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The very quick fire spread that occurs in some forest fires has been the cause

of many fatalities in the past among fire fighters throughout the world. A

theoretical model describing the convective interaction between the fire front

and the surrounding air is proposed to explain the blowup phenomenon that

is observed in nature. This model is based on a set of laboratory experiments

of fire blowup in canyons that was used to validate it. The model predicts

quite well the general fire behavior observed during two fatal accidents that

occurred in the United States and one in Portugal.
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INTRODUCTION

It is reported in the literature (cf. Brown and Davis, 1973; Chandler et al.,

1983; Pyne, 1984; Pyne et al., 1996) that on many occasions forest fires

behave in a surprising way, changing suddenly from moderate behavior

characterized by a relatively low rate of spread to an explosive propa-

gation with a much faster velocity and heat release. In some instances,

such behavior has caught by surprise and even killed experienced fire

fighters, leaving them with no time or place to escape. This phenomenon

is known in the literature as a fire blowup or flare-up and there is not a

consistent justification for this behavior in the scientific literature. In

particular, fires spreading in steep slopes, namely in ridges or canyons,

are associated with such blowups that have caused many fatalities in the

past. The Mann Gulch fire, described by Rothermel (1993), occurred in

1949 and caused 13 fatalities; the South Canyon fire of 1994, analyzed by

Butler et al. (1998), had 14 fatalities; and the Thirtymile fire of 2001,

described by Furnish et al. (2001), had four fatalities, all of which

occurred in the United States. These are examples that have not been

explained by science to this day. Another case, which occurred in Freixo,

Portugal in the summer of 2003 and was investigated by the author

(cf. Viegas, 2004a), had two fatalities; it is also an example of a blowup

and will be used to test the present model.

When there is a canopy layer above the surface vegetation, fire may

spread as a surface or as a crown fire. The latter is more complex and less

studied. Although blowups are easily associated to crown fires, we shall

assume in this paper that the fire is spreading only in the surface layer.

In this paper the author shows that the blowup is a result of feedback

between the fire and the atmosphere that may occur naturally in steep terrain

without the need of any special atmospheric conditions to justify its occurrence.

A theoretical model that takes into account the feedback mechanism

of the convection induced by the fire is proposed. The model is validated

using results from laboratory experiments and then applied to describe

the blowup phenomenon that occurred in three fire-related accidents.

THEORETICALMODEL

Problem Formulation

A forest fire spreads with a rate of spread (ROS) R that is the result of a

balance between the energy released at the fire front and the energy that is
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necessary to ignite the fuel adjacent to the fire. Its value is determined

basically by fuel-bed properties, terrain slope, and wind flow in the

vicinity of the fire in addition to the convective flow induced by the fire

itself. Fires spreading on a slope or with favorable wind will form a head

with a relatively high ROS in relation to other parts of the fire perimeter.

Our attention is focused on the head fire ROS. We assume that all

fuel-bed and terrain properties are homogeneous and uniform and that

all time-dependent properties such as ambient wind velocity and direction

remain constant during fire spread. For simplicity, it is assumed that

vectors such as flow velocity and ROS are parallel to a common direction

and, therefore, they can be represented by a single component and treated

in the equations as scalars.

Mathematical Model

If we consider a reference value U of the convective flow velocity near the

fire front, with all other parameters remaining constant, the ROS for a

given fuel bed will depend only on U:

R ¼ fðUÞ ð1Þ

The choice of the characteristic wind velocity of the flow, U, in the

vicinity of the fire front is a matter of debate. It is well known that when

the approaching flow is of the boundary-layer type, wind velocity varies

from zero at the ground to a practically constant value in the limit of the

boundary layer. It is usual to refer to the wind velocity at a standard

height of 10m above the ground, which is done in meteorology. Because

this height may be excessive for the characterization of the flow of rela-

tively small flames, Rothermel (1972) proposed to consider the wind

velocity at the midflame height as a reference flow velocity. On the other

hand, Viegas and Neto (1992) propose the use of the friction velocity

ut for this purpose, given its purpose of characterizing the shear stress

produced by the flow on the ground that dominates the momentum and

energy transfer near the surface. In this work, this point is not discussed

further and it is assumed that some characteristic value of the flow

velocity, U, can be defined to describe the interaction between the

atmospheric flow and the flaming fire front.

Using an analogy between slope and wind effects on fire spread (cf.

Morandini et al., 2002; Nelson, 2002; Rothermel, 1983), we can consider

that the effect of a slope on the rate of spread is equivalent to a given
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value of the flow velocity on a horizontal fuel bed. According to this

analogy, both effects are equivalent and an effective wind is considered as

a surrogate of slope effect. This is an approximation, but its adoption is

convenient to deal with slope and wind effects using the same formalism

for both cases, describing both with a single parameter, U.

In this paper we consider mainly fire propagation in a slope, but the

present considerations are also applicable to a fire front under permanent

and uniform wind conditions. As was said earlier, we assume that a

reference flow velocity U can be defined and that this velocity is constant

and parallel to the ROS vector.

Many fire simulation models do not consider the effect of the fire on

the atmospheric flow and all the computations are made using the iso-

thermal flow that existed over the vegetation in the absence of the fire.

This hypothesis can be valid for fires spreading downslope or against

wind, but for high-intensity fires the interaction between the ambient flow

and the reactive fuel bed will modify the flow in the vicinity of the fire

front and modify the rate of spread, as was shown by Viegas (2004b).

If we consider that the characteristic velocity of the isothermal flow is

Ua—that is, uniform and constant in the entire domain of calculation—

then the instantaneous characteristic velocity of the flow in the presence

of the fire will be different from Ua. We can state this mathematical

inequality with the following equation:

U ¼ Ua þUf ð2Þ

In this equation, Uf is the equivalent of some characteristic velocity

induced by the presence of the fire that, when added to the initial ambient

flowUa, gives the characteristic flowvelocityU. This equation does notmean

that effects of both ambient wind and induced convective flow are additive:

it only states that the characteristic flow velocity in the presence of the flame

is not the same as that in the case of isothermal flow. In the general case,

this induced flow velocity will be a function of time and we may write that

UðtÞ ¼ Ua þ
Z t

i

dUf

dt
dt ð3Þ

where the only factor that can change ROS is the convective flow velocity

U. Any change to U can only come from the heat released at the fire

front, because Ua is constant:

dU ¼ dUa þ dUf ¼ dUf ð4Þ
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The change in the wind velocity, dUf, induced by fire during dt will

depend on the heat released by the fire front. It is well known that for a

given fuel bed the amount of heat released by unit of time per unit of fire

front length—the so-called Byram fire line intensity—is proportional to

the ROS. This means that the convective flow that is induced by this

energy release will also keep some relationship to the ROS of the fire

front. We assume, therefore, that this heat release is related univocally to

the ROS and, consequently, for a given fuel bed it can be expressed as a

function of the ROS and we can write

dUf ¼ gðRÞdt ð5Þ

Differentiating Eq. (1), we have the change of rate of spread that is

produced by the change of flow velocity, dU, during dt:

dR ¼ df

dU
dU ¼ df

dU
gdt ¼ dR

dt
dt ð6Þ

Integrating Eq. (6) between ti and t, we can obtain the rate of spread

variation with time:

R� Ri ¼
Z t

ti

dR

dt
dt ð7Þ

where Ri is the initial value of the rate of spread for t¼ ti.

The present model is based on the assumption that functions f and g

both exist, are well defined, and can be determined. This point is dis-

cussed in the following section. At present we have to keep in mind that

in the general case these functions will depend on fuel-bed properties.

Nondimensional Formulation

It is usual in engineering practice to express the mathematical equations

that describe a given physical problem in nondimensional form to render

them independent of the particular scale or other properties of given

realizations of the process described by the equations. To derive a

nondimensional formulation of the problem, we need to define some

characteristic parameters that can be used as reference scales. The choice

of these parameters has some degrees of freedom but it must be made
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with certain criteria to ensure that all relevant phenomena are considered

in the analysis.

The process of deriving nondimensional forms of the equations has

the advantage of putting in evidence the relevant parameters that govern

the problem.

The nondimensional form of functions f, g, and R(t) can then be

applied to different practical conditions, namely for different fuel-bed

types. We should expect that for a given terrain geometry the develop-

ment of a blowup will be different in the case of litter, herbaceous, or

shrub vegetation, for example. In spite of this, provided that adequate

reference parameters are chosen, the same general blowup equation is

applicable for all cases, as we shall see.

In the present case, the choice of reference scale factors falls on the

basic rate of spread, Ro, a reference wind velocity Uo and a characteristic

timescale to.

The basic rate of spread, Ro, is the ROS value for the same fuel bed in

the absence of wind and slope; its value can be easily measured in

practice. It depends on the fuel-bed properties, namely on the moisture

content of the fuel bed’s very fine particles. Although Ro is a kinematic

parameter, it is chosen here for its role in characterizing the energy release

and heat transfer processes in a given fuel bed. It is well known

(cf. Albini, 1985; Rothermel, 1972) that by solving the energy release and

heat transfer equations the rate of spread is given as a solution of the

temperature field problem.

The reference wind velocity Uo can be defined as the value that is

required to produce a given increase in the ROS for that fuel. For

example, we could consider Uo equal to the value of U that makes f¼ 5.

In principle, this will be a specific property of a given fuel bed. It is known

(cf. Rothermel, 1972; Viegas and Neto, 1992) that the reaction of the fuel

bed to wind in terms of ROS increase depends very much on its porosity.

Heavy fuels like forest litter and residues require much higher values of

the wind speed Uo to produce a given increase in the ROS, whereas fine

fuels like herbaceous vegetation require a much lower value to produce

the same effect. In this study because we do not have enough data to

estimate Uo for all the situations that are analyzed we shall set Uo¼ 1m=s

for simplicity.

The characteristic timescale to is a measure of the inertia of the fire

front in that fuel; it can be assimilated to some residence time of the flame

for the fuel particles that enter in the composition of the fuel that is also
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a specific property of the fuel bed. It can be measured from thermocouple

data by the duration of the temperature trace inside the fuel bed above a

certain threshold of, say, 400�C. Again, heavy like, slash or litter, fuels

with relatively large particles and high values of fuel load (amount of fuel

per unit area of the forest) will have larger values of to compared to light

fuels like herbaceous vegetation.

We shall express fire spread equations in terms of the following

nondimensional variables:

R0 ¼ R

Ro
ð8Þ

U0 ¼ U

Uo
ð9Þ

t0 ¼ t

to
ð10Þ

Semi-empirical Solution

In principle, the functions f and g, Ro, and all the other parameters that

are required by the present model could be obtained from theoretical

considerations by solving the adequate mathematical equations describ-

ing the physical and chemical processes that take place in the fire front

and using the adequate boundary conditions. At present, physical models

are not developed to a stage of providing these properties of fire spread

in the general case. Therefore, we shall use empirical formulations and

results to close the problem and to check the validity of the present

model.

Function g can also be determined directly from laboratory or field

experiments using the appropriate flow velocity measuring sensors. In

this study, its form shall be determined indirectly from laboratory

experiments.

The basic ROS, Ro, and the other reference parameters shall be

determined from experimental results, either from direct measurements

or from calculations as shall be explained following.

Among the many formulations for f that can be found in the

literature, we shall adopt one that is commonly used (cf. Rothermel,
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1972, 1983; Viegas, 2002a), which uses a power law function to describe

the dependence of the ROS on wind velocity:

R0 ¼ 1þ a1U
b1 ð11Þ

As will be explained later, this function was obtained by the author in

laboratory experiments using a combustion tunnel with controlled

fuel-bed properties and wind flow.

For simplicity, we shall adopt for the function g a power law form as

well, given by the following equation:

dU0 ¼ a2R
0b2dt ð12Þ

In the preceding equations, coefficients a1 and a2 have physical

dimensions and are determined empirically. The following pair of

nondimensional parameters can be defined:

a01 ¼ a1U
b1
o ð13Þ

a02 ¼ a2to ð14Þ

Using these definitions, it is easy to check that Eqs. (11) and (12) can

be expressed in the following nondimensional forms:

R0 ¼ f 0ðU0Þ ¼ 1þ a01U
0b1 ð15Þ

and

dU0 ¼ g0ðR0Þdt0 ¼ a02R
0b2 dt0 ð16Þ

Solving Eq. (15) for U 0, using Eq. (16), and introducing the result in

Eq. (6), it is easy to find that

dR 0

dt0
¼ a01

1

b1
b1a

0
2ðR0 � 1Þ1�

1
b1R0b2 ð17Þ

This equation shows that for R0 ¼ 1 there is no acceleration of the fire

front and the ROS remains constant. The acceleration value is very low if

R0 is very close to one, but it increases monotonically with R0. This

equation also shows that whenever R0 6¼ 1 the ROS of the fire will
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change with time, even if all the other boundary conditions remain

unchanged, as assumed in the present formulation.

A particular solution of this equation is obtained by making

b1¼ b2¼ 1, thus assuming that functions f 0 and g 0 are linear in U 0 and R0,

respectively. This approach can only be valid in a limited range of those

variables. This case is quite interesting because it leads to an explicit solu-

tion of Eq. (17) that corresponds to an exponential growth of the ROS with

time. This solution is found for a fire front propagating up slope in a vertical

wall of solid combustible material (cf. Drysdale, 1992), which has some

analogy with the present case of a porous solid fuel bed in a steep slope.

In this preliminary study, the author intends to demonstrate the

relevance of the present model to predict fire blowup. Because there are

not sufficient data to determine the reference parameters to, Ro, and Uo in

the general case, we shall use a partial nondimensional form of the

equations to apply them to practical cases. In the absence of specific data,

we shall set Uo¼ 1 m=s in the present study.

EXPERIMENTAL RESULTS

Laboratory experiments were carried out by the author and his collab-

orators (Viegas et al., 2002b) in the combustion tunnel (CT) of the Forest

Fire Laboratory of the University of Coimbra using a fuel bed of dead

needles of Pinus pinaster with a fuel load of 1 kg=m2 and a packing ratio

(ratio of solid volume to the total volume of the fuel bed) of 0.003. The CT

has a horizontal platform of 3� 8m2 where the fuel bed is prepared; it has

two vertical walls 1.5m high and is open on the top; wind flow is produced

by two axial fans of variable rotational speed: and flow straighteners are

introduced between the fan ducts and the working section of the tunnel.

Fires with linear ignitions for constant values of the wind velocity were

studied in the range 0<Ua< 5m=s. The ROS was measured along the test

bed by using visual techniques developed by the author and his co-workers.

As a result, the following values were obtained for a1¼ 1.10 (SI units) and

b1¼ 2.02 for Eq. (11). The basic ROS for this fuel bed was in the range

0.22<Ro< 0.34 cm=s. The residence time to of the flame at a given point of

the fuel bed was evaluated using a thermocouple, and the average value

found for the pine needles was to¼ 80 s.

A series of tests was carried out in a device that has the configuration

of a canyon. This device is shown in Figure 1; it has two rectangular

plates that form a dihedral with an angle g and their intersection line has
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an inclination a in relation to the horizontal ground (cf. Figure 2). The

dimensions of each face are 2.9� 1.45m2. By changing the values of a
and g it is possible to replicate typical canyon configurations in reality.

The pairs of values of a and g used in the experimental program are

given in Table 1 with the corresponding designation for each test. The

same fuel bed was used in all tests and fire was ignited at a single point in

the intersection line of the two faces, 50 cm above the base of the canyon.

In these experiments there was no superimposed wind and care was taken

to avoid air draughts inside the laboratory hall. The evolution of the fire

front was recorded using video- and infrared cameras and the ROS of the

fire was evaluated from analyses of these images. Results reported here

refer to the head fire spreading along the maximum slope gradient

direction of the canyon faces.

As mentioned earlier, in the present study we did not measure the

induced flow velocity in the vicinity of the fire front, and so we will

determine the function g 0 empirically by fitting the present model to the

Figure 1. Experimental setup in the Forest Fire Laboratory of the University of Coimbra

for the study of fire spread in canyons and for the observation and analysis of blowup

phenomena.
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results obtained in a set of laboratory experiments. From the 17 studied

cases that are shown in Table 1, 9 were chosen to evaluate a2 and b2. The

remaining eight cases were then used to test and validate the model.

Later, a real-life case in which the flow velocity near the fire was actually

measured shall be used to confirm the validity of this method.

To determine the parameters a2 and b2, we solve Eq. (17) to define the

following function:

Y ¼ dR0

dt0
ðR0 � 1Þ

1
b1
�1

a01
1
b1b1

¼ a02R
0b2 ð18Þ

Figure 2. Schematic presentation of canyon configuration with definition of reference axis

and characteristic angles.

Table 1. Parameters of the laboratory tests with canyon-shaped terrain

Test cases Validation cases

Ref. a g Ref. a g

516 10� 158� 511 10� 140�

512 20� 140� 517 20� 158�

518 30� 158� 513 30� 140�

514 40� 140� 518 40� 158�

506 10� 114� 501 10� 100�

502 20� 100� 507 20� 114�

508 30� 114� 503 30� 100�

531 40� 180� 509 40� 114�

533 30� 180�
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The values of function Y can be computed for each test and the

results are shown in Figure 3. A best fit of the power law function given

by Eq. (18) with the experimental results was made using least-squares

error. Two points were excluded from the analysis as outliers. The values

obtained were, respectively, a02¼ 0.0062 and b2¼ 1.16 with a value of

r2¼ 0.396.

Using these values and considering R0
i¼ 1.1, Eq. (15) was integrated

yielding the result that is shown in Figure 4 as a solid line curve. As can

be seen, the present model predicts the very sudden change on the ROS

that is actually observed in the experiments, confirming that the blowup

effect is derived exclusively from fire dynamics.

The results obtained in the eight remaining experimental cases were

then used to validate the model. To fit those data, the value of ti was

adjusted in each case to provide an overall best fit, because each test starts

with a given value of R0
i. The results are shown in the same figure for

comparison. Quite good overall agreement between the model and the

experimental data can be judged from this figure.

According to the present model the time history of the fire depends

essentially on the fuel-bed properties and on the initial conditions R0
i that

are dictated mainly by terrain configuration.

Figure 3. Experimental evaluation of parameters a02 and b2.
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In the application of this model, it is necessary that the boundary

conditions remain the same during the period of analysis. This condition

is more likely to be satisfied in fires spreading in a sufficiently long slope.

For wind-driven fires, it is not so probable that wind velocity remains

constant during the entire period until blowup occurs, but this may

happen in some cases, at least for short periods. The solution given in this

paper is not dependant on the particular forms that were adopted for f 0

and g 0. Tests made with other types of functions, like polynomials, or

using different but realistic values of coefficients a 0
1, a

0
2, b1, and b2, led to

results similar to the ones presented here.

Real Cases

Two accidents that are reported in the literature (Butler et al., 1998;

Furnish et al., 2001), the South Canyon fire (SC) and the Thirtymile fire

(TM), shall be used to demonstrate the practical validity of the present

model. A third case that occurred in Portugal in August of 2003, which

was investigated by the author, will also be analyzed.

Figure 4. Comparison between present model (solid line) and experimental results for the

validation cases of fire spread in a canyon. Symbols correspond to the referenced tests:

&, 517; &, 519; ^, 511; ^, 509; *, 513; �, 503; m, 507; ~, 501.
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The history of the two cases that occurred in the United States is

illustrated in Figure 5 with the change of area with time elapsed since fire

ignition. As can be seen, the blowup effect is very evident in both cases.

The fire burned relatively slowly for several hours or even days after

ignition and in both cases suddenly spread very rapidly, burning in less

than one hour a much greater area than it had done in the previous

duration of the fire. In both cases, this happened when the fire reached

steep slopes. Blowup started 46 and 30 h after fire start for SC and TM,

respectively, as can be seen in Figure 5.

From both reports, it is possible to estimate ROS values during the

relevant periods of the fires. Average values of the ROS in the period

before blowup were evaluated and taken as Ro for each case as fire was

spreading downslope for SC and on essentially flat and horizontal terrain

for TM. The estimated values of Ro are given in Table 2. The absolute

Figure 5. Area growth since fire origin for (a) South Canyon fire and (b) Thirtymile fire.

Table 2. Model parameters for laboratory experiments and for real cases

Description Symbol Units Exper. SC TM

Time elapsed from fire origin

to start of blowup

ti h — 46 30

Basic rate of spread Ro m=s 2.64� 1073 1.66� 1073 5.56� 1073

Initial nondimensional ROS R0
i — 1.1 – 4 2.5 (100) 1.2

Coefficient defined in Eq. (13) a2 s71 6.2� 1073 4.5� 1075 5.2� 1075

Residence time to s 80 1.1� 104 0.95� 104
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values of R are very close to the ones that are presented in the reports for

both cases. The values of the initial ROS, R0
i, when blowup started were

also evaluated and they are given in the same table. The value that was

considered in the simulation for the case of the SC fire is in parentheses.

To apply the present model to these two cases, it will be assumed that

the wind effect on the ROS is given by the same function as for the

laboratory case, having the same exponent b2 in all cases. Because there is

certainly a difference between the timescales characteristic of the

laboratory fuel bed and that of the real forest, in both cases we shall

assume that the coefficient a2 changes from one case to another

accounting for that difference. To estimate a2 for the real fires we integrate

Eq. (17) for the known value of R0
i and adjust a2 until the ROS R0 reaches

an observed value for the corresponding value of t. Using a2 equal to

4.5� 1075 and 5.2� 1075 s71 for the SC and TM cases, respectively, the

curves shown in Figure 3 were obtained. The corresponding values for to
are, respectively, 11� 103 and 9.5� 103 s for the cases considered. Although

the order of magnitude of to is similar to the values measured by the author

for shrub vegetation (cf. Viegas et al., 2002b), the precise values may be

different because we are not evaluating the exact value of Uo for each case

and we assume that Uo¼ 1m=s in all cases.

Comparison with the observed results shows that the present model

predicts the trend in fire behaviur quite well, namely the very rapid increase

of the ROS that is reported. Probably a better fit would be obtained with

other sets of parameters a1, b1, and b2, but at present there are no data to

support preference of any other particular choice. The last three points

presented in Figure 6a do not follow the trend predicted by the model. Like

the others, these points were obtained from the corresponding report, but

they must correspond to a deceleration phase of the fire when it reached the

top of the ridge and started to descend the opposite slope.

The Case of Freixo

During the summer of 2003, among the various fatal accidents that

occurred in Portugal that were investigated by the author, there is one that

occurred at Freixo de Espada-à-Cinta on August 5 (cf. Viegas, 2004a). For

simplicity this case will be designated as Freixo. In this accident, two per-

sons lost their life due to a sudden fire blowup on the wide slope in which

the fire developed in the bank of the River Douro in the northeast of

Portugal just inside the border between Portugal and Spain. A map of the
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area that is a partial reproduction of the 1=25,000 maps produced by the

Geographic Institute of the Portuguese Army is shown in Figure 7. The

area of interest for the present study was covered by surface vegetation that

was a mixture of herbaceous-type vegetation with shrubs and some agri-

cultural fields. The origin of the fire that occurred at 14:30 h is marked in

the map as point A. The fire fighters tried to maintain the fire in the lower

Figure 7. Topographic map of the area of the Freixo fire. North is indicated by the white

arrow in the top-left corner of the figure.

Figure 6. Variation of the rate of spread during blowup. Comparison between reported

results and present model for (a) South Canyon fire and (b) Thirtymile fire.
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part of the slope and let it burn in the direction of the river bank. When it

reached the point marked B, the fire was practically controlled; only a small

section of less than 50m of fire line remained to be extinguished. At this

stage, the fire boss, who was at point C with a machine that was creating a

fire break, informed his superiors that the fire was under control. Then

suddenly the fire started to spread very quickly up the slope of a canyon

that exists above point B (cf. Figure 8) and blew up along the entire slope,

reaching its top in a matter of minutes.

Figure 8. View from the bottom of the slope to the area where the fire was when it blew

upslope until it reached the meteorological station placed at the highest point in the

horizon line.
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A couple that was checking the security of their property situated

at D quite far from the fire and in principle not endangered by it were

caught by the blowup and were both killed. More details about this

accident can be found in the literature (Viegas, 2004a).

At the top of the slope, at point E, there is a meteorological station

that was in the way of the fire front. Due to a fire break that existed on

the top of the ridge, its sensors were not destroyed—although their

protections were damaged by the heat—and the recorded data were

retrieved. Data were recorded every 10min and the author received the

data in a digital form for the period of June to September 2003. The

author verified that, in spite of the heat that went across the meteor-

ological station, its sensors continued to record normally after the fire

and there is no difference between the readings before and after the event.

This was not the case for the automatic precipitation meter that was

virtually destroyed by the passage of the hot gases produced by the

blowup.

A trace of the air temperature, relative humidity, atmospheric pres-

sure, wind direction, and wind velocity on the August 5 is shown in

Figures 9–11. As can be seen in those figures at about 18:30 h all the

records show very abnormal behavior: the temperature (10-min averages)

went up to 55.5�C, the relative humidity dropped to 8%, the average

wind velocity rose to 63.8 km=h while the maximum (in 10-min periods)

reached 96 km=h.

One particularly noteworthy feature of these records is the sudden

change of wind direction that occurred at 18:40 h, as shown in Figure 10b.

The wind that was blowing from the northwest (327�) in a downslope

direction with a velocity on the order of 12.2 km=h, turned suddenly to

Figure 9. (a) Air temperature and (b) relative humidity at Freixo during August 5, 2003.
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south-southwest (95 to 120�), which is approximately the direction up

slope from the bottom of the river valley, and increased to about 64 km=h

30min later.

In the opinion of the author, this record is a clear proof that the

blowup that occurred in that fire produced wind velocities on the order of

100 km=h that cannot be explained by any other atmospheric phenomen

rather than the interaction between the fire and the overall flow induced

by the slope. Although there is no image record of the accident, the

descriptions given by all persons interviewed by the author are consistent

with a sudden fire acceleration of the fire from the bottom of the canyon

to the ridge top and beyond it. The already mentioned loss of two lives is

also a sad testimony of this surprising fire behavior.

The author will use this case as a further test of the model proposed

here.

Figure 10. (a) Atmospheric pressure and (b) wind direction at Freixo during August 5, 2003.

Figure 11. (a) Ten-minute average wind velocity and (b) maximum wind velocity at Freixo

during August 5, 2003.
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Because we do not have a record of the fire spread that would enable

us to estimate its rate of spread and to compare the corresponding results

with those given by the model, we shall follow another path. We shall

attempt to estimate the flow velocity induced by the fire front during its

spread and compare this prediction with the registered values. This can

be made easily if we compute R0(t) and then solve Eq. (13) for U to obtain

the distribution U(t) and compare it with the observed values.

To estimate Ro, we start with the determination of the average rate of

spread of the fire front since its start at point A, at 14:30 h, until it

reached point B, at 17:30 h. Because the distance between A and B is on

the order of 1613m, this gives an average ROS of R1¼ 0.15m=s.

Although the fire was spreading downslope, it was driven by favorable

wind so it is reasonable to assume that its basic ROS was much less than

this value. Based on the observations made in experimental fires with

shrub vegetation (cf. Viegas et al., 2002c) and on the estimated values

for the two previous cases, we shall consider an estimated value of

Ro¼ 0.01m=s.

Because we do not have other specific data to use for this particular

case, we shall adopt values of the constants in the same range that were

used in the analysis of the two real cases described earlier: a1¼ 1.1

(SI units), a2¼ 6� 1075 s71, b2¼ 1.16, and to¼ 104 s.

There is no absolute certainty about the exact moment when the

blowup started. According to the testimony of the fire commander, at

about 17:00 h the fire was considered controlled, and so it is reasonable to

admit that it started some minutes later. Although the wind-direction

change at the meteorological station occurred between 18:30 and 18:40 h,

as mentioned earlier, the blowup must have initiated some minutes

earlier. Its effect was felt at the meteorological station only when it

dominated the prevailing weather conditions in the area. We shall assume

that the origin of the blowup occurred at 17.30 h and we shall use the

wind records starting from this time.

To integrate Eq. (17), we consider an initial value of R0 ¼ 15 that is

the same as the value of R0
1 computed earlier.

The results are shown in Figure 12a and 12b. In Figure 12a, we

can see the evolution of the ROS R (km=h) and of the distance x (m) as

a function of time. As can be seen after 35 to 40min from start, the ROS

increases dramatically. The estimated distance after 38min is on the

order of 2 km which is close to the real distance of 2058m between points

B and E.
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The estimated value of the wind velocity that is required to produce

the ROS at any given time was computed using Eq. (15) as said earlier.

The corresponding result is shown in Figure 12b and compared with the

actual records for the same period of time (starting at 17:30 h). The

maximum flow velocity estimated by the model for t¼ 32min is

113 km=h, which is of the same order of the maximum wind velocity

recorded at the meteorological station. The agreement between the model

predictions and the observed data seems to be reasonable although it is

felt that it could be improved with a better choice of the input para-

meters. Given the uncertainty that exists at this stage with the model and

the input parameters it is felt that it is not justified to attempt such effort,

as the results shown seem to be sufficient to demonstrate the soundness of

the approach proposed in the present model.

DISCUSSIONANDCONCLUSION

The present model describes the feedback effect between the fire-induced

convection and the fire spread properties and how it affects the temporal

change of fire behavior described here by the ROS of the head fire. In

particular, it explains and justifies the dynamic growth of the ROS that is

observed in many forest fires and shows that the blowup that occurs in

steep slopes or in canyons is a natural phenomena that depends mainly

on the fuel-bed properties and on the initial fire spread conditions that

are dictated by terrain topography.

This model was illustrated using simplified but realistic forms

obtained empirically for the functions f and g but these laws can also be

Figure 12. (a) Predicted rate of spread and distance run by the fire since the start of blowup

and (b) comparison between predicted flow velocity with observed values of average and

maximum wind velocity.
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derived theoretically when fire behavior theory becomes sufficiently

advanced to produce them. It is believed that the results obtained and the

main conclusions that were derived do not depend on the particular form

of those functions. Practical application of the model requires knowledge

of the following parameters: Ro, Uo, to, a1, b1, a2, b2, and Ri. Each one of

these parameters can be obtained independently from the present model.

All these parameters are related to fuel-bed properties with the exception

of Ri, which depends also on terrain slope or on ambient wind. This fact

puts in evidence that the blowup phenomenon is intrinsically linked to the

fuel bed and to terrain or wind. The characteristic time to that determines

time evolution or fire history is also a property of the fuel bed. From

this we can conclude that, for a given fuel bed in a slope, blowup may

in principle occur after a certain time. Less-steep slopes will have low

initial ROS and therefore the time required for blowup to occur will be

greater; therefore, if the length of the slope is not sufficiently large,

blowup may not occur. On the contrary, a fire on the same fuel bed in a

very steep slope will start with a high ROS and so blowup may be

attained in a very short time and distance so that it is much more likely to

occur.

In the model, it is postulated that functions f and g exist, that they are

well defined, and that we can determine them. This point requires some

discussion. For example, function f given by Eq. (11) was obtained in this

study in a combustion tunnel in which the reference velocity U was the

undisturbed isothermal flow velocity; it does not include the fire-induced

velocity; Uf, because this was not measured. Therefore, this equation is

only an approximation. In principle, it would be possible to determine

function f empirically by measuring the total wind velocity near the fire

front and correcting the given formulation. It is believed that the cor-

rected form of this function would not be very different from the pro-

posed one and therefore it would lead to the same conclusion about the

occurrence of blowup. Similar comments can be made about function g,

which was not evaluated directly but was obtained using an empirical

fitting to experimental data.

Perhaps even more important is the fact that functions f and g were

obtained in a given range of conditions of fire spread and they were

afterwards applied to a completely different range. For example, the

maximum values of nondimensional rates of spread R0 reported in

laboratory or in field experiments are in the range of 20 to 100. The

present model predicts the existence of values of R’ above 100 up to 1000
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or even more and apparently this is supported by field observations, as

was illustrated by the three real cases presented. Again it seems that even

if the forms that were used for f and g do not remain exactly the same

outside the range of their determination, they are a good approximation

and can be used to estimate, at least qualitatively, the occurrence of

blowup. To the knowledge of the author, no other model predicts the

sudden increase of the ROS to values as high as the present one.

The Freixo case illustrates quite well the power of the fire in a blowup

and how it can entirely modify the atmospheric conditions in the close

vicinity of the fire. It provided very good data on the flow velocity created

by a blowup that could be used as a validation for the proposed form of the

function g and therefore for the entire model. Although no details on actual

fire spread were obtained, there is sufficient evidence, including the loss of

two lives, to consider this case as a confirmation of the present model.

The results of the present model force the author to rethink many

previous case studies that he has analyzed, namely some accidents such as

the one reported in the literature (Viegas et al., 2001) and some large fires

that may require reinterpretation in light of the present study. It is

probable that this may occur also in some works and reports published

by others.

Extension of the present model to nonuniform terrain or fuel-bed

properties and to non permanent boundary conditions (changing slope or

wind properties) is being considered. Changes in fuel-bed properties,

namely in the value of Ro, will induce a modification in fire behavior: for

example, the insertion of a belt of less flammable species (lower value of

Ro) will break fire acceleration and may even cut the tendency for the fire

to blow up. If this tendency is proved, a method to improve the

capabilities to protect the forest can be derived from the present model:

the insertion of horizontal rows of less flammable vegetation to act as

‘‘blow-up breakers’’ in slopes.

In this model, only surface fire propagation was considered. This will

certainly be the case when a single layer of fuel is involved. If trees are

present, crown fires are most likely to occur with blowup, given the very

high ROS values. This fire-spread regime involves other physical laws

that are not considered here but it is probable that the same qualitative

phenomena occur.

Butler et al. (1998) recognized that transition from slow-spreading,

low-intensity fire to a fast-moving high-intensity fire occurs rapidly and

that ‘‘we do not fully understand the exact mechanisms triggering these
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transitions.’’ In the same report, the authors advance different hypotheses

to explain the occurrence of blowup, most of them associated with

complex wind fields or atmospheric vertical structure, which are very

unlikely to occur under common conditions. A similar attitude is

found in the report of other accidents, namely of Thirtymile fire.

Unfortunately, this lack of knowledge associated with the proposition of

very unprobable explanations leads to a general belief that blowup may

occur only under those quite rare conditions. In practice, fire fighters act

as if the fire would always behave calmly and they put themselves in

danger more often than they should. Sometimes fire does not forgive this

excess of confidence induced by the lack of knowledge and entraps fire

fighters, as many past fatal accidents prove. It is quite a certainty that

many more near-miss cases that did not have fatal consequences must

have occurred. This only proves that sometimes even without under-

standing the laws of nature men can still overcome its forces and survive.

It is hoped that the insight and explanation provided by this study give

help to avoid repetition of such entrapments caused by lack of knowledge

and by surprise.

As a final remark, the author would like to make a comment on the

designation of the blowup effect. As in Latin-derived languages—like

Portuguese—there is no simple translation of this term; the author

proposes the use of another term borrowed from natural disaster science

to designate this phenomenon. The suggested term is ‘‘fire eruption,’’

given the similarity between a fire blowup and a volcanic eruption. The

author is well aware of the physical differences between both phenomena

but, in the absence of other terminology, this one is proposed.

REFERENCES

Albini, F.A. (1985) A model for fire spread in wildland fuels by radiation.

Combust. Sci. Tech no1., 42, 229–258.

Brown, A.A. and Davis, K.P. (1973) Forest Fire: Control and Use, 2nd ed.,

McGraw-Hill, New York.

Butler, B.W., Bartlette, R.A., Bradshaw, L.S., Cohen, J.D., Andrews, P.L.,

Putnam, T., and Mangan, R.J. (1998) Fire behaviour associated with the

1994 South Canyon fire on Storm King Mountain, Colorado. Research

Paper RMRS-RP-9, USDA, Forest Service, Rocky Mountain Research

Station, September 1998.

Chandler, C., Cheney, P., Thomas, P., Trabaud, L., and Williams, D. (1983) Fire

in Forestry, vols.I and II, John Wiley and Sons.

50 D. X. VIEGAS



Drysdale, D. (1992) An Introduction to Fire Dynamics, John Wiley and Sons,

New York.

Furnish, J., Chockie, A., Anderson, L., Connaughton, K., Dash, D., Duran, J.,

Graham, B., Jackson, G., Kern, T., Lasko, R., Prange, J., Pincha-Tulley, J.,

and Withlock, C. (2001) Thirtymile fire investigation, Factual Report and

Management Evaluation Report, USDA, Forest Service, October 2001.

Morandini, F, Santoni, P.A., Balbi, J.H., Ventura, J.M., and Lopes, J.M. (2002)

A two-dimensional model for fire spread accross a fuelbed including wind

combined with slope conditions. Int. J. Wildland Fire, 11, 53–65.

Nelson, R.M. (2002) An effective wind speed for models of fire spread. Int. J.

Wildland Fire, 11, 153–161.

Pyne, S.J. (1984) Introduction to Wildland Fire—Fire Management in the United

States, John Wiley and Sons, New York.

Pyne, S.J., Andrews, P., and Laven, R.D. (1996) Introduction to Wildland Fire,

2nd ed., John Wiley and Sons, New York.

Rothermel, R.C. (1972) A Mathematical Model for Predicting Fire Spread in

Wildland Fuels. USDA, Forest Service, Research paper INT-115.

Rothermel, R.C. (1983) How to Predict the Spread and Intensity of Forest and

Range Fires. USDA, Forest Service, Gen. Tech. Rep. INT-143.

Rothermel, R.C. (1993) Mann Gulch Fire: A Race That Couldn’t Be Won. USDA

Intermountain Research Station, Gen. Tech. Rep. INT-299.

Viegas, D.X. (2002a) The fireline rotation concept. In viegas, D.M. (Ed.) Proc.

4th Int. Conf. Forest Fire Research and Wildland Fire Safety, Millpress

Science Publishers, Rotterdam, The Netherlands.

Viegas, D.X. (2004a) Cercados pelo Fogo (in Portuguese), Minerva Editora,

Coimbra, Portugal.

Viegas, D.X. (2004b) On the existence of a steady-state regime for slope and wind

driven fire. Int. J. Wildland Fire, 13(1), 101–117.

Viegas, D.X. and Neto, L.P. (1992) Wall shear stress as a parameter to correlate the

rate of spread of a wind induced forest fire. Int. J. Wildland Fire, 2(4), 69–86.

Viegas, D.X., Silva, A.M., and Cruz, M.G. (2001) Analysis of Three Fatal

Accidents Involving Portuguese Firefighters. Proc. 2001 Fire Safety Summit,

Edmonton, Canada.

Viegas, D.X., Ribeiro, L.M., Matos, L., Palheiro, P., Pita, L.P., and Afonso, C.

(2002b) Slope and wind effects on fire spread. In Viegas, D.X. (Ed.) Proc. 4th

Int. Conf. Forest Fire Research and Wildland Fire Safety, Millpress Science

Publishers, Rotterdam, The Netherlands.

Viegas, D.X., Cruz, M.G., Ribeiro, L.M., Silva, A.J., Ollero, A., Arrue, B., Dios,
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