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Abstract. The purpose of this paper is to identify the role of perfect-
ness in the Michael insertion theorem for perfectly normal locales. We
attain it by characterizing perfect locales in terms of strict insertion of
two comparable lower semicontinuous and upper semicontinuous localic
real functions. That characterization, when combined with the insertion
theorem for normal locales, provides an improved formulation of the
aforementioned pointfree form of Michael’s insertion theorem.
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1. Introduction

Recall that a topological space is perfect if each open set is Fσ. This is
equivalent to the statement that each closed set is Gδ. In the category of
locales, these two formulations are no longer equivalent when phrased in
terms of open sublocales and closed sublocales, in which caseGδ-perfectness is
generally stronger than Fσ-perfectness. In [7], we took the weaker condition as
the pointfree concept of perfectness and kept the terminology of a Gδ-perfect
locale for the locales that satisfy the stronger condition.

In the present paper, we prove that the strict insertion theorem for real-
valued functions on perfect topological spaces (as in [4] and [17]) extends
to both classes of perfect and Gδ-perfect locales, with a slightly different
formulation in the former case. Indeed, it is only under the stronger condition
of Gδ-perfectness that the strict double insertion scheme can be formulated as
in the classical case. We then revisit our pointfree version of Michael’s strict
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insertion theorem for perfectly normal spaces in [5] and present an improved
version of it.

2. Preliminaries

We present in this section a brief survey of the background required. A classic
reference to locales and frames is Johnstone [11]. Our main reference in this
paper is Picado-Pultr [15] for which we refer for all the terms not defined
herein.

2.1. Locales and sublocales

A locale (or frame) is a complete lattice L in which

a ∧
∨
B =

∨
{ a ∧ b | b ∈ B }

for all a ∈ L and B ⊆ L. The universal bounds are denoted 0 and 1 (if
not stated otherwise). A frame homomorphism is a map h : L→M between
frames that preserves finite meets and arbitrary joins (hence the universal
bounds too).

For any topological space X, its topology Ω(X) is a locale (under in-
clusion). For any continuous function f : X → Y , the inverse image map
determines a frame homomorphism Ω(Y )→ Ω(X). A locale L isomorphic to
some Ω(X) is called spatial.

Each frame L is a complete Heyting algebra with Heyting operator (im-
plication) given by a → b =

∨
{ c ∈ L | a ∧ c ≤ b }. In particular, the

pseudocomplement of an a ∈ L is the element a∗ = a → 0. Then a ∧ a∗ = 0
and

(∨
A
)∗

=
∧
a∈A a

∗ for all A ⊆ L.
A subset S of a locale L is a sublocale if∧

A and a→ s are in S

for all A ⊆ S, a ∈ L, and s ∈ S. Since an arbitrary intersection of sublocales
is again a sublocale, the system

S(L)

of all sublocales of L is a complete lattice. Meets and joins are given by∧
i∈I

Si =
⋂
i∈I

Si and
∨
i∈I

Si =
{∧

A | A ⊆
⋃
i∈I

Si
}

with universal bounds 0 = {1} and 1 = L. This lattice is a coframe, that is,
the dual of a frame (cf. [15, III.3.2.1]). Hence S(L) is a co-Heyting algebra and
each S of S(L) has a co-pseudocomplement S# determined by the formula

S# =
⋂
{T ∈ S(L) | S ∨ T = L }.

In particular, S# = {1} iff S = L and
(⋂

Si
)#

=
∨
Si

#.
For each a ∈ L, the sublocales

c(a) = ↑a and o(a) = { a→ b | b ∈ L }
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are, respectively, the closed and open sublocales induced by a. They are
complemented to each other in S(L). The following properties hold for any
a, b ∈ L, any A ⊆ L and any finite F ⊆ L:

c(a) ⊆ o(b) iff a ∨ b = 1,⋂
a∈A

c(a) = c(
∨
A),

∨
a∈A

o(a) = o(
∨
A), and∨

a∈F
c(a) = c(

∧
F ),

⋂
a∈F

o(a) = o(
∧
F ).

2.2. The frame of reals and localic real functions

Recall the frame of reals L(R) from [2]. We shall regard it (see [13] or [15]
for more details) as a frame presented by generators and relations, with gen-
erators (r,—) and (—, r) for all rational r, and relations

(r1) (r,—) ∧ (—, q) = 0 if q ≤ r,
(r2) (r,—) ∨ (—, q) = 1 if r < q,
(r3) (r,—) =

∨
q>r(q,—),

(r4) (—, r) =
∨
q<r(—, q),

(r5)
∨
r∈Q(r,—) = 1,

(r6)
∨
r∈Q(—, r) = 1.

A localic real function on a frame L is a frame homomorphism L(R)→
S(L)op. The system

F(L)

of all them is partially ordered by

f ≤ g iff g(r,—) ⊆ f(r,—) for all r ∈ Q.

Note. Along the paper, we shall always express the computations with sublo-
cales in terms of the coframe (S(L),⊆). The symbol

∨
(and ∨) will be used

both for joins in S(L) and meets in S(L)op while
⋂

(and ∩) will refer to
meets in S(L) and joins in S(L)op.

Since each frame homomorphism f : L(R) → S(L)op is uniquely deter-
mined by the images f(r,—) and f(—, r) and turn the relations (r1)–(r6) into
identities in S(L)op, it satisfies the following properties:

(1) f(r,—) ∨ f(—, q) = L whenever q ≤ r,
(2) f(r,—) ∩ f(—, q) = {1} whenever r < q,
(3) f(r,—) =

⋂
q>r f(q,—),

(4) f(—, r) =
⋂
q<r f(—, q),

(5)
⋂
r∈Q f(r,—) = {1},

(6)
⋂
r∈Q f(—, r) = {1}.

A general procedure for constructing such maps f uses scales of sublo-
cales (cf. [6]). Specifically, a family {Sr}r∈Q of sublocales of L forms a scale
if

Sr ∩ Sq# = {1} whenever r < q, (∗)
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and ⋂
r∈Q

Sr = {1} =
⋂
r∈Q

Sr
#.

Then, the formulas

f(r,—) =
⋂
q>r

Sq and f(—, r) =
⋂
q<r

Sq
#

uniquely determine a frame homomorphism f : L(R)→ S(L)op. We then say
that f is the localic real function generated by the scale {Sr}r∈Q.

Remark 2.1. By condition (∗), a scale is necessarily an isotone family. Con-
versely, if {Sr}r∈Q is an arbitrary isotone family of sublocales of L and, for
each pair r < q, there is a complemented sublocale T such that Sr ⊆ T ⊆ Sq,
then {Sr}r∈Q satisfies (∗) (since Sr ∩ Sq# ⊆ T ∩ T# = {1}). In particular,
a family {Sr}r∈Q of complemented sublocales satisfies (∗) if and only if it is
isotone.

A localic real function f : L(R)→ S(L)op is

(1) lower semicontinuous if f(r,—) is a closed sublocale for all r ∈ Q,
(2) upper semicontinuous if f(—, r) is a closed sublocale for all r ∈ Q, and
(3) continuous if it is both lower and upper semicontinuous.

Remark 2.2. Members of F(Ω(X)) are pointfree analogues of arbitrary (not
necessarily continuous) real-valued functions on a topological space X. Un-
der some weak conditions, semicontinuities of members of F(Ω(X)) coincide
with the standard topological semicontinuities (see [6], [14] and [16] for more
information).

2.3. Some algebraic operations on localic real functions

It is well known that F(L) is a lattice-ordered ring. We shall need explicit
formulas for addition and multiplication by a positive rational (cf. [9, Sec-
tion 4]).

For each f ∈ F(L), −f is defined by

(−f)(r,—) = f(—,−r) and (−f)(—, r) = f(−r,—).

For a given positive rational p, let Sr = f
(
r
p ,—

)
for any r ∈ Q. Then

{Sr}r∈Q is a scale, and the localic real function generated by it is denoted as
pf . In particular, for each r ∈ Q we have

(pf)(r,—) = f
(
r
p ,—

)
and (pf)(—, r) = f

(
—, rp

)
.

Furthermore, for any pair f, g ∈ F(L), f + g is the function generated
by the scale formed by the sublocales

Sr =
⋂
s∈Q

(
f(s,—) ∨ g(r − s,—)

)
.

In particular, for each r ∈ Q we have

(f + g)(r,—) =
⋂
s∈Q

(
f(s,—) ∨ g(r − s,—)

)
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and
(f + g)(—, r) =

⋂
s∈Q

(
f(—, s) ∨ g(—, r − s)

)
.

Let f − g = f + (−g). Note that f ≤ g iff g− f ≥ 0, where the constant
function 0 ∈ F(L) is defined by

0(r,—) =

{
{1} if r < 0

L if r ≥ 0
and 0(—, r) =

{
L if r ≤ 0

{1} if r > 0.

If f and g are lower (resp., upper) semicontinuous, then so is f + g ([9,
Corollary 4.4]).

3. Measuring strict inequality between localic real functions

Recall the following order relations on real-valued functions F,G,H : X → R
(on a topological space X):

(O1) F ≤ G iff F (x) ≤ G(x) for all x ∈ X.
(O2) F � G iff F ≤ G and F 6= G (= the strictly less-than relation).
(O3) F < G iff F (x) < G(x) for all x ∈ X.
(O4) H is strictly in-between F and G iff F ≤ H ≤ G and for any x ∈ X

one has F (x) < H(x) < G(x) whenever F (x) < G(x) (cf. [12]).

A pointfree counterpart of (O1), and thus of (O2), has been defined in
2.2. Regarding (O3) and (O4), we follow [5, 9] and define a map

ι : F(L)× F(L)→ S(L)op

by
ι(f, g) =

⋂
r∈Q

(
f(—, r) ∨ g(r,—)

)
.

Properties 3.1 ([9, Lemma 6.1]). The map ι has the following properties:

(1) ι(0, f) = f(0,—),
(2) ι(f, g) = ι(0, g − f),
(3) ι(pf, pg) = ι(f, g) for any rational p > 0,
(4) If f1 ≤ f2 and g1 ≤ g2, then ι(f1, g2) ⊆ ι(f2, g1).

Now, for any f, g ∈ F(L) we write

f < g whenever ι(f, g)# = L.

Our results below (as well as the insertion theorems of [5, 9]) confirm
that this is the right pointfree counterpart, in F(L), of the order relation
(O3).

Remark 3.2. In both [5] and [9] we were always dealing with pairs (u, l) ∈
F(L)× F(L) where u is upper semicontinuous and l is lower semicontinuous.
In that case, ι(u, l) is a closed sublocale (hence complemented) and, conse-
quently, ι(u, l)# = L if and only if ι(u, l) = {1}. However, for an arbitrary
pair (f, g) in F(L)×F(L) we only have that ι(f, g) = {1} implies ι(f, g)# = L,
but not conversely.
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Lemma 3.3. For any f, g ∈ F(L) we have:

(1) g ≤ f iff ι(f, g) = L iff ι(f, g)# = {1}.
(2) f < g implies f � g.
(3) f < g and g < h imply f < h.

Proof. (1) If g ≤ f , then

ι(f, g) =
⋂
r∈Q

(
f(—, r) ∨ g(r,—)

)
⊇
⋂
r∈Q

(
f(—, r) ∨ f(r,—)

)
= L.

Conversely, suppose that ι(f, g) = L, that is, f(—, q) ∨ g(q,—) = L for
all q ∈ Q. If q > r, then f(r,—) ∩ f(—, q) = {1} and thus

f(r,—) ⊆ f(r,—) ∨ g(q,—)

=
(
f(r,—) ∨ g(q,—)

)
∩
(
f(—, q) ∨ g(q,—)

)
=
(
f(r,—) ∩ f(—, q)

)
∨ g(q,—)

= g(q,—).

Hence f(r,—) ⊆
⋂
q>r g(q,—) = g(r,—), that is, g ≤ f .

(2) If f < g, then f ≤ g (as shown in [9]) and ι(f, g) = {1} (by definition).
Hence, ι(f, g) 6= L, so that g � f (by (1)). In particular, f � g.

(3) If f < g and g < h then (g − f)(0,—) = ι(0, g − f) = ι(f, g) = {1} and,
similarly, (h− g)(0,—) = {1}. Hence

ι(f, h) = (h− f)(0,—) = (h− g)(0,—) ∨ (g − h)(0,—) = {1}. �

Now, let X be a topological space. If G : X → R is a lower semicontin-
uous function that dominates an upper semicontinuous function F : X → R
(in the sense that F ≤ G), the family {c

(
G−1(r,∞)

)
}r∈Q is clearly a scale

(the assumption that G dominates an upper semicontinuous function is es-
sential here; see [14]). It consequently determines a lower semicontinuous
ϕG : L(R)→ S(Ω(X))op, defined by

ϕG(r,—) = c
(
G−1(r,+∞)

)
and ϕG(—, r) =

⋂
q<r

o
(
G−1(q,+∞)

)
.

Dually, for any upper semicontinuous F : X → R dominated by a lower semi-
continuous G : X → R, the system

{
o
(
F−1(−∞, r)

) }
r∈Q is a scale that

determines an upper semicontinuous ϕF : L(R)→ S(Ω(X))op with

ϕF (r,—) =
⋂
q>r

o
(
F−1(−∞, q)

)
and ϕF (—, r) = c

(
F−1(−∞, r)

)
.

In this situation it is easy to check that F ≤ G if and only if ϕF ≤ ϕG.
Moreover, we have the following:

Proposition 3.4. Let X be a topological space. For any F,G : X → R, F upper
semicontinuous and G lower semicontinuous, such that F ≤ G, we have:

(1) ι(ϕF , ϕG) = c((G− F )−1(0,+∞)).
(2) F < G iff ϕF < ϕG.
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Proof. (1) Since x ∈
⋃
r∈Q F

−1(−∞, r)∩G−1(r,∞) iff F (x) < G(x), we have

ι(ϕF , ϕG) =
⋂
r∈Q

(
ϕF (—, r) ∨ ϕG(r,—)

)
=
⋂
r∈Q

(
c
(
F−1(−∞, r)

)
∨ c
(
G−1(r,∞)

))
= c
( ⋃
r∈Q

F−1(−∞, r) ∩G−1(r,∞)
)

= c
(
(G− F )−1(0,+∞)

)
.

(2) follows immediately from (1) (see also [9, Remark 6.5]). �

Recall that a topological space X is TD ([1]), a separation condition
stronger than T0 but weaker than T1, if points are locally closed, that is, for
every x ∈ X there is an open set U 3 x such that U r {x} is still open.

Proposition 3.5. Let X be a topological space. For any upper semicontinuous
F : X → R such that 0 ≤ F we have:

(1) If F−1(0,+∞) ∈ Ω(X), then ι(0, ϕF )# = o
(
F−1(0,+∞)

)
.

(2) If 0 < F , then 0 < ϕF .

Moreover, if X is TD then:

(3) If ι(0, ϕF )# = o(U) for some U ∈ Ω(X), then U = F−1(0,+∞).
(4) 0 < F iff 0 < ϕF .

Proof. (1) Since F−1(−∞, r) ∪ F−1(0,∞) = X for all r > 0, it follows that

ι(0, ϕF )# = ϕF (0,—)# =
∨
r>0

c
(
F−1(−∞, r)

)
⊆ o
(
F−1(0,∞)

)
.

On the other hand, let V ∈ o
(
F−1(0,∞)

)
and Vr = F−1(−∞, r) ∪ V

for each r > 0. Then Vr ∈ c
(
F−1(−∞, r)

)
and

V = F−1(0,∞)→ V = Int
(
F−1(−∞, 0] ∪ V

)
= Int

(( ⋂
r>0

F−1(−∞, r)
)
∪ V

)
= Int

( ⋂
r>0

Vr
)

=
∧
r>0

Vr.

Hence V ∈
∨
r>0 c

(
F−1(−∞, r)

)
= ι(0, ϕF )#.

(2) follows immediately from (1).

(3) Since
∨
r>0 c

(
F−1(−∞, r)

)
= ι(0, ϕF )# = o(U), we have F−1(−∞, r) ∪

U = X for every r > 0. Hence F−1(0,+∞) =
⋃
r>0 F

−1[r,+∞) ⊆ U .

On the other hand, consider x ∈ U . Since X is TD, there is an open
V 3 x such that W = V r {x} is open as well. Moreover, since U → W ∈
o(U) =

∨
r>0 c

(
F−1(−∞, r)

)
, there exists a countable family (Vr)r>0 in Ω(X)

such that F−1(−∞, r) ⊆ Vr for each r > 0 and

U →W =
∧
r>0

Vr = Int
( ⋂
r>0

Vr
)
.
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Then U ∩ V 6⊆W (because x ∈ U ∩ V ) and thus V 6⊆ U →W , from which it
follows that x /∈ U →W (because V r {x} = W ⊆ U →W ). Hence

x ∈ X r Int
( ⋂
r>0

Vr
)

=
⋃
r>0

(X r Vr).

Since V is an open neighborhood of x it follows that V ∩
(⋃

r>0(XrVr)
)
6= ∅.

But W ⊆ U →W ⊆
⋂
r>0 Vr. Hence

x ∈
⋃
r>0

(X r Vr) ⊆
⋃
r>0

(
X r F−1(−∞, r)

)
= F−1(0,+∞).

(4) follows immediately from (2) and (3). �

Note that, in general, it is false that 0 < F iff 0 < ϕF . A counterexample
can be obtained from Proposition 3.3 of [7]:
Let N be endowed with the cofinite topology and let F : N→ R be given by
F (n) = 1

n for each n ∈ N. Clearly, F is upper semicontinuous and 0 < F .
Nevertheless,

ι(0, ϕF ) =
⋂
r>0

o
(
F−1(−∞, r)

)
=
⋂
n∈N

o(Nr { 1, . . . , n }) =

=
⋂
n∈N

(
{∅} ∪ {V ∈ Ω(N) | { 1, . . . , n } ⊆ V }

)
= {∅,N} 6= {N}.

Corollary 3.6. Let X be a topological space. For any F,G : X → R, F upper
semicontinuous and G lower semicontinuous, such that G ≤ F , we have:

(1) If (F−G)−1(0,+∞) ∈ Ω(X), then ι(ϕG, ϕF )# = o
(
(F−G)−1(0,+∞)

)
.

(2) If G < F , then ϕG < ϕF .

Moreover, if X is TD then:

(3) If ι(ϕG, ϕF )# = o(U) for some U ∈ Ω(X), then U = (F−G)−1(0,+∞).
(4) G < F iff ϕG < ϕF .

Proof. First, check that ϕ(F−G) = ϕF − ϕG. Then use Proposition 3.5. �

Corollary 3.7. Let X be a topological space and let F,G : X → R, F upper
semicontinuous and G lower semicontinuous, such that 0 ≤ F ≤ G. Further-
more, let U = G−1(0,+∞). Then:

(1) If 0 < F |U < G|U , then ι(0, ϕG)# = ι(0, ϕF )# = ι(ϕF , ϕG)#.

Moreover, if X is a TD-space then:

(2) 0 < F |U < G|U iff ι(0, ϕG)# = ι(0, ϕF )# = ι(ϕF , ϕG)#.

Proof. (1) If 0 < F |U < G|U then

U ⊆ {x ∈ X | 0 < F (x) < G(x) } = F−1(0,+∞) ∩ (G− F )−1(0,+∞)

and hence it follows from Proposition 3.5 (1), Proposition 3.4 (1), and Corol-
lary 3.6 (1) that

ι(0, ϕG)# = o(U) ⊆ o
(
F−1(0,+∞)

)
∩ o
(
(G− F )−1(0,+∞)

)
= ι(0, ϕF )# ∩ ι(ϕF , ϕG)#.

On the other hand, since 0 ≤ ϕF ≤ ϕG, property 3.1 (4) implies that
ι(0, ϕF )# ⊆ ι(0, ϕG)# and ι(ϕF , ϕG)# ⊆ ι(0, ϕG)#.



Perfect locales and localic real functions 9

(2) Let X be a TD-space and assume that

ι(0, ϕG)# = ι(0, ϕF )# = ι(ϕF , ϕG)#.

By Proposition 3.4 (1), ι(0, ϕG)# = o(U) and hence it follows from Proposi-
tion 3.5 (3) and Corollary 3.6 (3) that U = F−1(0,+∞) = (G−F )−1(0,+∞).
Consequently, 0 < F |U < G|U . �

4. Strict insertion results for perfect locales

Various predecessors of the following insertion lemma can be found in [3, 4, 5].

Lemma 4.1. Let L be a locale and f ∈ F(L) with 0 ≤ f . Further, let {an}n∈N
be an antitone sequence in L such that

(1) c(an) ⊆ f
(
1
n ,—

)#
for all n, and

(2)
∨
n∈N c(an) ⊇ f(0,—)#.

Then there exists an upper semicontinuous u ∈ F(L) such that

0 ≤ u ≤ f and ι(0, f)# = ι(0, u)# = ι(u, f)#.

Moreover, if f satisfies the stronger condition

(2′)
⋂
n∈N o(an) ⊆ f(0,—),

then ι(0, f) = ι(0, u) = ι(u, f).

Note. It is important to note here that if ι(0, f) = ι(0, u) = ι(u, f) then
ι(0, f)# = ι(0, u)# = ι(u, f)#, but not conversely.

Proof. For each r ∈ Q define a sublocale Sr of L as follows:

Sr =


{1} if r ≤ 0

o(an) if 1
2(n+1) ≤ r <

1
2n

L if r ≥ 1
2 .

Since each Sr is complemented, in order to conclude that {Sr}r∈Q is a scale
it suffices to check that it is isotone (recall Remark 2.1). Let r < q in Q. If
r ≤ 0 or q ≥ 1

2 then, obviously, Sr ⊆ Sq. Otherwise, for 0 < r < q < 1
2 we

consider the following two cases:

– if 1
2(n+1) ≤ r < q < 1

2n for some n, then

Sr = o(an) = Sq;

– if 1
2(n+1) ≤ r <

1
2n ≤

1
2(m+1) ≤ q <

1
2m for some m < n, then

Sr = o(an) ⊆ o(am) = Sq.

Thus, {Sr}r∈Q determines a u ∈ F(L) defined by

u(r,—) =
⋂
q>r

Sq and u(—, r) =
⋂
q<r

Sq
#
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for every r ∈ Q. More specifically,

u(r,—) =


{1} if r < 0⋂
n∈N

o(an) if r = 0

o(an) if 1
2(n+1) ≤ r <

1
2n

L if r ≥ 1
2

and

u(—, r) =


L if r ≤ 0

c(an) if 1
2(n+1) < r ≤ 1

2n

{1} if r > 1
2 ,

and u is clearly upper semicontinuous. Moreover, 0 ≤ u ≤ 2u, since u(r,—) =
{1} = 0(r,—) for all r < 0 and (2u)(r,—) = u( r2 ,—) ⊆ u(r,—) for all r. To

see that 2u ≤ f , we first note that f(r,—) ⊆ f(s,—)## for each r < s in Q
and distinguish the following four cases:

– if r < 0, then f(r,—) = {1} ⊆ (2u)(r,—);
– if r ≥ 1, then f(r,—) ⊆ L = u

(
r
2 ,—

)
= (2u)(r,—);

– if r = 0, then by assumption (1) we obtain

f(r,—) = f(0,—) ⊆
⋂
n∈N

f
(
1
n ,—

)## ⊆
⋂
n∈N

o(an) = u(0,—) = (2u)(r,—);

– if 1
n+1 ≤ r <

1
n , then by assumption (1) we have

f(r,—) ⊆ f( 1
n ,—)## ⊆ o(an) = u

(
r
2 ,—

)
= (2u)(r,—).

In any case, f(r,—) ⊆ (2u)(r,—). Hence 2u ≤ f , i.e. u ≤ f − u and thus
ι(0, u) ⊇ ι(0, f − u) = ι(u, f). Moreover, by assumption (2),

ι(0, f)# = f(0,—)# ⊆
∨
n∈N

c(an) = u(0,—)# = ι(0, u)# ⊆ ι(u, f)# ⊆ ι(0, f)#.

Finally, if f satisfies the stronger condition (2′), we get

ι(0, f) = f(0,—) ⊇
⋂
n∈N

o(an) = u(0,—) = ι(0, u) ⊇ ι(u, f) ⊇ ι(0, f). �

Recall that a locale L is perfect if

every open sublocale is a countable join of closed ones

(formulated in the coframe S(L) of sublocales).
For any perfect space X, the locale Ω(X) is perfect [7, Proposition 3.6].

For more information on localic perfectness we refer to [5, Section 4] and [7,
Remarks 3.10].

In the proof of the next result we shall use the characteristic function
of an open sublocale o(a), that is, the lower semicontinuous function χo(a) ∈
F(L) defined by

χo(a)(r,—) =


{1} if r < 0

c(a) if 0 ≤ r < 1

L if r ≥ 1
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and

χo(a)(—, r) =


L if r ≤ 0

o(a) if 0 < r ≤ 1

{1} if r > 1.

Proposition 4.2. The following statements are equivalent for a locale L:

(1) L is perfect.
(2) For each lower semicontinuous l ∈ F(L) such that 0 ≤ l, there exists an

upper semicontinuous u ∈ F(L) such that

0 ≤ u ≤ l and ι(0, l)# = ι(0, u)# = ι(u, l)#.

Proof. (1)⇒(2): Let l ∈ F(L) be lower semicontinuous with 0 ≤ l. For each
natural n there exists a bn ∈ L such that

l
(
1
n ,—

)
= c(bn).

Then, by perfectness of L, there exists a family {bnm}m∈N, for each n, such
that

o(bn) =
∨
m∈N

c(bnm).

Put

an =
∧

i,j≤n
bij .

Then {an}n∈N is antitone and

c(an) =
∨

i,j≤n
c(bij) ⊆

∨
i≤n

∨
m∈N

c(bim) =
∨
i≤n

o(bi) =
∨
i≤n

l
(
1
i ,—

)#
= l
(
1
n ,—

)#
.

Moreover, o(bn) = l
(
1
n ,—

)# ⊇ l(0,—)# for all n and thus∨
n∈N

c(an) =
∨
n∈N

∨
i,j≤n

c(bij) =
∨

n,m∈N
c(bnm) =

∨
n∈N

o(bn) ⊇ l(0,—)#.

The required assertion follows then from Lemma 4.1.

(2)⇒(1): Let a ∈ L. Since χo(a) is lower semicontinuous, there exists an

upper semicontinuous u with 0 ≤ u ≤ χo(a) and ι(0, χo(a))
# = ι(0, u)# =

ι(u, χo(a))
#.

o(a) = χo(a)(0,—)# = ι(0, χo(a))
# = ι(0, u)# = u(0,—)# =

∨
n∈N

u
(
—, 1

n

)
is a countable join of closed sublocales. Hence L is perfect. �

Corollary 4.3. The following statements are equivalent for a TD-space X:

(1) X is perfect.
(2) If F,G : X → R are such that F ≤ G, with F upper semicontinuous

and G lower semicontinuous, then there exist F ′, G′ : X → R, F ′ upper
semicontinuous and G′ lower semicontinuous, such that F ≤ F ′ ≤ G′ ≤
G and F (x) < F ′(x) < G′(x) < G(x) whenever F (x) < G(x).
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Proof. We only prove (1)⇒(2). Let X be a perfect space and let F,G : X → R
be such that F ≤ G, F is upper semicontinuous and G is lower semicontinu-
ous. Then Ω(X) is a perfect locale and

l = ϕ(G−F ) ∈ F(Ω(X))

is lower semicontinuous with 0 ≤ l. Then, by Proposition 4.2, there exists an
upper semicontinuous function u such that

0 ≤ u ≤ l and ι(0, l)# = ι(0, u)# = ι(u, l)#,

and by Proposition 3.4 (1), ι(0, l)# = o((G− F )−1(0,+∞)).
Let u(—, r) = c(Ur) and define H : X → R by

H(x) =
∧{

r ∈ Q | x ∈ Ur
}
.

Then H is upper semicontinuous, 0 ≤ H ≤ G− F and ϕH = u. Since X is a
TD-space, it follows from Corollary 3.7 (2) that

0 < H|(G−F )−1(0,+∞) < (G− F )|(G−F )−1(0,+∞),

that is, 0 < H(x) < G(x)− F (x) whenever F (x) < G(x).
Finally, let F ′ = F + H

2 and G′ = G − H
2 . Then F ′ is upper semicon-

tinuous, G′ is lower semicontinuous and F ≤ F ′ ≤ G′ ≤ G. Moreover, if
F (x) < G(x) then

F (x) < F (x) + H(x)
2 = F ′(x) ≤ G′(x) = G(x)− H(x)

2 < G(x). �

We may now present our main result.

Theorem 4.4. The following statements are equivalent for a locale L:

(1) L is perfect.
(2) For any upper semicontinuous u ∈ F(L) and any lower semicontinuous

l ∈ F(L) such that u ≤ l, there exist u′, l′ ∈ F(L), u′ upper and l′ lower
semicontinuous, such that

u ≤ u′ ≤ l′ ≤ l and ι(u, l)# = ι(u, u′)# = ι(u′, l′)# = ι(l′, l)#.

Proof. (1)⇒(2): Let us assume that L is perfect, and that u, l ∈ F(L) satisfy
the assumption in (2). Then l− u is lower semicontinuous and 0 ≤ l− u. By
Proposition 4.2, there exists an upper semicontinuous u1 such that

0 ≤ u1 ≤ l − u and ι(0, l − u)# = ι(0, u1)# = ι(u1, l − u)#.

Then u′ = u+ u1 is again upper semicontinuous and we have

u ≤ u′ ≤ l and ι(u, l)# = ι(u, u′)# = ι(u′, l)#.

By a similar argument, since u′ is upper semicontinuous, l is lower semicon-
tinuous and 0 ≤ l − u′, then there exists an upper semicontinuous u2 such
that

0 ≤ u2 ≤ l − u′ and ι(0, l − u′)# = ι(0, u2)# = ι(u2, l − u′)#.
Then l′ = l − u2 is lower semicontinuous and we have

u ≤ u′ ≤ l′ ≤ l and ι(u, l)# = ι(u, u′)# = ι(u′, l)# = ι(l′, l)#.

(2)⇒(1) follows from Proposition 4.2. �
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In the next section we will analyse the effect of the normal property of
a locale on the insertion property of Theorem 4.4.

5. Michael’s insertion theorem revisited

Recall the property of perfectness of locales. The dual property that

every closed sublocale is a countable join of open ones

looks deceptively equivalent to it. Actually, however, it is stronger (since S(L)
is not Boolean in general). In [7], we called it the Gδ-perfect property and
observed that Gδ-perfect and perfect properties do coincide under normality.
It is also worth pointing that Gδ-perfect sublocales of compact regular locales
are spatial (see [15, VII.7.3]).

An easy reformulation of the proofs of 4.2 and 4.4 yields the following
characterization of Gδ-perfectness.

Theorem 5.1. The following statements are equivalent for a locale L:

(1) L is Gδ-perfect.
(2) For each lower semicontinuous l ∈ F(L) such that 0 ≤ l, there exists an

upper semicontinuous u ∈ F(L) such that

0 ≤ u ≤ l and ι(0, l) = ι(0, u) = ι(u, l).

(3) For any upper semicontinuous u ∈ F(L) and any lower semicontinuous
l ∈ F(L) such that u ≤ l, there exist u′, l′ ∈ F(L), u′ upper and l′ lower
semicontinuous, such that

u ≤ u′ ≤ l′ ≤ l and ι(u, l) = ι(u, u′) = ι(u′, l′) = ι(l′, l).

Recall now that a locale L is normal if for any a, b ∈ L with a ∨ b = 1,
there exist u, v ∈ L such that a∨u = 1 = b∨v and u∧v = 0. The following is
the pointfree counterpart of the celebrated Katětov-Tong insertion theorem,
formulated as in [6].

Theorem 5.2. A locale L is normal if and only if for any upper semicontinuous
u ∈ F(L) and any lower semicontinuous l ∈ F(L) such that u ≤ l, there exists
a continuous f ∈ F(L) such that u ≤ f ≤ l.

Combining normality and perfectness, we have the notion of a perfectly
normal locale ([5]). As mentioned before, this is the same as normal plus
Gδ-perfect (see [7] for the details). Then Theorem 5.2 plus Theorem 5.1 yield
the pointfree version of Michael’s insertion theorem formulated exactly as in
[9] (see also [5]).

Theorem 5.3. A locale L is perfectly normal if and only if for any upper
semicontinuous u ∈ F(L) and any lower semicontinuous l ∈ F(L) such that
u ≤ l, there exists a continuous f ∈ F(L) such that

u ≤ f ≤ l and ι(u, f) = ι(f, l) = ι(u, l).
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Proof. ⇒: Let u ≤ l in F(L) with u upper semicontinuous and l lower semi-
continuous. By the double insertion property in 5.1, there exist u′, l′ ∈ F(L),
u′ upper and l′ lower semicontinuous, such that

u ≤ u′ ≤ l′ ≤ l and ι(u, l) = ι(u, u′) = ι(u′, l′) = ι(l′, l).

Then, by 5.2, there is a continuous f ∈ F(L) such that u′ ≤ f ≤ l′.
Finally, by property 3.1 (4), ι(u, l) ⊆ ι(u, f) and ι(u, f) ⊆ ι(u, u′) = ι(u, l),
that is, ι(u, f) = ι(u, l). Similarly, ι(f, l) = ι(u, l).

⇐: The normality of L follows immediately from the assumption (by 5.2). In
order to show that L is Gδ-perfect let u, l ∈ F(L), u ≤ l, with u upper semi-
continuous and l lower semicontinuous, and take the continuous f provided
by the assumption. Then define u′ and l′ by

u′(—, r) = u(—, r), u′(r,—) = f(r,—)

and

l′(—, r) = f(—, r), l′(r,—) = l(r,—).

It is a routine exercise to check that u′ and l′ are indeed in F(L) and satisfy
all conditions in 5.1 (3). �

Appendix: strict insertion for A-semicontinuities

The paper [10] proposes a unified treatment of several variants of semicon-
tinuities and continuities and their insertion results, viz. A-continuity of an
f ∈ F(L) where A is a class of complemented sublocales of L. We end this
paper with some notes about the application of this approach to the results
above. To simplify we will only consider classes A = { c(a) | a ∈ A } for some
A ⊆ L. In what follows we shall speak about A being normal or perfect in L.

In this terminology (see [8] for more information and examples), an
A ⊆ L is called normal in L if for any a, b ∈ A with a ∨ b = 1 there exist
u, v ∈ A such that a ∨ u = 1 = b ∨ v and u ∧ v = 0. An f ∈ F(L) is
lower A-semicontinuous if, whenever r < q in Q, there is an a ∈ A such
that f(r,—) ⊆ c(a) ⊆ f(q,—). Analogously, f is upper A-semicontinuous if,
whenever r < q in Q, there is an a ∈ A such that f(—, q) ⊆ c(a) ⊆ f(—, r),
and f is A-continuous if it is both lower and upper A-semicontinuous.

The case A = L yields the usual notions of normality and lower and
upper semicontinuities. For A = { a ∈ L | a∗∗ = a } (that is, the set of all
regular elements of L), A is normal in L if and only if L is mildly normal. In
this case, lower (resp., upper) A-semicontinuity means normal lower (resp.,
normal upper) semicontinuity. On the other hand, the set A = CozL of
all cozero elements of L is normal in L. In this case, lower (resp., upper)
A-semicontinuity means zero lower (resp., upper) semicontinuity.

Following this idea, we say that A ⊆ L is perfect (resp. Gδ-perfect) in
L if

for each a ∈ A there is a countable B ⊆ A such that o(a) =∨
b∈B c(b) (resp. c(a) =

⋂
b∈B o(b)).
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A careful scrutiny of the proofs of 4.2 and 4.4 shows that they continue to
hold for A-semicontinuous functions in case A is closed under finite meets and
0 ∈ A. Similarly, the version of 5.1 for A-semicontinuous functions requires
that A is closed under finite joins and 1 ∈ A. We know further from [10]
that 5.2 holds for A-normal locales whenever A is a sublattice of L. Hence
we have:

Theorem 1. Let L be a locale and let A ⊆ L be closed under finite meets with
0 ∈ A. Then the following statements are equivalent :

(1) A is perfect in L.
(2) For any upper A-semicontinuous u ∈ F(L) and any lower A-semicon-

tinuous l ∈ F(L) such that u ≤ l, there exist u′, l′ ∈ F(L), u′ upper and
l′ lower A-semicontinuous, such that

u ≤ u′ ≤ l′ ≤ l and ι(u, l)# = ι(u, u′)# = ι(u′, l′)# = ι(l′, l)#.

Theorem 2. Let L be a locale and let A ⊆ L be closed under finite joins with
1 ∈ A. Then the following statements are equivalent :

(1) A is Gδ-perfect in L.
(2) For any upper A-semicontinuous u ∈ F(L) and any lower A-semicon-

tinuous l ∈ F(L) such that u ≤ l, there exist u′, l′ ∈ F(L), u′ upper and
l′ lower A-semicontinuous, such that

u ≤ u′ ≤ l′ ≤ l and ι(u, l) = ι(u, u′) = ι(u′, l′) = ι(l′, l).

Theorem 3. Let L be a locale and let A be a sublattice of L. Then the following
statements are equivalent :

(1) A is perfectly normal in L.
(2) For any upper A-semicontinuous u ∈ F(L) and any lower A-semicon-

tinuous l ∈ F(L) such that u ≤ l, there exists an A-continuous f ∈ F(L)
such that

u ≤ f ≤ l and ι(u, f) = ι(f, l) = ι(u, l).

The results above have interesting counterparts in the dual case of ex-
tremally disconnected locales (in the vein of the approach in [10] and [8]).

Specifically, the dual notion of an A normal in L is the notion of an A
extremally disconnected in L ([10]): A is extremally disconnected in L if for
any a, b ∈ A with a∧b = 0 there exist u, v ∈ A such that a∧u = 0 = b∧v and
u ∨ v = 1. On the other hand, the dual in S(L) of the perfectness condition
above means that every closed sublocale c(a) with a ∈ A is equal to some
o(
∨
b∈B) for a countable B ⊆ A, that is,

every a ∈ A is complemented in L, with complement
∨
b∈B b for

some countable B ⊆ A.

When this holds we say that A is countably complemented in L (coinciden-
tally, the dual of the Gδ-perfect condition is also equivalent to countable
complementedness).
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The reader will have no difficulties then in obtaining the dual of The-
orem 3 (since the notions of upper A-semicontinuity and lower A-semiconti-
nuity are dual to each other [10]):

Corollary 4. Let L be a locale and let A be a sublattice of L. Then A is
countably complemented and extremally disconnected in L if and only if for
any lower A-semicontinuous u ∈ F(L) and any upper A-semicontinuous l ∈
F(L) such that u ≤ l, there exists an A-continuous f ∈ F(L) such that

u ≤ f ≤ l and ι(u, f) = ι(f, l) = ι(u, l).

Note. In the case of an A closed under countable joins (like the set CozL of
cozero elements), A is countably complemented in L iff it is complemented in
L with complements in A, and the latter clearly implies that A is extremally
disconnected in L. Hence A is countably complemented and extremally dis-
connected in L iff it is complemented in L (with complements in A).
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[5] Gutiérrez Garćıa, J., Kubiak, T., Picado, J.: Pointfree forms of Dowker’s and
Michael’s insertion theorems. J. Pure Appl. Algebra 213, 98–108 (2009)
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