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Abstract. Hereditary extremal disconnectedness of frames and its equiv-
alent form of complete extremal disconnectedness are the topic of this
paper. We study them in parallel with the corresponding normality prop-
erties of frames. Among several characterizations, we show that a frame
is hereditarily normal [resp., hereditarily extremally disconnected] if and
only if all its open and dense sublocales [resp., closed and dense sublocales]
are normal [resp., extremally disconnected]. Even if spaces typically have
more sublocales than subspaces, hereditary normality and hereditary ex-
tremal disconnectedness are shown to be conservative extensions of the
classical properties. Furthermore, we provide such a general setting that
permits us to treat several variants of the concepts under study in a unified
way. Some of the presented results are new for the traditional topological
spaces.

1. Introduction and initial observations

The purpose of this paper is to study hereditary extremal disconnected-
ness of frames and its equivalent form of complete extremal disconnected-
ness vis-à-vis to hereditary normality.

There is a specific duality between topological normality (N) and ex-
tremal disconnectedness (ED) that relies on the circumstance that a space
is N [resp., ED] if and only if every two disjoint closed [resp., open] sets are
separated by disjoint open [resp., closed] sets. We refer to [22, 23, 24], and
especially to the recent paper [17], for more details. A similar duality holds
in a pointfree context (cf. Definition 1.4).

Both N and ED fail to be hereditary properties. They are, respectively,
closed-hereditary and open-hereditary – i.e. each closed [resp., open] sub-
space of a normal space [resp., extremally disconnected space] is normal
[resp., extremally disconnected]. The topological cases are well-known. For
the pointfree cases we refer to [17] and [15]. It may be worth mentioning
that hereditary ED is useful in modal logic (cf. [3]).
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It is well known that a topological space X is hereditarily normal (HN) if
and only if it is completely normal (CN) – i.e. if every two separated subsets
of X are separated by disjoint open subsets of X (recall that A,B ⊆ X are
separated if A ∩ B = ∅ = A ∩ B).

Bearing in mind the duality between N and ED, one can consider the
concept of a completely extremally disconnected (CED) space as one in which
every two separated subsets are separated by disjoint closed subsets. This
is of course equivalent to the statement that every two separated sets have
disjoint closures. Without being named, such a concept was investigated
in [4] (also cf. [7]) and proved to be equivalent to hereditary ED. We record
the following:

Proposition 1.1. ([4]). The following are equivalent for any topological space X:
(1) X is hereditarily extremally disconnected.
(2) Any two separated subsets of X have disjoint closures.
(3) X is completely extremally disconnected.

A characterization of CN solely in terms of the lattice Ω(X) of all open
sets of X is given in [30]:

Proposition 1.2. ([30, 11]) The following are equivalent for any topological space
X:
(1) X is completely normal.
(2) For every open sets A,B ⊆ X, there exist open sets U,V ⊆ X such that

U ∩ V = ∅, A ∪U ⊇ B and B ∪ V ⊇ A.

When phrased in terms of the dual lattice Ω(X)op, condition (2) of Propo-
sition 1.2 becomes a characterization of CED. Indeed, the following holds:

Proposition 1.3. The following are equivalent for any topological space X:
(1) X is completely extremally disconnected.
(2) For any open sets A,B ⊆ X, A − B ∩ B − A = ∅.
(3) For any open sets A,B ⊆ X, there exist open sets U,V ⊆ X such that U∪V =

X, A ∩U ⊆ B and B ∩ V ⊆ A.

Proof. (1)⇒(2): Let A and B be open in X. The result follows immediately
from Proposition 1.1 and the fact that A−B and B−A are separated. Indeed,
(A − B) ∩ B − A ⊆ A ∩ X − A = ∅ and dually.

(2)⇒(3): Let A and B be open in X and take U = X − A − B and V =

X − B − A. By hypothesis A − B ∩ B − A = ∅ and thus U ∪ V = X. On the
other hand, A − B ⊆ A − B = X −U and so A ∩U ⊆ B. Dually, we have that
B ∩ V ⊆ A.

(3)⇒(1): We prove that X satisfies condition (2) in Proposition 1.1. Let
A,B ⊆ X be separated. Consider U = X − A and V = X − B. By hypothesis
there exist open sets U′,V′ ⊆ X such that U′ ∪ V′ = X, U ∩ U′ ⊆ V and
V ∩ V′ ⊆ U. Since B ⊆ X − A = U and B ⊆ X − V it follows that

B ⊆ U − V ⊆ U − (U ∩U′) = U −U′ ⊆ X −U′.
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Dually, A ⊆ X − V′. Hence A ∩ B ⊆ X − (U′ ∪ V′) = ∅. �

Following [33], a topological property P is said to be lattice-invariant if,
when X has P and the lattices Ω(X) and Ω(Y) are isomorphic, the space Y
has property P too. In particular, Propositions 1.2 and 1.3 show that both
complete N and complete ED are lattice-invariant.

Moreover, Propositions 1.2 and 1.3 also indicate how to formulate com-
plete N and complete ED in an arbitrary (bounded) lattice. We thus have
the following definitions:

Definitions 1.4. Let L be a (bounded) lattice with bounds 0 and 1. Then:

(1) L is normal if

∀a, b ∈ L [a ∨ b = 1 ⇒ ∃u, v ∈ L : u ∧ v = 0, a ∨ u = 1 = b ∨ v]. (N)

(2) L is extremally disconnected if the dual lattice Lop is normal – i.e.

∀a, b ∈ L [a ∧ b = 0 ⇒ ∃u, v ∈ L : u ∨ v = 1, a ∧ u = 0 = b ∧ v]. (ED)

(3) L is completely normal if

∀a, b ∈ L ∃u, v ∈ L : u ∧ v = 0, a ∨ u ≥ b, b ∨ v ≥ a. (CN)

(4) L is completely extremally disconnected if Lop is completely normal – i.e.

∀a, b ∈ L ∃u, v ∈ L : u ∨ v = 1, a ∧ u ≤ b, b ∧ v ≤ a. (CED)

Remark 1.5. Condition (CN) appears in [2, 2.4] under the name of relative
normality). Note that (CN) is really stronger than (N), for if a ∨ b = 1, then
a ∨ u ≥ b and b ∨ v ≥ a imply a ∨ u = b ∨ v = 1. By a dual argument, (CED)
implies (ED).

Fact 1.6. Any completely normal and extremally disconnected lattice is completely
extremally disconnected. Dually, any normal and completely extremally discon-
nected lattice is completely normal.

Proof. Let a, b ∈ L. By complete normality there exist u, v ∈ L such that
u ∧ v = 0, a ∨ u ≥ b and b ∨ v ≥ a. Since L is extremally disconnected
there exist x, y ∈ L such that x ∨ y = 1, x ∧ v = 0 and y ∧ u = 0. Hence
a ∧ x ≤ (b ∨ v) ∧ x ≤ b and b ∧ y ≤ (a ∨ u) ∧ y ≤ a. �

Fact 1.7. The following are equivalent for any lattice L:

(1) L is completely normal and extremally disconnected.
(2) L is normal and completely extremally disconnected.
(3) L is completely normal and completely extremally disconnected.

In particular, if L = Ω(X), then X is HN and ED if and only if X is N and
HED (cf. [13, 6R] and [25]) if and only if X is HN and HED.



4 J. GUTIÉRREZ GARCÍA, T. KUBIAK, AND J. PICADO

2. Some background on pointfree topology

We recall some basic notions and facts about frames and locales. For
further information see [28].

The category Frm of frames has as objects those complete lattices L in
which

a ∧
∨

B =
∨
{a ∧ b | b ∈ B} (2.1)

for all a ∈ L and B ⊆ L. Morphisms, called frame homomorphisms, are those
maps between frames that preserve arbitrary joins (in particular, the bottom
element 0) and finite meets (in particular, the top element 1).

The lattice Ω(X) of open subsets of a space X is the typical example of a
frame. For any continuous map f : X→ Y, the mapping Ω( f ) : Ω(Y)→ Ω(X)
defined by Ω( f )(U) = f−1[U] is a frame homomorphism. The category of
locales is the opposite category of Frm.

Remark 2.1. Note that in the case of a frame L, conditions (CN) and (CED)
are, by Propositions 1.2 and 1.3, both conservative extensions of their topo-
logical counterparts – i.e. a topological space X is CN (resp., ED) if and only
if the frame L = Ω(X) satisfies CN (resp., CED).

With L a frame and a ∈ L, the map a∧ (·) : L→ L preserves arbitrary joins
and thus has a right (Galois) adjoint a→ (·) : L→ L determined by

a ∧ c ≤ b iff c ≤ a→ b. (2.2)

Thus, a → b =
∨
{c ∈ L | a ∧ c ≤ b}. The pseudocomplement of a ∈ L is

a∗ = a → 0. Then: a ∧ a∗ = 0, a ≤ a∗∗, a∗∗∗ = a∗ and (
∨

A)∗ =
∧

a∈A a∗ for all
A ⊆ L (but the dual de Morgan law is not true in general; we only have
(
∧

A)∗ ≥
∨

a∈A a∗). In particular, (·)∗ is order-reversing.
An S ⊆ L is a sublocale of L if, for any A ⊆ S, a ∈ L and b ∈ S, we have∧
A ∈ S (in particular, 1 ∈ S) and a→ b ∈ S. The set S(L) of all sublocales of

L forms a coframe (i.e. a complete lattice satisfying the dual of (2.1)) under
inclusion. Arbitrary infima coincide with intersections, {1} is the bottom
element and L is the top element. Regarding suprema, there is the formula∨

i∈I
Si = {

∧
A | A ⊆

⋃
i∈I

Si} (2.3)

for every {Si | i ∈ I} ⊆ S(L).
Since S(L) is the dual of a complete Heyting algebra, it has co-pseudo-

complements, usually called pseudodifferences or remainders (see [12] for more
information). We shall denote the pseudodifference of an S in S(L) by LrS
and will use the formula

LrS =
⋂
{R ∈ S(L) | R ∨ S = L}.

In case S is complemented, the pseudodifference LrS is the complement
and in that case we simply refer to it as Sc.

For any a ∈ L, the sets

c(a) = ↑a and o(a) = {a→ x | x ∈ L}= {x ∈ L | a→ x = x}
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are special sublocales of L referred to, respectively as closed and open sublo-
cales. They are complements of each other in S(L). Furthermore, the map
a 7→ o(a) is a lattice embedding L ↪→ S(L) that preserves arbitrary joins.
Therefore, denoting by o[L] the sublattice of S(L) consisting of all open
sublocales, L and o[L] are isomorphic frames.

On the other hand,

a ≤ b iff c(a)⊇c(b), c(a) ∨ c(b) = c(a ∧ b) and
⋂
i∈I
c(ai) = c(

∨
i∈I

ai).

In particular, this means that the set c[L] of closed sublocales of L is a
sub-coframe of S(L).

In the following, given any A ⊆ L, we shall denote by o[A] and c[A] the
sets

o[A] = {o(a) | a ∈ A} and c[A] = {c(a) | a ∈ A}.

Given a sublocale T of L, its closure is defined by T =
⋂
{c(a) | T ⊆ c(a)} =

c(
∧

T). In particular, o(a) = c(a∗).
A sublocale T is dense whenever T = L, that is, 0 =

∧
T ∈ T. An

important distinctive feature of pointfree topology, known as the Isbell’s
Density Theorem [28], is the existence in any frame of a least dense sublocale,
namely its Booleanization

BL = {x→ 0 | x ∈ L}.

For any sublocale T of L, S(T) ⊆ S(L) (note that, furthermore, if S and T
are sublocales of L with S ⊆ T, then S ∈ S(T)). Non-empty infima in S(T),
being given by intersection, coincide with infima in S(L). On the other
hand, formula (2.3) shows that arbitrary suprema in S(T) also coincide
with suprema in S(L): for any Ai ∈ S(T), i ∈ I, we have

S(L)∨
i∈I

Ai = {
∧

R | R ⊆
⋃
i∈I

Ai} ⊆ T

and thus
S(L)∨
i∈I

Ai =
S(T)∨
i∈I

Ai. (2.4)

Given a sublocale T of L let ρT : L→ T be the surjective frame homomor-
phism defined by

ρT(a) =
∧
{t ∈ T | t ≥ a} ∈ T. (2.5)

It is easy to verify that the open sublocales of T (that we denote as oT(t),
t ∈ T) are precisely the intersections o(a) ∩ T (a ∈ L): indeed, oT(t) = o(t) ∩ T
for any t ∈ T, and for any a ∈ L, o(a) ∩ T = oT(ρT(a)). Analogously for the
closed sublocales. For each A ⊆ T we shall denote by oT[A] and cT[A] the
sets

oT[A] = {oT(a) | a ∈ A} and cT[A] = {cT(a) | a ∈ A}.
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3. Complete extremal disconnectedness

Complete normality formulated in frames appeared for the first time in
the literature with [19] (see also [31]), in the following form: a frame is
completely normal if every pair S,T of separated sublocales of L (i.e. such
that S ∩ T = {1} = S ∩ T) is separated by open sublocales, that is, there exist
open sublocales U and V of L such that U ∩ V = {1}, S ⊆ U and T ⊆ V. As
proved in [11, Proposition 3.3], this is equivalent to condition (CN) above.
In what follows we will show a dual characterization for condition (CED).

We start with the following easy characterization:

Proposition 3.1. A frame L is completely extremally disconnected if and only if
it satisfies the strong De Morgan’s law

(a→ b) ∨ (b→ a) = 1 (SDM)

for all a, b ∈ L.

Proof. Sufficiency is obvious since a ∧ (a → b) = a ∧ b for any a, b ∈ L.
Regarding necessity, let a, b ∈ L. By hypothesis, there are u, v ∈ L such that
u ∨ v = 1, a ∧ u ≤ b and b ∧ v ≤ a. Hence 1 = u ∨ v ≤ (a → b) ∨ (b → a) by
adjunction (2.2). �

Remark 3.2. Strong De Morgan’s law is treated in [21] in the context of
toposes. It follows from a result there that this identity holds in Ω(X) if and
only if every closed subspace of X is extremally disconnected ([27]).

The next characterization is the pointfree counterpart of a characteriza-
tion of hereditary ED presented in [3, Proposition 2.1]. In order to prove
it, we need first some technical observations concerning Booleanizations of
closed sublocales.

First, it should be remarked that any sublocale S of a frame L is a frame
itself with the same meets as in L, and since the Heyting operation →
depends on the meet structure only, with the same Heyting operation.
Consequently, for each a ∈ L, the Booleanization of c(a) is given by

Bc(a) = {x→ a | x ∈ c(a)} = {x→ a | x ∈ L}.

Note that this is the smallest sublocale of L containing a. HenceBc(a) = Bc(b)

if and only if a = b (cf. [20, 2.1]).

Lemma 3.3. For any a, b ∈ L we have:

(a) Bc(a→b) = o(a) ∩Bc(b).
(b) c(a) ∩Bc(b) = {1} iff a→ b = b iff b ∈ o(a).
(c) c(a→ b) = o(a) ∩ c(b).

Proof. (a) If y = x → (a → b) ∈ Bc(a→b) then, using some basic properties of
the Heyting operator, we may conclude that

y = a→ (x→ b) ∈ o(a) and y = (x ∧ a)→ b ∈ Bc(b);
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conversely, if y ∈ o(a) ∩Bc(b) then y = a→ y = x→ b for some x ∈ L, hence

y = a→ (x→ b) = x→ (a→ b) ∈ Bc(a→b).

(b) It follows immediately from (1) since c(a) ∩ Bc(b) = {1} iff Bc(b) ⊆ o(a) iff
Bc(a→b) = Bc(b) iff a→ b = b iff b ∈ o(a).

(c) From a → b ∈ o(a) ∩ c(b) it follows that c(a → b) ⊆ o(a) ∩ c(b). On the
other hand, c(b) ⊆ c(a ∧ b) = c(a) ∨ c(a → b) and thus o(a) ∩ c(b) ⊆ c(a → b).
Hence o(a) ∩ c(b) ⊆ c(a→ b). �

Proposition 3.4. The following are equivalent for a frame L:

(1) L is completely extremally disconnected.
(2) For any open sublocales A,B of L, A ∩ Bc ∩ B ∩ Ac = {1}.
(3) For any open sublocales A,B of L, there exist open sublocales U,V such that

U ∨ V = L, A ∩U ⊆ B and B ∩ V ⊆ A.

Proof. (1)⇒(2): Let A = o(a) and B = o(b) be open sublocales. Then it follows
from Lemma 3.3 (c) and (SDM) that

A ∩ Bc ∩ B ∩ Ac = c(a→ b) ∩ c(b→ a) = c((a→ b) ∨ (b→ a)) = {1}.

(2)⇒(3): Let A = o(a) and B = o(b) and consider U = o(a→ b) and V =

o(b→ a). By hypothesis (and Lemma 3.3 (c)) we conclude that

{1} = A ∩ Bc ∩ B ∩ Ac = c(a→ b) ∩ c(b→ a)

and thus U ∨ V = o(a → b) ∨ o(b → a) = L. On the other hand, A ∩ U =

o(a) ∩ o(a→ b) = o(a ∧ b) ⊆ B. Dually, we have that B ∩ V ⊆ A.

(3)⇒(1): Let a, b ∈ L. By hypothesis there exist open sublocales U = o(u)
and V = o(v) such that U ∨ V = L, o(a) ∩U ⊆ o(b) and o(b) ∩ V ⊆ o(a). Then
u, v ∈ L satisfy (CED). �

Now, recall that a sublocale S of L is nowhere dense in L if S∩BL = {1} ([20]).
We say that two sublocales S and T of L are almost disjoint if S∩T is a nowhere
dense sublocale in both sublocales S and T, i.e. S∩T∩BS = {1} = S∩T∩BT.

Next characterization is the pointfree extension of a characterization of
completely ED spaces from [4].

Proposition 3.5. The following are equivalent for a frame L:

(1) L is completely extremally disconnected.
(2) Any two almost disjoint closed sublocales of L are disjoint.
(3) Any two separated sublocales of L have disjoint closures.

Proof. (1)⇒(2): Let c(a), c(b) be a pair of almost disjoint closed sublocales.
This means that c(b) ∩ Bc(a) = c(a) ∩ c(b) ∩ Bc(a) = {1} and c(a) ∩ Bc(b) =

c(a)∩c(b)∩Bc(b) = {1}. Therefore, by Lemma 3.3 (b), a→ b = b and b→ a = a.
Finally, by (SDM) we conclude that a ∨ b = 1, that is, c(a) ∩ c(b) = {1}.

(2)⇒(3): Let S, T be a pair of separated sublocales and S = c(a) and T = c(b).
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Then S ∩ T = {1}, that is, T ⊆ o(a). Moreover, since b =
∧

T ∈ T ⊆ o(a), it
follows from Lemma 3.3 (b) that

S ∩ T ∩BT ⊆ S ∩BT = c(a) ∩Bc(b) = {1}.

Analogously, S ∩ T ∩ BS = {1}. Consequently, S and T are almost disjoint
and hence disjoint, by hypothesis.

(3)⇒(1): Let a, b ∈ L and S = o(a) ∩ c(b) and T = o(b) ∩ c(a). Then S ∩ T ⊆
c(b) ∩ o(b) = {1} and S ∩ T ⊆ o(a) ∩ c(a) = {1}, hence S and T are separated.
By the hypothesis and Lemma 3.3 (c), S = c(a → b) and T = c(b → a) are
disjoint, that is, (a→ b) ∨ (b→ a) = 1. �

4. Complete extremal disconnectedness vs. complete normality

The duality expressed in 1.4 may be formulated in a more extended
setting permitting a simultaneous treatment of several variants of normality
and extremal disconnectedness (as proposed in [17]). In what follows we
shall speak about a lattice L being normal (resp. extremally disconnected)
with respect to some fixed A ⊆ L. In this terminology, L is A-normal or
completely A-normal (A-N or A-CN for short) if it satisfies condition (N) or
(CN) of Definition 1.4 with a, b,u, v ∈ A. Analogously, L is extremally A-dis-
connected or completely extremally A-disconnected (A-ED or A-CED for short)
if it satisfies condition (ED) or (CED) of Definition 1.4 with a, b,u, v ∈ A.

Examples 4.1. The standard example for A is L; then, the A-notions are just
the standard notions. In the case of a frame L, the case in which we are most
interested, there are other interesting examples (cf. [17]):

(1) A = Reg L: in this case, A-normal = mildly normal and extremally
A-disconnected = extremally disconnected.
(Recall that the regular part of L, denoted Reg L, is the set of all regular
elements of L, that is, the elements a ∈ L such that a∗∗ = a.)

(2) A = δ-Reg L: A-normal = δ-normal and extremally A-disconnected =

extremally δ-disconnected.
(An element a of L is δ-regular whenever a =

∨
n∈N an with an ≺ a, i.e.,

a∗n ∨ a = 1, and the set of all δ-regular elements is denoted by δ-Reg L.)
(3) A = Coz L: in this case, any frame is A-normal while the class of

extremally A-disconnected frames is precisely the class of F-frames.
(The cozero part of L, denoted Coz L, is the set of all cozero elements
of L, that is, the elements a ∈ L such that a =

∨
n an for some an ≺≺ a,

n = 1, 2, · · · , where x ≺≺ a expresses the familiar relation that x is really
inside, or completely below, a. This is the largest interpolative relation
contained in ≺.)

However, we cannot apply the dualizing process 1.4 directly in frames
since the dual lattice of a frame is not a frame in general.
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Yet, if all elements in A are complemented in L then, for the set Ac of
complements of all elements in A, Ac-normality is precisely extremal A-dis-
connectedness while extremal Ac-disconnectedness is A-normality, and the
two notions may be treated simultaneously.

Therefore the familiar result that the sublocale lattice S(L) is isomorphic
to the coframe obtained by freely adjoining to Lop a complement for each
a ∈ L provides a way of dealing with the duality in frames ([17]). Indeed, it
suffices to embed L in the coframeS(L) via the isomorphism L � o[L] ⊆ S(L).
Then L will be (completely) A-normal iff the lattice S(L) is (completely)
o[A]-normal. But now, any element of o[A] is complemented, hence L will be
(completely) A-normal iffS(L) is (completely) extremally c[A]-disconnected.

Similarly, L will be (completely) extremally A-disconnected iff the lat-
tice S(L) is (completely) extremally o[A]-disconnected, that is, (completely)
c[A]-normal.

To illustrate this idea we have a first result that characterizes completely
A-normal frames and completely extremally A-disconnected frames (for
any A ⊆ L) at once, with a single proof. Before presenting it, we need to
introduce some terminology and notation.

ForA = o[A] orA = c[A] letAc be the set of complements of all elements
ofA. We say that two sublocales S and T of L areA-separated if there exist
F,G ∈ Ac such that

S ⊆ F, T ⊆ G and S ∩ G = {1} = T ∩ F.

Further, we say that S and T are separated by A-sublocales if there exist
sublocales U and V inA such that

U ∩ V = {1}, S ⊆ U and T ⊆ V.

Remark 4.2. We may speak further about the A-closure of a sublocale T,
that is, clA(T) =

⋂
{c(a) | T ⊆ c(a), a ∈ A} (for A = L this is just the standard

closure). Whenever A is closed under joins, clA(T) belongs to c[A] and
it is of course the smallest sublocale in c[A] that contains T. Then it is
easy to check that sublocales S and T are o[A]-separated if and only if
S ∩ clA(T) = {1} = clA(S) ∩ T. The selection A = L recovers this way the
original definition in [19].

Proposition 4.3. For any frame L and any A ⊆ L, the following are equivalent for
A = o[A] orA = c[A]:
(1) S(L) is completelyA-normal.
(2) Every pair ofA-separated sublocales of L is separated byA-sublocales.

Proof. (1)⇒(2): Let S and T be A-separated. Then there exist F,G ∈ Ac

such that S ⊆ F, T ⊆ G and S ∩ G = {1} = T ∩ F. Of course, Fc,Gc
∈ A

and therefore, by hypothesis, there exist U,V ∈ A such that U ∩ V = {1},
Gc
⊆ Fc

∨U and Fc
⊆ Gc

∨V. Moreover, {1} = S ∩G ⊇ S ∩ F ∩Uc = S ∩Uc,
from which it follows that S ⊆ U, and {1} = T ∩ F ⊇ T ∩ G ∩ Vc = T ∩ Vc,
from which it follows that T ⊆ V.
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(2)⇒(1): Let F,G ∈ A and S = Fc
∩ G, T = F ∩ Gc. Clearly, S ⊆ Fc, T ⊆ Gc

and S ∩ Gc = {1} = F ∩ Tc. By hypothesis, there exist U,V ∈ A satisfying
U ∩ V = {1}, S ⊆ U and T ⊆ V. This means that

Fc
∩ G = S ⊆ U⇔ Fc

∩ G ∩Uc = {1} ⇔ G ⊆ F ∨U and

F ∩ Gc = T ⊆ V ⇔ F ∩ Gc
∩ Vc = {1} ⇔ F ⊆ G ∨ V. �

Corollary 4.4. For any frame L and any A ⊆ L, the following are equivalent:
(1) L is completely A-normal.
(2) Every pair of o[A]-separated sublocales of L is separated by o[A]-sublocales.

Corollary 4.5. For any frame L and any A ⊆ L, the following are equivalent:
(1) L is completely A-disconnected.
(2) Every pair of c[A]-separated sublocales of L is separated by c[A]-sublocales.

Proposition 4.3 can be expanded to the next result which extends Propo-
sition 3.3 of [11].

Proposition 4.6. For any frame L and any A ⊆ L, the following are equivalent for
A = o[A] orA = c[A]:

(1) S(L) is completelyA-normal.
(2) For every S,T ∈ S(L) satisfying S ⊆ F ⊆ T and S ⊆ Gc

⊆ T for some
F,G ∈ A, there exist U,V ∈ A such that S ⊆ V ⊆ Uc

⊆ T.
(3) For every S,T ∈ S(L) satisfying S ∨ F = L = G ∨ T for some F,G ∈ A such

that F ⊆ T and G ⊆ S, there exist U,V ∈ A such that U ∩ V = {1}, Vc
⊆ S

and Uc
⊆ T.

Proof. (1)⇒(2): Let S ⊆ F ⊆ T and S ⊆ Gc
⊆ T. By (1), there are U,V ∈ A

such that U ∩ V = {1}, G ⊆ F ∨ U and F ⊆ G ∨ V. Of course, V ⊆ Uc.
Moreover,

S ⊆ F ∩ Gc
⊆ (G ∨ V) ∩ Gc = V ∩ Gc

⊆ V and

Uc = (Uc
∩ F) ∨ (Uc

∩ Fc) ⊆ (Uc
∩ F) ∨ Gc

⊆ T.

(2)⇒(3): Let S ∨ F = L = G ∨ T as in the hypothesis. Then LrS ⊆ F ⊆ T and
LrS ⊆ Gc

⊆ T. By (2) there exist U,V ∈ A such that LrS ⊆ V ⊆ Uc
⊆ T.

Clearly, U ∩ V = {1}, Vc
⊆ Lr(LrS) ⊆ S and Uc

⊆ T.

(3)⇒(1): Let F,G ∈ A and consider S = Fc
∨ G and T = F ∨ Gc. Clearly,

S ∨ F = L = G ∨ T, F ⊆ T and G ⊆ S. Consequently, by (3), there are
U,V ∈ A such that U ∩ V = {1}, Vc

⊆ S and Uc
⊆ T. Then, finally,

F ∨U ⊇ F ∨ Tc = F ∨ G ⊇ G and G ∨ V ⊇ G ∨ Sc = G ∨ F ⊇ F. �

Again, the caseA = c[A] yields immediately the dual result for ED:

Corollary 4.7. For any frame L and any A ⊆ L, the following are equivalent:
(1) L is completely A-disconnected.
(2) For every S,T ∈ S(L) satisfying S ⊆ c(a) ⊆ T and S ⊆ o(b) ⊆ T for some

a, b ∈ A, there exist u, v ∈ A such that S ⊆ c(v) ⊆ o(u) ⊆ T.
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(3) For every S,T ∈ S(L) satisfying S∨ c(a) = L = c(b)∨T for some a, b ∈ A such
that c(a) ⊆ T and c(b) ⊆ S, there exist u, v ∈ A such that u ∨ v = 1, o(v) ⊆ S
and o(u) ⊆ T. �

5. Heredity properties

Recall from Section 1 that an L = Ω(X) is hereditary ED if and only it
is completely ED. In this section we prove that this equivalence extends to
arbitrary frames by proving the equivalence between completely A-normal
frames and hereditarily A-normal frames (for any sublattice A of L).

A frame L is called hereditarily normal [14] whenever every sublocale of L
is normal. Dually, we say that L is called hereditarily ED if every sublocale
of L is ED.

More generally, for a fixed A ⊆ L, we say that L is hereditarily A-normal
in case every sublocale T of L is AT-normal, for AT = ρT[A] ⊆ T (recall the
mappingρT). This is the same as saying that the latticeS(T) is oT[AT]-normal
for every sublocale T of L. Dually, we say that L is hereditarily A-disconnected
if every sublocale T of L is AT-disconnected, that is, S(T) is cT[AT]-normal
for every sublocale T of L.

For any sublocale T of L and A ⊆ S(L) let AT = {S ∩ T | S ∈ A} ⊆ S(T).
Then, for the case of a sublattice A ⊆ L we have:

Theorem 5.1. For any frame L and any sublattice A of L, the following are
equivalent forA = o[A] orA = c[A]:

(1) S(L) is completelyA-normal.
(2) For each T ∈ S(L), S(T) isAT-normal.
(3) For each T ∈ A, S(T) isAT-normal.

Proof. (1)⇒(2): Let T be a sublocale of L and FT = F ∩ T, GT = G ∩ T (with
F,G ∈ A) such that FT ∨ GT = T, that is, F ∨ G ⊇ T. By hypothesis there
exist U,V ∈ A such that U ∩ V = {1}, F ∨ U ⊇ G and G ∨ V ⊇ F. Then
UT = U ∩ T,VT = V ∩ T ∈ AT and UT ∩ VT = {1}. On the other hand, by
(2.4),

FT ∨UT = (F ∨U) ∩ T ⊇ FT ∨ GT = T

and, similarly, GT ∨ VT = T. This shows that S(T) isAT-normal.

(2)⇒(3): It is obvious.

(3)⇒(1): We shall prove that S(L) is completely A-normal using Proposi-
tion 4.3. So let S and T beA-separated and F,G ∈ Ac such that S ⊆ F, T ⊆ G
and S ∩ G = {1} = F ∩ T and consider

R = Fc
∨ Gc

∈ A

(R is indeed in A since A being a sublattice of L means that both o[A] and
c[A] are closed under finite joins). By hypothesis, S(R) isAR-normal. Since
Fc = Fc

∩ R,Gc = Gc
∩ R ∈ AR and Fc

∨ Gc = R, there exist U,V ∈ A such
that (U ∩ R) ∩ (V ∩ R) = {1} and Fc

∨ (U ∩ R) = R = Gc
∨ (V ∩ R).
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Since A is a sublattice of L it follows that o[A] and c[A] are closed under
finite meets and so U′ = U ∩ Gc

∈ A and V′ = V ∩ Fc
∈ A. We have

U′ ∩ V′ = (U ∩ Gc) ∩ (V ∩ Fc) ⊆ U ∩ V ∩ R = {1}.

Moreover, from Fc
∨ (U ∩ R) = R it follows that R ⊆ Fc

∨U. Then S ∩Uc
⊆

F∩Uc
⊆ Rc = F∩G ⊆ G and thus S∩ (Uc

∨G) ⊆ S∩G = {1}. Hence S ⊆ U′.
Similarly, T ⊆ V′. �

ForA = o[A] we have

AT = {o(a) ∩ T | a ∈ A} = {oT(ρT(a)) | a ∈ A} = oT(AT)

and hence we get:

Corollary 5.2. For any frame L and any sublattice A of L, the following are
equivalent:

(1) L is completely A-normal.
(2) L is hereditarily A-normal.
(3) Each open sublocale of the form o(a) with a ∈ A is Ao(a)-normal.

In particular, for A = L we have Ao(a) = o(a) and, therefore, both Theo-
rem 3.7 of [11] and Proposition 3.3 of [14] follow:

Corollary 5.3. The following are equivalent for any frame L:

(1) L is completely normal.
(2) L is hereditarily normal.
(3) Each open sublocale of L is normal.

ForA = c[A] we have

AT = {c(a) ∩ T | a ∈ A} = {cT(ρT(a)) | a ∈ A} = cT(AT)

and hence we also get:

Corollary 5.4. For any frame L and any sublattice A of L, the following are
equivalent:

(1) L is completely A-disconnected.
(2) L is hereditarily A-disconnected.
(3) Each closed sublocale of the form c(a) with a ∈ A is Ac(a)-normal.

Finally, for A = L we have Ac(a) = c(a) and we get immediately the
announced result for ED:

Corollary 5.5. The following are equivalent for any frame L:

(1) L is completely extremally disconnected.
(2) L is hereditarily extremally disconnected.
(3) Each closed sublocale of L is extremally disconnected.

Remark 5.6. Since a topological space has typically more sublocales than
subspaces, one cannot conclude automatically that the pointfree notions
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of hereditary normality and hereditary extremal disconnectedness are con-
servative extensions of their classical counterparts. Yet this follows now
immediately from Corollaries 5.3 and 5.5 and Remark 2.1.

6. Heredity and density

A property P of frames is said to be hereditary if each sublocale of a
frame satisfying P also satisfies P, and it is said to be closed-hereditary [resp.,
open-hereditary] if it is hereditary for closed [resp., open] sublocales.

A natural question arises: when checking hereditary normality of a frame
L do we really need to check normality of all the open sublocales? We end
the paper with the new observation that it suffices to check it for dense
and open sublocales. One of possible arguments for it depends only on
the fact that normality is closed-hereditary and its heredity is equivalent
to its open-heredity (examples of the same situation include collectionwise
normality and κ–collectionwise normality for frames [16]):

Proposition 6.1. Let P be a property of frames which is closed-hereditary and such
that heredity of P is equivalent to open-heredity. For L a frame the following are
equivalent:
(1) Each sublocale of L has property P.
(2) Each dense sublocale of L has property P.
(3) Each open and dense sublocale of L has property P.

Proof. (3)⇒(1): This is the only non-trivial implication that needs to be
shown. Consider an open sublocale o(a) and its closure o(a) = c(a∗). The
sublocale

S = o(a) ∨ (Lrc(a∗)) = o(a) ∨ o(a∗) = o(a ∨ a∗)
is also open. Further, S is dense in L:

S = c((a ∨ a∗)∗) = c(a∗ ∧ a∗∗) = c(0) = L.

Thus, S has property P. Moreover, S ∩ c(a∗) = o(a) ∩ c(a∗) ⊆ o(a), that is,
o(a) = c(a∗) ∩ S. Hence o(a) is closed in S. Since P is closed-hereditary, then
o(a) has also the property and the conclusion follows from the assumption
that heredity of P is equivalent to open-heredity. �

Remark 6.2. It is interesting that when P = normality, we can prove the
implication (3)⇒(1) without assuming that heredity of P is equivalent to
open-heredity. This is a novelty even for the case of topological normality
(see Corollary 6.4). For that, consider an open sublocale o(a) of L and
u, v ∈ o(a) satisfying

1 = u
o(a)
∨ v = a→ (u ∨ v).

By the proof above S = o(a)∨o(a∗) is an open and dense sublocale of L hence
normal. Moreover, u, v ∈ o(a) ⊆ S, a → (u ∨ v) = 1 and a∗ → (u ∨ v) = 1
(since a∗ =

∧
o(a) ≤ u ∨ v). Hence

u
S
∨ v = (a ∨ a∗)→ (u ∨ v) = (a→ (u ∨ v)) ∧ (a∗ → (u ∨ v)) = 1.
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Then, by the normality of S, there exist x, y ∈ S such that x∧ y = 0S = 0 and

u
S
∨ x = 1 = v

S
∨ y. Now consider a→ x and a→ y in o(a). Notice that

(a→ x) ∧ (a→ y) = a→ (x ∧ y) = a→ 0 = 0o(a).

Moreover, a ≤ a∨a∗ ≤ u∨x ≤ u∨ (a→ x), since 1 = u
S
∨ x = (a∨a∗)→ (u∨x).

Hence

u
o(a)
∨ (a→ x) = a→ (u ∨ (a→ x)) = 1,

and it can be proved in a similar way that v
o(a)
∨ (a→ y) = 1.

After Remark 6.2 we have a small contribution to general topology. The
point of the proposition and the corollary which follow should have been
known (but is not) since Urysohn told us in his celebrated 1925 paper that
it is not necessary to check all subspaces for whether they are normal.

Mimicking the proof in 6.1 for a topological space X, an arbitrary open
subspace A of X, and S = A ∪ (XrA), we get:

Proposition 6.3. Let P be a topological property which is closed-hereditary and
such that heredity of P is equivalent to open-heredity. For X a topological space the
following are equivalent:

(1) Each subspace of X has property P.
(2) Each dense subspace of X has property P.
(3) Each open and dense subspace of X has the property P.

Corollary 6.4. For X a topological space the following are equivalent:

(1) X is hereditarily normal.
(2) Each dense subspace of X is normal.
(3) Each open and dense subspace of X is normal.

Examples 6.5. Besides topological normality, among examples of topolog-
ical properties P which are closed-hereditary and such that heredity of P is
equivalent to open-heredity of P are the following:

(1) P = collectionwise normality ([10, 5.1.C (a)] and [18, Lemma 1]),
(2) P = compactness ([32, Theorem 1]),
(3) P = Lindelöfness ([10, 3.8.4 and 3.8.A (b)]),
(4) P = paracompactness ([10, 5.1.29 and 5.1.F (a)]).

This list is not exhaustive (cf. e.g. diagram 4.1 in [9]). Another way of
extending it is to require cardinal restrictions. As an example, we mentionκ-
collectionwise normality (cf. [10, 3.8.A]). We note that hereditarily compact
spaces are also called Noetherian spaces. They play an important role in
algebraic geometry (cf. [5, Chap. II, § 4, Proposition 9]).

Since normality [resp., extremal disconnectedness] is closed-hereditary
[resp., open-hereditary], and extremal disconnectedness is dense-heredi-
tary (cf. [29, Theorem 6.2 (b)]), we have the following enrichment to the
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discussion of heredity in spaces which are both normal and extremally
disconnected (cf. [7] and [8]).

Corollary 6.6. For X a topological space the following are equivalent:
(1) Each subspace of X is normal and extremally disconnected.
(2) Each open [closed] subspace of X is normal and extremally disconnected.
(3) Each dense subspace of X is normal and extremally disconnected.
(4) Each open and dense subspace of X is normal and extremally disconnected.

A subset of a topological space is dense in the space if its only closed
superset is the whole space. Dually, a subset of a topological space is said to
be codense if its only open superset is the whole space. The earliest references
for the concept of topological codensity, we are aware of, goes back to [1],
[26] and [22].

The concept of codensity trivializes if points are closed. But it has some
content otherwise, and gives rise to another interesting result: normality is
codense hereditary.

Proposition 6.7. A topological space is normal if and only if each its codense
subspace is normal.

Proof. Let X be a normal space and A be its codense subspace. Let K1 and
K2 be closed and disjoint in A. Then K1 and K2 are traces on A of closed
subsets F1 and F2 of X. Since A ⊆ X− (F1∩F2), hence F1∩F2 = ∅ on account
of A being codense. Hence F1 and F2 have disjoint open neighborhoods in
X whose intersections with A are disjoint open neighborhoods of K1 and K2

in A. Hence A is normal. The converse is obvious, for X is codense in X. �

We end with the extension of this result to frames. In pointfree topology
codense sublocales are considered in [6]: a sublocale T of a frame L is
codense if T◦ = L, where T◦ =

⋂
{o(a) | T ⊆ o(a)} is the fitting closure on

sublocales. (Note that a sublocale T is codense if and only if the associated
frame surjection ρT : L → T is codense, that is, ρT(a) = 1 only if a = 1).
Of course, we may now speak about the A-closure of a sublocale T for
A = o[A] or A = c[A] (and an arbitrary A ⊆ L), that is, the sublocale
clA(T) =

⋂
{A ∈ A | T ⊆ A} (that may not belong to A, unless A is closed

under intersections). We then say that S is A-dense whenever clA(T) = L.
The case when A = c[A], with A = L, covers the usual density while
A = o[A] and A = L covers codensity.

Proposition 6.8. For any frame L and any sublattice A of L, the following are
equivalent forA = o[A] orA = c[A]:
(1) S(L) isA-normal.
(2) For eachA-dense T ∈ S(L), S(T) isAT-normal.

Proof. The implication (2)⇒(1) is trivial since L isA-dense. Conversely, let
T be an A-dense sublocale of L. Consider F1 = G1 ∩ T and F2 = G2 ∩ T
in AT with F1 ∨ F2 = T, that is, T ⊆ G1 ∨ G2 ∈ A (since A is a sublattice
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of L) and G1 ∨ G2 = L (since T is A-dense). Hence, by hypothesis, there
exist U1,U2 ∈ A such that U1 ∩ U2 = {1} and G1 ∨ U1 = L = G2 ∨ U2. Let
V1 = U1 ∩ T,V2 = U2 ∩ T ∈ AT. Clearly, V1 ∩ V2 = {1} and F1 ∨ V1 = T =

F2 ∨ V2. �

ForA = o[L] andA = c[L] we get, respectively:

Corollary 6.9. (1) A frame L is normal iff each codense sublocale of L is normal.
(2) A frame L is extremally disconnected iff each dense sublocale of L is extremally

disconnected.
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