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INTRINSIC SCHREIER SPLIT EXTENSIONS

ANDREA MONTOLI, DIANA RODELO, AND TIM VAN DER LINDEN

ABSTRACT. In the context of regular unital categories we introduce an intrinsic
version of the notion of a Schreier split epimorphism, originally considered for
monoids.

We show that such split epimorphisms satisfy the same homological prop-
erties as Schreier split epimorphisms of monoids do. This gives rise to new
examples of .#-protomodular categories, and allows us to better understand
the homological behaviour of monoids from a categorical perspective.

1. INTRODUCTION

Schreier extensions of monoids, introduced in [24], have been studied by Patch-
koria in [22] 2I] in connection with the cohomology of monoids with coefficients in
semimodules. Indeed, Patchkoria’s second cohomology monoids can be described
in terms of Schreier extensions. Moreover, Schreier split extensions correspond ac-
tually to monoid actions [23| [I7], where an action of a monoid B on a monoid X is
a monoid homomorphism from B to the monoid End(X) of endomorphisms of X.
These split extensions turned out to have the classical homological properties of
split extensions of groups, such as the Split Short Five Lemma (see [9, [10] for more
details on these properties).

In order to better understand this phenomenon of a distinguished class of (split)
extensions of monoids behaving as (split) extensions of groups, Schreier extensions
of monoids have been studied from a categorical point of view. The category of
groups is protomodular [2], while the category of monoids is not. This led to
the study of the notion of protomodularity relativised with respect to a suitable
class . of split epimorphisms, giving rise to the notion of an .%-protomodular
category [I1], having the category of monoids with Schreier split epimorphisms as
a key example. Later, in [I6] it was shown that every Jonsson—Tarski variety of
universal algebras [I5] is an .-protomodular category with respect to (a suitable
generalisation of) the class of Schreier split epimorphisms. These categories satisfy
relative versions of the basic properties of protomodular categories.

However, this categorical description of the homological properties of Schreier
extensions of monoids is not entirely satisfactory. The definition of a Schreier
(split) extension is not categorical, because it depends crucially on the element-
wise approach involving a Schreier retraction, which is just a set-theoretical map
(rather than a morphism of monoids). Moreover, for the same category, there may
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be several different classes of split epimorphisms that give rise to a structure of an
&-protomodular category: in the case of monoids, some of such different classes
have been identified (see [9] and [I2] for a description of these examples). For these
reasons, the notion of an .%-protomodular category is able to capture only some
of the (very strong) homological properties of Schreier split epimorphisms. Indeed,
this notion covers other situations that are not so well-behaved.

The aim of the present paper is to give a characterisation of Schreier split
epimorphisms in completely categorical terms, without using elements. In order
to do that, we use imaginary morphisms—in the sense of Bourn and Janelidze,
see [0, 8] [7), 25]—for the categorical Schreier retractions. The advantage of obtaining
this characterisation is two-fold. On one hand, this approach may allow a sharper
categorical interpretation of the homological properties of Schreier extensions than
the one obtained through the notion of an .’-protomodular category. On the other
hand, our notion of intrinsic Schreier split extension, being categorical, can be con-
sidered in a wider context than that of Jonsson—Tarski varieties, namely in regular
unital [3] categories (under some additional assumptions). This may allow us to
develop a meaningful cohomology theory for regular unital categories, which on
one hand extends the well-established cohomology theory for semi-abelian categor-
ies [I3], and on the other hand interprets categorically Patchkoria’s cohomology of
monoids. This is material for future work.

2. SCHREIER SPLIT EXTENSIONS OF MONOIDS

In this section we recall from [9, [I0] the main definitions and properties concern-
ing Schreier split extensions.
A split epimorphism of monoids f with chosen section s and kernel K

K>?(X,~,1)%>Y (1)

is called a Schreier split epimorphism if, for every x € X, there exists a unique
element a € K such that = k(a) - sf(x). Equivalently, if there exists a unique
function ¢: X --» K such that = kq(z) - sf(x) for all z € X. We emphasise the
fact that ¢ is just a function (not necessarily a morphism of monoids) by using an
arrow of type --».

The uniqueness property may be replaced [I0, Proposition 2.4] by an extra con-
dition on ¢: the couple (f,s) is a Schreier split epimorphism if and only if

(S1) = = kq(z) - sf(x), for all z € X;

(S2) q(k(a)-s(y)) =a,forallae K, yeY.

Remark 2.1. Recall from [9] that Schreier split epimorphisms are also called right
homogenous split epimorphisms. A split epimorphism as in () is called left
homogenous if, for every x € X, there exists a unique element a € K such that x =
sf(xz)-k(a). Tt is called homogeneous when it is both left and right homogeneous.

Proposition 2.2. [9, Proposition 2.1.5] Given a Schreier split extension as in (),
the following hold:

(83) qk = 1K;'
(84) qs = 0;
(85) q(1) = 1;

(S6) kq(s(y)-k(a))-s(y) =s(y) k(a), forallae K, yeY.

We say that a split epimorphism (with fixed section s) is a strongly split
epimorphism [4] (see also [I8], where the same notion was considered, in the
regular context, under the name of regular point) if its kernel k& and section s form
a jointly extremal-epimorphic pair (k, s). It is stably strong [19] if every pullback
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of it along any morphism is a strongly split epimorphism (with the section induced
by s).

Lemma 2.3. [9, Lemma 2.1.6] Any Schreier split epimorphism is strongly split.

It is easy to see that every strongly split epimorphism (f, s) is such that f is the
cokernel of its kernel, hence it gives rise to a split extension. The split extension ()
is then called a Schreier split extension and the map ¢ is called the associated
(Schreier) retraction. It is indeed a retraction, by (S3) above.

Actually any Schreier split epimorphism is stably strong, since Schreier split
epimorphisms are stable under pullbacks:

Proposition 2.4. [9, Proposition 2.3.4] Schreier split epimorphisms are stable un-
der pullbacks along arbitrary morphisms.

Corollary 2.5. Any Schreier split epimorphism is stably strong.
Some examples of Schreier split extensions are given by direct products:

Proposition 2.6. [9, Proposition 2.2.1] A split extension underlying a product of
monoids

<071Y>
X>—>XxY=XxY
<1x,0> TY

is always a Schreier split extension.

Corollary 2.7. Any terminal split extension and identity split extension

Ox 1x
XDﬁX%>O and ODOHX%>X
X Ix X 1x

is a Schreier split extension.

Several other examples of Schreier split extensions are considered in [9]. A useful
property of such split extensions is the following:

Proposition 2.8. [10, Lemma 4.1] Any morphism between two Schreier split ex-
tensions
q s
Kg-—~—sX=———=Y
k f
q ;!
K's o X’ ﬁ Y’

s compatible with respect to their retractions, i.e., gqg = q¢'g.

3. .-PROTOMODULAR CATEGORIES

In this section we recall the definition of an .-protomodular category, with
respect to a class . of points in a category with a zero object.

Let C be a finitely complete category. A point in C is a split epimorphism f
with a chosen section s:

X%Y, fs=1y.

We say that a point is (stably) strong when it is a (stably) strongly split epimorph-
ism. Consequently, its kernel k& and section s form a jointly extremal-epimorphic
pair (k,s), and (f,s) is part of a split extension.

We denote by Pt(C) the category of points in C, whose morphisms are pairs of
morphisms which form commutative squares with both the split epimorphisms and
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their sections. The functor cod: Pt(C) — C associates with every split epimorphism
its codomain. It is a fibration, usually called the fibration of points. For each
object Y of C, we denote by Pty (C) the fibre of this fibration, whose objects are
the points with codomain Y.

Let . be a class of points in C which is stable under pullbacks along any morph-
ism. If we look at it as a full subcategory .7-Pt(C) of Pt(C), then it gives rise to a
subfibration .¥’-cod of the fibration of points.

Definition 3.1. [9 Definition 8.1.1] Let C be a pointed finitely complete category,
and .¥ a pullback-stable class of points. We say that C is .¥-protomodular when:

(1) every point in .#-Pt(C) is a strong point;
(2) .7-Pt(C) is closed under finite limits in Pt(C).

Ezample 3.2. [9] The category Mon of monoids is .#-protomodular with respect to
the class . of Schreier split epimorphism.

Ezample 3.3. [16] We recall that a variety of universal algebras is called a Jonsson—
Tarski variety [I5] when its theory contains a unique constant 0 and a binary
operation + such that ©+0 = x = 0+z. So an algebra is a unitary magma, possibly
equipped with additional operations. When treating the examples of groups and
monoids, we shall write the binary Jonsson—Tarski operation as a product.

Every Jonsson—Tarski variety is an .#-protomodular category with respect to
the class of Schreier split epimorphisms. Indeed, the definition of a Schreier split
epimorphism makes sense also in this wider context, and it gives rise to a whole
family of examples of .’-protomodular categories.

4. IMAGINARY MORPHISMS

The technique of imaginary morphisms stems from the work of Bourn and
Janelidze [6] 8, [7]; it was further explored in [25] by the second and third authors
of the present article. Here we use imaginary morphisms in order to capture cer-
tain characteristic properties of Jonsson—Tarski varieties and to define an intrinsic
version of the concept of a Schreier retraction.

Here we assume that C is a regular category with enough (regular) projectives
and that we can choose projective covers functorially. We write ex: P(X) — X for
the chosen projective cover of some object X in C: €x is a regular epimorphism and
P(X) is a projective object, which means that for any morphism z: P(X) — Z and
any regular epimorphism f: Y — Z, there exists a morphism y: P(X) - Y in C
such that fy = z. In what follows, it will be convenient for us to let P be part
of a comonad (P, 9,¢); we say that C is equipped with functorial (comonadic)
projective covers. Note that for any morphism f: X - Y in C

fex = ey P(f) (2)
and
P2(f)ox = oy P(f), (3)
where P? = PP. Also
epx)0x = lpx) = Plex)dx (4)
and
P(dx)0x = dp(x)0x, (5)

for all objects X in C.
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Ezxample 4.1. If V is a variety of universal algebras, then we may consider the free
algebra comonad (P, d, ). For any algebra X, we have

ex: P(X) —» X and 0x:P(X) — PX),
[] — = [] = [[«]]
where [z] denotes the one letter word z, which are the generators of P(X). In this
case, any function f: X --»Y between algebras X and Y extends uniquely to a
morphism
fi P(X)
[]

—
—

=i~

)
in V.

This example motivates the following definition:

Definition 4.2. A morphism f: P(X) — Y is called an imaginary morphism
from X to Y; we write f: X --» Y.

Ezxample 4.3. In a variety of universal algebras V equipped with the free algebra
comonad (Example []), each function from an algebra X to an algebra Y may be
considered as an imaginary morphism X --+»Y in V.

An imaginary morphism X --» Y is not actually a morphism X — Y in C.
Rather, it is a morphism in C with domain P(X). Any real morphism f: X —» Y
may be considered as an imaginary morphism f: X --» Y, namely the composite
fex. In particular, 1y : Y — Y, considered as an imaginary morphism Y --» Y, is
ey: P(Y)—>Y.

Actually, the imaginary morphisms are exactly the morphisms of the co-Kleisli
category Cp induced by the comonad (P, d, ). There Cp(X,Y) = C(P(X),Y) with
the co-Kleisli composition. In the particular case where f: X --» Y is an imaginary
morphism and ¢g: Y — Z and h: W — X are morphisms in C, they compose as in
Figure[l The composition of the imaginary morphism f with the real morphism ¢

imaginary composition corresponding morphism in C
X:Z>Y$7Z Px) Lty 2oz
- _ - _
W%szgY rov) 2 px) Loy
- _ ?h/ —

FIGURE 1. Imaginary compositions

is precisely the composition of the imaginary morphism f with the corresponding
imaginary morphism g = gey: P(Y) — Z in the co-Kleisli category:

go f=ygeyP(f)ox =4 9fepx)dx . qf
Likewise,
Toli = fP(hew)dw = fP(R)P(ew)dw 2 fP(h).

Lemma 4.4. In a regular category with functorial projective covers, a morph-
ism f: X —>Y is a regular epimorphism if and only if it admits an imaginary
splitting 5: Y --» X. This means that s = 1y : Y --» Y or, equivalently, that
s: P(Y) — X satisfies fs =ey.
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Proof. This is an immediate consequence of the definitions. O

A pointed and regular category with binary coproducts is unital [3| [I] when, for
all objects A, B, the comparison morphism

rap=(%1)A+B—>AxB
is a regular epimorphism. If the category has functorial projective covers, then, by
Lemma 4] this is equivalent to saying that 4 p admits an imaginary splitting
tap: AxB--» A+ B,
i.e., there exists a morphism t4 p: P(A x B) — A+ B such that
TA,BtA,B = €AxB. (6)
Example 4.5. A variety of universal algebras V is unital if and only if it is a Jonsson—
Tarski variety [I]. In this case, for any pair of algebras (A, B) in V, we make the
following canonical choices of imaginary splittings for 4 p: the direct imaginary
splitting ¢¢ -
[(a,0)] > a+b
which sends a generator [(a,b)] € P(A x B) to the sum of a = 14 (a) with b = ¢5(b)
in A + B, and the twisted imaginary splitting ¢*
[(a,b)] = b+a

which does the same, but in the opposite order. Note that each of those choices
determines a natural transformation

t: P(() x ()= () +()
such that 7t = e(.yx(.), where r: (-) + (-) = (-) x (-) and
ex(): PIC) > () = () x ()
Definition 4.6. In a pointed regular (unital) category C with binary coproducts

and functorial projective covers, a natural imaginary splitting (of the com-
parison from sum to product) is a natural transformation

t:P(()x () =)+ ()
such that rt = E()x ()

Note that, by Lemma [£4], the existence of a natural imaginary splitting in a
pointed regular category with binary coproducts and functorial projective covers
implies that this category is unital. Any Jonsson—Tarski variety comes equipped
with a direct and a twisted natural imaginary splitting ¢t and ¢* as in Example
On the other hand, outside the varietal context there seems to be no reasonable
way to characterise these cases categorically. We show next that in the category of
monoids these are the only two possible choices.

Proposition 4.7. In the category of monoids, any natural imaginary splitting t
must be the direct or the twisted natural imaginary splitting.

Proof. Consider the monoid of natural numbers N. As a splitting of [10““ 1% ], we

must have &y n([(1,1)]) = 11 or tyn([(1,1)]) = 11.

Let A and B be arbitrary monoids and let us fix arbitrary elements a € A and
b € B. Consider the morphisms f: N — A, defined by f(1) = a, and g: N — B,
defined by g(1) = b. The naturality of ¢ tells us that

tas([(a,b)]) = ab, when tyn([(1,1)]) =
ta,B([(a,b))] =ba, when tyn([(1,1)]) = 11.

Consequently, t =t or t = tv. O

11;
11
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A variation on this idea proves the same for unitary magmas. Then N must be
replaced with the free unitary magma on a single generator =, which consists of
non-associative words (), #, (&, *), (%, (x,%)), ((x, =), *), etc.

Ezample 4.8. In the category of groups, P(A x B) — A+ B: (a,b) — a~'ba?
determines a natural imaginary splitting which is neither direct nor twisted. This
situation is studied in detail in the forthcoming article [20].

Remark 4.9. Any natural imaginary splitting ¢: P((-) x (-)) = (-) + (-) has the
following properties:

1. t4,0 is isomorphic to €4

mm—ii»? f
l $

L
\Z

(AxO)%A+O%>A
—_—
EAX0

for all objects A in C;
2. the naturality of ¢ gives the commutative diagram

P(Ax B) 2" A+ B

P(uxv)l lu+v (7)

P(CxD)—>C+D

tc,p

forallu: A— C,v: B— D in C;
3. from (@), we deduce

(1a O)ta,m = 7TA€A><B@5AP(7TA) (8)
and
(0 1B)tA,B = WBEAXBQEBP(T‘-B) (9)

for all objects A and B in C;
4. using properties 1. and 2. above, we obtain the (regular epimorphism, mono-
morphism) factorisations

pa) 2 poa gy A2 44 B o)
EA >A LA
and
(€0.15)) b4
P(B) (Ax B)—2 5 A4+ B

for all objects A and B in C.

5. INTRINSIC SCHREIER SPLIT EXTENSIONS

In this section we describe a categorical approach towards Schreier extensions.
Here C will denote a regular unital category with binary coproducts, functorial
projective covers and a natural imaginary splitting ¢.
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Definition 5.1. A split epimorphism f with chosen section s and kernel K

Kb k;)(%y, (11)
I

is called an intrinsic Schreier split epimorphism (with respect to t) if there
exists an imaginary morphism ¢: X --» K (i.e. a morphism ¢: P(X) — K), called
the imaginary (Schreier) retraction, such that

(IS].) Ui’q ngx]tp(x),p(X)P«lp(X), 1P(X)>)(SX = ey, i.e., the diagram

1 1 t
p2(x) Lo h by« p(x)) LYY prx) 4 P(X)
J/[kq sfex)
P(X) _ - X
commutes;

(182) qP(U{J S))P(tKyy)(SKXy = TKEKXY i.e., the diagram

P k s
PAK x V) 2 pi 4 vy 28D prxy

PKxY)——/———>KxY ——>K

comimutes.

Proposition 5.2. If the point (f,s) in () admits q: X --» K satisfying (iS1),
then it is a strong point.

Proof. From (iS1) we see that (kg sfex): P(X)+ P(X) — X is a regular epi-
morphism. It easily follows that also (k s): K +Y — X is a regular epimorphism,
thus (k, s) is a jointly extremal-epimorphic pair. O

We then call the point and split extension in (1) an intrinsic Schreier point
and an intrinsic Schreier split extension, respectively. The properties (iS1)
and (iS2) are the respective translations of (S1) and (S2) to the “imaginary”
context.

Proposition 5.3. For an intrinsic Schreier split extension (), the imaginary
retraction q: X --+ K s unique.

Proof. Suppose that there exist two imaginary retractions ¢,¢": P(X) — K such
that (iS1) and (iS2) hold. From (iS1) applied to ¢ we get

kq sfex)tp(x),p)P((lpx), Lp(x)))dx

ex = (
< ex = (k 8)(q + fex)tpx),px)P({Lpx)s Lpx)))dx
= EX = (k/’ S]ﬁK yP(q X (fEX (<1P(X)a 1P(X)>)6X
= EXx = (k/’ S]ﬁK yP(<q f{:‘)(> (SX (12)

Applying (iS1) to ¢’ we obtain a similar equality, namely

(k 8)txyP({q, fex))ox = (k s)txyP({d, fex))ox



INTRINSIC SCHREIER SPLIT EXTENSIONS 9

We use this equality and (iS2) applied to ¢ to obtain ¢ = ¢’. Indeed

qP((k s))P(txy)P? (<Q7f5X>) (6x)dx
= qP((k 8))P(tx,y)P*({¢, fex))P(0x)dx

)
qP((k 8))P(tx,y)P*({q, fex))dpx)0x

L34
= qP((k 8))P(txy)P?({qd, fex))0p(x)0x
& gP((k ) Pltry )y P, fex))bx
= qP((k S])P(tK,Y)5KxYp(<q fex))ox
gy Trerxy P({q, fex))0x = mxerxy P({d, fex))dx
2 T{q, fex)ep(x)0x = mr{d, fex)ep(x)0x
@ /
S q=q. O

The next results give the intrinsic versions of those recalled in Proposition

Proposition 5.4. Let C be a regular unital category with binary coproducts, func-
torial projective covers and a natural imaginary splitting t. If () s an intrinsic
Schreier split extension with imaginary retraction q, then:

(i83) ¢P(k) = ek

(iS4) ¢P(s) =0;

(iS5) qOP(X) =0g;

(iS6) (s k)ty,x = (kqP((s k) P(ty,x) sTyey xKEP(Y xK)tP2 (¥ x K),P2(Y x K)

© P(<1P2(Y><K); 1P2(YxK)>)5P(YxK)5YxK-
Proof. If we compose each side of (iS2) with P({1x,0)), use () and (2), we obtain
P((k s)P(tx,y)P*({1k,0))0x = T {1k, 0)eK
P((k 8))P(tx)Pex)dr = ek

qP(k) = ex;

18 0B

this proves (iS3). Similarly, we prove (iS4) by composing each side of (iS2) with
P({0,1y)); (iS5) is obvious.

Next, we prove a stronger equality from which (iS6) easily follows (by precom-
posing with dy « x and using ({@)):

S k]tyﬁKEP(ny) @Exp([s k)tny)

kq sfex)tpixy,px)P({(Ipx), Lpx)))0x P((s k)ty,x)

kq sfex)tpix),pe)P((Lpx)s 1px)))P2((s Kty k)dpy k)
kq sfex)tpixy),px)P((px), Lpx))P((s Kty,x))0pry k)
kq sfex)tpox),po)P(P((s K)ty,x) x P((s K)ty,x))

o P((Ap2(y k) 1Lp2(v xk)))0P(v x K)

2 (kqP((s k)tyv,x) sfexP((s k)ty,x))tp2(vxK),P2(v xK)
o P({1p2(y x k), Lp2(v x k)))0P(Y x K)-
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To finish, we use

=}

SfEXP((S k]ty,K) Sf[S k/’)ty7K€p(y><K)

s(ly O)ty,kep(y x k)
= STYEY x KEP(Y xK)- O

Any binary product gives an example of an intrinsic Schreier split extension, like
for Schreier split extensions for monoids (see Proposition 226]).

Proposition 5.5. Any split extension given by a binary product is a Schreier split
extension.

Proof. Given any split extension underlying a binary product in C

0,1y)
XWXXY%>Y
X

we define ¢ = mxexxy: P(X xY) — X for its imaginary retraction. To prove
(iS1), we use
[(Ix,0)mxexxy €0, Iy)myexxy)tp(xxy),P(XxY)
© P(<1P(X><Y)a 1P(Xxy)>)5XxY
= [(mx,0) €0,7y))(exxy + EXxY)tP(XxY),P(XxY)

o P((1pxxyy lp(xxv)))0xxy

I8

(rx % WY)[IXOXY 1XOXthX><Y,X><YP(5X><Y X EXxY)

o P((Ipxxyy lp(xxv)))0xxy

18

(mx X Ty )exsxyxxxy P{exxy,€xxy))0xxy

=

exxyP(mx x my )P((exxy,ExxY))0xxy
=exxyPExxy)dxxy
=EXxY-

The proof of (iS2) is quite straightforward:

mxexxy P(('¢ J)P(tX,Y)(SXxY@WXEXXYP(EXXY)(SXXY@WXEXXY- O
Corollary 5.6. For any object X,
OX 1X
Xb—>X<—%0 and ODOHX%ﬂX
X Ix X 1x

are intrinsic Schreier split extensions.

Proposition 5.7. Any morphism in Pt(C) between intrinsic Schreier split exten-
s10nMS

K §; XY
k T

§J/ gl lh
g s

Kg-s X' =Y’
v f

is compatible with respect to their imaginary retractions, i.e., gq = ¢'P(g).
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Proof. We start by using (I2)) for the bottom intrinsic Schreier extension
K 8ty P((q's f'ex))dx P(g) = ex P(g)

) (
) P, fex))P?(9)dx = gex
"ty PG P(g), f'exP(9)))dx = gk s)try P({q, fex))dx
) (
) (

k/ S/ tK/ N

o~

k' sVt vy P({q'P(g), f'9ex))0x = (gk gs)txy P({q, fex))0x
k' sVt vy P({q'P(g), f'9ex))0x = (K sVt y' P((gq, f'9ex))dx,

V)

B
¢ B 98 @“@

(
(
(
(
(

by using the commutativity of the diagram and ().
We may now proceed as in the second part of the proof of Proposition to
conclude that ¢’ P(g) = gq. O

Proposition 5.8. If the point (f,s) in () admits q: X --» K satisfying (iS1),
then it is a stably strong point.

Proof. We already know that (f,s) is strong by Proposition Now to see that
(f,s) is a stably strong point, we take its pullback along an arbitrary morphism g

Z xy X (13)
W )
Y.

To prove that (7z,{1z, sg)) is strong it suffices to show the existence of an imaginary
morphism ¢’: Z xy X --» K satisfying (iS1). We define

¢ =qP(rx): P(Z xy X) > K
and check that
ezxyx = ((0,k)qP(mx) (1z,89)Tz 2%y x)
Otp(zxyx),P(Zxy X)Plpzxyx)s LP(Zxyx)))0 2%y X -
Indeed, this equality follows from

72(0,k)qP(x) {1z,59)Tz€7x x)
Olp(zxy x),P(Zxy X)PULPZxy x)s LP(Zxy X)))0Zxy X
= (0 mze2xy X)tP(Zxy x),P(Zxy X)P1P(Zxy x) LP(Zxy X)))02Zxy X

=722xy X (0 1p(zxy x))tP(Zxy x),P(zxy X)P({Lp(zxy x): LP(Zxy X)))02xy X
@ Tz€2xy XEP(Zxy X)P(M2) P({1p(zxy x), LP(2xy X)))02xy X

@
= TZ2E€Zxy XEP(Zxy X)0Zxy X = TZEZxy X
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and
mx (€0, kygP(rx) (1z,89)TzE7x, x)
0tp(zxy X),P(Zxy X)P({Lpzxy x), LP(Zxy x)))0Zxy X
= (kqP(7mx) sgmzE2xy x)
olp(zxy x),P(Zxy X)P((1pzxy x), 1P(Zxy x)))02Zxy X
= (kqP(7x) sfrxezxyx)

0tp(zxy X),P(Zxy X)P((Lpzxy x), LP(Zxy x)))0Zxy X

(kg sfex)(P(rx) + P(rx))

Olp(zxy x),P(Zxy X)P(P(Zxy X)) LP(Zxy x)))02Zxy X

[[=]

18

(kg sfex)tpx) px)P(P(rx) x P(rx))P({(lp(zxyx)s LP(zxy x)))02xy X
= (kg sfex)tp(x) px)P((P(mx), P(7x)))0zxy x
= (kq sfex)tpix),px)P({(1px), Lp(x))) P 2(mx)0zxy X

) (

IIQ

(kq sfex)tpix),px)P({(1pix), Lp(x)))0x P(mx)
1)
ex

IIUJ

P(ﬂ'x)@ﬂ')(&'Zny. O

We observe that the proof of the previous proposition actually tells us that the
points (f, s) satisfying (iS1) for a certain imaginary retraction ¢ are stable under
pullbacks along any morphism.

Recall from [19] that an object Y is said to be a protomodular object when
all points over it are stably strong. Consequently, a finitely complete category is
protomodular if and only if all of its objects are protomodular. It was shown there
that the protomodular objects in Mon are precisely the groups. The next result
gives a partial version of Corollary 3.1.7 from [9] which says that a monoid Y is a
group if and only if all points over Y are Schreier points.

Corollary 5.9. If all points over Y are intrinsic Schreier points, then Y is a
protomodular object.

Proof. All points over Y are stably strong by Proposition O

The converse implication is false in general, as we will show in Section [7

We prove now that, if we apply our intrinsic definition to the category Mon of
monoids, we regain the original definition of a Schreier split epimorphism (= right
homogeneous split epimorphism). Also left homogeneous and homogeneous split
epimorphisms (see Remark [2)) fit the picture.

Theorem 5.10. In the case of monoids, the intrinsic Schreier split epimorphisms
with respect to the direct imaginary splitting t¢ are precisely the Schreier split epi-
morphisms. Similarly, the intrinsic Schreier split epimorphisms with respect to the
twisted imaginary splitting t* are the left homogeneous split epimorphisms.

Hence the homogeneous split epimorphisms are the intrinsic Schreier split epi-
morphisms with respect to all natural imaginary splittings.

Proof. Let (1) be an intrinsic Schreier split extension of monoids with respect to
t?. Then there exists an imaginary retraction q: P(X) — K such that (iS1) and
(iS2) hold, where P(X) is the free monoid on X. We define the function
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to be the Schreier retraction in Mon. From (iS1) we prove (S1): for all z € X,
(kq sfex)thix), pooyP((pex)s Lpix)0x ([2]) = ex([x])
(kq sfex)thx) pooP(pex), Leao))([[2]]) = =
(ka sfex)thbix),poo (2], [2D)]) =
(kg sfex)([2] [2]) ==
kq([z]) - sf(x) =
< kd'(x) sf(x) =
Similarly, from (iS2) we prove (S2): forallae K,yeY,

aP((k 8)P(t5 y)0xxy ([(a.9)]) = mrerxy ([(a,9)])

P ((k 5)P(t5 )([[(a Yl = 7 (a,y)
qP((k s)([a- ])

q([k(a) - s(y)]) =

< (k) s(y)) =

Conversely, suppose that () is a Schreier split extension of monoids with Schreier
retraction ¢’. The map ¢’ determines a unique morphism of monoids ¢: P(X) —» K
given by

q([122 - @n]) = q([z1] - [w2] - - [2a]) = ¢ (21) - d'(22) - -+ ¢ (@n).
In particular, on the generators we have ¢([x]) = ¢/(z), Vo € X, as above. Then ()
is an intrinsic Schreier extension with respect to t?. Indeed, to prove (iS1) and (iS2)
it suffices to check these equalities for the generators [x], for all x € X, and [(a, y)],
for all a € K and y € Y, respectively. They follow immediately from (S1) and (S2)

and the fact that ¢([z]) = ¢/(z) for all z € X, as for the previous implication.
The proof for left homogeneous split epimorphisms is similar: replace t¢ by t*.
Thanks to Proposition 7] these are the only two natural imaginary splittings,
which proves the final claim. O

¢ ¢ ¢ 9

¢ ¢ 9

Remark 5.11. Tt is not difficult to extend this result’s first two statements (on left
and right homogeneous split epimorphisms) to Jonsson—Tarski varieties. If 6 is an
n-ary operation, we have

q(0([z1], .- ., [2n])) = 0(d (1), .-, ¢ (zn))-
The third statement is not valid, though, since according to Example d.8 in general
these two cases do not cover all possible choices of a natural imaginary splitting ¢.

Remark 5.12. The final statement in Theorem [5.10] tells us that homogeneous split
epimorphisms of monoids are in some sense “more intrinsic” than left or right homo-
geneous ones, since they do not depend on a choice of natural imaginary splitting,
and thus admit a “purely categorical” description.

6. STABILITY PROPERTIES

The aim of this section is to show that any regular unital category C with binary
coproducts, functorial projective covers and a natural imaginary splitting ¢ is an
&-protomodular category with respect to the class . of intrinsic Schreier split
epimorphisms. First of all, we show that the class .# is stable under pullbacks,
which gives a subfibration of the fibration of points.

Proposition 6.1. Intrinsic Schreier split extensions are stable under arbitrary
pullbacks.
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Proof. Consider an intrinsic Schreier split extension and an arbitrary pullback as

in (I3). We know from Proposition .8 that ¢’ = ¢P(rx): P(Z xy X) — K satisfies

(iS1) for the split epimorphism (7z,{1z, sg)). To prove (iS2) we calculate
qP(mx)P(({0, k) {1z,59))) Ptk z)0k xz

(k s9))P(tk,z)0k xz

s))P(1x + 9)P(tk,z)0k xz

)Pty )P?(1k % 9))0kx 2z

s)P(txy)orxyP(lk x g)

18

P(
qP(
qP(

(

(%
(%
(%

(=]

qP
is2

(I)WKEKxYP(lK X g)

o Tk(lx X §)exxz = TKEKxZ- O

We have already explained that every intrinsic Schreier split epimorphism is
a (stably) strong point (see Proposition BE.8). What remains to be shown—see
Definition B.I}—is that the full subcategory .#-Pt(C) of intrinsic Schreier points is
closed in Pt(C) under finite limits.

Proposition 6.2. Intrinsic Schreier split extensions are stable under binary pro-
ducts.

Proof. Let
KWX$>Y and K/>?X'$Y'

be intrinsic Schreier split extensions. Suppose that the imaginary retractions are
q: P(X) - K and ¢': P(X’') —» K’, respectively. We want to prove that

K x K'b——>X x X’H>Y xY'
kxk' Fxf
is an intrinsic Schreier split extension. Asimaginary retraction we use the imaginary
morphism p = (¢ x ¢ ){P(rx), P(rx/)): P(X x X') —» K x K'. For (iS1) we must
prove that
exxx = ((kxE)p (s x s)(f x flexxx)
otp(xxxn),P(xxx)P({(1pxxx7), Lp(xxx7)))0x x X"
We have
x((kxK)p (s x s")(f x fexxx)

otpxxx,P(xxx)P({lp(xxx): Lp(xxx)))0x x X’

(=]

(kqP(mx) sfexP(mx))tpxxxn,p(xxx) P({(1pxxxy: Lp(x xx7)))0x x X7
= (kq sfex)(P(nx) + P(rx))

o tP(XxX/),P(XxX/)P(<1P(X><X/)a Lp(xxx)))0xx X
(kq sfex)tpix),px)P(P(rx) x P(mx))P({1pxxx: Lp(xxx)))0x x X!
= (kq sfex)tpx),px)P((P(m ) P(mx)))0x xx
= (kg sfex)tpx).px)P((Lpx) Lpx) P2 (7x)0x < x0
(kq sfex)tpix),px)P({(pix) Lpx)))ox P(rx)

iS1
(—35‘ P(ﬂx)@ﬂxé‘){xxl.
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The proof that

Txexxx = mx/((k x K)p (s x " )(f x flexxx))
otpxxx),P(xxx) P({(Ipxxxn, Lp(xxx7)))0x x X7
is similar. For (iS2) we must show that
P(Uf x k' s x 5/))P(tK><K’,Y><Y’)6K><K’><Y><Y’ =TKxK/'EKxK'XYxY’-
We have
T pP((k x k' s x 8'))P(trx kv <y ) 0K K/xY <Y
= qP(mx)P((k x k' 5 x ")) P(trxx: yxy' )0Kx K/ xYxY"
= qP((k s)(mx + Ty )tk x K" Yy xy")OK x K/ x Y x V"
@QP([ sty P(Tr X Ty ))0R x K/ x Y <y
=qP((k 8))P(tg,y)P* (T X Ty )6k x k' xy xY
D, p(k 5)

iS2
(— )7TK€K><yP(7TK X 7Ty)

S (tKy (SKXyP(ﬂ'K ><7Ty)

@)
= 7TK(7TK X FY)EKxK/xYxY/ =TKTKxK'EKXK/'XY XY+
The proof that
Vi !
T pP((k x k' s %X ) )P(trxk yxy )IKx K xYxY' = TR/ TKxK'€KxK'xY xY"

is similar. 0

Proposition 6.3. Intrinsic Schreier split extensions in C are closed under equal-
isers in Pt(C).

Proof. In the following diagram, the middle and right vertical extensions are in-
trinsic Schreier split extensions. Consider the morphisms (g, u) and (h, v) between
them and the induced morphisms ¢ and h. Let e be the equaliser of (g,h), w be
the equaliser of (u,v), ¢ and o be the induced morphisms and L the kernel of ¢

. g
— s K——=K'

Since limits commute with limits, we know that the induced morphism ¢ is the
equaliser of (§, k). Moreover, (e, w) is also the equaliser of ((g, ), (h,v)) in Pt(C).
We want to prove that the left vertical extension above is an intrinsic Schreier
split extension. Suppose ¢: P(X) — K and ¢': P(X’) — K’ are the imaginary
retractions for (f,s) and (f’,s’), respectively. The morphism v: P(E) — L,

L%K?K’
h

A
v q

P(E) <= P(X)
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which is induced by the universal property of the equaliser € because

3aP(e)2y P(g)P(e) = ¢ Plge) = ¢ P(he) = - = hqP(e),

gives the imaginary retraction with respect to (¢, o). We prove (iS1) by using that
e is a monomorphism:

e(ly oper)tps )P(E)P(< P(E 1P<E>>)5E

= (ely eoper)tpp),pe)P((1pE), 1p(E)))0E
2 (kqP(e) sfeXP<e>Jtp<E>,p<E>P<<1P<E>,1P<E>>>6E
= (kq sfex)(P(e) + P(e))tpe),peyP({(1pm); Lpm))oE
@qu sfex)tpix),px)P(P(e) x P(e))P({(1pg), 1p(r)))0E
= (kg sfex)tp(x).px)P((P(e), P(€)))dr
= (kq sfex)tpix),pox)P((Lpcx), Lpx))) P2 (e)dE
D (kg sfex)tpx),px)P((lpx), Lp(x)))dx P(e)
(lilgi‘xp(e) @ €ER.

To prove (iS2) we use that € is a monomorphism
eyP((l 0))P(tr,w)orxw = qP(e)P((l 0))P(tr,w)irxw
= qP((el eo)tr,w)orxw
= qP((k€ sw)tL,w)drxw
=qP((k s)(€+w)tLw)oLxw
@

S)tKyP(e X w))éwa
S]) (tK y)P2(€ X w)éLXw
)

S ) (tK y)éKXyP(e X ’LU)

((
((
(%
gP((k
= qP((k

(%

= %TKEKXyP(g X ’LU)

= EeMLELXxW - [l

Corollary 6.4. Intrinsic Schreier split extensions in C are closed under finite limits
in Pt(C).

Proof. By Corollary B0 the terminal object of Pt(C), the point 0 < 0, is an
intrinsic Schreier point. Then the result follows by Propositions and O

Corollary 6.5. Any regular unital category with binary coproducts, functorial pro-
jective covers and a natural imaginary splitting is an & -protomodular category with
respect to the class .7 of intrinsic Schreier split epimorphisms.

It is easy to see that the closedness of .”-Pt(C) in Pt(C) under finite limits implies
that, for every object Y, the fibre .#-Pty (C) is closed in Pty (C) under finite limits.

7. (INTRINSIC) SCHREIER SPECIAL OBJECTS

In this section we investigate .#-special objects and the link between them and
protomodular objects.
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Definition 7.1. An object X of an .-protomodular category is said to be .-
special when the point

(Ix,1x)
X T2

(or, equivalently, the point (m1,{1x,1x))) belongs to the class .7.

Proposition 7.2. [I1] Proposition 6.2] Given an .¥-protomodular category C, the
full subcategory of .7 -special objects is a protomodular category, called the proto-
modular core of C relative to the class ..

If C is the category Mon of monoids, and . is the class of Schreier split epimorph-
isms, then the protomodular core is the category Gp of groups ([I1], Proposition
6.4). On the other hand, in [I9] we showed that a monoid is a group if and only
if it is a protomodular object. Thus one could be led to think that the notions of
-special object and protomodular object are always equivalent, like in the case
of monoids. This is false: actually, neither condition is implied by the other.

Theorem 7.3. In Jonsson—Tarski varieties, the concepts of a protomodular object
and of an 7 -special object (for .7 the class of Schreier split epimorphisms) are
idependent.

We start with a counterexample: a variety where not all .%’-special objects are
protomodular.

Ezample 7.4. Let Mag be the Jonsson—Tarski variety of unitary magmas (whose
theory contains a unique constant 0 and a binary operation + such that 0 + =z =
x = x + 0). We show that the unitary magma ¥ = Cy = ({0,1},+), the cyclic
group of order 2, is an .%-special object which is not protomodular in Mag.

It is easy to see that Y is a special Schreier object: the map ¢ in

a y,ly)
YE - =SV xY=—=Y
{1y ,0) 2

which sends (0,0) and (1,1) to 0, and (1,0) and (0, 1) to 1, is a Schreier retraction.

Next we show that Y is not a protomodular object, by giving an example of a
split epimorphism over Y which is not a strong point. In Mag we consider the point
(f,s) and its kernel

O X ==,

where X = ({0, a,b}, +) is defined by

and

Note that X is not associative since, for instance, (a + a) +b = 0+ b = b and
a+(a+b)=a+0=a.
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The point (f, s) is not strong, because there exists a monomorphism s which is
not, an isomorphism, yet makes the diagram

Y

I\

commute.

Proposition 7.5. Let V be a Jonsson—Tarski variety. An algebra in V is special
with respect to the class of Schreier split epimorphisms if and only if it has a right
loop structure.

Proof. We recall that a right loop (X, +, —,0) is a set X with two binary opera-
tions + and — and a unique constant 0 such that the following axioms are satisfied:
z+0=0+2=rz, (x—y)+y=u (z+y)—y=um

Now, given an object X in V, suppose that the split epimorphism (I4) is a Schreier
split epimorphism. Then there exists a map ¢: X x X --» X such that, for all z,
y € X, we have

(@,y) = (a(z,¥),0) + (y,9),
from which we deduce = ¢(z,y) + y. Let us then define
z—y=qz,y)
Clearly we have (z —y) +y = ¢(z,y) + y = . Moreover, (S2) tell us that

a(z +y,y) ==,
or, in other words,
(x+y)—y=a.

Conversely, given a right loop (X, +, —, 0), we can define ¢: X x X --+ X by putting
q(z,y) = x —y. Tt is then immediate to check that (S1) and (S2) are satisfied. O

Remark 7.6. In any Jonsson—Tarski variety, a similar proof shows that an object X
is special with respect to the class of left homogeneous split epimorphisms if and
only if it has a left loop structure:

t+0=0+z=2 x4+ (—z+y) =y, —z+(z+y)=y.

As a consequence of these observations, we are able to complete the proof of
Theorem with Example [

We recall from [5] that a pointed variety is protomodular if and only if its theory
contains only one constant 0, and there exists a positive integer n, as well as n
binary operations aq, ..., o, and an (n + 1)-ary operation /8 such that

ai(z,x) =0 Vie{l,...,n},
6((11(56,:[/), .- -aan(x,y),y) =T.

In many of the known examples of pointed protomodular varieties, such as Gp (or
any variety which contains the right loop operations), the characterisation above
works for n = 1.

Example 7.7. Let HSLat be the variety of Heyting semilattices, namely the
variety defined by a unique constant T and two binary operations A, — such that
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(A, T) gives the structure of a semilattice with a top element, and the following
axioms are satisfied:

z=(ynz)=@—>y Al —2)

In [T4] it was shown that HSLat is a protomodular variety. Accordingly, all objects
in HSLat are protomodular. It was also shown that HSLat is protomodular for
n = 2, but not for n = 1. This allows us to conclude that not all objects are
-special. Indeed, HSLat is a Jonsson—Tarski variety, so by Proposition all
-special objects are right loops. If all objects were .¥-special, then HSLat would
be a protomodular variety with n = 1, which is false.

This argument can be used on any pointed protomodular variety for which the
smallest number n that makes the characterisation recalled above work is strictly
larger than 1. Hence our notion of intrinsic Schreier split epimorphism gives a
categorical method for distinguishing general pointed protomodular varieties from
varieties of right 2-loops. Indeed, in every protomodular variety V all objects are
protomodular, while every object in V is .#-special with respect to the class . of
(intrinsic) Schreier split epimorphisms if and only if V is a variety of right Q-loops.

Proof of Theorem[7.3. Combine Example [(.4] with Example [[7] O
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