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INVOLUTORY LR SYMMETRY BIJECTION ON HIVES

I. TERADA, R.C. KING AND O. AZENHAS

Abstract: Littlewood–Richardson (LR) coefficients cλµν may be evaluated by means
of several combinatorial models. These include not only the original one based on
the LR rule for enumerating LR tableaux of skew shape λ/µ and weight ν, but also
one based on the enumeration of LR hives with boundary edge labels λ, µ and ν.
Unfortunately, neither of these reveal in any obvious way the well-known symmetry
property cλµν = cλνµ. Here we introduce a map σ(n) on LR hives that interchanges
contributions to cλµν and cλνµ for any partitions λ, µ, ν of lengths no greater than
n, and then prove that it is a bijection, thereby making manifest the required sym-
metry property. The map σ(n) involves repeated path removals from a given LR
hive with boundary edge labels (λ, µ, ν) that give rise to a sequence of hives whose
left-hand boundary edge labels define a partner LR hive with boundary edge labels
(λ, ν, µ). A new feature of our hive model is its realisation in terms of edge labels and
rhombus gradients, with the latter playing a key role in defining the action of path
removal operators in a manner designed to preserve the required hive conditions. A
consideration of the detailed properties of the path removal procedures also leads to
a wholly combinatorial self-contained hive-based proof that σ(n) is an involution.

Math. Subject Classification (2000): 05A19 05E05 15E10.

1. Introduction and statement of results
Let n be a fixed positive integer and let x = (x1, x2, . . . , xn) be a sequence

of indeterminates. Then, for each partition λ of length `(λ) ≤ n and weight
|λ|, there exists a Schur function sλ(x) which is a homogeneous symmetric
polynomial in the xk of total degree |λ|. These Schur functions sλ(x) for all
such λ form a linear basis of the ring Λn of symmetric polynomials in the
components of x. It follows that

sµ(x) sν(x) =
∑
λ

cλµν sλ(x) , (1.1)

where the coefficients cλµν are known as Littlewood–Richardson (LR) coeffi-
cients. These coefficients are independent of n. They are non-negative integers
that may be evaluated by means of the Littlewood–Richardson rule [LR34] as
the number of Littlewood–Richardson tableaux of skew shape λ/µ and of weight
ν, where the parts of ν specify the numbers of its entries k for k = 1, 2, . . . , n,
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with the entries satisfying certain semistandardness and lattice permutation
conditions.
Alternatively, cλµν is the number of Littlewood–Richardson n-hives with bound-

ary edge labels specified by the ordered triple (λ, µ, ν) [KT99, Buc00], where
each of the three partitions has n parts through the inclusion if necessary of
trailing zeros. Further details of the hive model may be found in Section 2. Put
briefly, an LR n-hive is a labelling of the vertices of an equilateral triangular
graph of side length n subdivided by its edges into n2 elementary triangles of
side length 1, as illustrated in the case n = 4 in 2.1 on the left, with the vertex
labels of those pairs of elementary triangles sharing a common edge satisfying
rhombus conditions, see 2.1 on the right.
Here we find it convenient to use an edge representation of an LR hive [KTT06],

whereby each edge is labelled by the label of the vertex at its rightmost end
minus the label of the vertex at its leftmost end. In this setting the boundary
edge labels are the parts of the relevant partitions λ, µ and ν. What we call the
gradient of a rhombus formed from two elementary triangles sharing a common
edge is the difference between the sum of the vertex labels at the two ends of
this edge and the sum of the remaining two vertex labels. When expressed in
terms of edge labels, the gradient of a rhombus is the difference between the
labellings of either pair of two opposite edges (see 2.8).
Although logically distinct, the tableau and hive models may be thought of

as being equivalent thanks to the existence of a bijection between LR tableaux
and LR hives described by Fulton in the Appendix to [Buc00], see also [KT99,
PV05]. Within these two models, the set of LR tableaux of shape λ/µ and
weight ν is denoted by LR(λ/µ, ν), and the corresponding set of n-hives is
denoted by H(n)(λ, µ, ν) for any fixed n ≥ `(λ). We then have

cλµν = #{T ∈ LR(λ/µ, ν)} = #{H ∈ H(n)(λ, µ, ν)} . (1.2)

Unfortunately, although the definition 1.1 makes it immediately clear that
cλµν = cλνµ, the same cannot be said of either of the combinatorial formulae
in 1.2. Within a variety of equivalent combinatorial models, people have suc-
ceeded in defining bijective maps between objects with parameters (λ, µ, ν)
and those with parameters (λ, ν, µ), which we may call Littlewood–Richardson
commutativity bijections, and in some cases showed their involutive nature (see
e.g. [BSS96, HK06b, PV10, DK05, DK08]). However, this has not yet been
done for the map originally defined in a tableaux setting by the third author
in [Aze99, Aze00] and described as ρ3 in [PV10], nor has its coincidence with
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other known LR commutativity bijections been fully established. Our aim here
is to define such a bijection σ(n) : H(n) → H(n) such that σ(n) : H(n)(λ, µ, ν) 3
H 7→ K ∈ H(n)(λ, ν, µ), in the arena of hives, that corresponds to the map ρ3

in the arena of tableaux, and show that it is involutive, independently of the
existing involutiveness results on other LR commutativity bijections. The issue
of coincidence, an approach to whose proof has been proposed in [Aze08], will
be deferred to another publication.
The present paper is organised as follows. In Section 2 we recall the notion

of hives, putting emphasis on their edge representation and rhombus gradients
which we actually rely upon, and in Section 3 three path removal operators on
hives are introduced. These correspond to the deletion operators on tableaux
first introduced in [Aze99, Aze00]. In Section 4 they are shown to preserve the
hive properties.
In Section 5, we give the precise algorithmic definition of our LR commuta-

tivity map σ(n). The procedure allowing us to define σ(n) as a map taking any
LR n-hive H ∈ H(n) to some partner LR n-hive K ∈ H(n) involves a succession
of pairs, (H(r), K(n−r)), for r = n, n − 1, . . . , 0, where H(r) is an r-hive and
K(n−r) is what we call an r-truncated n-hive. For the initial r = n pair one
sets H(n) = H with K(0) an empty n-truncated n-hive, and constructs the final
r = 0 pair with K = K(n) and H(0) the empty 0-hive. The passage from one
pair to the next is effected by performing a sequence of path removals from
H(r) to give H(r−1) and using the data on the location of the initial and final
edges on each path that is removed to build K(n−r+1) from K(n−r). By this
means one evacuates H and builds K. All this is illustrated in 5.3. The main
result in this section is then the proof of Theorem 5.4 which states that for
H ∈ H(n)(λ, µ, ν) and K = σ(n)H we have K ∈ H(n)(λ, ν, µ).
In Section 6 we introduce a path addition operator on hives and define a

map σ(n), and show that for K ∈ H(n)(λ, ν, µ) and H = σ(n)K we have H ∈
H(n)(λ, µ, ν). This section culminates with the proof of Theorem 6.9 stating
that the maps σ(n) and σ(n) are mutually inverse bijections.
The next Section 7 is concerned with the involutory property of σ(n). A new

type of path removal operator ψn enables us to generate from any given n-hive
H a new hive Ĥ = ψnH, only marginally different from H. However, this
difference is enough to show that σ(n) is an involution, by showing first that
K = σ(n)H and K̂ = σ(n)Ĥ are related by the action of one of our original
path removal operators φn, and then exploiting this in an inductive proof of the
involutory property along the lines of an approach first proposed in a tableaux
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setting in [Aze00]. The heart of the matter is the somewhat intricate proof that
K̂ = φnK, where φn is one of our original path removal operators. This result
emerges as a special case of the key Lemma 7.3 whose proof involves amongst
other key ingredients the notion of a critical rhombus and three subsidiary
lemmas whose proofs are deferred to Section 9, Appendix.
In Section 8 we offer some brief concluding remarks.

2. The hive model
It is by now well known that hives , as first introduced by Knutson and Tao

[KT99], with properties described in more detail by Buch [Buc00], offer an
alternative way to determine Littlewood–Richardson coefficients. As we have
said, this comes about as a result of the existence of a bijection described by
Fulton in the Appendix to [Buc00] between the set of LR n-hives H(n)(λ, µ, ν)
with boundary specified by a triple (λ, µ, ν) of partitions with `(λ), `(µ), `(ν) ≤
n and the set of LR-tableaux LR(n)(λ/µ, ν) of skew shape λ/µ and weight ν.
In its vertex representation an integer n-hive is a labelling of the vertices

of a planar, equilateral triangular graph of side length n with integers aij, for
0 ≤ i ≤ j ≤ n, as illustrated below on the left in the case n = 4, satisfying the
rhombus inequalities indicated on the right, which are to be applied to each
elementary rhombus formed from the union of any pair of elementary triangles
having a common edge whatever their orientation.

a00

a01

a02

a03

a04

a11

a12

a13

a14

a22

a23

a24

a33

a34

a44

a

bc

d
a b

c

d
a

bc

d

a+ b ≥ c+ d

(2.1)

Such an integer n-hive is an LR n-hive and belongs to H(n)(λ, µ, ν) if and only
if for k = 1, 2, . . . , n:

a00 = 0 ; a0k =
k∑
j=1

µj ; akn = a0n +
k∑
i=1

νk ; akk =
k∑
i=1

λi . (2.2)

An LR hive may equally well be specified by mean of its edge representation
as introduced by [KTT06] and used in [KTT09, CJM11], whereby each edge
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between neighbouring vertices labelled a and b is labelled b − a if the vertex
labelled b is to the right of that labelled a.

Example 2.1. In the case n = 4, λ = (8, 6, 5, 4), µ = (6, 5, 2, 0) and ν =
(5, 4, 1, 0), a typical LR hive takes the following forms when expressed on the
left in terms of vertex labels and on the right in terms of edge labels:

0

6

11

13

13

8

14

17

18

14

19

22

19

23

23

6
5

2
0

6
3

1
5

3
4

5
4

1
0

4
2

0

3
02

8 6 5 4

8 5 4

6 5

5

(2.3)

As a matter of convention we sometimes refer to any edge parallel to the left,
right or lower boundary as being an α-edge, β-edge or γ-edge, respectively. It
is to be noted that the sequences of α, β and γ boundary edge labels constitute
the partitions µ, ν and λ, respectively. In terms of edge labels the LR hive
conditions are equivalent to the following requirements: all edge labels are
non-negative integers, while for each elementary triangle we have the triangle
conditions

α β

γ

β α

γ

α + β = γ (2.4)

and for each elementary rhombus we have the rhombus conditions

α

γ′

γ

α′
α′

β′

β

α
β

γ′

γ

β′

α− α′ = γ − γ′ ≥ 0 α− α′ = β − β′ ≥ 0 β − β′ = γ − γ′ ≥ 0

(2.5)

where the equalities are a consequence of the triangle condition and as an aide
mémoire, for each pair of parallel edges that with the larger edge label has
been drawn thicker than the other.
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The rhombus inequalities can be encapsulated in the form of the betweenness
conditions specified below:

α

α′′

α′ β′
β

β′′
γ γ′′

γ′

α ≥ α′ ≥ α′′ β ≥ β′ ≥ β′′ γ ≥ γ′ ≥ γ′′

(2.6)

The implication of these betweenness conditions is that if we separate the
edges into those that are α-edges, β-edges and γ-edges they can be seen to
form three interlocking Gelfand-Tsetlin patterns [GT50]. In our Example 2.1
these take the form:

6
5

2
0

6
3

1
5

3
4

5
4

1
0

4
2

0

3
02 8 6 5 4

8 5 4

6 5

5

(2.7)

By interlocking, we mean that when superposed, as on the right in 2.3, the
edge labels of each elementary triangle must satisfy the triangle condition 2.4.
Within a hive there are three types of elementary rhombi: right-leaning,

upright and left-leaning, as displayed in 2.1 and 2.5. We often omit the interior
edge and display them in the form:

Rα

γ′

γ

α′ U
α′

β′

β

α
Lβ

γ′

γ

β′ (2.8)

where the parameters R, U and L introduced in these diagrams are not edge
labels. They are referred to as the gradients of the corresponding right-leaning,
upright and left-leaning rhombi, respectively. Each gradient is defined to be
the difference between parallel edge labels in the relevant rhombus, or, more
precisely, for each pair of parallel edges, one thick and one thin in the above
diagrams, the gradient is equal to the thick edge label minus the thin edge
label, so that we have

R = α−α′ = γ−γ′ , U = α−α′ = β−β′ , and L = β−β′ = γ−γ′ . (2.9)
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The hive rhombus inequalities then just take the form

R ≥ 0 , U ≥ 0 and L ≥ 0 . (2.10)

All this gives rise to a third way of specifying hives, namely the gradient
representation, which involves labelling its boundary edges and giving the gra-
dients of one or other of its three sets of right-leaning, upright or left-leaning
elementary rhombi. This is illustrated in the case n = 4 by

µ1

µ2

µ3

µ4 ν1

ν2

ν3

ν4

λ1 λ2 λ3 λ4

R12

R13

R14

R23

R24

R34
µ1

µ2

µ3

µ4 ν1

ν2

ν3

ν4

λ1 λ2 λ3 λ4

U12

U13

U14

U23

U24

U34 µ1

µ2

µ3

µ4 ν1

ν2

ν3

ν4

λ1 λ2 λ3 λ4

L12

L13

L14

L23

L24

L34

(2.11)

and exemplified in the case of our running example by:

Example 2.2. Rhombus gradient labellings of 2.1

6
5

2
0 5

4
1

0

8 6 5 4

0
2

1

1
0

1 6

5

2

0 5

4

1

0

8 6 5 4

1

1

1

2

2

1
6

5

2

0 5

4

1

0

8 6 5 4

2

1

0

0

1

0

Of all these labelling schemes for LR hives the one that provides the simplest
connection with LR-tableaux is that offered by specifying boundary edge labels,
λ, µ and ν, together with the upright rhombus gradients Uij with 1 ≤ i < j ≤
n. These labels are themselves constrained by the triangle conditions applied
to the elementary triangles at the base of the hive which take the form:

λk = (µk +
k−1∑
i=1

Uik) + (νk −
n∑

j=k+1

Ukj) for k = 1, 2, . . . , n . (2.12)

In particular we have

λn = µn + νn +
n−1∑
i=1

Uin. (2.13)

so that λn = 0 if and only if µn = νn = 0 and Uin = 0 for all i < n.
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3. Path removal operators
It should be recalled first that in any given hive a diagonal consists of all the

triangles in a strip parallel to the right hand boundary of the hive lying between
an edge on the base and a corresponding edge on the left hand boundary. Our
convention is that the pth diagonal is the one bounded by the edges λp and
µp. Then by a path we mean a connected set of edges extending from an edge
on the base to an edge on either the left or right hand boundary. Such paths
are generally zig-zag in nature and proceed either up a diagonal or horizontally
leftwards from one diagonal to another. They consist of pairs of edges taken
from a sequence of neighbouring triangles always including their common edge.
However, it is not the case that any set of edges having such a configuration
is called a path. A precise definition will be made in association with path
removal operators. Here we introduce three kinds of such operators, χr, φr and
ωr, and other kinds will be added later. Then, thanks to the bijection between
LR tableaux and LR hives, the actions of the deletion operators on tableaux
introduced by the third author [Aze99, Aze00] are transformed into the action
of χr, φr and ωr on H as described in the following definition:

Definition 3.1. For any given H ∈ H(r)(λ, µ, ν) with r = `(λ) we may define
three path removal operators χr, φr and ωr whose action on H is to reduce or
increase edge labels by 1 along a path starting from the edge labelled λr on the
base of the hive and specified as follows:

(i) χr: if νr > 0 then the path consists of the edges labelled λr and νr, with
both edge labels decreased by 1;

(ii) φr: if λr − µr − νr > 0 so that Uir > 0 for some i < r then the path
proceeds up the rth diagonal from the edge labelled λr through upright
rhombi of gradient 0 until it encounters an upright rhombus of positive
gradient, at which point it moves horizontally to the left into the (r−1)th
diagonal and proceeds up this diagonal or to the left as before, and so
on until it terminates on the left-hand boundary at the top of the kth
diagonal, that is at the edge labelled µk for some k such that 1 ≤ k < r,
with all path α- and γ-edge labels being decreased by 1 and all path
β-edge labels increased by 1;

(iii) ωr: if µr > 0 then the path proceeds directly up the rth diagonal until
it terminates on the left-hand boundary at level r, that is at the edge
labelled µr, with all path edge labels decreased by 1. Such a type (iii)
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path may be thought of as a special case of a type (ii) path in which the
terminating level k = r.

The three types of path are illustrated below, where we have used full lines
and wavy lines to distinguish those edges whose labels are decreased and in-
creased, respectively, by 1 under the relevant path removal operation. The
action of χr and ωr is to decrease all path edge labels by 1, whereas the action
of φr is to decrease the label of each α- or γ-edge on the path by 1 and to
increase that of each β-edge on the path by 1. In particular, under this action
the edge label λr and one or other of νr, µk (with k < r) or µr are each reduced
by 1 to λr− 1 and νr− 1, µk− 1 or µr− 1, respectively, while the only changes
of upright rhombus gradients are those of −1 and +1 immediately above and
below the path in each diagonal, with the corresponding rhombi shaded light
and dark grey, respectively.

(i) χr:

νr
λr

(ii) φr:
µk

λr

0 >0
0

0 >0>0
0

(iii) ωr:
µr

λr

(3.1)

While the structure of the paths is rather simple in cases (i) and (iii), the
structure of the path in case (ii) is more complicated and consists of a sequence
of ladders in each diagonal from the rth to the kth. Each ladder consists of
a continuous zig-zag of α- or γ-edges (shown above as solid lines) passing
through a sequence of upright rhombi of gradient 0 that extends up the diagonal
from an edge that is either a γ-edge on the base of the hive or the α-edge at
the top of an upright rhombus that we call the foot rhombus (shaded dark
grey), to an α-edge that is either on the left-hand boundary or at the bottom
of an upright rhombus that we call the head rhombus (shaded light grey). The
upright rhombi of gradient 0 through which the ladder extends are called its
middle rhombi. A ladder may consist of a single α-edge (possibly accompanied
by a γ-edge on the base of the hive), lacking any middle rhombi. The passage
between one diagonal and the next is by way of a β-edge common to both a
head and a foot rhombus (shown above and in the diagrams below as a wavy

line). If such an edge is the lth from the top of the diagonal then its level
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is said to be l. For example, in the right-hand diagram the passage from the
rightmost diagonal to the next one on its left takes place at level 6.

ladder and its
middle rhombi

0

0

0

0

foot rhombus

head rhombus

0

0

0

0 ladder

ladder consisting of
a single α-edge

ladder

(3.2)

4. Preservation of the hive conditions
Before using these path removals we first establish that the action of each of

the path removal operators preserves the hive conditions, as follows:

Lemma 4.1. Let H be a hive in H(r)(λ, µ, ν) with r = `(λ). Then the path
removal operators are such that if we set H̃ = χrH, φrH or ωrH with νr > 0,
λr − µr − νr > 0 and µr > 0, respectively, then in each case H̃ is an LR hive.

Proof : First note that if one confirms all triangle conditions and all rhombus
inequalties for H̃, and if it can be shown that the two edges initially labelled µr
and νr still have non-negative labels in H̃, then all α- and β-edges have non-
negative labels by the betweenness of edge labels, and then all γ-edges also
have non-negative labels by the triangle conditions. However, the edge label
µr is only changed under the action of ωr. In this case µr > 0 by hypothesis,
so that its new value µr − 1 in Ĥ is non-negative. Similarly, the edge label νr
is only changed under the action of χr. In this case νr > 0 by hypothesis, so
that its new value νr − 1 in Ĥ is again non-negative. It therefore remains only
to prove the validity of the triangle and rhombus conditions.
It is easy to see that the triangle conditions 2.4 are preserved under any of

the three path removal procedures mapping a hive H to H̃ by examining the
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changes to the edge labels of elementary triangles as illustrated by:

0 −1

−1

−1 0

−1

−1 +1

0 0 −1

−1

+1 −1

0
(4.1)

Turning next to rhombi, we shall show that all their gradients remain non-
negative under the maps from H to H̃. For upright rhombi this is clear since
the gradients remain fixed except in the case of head and foot rhombi, for
which, as we have seen, the gradient decreases and increases by 1, respectively.
However, the gradient of each head rhombus is necessarily positive in H and
must therefore remain non-negative in H̃. Thus all upright rhombus gradients
of H̃ are non-negative, as required.
In the case of a type (i) hive path removal the action of χr affects only one

rhombus and does so as shown below:

λr

νrL χr7−→
λr−1

νr−1L+1
(4.2)

Clearly, the gradient of this rhombus is increased. It follows that all rhombus
gradients remain non-negative under the action of χr.
Similarly, for a hive path removal of type (iii) as illustrated on the right of

3.1 the only rhombi whose gradients change are those undergoing the map:

R
ωr7−→ R+1 (4.3)

Thus all rhombus gradients remain non-negative under the action of ωr.
The situation is more complicated for type (ii) hive path removals under

the action of φr. However, the only right-leaning or left-leaning rhombi that
undergo a reduction in gradient under a type (ii) hive path removal are those
subject to the following transformations:

α′α R
φr7−→ α′α−1 R−1 β L β′

φr7−→ β L−1 β′+1 (4.4)

To preserve the validity of the corresponding hive condition it is therefore
necessary to show that on the left the initial gradient R = α − α′ is positive,
and that on the right the initial gradient L = β − β′ is also positive. It can be
seen from the type (ii) diagram of 3.1 that the only cases that arise are those
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of the following types:

α

α

α

α

α3

α2

α1

α0

R3

R2

R1

0

0

0 > 0

Lβ

β′′

β′

β′′′

0 > 0
(4.5)

In the left-hand diagram the parallel edge labels α on the left of the diagram are
identical, since the gradients of the intervening upright rhombi are all zero as
indicated by the 0’s appearing on horizontal edges. On the right of the diagram
the fact that the relevant upright rhombi have non-negative gradients implies
that α1 ≥ α2 ≥ α3 ≥ · · · , while the positivity of the gradient of the upright
rhombus shaded grey ensures from the betweenness conditions that α ≥ α0 >
α1. Hence α ≥ α0 > α1 ≥ α2 ≥ α3 ≥ · · · so that Rk = α − αk > 0 for all
k ≥ 1, as required for the right-leaning rhombus condition to be maintained
after the path removal.
In the hexagonal diagram on the right the gradients of the two upright rhombi

specified in the diagram as 0 and > 0 ensure that β = β′′ and β′′′ > β′. In
addition the gradient β′′− β′′′ of the upper left-leaning rhombus must be non-
negative. Hence β = β′′ ≥ β′′′ > β′. It follows that L = β − β′ > 0 so that
L− 1 ≥ 0, as required for the left-leaning rhombus condition to be maintained
under the action of φr.
Thus it is confirmed that all rhombus gradients remain non-negative under

the action of χr, φr and ωr. This completes the proof of Lemma 4.1.

This Lemma allows us to produce from an LR hive H ∈ H(r)(λ, µ, ν) a new
LR hive H̃ ∈ H(r−1)(λ̃, µ̃, ν̃). To this end it is convenient to make the following
definition:

Definition 4.2. For any given hive H ∈ H(r)(λ, µ, ν) with `(λ) ≤ r the full
r-hive path removal operator θr is defined by

θr = κr ω
µr
r φλr−µr−νr

r χνrr , (4.6)

where κr is an operator whose action is to restrict any LR r-hive H with an
empty rth diagonal to an LR (r − 1)-hive consisting of the leftmost (r − 1)
diagonals of H. Here an empty rth diagonal is one in which all the edge labels
within and on its boundary satisfy the triangle conditions, with the top and
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bottom edge labels both 0, and with all upright rhombus gradients also 0. By
virtue of 2.13, this is the case if and only if the bottom edge label is 0. This
implies that the lowest right-hand boundary edge label is also 0.

With this definition we have

Theorem 4.3. For a hive H ∈ H(r)(λ, µ, ν) with `(λ) ≤ r let θrH = H̃. Then
we have H̃ ∈ H(r−1)(λ̃, µ̃, ν̃) with λ̃ = (λ1, . . . , λr−1), µ̃ = (µ1−V1r, . . . , µr−1−
Vr−1,r) and ν̃ = (ν1, . . . , νr−1), where Vkr is the number of type (ii) hive path
removals from H that extend from the boundary edge initially labelled λr to
that initially labelled µk for 1 ≤ k < r.

Proof : If `(λ) < r then λr = µr = νr = 0 and Uir = 0 for i = 1, 2, . . . , r − 1.
Thus θr = κr and there are no path removals, so that Vkr = 0 for all k =
1, 2, . . . , r − 1 and the effect of the action of κr is simply to remove from each
partition λ, µ and ν a trailing 0. This implies that λ̃ = λ, µ̃ = µ, ν̃ = ν and
θrH = H̃ ∈ H(r−1)(λ̃, µ̃, ν̃), as required. For `(λ) = r the required result is
an easy consequence of the iterated action of χr, φr and ωr, followed by that
of κr. First the edge label νr is reduced to 0 by the action of χνrr . At the
same time the edge label λr is reduced to λr − νr. It is then reduced to µr
under the action of φλr−µr−νr

r , and finally to 0 under the action of ωµr
r , under

which the edge label µr is also reduced to 0. Meanwhile, under the action
of φλr−µr−νr

r the upright rhombus gradients Uir are reduced one by one to 0,
since λr − µr − νr = Ur−1,r + · · · + U2r + U1r by virtue of 2.12. It follows
that the rth diagonal of the hive is now empty and is then finally removed
through the action of κr, which includes the removal of the trailing zeros from
the boundary edge label partitions. The parameters Vkr give the number of
type (ii) hive removal paths that reach the left-hand boundary edge initially
labelled µk, thereby reducing this label to µk − Vkr for k = 1, 2, . . . , r − 1, as
required to complete the proof.

Two further observations are of use in what follows.

Lemma 4.4. In the action of θr on H ∈ H(r)(λ, µ, ν) with `(λ) = r if a hive
path removal of type (ii) or (iii) follows a path P and reaches the left-hand
boundary at level k, then the next such removal follows a path P ′ lying weakly
above the path P in each diagonal they have in common. In particular P ′
reaches the left-hand bounday at level k′ with k′ ≥ k.

Proof : In the case where both P and P ′ are of type (ii) this can be seen by
consideration of the following hive path removal diagrams in which the two
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successive removal paths P and P ′ are illustrated. In the left-hand diagram
just the path P is shown with full line edges, and with each head rhombus
shaded as usual, while in the right-hand diagram the path P ′ has been added,
using double line and wavy line edges where it does and does not, respectively,
coincide with P , now with just each head rhombus of the path P ′ being shaded.

P : k

r

1
0

0
0 1

0
0

0

>0>0

>0

>1>1

>0
0

>0>0
0

P : k

P ′ : k′

r

0
0

0
0

0
0

0
0

0
0

>0

>0>0

>0>0

(4.7)

Each of the head rhombi of P necessarily has a positive gradient before the path
removal, but by way of an example two of them are critical in that they have
gradient precisely 1, which must then be reduced to 0 by the P path removal.
This means that the next path removal P ′, as illustrated in the diagram on the
right, follows the first path P until it meets the first such critical rhombus. Since
this now has gradient 0 the path P ′ must pass up the diagonal through this
critical rhombus until it again meets an upright rhombus of positive gradient.
It then proceeds in the usual way, where it may, as in this example, meet and
then follow the path P until it once again meets a critical rhombus, and so
on. It is clear that in this way the path P ′ remains weakly above P at all
stages, and that if P and P ′ meet the left-hand boundary at levels k and k′,
respectively, then k′ ≥ k.
In the case where P is of type (ii) but P ′ is of type (iii) then P is as shown

on the left with k < r, and P ′ proceeds directly up the rth diagonal, the only
diagonal they have in common, and terminates at level k′ = r > k. On the
other hand if P is of type (iii) so that k = r, then the same must be true of the
next successive path removal P ′, so that P and P ′ coincide and k′ = r = k.
Thus in all cases P ′ lies weakly above P in each diagonal they have in com-

mon, and they terminate at levels k′ and k, respectively, with k′ ≥ k.

Corollary 4.5. Under the action of θr on H ∈ H(r)(λ, µ, ν) with `(λ) = r
let Vkr be the number of type (ii) hive path removals reaching the left-hand
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boundary at level k for 1 ≤ k < r. Then for each such k

µk ≥ µk − Vkr ≥ µk+1. (4.8)

Proof : The first inequality is immediate, since Vkr ≥ 0. Now let H̃ = φNkr
r χνrr H,

where Nkr = V1r + · · ·+Vkr. In view of 4.6 and Lemma 4.4 this is the interme-
diate hive obtained while applying θr to H, immediately after all those path
removals produced by the action of φr that reach the left-hand boundary at or
below level k. At this stage the left-hand boundary edge label µk+1 remains un-
changed, while the label µk has been reduced to µk − Vkr. The hive conditions
on H̃ then imply the second inequality.

Our second observation is the following:

Lemma 4.6. Under the action of θr followed by θr−1 on H ∈ H(r)(λ, µ, ν) with
`(λ) = r, let Nkr and Nk−1,r−1 be the number of type (ii) hive path removals
occurring in the action of θr and θr−1 that reach the left-hand boundary at or
below levels k and k − 1, respectively. Then

Nk−1,r−1 ≥ Nkr − Ur−1,r, (4.9)

where Ur−1,r is the upright rhombus gradient at the foot of the rth diagonal of
H.

Proof : It should be noted that under the action of θr on H the type (ii) hive
path removals may take one or other of the following two forms (iia) and (iib):

(iia)

r−1r

0
0
+1
−1

+1
−1

0
0

0 −1 −1

(iib)

r−1r

0
0
+1
−1

+1
−1

+1 0
0
+1
−1

+1
−1

0

(4.10)

To be precise, the gradient Ur−1,r of H forces exactly the first Ur−1,r of the
type (ii) paths removed by θr to take the form (iia). If the value of k is such
that Nkr ≤ Ur−1,r, then we immediately have Nk−1,r−1 ≥ 0 ≥ Nkr − Ur−1,r as
required. In order to prove the required inequality for all remaining values of k,
let P1, P2, . . . , Pc be all type (iib) paths removed by the action of θr on H, and
Q1, Q2, . . . , Qd all type (ii) paths, whether of the form (iia) or (iib), removed
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by the action of θr−1 on θrH, both numbered in the order of removals, and
claim that (a) c ≤ d, and (b) Qi lies strictly below Pi for each 1 ≤ i ≤ c. Once
this claim has been shown, one can argue for each k with Nkr > Ur−1,r that
by Lemma 4.4, among the type (ii) paths removed by θr, those terminating at
levels≤ k are the first Ur−1,r type (iia) paths and the followingNkr−Ur−1,r type
(iib) paths, and that by the claim each Qi with 1 ≤ i ≤ Nkr−Ur−1,r terminates
at a level strictly below the terminating level of Pi, and hence strictly below
level k. The required inequality then follows.
In order to prove the claim, note that the removal of each Pi leaves +1,

meaning an increase by 1, in the gradient of its foot rhombus in each diagonal
it enters. Moreover, by Lemma 4.4, each Pj with j ≥ i lies weakly above
Pi, and its removal decreases an upright rhombus gradient only for the head
rhombus in each diagonal, lying strictly above the foot rhombus of Pi in that
diagonal. Hence the +1 obtained by the removal of Pi is not negated by the
removal of any Pj with j > i, but rather the effect of these +1’s accumulates
in each diagonal, until all type (ii) paths are removed by θr. The situation
remains unaltered by the removal of any necessary type (iii) paths under the
action of θr and any necessary type (i) paths under the action of θr−1. See the
diagram 4.11 for a typical illustration of the situation immediately before the
type (ii) path removals by θr−1 start. For instance, the third upright rhombus
from the bottom containing three +1’s has gradient equal to its value before
the removal of P3 plus 3 as a result of removing P3, P4 and P5, while the next
upright rhombus above it, containing no +1, maintains the same value of its
gradient as it had immediately before the removal of P6.

+1 due to the removal of P6

+1 " P3

+1 " P4
+1 " P5

+1 " P1

+1 " P2

(4.11)

Now entering the phase of type (ii) path removals by θr−1, first note that the
(r− 1)th diagonal at this point embraces a total of at least c upright rhombus
gradients due to the above-mentioned accumulating nature of +1. Hence θr−1
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must remove at least that many type (ii) paths, fulfilling c ≤ d, which was part
(a) of our claim.
Now consider how the path Q1 proceeds. The +1’s left by the removal of P1,

due to the positions of its foot rhombi in consecutive diagonals each of which
is located either precisely to the west of the previous one or further up the
diagonal (see 4.10 on the right), create an inpenetrable barrier for the path
Q1, starting from the bottom of the (r− 1)th diagonal, to climbing any of the
ladders of P1 in diagonals over which it extends. Thus Q1 stays entirely below
P1 in an edge-disjoint manner. The removal of Q1 decreases the gradient of
the head rhombus of each of its ladders, which is located weakly below the foot
rhombus of P1 in that diagonal. Hence the removal of Q1 leaves intact the +1
left by the removal P2 in each diagonal, or by any Pi with i ≥ 2, even in the
extreme case where the head rhombus of Q1, the foot rhombi of P1 and P2 all
coincide, since only the +1 left by the removal of P1 is annihilated.
So upon removal of the next path Q2, again the +1’s left by the removal

of P2, due to their placement, serve as an inpenetrable barrier for Q2, which
starts again from the bottom of the (r − 1)th diagonal, to climb any of the
ladders of P2, confining Q2 to the region strictly below P2. The decrease of the
upright rhombus gradients by the removal of Q2 occurs weakly below the foot
rhombus of P2 in each diagonal, and hence again keeps the effect of +1 left by
the removal of P3 or by any Pi with i ≥ 3, even if the head rhombus of Q2, the
foot rhombi of P2 and P3 all coincide.
Proceeding in this manner, one concludes that Qi lies strictly below Pi for

all 1 ≤ i ≤ c as claimed in part (b), which shows the required inequality as
anticipated.

5. Path removal map σ(n) from H(n)(λ, µ, ν) to H(n)(λ, ν, µ)
Armed with our path removal procedures we are able to exploit them to

construct from any hive H ∈ H(n)(λ, µ, ν) its partner hive K ∈ H(n)(λ, ν, µ).
To do so it is only necessary to evacuate the initial hive H by performing a
sequence of path removals that render it empty and to build the final hive K
from the data on the location of the first and last edges on each path that is
removed. In doing so one constructs a sequence of pairs (H(r), K(n−r)) for each
r = n, n− 1, . . . , 0 where H(r) is an r-hive and K(n−r) is an r-truncated n-hive
consisting of the rightmost n−r diagonals of some n-hive. These pairs are such
that H(n) = H and H(0) is the empty hive, signified here by a single point,
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while K(n) = K and K(0) is an empty n-truncated n-hive, signified by a single
boundary line consisting of β-edges with labels µ1, µ2, . . . , µr.

Example 5.1. In the case n = 4 the map we are seeking is of the following
type from (H(4), K(0)) to (H(0), K(4)): µ1

µ2

µ3

µ4 ν1

ν2

ν3

ν4

λ1 λ2 λ3 λ4

,

µ1

µ2

µ3

µ4

 Θ(4)

−→

 · ,
ν1

ν2

ν3

ν4 µ1

µ2

µ3

µ4

λ1 λ2 λ3 λ4


Definition 5.2. Given any LR hive H ∈ H(n)(λ, µ, ν), let H(n) = H and let
K(0) be the n-truncated n-hive with edge labels µ. Then let Θ(n) := Θ1 · · ·Θn−1Θn

denote the operation which transforms the pair (H(n), K(0)) to the pair Θ(n)(H(n),
K(0)) := (H(0), K(n)) through the action of a succession of n operators that pro-
duce pairs (H(r), K(n−r)), with r = n−1, n−2, . . . , 0, respectively, as indicated
by

(H(n), K(0))
Θn7−→ (H(n−1), K(1))

Θn−17−→ · · · Θ27−→ (H(1), K(n−1))
Θ17−→ (H(0), K(n)).

(5.1)
The boundary edge labels of the r-hive H(r) are (λ1, . . . , λr), (µ

(r)
1 , . . . , µ

(r)
r )

and (ν1, . . . , νr), while those of the r-truncated n-hive K(n−r) with which it
is paired are (λr+1, . . . , λn), (µ

(r)
1 , . . . , µ

(r)
r ), (νr+1, . . . νn) and (µ1, . . . , µn), as

exemplified in the case n = 7 and r = 5 by

µ
(5)
1

µ
(5)
2

µ
(5)
3

µ
(5)
4

µ
(5)
5 ν1

ν2

ν3

ν4

ν5

λ1 λ2 λ3 λ4 λ5

U12

U13

U14

U15

U23

U24

U25

U34

U35

U45

ν6

ν7 µ1

µ2

µ3

µ4

µ5

µ6

µ7

µ
(5)
1

µ
(5)
2

µ
(5)
3

µ
(5)
4

µ
(5)
5

λ6 λ7

V16

V17

V26

V27

V36

V37

V46

V47

V56

V57

V67

(5.2)

The operator Θr maps the pair (H(r), K(n−r)) to (H(r−1), K(n−r+1)) where H(r−1) =
θrH

(r) and the action of θr serves to define Vkr as in Theorem 4.3. In parallel
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with this, K(n−r+1) is obtained from K(n−r), by adding to its left-hand bound-
ary an rth diagonal of upright rhombi having gradients Vkr, with boundary edge
labels νr and λr at its top and bottom, respectively.
Given that the right-hand boundary edge labels of the rth diagonal of K(n−r+1)

are (µ
(r)
1 , . . . , µ

(r)
r ), it follows from the fact that Vkr = µ

(r)
k −µ

(r−1)
k that the left-

hand boundary edge labels of K(n−r+1) are (µ
(r−1)
1 , . . . , µ

(r−1)
r−1 ). For example Θ5

maps the pair (H(5), K(2)) displayed in 5.2 to the pair (H(4), K(3)) given by

µ
(4)
1

µ
(4)
2

µ
(4)
3

µ
(4)
4 ν1

ν2

ν3

ν4

λ1 λ2 λ3 λ4

Ũ12̃

U13̃

U14

Ũ23̃

U24

Ũ34

ν5

ν6

ν7 µ1

µ2

µ3

µ4

µ5

µ6

µ7

µ
(4)
1

µ
(4)
2

µ
(4)
3

µ
(4)
4

λ5 λ6 λ7

V15

V16

V17

V25

V26

V27

V35

V36

V37

V45

V46

V47

V56

V57

V67

(5.3)

where, as a result of the type (ii) path removals, the upright rhombus gradients
Uij of H(5) have been replaced by Ũij in H(4).

Following this lengthy definition, it is convenient to exemplify each phase of
the action of Θr on the pair (H(r), K(n−r)). Before doing this it is helpful to
introduce an operator ζr whose action on a truncated hive K(n−r) is to add
to the left-hand boundary of K(n−r) an rth diagonal with upright rhombus
gradients all 0, upper boundary edge label 0 and lower boundary edge label
µ

(r)
r . Then what might be called Phase 0 of the action of Θr is to act on K(n−r)

with ζr, as illustrated by the following where it will be seen that the left-hand
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boundary edge labels automatically become (µ
(r)
1 , . . . , µ

(r)
r−1):

ν6

ν7 µ1

µ2

µ3

µ4

µ5

µ6

µ7

µ
(5)
1

µ
(5)
2

µ
(5)
3

µ
(5)
4

µ
(5)
5

λ6 λ7

V16

V17

V26

V27

V36

V37

V46

V47

V56

V57

V67

ζ57−→
0

ν6

ν7 µ1

µ2

µ3

µ4

µ5

µ6

µ7

µ
(5)
1

µ
(5)
2

µ
(5)
3

µ
(5)
4

µ
(5)
5
λ6 λ7

0

0

0

0

V16

V17

V26

V27

V36

V37

V46

V47

V56

V57

V67

(5.4)

Here it might be noted that the label µ(5)
5 added to the the leftmost lower

boundary edge automatically preserves the triangle condition.
Phase 1 then arises if νr > 0 in which case θr involves νr type (i) hive path

removals from H(r) and the same number of hive path additions to ζrK(n−r) as
illustrated by

µ
(5)
1

µ
(5)
2

µ
(5)
3

µ
(5)
4

µ
(5)
5 ν1

ν2

ν3

ν4

λ1 λ2 λ3 λ4

0

λ5−ν5

U12

U13

U14

U15

U23

U24

U25

U34

U35

U45

ν5

ν6

ν7 µ1

µ2

µ3

µ4

µ5

µ6

µ7

µ
(5)
1

µ
(5)
2

µ
(5)
3

µ
(5)
4

λ6 λ7ν5+µ
(5)
5

V16

V17

V26

V27

V36

V37

V46

V47

V56

V57

V67

0

0

0

0

(5.5)

Phase 2 involves a sequence of λr− νr−µr type (ii) hive path removals from
H(r) and the same number of hive path additions to ζrK(n−r), of which one
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such removal and addition is illustrated by

µ
(4)
1

µ
(4)
2

µ
(5)
3 −1

µ
(5)
4

µ
(5)
5 ν1

ν2

ν3

ν4

0

λ1 λ2 λ3 λ4σ5−1

0

0

>0>0

ν5

ν6

ν7 µ1

µ2

µ3

µ4

µ5

µ6

µ7

µ
(4)
1

µ
(4)
2

µ
(5)
3 −1

µ
(5)
4

λ6 λ7τ5+1

V16

V17

V26

V27

V36

V37

V46

V47

V56

V57

V67

V15

V25

+1

0

(5.6)

where σ5 = λ5−ν5−V15−V25 and τ5 = µ
(5)
5 +ν5 +V15 +V25. In this example it

has been assumed that the hive path removal illustrated on the left is the first
that terminates at the 3rd edge on the left-hand boundary, thereby reducing
the edge label µ(5)

3 by 1. A further V35− 1 such path removals reduce this edge
label to µ(4)

3 whilst increasing the shaded rhombus label on the right to V35.
In Phase 2 this process continues until the upright rhombus gradients in the
rightmost diagonal on the left are all 0, and those in leftmost diagonal on the
right are Vk5 for k = 1, 2, . . . , r − 1 = 4.
Phase 3 then involves a succession of µ(r)

r type (iii) hive path removals from
H(r). However, no corresponding hive path additions to ζrK(n−r) are required
because the addition of µ(r)

r to the leftmost lower boundary edge label has
already taken place in Phase 0. The first step of Phase 3 is illustrated in our
example by:

µ
(4)
1

µ
(4)
2

µ
(4)
3

µ
(4)
4

µ
(5)
5 −1 ν1

ν2

ν3

ν4

0

λ1 λ2 λ3 λ4µ
(5)
5 −1

0

0

0

0

ν5

ν6

ν7 µ1

µ2

µ3

µ4

µ5

µ6

µ7

µ
(4)
1

µ
(4)
2

µ
(4)
3

µ
(4)
4

λ5 λ6 λ7

V15

V16

V17

V25

V26

V27

V35

V36

V37

V45

V46

V47

V56

V57

V67

(5.7)
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The repetition of this a total of µ(5)
5 times and the removal of the resulting

redundant 5th diagonal on the left by means of the action of κ5 then yields 5.3
as required.

Example 5.3. An exemplification of the map from (H(4), K(0)) to (H(0), K(4))

is provided by the following: (H(4), K(0))
Θ47−→ (H(3), K(1)):

ζ47−→
6

5
2

0 5
4

1
0

8 6 5 4

1
1 2

1 2 1

0 6
5

2
0

0

6
5

2

0
0

0

φ47−→
5

5
2

0 5
4

1
0

8 6 5 3

1
1 2

0 1 0

0 6
5

2
0

1

5
5

2

1
0

0

φ47−→
5

4
2

0 5
4

1
0

8 6 5 2

1
0 1

1 2 0

0 6
5

2
0

2

5
4

2

1
1

0

φ47−→
5

4
1

0 5
4

1
0

8 6 5 1

1
0 0

1 3 0

0 6
5

2
0

3

5
4

1

1
1

1

φ47−→
5

4
0

0 5
4

1
0

8 6 5 0

0
1 0

1 3 0

0 6
5

2
0

4

5
4

0

1
1

2

κ47−→
5

4
0 5

4
1

8 6 5

1
1 3

0 6
5

2
0

4

5
4

0

1
1

2

(H(3), K(1))
Θ37−→ (H(2), K(2)):

ζ37−→
5

4
0 5

4
1

8 6 5

1
1 3

0
0 6

5
2

0

0 4

5
4

0
1

0
1

2

χ37−→
5

4
0 5

4
0

8 6 4

1
1 3

1
0 6

5
2

0

1 4

5
4

0
1

0
1

2

φ37−→
4

4
0 5

4
0

8 6 3

1
0 2

1
0 6

5
2

0

2 4

4
4

1
1

0
1

2

φ237−→
4

2
0 5

4
0

8 6 1

1
0 0

1
0 6

5
2

0

4 4

4
2

1
1

2
1

2

φ37−→
4

1
0 5

4
0

8 6 0

0
1 0

1
0 6

5
2

0

5 4

4
1

1
1

3
1

2

κ37−→
4

1 5
4

8 6

1

1
0 6

5
2

0

5 4

4
1

1
1

3
1

2

(H(2), K(2))
Θ27−→ (H(1), K(3)):

ζ27−→
4

1 5
4

8 6

1
0

1
0 6

5
2

0

1 5 4
4

1
1 1

0 3 2

χ4
27−→

4
1 5

0

8 2

1
4

1
0 6

5
2

0

5 5 4
4

1
1 1

0 3 2

φ27−→
3

1 5
0

8 1

0
4

1
0 6

5
2

0

6 5 4
3

1
1 1

1 3 2

ω27−→
3

0 5
0

8 0

0
4

1
0 6

5
2

0

6 5 4
3

1
1 1

1 3 2

κ27−→
3 5

8

4
1

0 6
5

2
0

6 5 4
3

1
1 1

1 3 2
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(H(1), K(3))
Θ17−→ (H(0), K(4)):

ζ17−→
3 5

8

0
4

1
0 6

5
2

0

3 6 5 4

1
1 1

1 3 2

χ5
17−→

3 0

3

5
4

1
0 6

5
2

0

8 6 5 4

1
1 1

1 3 2

ω3
17−→

0 0

0

5
4

1
0 6

5
2

0

8 6 5 4

1
1 1

1 3 2

κ17−→
·5

4
1

0 6
5

2
0

8 6 5 4

1
1 1

1 3 2

We are now in a position to state and prove

Theorem 5.4. Let n be a positive integer and let λ, µ and ν be partitions
such that `(λ) ≤ n and µ, ν ⊆ λ with |λ| = |µ| + |ν|. For each LR hive
H ∈ H(n)(λ, µ, ν) let H(n) = H and let K(0) be an n-truncated n-hive with
edge labels µ. If we let Θ(n)(H(n), K(0)) = (H(0), K(n)) as in Definition 5.2,
then H(0) = θ1θ2 · · · θnH is an empty hive and K = K(n) is an LR hive
K ∈ H(n)(λ, ν, µ). In such a case we write K = σ(n)H.

Proof : First it should be recognised from 4.6 that the passage from H(r) to
H(r−1) = θrH

(r) involves the action of κr that eliminates an empty rth diagonal.
Repeating this for r = n, . . . , 2, 1 ensures that H(0) = θ1θ2 · · · θnH is the
empty hive, as required. In order to determine the properties of K we adopt
the same plan as described at the beginning of the proof of Lemma 4.1. From
the iteration scheme of Definition 5.2 and the illustration of the action of Θr

in mapping 5.2 to 5.3 it is clear that K = K(n) will have boundary edge labels
λ, ν and µ, of which, in particular, νn and µn are non-negative. In addition
it can be seen immediately that each Phase of the action of Θr preserves the
triangle condition at every stage.
As far as the gradients of elementary rhombi are concerned, all the upright

rhombus gradients Vkr are non-negative as they count the number of certain
type (ii) hive path removals. As can be seen from the following diagram

µ
(r−1)
k

µ
(r)
k

µ
(r)
k+1Lkr

Vkr (5.8)
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the left-leaning rhombus gradients Lkr are also non-negative since

Lkr = µ
(r−1)
k − µ(r)

k+1 = µ
(r)
k − Vkr − µ

(r)
k+1 ≥ 0, (5.9)

where the final step is a consequence of Corollary 4.5. Similarly, as can be seen
from the following pair of diagrams

νr−1

νr

Rkr

V1,r−1

V1,r

V2,r−1

V2,r

· · ·

· · ·

Vk−1,r−1

· · ·

Vk,r

νr−1

νr
Ur−1,r (5.10)

the right-leaning rhombus gradients Rkr are also non-negative since

Rkr = (νr−1+
k−1∑
i=1

Vi,r−1)−(νr+
k∑
i=1

Vir) ≥ Ur−1,r+Nk−1,r−1−Nkr ≥ 0 , (5.11)

where use has been made first of the hive condition νr−1 − Ur−1,r ≥ νr that
applies to the sub-diagram ofH(r) that appears on the right and then of Lemma
4.6.
Thus all elementary rhombus gradients of K are non-negative, and together

with the triangle conditions and the nonnegativity of νn and µn mentioned
earlier, this completes the proof that K is an LR hive. The boundary edge
labels then ensure that K ∈ H(n)(λ, ν, µ).

6. Creation of a hive by path additions and a proof of
bijectivity
Having used a path removal procedure to provide a map from any H ∈
H(n)(λ, µ, ν) to some K ∈ H(n)(λ, ν, µ) we now wish to point out that a path
addition procedure may be used to provide a map from anyK ∈ H(n)(λ, ν, µ) to
some H ∈ H(n)(λ, µ, ν). The aim is to show that these two maps are mutually
inverse to one another, thereby proving that each is a bijection.
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Our approach is to move successively from an (r−1)-hive H(r−1) to an r-hive
H(r) under a procedure dictated by the rth diagonal of K. In doing so it is
necessary to exploit first a new operator κr whose action is to add to H(r−1) an
empty rth diagonal consisting of a sequence of upright rhombi all of gradient
0, with its upper and lower boundary edge labels 0, and with its remaining
new edges given the unique labels that preserve the triangle conditions. At
this point it will be appropriate to verify that if H ′ is any LR (r − 1)-hive,
then H ′′ = κrH

′ is also an LR r-hive. It is only necessary to confirm that
all the new left- and right-leaning rhombi in H ′′ have gradients ≥ 0. The new
right-leaning rhombi lie across the border of the (r−1)th and the rth diagonals
Their right-hand edges have label 0 by construction, and their left-hand edges
have non-negative labels as part of the LR hive H ′, so their gradients are ≥ 0.
The new left-leaning rhombi sit in the rth diagonal. If the edge labels on the
right-hand boundary of H ′ are (ν1, . . . , νr−1), then these constitute a partition
since H ′ is a hive and by construction those on the right-hand boundary of
H ′′ are (ν1, . . . , νr−1, νr) with νr = 0. The kth left-leaning rhombus from the
top therefore has left-hand edge label νk and right-hand edge label νk+1, so its
gradient is νk − νk+1 which is ≥ 0 for all k = 1, . . . , r − 1, thereby confirming
that H ′′ is a hive.
Then we require the following:

Definition 6.1. For any given H ∈ H(r)(λ, µ, ν) with `(λ) ≤ r we define
three path addition operators χr, φk and ωr whose action on H is to increase
or reduce edge labels by 1 along paths specified as follows:

(i) χr: the path consists of the boundary edges labelled νr and λr, with each
of these labels being increased by 1;

(ii) φk: for any k < r the path proceeds down the kth diagonal from the
edge labelled µk through upright rhombi of gradient 0 until it encoun-
ters an upright rhombus of positive gradient, at which point it moves
horizontally to the right into the (k + 1)th diagonal and proceeds down
this diagonal or to the right as before, and so on until it either meets
the base of the hive and then moves to the right or meets the right hand
boundary and then moves down the rth diagonal regardless of its upright
rhombus gradients until, in both cases, it terminates at the edge labelled
λr, with all path α- and γ-edge labels being increased by 1 and all path
β-edge labels decreased by 1 ;
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(iii) ωr: the path proceeds directly down the rth diagonal until it terminates
at the base at the edge labelled λr, with all path edge labels increased by
1.

These three types of path addition are illustrated below. In each case every
α- or γ-edge label is increased by 1 and every solid β-edge label is decreased
by 1. In the case of χr and ωr the path additions are confined to the rightmost
rth diagonal. On the other hand the path addition route ascribed to the action
of φk with 1 ≤ k < r consists of a sequence of ladders through upright rhombi
of gradient 0 in each diagonal from the kth to the rth, with the passage from
each diagonal to the next taking place through a solid β-edge.

(i) χr:

νr
λr

(ii) φk:
µk

λr

0
>0 0

0
>0>0

(iii) ωr:
µr

λr

(6.1)

It might be noted here that there are two distinct manners in which type (ii)
paths may terminate. They are illustrated below, with the figures (iia) and (iib)
applying to cases in which the path addition meets the base hive boundary first
and the right-hand hive boundary first, respectively.

(iia) φk:

µk

νr−1
νr

λj λr

0
>0 0

0 U

(iib) φk:
µk

λr

0
>0 0

0
>0>0 U

(6.2)

Remark 6.2. Just as κr is the inverse of κr, whose action is specified in
Definition 4.2, so the path addition operators χr and ωr are the inverses of
χr and ωr introduced in Definition 3.1 with their action exemplified in the
diagrams of 3.1. Moreover, if the action of φr on an r-hive H removes a path
P terminating at level k, then applying φk to φrH recovers H, since the foot
rhombus of each ladder of P , left with positive gradient after the removal of
P , and the middle rhombi of each ladder of P , left with gradient 0, direct the



INVOLUTORY LR SYMMETRY BIJECTION ON HIVES 27

action of φk so as to trace P backward, restoring each edge label and upright
rhombus gradient to their original values in H. On the other hand, the opposite
cancellation φr(φkH

′) = H ′ may not hold in general since, in the definition
of the operator φk, any upright rhombus gradient test for the added path P ′ to
descend the rth diagonal has been omitted in order to ensure that P ′ extends
to the foot of this diagonal. Hence the path P removed by the action of φr may
encounter an upright rhombus of gradient > 0 in the rth diagonal below the
entry point of P ′, causing P to leave the rth diagonal earlier than expected.
This will occur in the case of the example illustrated in (iib) if U is positive.
However, our use of the operators φk is only through the operator θr defined
in Theorem 6.3, in which case φr(φkH ′) = H ′ also holds: see Lemmas 6.5 and
6.8.

We then claim the validity of the following:

Theorem 6.3. Let n be a positive integer and let λ, µ and ν be partitions
such that `(λ) ≤ n and µ, ν ⊆ λ with |λ| = |µ| + |ν|. For each LR hive
K ∈ H(n)(λ, ν, µ) with upright rhombus gradients Vij for 1 ≤ i < j ≤ n let

θr = χ νr
r φ

V1,r
1 φ

V2r
2 · · · φVr−1,rr−1 ω µ

(r)
r

r κr , (6.3)

where µ(r)
r = µr − Vr,n − Vr,n−1 − · · · − Vr,r+1, and let

H(r)(K) = θr · · · θ2 θ1 H
(0) , (6.4)

for r = 1, 2, . . . , n with H(0) being an empty hive. Then H(K) := H(n)(K) ∈
H(n)(λ, µ, ν) and we write H(K) = σ(n)K.

Proof : It is convenient to set λ(r) = (λ1, λ2, . . . , λr), ν(r) = (ν1, ν2, . . . , νr)
and to remind ourselves of the notation already used in connection with K

whereby µ(r) = (µ
(r)
1 , µ

(r)
2 , . . . , µ

(r)
r ) with µ(r)

k = µk−Vk,n−Vk,n−1−· · ·−Vk,r+1

for k = 1, 2, . . . , r. This allows us to define K(r) ∈ H(r)(λ(r), ν(r), µ(r)) to
be the subhive of K ∈ H(n)(λ, ν, µ) consisting of its leftmost r diagonals, for
r = 1, 2, . . . , n. Thus K(r) is essentially the complement of the truncated
hive K(n−r) in K = K(n). We then claim first that H(r)(K) is a triangular
array of side length r with boundary edge labels λ(r), µ(r) and ν(r) for r =
1, 2, . . . , n. This may be proved by induction. In the case r = 1 we have

K(1) =
ν1 µ

(1)
1

λ1

, and H(1)(K) = χ ν1
1 ω

µ
(1)
1

1 κ1 H
(0) so that the map from
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H(0) to H(1)(K) proceeds as shown below:

H(0) = · κ17−→
0 0

0

ω
µ
(1)
1

17−→
µ

(1)
1

0

µ
(1)
1

χν117−→
µ

(1)
1

ν1

λ1

= H(1)(K) . (6.5)

where in the final step use has been made of the fact that µ(1)
1 + ν1 = λ1, as

implied by the hive condition on K. This demonstrates that H(1)(K) has edge
labels (λ1), (µ

(1)
1 ) and (ν1) as required.

By the induction hypothesis H(r−1)(K) is a triangular array of side length
r − 1 with boundary edge labels λ(r−1), µ(r−1) and ν(r−1). The passage from
H(r−1)(K) to H(r)(K) = θrH

(r−1)(K), as determined by the rth diagonal of
K, is then illustrated by:

K(r)

ν1

ν2

· ·
·

νr−1

νr µ
(r)
1

µ
(r)
2· · ·

µ
(r)
r−1

µ
(r)
r

λ1 λ2 · · · λr−1 λr

V1r

V2r

· · ·

Vr−1,r

H
(r)

(iii)
(K)

µ
(r−1)
1

µ
(r−1)
2

· ·
·

µ
(r−1)
r−1

µ
(r)
r ν1

ν2

· · ·

νr−1

0

λ1 λ2 · · · λr−1 µ
(r)
r

0

0

0

· · ·

H
(r)

(ii)
(K)

µ
(r)
1

µ
(r)
2

· ·
·

µ
(r)
r−1

µ
(r)
r ν1

ν2

· · ·

νr−1

0

λ1 λ2 · · · λr−1λr−νr

0

0 Ũr−1,r

H
(r)

(i)
(K)

µ
(r)
1

µ
(r)
2

· ·
·

µ
(r)
r−1

µ
(r)
r ν1

ν2

· · ·

νr−1

νr

λ1 λ2 · · · λr−1 λr

Ũ1,r

Ũ2,r

· · ·

Ũr−1,r

(6.6)

The hive conditions on K(r) imply that

µ
(r)
k = µ

(r−1)
k + Vkr for k = 1, 2, . . . , r − 1 and

r−1∑
k=1

Vkr = λr − νr − µ(r)
r .

(6.7)



INVOLUTORY LR SYMMETRY BIJECTION ON HIVES 29

In the above display 6.6 H(r)

(iii)
(K) has been formed by adding to H(r−1)(K) an

rth diagonal of upright rhombi all of gradient 0 and then applying all µ(r)
r type

(iii) path addition operators. Then H(r)

(ii)
(K) is obtained by applying Vkr type

(ii) path addition operators successively in the order k = r − 1, . . . , 2, 1. Just
one type (ii) path addition has been shown for illustrative purposes. For each
k the Vkr added paths increase the kth left hand boundary edge label from
µ

(r−1)
k to µ(r−1)

k + Vkr = µ
(r)
k , where use has been made of the first identity

in 6.7. Moreover, each of these path additions extends as far as the foot of
the rth diagonal, adding precisely 1 both to the rth lower boundary edge and
to one or other of the upright rhombus gradients in this diagonal. It follows
that on completing this type (ii) action the rth lower boundary edge becomes
µ

(r)
r +V1r+V2r+· · ·+Vr−1,r = λr−νr, as shown, where use has been made of the

second identity of 6.7. Finally, the application of all νr type (i) path addition
operators adds νr to the two edges meeting at the lower right-hand corner of
H

(r)

(ii)
(K) thereby yielding H(r)

(i)
(K) with boundary edge labels as shown in the

last diagram of 6.6. It can be seen from this H(r)(K) = H
(r)

(i)
(K) has boundary

edge labels specified by λ(r), µ(r) and ν(r), as required.
It remains to show that H(r)(K) satisfies all necessary hive conditions and

is thus ∈ H(r)(λ(r), µ(r), ν(r)), for which again we use the same method as in
the proof of Lemma 4.1. The non-negativity of µ(r)

r and ν
(r)
r = νr follows

immediately from that of all edge labels in K. As far as elementary triangles
are concerned the path additions give rise to the following possibilities:

+1

+1

+1

+1
+1 −1

+1

+1
−1 +1 (6.8)

It is clear that the triangle conditions are preserved in every case, and that
it is only β-edge labels that may be reduced in value. If we can confirm the
rhombus gradient conditions, then these labels remain non-negative since they
must then all be ≥ νr ≥ 0.
It is helpful to proceed by way of an analogue of Lemma 4.4.

Lemma 6.4. During the action of θr on H(r−1)(K) let a hive path addition of
type (ii) follow a path P starting from the left-hand boundary at level k < r,
then the next such path addition, starting from the left-hand boundary at level
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k′ ≤ k by the definition 6.3 of θr, follows a path P ′ lying weakly below the path
P in each diagonal from the kth to the rth.

Proof : The argument is similar to the one used in the proof of Lemma 4.4
except for the direction in which the paths proceed and the exchanged roles
of head and foot rhombi in guiding the paths, and so we omit the details. To
derive the conclusion of Lemma 6.4, it is sufficient to apply this argument,
diagonal by diagonal, until each added path meets either the bottom or the
right-hand boundary, since afterwards the definition directs the path to just
proceed in a zig-zag manner along that boundary.

Before analysing other rhombus gradients, let us settle the issue, just men-
tioned above, that was raised in the Remark 6.2, namely that of the upright
rhombus gradients in the rth diagonal below the point of entry of each type
(iib) path, since we will need it more than once.

Lemma 6.5. Consider an application of φk to an r-hive H ′ as occurs in the
course of the action of θr. If the added path is of type (iib), then all the upright
rhombi in the rth diagonal of H ′ through which P ′ descends necessarily have
gradient 0.

Proof : Focusing on the transformation of the rth diagonal during the action of
θr, the gradients of the upright rhombi are initially 0 when created by κr and
remain intact through actions of ωr. Then, by the definition of θr, operators φk
are applied in the weakly decreasing order of the starting level k, and Lemma 6.4
ensures that each path is added weakly below its predecessor, accompanied by
an increase of an upright rhombus gradient in the rth diagonal only immediately
above its first α-edge in the rth diagonal. Hence at the time of each type (iib)
path addition, the upright rhombi below its first α-edge in the rth diagonal
retain gradients 0, since all previous increments have occured above it.

Returning to the proof of Theorem 6.3, the only path addition configurations
that gives rise to a reduction in a rhombus gradient are those shown below:

+1 −1

+1

+1 +1
−1

+1

+1

+1

U −→ U−1 R −→ R−1 L −→ L−1 L −→ L−1

(6.9)
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The leftmost configuration only arises in a situation where the transition is
from an upright rhombus gradient U > 0 to U − 1, as can be seen from 6.1.
Thus all upright rhombus gradients remain non-negative after all possible path
additions.
The second configuration in 6.9 always appears as part of a ladder of one of

the three types with some m ≥ 1:

α1

α2

αm

α

r − 1 r

0

0

0

0

R1

R2

· · ·

Rm

α1

α2

αm

α

k − 1 k

0

0

0

0

R1

R2
· · ·

Rm

α0

α1

α2

αm

α

d− 1 d

U−1 0

0

0

0

R1

R2

· · ·

Rm

(6.10)

In all three cases the hive conditions on H(r−1)(K) imply that αm ≥ · · · ≥
α2 ≥ α1. Moreover, each addition path ladder passes through upright rhombi
of gradient 0, which due to Lemma 6.5 is true even if d = r in the third diagram.
This implies that in each case Rm = αm − α. Then in the first case on the
left, for which α1 = µ

(r−1)
r−1 , under the addition of µ(r)

r paths of the type shown
the edge label α increases from 0 to its maximum value µ(r)

r . It follows that
Rm ≥ α1 − α ≥ µ

(r−1)
r−1 − µ

(r)
r ≥ 0, where the last step is a consequence of the

hive conditions on K. Thus all right-leaning rhombi in this situation remain
of non-negative gradient.
Similarly in the next case, for which α1 = µ

(r−1)
k−1 , under the addition of

Vkr = µ
(r)
k −µ

(r−1)
k paths of the type shown the edge label α increases from µ

(r−1)
k

to its maximum value µ(r)
k . Hence Rm = αm − α ≥ α1 − α ≥ µ

(r−1)
k−1 − µ

(r)
k ≥ 0

where once again the last step is a consequence of the hive conditions on K.
Hence, once again all right-leaning rhombi in this situation remain of non-
negative gradient.
In the third case, the labelling is taken to be that immediately after any one

of the actions of some φk. The fact that the path addition has moved from the
(d− 1)th to the dth diagonal implies that the shaded upright rhombus had an
initial gradient U = α1− (α0− 1) > 0. with an initial hive condition α0− 1 ≥
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α− 1. It follows that after the path addition Rm = αm− α ≥ α1− α0 ≥ 0, as
required to show that all right-leaning rhombi remain of non-negative gradient.
Returning to 6.9 it is necessary to consider the reduction of gradients of left-

leaning rhombi. The third configuration in 6.9 appears at the top of a ladder
either (1) as in the third diagram of 6.10 with m ≥ 1, or (2) at the end of a
type (iia) path as in 6.2. For case (1) consider the following diagram with the
edge and gradient labels specified before the path addition:

β′

β

β′′

β′′

0U

L

(6.11)

In this situation, by hypothesis, the shaded upright rhombus has gradient U =
β − β′ > 0 and the white upright rhombus has gradient 0, which is again
true even if the white rhombus lies in the rth diagonal, due to Lemma 6.5.
Advantage has been taken of the zero gradient of the white upright rhombus to
equate the pair of edge labels labelled β′′. The hive conditions before the path
addition also imply that β′ ≥ β′′ from which it follows that L = β − β′′ > 0.
After the path addition the rhombus gradient L is reduced to L − 1, which
remains ≥ 0.
The only remaining left-leaning rhombi whose gradients may be reduced un-

der path additions are those lying at the bottom right-hand corner as exem-
plified below, namely the third configuration in 6.9 in case (2) and the fourth
configuration in 6.9 that applies in the case of each type (i) path addition.

β

νr−1

0
U
L β

νr−1

νr
U
L

(6.12)

On the left we have L = β = νr−1 − U and on the right L = β − νr =
νr−1−νr−U . Without knowing whether L remains ≥ 0 after the path addition,
nor some of the edge labels, we can continue applying path addition operators
as prescribed by K, since their action is well-defined on any triangular array
of edge labels satisfying the triangle conditions as well as the non-negativity
of all upright rhombus gradients, and this action produces another such array.
In doing so, we can still use Lemma 6.4 since both its statement and its proof
only refer to the upright rhombus gradients, from which it follows that, once
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a type (iia) path addition occurs, all remaining type (ii) path additions are
of type (iia). Then U increases steadily from 0 to, say, Ũr−1,r under all path
additions of the type (iia), with no further changes under path additions of
type (i). Therefore all we require for L to remain non-negative is that the final
value Ũr−1,r ≤ νr−1 − νr.
In the case r = 1 there is no left-leaning rhombus, while for r = 2 we have

H(2)(K) = θ2H
(1)(K) = χν22 φ

V12
1 ω

µ
(2)
2

2 κ2H
(1)(K) from which it can be seen

that Ũ12 = V12 ≤ ν1 − ν2, as required, where the final step is a consequence
of the hive conditions on K. To then prove that Ũr−1,r ≤ νr−1 − νr for r ≥ 3
we first make the following observation regarding the sequential action of θr−1

and θr on H(r−2)(K) that yields H(r)(K) = θr θr−1H
(r−2)(K).

Lemma 6.6. For r ≥ 3 let Pi for i = 1, 2, . . . , λr and Qi for i = 1, 2 . . . , λr−1

be the paths added by the operations θri and θr−1,i, respectively, lying in the ith
positions counted from left to right in the following expansions of θr−1 and θr:

θr−1 =

νr−1︷ ︸︸ ︷
χr−1 · · · χr−1

V1,r−1︷ ︸︸ ︷
φ1 · · ·φ1 · · ·

Vr−2,r−1︷ ︸︸ ︷
φr−2 · · ·φr−2

µ
(r−1)
r−1︷ ︸︸ ︷

ωr−1 · · ·ωr−1 κr−1

θr =

νr︷ ︸︸ ︷
χr · · ·χr

V1r︷ ︸︸ ︷
φ1 · · ·φ1

V2r︷ ︸︸ ︷
φ2 · · ·φ2 · · ·

Vr−1,r︷ ︸︸ ︷
φr−1 · · ·φr−1

µ
(r)
r︷ ︸︸ ︷

ωr · · ·ωr κr

i= 1, · · · , νr, · · · , νr−1, νr−1+1, · · · , νr+
r−1∑
j=1

Vjr︸ ︷︷ ︸

(6.13)

Then for each i above the final brace, that is such that νr−1 < i ≤ νr+
∑r−1

j=1 Vjr,
the paths Pi and Qi are both of type (ii) and the path Pi lies strictly above Qi.

Proof : Here the vertical alignment is designed to reflect not only that λr ≤ λr−1

and νr ≤ νr−1, but also that νr +
∑r−1

j=1 Vj,r ≤ νr−1 +
∑r−2

j=1 Vj,r−1, with the
latter a consequence of the hive condition Rr−1,r ≥ 0 in K. It follows that the
paths Pi and Qi are both of type (ii) if and only if νr−1 +1 ≤ i ≤ νr+

∑r−1
j=1 Vjr,

as illustrated above in 6.13. For fixed i in this range, let Pi and Qi start on
the left hand boundary at levels k and l, respectively, so that θr,i = φk and
θr−1,i = φl. However, νr+

∑k
j=1 Vj,r ≤ νr−1 +

∑k−1
j=1 Vj,r−1, by virtue of the non-

negativity of the right-leaning rhombus gradient Rkr in K. This implies that
the list of operators φk in the expansion of θr extends no further to the right
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than the rightmost position of φk−1 in the expansion of θr−1. It follows that
l ≤ k−1 < k, so that the path Qi passes from the lth diagonal to the (r−1)th
diagonal leaving an upright rhombus of positive gradient immediately above it
in each diagonal from the (l + 1)th to the (r − 1)th, necessarily including the
kth, as illustrated below.

Qi : l

Pi : k

r−1r

0

0
0

0

0
0

0

0
0

0

0
0

0
0

(6.14)

To show that Pi lies strictly above Qi it only remains to show that the positivity
condition on all the shaded upright rhombus gradients associated with the
addition of Qi remains valid up until the subsequent addition of Pi. This can
be accomplished as follows. We consider first the case i = m where m =
νr +

∑r−1
j=1 Vjr, corresponding to the first type (ii) path addition, and then

proceed in the order of decreasing indices, following the argument very similar
to the one given in the proof of Lemma 4.6 regarding the accumulation of
+1’s creating inpenetrable barriers, with the roles of head and foot rhombi
exchanged (namely in the current case the accumulation occurs in the head
rhombi), so we omit further details.

We are now in a position to prove the following:

Lemma 6.7. For r ≥ 3 let the action of θr on H(r−1)(K) = θr−1H
(r−2) yield

H(r) with the bottommost upright rhombus in the rth diagonal having gradient
Ũr−1,r. Then Ũr−1,r ≤ νr−1 − νr.

Proof : For r ≥ 3 we can exploit Lemma 6.6. Given any pair of addition paths
Pi and Qi with Qi necessarily extending as far as the (r − 1)th diagonal, the
fact that Pi lies strictly above Qi means that Pi enters the rth diagonal above
its lowest upright rhombus, and therefore makes no contribution to Ũr−1,r. The
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only possible contributions to Ũr−1,r are those that might arise from the type
(ii) path additions Pi that are not paired with a corresponding type (ii) path
addition Qi. It then follows immediately from the vertical alignment of the
expansions of θr and θr−1 in 6.13 that Ũr−1,r ≤ νr−1 − νr, as required.

Returning yet again to the proof of Theorem 6.3, we now know that Ũr−1,r ≤
νr−1 − νr for all r ≥ 2, as required to prove that all hive conditions are
satisfied by H(r)(K) = θrH

(r−1)(K) under the induction hypothesis that
H(r−1)(K) ∈ H(r)(λ(r−1), µ(r−1), ν(r−1)). Since we have already established
that H(r)(K) has the appropriate boundary edge labels, including the non-
negativity of the topmost left-hand and the bottommost right-hand boundary
edge labels, and also that it satisfies all triangle conditions, it follows that
H(r)(K) ∈ H(r)(λ(r), µ(r), ν(r)).
This completes the induction argument, and applying this result in the

case r = n we conclude that H(K) := H(n)(K) ∈ H(n)(λ(n), µ(n), ν(n)) =
H(n)(λ, µ, ν), thereby proving the validity of Theorem 6.3.

With Lemma 6.5 at hand, we can now fill the piece that was missing in
Remark 6.2 in saying that the type (ii) path additions, in the context in which
we use them, and the type (ii) path removals are mutually inverse operators.

Lemma 6.8. Consider an application of φk to an r-hive H ′ as occurs in the
course of the action of θr. If the operator φr is applied to such φkH ′, then this
recovers H ′.

Proof : The middle rhombi of all ladders of the path, say P ′, added by the action
of φk on H ′ are left with gradient 0, including the ones in the rth diagonal if
P ′ is of type (iib), due to Lemma 6.5, and the head rhombi of all ladders of
P ′ with positive gradients. Hence the path removed by the action of φr on
φkH

′ traces P ′ backwards guided by those rhombi, cancelling the effects of the
addition of P ′ on edge labels and recovering H ′.

The relationship between our path removal and path addition operations
allows us to establish the bijective nature of the maps we have encountered in
Theorems 5.4 and 6.3 with their domains extended as in the following:
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Theorem 6.9. For fixed positive integer n, letH(n) be the union ofH(n)(λ, µ, ν)
for all partitions λ, µ and ν such that `(λ) ≤ n, and with µ, ν ⊆ λ and
|λ| = |µ|+ |ν|. Let σ(n) : H(n) → H(n) be such that for each H ∈ H(n)(λ, µ, ν)
we have σ(n) : H 7→ K ∈ H(n)(λ, ν, µ) with K = σ(n)H, as defined in Theorem
5.4. Similarly, let σ(n) : H(n) → H(n) be such that for each K ∈ H(n)(λ, ν, µ)
we have σ(n) : K 7→ H(K) ∈ H(n)(λ, µ, ν) with H(K) = σ(n)K, as defined in
Theorem 6.3. Then the maps σ(n) and σ(n) are mutually inverse bijections.

Proof : It follows from Theorems 5.4 and 6.3 that

H(K) = θn · · · θ2θ1H
(0) = θn · · · θ2θ1 θ1θ2 · · · θnH , (6.15)

with

θr = χνrr φ
V1r
1 φ

V2r
2 · · ·φ

Vr−1,r
r−1 ωµ

(r)
r
r κr (6.16)

and

θr = κr ω
µ
(r)
r

r φλr−µ
(r)
r −νr

r χνrr = κr ω
µ
(r)
r

r φV1r+V2r+···+Vr−1,r
r χνrr

= κr ω
µ
(r)
r

r φVr−1,rr · · ·φV2rr φV1rr χνrr , (6.17)

where the exponents νr, µ
(r)
r and Vkr for k = 1, 2, . . . , r − 1 are all taken

from K, and use has been made of the hive conditions on K that ensure that
λr−µ(r)

r − νr = V1r + · · ·+Vr−1,r. The final form of θr reflects the fact that its
action on H(r) to produce H(r−1) involves νr type (i) path removals, followed
successively by V1r, V2r, . . . , Vr−1,r type (ii) path removals terminating at levels
1, 2, . . . , r − 1, respectively, and then µ(r)

r type (iii) path removals. As noted
in the Remark 6.2, not only are κr, ωr and χr the mutual inverses of κr, ωr
and χr, respectively, but also if the action of φr removes a path terminating
at level k, then applying φk restores that path; that is to say their actions
mutually cancel. Since successive type (ii) paths removed by φVkrr are weakly
above one another and successive type (ii) paths added by φ

Vkr
k are weakly

below one another, the operator φVkrk φVkrr involves Vkr nested pairs of operators
φkφr whose actions cancel. This is true for k = r − 1, . . . , 2, 1 as well as for
the pairs κr κr, ωr ωr and χr χr. It follows that

θrθrH
(r) = χνrr φ

V1r
1 · · ·φ

Vr−1,r
r−1 ωµ

(r)
r
r κr κr ω

µ
(r)
r

r φVr−1,rr · · ·φV1rr χνrr H
(r) = H(r).

(6.18)
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Since this occurs for each r, we have θn · · · θ1H
(0) = θn · · · θ1θ1 · · · θnH = H,

that is to say H(K) = H. From this we see that for any n-hive H we have
σ(n) σ(n)H = H.
Similarly, if one starts with K ∈ H(n)(λ, ν, µ) and creates H(K) = σ(n)K ∈
H(n)(λ, µ, ν), through a sequence of path additions determined by K, then the
action of σ(n) on H(K) consists of reversing the order of the path additions
and applying their inverses in the form of corresponding path removals. More
precisely, to deal with the cancellation of θrθr in

θrθrH
′ = κr ω

µ
(r)
r

r φVr−1,rr · · ·φV1rr χνrr χ
νr
r φ

V1r
1 · · ·φ

Vr−1,r
r−1 ωµ

(r)
r
r κrH

′ (6.19)

where H ′ = H(r−1)(K), there is first an easy cancellation of χνrr χνrr , after which
we apply 6.8 to cancel pairs φr φk one by one, Vkr times for k = 1, 2, . . . , r− 1.
This amount to cancelling all type (ii) path removal and type (ii) path addition
operators, and finally there are two more easy cancellations of ωµ

(r)
r

r ωµ
(r)
r
r and

κr κr. In this process the cancellation of φr φk implies that the path generated
by this particular action of φr terminates at level k. Hence each exponent Vkr of
φk in the expression for θr, originally taken from K, is also equal to the number
of those type (ii) paths terminating at level k, removed during the action of θr
as part of σ(n) applied to H(K). By this means one necessarily arrives back at
K ∈ H(n)(λ, ν, µ) as a record of the boundary edges of the sequence of path
removals. That is to say, this time, if H(K) = σ(n)K then K = σ(n)

(
H(K)

)
so that σ(n)σ(n)K = K for all K ∈ H(n).
It follows that σ(n) and σ(n) are mutually inverse maps and that both are

bijective.

7. Hive based proof of the involutive property
Our next task is to prove that the map σ(n) is an involution. To do this we

proceed by way of a sequence of Lemmas, in connection with which we need to
introduce two new types, (iv) and (v), of path removal operations on hives.

Definition 7.1. Given any hive H ∈ H(r)(λ, µ, ν) we define path removal
operators ψr and ξkr whose action on H is to decrease or increase edge labels
by 1 along paths as follows:

(iv) ψr: provided that Uir > 0 for some i < r and k = min{i |Uir > 0} the
path proceeds downwards along the rth diagonal from the edge labelled
νk along a zig-zag route to the edge labelled λr with all path edge labels
being decreased by 1.
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(v) ξkr: the path proceeds from the edge labelled νk along the route that
would be followed by either a type (ii) or a type (iii) path from level k
in diagonal r to the left-hand boundary at level j ≤ r with all α- and
γ-edge labels on the path decreased by 1, and all β-edge labels on the
path increased by 1.

Such paths are illustrated below, where certain upright rhombus labels have
been indicated as being > 0, 0 or ≥ 0 immediately before path removal. In
case (iv) we have Ukr = U with U > 0, while case (v) has been exemplified in
two cases depending upon whether or not there exists Uir > 0 for some i < k.

(iv) ψr:
µr

νk

λr

β

0
0

0
0
U
≥0
≥0

(va) ξkr:
µj

µr

νk

λr

≥0

0
0

>0>0

≥0
≥0

≥0
≥0

(vb) ξkr:
µr

νk

λr

0
0

0
0
≥0
≥0
≥0

(7.1)

In all three cases the specified changes of ±1 in edge labels ensure that
the hive triangle conditions are satisfied, while in the case of path removals
generated by ξkr the hive rhombus conditions are also satisfied since the paths
of type (va) and (vb) follow, respectively, the routes determined by the type
(ii) and type (iii) rules of Definition 3.1. In the case (va) the fact that Uir > 0
for some i < k is sufficient to ensure that initially all path α- and γ-edge
labels, including µj, are positive and therefore remain non-negative after the
path removal. To ensure this in the case (vb) it is necessary and sufficient that
µr > 0, and this will always be found to be the case in what follows.
In case (iv) prior to the path removal generated by ψr the condition Ukr =

U > 0 ensures that νk > 0 and λr > 0. The initial hive conditions then ensure
that all α- and γ-edges on the path have labels ≥ µr + U > 0 and ≥ λr > 0,
respectively, so that they also remain ≥ 0 after the path removal. That the
rhombus hive conditions are preserved can be seen from the following display
of all the types of rhombi whose edge labels are affected by the path removal,
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in the second case of which we necessarily have U > 0.

R U U L L

R 7→ R+1 U 7→ U−1 U 7→ U L 7→ L+1 L 7→ L

(7.2)

Thus each of the path removals of Definition 7.1 preserves the hive conditions.

As an immediate consequence of this we have:

Lemma 7.2. For i = 1, 2, . . . , n let εi = (0, . . . , 0, 1, 0, . . . , 0) with the single
entry 1 in the ith position. Let H ∈ H(n)(λ, µ, ν) with `(λ) = n be such
that Uin > 0 for some i < n. Then ψnH ∈ H(n)(λ − εn, µ, ν − εk) where
k = min{i |Uin > 0}.

We are now in a position to state what turns out to be a crucial lemma en
route to Lemma 7.9 and our involution Theorem 7.10.

Lemma 7.3. Let H ∈ H(n)(λ, µ, ν) with `(λ) = n be such that Uin > 0 for
some i < n, with k = min{ i | Uin > 0 }, and let Ĥ = ψnH. Setting H(n) = H

and Ĥ(n) = Ĥ, let the action of σ(n) yield K = K(n) and K̂ = K̂(n) by way of
the chains

(H(n), K(0))
Θn7−→ (H(n−1), K(1))

Θn−17−→ (H(n−2), K(2))
Θn−27−→ · · · Θ17−→ (H(0), K(n))

and

(Ĥ(n), K̂(0))
Θn7−→ (Ĥ(n−1), K̂(1))

Θn−17−→ (Ĥ(n−2), K̂(2))
Θn−27−→ · · · Θ17−→ (Ĥ(0), K̂(n)) .

Then

φnK
(r) = K̂(r) for r = 1, 2, . . . , n , (7.3)

where the action of φn on the truncated hive K(r) is exactly the same as its
action would be on a hive except that it terminates on reaching the lower left
hand boundary of K(r).
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In particular, we have φnK = K̂. That is to say we have σ(n)ψnH =
φn σ

(n)H, namely the following diagram commutes:

H K

Ĥ K̂

σ(n)

σ(n)

ψn φn (7.4)

Proof: The action of Θr involves applying θr to H(r) and Ĥ(r) to create
H(r−1) and Ĥ(r−1), while recording information on the relevant path removals
in K(n−r+1) and K̂(n−r+1), respectively, for each r = n, n− 1, . . . , 1. We divide
this sequence of actions according to the following four regions of the values of
r, namely r = n, n > r > k (vacuous if k = n− 1), r = k and r < k (vacuous
if k = 1). Lemmas 7.4, 7.5 and 7.7 deal with the cases r = n, n > r > k and
r = k respectively, and the remaining case r < k follows easily. First we state
the three Lemmas.

Lemma 7.4. Let n be a positive integer, H an n-hive such that Uin > 0 for
some i < n, with k = min{ i | Uin > 0 }, and Ĥ = ψnH.
Then, the removals by the actions of θn on H and Ĥ involve

type (i) paths: the same number of them from both H and
Ĥ,
type (ii) paths: one more of them from H than from Ĥ; more
precisely:

the same type (ii) paths P1 = P̂1, . . . , Pc−1 = P̂c−1 from
both H and Ĥ, and
one extra type (ii) path Pc from H entering the (n− 1)th

diagonal at level k,
type (iii) paths: the same number of them from both H and
Ĥ.

Moreover, the (n − 1)-hive θnH differs from θn Ĥ by the removal of one
type (v) path, which is actually the (n − 1)-hive part of Pc, so that we have
θnH = ξk,n−1 (θn Ĥ).

Lemma 7.5. Let k and r be integers satisfying 1 ≤ k < r. Let H and Ĥ be
r-hives such that H = ξkr Ĥ, and D the path removed by the action of ξkr on
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Ĥ. We call D the path of difference. Let j denote the level at which D ends
on the left-hand boundary of the r-hive.
Then, the removals by the actions of θr on H and Ĥ involve

type (i) paths: the same number of them from both H and
Ĥ, and
type (ii) and (iii) paths: the same number of them (counted
together) from both H and Ĥ. More precisely, let P1, . . . , Pm
and P̂1, . . . , P̂m be such paths in the order of removal, respec-
tively. Then, for some 1 ≤ c ≤ m, the following hold.
P1 = P̂1, . . . , Pc−1 = P̂c−1.
P̂c ends at level j, while Pc ends at some level j′ < j, on

the left-hand boundary.
For each a > c, Pa and P̂a both end at the same level on

the left-hand boundary.

Moreover, the (r − 1)-hive θrH differs from θr Ĥ by the removal of a type
(v) path, say D′, starting at level k′ = k on the right-hand boundary, that is to
say θrH = ξk,r−1(θr Ĥ), and the new path of difference D′ terminates on the
left-hand boundary at some level j′ < j.

Remark 7.6. The paths Pa and P̂a with a < c, as well as Pc, are type (ii)
paths. P̂c is a type (iii) path if j = r (in which case, so are all Pa and P̂a with
a > c), while it is a type (ii) path if j < r (in which case, for a > c the paths
Pa and P̂a are, in general, type (ii) paths for c < a ≤ d and type (iii) paths for
d < a ≤ m, for some d such that c < d ≤ m).

Lemma 7.7. Let k be a positive integer. Let H and Ĥ be k-hives such that
H = ξkk Ĥ, D the path of difference between H and Ĥ, and j the level at which
D ends on the left-hand boundary of the k-hive.
Then, the removals by the action of θk on H and Ĥ involve

type (i) paths: one more of them from H than from Ĥ, and
type (ii) and (iii) paths: one more of them from Ĥ than from
H; more precisely:
one extra path P̂0 from Ĥ, ending at level j, from Ĥ,
then the same paths P1 = P̂1, . . . , Pm = P̂m from both H

and Ĥ.
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Moreover, the (k− 1)-hives θkH and θk Ĥ are identical. There is no longer
any path of difference.

Remark 7.8. P̂0 is a type (iii) path if j = k (in which case, so are all Pa and
P̂a with a ≥ 1), while it is a type (ii) path if j < k (in which case, for a > 0

the paths Pa and P̂a are, in general, type (ii) paths for 0 < a ≤ d and type (iii)
paths for d < a ≤ m, for some d such that 0 < d ≤ m).

We defer the proofs of these three highly technical lemmas to Section 9,
Appendix. Assuming their validity for all values of n, r and k, the proof of
Lemma 7.3 can be built upon them as follows:

Proof of Lemma 7.3: Let H = H(n) and ψnH = Ĥ = Ĥ(n) be as in Lemma
7.3. Then Lemma 7.4 shows that θnH = H(n−1) and θn Ĥ = Ĥ(n−1) are related
by H(n−1) = ξk,n−1 Ĥ

(n−1), where k is the smallest value for which Ukn > 0.
For this value of k, Lemma 7.5 can be applied successively to H(r) and Ĥ(r)

for r = n− 1, n− 2, . . . , k+ 1, showing in each case that θrH(r) = H(r−1) and
θr Ĥ

(r) = Ĥ(r−1) are related by H(r−1) = ξk,r−1 Ĥ
(r−1), thereby maintaining at

each stage the value of k as the starting level of the path of difference. The
final case r = k + 1 yields the relationship H(k) = ξkk Ĥ

(k). Then Lemma 7.7
shows that θkH(k) = H(k−1) and θk Ĥ

(k) = Ĥ(k−1) coincide, and from then
on applications of θk−1, . . . , θ1 produce identical hives H(k−2) = Ĥ(k−2), . . . ,
H(0) = Ĥ(0).
For later use, let D(r), n − 1 ≥ r ≥ k, denote the type (v) path removed

by ξkr from Ĥ(r) to give H(r), and jr its terminating level on the left-hand
boundary.
Now turn attention to how their partner hives K and K̂ are related. Since

the bottom and left-hand boundary edge labels of H and Ĥ are the parts of λ,
µ and λ − εn, µ, respectively, they are also, by construction, the bottom and
right-hand boundary edge labels of K and K̂. Hence those of K̂ coincide with
those of φnK, and so, in order to show φnK

(n−r+1) = K̂(n−r+1), it is sufficient
to show that the upright rhombus gradients of K̂(n−r+1) coincide with those of
φnK

(n−r+1). We shall do this inductively with r = n, n− 1, . . . , 1.
By Lemma 7.4, the terminating level jn−1 of the path D(n−1) is equal to the

terminating level of the extra and final type (ii) path Pc removed fromH. Since
the gradients Vin of K(1) and K̂(1) are, by definition, the number of type (ii)
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path removals terminating at level i through applications of θn to H and Ĥ,
respectively, the only difference between them resides in Vjn−1,n whose value in
K(1) is greater than that in K̂(1) by 1, and Vin = 0 for all i > jn−1 in both
K(1) and K̂(1). Hence, if one applies φn to K(1), then the removed path climbs
the nth diagonal up to level jn−1, where it exits the nth diagonal, decreasing
Vjn−1,n by 1. Thus the upright rhombus gradients of K̂(1) coincide with those
of φnK(1), and we have φnK(1) = K̂(1). The last type (ii) path Pc removed
under the action of θn on H(n) and the path removed under the action of φn on
K(1) are exemplified in 7.5 below, where for typographical simplicity we have
represented jn−1 and Vjn−1,n by j and V , respectively.

Pc : j

k

n

0
0

0

1

0
0

0
0

0
0

0
0

0
0

0
0

0
0

j

n

∗
∗
∗
∗
∗
∗
∗
∗
V

0
0

0
0

(7.5)

Next, assume that k < n − 1. Lemma 7.5 applied in the case r = n − 1 to
H(n−1) and Ĥ(n−1) with D = D(n−1) and j = jn−1, implies that there exists
c such that Ĥ(n−1) affords one extra path removal of P̂c ending at level jn−1,
H(n−1) affords one extra path removal of Pc ending at level j′ = jn−2 < jn−1,
and for each a 6= c the paths Pa and P̂a end at the same level.
Hence the only difference of upright rhombus gradients in the (n − 1)th

diagonal in K(2) and K̂(2) is that, if we put Vjn−2,n−1 = A ≥ 1, Vjn−1,n−1 = B ≥
0 in K(2), then Vjn−2,n−1 = A − 1, Vjn−1,n−1 = B + 1 in K̂(2), where Vjn−1,n−1

materialises only if jn−1 < n − 1. Moreover, by Lemma 4.4, Pa = P̂a with
a < c all end at levels ≤ jn−2, being weakly lower than Pc, and Pa and P̂a
with a > c, ending at the same level for each such a, all end at levels ≥ jn−1,
being weakly higher than P̂c. Hence Vx,n−1 = 0 for all jn−2 < x < jn−1 in
both K and K̂. Thus, if we extend the path removal by φn from K(1) into the
(n−1)th diagonal, the path enters the diagonal at level j = jn−1, accompanied
if jn−1 < n− 1 by an increment of Vjn−1,n−1 from B to B + 1, climbs and exits
the diagonal at level j′ = jn−2, decreasing Vjn−2,n−1 from A to A − 1. Hence
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the agreement of φnK and K̂ extends down to the (n− 1)th diagonal, giving
φnK

(2) = K̂(2). All this is illustrated in 7.6 below.

P̂c :j

k

Pc :j
′

n−1

0
0

0
1

0
0

0

j′

j

n−1n

A−1
0

0
B+1

∗
∗
∗
∗
∗
∗
∗
∗
V+1

0
0

0
0

(7.6)

The same argument can then be repeated down to the (k + 1)th diagonal,
letting the path removed by φn move between diagonals at levels jn−2, . . . , jk+1

and exit the (k + 1)th diagonal at level jk, and extending the agreement of
φnK and K̂ down to the (k + 1)th diagonal: φnK(n−k) = K̂(n−k).
Now, by Lemma 7.7 applied to H(k), Ĥ(k) and D = D(k) ending at level

j = jk, H(k) affords one extra type (ii) or (iii) path removal, ending at level
jk, giving a difference in the values of Vxk only with x = jk, taking a value in
K(n−k+1) greater than that in K̂(n−k+1) by 1. Moreover, we have Vxk = 0 in
K for all x < jk since the extra path is the first type (ii) or (iii) path removed
from H(k). Hence the path removed by φn from K, entering the kth diagonal
at level jk and increasing Vjk,k by 1 if jk < k, climbs the kth diagonal to the top
and terminates with its arrival on the left-hand boundary of the n-hive at level
k without changing any other Vxk. Hence we have φnK(n−k+1) = K̂(n−k+1).
Since the path removals from H(k−1) and Ĥ(k−1), . . . , H(1) and Ĥ(1) all

coincide, the upright rhombus gradients of K and K̂ in their remaining k − 1
diagonals also coincide. Hence we have φnK(r) = K̂(r) for all r > n − k + 1
also, in particular φnK = K̂.
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We offer the following diagram as an illustration of a succession of difference
paths D(r) starting at level k and their end points jr for r = n−1, n−2, . . . , k:

jk

jr

jn−2

jn−1

k

k r n−1n

(7.7)

The corresponding illustration of the path removal action of φn on K to give
K̂ takes the form:

k

jk

jr

jn−2

jn−1

k r n−1n

(7.8)

We may now exploit the final part of Lemma 7.3, namely the commutativity
of 7.4, in the proof of the following:

Lemma 7.9. For any n and any LR n-hive H, we have

θn (σ(n))2H = (σ(n−1))2 θnH. (7.9)
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Proof : Our goal can be expressed as the commutativity of the outer rectangle
in the following diagram:

H K L

H(n−1) K(n−1) L(n−1)

σ(n) σ(n)

σ(n−1) σ(n−1)

θn ηn θn (7.10)

Here H is any given LR n-hive, say in H(n)(λ, µ, ν), K = σ(n)H and L =
σ(n)K = (σ(n))2H so that by constructionK ∈ H(n)(λ, ν, µ) and L ∈ H(n)(λ, µ, ν).
On the lower side of the rectangle we have used the notation H(n−1) = θnH
and L(n−1) = θn L as in Section 5 and, moreover, we have inserted a central
vertical arrow representing the action of an operator which we denote by ηn
taking any n-hive, in this case K, to its (n− 1)-hive part K(n−1), for which we
are following the notation used in the proof of Theorem 6.3.
Then the proof of the commutativity of the left-hand rectangle is straightfor-

ward and can be seen as follows. For each 1 ≤ j < k ≤ n, the upright rhombus
gradient Vjk of σ(n)H = K is, by definition, the number of level-j-terminating
type (ii) paths removed by θk during the process

H = H(n) θn7−→ H(n−1) θn−17−→ H(n−2) θn−27−→ · · · θ27−→ H(1) θ17−→ H(0)︸ ︷︷ ︸
(∗)

. (7.11)

To determine the upright rhombus gradients of σ(n−1)H(n−1) the corresponding
process is exactly what is marked with (∗) in 7.11, with removals of exactly the
same paths, and so the upright rhombus gradients of σ(n−1)H(n−1) are nothing
but those Vjk in the (n − 1)-hive part of K, namely K(n−1). Moreover, as
explained in Definition 5.2, the left-hand boundary edges of H(n−1) and the
lower left boundary edges of K(1) share the same labels, and the latter labels
remain in K in those positions giving the right-hand boundary edge labels of
K(n−1). Thus K(n−1) coincides with σ(n−1)H(n−1) both in its boundary edge
labels and upright rhombus gradients, and hence in its entirety. Hence we will
be finished as soon as the right-hand rectangle is also shown to be commutative.
We turn now to the commutativity of the right-hand rectangle in 7.10. Cor-

responding to the definition of θn in the form κn ω
µn
n φλn−µn−νn

n χνnn appropriate
to its action on any hive in H(n)(λ, µ, ν), it is convenient, as we shall see in the
next paragraphs, to express the operator ηn in the form κn χ

µn
n ψλn−µn−νn

n ωνnn
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appropriate to its action on any hive in H(n)(λ, ν, µ). Indeed, the type (iii)
action of ωνnn on K reduces by νn each of the edge labels along a zig-zag down
the nth diagonal with the top and bottom edge labels reduced from νn and λn
to 0 and λn − νn, respectively; the type (iv) action of ψλn−µn−νn

n then reduces
to 0 all upright rhombus gradients in the nth diagonal, as well as reducing the
bottom edge label from λn− νn to µn whilst reducing the right hand boundary
edges from µ = µ(n) to (µ(n−1), µn); the type (i) action of χµn

n reduces the two
boundary edge labels of the triangle at the foot of the nth diagonal from µn
to 0, allowing finally the action of κn to remove the now empty nth diagonal,
altogether fulfilling the action of ηn on K to give K(n−1).
This enables subdividing the right-hand rectangle in 7.10 as in 7.12 below, in

whichK ′, K ′′, K ′′′ (resp. L′, L′′, L′′′) are defined to be the results of successively
applying the operators represented by the vertical arrows to K (resp. L), and
K†, L† and L̃ are shorthand notations forK(n−1), L(n−1) and L(n−1) respectively:

KK†ν†
νn

λ† λn

µ∗· · ·∗ L L†
µ†
µn

λnλ†

ν∗· · ·∗

K ′K†

0

ν†

λ†λn−νn

µ∗· · ·∗ L′ L†
µ†
µn

λ†λn−νn

ν†

0

∗· · ·∗

K ′′K†ν†
0

λ† µn

µ̃
µn

0· · ·

0 L′′ L̃
µ̃

µn

λ†λn−νn

ν†

0

0· · ·

0

K ′′′

K†ν†
0

λ† 0

µ̃

0

0· · ·

0

L′′′

L̃
µ̃

0

λ† 0

ν†

0

0· · ·

0
K(n−1)

K†ν† µ̃

λ†

L(n−1)

L̃
µ̃ ν†

λ†

1

2

iteration of 7.4

3

4

σ(n)

σ(n)

σ(n)

σ(n)

σ(n−1)

ωνnn

ψλn−µn−νn
n

χµn
n

κn

χνnn

φλn−µn−νn
n

ωµn
n

κn

(7.12)

For the rectangle marked with 1 in 7.12, the coincidence between the upright
rhombus gradients ofK andK ′ implies that all type (ii) path removals coincide
between the actions of σ(n) on K and K ′, resulting in the coincidence between
the upright rhombus gradients of σ(n)(K) and σ(n)(K ′). So the difference of
σ(n)(K) and σ(n)(K ′) resides only in their boundary edge labels. However, since
K ∈ H(n)(λ, ν, µ) andK ′ ∈ H(n)(λ−νnεn, ν−νnεn, µ) then σ(n)K ∈ H(n)(λ, µ, ν)
and σ(n)K ′ ∈ H(n)(λ−νnεn, µ, ν−νnεn), showing that σ(n)K ′ = χνnn (σ(n)K) = L′,
as required to confirm the commutativity of the rectangle marked 1 . A similar
argument applies to the rectangle marked 3 , and crucially, the rectangle 2
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is also commutative by virtue of the final part of Lemma 7.3, namely the
commutativity of 7.4, applied λn−µn−νn times. Note that both K ′′′ and L′′′
have empty nth diagonals. Finally, since in the action of σ(n) onK ′′′ the θn part
simply removes the empty nth diagonal and produces an empty nth diagonal
of L′′′, it is essentially an action of σ(n−1) on κnK ′′′ = K(n−1), to produce the
(n−1)-hive part of L′′′; in other words we have σ(n−1)K(n−1) = κnL

′′′ = L(n−1),
thereby confirming the commutativity of rectangle marked 4 .
Thus we have seen that both rectangles in 7.10 are commutative, and hence

we have the equality of operators θn(σ(n))2 = (σ(n−1))2θn.

As a consequence of this we have

Theorem 7.10. For all n ∈ N and all n-hives H we have

(σ(n))2H = H . (7.13)

Proof : We proceed by induction with respect to n. First it should be noted
that in the case n = 1 we have

µ1 ν1

λ1

σ(1)
ν1 µ1

λ1

σ(1)
µ1 ν1

λ1

(7.14)

so that (σ(1))2H = H for all 1-hives H.
Next assume that n ≥ 2 and that, by the induction hypothesis, the effect

of applying (σ(n−1))2 to any (n − 1)-hive amounts to applying the identity
map to that hive. By Lemma 7.9 we have, for any n-hive H, the equality
θn(σ

(n))2H = (σ(n−1))2θnH, and by the induction hypothesis the right-hand
side is equal to θnH. This means that the two n-hives (σ(n))2H and H are
mapped to the same (n − 1)-hive, say H̃, by θn. The remaining question is
whether one can derive the equality (σ(n))2H = H from this information.
For this, it is crucial to note that both (σ(n))2H and H have the same bound-

ary edge labels, say λ, µ and ν, by virtue of the definition of σ(n). Now set
L = (σ(n))2H, and consider the action of Θn on (H,K(0)) and (L,K(0)) where
K(0) is the unique n-truncated n-hive with edge labels µ (see Definition 5.2
and the preceding paragraphs). The result of the action can expressed as
(θnH,K

(1)
H ) and (θnL,K

(1)
L ), where θnH = θnL = H̃ as we have seen, and by

construction both K
(1)
H and K

(1)
L are (n − 1)-truncated n-hives consisting of
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a single diagonal having lower and upper edge labels λn and νn, outer right-
hand edge labels µ, as determined by K(0), and the inner left-hand boundary
edge labels, say µ̃, as determined by the left-hand boundary edge labels of H̃.
These boundary edge labels are sufficient to determine an (n − 1)-truncated
n-hive completely. It follows that K(1)

H = K
(1)
L , so that both components of

Θn(H,K
(0)) and Θn(L,K

(0)) coincide.
We know that H and L can be recovered from Θn(H,K

(0)) and Θn(L,K
(0)),

namely from (θnH,K
(1)
H ) and (θnL,K

(1)
L ) through applications of the path ad-

dition operator θn to θnH and θnL, making use of the (n−1)-truncated n-hives
K

(1)
H and K(1)

L , respectively. Hence the equality Θn(H,K
(0)) = Θn(L,K

(0)) im-
plies that H = L. That is to say H = L = (σ(n))2H, thereby completing the
induction argument and ensuring the validity of 7.13 for all n-hives H.

8. Concluding remarks
We have given a direct combinatorial proof of the bijective and involutive

nature of a procedure first introduced by Azenhas [Aze99, Aze00] as a means
of establishing combinatorially the symmetry of Littlewood–Richardson coeffi-
cients within the context of a tableaux based model. The model was based on
the use of Littlewood–Richardson hives, on which we defined a commutativity
operator denoted by σ(n). It transforms a given LR hive H ∈ H(n)(λ, µ, ν) to
a new LR hive K ∈ H(n)(λ, ν, µ) by the application of what we called path
removals from H, working from right to left, with each path starting from the
base of the hive, and recording within K the level reached by each path, as
exemplified in Example 5.3.
The choice of a hive as opposed to a tableaux model was made in part for

pedagogical reasons and the wish to expose the power and flexibility of hives,
complete with alternative vertex, edge or rhombus gradient presentations, to
a wider readership. Alternative proofs of bijectivity and involutivity can be
constructed purely within a tableaux model setting, and this has been done
in a lengthy arXiv paper [AKT16] which sets the two models alongside one
another, and illustrates the way that the interplay between the two types of
model has benefitted both approaches.

9. Appendix
We now supply the proofs of the three technical Lemmas 7.4, 7.5 and 7.7

used in the proof of Lemma 7.3.
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Proof of Lemma 7.4: The last statement of the Lemma compares the (n− 1)-
hives θnH and θn Ĥ. With that in mind, let↙ denote the (n− 1)-hive region,
and start by noting that H|↙ = Ĥ|↙ since Ĥ is obtained from H through
the action of ψn which just removes a type (iv) path extending down the nth
diagonal of H from level k to its base, causing no change in the (n − 1)-hive
region.
Since k < n, the lowermost right-hand boundary edge labels of H and Ĥ are

equal, and so are the number of type (i) paths removed from them. Let H0 and
Ĥ0 denote the result of all type (i) path removals. These leave H0|↙ = Ĥ0|↙.
Now the difference in upright rhombus gradients of H0 and Ĥ0 resides in the

values of Ukn only: that of H0 being greater than that of Ĥ0 by 1. Hence the
type (ii) path removals from H0 and Ĥ0 proceed in the same manner until all
the gradients Uxn with x > k have been reduced to 0 and the gradients Ukn of
H0 and Ĥ0 have been reduced to 1 and 0, respectively, by removals of paths
P1 = P̂1, . . . , Pc−1 = P̂c−1, say. Let Hc−1 and Ĥc−1 be the resulting hives.
We still have Hc−1|↙ = Ĥc−1|↙. Then there are no more type (ii) paths to
remove Ĥc−1, but there is one more such path, Pc, to remove from Hc−1. This
enters the (n − 1)th diagonal at level k and reaches the left-hand boundary
at level j ≤ n − 1 as exemplified by the solid path shown on the left in 7.5
above. Its removal yields Hc = φnHc−1, and we have Hc|↙ = ξk,n−1(Ĥc−1|↙),
where ξk,n−1 removes Pc|↙, which is of type (va) or (vb) depending on whether
j < n − 1 or j = n − 1. Since the labels of the topmost left-hand boundary
edges of H and Ĥ are equal and unaffected by all the above, there remain
the same number of type (iii) path removals from Hc and Ĥc−1, which again
do not affect the (n− 1)-hive region. Discarding the now empty nth diagonal
under the action of κn leaves the results θnH and θn Ĥ that are still related
by θnH = ξk,n−1(θn Ĥ), in which ξk,n−1 removes Pc|↙ reaching the left-hand
boundary at level j ≤ n− 1.

We now proceed to the proof of Lemma 7.5. We employ some sublemmas,
and even definitions, in its proof.

Proof of Lemma 7.5: By hypothesis, the r-hives H = ξkr Ĥ and Ĥ differ only
by way of a path of difference D entering the rth diagonal at level k < r and
exiting on the left-hand boundary at level j < r. Let H ∈ H(r)(λ, µ, ν), so
that Ĥ ∈ H(r)(λ, µ− εj, ν + εk). Since k < r, both H and Ĥ have edge labels
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νr
λr

at their bottom right corner, so that, in both cases, the number of type

(i) path removals is νr, and the number of type (ii) and (iii) path removals put
together is λr − νr. Set m = λr − νr, and let H0 = χνrr H, Ĥ0 = χνrr Ĥ. Type
(i) path removals do not change any upright rhombus gradients, so we have
H0 = ξkr Ĥ0, in which ξkr removes D. We denote the paths generated by the
type (ii) and (iii) removals from H0 and Ĥ0, respectively, by P1, . . . , Pm and
P̂1, . . . , P̂m. For each 1 ≤ a ≤ m, let Ha and Ĥa denote the result of removals
of P1, . . . , Pa from H0 and P̂1, . . . , P̂a from Ĥ0, respectively.
Now take any one of the paths P̂1, . . . , P̂m, say P̂a, and consider how it may

intersect D in the sense of having an edge in common. Due to the form taken
by a type (ii) or type (iii) path, P̂a, its coincidence with D, if there is any,
necessarily starts at the northwest edge of the foot rhombus of a ladder of D
in some diagonal, with P̂a entering the foot rhombus by way of its southeast
edge and crossing to its northwest edge along the connecting γ-edge.
Recall that, thanks to Lemma 4.4, the paths P̂1, . . . , P̂m lie weakly above one

another. The sequence P̂1, . . . , P̂m can then be divided into sections P̂1, . . . , P̂c1−1;
P̂c1, . . . , P̂c2−1; P̂c2, . . . , P̂c3−1; . . . . . . ; P̂cN , . . . , P̂m, with some indices 1 ≤ c1 <
c2 < c3 < · · · < cN ≤ m (we do have N ≥ 1, see the next paragraph for its
reason), in such a way that the paths P̂1, . . . , P̂c1−1 do not intersect D at all,
each of the paths P̂c1, . . . , P̂c2−1 first intersects D in the p1th diagonal, each of
the paths P̂c2, . . . , P̂c3−1 first intersects D in the p2th diagonal, and so on, with
1 ≤ p1 < p2 < · · · < pN ≤ r.

We first show that N ≥ 1.

Lemma 9.1. In the situation of Lemma 7.5, at least one of the paths P̂1, . . . , P̂m
intersects D.

Proof : Recalling that the path of difference D starts at level k, denote the
gradient Ukr of Ĥ by X ≥ 0; then that of H is X + 1. The behaviour of
the paths P1, . . . and P̂1, . . . in the rth diagonal, including the levels at which
they leave the rth diagonal, are the same until, say in Hc−1 and Ĥc−1, all
the gradients Uxr with x > k are reduced to 0 and moreover the gradient
Ukr = X + 1 of H is reduced to 1 in Hc−1 and that of Ĥ to 0 in Ĥc−1. At this
point we say that this upright rhombus is critical. Since all upright rhombus
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gradients in the rth diagonal are to be reduced to 0 through type (ii) path
removals in the course of the action of θr, there is at least one more type (ii)
path removal, namely that of Pc, involved in the application of θr to H. We
saw above that the number of type (ii) and (iii) path removals under the action
of θr is the same for H and Ĥ, so that there is also at least one more path
removal, namely that of P̂c, from Ĥ, which may be of type (ii) or (iii), whose
path necessarily passes through the critical upright rhombus of gradient 0 and
intersects D at its lowest edge in the rth diagonal.

Remark 9.2. Since the rth diagonal is the rightmost diagonal, the c in the
proof of Lemma 9.1 is cN in the notation introduced above its statement. Also
we have pN = r.

Now we introduce some terminology for use in the inductive proof of Lemma
7.5.

Definition 9.3. Let Ω be a trapezoidal region in the shape of a hive having the
following boundaries: the left and the lower right boundaries consisting of α-
edges, the upper right boundary consisting of β-edges, and the bottom boundary
consisting of γ-edges. Such a region will be called admissible. The lower right
boundary may degenerate to a point, in which case the shape becomes triangu-
lar. The left boundary is called the terminating boundary, and the remaining
three, or two in the case of a triangular region, combined together is called the
starting boundary.
Let e be an edge on the starting boundary of Ω. A prepath in Ω with starting

edge e is a sequence of edges e0, e1, e2, . . . , el in Ω such that: (a) e0 = e, (b)
el is on the terminating boundary, (c) if ei−1 is either a β- or γ-edge then ei
is the α-edge sharing an upward-pointing elementary triangle with ei−1, (d) if
ei−1 is an α-edge not on the terminating boundary, then ei is either the (d1)
γ- or (d2) β-edge sharing a downward-pointing elementary triangle with ei−1.
If P and Q are nonempty prepaths in Ω, we say that P is strictly above

Q, or equivalently Q is strictly below P , if either (1) they share at least one
diagonal and in each such diagonal the edges of P lie above those of Q, or
(2) the diagonals over which P extends are strictly above those over which Q
extends.
Let EΩ be a labelling of all edges of Ω with integers satisfying the triangle

conditions and the nonnegativity of upright rhombus gradients. Such an edge
labelling will be called admissible. We denote by H|Ω the restriction of the edge
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labelling of a hive H to Ω, which is always admissible. A prepath (ei)
l
i=0 in Ω

is said to be a path in EΩ if, for any i such that ei−1 satisfies the condition
(d) above, the option (d1) or (d2) is taken according to whether the upright
rhombus having ei−1 as its southeast edge has gradient = 0 or > 0. Note
that the shape of Ω is such that, whenever the situtation (d) occurs, the above-
mentioned upright rhombus is contained in Ω. For each edge e on the starting
boundary of Ω, there is a unique path in EΩ with starting edge e. Restrictions
of type (ii), (iii) or (v) paths in H to Ω are examples of paths in H|Ω.
To remove a path P from EΩ (from H|Ω in our typical use) is to create a

new edge labelling of Ω out of EΩ by decreasing the label of each α- and γ-edge
in P by 1, and increasing the label of each β-edge in P by 1 (and keeping all
remaining edge labels). The resulting edge labelling will be denoted by φeEΩ

where e is the starting edge of P . It is easy to see that applying φe preserves
admissibility.

The following lemma encapsulates an easy argument used repeatedly below.

Lemma 9.4. Let Ω be an admissible region, and EΩ an admissible labelling of
the edges of Ω. Let P, P ′ be paths in EΩ with starting edges e, e′ respectively.
Assume that P ′ lies strictly below P . Then P is also a path in φe′ EΩ, P ′ is
also a path in φeEΩ, and φe φe′ EΩ = φe′ φeEΩ holds.

Remark 9.5. In our usage of this lemma, EΩ is the restriction of a hive H
to Ω, and φe(H|Ω), φe′(H|Ω), φe φe′(H|Ω) and φe′ φe(H|Ω) are all known to be
restrictions of hives to Ω.

Proof : Recall that a path starting from e must follow P (see below on the
left) so long as the middle rhombi of each ladder of P (shaded light grey)
have gradients 0 and the head rhombus of each ladder of P (shaded grey) has
gradient > 0. These shaded rhombi have been called the guiding rhombi for
P . Since P ′ lies strictly below P , as exemplified below on the right by dotted
edges in the case where P ′ is closest to P , the removal of P ′, whose impact on
upright rhombus gradients are shown by +1 and −1 below on the right, does
not affect the gradient of any of the guiding rhombi for P . Hence P is also a
path in φe′ EΩ.
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e

P

e

P

e′

P ′

−1−1

−1

+1+1

+1 (9.1)

On the other hand, first look at the guiding rhombi for P ′ (see below on the
left). Since P lies strictly above P ′, the gradient of a guiding rhombus for P ′
can change upon removal of P only if it is a head rhombus of P ′, and at the
same time a foot rhombus of P . In such a case, the removal of P ′ increases its
gradient, only strengthening its positivity. Hence P ′ is also a path in φeEΩ.

e′

P ′

e

P

−1−1

−1

+1+1

+1

e′

P ′

(9.2)

Thus φe changes the edge labels of the same set of edges whether it is applied
to EΩ or φe′ EΩ, and the same is true for φe′ whether it is applied to EΩ or
φeEΩ. Hence we have φe φe′ EΩ = φe′ φeEΩ.

We shall now return to the proof of Lemma 7.5 by induction on the numberN
occurring in our sequences c1, . . . , cN and p1, . . . , pN , which we call the number
of critical rhombi, whose implication will be clarified below. We start with the
initial step of the induction.

Lemma 9.6. In the situation of Lemma 7.5, if N = 1, namely if exactly
one critical rhombus emerges during the removals of P1, . . . , Pm from H and
P̂1, . . . , P̂m from Ĥ, then the conclusions of Lemma 7.5 hold.

Proof : For simplicity, set c = c1 = cN and p = p1 = pN = r.
By the definition of c1, none of the paths P̂1, . . . , P̂c−1 intersect D, and since

they start below D they all pass strictly below D. Then one can first apply
Lemma 9.4 to the action of ξkr and φr on the r-hive Ĥ0, namely by taking Ω
to be the whole r-hive region, e to be the right-hand boundary edge of level k
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and e′ to be the rightmost bottom edge. Since ξkrĤ0 = H0 and φrĤ0 = Ĥ1,
Lemma 9.4 shows not only the commutativity ξkrφrĤ0 = φrξkrĤ0, that is to
say ξkrĤ1 = φrH0 = H1, but also that the operator ξkr removes the same path,
D, from Ĥ0 and Ĥ1, and that the operator φr removes the same path from
Ĥ0 and H0, namely P̂1 = P1. Then one can iterate to have P̂a = Pa for all
a ≤ c− 1, and ξkrĤc−1 = Hc−1 in which ξkr still removes D. In the picture 9.3
below, the path D is shown by a sequence of solid edges.
The assumptions c = c1 and p1 = r imply that the next path P̂c, to be

removed from Ĥc−1, climbs the rth diagonal following the double edges
and intersects D after traversing its foot rhombus at level k by way of the
γ-edge crossing it, marked with in 9.3, to its northwest edge. This implies
that Ĥc−1 has Ukr = 0. After this, P̂c follows the path D and reaches the
left-hand boundary at level j by virtue of the uniqueness of the path in Ĥc−1|↖
with a given starting edge, where ↖ denotes the region above the line passing
through the northwest edge of the aforementioned upright rhombus. In 9.3,
the region is enclosed by a dashed trapezium with rounded corners.
Then Hc−1 = ξkr Ĥc−1 has Ukr = 0 + 1 > 0. Hence the path Pc, to be

removed from Hc−1, follows the edges but enters the (r− 1)th diagonal at
level k as exemplified by the wavy edges in 9.3. Let D′ denote this
path of the (r − 1)-hive, starting from the right-hand boundary edge at level
k. In Hc−1, the foot rhombi of the ladders of D have positive gradients, being
greater than those in Ĥc−1 by 1, serving as an inpenetrable barrier to climbing
the ladders of D. So Pc, and accordingly D′, stay strictly below D and end on
the left-hand boundary at some level j′ < j.
The gradient Ukr = 1 of Hc−1 is the smallest value to block the path Pc from

climing the ladder of D, and in Ĥc−1 its value Ukr = 0 allows the path P̂c
into the ladder, by a slim difference of 1. The rhombus with gradient Ukr thus
produces a bifurcation of the path into the and paths followed
by Pc and P̂c, respectively, and so is said to be critical for the removals of Pc
and P̂c. Thereafter, due to their removals, this rhombus has gradient 0 in both
hives and is said to be post-critical. Also the difference along D|↖ has been
resolved, while new differences have been introduced along the path D′.
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P̂c :j

k

l
Pc :j

′

r

0
0

0
1

0
0

0

↖

(9.3)

Since Ukr = 0 in bothHc and Ĥc, as well as all Uxr with x > k, both Pc+1 and
P̂c+1 reach the northwest edge of the post-critical rhombus without changing
the gradients of that rhombus. So the situation persists and all Pa and P̂a with
a > c come to the northwest edge of the post-critical rhombus. By Lemma 4.4,
the paths P̂a|↖ with a > c run weakly above P̂c|↖ = D|↖, and so strictly above
Pc|↖ = D′|↖. Hence, by applying Lemma 9.4 to Ĥc|↖ and its paths P̂c+1|↖
and D′|↖, then to Ĥc+1 and its paths P̂c+2|↖ and D′|↖, and so on, we have
Pa|↖ = P̂a|↖ (so that Pa = P̂a) for all a > c, and that Hm|↖ and Ĥm|↖ are
related by the removal of D′|↖. The difference in the label of the starting edge
of D′, namely the southwest edge of the post-critical rhombus which is the only
edge of D′ not included in D′|↖, is also maintained through the removals of Pa
and P̂a with a > c since none of them contain that edge. Discarding the empty
rth diagonal in the end, we see that θrH = κrHm is related to θr Ĥ = κr Ĥm

by ξk,r−1 which removes the path D′.

Continuing with the proof of Lemma 7.5, we come to the heart of the matter,
namely the inductive step on the number N of critical rhombi.

Lemma 9.7. In the situation of Lemma 7.5, assume that N > 1, so that the
removals of P1, . . . , Pm and P̂1, . . . , P̂m involve encounters with at least two
critical rhombi. Assuming, under the inductive hypothesis that Lemma 7.5 has
been proved for all cases with the number of critical rhombi strictly less than
N , then the conclusions of Lemma 7.5 hold for the present case involving N
critical rhombi.
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Proof : Let c = c1 and p = p1 for simplicity, and let f denote the level of the
foot rhombus of the ladder of D in the pth diagonal. The solid edges in
the diagram 9.4 below show the part of D up to entering the pth diagonal, and
the dotted edges show the remaining part of D. (The distinction is made
since, as we shall see below, the difference of edge labels along the part
persists after the removal of Pc and P̂c, but those along the part resolves
by the removal of Pc and P̂c.) By a repeated application of Lemma 9.4 to the
whole r-hive, the paths P1, . . . , Pc−1 coincide with P̂1, . . . , P̂c−1 respectively,
and hence all run strictly below D, and we have Hc−1 = ξkr Ĥc−1 in which ξkr
still removes D.
Now, by assumption, the path P̂c, to be removed from Ĥc−1, runs below D up

to the (p+ 1)th diagonal, but in the pth diagonal it approaches and intersects
D, after crossing its foot rhombus (whose gradient Ufp must have been 0),
in the manner discussed in the second paragraph of the proof of Lemma 7.5.
Having intersected the pathD in a common edge, the uniqueness of a path with
a given starting edge implies that thereafter it must follow D to its end at level
j. In 9.4, the part of P̂c up to this foot rhombus is shown with dotted double

edges, and the γ-edge crossing this rhombus with a line of crosses ,
and the portion coincident with D is shown with dotted edges. On the
other hand, the path Pc, to be removed from Hc−1, initially coincident with P̂c
along the edges, finds the same gradient Ufp to be 1 instead of 0, with the
difference arising from D, and the path Pc therefore passes leftwards below this
rhombus, decreasing its gradient to 0, and proceeds along what is exemplified
by the wavy edges in 9.4, to end on the left-hand boundary at some level
j′ < j, for the same reason as before regarding an inpenetrable barrier below
D.
Thus, the upright rhombus carrying the gradient Ufp, marked in 9.4 by plac-

ing the symbols 0 above 1 as before, causes a bifurcation, and hence is critical
for the removals of Pc and P̂c. After this pair of removals, it carries a common
gradient 0, and is post-critical.
Now considerHc and Ĥc. Let F and F ′ denote the lines passing the southeast

and northwest edges, respectively, of the above-mentioned upright rhombus,
and let↘ and↖ denote the regions weakly below the line F (the part enclosed
by a triangle with rounded corners in 9.4) and weakly above the line F ′ (the
part enclosed by a dashed triangle with rounded corners in the same diagram),
respectively. Even though Hc|↘ and Ĥc|↘ are (r − f)-hives in themselves,
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we designate their diagonals, edge levels and gradients using the measurement
parameters specified within their parent r-hives Hc and Ĥc. Bearing this in
mind, it is important to note that D|↘ starts at level k and reaches the line
F at level p + 1, as part of the migration pattern of a type (v) path from the
(p+ 1)th to the pth diagonal.

P̂c :j

f

k

Pc :j
′

p r

0
1

F

↘

F ′↖

(9.4)

Restricting attention to the region ↘ weakly below F in the prospect of
using the induction hypothesis to apply the present Lemma 7.5 to Hc|↘ and
Ĥc|↘, we start with the following picture where we represent both of the two
non-intersecting paths D|↘ and Pc|↘ = P̂c|↘ by means of solid edges ,
which reach the left-hand boundary F of this region at levels p + 1 and p,
respectively:

k : D|↘
p
p+1

p r
P̂c|↘ = Pc|↘

F

(9.5)

Maintaining our specification of diagonals, edges and rhombus gradients as
dictated by our original hives, as well as our path numbering, we consider
the application of θr to Hc|↘ and Ĥc|↘ with Hc|↘ = ξkr Ĥc|↘, and path
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of difference D|↘ starting at level k and ending at level p + 1. Taking into
account the fact that the lowermost right-hand edge label of both Hc|↘ and
Ĥc|↘ is 0, there are no type (i) path removals. Having already removed c

pairs of type (ii) paths from H and Ĥ, and accordingly from H|↘ and Ĥ|↘,
the paths consecutively removed from Hc|↘ and Ĥc|↘ by the action of θr are
Pc+1|↘, . . . , Pm|↘ and P̂c+1|↘, . . . , P̂m|↘, respectively. Recalling our original
notation c = c1 < c2 < · · · < cN and p = p1 < p2 < · · · < pN with our
assumption N ≥ 2, note that the paths P̂a with a < c2 do not intersect any
ladder of D below the line F . Hence the number of critical rhombi encountered
during the actions of θr on Hc|↘ and Ĥc|↘ is N − 1, which allows the use of
the present Lemma to Hc|↘ and Ĥc|↘ by the induction hypothesis.
Thus, among the m − c pairs of paths being removed, for some d with c <

d ≤ m we have: Pa|↘ = P̂a|↘ for c < a < d, while Pd|↘ ends at level j = p+1

on the left-hand boundary F , and P̂d|↘ ends at some level j′ < p + 1 on F .
However, P̂c|↘ ends as shown above in 9.5 at level p on F . Since P̂a|↘ lies
weakly above P̂c|↘ for all a > c, including a = d, it follows that j′ = p. Hence
all paths Pa|↘ = P̂a|↘ for c < a < d and P̂d|↘ end on F at level p. The
inductive application of Lemma 7.5 also tells us that for each a > d, Pa|↘ and
P̂a|↘ end at the same level, say ja, on F , with ja ≥ p+1 since Pa|↘ lies weakly
above Pd|↘.
Just as we identified c with c1 and p with p1, we shall write d and q for c2

and p2, respectively, in terms of which we have the following illustration of the
manner in which the paths Pd|↘ and P̂d|↘ are squeezed (weakly) between the
two solid lines representing Pc|↘ and D|↘:

Pd|↘ : p
P̂d|↘ : p+1

k : D|↘

g

p q r
Pd, P̂d

0
1

F

(9.6)
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Here the paths Pd|↘ and P̂d|↘, initially represented by a double dotted
line, bifurcate in diagonal q at some level g with the critical upright rhombus
gradient Ugq equal to 1 in Hd−1|↘ and 0 in Ĥd−1|↘, with the difference due
to D|↘. As a result, Pd|↘ passes leftwards along the wavy edge path to
meet F at level p, while P̂d|↘ crosses the critical rhombus and intersects D|↘,
thereafter following the dotted solid edge portion of D|↘ to meet F at
level p+ 1.
The final conclusion from the application of Lemma 7.5 to Hc|↘ and Ĥc|↘

is that we have θrHc|↘ = ξkr(θr Ĥc|↘), with a path of difference E ′ that will
eventually be identified with D′|↘. For the moment we just point out that the
portion of the path of difference from the p2 = qth diagonal to the p1 = pth
diagonal is that portion of the path P̂d|↘, with d = c2, that is represented in
9.6 by means of edges.
We next consider the continuation of each of the paths Pa|↘ and P̂a|↘, namely

Pa and P̂a, as they cross from F to F ′ in Ha−1 and Ĥa−1, respectively, for all
a > c. The outcome is illustrated below in 9.7:

F ′

F

0
0 P

a , P̂
a

p

P
a , P̂

a

p
+

1

f

F ′

F

1

p

P̂d

P̂d
p
+

1

f

F ′

F

0
Pd

p

Pd

p
+

1

f

F ′

F

X+1
X

p

P
a , P̂

a

P
a , P̂

a

p
+

1

f

c < a < d a = d d < a ≤ m

(9.7)

For a = c+ 1, . . . , d− 1 we have Pa|↘ = P̂a|↘, meeting F at level p and both
continuing across the post-critical rhombus with Ufp = 0, remaining at level p,
as shown in the diagram on the left. For a = d the path Pd|↘ again meets F
at level p and continues in the same way, as shown in the lower portion of the
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diagram in the middle, while the path P̂a|↘ meets F as we have seen at level
p + 1, moves to the left neighbouring β-edge since Uf,p+1 > 0 (this gradient
was positive in Ĥ as evidenced by the route of D, generated by the action of
ξkr on Ĥ, passing below it, and removals of P̂1, . . . , P̂d−1 have not changed this
gradient) and passes along the upper edges of the post-critical rhombus to level
p as shown in the upper portion of the diagram in the middle. The removal
of P̂d changes Ufp from 0 to 1, rendering it what we call post-post-critical.
Finally, for each a = d + 1, . . . ,m, both Pa|↘ and P̂a|↘ meet F at the same
level ja ≥ p + 1, and each of these solid edge paths crosses from F to
F ′ weakly above the post-post-critical rhombus, whose gradients Ufp will take
values in X in Ha and X + 1 in Ĥa for some X ≥ 0. In the diagram on the
right we have illustrated this case a > d in the extreme situation where the
extension of Pa|↘ and P̂a|↘ follows that of Pd|↘, thereby each contributing 1
to X, rather than the more generic situation where it lies above that of Pd|↘
and does not affect the value of X.
Concentrating on the difference of edge labels occurring in the strip flanked by

F and F ′, first note that each of the pairs Pa and P̂a crosses this strip together
without altering any differences except in the cases a = c and a = d. The
transformation of the path of difference in this strip is illustrated below in 9.8.
Initially the difference occurs along the path D (represented by in the left-
hand diagram), and this persists through removals of all Pa and P̂a with a < c.
Then (see 9.4) the path P̂c, unlike Pc, traverses the γ-edge across the critical
rhombus, introducing a difference in its edge labelling (represented by in
the middle diagram), and the northwest edge of that rhombus, eliminating
the difference there; whereas the path Pc, unlike P̂c, passes to the southwest
edge of that rhombus and the α-edge to its left, introducing differences there
(represented by in the middle diagram). Again removals of Pa and P̂a with
c < a < d do not change anything. Then (see 9.7) the path P̂d, unlike Pd,
reaches the post-critical rhombus tracing D, which eliminates the differences
of the labels of the two edges, while P̂d, unlike Pd, traverses that rhombus
from its southeast edge, introducing a difference in its labelling (represented
by in the right-hand diagram) and eliminating the difference represented
by . Recalling that the post-post-critical rhombus has positive gradient in
Ĥa with a ≥ d, we now see that the path of difference E ′ in the region weakly
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below F successfully extends to the region between F and F ′ in the manner
required for a type (v) path removal under the action of ξkr on Ĥm to give Hm.

F ′

F

p−
1

p

p
+

1

F ′

F

p−
1

p

p
+

1

F ′

F

p−
1

p

p
+

1

Transformation of the path of difference
between Ha and Ĥa in the F -F ′ strip

a < c

removals

of Pc, P̂c

c ≤ a < d

removals

of Pd, P̂d

d ≤ a

(9.8)

Finally we look at the region ↖ weakly above the line F ′. As we saw (way)
above, removing the initial path of difference D from Ĥc−1 gives Hc−1, and
in this northwestern trapezium we have D|↖ = P̂c|↖. Since, by definition,
removing P̂c from Ĥc−1 gives Ĥc, the coincidence D|↖ = P̂c|↖ leads to the
coincidence of Hc−1 and Ĥc in the northwestern trapezium. Since removing
Pc|↖ from Hc−1|↖ gives Hc|↖ by definition, it also means that Pc|↖ is the new
difference path whose removal from Ĥc|↖ gives Hc|↖. Note that the differences
along the old path of differenceD|↖ have been resolved. Therefore, if we denote
by e′ the α-edge lying on F ′ neighbouring the northwest edge of the post-critical
rhombus to its left, we have Hc|↖ = φe′ Ĥc|↖. Now for each of c < a ≤ m, the
path P̂a|↖, lying weakly above P̂c|↖ = D|↖, lies strictly above Pc|↖. Hence,
by applying the commutativity Lemma 9.4 repeatedly to the region, we have
P̂a|↖ = Pa|↖ for all such a, and Hm|↖ = φe′ Ĥm|↖ where in this operation φe′
removes Pc|↖.
We can now combine this with what we already have on the region↘ and the

strip between F and F ′, and verify that the paths Pa and P̂a coincide entirely
for each a < c, while P̂c ends at level j where D ends, whereas Pc, running
strictly below P̂c in↖, ends at some level j′ < j, and for each a > c the paths
Pa and P̂a end at the same level. Moreover, the concatenation of E ′, that
is the path of difference arising from the induction hypothesis applied to the
region ↘, and the southwest edge of the post-post-critical rhombus, continues
as a path in θr Ĥ = κr(Ĥm) to e′ (note that the assumption N ≤ 2 implies



INVOLUTORY LR SYMMETRY BIJECTION ON HIVES 63

p = p1 < p2 ≤ r, placing the post-post-critical rhombus in the (r − 1)-hive
region), and hence to Pc|↖. In each section it has been verified that removing
this path gives the difference between the (r − 1)-hive parts of Hm and Ĥm,
namely θrH and θr Ĥ. This implies inter alia that E ′ may indeed be identified
with D′|↘.
By unfolding what is implied in the above inductive description, using the

notation c1 < c2 < · · · < cN and p1 < p2 < · · · < pN , we see that the final
path of difference D′, removed from θr Ĥ by ξk,r−1 to yield θrH, is obtained by
pasting the part of Pc1 from the southwest edge of the first critical rhombus in
the p1th diagonal to the left-hand boundary, the part of Pc2 from the southwest
edge of the second critical rhombus in the p2th diagonal to the southeast edge
of the first critical rhombus in the p1th diagonal, and so on, up to the part of
PcN from the southwest edge of the final critical rhombus in the pNth (= rth)
diagonal to the southeast edge of the (N − 1)th critical rhombus in the pN−1th
diagonal.
This completes the proof of Lemma 9.7.

The proof of Lemma 7.5 is now complete by induction on the number N of
encounters with critical rhombi, due to Lemma 9.6 which solves the case N = 1
and Lemma 9.7 which takes care of the inductive step.

To complete the proof of Lemma 7.3 we now offer a proof of Lemma 7.7.

Proof of Lemma 7.7: Upon application of θk, the hive H affords one extra type
(i) path removal compared with Ĥ due to the difference of +1 created on
the lowermost right boundary edge label by applying ξkk. Let us denote the
result of removing the common type (i) paths from H and Ĥ by H(0) and Ĥ(0)

respectively. By removing the additional type (i) path from H(0), and denoting
the resulting hive by H(1), the difference of H(1) from Ĥ(0) is described by a
path, say D̃, obtained by changing the initial edge of D, namely the lowermost
right boundary edge, to the rightmost bottom edge. In other words we have
H(1) = φk Ĥ

(0), in which operation φk removes D̃. Thus the first type (ii)
path removed from Ĥ(0) is D̃, whose removal results in the same hive as H(1).
Thereafter all pairs of path removals coincide, yielding θkH = θk Ĥ.
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