes) — o(x)
o )

The function Ag ¢ is well defined on the set A; Q2 := {z € Q/z + hes € Q},
which contains the set Q) := {z € Q /d(z,00Q) > |h[}.

Since WHP()(Q) < WP (Q) — WH1(Q), some properties in [13] (p. 263)
of difference quotients are still valid. In particular we have

Ag po(x) = 2

o If p € WH(Q), then A, o € WH1(Q), and we have V(A n¢) = As 1 (V).

o Agp(p192)(2) = p1(z+hes)As pp2(x) + @2 (x)As no1(x) for functions pq
and o defined in €.

o If at least one of the functions ¢1 or ¢z has support contained in €2,

then we have
/ V1A pip2 = —/ w2 A pp1.
Q Q

o Ifw e Wl’m(B4R) (m > 1) and C2As,hw S Wl’l(BgR) for C € D(B3R),
we have ([I3], Lemma 8.1) for |h| < R and some constant c¢(n),

||A51hw||Lm(BQR) < C(”)HDSw||L’"(Bg,R)
”AS,—h(<2AS7hw)HL1(B2R,) < c(n)”DS(CzAs,hw)||L1(B3R)'

For simplicity, we will drop the dependence on s and write Ay for A; )}, etc.
Here is the main result of this section.
Theorem 5.1. If u is the solution of (5.1) with k> 0, then u € W22(Q).

loc

Proof. Let R > 0 be such that the open ball Bag(xg) satisfies Bag(7o) C Q.
We consider a function £ € D(Bagr(x)) such that

{ 0<&<1, inBop,  &=1in Br(xo),
IVE? +|D%| < % in Bag(wo).

Then As 5 (£2Ag pu) is a test function for (5.)), and we have

/Q a(x, Vu) - V(A_L(E2Apu)) do = — A fA_L(E*Apu) da,
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which leads to

/ Apa(z, Vu) - (£V(Apu) + 26A,uVE) d / fA_L(EApu)de. (5.2)
Let xp, := x + hes and write
Avale, Vu(e)) = ¢ [a(on, Vulen) — ale, Vu@)] = U +V,  (53)
where
U = L fa(en, Vu@n) - ale. Tu(en))
V= = [a(e, Vu(en)) - az, Vu(a)).

It follows then from (B.2) and (&3] that
/52\/ V(Apu) = /§2U V(Apu) — /2§(Ahu)U-V§da:
- / 26(Apu)V - VEdx — / FA_L(EApu) da. (5.4)
Q Q

Writing Vu(zp) = (Vu+ hA(Vu))(z) and setting 0; = (Vu + thA(Vu))(z),
we obtain

Vo= %/01 % [a(a:, (Vu—l—thAh(Vu))(:z:))] dt
_ /O (e, (Vi + thAw(Ve)) (@) - An(Var) dt
It follows then
V(Anu) = /O (e, (T + thAn(T))(2) - An(Ve) V(A dt

Multiplying the last equality by £2? and integrating with respect to x over Q, we
obtain

£V -V(Apu) dx
Q

= /Q [52 /01 Vaa(z, (Vu + thAp(Vu))(2)) - Ap(Vu)V(Apu) dt} do = 1.

Using ([2)) one has

IZCO/Q [§2|V(Ahu)|2/ol (5 +10:%) e dt] dx > 0. (5.5)
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Next, we write

U = %{a(xh,VU(l’h))—a(l’,vu(xh))}

1

1
d
= E/o Ea(:z:—l—thes,Vu(xh)) dt

1
/ Vma(;v + thes, Vu(xh)) .es dt.
0

Recalling (T4), the fact that u € CL% () and that p(-) is Lipschitz continuous
in 2, we easily deduce from the above equality, that for some positive constant
C, one has

Ul <C. (5.6)
Hence, by Young’s inequality we get for v > 0

‘/§2U -V(Apu) dzx
Q

2 u X
< /Qg UV (Apu)|d

2
< u/§2|V(Ahu)|2d:c+C—/§2dx
Q v Jq
02
< v | EV(Apu)|* dr + ——|Bag|. (5.7)
Q 4y

Using (B.71)), we estimate the second term in the right hand side of ([&.4]) as follows

1/2
}—2/Q§<Ahu>U-vs] < X [ jau

R
) 1/2
< M/ Vulde <C'.  (5.8)
R Bsr

In order to estimate the third term in the right hand side of (54)), we need to
estimate V. For this purpose, referring to the above definition of V' (after the

equality (B.4])) and using ([L3]), we have

1
V| < 01/ |(Vu + thAn (V) ()P 2 | An(Vu)| dt
0

A

aW()|An(Vu),

1 p(2)-2
where W (z) = / (k+10:%) = at.
0

Now since u € C1:®(Bag), it is easy to see that there exist two positive
constants [, and L, depending on «, such that I, < W(z) < L,. Moreover we
have [Apu| < ||Vul|po(B,,)- Therefore it follows by Young’s inequality that for

32



every p >0

/ 26V VEAud| < 201 Ly / €| An (V)| [ VE|| Al da
Q Q
2 2 ActL 2 2
< u | &EAR(Vu)] d:E—I—T IVE|“| Apul* da. (5.9)
Q Q

Using again Young’s inequality, for A > 0 for the last term in the right hand
side of (54), we have, since f € L>°(2)

’ ‘/Q fA_h(§2Ahu) dx

< flle /Q AL (E2A4u)

< el [ VEAw)]do
Q
< el | {52|V<Ahu>|+25|va|mhu|} e
Q
< [ em@anp+ ml B
2c1/2 9
50 Vuldzx. .
2Ol [ (ulds (510)

Hence, choosing v = 1 = A = % we obtain from (54)-(E10) for a positive
constant C' = C(n, x,p—, py, L, R, || f]lo0)

lﬁ/ E|V(Ayu)|* dx < C,
Q

which leads to
/ IV(Apu)|* dz < C/l,.
Br

Letting h — 0, we obtain the desired result [13], Lemma 8.9. O

Due to Proposition 2.1 #ii), as an immediate consequence, we also have this
local second order regularity result for the obstacle problem.

Corollary 5.1. Under the assumptions of Theorem 5.1, namely for k > 0, if
u is the solution of the obstacle problem (P), then u € W22(Q) N C*(Q) for
some o > 0.

6 H" '-measure of the free boundary for x > 0
The main result of this section is the local finiteness of the H" '-measure of
the essential free boundary. It is known that the free boundary locally has finite

H"~l-measure for several homogeneous operators: the p—Obstacle problem, [2]
for p =2 and [I7] for p > 2, and more generally for a homogeneous operator of
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p—Laplacian type [28], and for the A—Obstacle problem [6] that also includes
the p—Laplacian (1 < p < 00).

It turns out, that the heterogeneous case is much more delicate in the p(x)
framework, as we now treat in this section for x > 0. In this case we show that
at least the essential free boundary has locally finite H" !-measure. We use
the bounded variation approach of Brézis and Kinderlehrer (see [I] or [16]) by
showing that Au € BVj,.(f2), which implies, for a nondegenerating forcing f,
that the set {u > 0} has locally finite perimeter. Hence d.{u > 0} has locally
finite H"~1-measure (see, for example [8]), where 9. F is the essential boundary
of E. As an important consequence, by a well-known result of De Giorgi (see
[12], page 54), the free boundary may be written, up to a possible singular set
of [[VX {u>0}||-measure zero, as a countable union of C* hypersurfaces.

Definition 6.1. Let w C Q. We say that the function g € L'(w) is of bounded
variation in w and write g € BV (w), if there exists a positive constant C such

that
/ 9C, dx

If g € BV (w), we define its variation Vg as follows:

< Cl¢llLe(), for1<i<n and ¢ € C®(Q).

ngzsup{Z/ 9Giz,; dx; G € C(R), (] < 1}'
=17

In this section we will assume additionally that

n

d%a; p@)—1 B .
2 aT;x-(x’")}SCB(KHW) (L (s %) 2 ]) [ (s 4 ) 2,
i,j=1 Lt
(6.1)
Py 2y 752 2\3
et ()| <enlot ) et 2D, 62)
i,7,k=1 J ?

for some positive constants cs, c4.
We shall also assume that f satisfies 1)), and Vf € M} () (Morrey

loc
space, [21]), which means that there exists a positive constant Cy such that

/ |Vf|de < Cor™™!, for any B, CC Q. (6.3)

B,
In particular, (6.3) is satisfied, if f € C%1(Q).

Theorem 6.1. Assume that p(-) satisfies 2.1)), f satisfies B1)), (63), and that
C2)-@C4), ©I), ©2) hold with k > 0. Then Au = div(a(z, Vu)) € BVipc(R).

Proof. Let By(zg) such that Ba,.(z¢) CC Q. For simplicity, we drop the depen-
dence on xy. We will prove that Vg (Au) < ¢ for some positive constant ¢. To
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do that, we select an approximation to sign(t), that is, a sequence of smooth
functions 7s(t), 6 > 0 satisfying
lvs(®) <1, 75(t) > 0, t €R,
v5(0) =0, lim v5(t) = sign(t).
6—0
We also consider a cutoff function ¢ € C§°(Bs,) such that ¢ = 1 in B, and
0<¢<1in B,

We introduce for € € (0, 1), the unique solution of the following approximating
problem

Ue — g € Wlm(V)(Q)u
{ div (a(.’II,V’lOJ/E)) = fHe(ue) in Qv (64)

where ¢ is the same as in (P), and where H, is as in Section 4.
First, we observe [9] that there exist two constants a € (0,1) and M; > 1
independent of e such that u, € C*(Q) and

loc

HUE”cl,a(Ew) < M. (6.5)

Moreover, we know from Theorem 5.1 that we have for a positive constant Ms
independent of €

[uellw22(B,,) < M2, (6.6)

and in particular, we have for a positive constant cs independent of €

/ |D?uc|dx < cs. (6.7)
Ba,

We shall first prove that there exists a positive constant cg independent of € and
6 such that we have for each k =1, ...,n

/B 5t )(Arte) oy i < o, (6.8)

Integrating by parts, we get

¢ (tewy ) (Ate) pp dx = _/ (a(z, Vue))z,, - V(€5 (Uexy ) ) d

Bor Ba
0
= —/B <6—;k(ar, Vue) + Dya(z, Vu,) - Vuezk) V(s (tex,,))dx
0

=— / a_a(:c,Vue).V(C%(uemk))dw— / 76 (tea, ) Da(@, Vo) - Ve, .V Cda
BzT xk BQT

= [ s(ten ) Dya(, Vue) - Ve, Ve, de. (6.9)
BQT

Since a satisfies (I.2)), we have for a.e. z € By,

p(z

Dya(z, Vo) - Ve, - View, = colk+ | Vtue2) 5 | Vueg, |2 (6.10)

35



The fact that a satisfies also (L3]), implies that for a.e. z € Ba,
|Dya(x, Vue) - Ve, - V¢ < |Dya(z, Vue) - Vueg, | - V(]
(m) 2
T Ve, V¢ (6.11)

Using the fact that ¢ and -y are nonnegative and that |ys| < 1, we deduce from

@9)-@II) that

< ek + | Vu?)

Oa
i (tens)(Auc)a, o < — / 0, V)V (€ e, )
B27- B2 k
+c1|VC|OO/ (k + |Vu€|2) =J1 + Jo. (6.12)
27
Using (6.5]) and (6.7]), we see that
py—2
T < alVekelo M) [ [V ldo
BQT
py—2
< 165V (K + M?) T =, (6.13)
To handle J;, we integrate by parts
oa
J1 = ex di a4 € dz. 6.14
1= ] Gl ) div (G Vo) ) da (6.14)

Note that we have

div (8 o (x, VUE)) = ; 3(3“1' (gz; (z, Vm))

a a; 82&1'
Z Bz & Vi) T D G g (@ Vi) e (6:15)

Using (IBE])—(]ED we obtain
=1
<

(x, Vue)| <

8I18Ik
(ﬁ p+7M1) = Cg,

(:I;a V’U/E) : uemjmz

< eac(kypy, My)|D%ue| = co| D?u|.
Combining (6I4)-(6I1) and using the fact that |(ys(tes, )| < 1, we get

Ji </ div (x, Vue) ) |dz
[ (. v00)
8%a; 8%a;
! (z, Vue da:—!—/ ' ' (x,Vue ey, | AT
/32 zl: dx;0xy, ) Bzwz: 377j5$k( ) ey
§ Cg|BQT| + Cg/ |D2u5|d:1: § Cg|BQT| + C5C9 = C10- (618)
B2T‘
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(6.16)

(Ii—f— |Vul| ) ey (1—1—‘111 (K+|V’u€| )%D|D2u€|

(6.17)



We deduce from (612), (6.13), and (GI]) that (6.8) holds for c¢g = ¢7 + c1p.
Now differentiating (6.4]) with respect to xy for k = 1,...,n, we obtain

(Aue)zy, = fo, He(ue) + fHé(u’E)u’Emk (6.19)

Multiplying (@I9) by (7s(ues, ) and integrating over Ba,, we get

<’75(uemk)(Aue)mkde = CW&(uemk)f;kae(ue)dx
BQT B2T‘

+ fCVé(uemk)Hé(ue)uemkdx
BQT

which leads by taking into account (63]) and (G8) and using the fact that
|<75(uemk)He(ue)| <1to

fC’YJ(erk)Hé(Ue)Uemkd!E = C’Vt?(uewk)(Aue)mkdx
BQT B2T‘
- CWﬁ(uemk)fwkHe(ue)dx < G +/ |fmk|dx
B2T‘ BQT
<cg+ 00(27")7171 =C11- (620)

On the other hand, since H/(ue)7ys(tes, )Uex, 18 a nonnegative function, we have
}i_r% Hé(“é)Vé(uewk)uewk = |[(He(ue))z,,| a.e.in Bay,

which leads by the bounded convergence theorem to
<f|(H€(ue))zk| dx < c11. (621)
B2T‘

Multiplying again (G.I9) by ¢ and integrating over Ba,., we get by taking into
account the fact that |(He(u.)| < 1 and (@3)

A ldz < /B CH (w)| fou| + FCIHL (0o )

Ba,
< [ et [l i
BQT B2T‘
< Co2r)" 411 = o (6.22)
Since ( is nonnegative and ( =1 in B,., we deduce from ([6.22)) that

/ [(Aue)z, |dx < 12, YE=1,...,n.
B

Hence we obtain Au, € W,"!(B,) uniformly. Finally we observe from (6.5)- (6.6)

loc
that the approximating sequence of solutions u. converges in VVlif (Q) —weakly
and in C1#(Q), for some B > 0, to the solution u of the obstacle problem and
consequently also Aue — Au in LE (2) — weakly which concludes the proof of

the theorem. O
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As a consequence, we get the main result of this section:

Theorem 6.2. Assume that p satisfies (LI), @), f satisfies BI) and ([G3),
and that a satisfies (L2)-(L4) and 61), (62), and additionally Y, ggi (x,0) =
0. Then the essential free boundary of problem (P) has locally finite H" -
measure.

Proof. From Proposition 2.2 iii) we know that the solution u of the obstacle
problem satisfies fx{u,>0y < Au < f a.e. in ) and as a consequence of its

regularity given by Corollary 5.1, u € W22(Q2) N C*(Q). Therefore

" da; " da; 0%u
Au = 2 -(z, Vu) + Z: 7($7VU) Gu0m; 0,

for a.e. € {u = 0} and consequently we have
Au = fxqusoy a-e. in €2,

By Theorem 6.1 and the assumptions on f we conclude

Au

7 = X{u>0} € BVioc(£2).
This means that the set {u > 0} has locally finite perimeter, which immediately
implies (see, for example [8], page 204) that H"~1(0.{u > 0} N B,) < oo, for
any r € (0, R). O

Remark 6.1. We recall that the essential free boundary O.{u > 0} N B, (or
the measure-theoretic free boundary) consists of points which have positive upper
n-dimensional Lebesgue densities with respect to the two subsets {u > 0} N B,
and {u = 0} N B,.. The singular part o = (0{u > 0} \ 9{u > 0}) N B, has null
perimeter, i.e., the set Xqg of free boundary points which are not on the essential
free boundary has ||V X {y>oy||-measure zero, but its fine structure in the general
case is unknown. However a characterization of the singular set of the obstacle
problem may be given, but is essentially restricted to the case of the Laplacian
operator (see [22), Chapter 7).
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