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Abstract

Remainders of subspaces are important e.g. in the realm of compactifications. Their
extension to pointfree topology faces a difficulty: sublocale lattices are more complicated
than their topological counterparts (complete atomic Boolean algebras). Nevertheless,
the co-Heyting structure of sublocale lattices is enough to provide a counterpart to sub-
space remainders: the sublocale supplements. In this paper we give an account of their
fundamental properties, emphasizing their similarities and differences with classical re-
mainders, and provide several examples and applications to illustrate their scope. In
particular, we study their behaviour under image and preimage maps, as well as their
preservation by pointfree continuous maps (i.e. localic maps). We then use them to char-
acterize nearly realcompact and nearly pseudocompact frames. In addition, we introduce
and study hyper-real localic maps.
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1. Introduction

In general topology, by a remainder of a Tychonoff space X it is usually understood
the subspace bX r X of some compactification bX of X. Remainders of subspaces
and their preservation by continuous maps play an important role in some classical
results. E.g., by the Henriksen-Isbell Theorem (cf. [21]), a continuous map f : X Ñ Y
of Tychonoff spaces is proper (= perfect [19, 3.7]) if and only if any of the following
equivalent conditions hold:

(R1) The Stone-Čech extension βpfq : βX Ñ βY of f takes remainder to remainder,
that is,

βpfqrβX rXs Ď βY r Y.
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(R2) For every compactification κY of Y , the extension rf : βX Ñ κY of f takes remain-
der to remainder, that is,

rf rβX rXs Ď κY r Y.

Hence, in the point-set context, remainder preserving maps are precisely the proper
maps.

This provides nice categorical characterizations of proper maps since remainder pre-
serving condition (R1) means precisely that the square

X
f //

βX

��

Y

βY

��
βX

βpfq // βY

is a pullback diagram (i.e., f is β-cartesian [35]), while (R2) is equivalent to the fact that

X
f //

βX

��

Y

κY

��
βX

rf // κY

is a pullback diagram. (For a broad categorical approach to properness and perfectness
see [14] and [35].)

The generalization of Henriksen-Isbell Theorem to pointfree topology faces a diffi-
culty: unlike the algebra PpXq of subspaces of a space X, the sublocale lattice SpLq of
a locale (frame) L is generally not Boolean, and therefore complements (and hence the
difference of two sublocales) do not necessarily exist. He and Luo [20] circumvented this
by grabbing the categorical conditions rather than (R1) and (R2) to characterize proper
maps of locales:

Theorem 1.1. [20, Theorem 1] Let f : L Ñ M be a localic map between completely
regular locales. Then the following statements are equivalent:

(i) f is proper.

(ii) For the Stone-Čech compactification βM : M Ñ βM of M , the following diagram is
a pullback square:

L
f //

βL

��

M

βM

��
βL

βpfq // βM
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(iii) For every compactification κM : M Ñ κM of M , the following diagram is a pullback
square:

L
f //

βL

��

M

κM

��
βL

rf // κM

Nevertheless, in spite of being no longer a (atomic) Boolean algebra, SpLq is always
a coframe (i.e., the dual of a frame). This means that SpLq is a co-Heyting algebra
and, therefore, ‘residuated’ in the sense that there is a binary operation that acts like
a subtraction. The existence of such an operation permits the computation of residuals
Lr S in the absence of a unary complement operation.

Thus, the class of localic maps that take remainder to remainder i.e., that satisfy the
counterpart of conditions (R1) or (R2) with respect to that subtraction, still remains to
be studied, and compared with that of proper maps.

In [17], Dube and Naidoo approached remainder preservation with a definition heavily
dependent on the point spectra of the generalized pointfree spaces. It is the aim of this
paper to make the notion of remainders and remainder preservation truly pointfree, by
investigating the natural, alternative, direct approach based on the co-Heyting structure
of sublocale lattices, with no reference to points whatsoever. We would like to stress
that this approach is not new in the literature. In fact, one may find it, formulated in
terms of the frame of congruences, somewhat hidden amidst the study of some perfect
compactifications in a paper by D. Baboolal ([1]; see also [2] where it appears in an even
more particular situation). Our goal here is to collect the basic algebraic structure and
results for its use in the general pointfree setting.

Note that the fundamental fact that, for any frame L, SpLq is generally a coframe
rather than a frame is, after all, a pleasant surprise. Actually, in the classical case, the
Heyting operator AÑ B in the Boolean PpXq is given by  AYB, never used in point-
set topology, whereas it is the co-Heyting operator given by the set-theoretic difference
B X A “ B rA that is actually used. Thus, in the category of locales one should take
the co-Heyting operator in SpLq as the natural substitute for the set-theoretic difference.
This idea goes back to Isbell and Plewe [23, 32, 33] (cf. [29, VI.5]) and provides the
right definition for the remainder of a locale and the corresponding concept of mapping
remainder preservation.

The paper is organized as follows. In the first sections, we mostly survey familiar
material of pointfree topology and lattice theory (but also including a few new results)
that are of relevance for the study of remainders. More specifically, we start in Section 2
with some basic background on the categories of frames and locales, and in Section 3 we
survey the structure of coframes (meaning complete co-Heyting algebras, the dual lattices
of frames) and the properties of the co-Heyting operator (here called pseudodifference
operator). Then, in Section 4, we look for additional properties of pseudodifferences in
the more special coframe of sublocales of a locale. Section 5 deals with their behaviour
under image and preimage maps. Remainders and remainder preservation are introduced
and studied respectively in sections 6 and 7 and in Section 8 we compare remainder
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preserving maps to proper maps. In particular, Section 6 provides several examples that
illustrate the usefulness of our approach (namely, in the study of the Alexandroff, Stone-
Čech and Freudenthal compactifications). In Section 9, we present some more illustrative
examples, now concerning the study of some particular classes of locales and localic maps
as e.g. nearly realcompact and nearly pseudocompact locales and hyper-real localic maps.
Finally, in the last section we compare our approach to the previous treatment by Dube
and Naidoo [18].

Some of the results in this paper were presented for the first time by J. Picado at the
conference held at the University of Cape Town in March 2016 to celebrate Bernhard
Banaschewski’s 90th birthday. We were pleased to see in a very recent paper ([16]) that
T. Dube uses our approach to characterize realcompact locales.

2. Frames and locales

In the pointfree (localic) approach to topology, topological spaces are replaced by
locales, seen as generalised spaces where points are not explicitly mentioned. Formally, a
locale L is defined to be a special complete lattice (where we denote top, resp. bottom,
by 1, resp. 0), usually called a frame, in which finite meets distribute over arbitrary
joins, i.e.

a^
Ž

S “
Ž

ta^ b | b P Su for all a P L and S Ď L.

Thus, in a frame L the mappings px ÞÑ pa^ xqq : LÑ L preserve suprema and hence we
have the right Galois adjoints py ÞÑ paÑ yqq : LÑ L, satisfying

a^ x ď y iff x ď aÑ y (2.1)

and making L a (complete) Heyting algebra. The element a Ñ y (the relative pseudo-
complement of a with respect to y) is given by the formula

aÑ y “
Ž

tx | a^ x ď yu.

The (absolute) pseudocomplement of a is the element

a˚ “ aÑ 0 “
Ž

tx | x^ a “ 0u.

If X is a topological space we have the frame OX of its open sets. A frame is spatial
if it is isomorphic with some OX.

Regarding morphisms, the role of the usual continuous functions is taken by those
maps f : L Ñ M between locales, called localic maps [29], such that, for every a P L,
b PM , S Ď L,

(L1) fp
Ź

Sq “
Ź

f rSs (and, in particular, fp1q “ 1),

(L2) fpf˚pbq Ñ aq “ bÑ fpaq, and

(L3) fpaq “ 1 ñ a “ 1,
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where f˚ : M Ñ L denotes the left adjoint of f provided by property (L1). These left
adjoints are the frame homomorphisms, i.e. the maps between frames that preserve
arbitrary joins (in particular, the top element 1) and finite meets (in particular, the
bottom element 0). Note that, for each frame homomorphism h : M Ñ L, hpx˚q ď hpxq˚

for every x PM .
If f : X Ñ Y is a continuous maps of spaces, we have the frame homomorphism

Opfq : OY Ñ OX defined by OpfqpV q “ f´1rV s for every V P OY .
Locales and localic maps form the category Loc of locales while frames (= locales) and

frame homomorphisms form precisely its dual category Frm. Our references for locales
and frames are [25] and [29]. Here we just recall the definitions of some of the main
classes of frames mentioned along the paper.

A frame L is compact (resp. Lindelöf) whenever
Ž

A “ 1 for A Ď L implies 1 “
Ž

B
for some finite (resp. countable) B Ď A. A frame L is regular if, for each a P L,
a “

Ž

tb P L | b ă au where b ă a (‘b is rather below a’) means that b˚ _ a “ 1.
The completely below relation ăă is the interpolative modification of the rather below
relation. Elements a, b P L satisfy băă a if and only if there exists a subset taq | q P
r0, 1s XQu Ď L with a0 “ b and a1 “ a such that ap ă aq whenever p ă q in r0, 1s XQ.
A frame L is completely regular if, for each a P L, a “

Ž

tb P L | băă au.
The points of a locale L are the prime (or meet-irreducible) elements, that is, the

p P Lr t1u such that p “ a^ b implies p “ a or p “ b. A special kind of points are the
completely prime elements of L that satisfy the condition p “

Ź

S ñ p P S for every
S Ď L. For any locale L, its spectrum ΣL is the space of all points of L with the open
sets Σa “ tp | a ę pu, a P L.

3. Coframes

Dual lattices of frames, that is, complete co-Heyting algebras play a crucial role in
this paper. As usual, we refer to them as coframes. Thus, in a coframe L the mappings
py ÞÑ pa_ yqq : LÑ L have left Galois adjoints px ÞÑ pxr aqq : LÑ L, satisfying

xr a ď y iff x ď a_ y. (3.1)

Hence we have an extra operation, the co-Heyting operation xr a given by the formula

xr a “
Ź

ty | x ď a_ yu. (3.2)

We refer to xr a as the relative pseudodifference of a with respect to x.
Clearly, p´qr a being a left adjoint, we have

p
Ž

iPJ

biqr a “
Ž

iPJ

pbi r aq. (3.3)

From (3.1) we can also obtain the contravariant adjunction

cr a ď b iff cr b ď a (3.4)

which yields
br

Ź

iPJ

ai “
Ž

iPJ

pbr aiq. (3.5)
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Each Boolean algebra is both a Heyting and a co-Heyting algebra: just set

aÑ b “  a_ b and br a “ b^ a. (3.6)

Dualising the proofs in [29, Prop. III.3.1.1], one gets immediately the following:

Proposition 3.1. In any complete co-Heyting algebra L we have:

(P1) ar a “ 0 and ar 0 “ a for all a.

(P2) b ď a iff br a “ 0.

(P3) br a ď b.

(P4) br a “ pb_ aqr a.

(P5) a_ pbr aq “ a_ b.

(P6) ar par bq ď a^ b.

(P7) a_ b “ a_ c iff br a “ cr a.

(P8) cr pa_ bq “ pcr bqr a and therefore pcr bqr a “ pcr aqr b.

(P9) for every a, b P L, b “ pb^ aq _ pbr aq.

The (absolute) pseudodifference (supplement in [26, 32]) of an element a is the element

a1 “ 1 r a “
Ź

ty | a_ y “ 1u. (3.7)

Of course, a _ a1 “ 1 (and a1 is the smallest x such that a _ x “ 1) but in general
a^ a1 ě 0. The following properties are also obvious:

Proposition 3.2. In any complete co-Heyting algebra L we have:

(1) a ď b ñ a1 ě b1.

(2) a2 ď a and a3 “ a1.

(3) 01 “ 1 and 11 “ 0.

(4) a1 “ 0 iff a “ 1.

(5) p
Ź

iPJ aiq
1 “

Ž

iPJ a
1
i.

Remarks 3.3. (a) Let a be complemented with complement  a. Then, for every b, we
have:

(6) ar b “ a^ b1.

(7) br a “ b^ a.
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Indeed: (6) b_ pa^ b1q “ b_ a ě a; moreover, if x_ b ě a then

x_ b_ a “ 1 ñ x_ a ě b1 ñ px_ aq ^ a ě a^ b1 ñ x ě x^ a ě a^ b1.

(7) pb^ aq _ a “ b_ a ě b; on the other hand,

x_ a ě b ñ px_ aq ^  a ě b^ a ñ x ě x^ a ě b^ a.

This shows how the co-Heyting operation mimics the set difference B r A in the
Boolean algebra PpXq.
(b) Under some condition of existence of complements, we have another formula of set-
theoretical differences:

(8) ar pbr cq “ pa^ cq _ par bq whenever c is complemented.

Indeed: By the previous remark, a r pb r cq “ a r pb ^  cq while pa ^ cq _ pa r bq “
par cq _ par bq. Now apply identity (3.5).

(c) It might be added that Boolean algebras are precisely the co-Heyting algebras in
which a2 “ a for every a (as already menioned, in any Boolean algebra B the operator
b r a “ b ^  a is a co-Heyting operation; conversely, if a2 “ a for all a P B, then
a^ a1 “ pa^ a1q2 “ pa1 _ a2q1 “ 0 by Proposition 3.2).

(d) For any coframe homomorphism f : L Ñ M (i.e. a map between coframes that
preserves arbitrary meets and finite joins), fpa1q ě fpaq1 for every a P L (because fpa1q_
fpaq “ fp1q “ 1).

Proposition 3.4. Let L be a complete co-Heyting algebra and a, b, x P L. If a^x “ b^x
then a_ x1 “ b_ x1.

Proof. It is a consequence of the following obvious fact:

pa^ xq _ x1 “ pb^ xq _ x1 iff a_ x1 “ b_ x1.

We recall that a lattice L is subfit resp. weakly subfit if

a ę b in L ñ Dc P L pa_ c “ 1 ‰ b_ cq

resp.
a ę 0 in L ñ Dc P L pa_ c “ 1 ‰ cq.

Using (3.7), it is clear that weak subfitness means precisely that

a1 “ 1 ô a “ 0

(this is the dual property of (4) in Proposition 3.2).
Under co-subfitness conditions, there are surprising formulas for pseudodifferences as

certain joins (see [30, Prop. 6.1] for the proof of the dual result):
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Proposition 3.5. In a complete co-Heyting algebra L, the formula

br a “
Ž

tx | a^ x “ 0, x ď bu (3.8)

for the co-Heyting operation holds if and only if the dual lattice Lop is subfit.
The formula

a1 “
Ž

tx | a^ x “ 0u (3.9)

for pseudodifference holds if and only if Lop is weakly subfit.

Proposition 3.6. Let L be a complete co-Heyting algebra such that Lop is subfit. Then,
for any a, b P L and any complemented c,

c^ pbr aq “ pc^ bqr a. (3.10)

Proof. Using (3.8) and the well-known fact that in any distributive lattice each comple-
mented element c satisfies the distributivity law c^

Ž

S “
Ž

tc^s : s P Su for any subset
S, we have c ^ pb r aq “

Ž

tc ^ x : x ^ a “ 0, x ď bu ď
Ž

ty : y ^ a “ 0, y ď c ^ bu “
pc^ bqr a.

The next result was first proved by Plewe in [32, Lemma 1.1] for coframes of sublocales
but it is indeed a general result on coframes.

Proposition 3.7. Let L be a complete co-Heyting algebra such that Lop is weakly subfit.
Then, for any x P L and any complemented c and d,

c_ x “ d_ x iff cr x “ dr x.

Proof. ð: c_ x “ pc_ xq ^ px1 _ xq “ pc^ x1q _ x “ pd^ x1q _ x “ d_ x.

ñ: Now, using (3.9) we get

cr x “ c^ x1 “ c^
Ž

tt | t^ x “ 0u “
Ž

tc^ t | t^ x “ 0u.

But, for each such t, c^ t “ pc^ tq _ pt^ xq “ pc_ xq ^ t “ pd_ xq ^ t “ d^ t. Hence
cr x “

Ž

td^ t | t^ x “ 0u “ d^ x1 “ dr x.

4. Coframes of sublocales

A sublocale of a locale L is a subset S Ď L closed under arbitrary meets such that

@x P L @s P S pxÑ s P Sq.

The set SpLq of all sublocales of L forms a coframe under inclusion (see [29, Th. III.3.2.1]
for a proof), in which arbitrary infima coincide with intersections, t1u is the bottom
element and L is the top element (that we simply denote by 0 and 1, respectively).
Regarding suprema, there is the formula

Ž

iPI

Si “ t
Ź

A : A Ď
Ť

iPI

Siu (4.1)

for every tSi P SpLq : i P Iu.
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For any a P L, the sets

cLpaq “ Òa “ tx P L | x ě au and oLpaq “ taÑ b | b P Lu

are the closed and open sublocales of L, respectively (that we shall denote simply by
cpaq and opaq when there is no danger of confusion). For each a P L, cpaq and opaq
are complements of each other in SpLq,

Ş

i cpaiq “ cp
Ž

i aiq, cpaq _ cpbq “ cpa ^ bq,
Ž

i opaiq “ op
Ž

i aiq and opaq X opbq “ opa^ bq.
Recall the following basic facts about sublocales S of L (cf. [29]):

(F1) SpSq “ tT X S | T P SpLqu and lattice operations in SpSq are given by those in
SpLq (the only difference is that the two lattices may have different top elements).

(F2) For any open (resp. closed) sublocale U of L, U X S is an open (resp. closed)
sublocale of S. More specifically, for U “ oLpaq (resp. U “ cLpaq), U X S “

oSpνSpaqq (resp. U X S “ cSpνSpaqq, where νSpaq “
Ź

ts P S | s ě au.

(F3) If T is an open (resp. closed) sublocale of S, then T “ U X S for some U “ opaq
(resp. U “ cpaq) with a P S.

(F4) Each S P SpLq is an intersection of complemented sublocales, specifically

S “
Ş

tcpaq _ opbq | νSpaq “ νSpbq, a ě bu.

Note that (F4) means that the dual of SpLq is a zero-dimensional frame and therefore
a subfit frame. Hence, all the formulas for pseudodifferences from the preceding section,
valid in any coframe whose dual frame is subfit, specialize to the following formulas in
SpLq:

Proposition 4.1. For any A,B P SpLq and any complemented C,D P SpLq we have:

(1) B rA “
Ž

tS P SpLq | AX S “ 0, S Ď Bu.

(2) B rA “
Ş

tS P SpLq | S complemented, B Ď S _Au.

(3) B rA “
Ž

tcpaq X opbq XB | νApaq “ νApbq, a ď bu.

(4) LrA “
Ž

tS P SpLq | AX S “ 0u.

(5) LrA “
Ş

tS P SpLq | S complemented, S _A “ 1u.

(6) LrA “
Ž

tcpaq X opbq | νApaq “ νApbq, a ď bu.

(7) C X pArBq “ pC XAqrB.

(8) C _A “ D _A iff C X pLrAq “ D X pLrAq.

(9) A Ď B iff for any complemented C P SpLq, B Ď C ñ A Ď C.

(10) LrA Ď LrB iff for any complemented C P SpLq, C _B “ 1 ñ C _A “ 1.
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Proof. (1) follows from (3.8), and (2) can be derived from (3.2) and the fact that every
sublocale is an intersection of complemented ones.
(3): Using (F4) and (3.5) one gets

B rA “
Ž

tB r pcpaq _ opbqq | νApaq “ νApbq, a ě bu

and then, by property (7) in Remark 3.3,

B rA “
Ž

tcpbq X opaq XB | νApaq “ νApbq, a ě bu.

(4) is a particular case of (1), (5) is a particular case of (2), (6) is a particular case of
(3), while (7) resp. (8) is just Proposition 3.6 resp. 3.7 applied to SpLq.
(9): The implication “ñ” is obvious. Conversely, let B “

Ş

iPI Ci for some complemented
Ci. Then A Ď Ci for every i, that is, A Ď B.
Finally, (10) follows immediately from (9).

Remarks 4.2. (a) Regarding property (9) above, note that, on the other hand, the
condition pC Ď A ñ C Ď Bq for every complemented C in SpLq does not necessarily
imply that A Ď B.

(b) It is clear from formulas (1) and (3) above that for sublocales A Ď B of L, B r A
calculated in SpBq (that is, the pseudodifference A1 in SpBq) coincides with B r A
calculated in SpLq.
(c) Regarding property (8) of Remark 3.3(b), there is not much hope to improve it in
SpLq. Indeed, if the formula holds for any A,B,C, the case A “ B “ L would mean
that C2 “ C and thus, by Remark 3.3(c), that SpLq would be Boolean.

(d) Let S P SpLq. By (P2), L r S “ 0 iff S “ L. On the other hand, there might
exist nonzero S such that L r S “ L. It is easy to check, using 4.1(5), that these are
precisely the sublocales S that contain no nonzero complemented sublocales, introduced
by T. Plewe [33] as the rare sublocales.

(e) [31] has a few more special formulas for the supplements in particular classes of frames
like the T1-spatial or subfit ones, where they are used to show that the system of all joins
of closed sublocales of L is the Booleanization of SpLq. Recently, in [16], T. Dube uses
these formulas to compute remainders βLrL, βLrυL and βLrλL for any completely
regular L (see Section 7 below for details about υL and λL).

For each sublocale A of L, the closure and interior of A are defined, respectively, as
clLA “

Ş

tcpaq | A Ď cpaqu and intLA “
Ž

topaq | opaq Ď Au. We shall write clA instead
of clLA (and, similarly, for the interior) when there is no danger of confusion about
the ambient frame. It is clear that clA “ cp

Ź

Aq; on the other hand, since opaq Ď A
if and only if A1 Ď cpaq, we have intA “ op

Ź

A1q. In particular, cl opaq “ cpa˚q and
int cpaq “ opa˚q.

It then follows that intA2 “ intA and their complement is

cl pLrAq “ clA1 “ cp
Ź

A1q “ Lr intA. (4.2)

Note, however, that the corresponding formula for the interior does not hold generally:

int pLrAq “ op
Ź

Aq Ď op
Ź

A2q “ Lr clA.
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In fact, from (4.2) it only follows that

int pLrAq “ Lr cl pLr pLrAqq “ Lr clA2. (4.3)

In summary, the interior and closure operators generate from any sublocale A the
following three towers of inclusions (the arrow S oo // T indicates that S and T are
complemented to each other):

intA Ď A Ď clA

intA2OO

��

Ď A2
?�

Ď clA2OO

��

?�

clA1 Ě A1 Ě intA1

5. Images, preimages and pseudodifferences

Let f : LÑM be a localic map. The image f rSs of any sublocale S Ď L is a sublocale
of M and we have the localic image function

f r´s : SpLq Ñ SpMq.

On the other hand, the set-theoretic preimage f´1rSs of a sublocale S is not necessarily
a sublocale. It is a subset closed under meets, though, and hence, by the formula (4.1),
there is the largest sublocale

f´1rSs “
Ž

tT P SpLq | T Ď f´1rSsu

contained in f´1rSs. This defines the localic preimage function

f´1r´s : SpMq Ñ SpLq,

right adjoint of f r´s (that is, f rSs Ď T if and only if S Ď f´1rT s). Note that f´1rSs is
the pullback in Loc of S along f . For closed sublocales we have f´1rcpaqs “ f´1rcpaqs “
cpf˚paqq. For open sublocales the localic and set-theoretic preimages do not necessarily
coincide, but we do have f´1ropaqs “ opf˚paqq.

The preimage function is a coframe homomorphism (that preserves complements)
while f r´s is a colocalic map ([29]). Hence the latter satisfies the dual properties of
(L1)-(L3) in Section 2:

(L11) f r
Ž

iPI Sis “
Ž

iPI f rSis (in particular, f r0s “ 0).

(L21) f rS r f´1rT ss “ f rSsr T .

(L31) f rSs “ 0 ñ S “ 0.

On the other hand, the preimage being a coframe homomorphism satisfies

Lr f´1rT s Ď f´1rM r T s. (5.1)

11



Remarks 5.1. (a) By (L11), f rL r Ss “
Ž

tf rRs | R X S “ 0u. So, the inclusion
f rLr Ss ĎM r T means that

Ž

tf rRs | RX S “ 0u Ď
Ş

tV | V _ T “ 1u,

that is, for every R P SpLq and V P SpMq, RX S “ 0 and V _ T “ 1 imply f rRs Ď V .

(b) The case S “ L in (L21) says that

f rLr f´1rT ss “ f rLsr T ĎM r T. (5.2)

Thus
f rLr f´1rT ss “M r T (5.3)

whenever f is onto.

(c) By (5.1), f rLr f´1rT ss Ď ff´1rM r T s ĎM r T ĎM r f rf´1rT ss. Hence, for any
sublocale S of L which is the preimage of some sublocale T of M ,

f rLr Ss ĎM r f rSs. (5.4)

(d) The reverse inclusion of (5.4) holds for any sublocale S provided f is onto. Indeed,
we have S Ď f´1rf rSss, thus L r f´1rf rSss Ď L r S and consequently (using (5.3) for
T “ f rSs)

M r f rSs “ f rLr f´1rf rSsss Ď f rLr Ss. (5.5)

6. Remainders

Recall that a sublocale S of a locale L is dense precisely when 0 P S, since S “Ò p
Ź

Sq
is all of L if and only if 0 “

Ź

S P S. It follows from formula (4.2) that Lr A is dense
iff intA “ 0.

Remark 6.1. For sublocales S Ď T Ď L, if T is dense in L and S is closed in L, then
T r S is dense in Lr S. In fact, if S “ cLpaq for some a P T , then T r S “ oT paq while
Lr S “ oLpaq; in particular, 0TrS “ aÑ 0T “ aÑ 0L “ 0LrS since 0T “ 0L.

Recall further that a compactification of a locale L is a compact regular locale M
together with a dense localic embedding κ : L � M . Being dense means that κrLs is
dense in M , that is, κp0q “ 0. For general background on compactifications of frames
and locales the reader is referred to Banaschewski [5].

It seems now appropriate to introduce the following definition:

Definition 6.2. For any compactification κ : L � M , the remainder of L in the com-
pactification is the sublocale M r κrLs of M . Sometimes, when no confusion is possible,
we shall simply denote the sublocale κrLs of M by L and its remainder in M by M rL.

Let us mention that this notion appeared already in the literature in a paper by D.
Baboolal [1], formulated for the Freudenthal compactification in terms of its frame of
congruences but it is readily seen to be equivalent to the definition above.

Let us compute remainders in some illustrative examples:

12



(A) Alexandroff compactification ([2, 3, 5]).

Let κ : L � M be a compactification of a locally compact (i.e., continuous) frame
L and let mL “

Ž

tκpxq | x ! 1u. Since κ is an embedding, that is, κ˚κ “ 1, we have
κ˚pmLq “

Ž

x!1 x “ 1 by continuity. It follows that κrLs Ď opmLq: for every x P L,

κpxq “ κp1 Ñ xq “ κpκ˚pmLq Ñ xq “ mL Ñ κpxq.

Hence M r L Ě cpmLq and we may regard κ as a localic embedding

κ : L� opmLq.

If one assumes moreover that L is regular, one can say more. Indeed, as proved in [2, Th.
2.2], in that case κ˚ : opmLq� L is a codense homomorphism, that is, κ˚pxq “ 1 ñ x “ 1.

Remark 6.3. In localic terms, this means that κrLs is a codense sublocale of opmLq

([15], called replete in [30]), that is, cpaq X κrLs ‰ 0 for every a ‰ 1 in opmLq.

Lemma 6.4. Let f : L Ñ M be a localic map with M regular and f rLs codense in M .
Then f is onto.

Proof. Let y be an arbitrary element of M and x “ ff˚pyq. By regularity, x “
Ž

tz |
z ă xu. For each such z we have 1 “ f˚pz˚q _ f˚pxq “ f˚pz˚q _ f˚pyq “ f˚pz˚ _ yq.
Since f rLs is codense in M , this implies z ă y. Hence y “ x “ ff˚pyq P f rLs.

Applying this property to our κ : L� opmLq we get immediately the following:

Proposition 6.5. Let κ : L � M be a compactification of a regular continuous frame
L. Then κrLs “ opmLq and therefore M r L “ cpmLq.

Of course, if L is non-compact then mL ă 1 and M r L ‰ 0.

(B) Stone-Čech compactification ([8]).

A crucial example in this context is the pointfree Stone-Čech compactification, in-
troduced by Banaschewski and Mulvey in [8]. It establishes a reflection of the category
of completely regular locales into the (full) subcategory of compact, completely regular
locales. We recall it briefly here. Let IpLq be the poset of all ideals of L (ordered by in-
clusion). Its top element is L while t0u is the bottom element. Since any intersections of
ideals is an ideal, IpLq is a complete lattice with (arbitrary) meets given by intersections.
The joins are given by the formula

Ž

α
Iα “ t

Ž

F | F Ď
Ť

α
Iα, F finiteu. (6.1)

It follows from this formula that IpLq is a compact frame.
Now assume that L is completely regular: for each a P L, a “

Ž

tx P L | x ăă au.
An I P IpLq is called regular (with respect to the strong relation ăă) if it satisfies the
condition

@ a P I D b P I paăă bq. (6.2)

Examples of regular ideals are the

�

a “ tx P L | xăă au for any a P L. The collection
RpLq of all regular ideals is a subframe of IpLq hence a compact frame. It is also easily
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shown to be regular and hence, being compact, completely regular. The Stone-Čech
compactification of L is the dense localic embedding

βL : L� βL “ RpLq

given by βLpaq “

�

a. Its left adjoint is the frame homomorphism β˚L : I ÞÑ
Ž

I. The
following properties are well known:

(a) β˚LβL “ idL.

(b) @I P βL, I “
Ž

tβLpaq | a P Iu (by formula (6.1)).

(c) βLpa
˚q “ βLpaq

˚, I˚ “ βLpp
Ž

Iq˚q.

(d) βL preserves ăă and βLpaq ă I iff a P I.

Examples 6.6. (1) In any Boolean frame, every ideal is regular (since x ă x for every
complemented x). Hence βL “ RpLq “ IpLq for any Boolean L. In particular, for L “ 2,
βL “ tÓ0, Ó1u » 2.

(2) For finite locales L, every ideal is principal. In this case, L being completely regular
makes it Boolean, so that βL is isomorphic to L.

(3) For any compact completely regular locale L, βL : L Ñ βL is an isomorphism and
thus βL “ βLpLq – L ([8]).

The corresponding functor β : CRegLoc Ñ KCRegLoc (that shows that the cat-
egory KCRegLoc of compact completely regular locales is a reflective subcategory of
CRegLoc) is defined as follows:

L
βL //

f

��

βL

βpfq

��

Óf˚rIs

M

f˚

TT

βM

// βM

βpfq˚

TT

I
_

βpfq˚

OO

We call βpfq : βLÑ βM the Stone extension of f . It is defined directly by

βpfqpJq “
Ž

tI P βM | βpfq˚pIq Ď Ju “
Ž

tI P βM | f˚rIs Ď Ju.

By 4.1(4), the remainder of L in βL is given by

βLr L “
Ž

tS P SpβLq | S X βLrLs “ 0u “
Ž

tS P SpβLq |

�

a P S ñ a “ 1u.

Note that
βLr L “ 0 iff L “ βL (6.3)

but, on the other hand, βL r L “ βL does not imply in general that L “ 0 (only the
converse implication holds).

(C) Freudenthal compactification ([1]).

A regular frame L is called rim-compact ([1]) if each a P L is a join of elements u
such that cpu_u˚q is compact. A basis B of a frame L is a π-compact basis if, for every
a, b P B, cpa_ a˚q is compact, a˚ P B, a^ b P B and a_ b P B.

14



Remark 6.7. It is easy to check that in any rim-compact frame L, the subset B0 “ tb P
L | cpb_ b˚q is compactu is a π-compact basis.

Given a π-compact basis B for a rim-compact frame L, define a relation �B on L by
a�B b if and only if there exists u P B such that a ă u ă b. This is a strong relation on
L ([5]) and hence establishes a compactification

γBL : L� γBL.

Here γBL is the frame of ideals of L regular with respect to �B (i.e., the ideals that satisfy
a similar condition to (6.2) for �B), and γBL paq “ tx P L | x �B au. The left adjoint
pγBL q

˚ is again given by joins: pγBL q
˚pIq “

Ž

I. Note that γBL rBs “ tγBpbq | b P Bu is a
basis for γBL.

This is the π-compactification of L induced by basis B. The Freudenthal compactifi-
cation of L ([1]) is just the compactification γB0

L induced by the basis B0 of the remark
above, that we denote as γL : L� γL.

Remark 6.8. Like the Stone-Čech compactification, this is an example of a perfect
compactification ([1]), i.e. γLpu_ u

˚q “ γLpuq _ γLpu
˚q for every u P L.

Proposition 6.9. Let γL : L� γL be the Freudenthal compactification of a rim-compact
frame L. Then γLr L is a zero-dimensional sublocale of γL.

Proof. We prove it in two steps:
(1) tj˚LγLpbq | b P B0u is a basis for γL r L (where jL denotes the sublocale embedding
γLr L� γL);
(2) Each j˚LγLpbq (b P B0) is complemented in γLr L.

Let us proceed with it:
(1) This is an immediate consequence of the fact that γLrB0s is a basis for γL. In fact,
each a P γLr L is in γL thus there are some bi P B0 (i P Iq such that a “

Ž

iPI γLpbiq;
then a “ j˚Lpaq “

Ž

iPI j
˚
LγLpbiq.

(2) First, for each b P B0 we have

j˚LγLpbq ^ j
˚
LγLpb

˚q “ j˚LpγLpbq ^ γLpb
˚qq “ j˚LγLp0q “ 0

(since γL is dense). Moreover,

j˚LγLpbq _ j
˚
LγLpb

˚q “ j˚LpγLpbq _ γLpb
˚qq “ j˚LγLpb_ b

˚q

(because γL being perfect, preserves disjoint binary joins [1, Theorem 3.5(3)]). It suffices
now to check that j˚LγLpb _ b˚q is the top element of the remainder γL r L, that is,
1γL. By the definition of j˚L, the image j˚LγLpb_ b

˚q is the element νγLrLpγLpb_ b
˚qq of

γLrL. Let us consider the restriction of γL : LÑ γL to the closed part cpb_ b˚q. This
is clearly an embedding

γL |cpb_b˚q : cpb_ b
˚q� cpγLpb_ b

˚qq,

a dense one obviously. In addition, cpb _ b˚q is compact (by the definition of B0) and
regular (as a sublocale of a regular locale); cpγLpb _ b˚qq is compact (because it is a
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closed sublocale of a compact locale) and regular too. In conclusion, γL |cpb_b˚q is a
dense embedding between compact regular locales, hence an isomorphism. In particular,
γrLs Ě cpγLpb _ b˚qq. Now, the required fact that νγLrLpγLpb _ b˚qq “ 1 is clear: if
s P γL r L with s ě γLpb _ b˚q, then s P γL r cpγLpb _ b˚qq “ opγLpb _ b˚qq; hence
s P cpγLpb_ b

˚qq X opγLpb_ b
˚qq “ 0, that is, s “ 1.

7. Remainder preservation

In this section, except when otherwise noted, all our frames (locales) are completely
regular.

Let f : LÑM be a localic map between completely regular locales, S a sublocale of
L and T a sublocale of M . We say that f takes the remainder of S to the remainder of
T (briefly, takes S-remainder to T -remainder) if

f rLr Ss ĎM r T

that is,
Lr S Ď f´1rM r T s.

In particular, when the Stone extension βpfq : βL Ñ βM of f takes the remainder of
βrLs to the remainder of βrM s, we simply say that βpfq takes remainder to remainder.
In that case, the given localic f is said to be β-remainder preserving. We use a similar
terminology for other examples of reflections in the category of completely regular locales.

Evidently, compositions of β-remainder preserving maps are β-remainder preserving.

Remark 7.1. Any localic map f : L Ñ M with L compact is β-remainder preserving.
In fact, if L is compact, that is, βL “ L, then βL r L “ 0, by (6.3), and therefore
βpfqrβLr Ls “ βpfqr0s “ 0.

Let π be the unique localic map LÑ 2 (which is given by πp1q “ 1 and πpaq “ 0 for
every a ‰ 1). In [13], Chen shows that properness of maps characterizes compact locales
in the sense that a locale L is compact if and only if π : L Ñ 2 is proper (see Section 8
below for the definition of proper map of locales). Now, we have:

Proposition 7.2. A locale L is compact if and only if π : L Ñ 2 is β-remainder pre-
serving.

Proof. ð: By Example 6.6(1), β2 “ 2. Hence βpπqrβL r Ls Ď β2 r 2 “ 0. Then, by
(L31), βLr L “ 0 and therefore L Ě βLr pβLr Lq “ βL. Hence L “ βL is compact.
ñ: if L is compact, that is, βL “ L, then βpπq “ π and thus βpπqrβLrLs “ πr0s “ 0.

With υL and λL denoting, respectively, the realcompact reflection and the regular
Lindelöf reflection of a completely regular locale L, we may also speak about υ- and
λ-remainder preserving maps.

The realcompact reflection υ is a reflection of the subcategory of realcompact locales in
the category of completely regular frames. Recall that a frame L is said to be realcompact
[7] if, for any maximal ideal I of CozL (the cozero part of L [7]) such that

Ž

I “ 1, there
is a countable S Ď I such that

Ž

S “ 1. For more details about the construction of the
realcompact coreflection υL of an L see [7] (or [17]).
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The regular Lindelöf reflection λ (the Lindelöfication), originally constructed by Mad-
den and Vermeer in [28], shows that regular Lindelöf locales form a reflective subcategory
of the category of completely regular locales. Note that this is a fact in locales that has
no counterpart in the classical setting of topological spaces and continuous maps; in
general, λL is not spatial even when L is spatial. The reflection λL of any completely
regular locale L is the intersection of all cozero-sublocales of βL that contain L. For a
description of this construction in terms of frames see e.g. [17]. There one may also see
that β dominates λ and λ dominates υ, that is, there are dense embeddings

`L : υL� λL, κL : λL� βL. (7.1)

An inspection of the proof of Proposition 7.2 shows that a similar result holds more
generally for any monoreflection R on locales such that R2 “ 2. Hence we have imme-
diately:

Corollary 7.3. Let L be a locale: Then:

(1) L is Lindelöf if and only if π : LÑ 2 is λ-remainder preserving.

(2) L is realcompact if and only if π : LÑ 2 is υ-remainder preserving.

Remark 7.4. The remainder preserving maps treated by Dube and Naidoo in [17] for
the extensions β, λ and υ are referred to as, respectively, β-proper, λ-proper and υ-
proper. Corollary 7.3 above shows that our notion of remainder preserving maps does
not coincide with Dube-Naidoo’s one and might be viewed as a more satisfactory one.
Indeed, the latter notion of properness cannot distinguish between the preservation of
λ-remainders and υ-remainders: a localic map is λ-proper if and only if it is υ-proper
([17, Proposition 4.4]). This should not come as a surprise regarding the fact that Dube-
Naidoo’s properness definition relies on the points of the locale and the spectrum of
λpOXq for any space X is precisely υX ([28]). Our notion, being defined inside the
sublocale lattice, is able to distinguish the two cases.

The next result is the localic counterpart to Lemma 4.2 of [17].

Proposition 7.5. Suppose that in the diagram

S

jS

��

i

!!

T

jT

��

k

}}
R

g //

jR

}}

U

jU
!!

L
f

// M

the downward morphisms are embeddings, the triangles commute, the trapezoid commutes
and f takes S-remainder to T -remainder. If one of the following conditions holds then
g also takes S-remainder to T -remainder:
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(a) U is a complemented sublocale of M .

(b) T is a complemented sublocale of M .

Proof. By hypothesis, f rLr Ss ĎM r T . Then

U X pM r T q Ě U X f rLr Ss Ě f rf´1rU ss X f rLr Ss Ě f rf´1rU s X pLr Sqs.

In addition, f rRs “ grRs Ď U , that is, R Ď f´1rU s. Hence

grRr Ss “ f rRr Ss Ď f rRX pLr Sqs Ď U X pM r T q.

Finally:

(a) Under condition (a), we may apply Proposition 4.1(7) to conclude that grR r Ss Ď
U X pM r T q “ U r T .

(b) On the other hand, under condition (b) we may use property (7) in 3.3 to get
grRr Ss Ď U X pM r T q “ U X T “ U r T .

Corollary 7.6. Let f : LÑM with M complemented in βM .

(1) If f is β-remainder preserving then it is λ-remainder preserving.

(2) If f is λ-remainder preserving then it is υ-remainder preserving.

Proof. (1) By (7.1), we have the diagram

L

βL

��

f //

λL

""

M

βM

��

λM

{{
λL

λpfq //

κL

||

λM

κM

##
βL

βpfq
// βM

Apply Proposition 7.5.
(2) can be proved in a similar way.

Example 7.7. As an example of a family of locales M satisfying the assumption of
Corollary 7.6 we mention the locally compact, completely regular locales. In fact, any
locally compact, completely regular locale is an open sublocale (thus complemented) of its
Stone-Čech compactification ([29, VII.5.3]). Hence, for any locally compact, completely
regular locale M and any localic map f : LÑM ,

f is β-remainder pres. ñ f is λ-remainder pres. ñ f is υ-remainder pres.

We end this section with several characterizations of remainder preservation by localic
maps.
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Proposition 7.8. Let f : L Ñ M be a localic map, S P SpLq and T P SpMq. The
following are equivalent:

(i) f takes S-remainder to T -remainder.

(ii) For each U P SpMq,
U _ T “ 1 ñ f´1rU s _ S “ 1.

(iii) For each complemented C P SpMq,

C _ T “ 1 ñ f´1rCs _ S “ 1.

(iv) For each complemented C P SpMq and each complemented D Ě T ,

C _D “ 1 ñ f´1rCs _ E “ 1

for every complemented E Ě S.

(v) For each R P SpLq,
RX S “ 0 ñ R Ď f´1rM r T s.

(vi) For each R P SpLq and for each complemented C P SpMq,

pRX S “ 0, C _ T “ 1q ñ R Ď f´1rCs.

Proof. (i)ô(ii): Since

f´1rM r T s “ f´1r
Ş

tU P SpMq | U _ T “ 1us

“
Ş

tf´1rU s | U P SpMq, U _ T “ 1u

we have Lr S Ď f´1rM r T s if and only if Lr S Ď f´1rU s, that is, f´1rU s _ S “ 1, for
each such U .

(ii)ô(iii) and (iii)ô(iv) follow immediately from characterizations (9) and (10) in Propo-
sition 4.1.

(i)ô(v): f rL r Ss Ď M r T ô f r
Ž

tR | R X S “ 0us Ď M r T ô
Ž

tf rRs | R X S “
0u ĎM r T and this is equivalent to f rRs ĎM r T , that is, R Ď f´1rM r T s, for each
such R.

Finally, (v)ô(vi) follows immediately from Proposition 4.1(5).

For the sake of completeness let us also mention that our concept of remainder preser-
vation can be treated in the following more general setting. Let g : A Ñ B be a localic
map with a left adjoint g˚. For each x P A and y P B, g takes x-remainder to y-remainder
if

y˚ ď gpx˚q, that is, g˚py˚q ď x˚.

Note that in this section we have just treated the following two cases:

(1) A “ SpLqop, B “ SpMqop, g “ f r´s, g˚ “ f´1r´s, x “ S and y “ T .
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(2) A “ SpβLqop, B “ SpβMqop, g “ βpfqr´s, g˚ “ βpfq´1r´s, x “ L and y “M .

For instance, characterizations (v) and (vi) of the preceding proposition are particular
cases of assertions (a) and (b) in the following result (which is an easy consequence of
Proposition 3.5):

Proposition 7.9. Let g : AÑ B be a localic map. If A is weakly subfit then we have:

(a) g takes x-remainder to y-remainder if and only if for each a P A,

a_ x “ 1 ñ y˚ ď gpaq pi.e., g˚pyq ď aq.

(b) Moreover, if B is zero dimensional, then g takes x-remainder to y-remainder if and
only if for each a P A and for each complemented c PM ,

pa_ x “ 1, c^ y “ 0q ñ g˚pcq ď a.

8. Remainder preserving maps and proper maps

Recall from [20] (consult [36] for more information) that a localic map f : LÑM is
proper (aka perfect [24, 12]) if it is closed (that is, fpf˚pbq_aq “ b_ fpaq for every a P L
and b PM) and preserves directed joins. By Theorem 1.1 quoted in the Introduction,

a localic map f : L Ñ M between completely regular locales is proper if and
only if βpfq´1rM s “ L.

Proposition 8.1. Any proper localic map is β-remainder preserving.

Proof. Let βpfq´1rM s “ L. Then βpfqrβL r Ls “ βpfqrβL r βpfq´1rM ss, and by
property (L21) we get

βpfqrβLr Ls “ βpfqrβLsrM Ď βM rM.

Let us analyse why, contrarily to what happens in the spatial case, the converse
implication does not hold in general. In the pullback condition

βpfq´1rM s “ L,

the inclusion L Ď βpfq´1rM s means that βpfqrLs Ď M ; on the other hand, the reverse
inclusion is just what is needed in the proof of the preceding proposition:

βpfq´1rM s Ď Lñ βpfqrβLr Ls Ď βpfqrβLr βpfq´1rM ss

“ βpfqrβLsrM Ď βM rM.

Hence

βpfq´1rM s “ L ñ rβpfqrβLr Ls Ď βM rM and βpfqrLs ĎM s. (8.1)

What about the converse to Proposition 8.1?
In our situation, we have always f rLs ĎM , that is, βpfqrLs ĎM , so the equivalence

in Proposition 8.1 amounts to the equivalence between

βpfq´1rM s Ď L and βpfqrβLr Ls Ď βM rM.

This is just a general question about Galois adjunctions on coframes:
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In a Galois adjunction

pY,ďq
ϕ //

pX,ďq
ψ

oo

with ψ a coframe homomorphism (preserving complements) and ϕ its colocalic
left adjoint, is there any relation between conditions ψpxq ď y and ϕpy1q ď x1?

Fact 8.2. For every x P X and y P Y ,

ψpxq ď y ñ ϕpy1q ď x1. (8.1)

Proof. ψpxq ď y ñ y1 ď ψpxq1 and therefore

ϕpy1q ď ϕpψpxq1q “ ϕp1 r ψpxqq “ ϕp1qr x ď 1 r x “ x1.

(Evidently, Proposition 8.1 is a particular case of this fact.)
The converse to (8.1) holds whenever ψpx1q1 “ ψpxq (note that ψpx1q1 ď ψpxq is always

true). Indeed,

ϕpy1q ď x1 ô y1 ď ψpx1q ñ y ě y2 ě ψpx1q1 ě ψpx1q1 “ ψpxq.

In particular, this implies that the converse to (8.1) holds whenever x is complemented.
Hence:

Fact 8.3. If X is Boolean then the converse to (8.1) holds.

Note that, since ψ preserves complements, then ψ also preserves pseudodifferences in
case X is Boolean. Furthermore:

Fact 8.4. If the converse to (8.1) holds, then ψ preserves pseudodifferences.

Proof. Since ψpx1q_ψpx2q “ 1, we have ψpx1q ě ψpx2q1, that is, x1 ě ϕpψpx2q1q. Then, by
hypothesis, it follows that ψpxq ď ψpx2q and thus ψpx2q “ ψpxq (this means in particular
that ψ is skeletal). So ψpx2q “ ψpxq ě ψpxq2, that is, x2 ě ϕpψpxq2q and again by the
hypothesis we get ψpx1q ď ψpxq1, which confirms that ψpx1q “ ψpxq1 for every x P X.

This shows that in our context, any β-remainder preserving f : LÑM , with βM non-
Boolean, such that βpfq´1r´s does not preserve pseudodifferences is a counterexample
for the converse to Proposition 8.1.

9. Nearly realcompact frames

All frames L considered in this section are completely regular.
A Tychonoff space X has been defined by Blair and van Douwen [11] to be nearly

realcompact if X is nearly υX, that is, βXrυX is dense in βXrX. This was extended
to pointfree topology in [18], again via a definition that strongly depends on the points
of the frame. Needless to say, we may take a more direct and natural way and just define
a completely regular locale L to be nearly realcompact if βL r υL is dense in βL r L.
Clearly, any realcompact frame L is nearly realcompact since υL “ L.
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Remarks 9.1. (a) As in spaces, pseudocompact frames are the frames in which every
real-valued function is bounded ([6]). They are also characterized as the frames L for
which υL “ βL. Hence, any pseudocompact nearly realcompact frame is compact:
0 “ βLr υL dense in βLr L implies βLr L “ 0. This extends Corollary 4 of [7].

(b) A space X is nearly pseudocompact ([22]) if υX rX is dense in βX rX. Similarly,
let us define a frame L as nearly pseudocompact whenever υL r L is dense in βL r
L. Clearly every pseudocompact frame is nearly pseudocompact and every realcompact
nearly pseudocompact frame is compact (since, in that case, βLr L “ υLr L “ 0).

The treatment of nearly realcompact frames in [18] is based on a result about dense
subspaces (Lemma 3.1) that one can immediately extend to frames with the help of the
following lemma:

Lemma 9.2. A sublocale S of a locale L is dense if and only if S meets every nonempty
open sublocale of L.

Proof. ñ: Let U “ opaq “ ta Ñ x | x P Lu be a nonempty open sublocale of L. Since
a ‰ 0, then a˚ ‰ 1 and, of course, a˚ “ a Ñ 0 P S since 0 P S. Hence 1 ‰ a˚ P S X U ,
which shows that S X U ‰ t1u “ 0.

ð: The case cpaq Ě S for some cpaq ‰ 1 (i.e., opaq ‰ 0) would imply opaq X S “ 0
(because opaq X S Ď opaq X cpaq “ 0), a contradiction.

Proposition 9.3. Let L be a locale, and A Ď B sublocales of L. Then B1 is dense in A1

if and only if every open sublocale in L which meets A1 also meets B1.

Proof. ñ: Suppose B1 is dense in A1 and let U be an open sublocale of L which meets
A1, that is, U XA1 ‰ 0. Then U XA1 is a nonempty open sublocale of A1 and, by Lemma
9.2, B1 X U “ B1 X U XA1 ‰ 0.

ð: Let W ‰ 0 be an open sublocale of A1 and consider an open sublocale U of L such that
W “ UXA1. By the hypothesis, U meetsB1. Therefore 0 ‰ UXB1 “ UXA1XB1 “WXB1

and finally, by the Lemma, B1 is dense in A1.

Then we get the following characterizations of near realcompactness.

Corollary 9.4. For any completely regular frame L, the following conditions are equiv-
alent:

(i) L is nearly realcompact.

(ii) Every open sublocale in βL which meets L1 also meets pυLq1.

(iii) If there is some S P SpβLq such that S X L “ 0 and S X opaq ‰ 0, then there is
some T P SpβLq such that T X υL “ 0 and T X opaq ‰ 0.

Proof. (i)ô(ii) is an immediate consequence of the preceding proposition while (ii)ô(iii)
follows by using formula (4) of Proposition 4.1 and the fact that any open sublocale
distributes over arbitrary joins.
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Hyper-real continuous maps were introduced by Blair in the unpublished manuscript
[10]. These are maps that preserve realcompactness by images and pseudocompactness
by preimages. Extending Blair’s terminology to the pointfree setting, we may say that a
localic map f : LÑM is hyper-real if

βpfqrβLr υLs Ď βM r υM. (9.1)

Lemma 9.5. A frame L is nearly realcompact if and only if

L_ clβLrLpβLr υLq “ βL. (9.2)

Proof. If L is nearly realcompact then clβLrLpβLrυLq “ βLrL. Hence L_clβLrLpβLr
υLq “ L _ pβL r Lq “ βL. The converse is also obvious: L _ clβLrLpβL r υLq “ βL
implies clβLrLpβLr υLq Ě βLr L.

Remark 9.6. As in spaces, given a tower S Ď T Ď L of sublocales of L, clT pSq “
clLpSq X T . Hence clβLrLpβL r υLq Ď clβLpβL r υLq and it follows from (9.2) that
L_ clβLpβLr υLq “ βL holds in any nearly realcompact frame.

Lemma 9.7. Let f : L Ñ M be a localic map. Then, for every sublocale S of L,
f rclLpSqs Ď clM pf rSsq.

Proof. Actually,

f rclLpSqs “ f r
Ş

tcpaq | S Ď cpaqus “
Ş

tf rcpaqs | S Ď cpaqu

and the last intersection is contained in clM pf rSsq as we now show:
Let cpbq with f rSs Ď cpbq. This means that fpsq ě b, that is, s ě f˚pbq, for all

s P S. Hence S Ď cpf˚pbqq and, moreover, f rcpf˚pbqqs Ď cpbq since x ě f˚pbq implies
fpxq ě ff˚pbq ě b.

Lemma 9.8. Let f : LÑM be an hyper-real localic map. Then

βpfqrclβLpβLr υLqs Ď clβM pβM r υMq.

Proof. Apply Lemma 9.7 to get βpfqrclβLpβL r υLqs Ď clβM pβpfqrβL r υLsq and then
use condition (9.1) of hyper-real maps.

Finally, we can show that near realcompactness is an invariant property under hyper-
real localic maps.

Theorem 9.9. Let f : LÑM be an hyper-real (localic) map. If L is nearly realcompact
and f is a surjection, then M is also nearly realcompact.

Proof. Using Lemma 9.5 we get

M “ f rLs “ βpfqrLs Ď βpfqrβLs “ βpfqrL_ clβLrLpβLr υLqs.

Then, by Remark 9.6, we have

M Ď βpfqrL_ clβLpβLr υLqs “ βpfqrβLs Ď βM.
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In particular, M is dense in βpfqrL _ clβLpβL r υLqs. Since the latter is a compact
sublocale of βM (because the image of any compact sublocale under a localic map is
compact), we may conclude that

βpfqrL_ clβLpβLr υLqs “ βM.

Furthermore, by Lemma 9.8, we have

βpfqrL_ clβLpβLr υLqs “ βpfqrLs _ βpfqrclβLpβLr υLqs

ĎM _ clβM pβM r υMq.

Hence M _ clβM pβM r υMq “ βM , that is, clβM pβM r υMq Ě βM rM , from which
it follows that

clβMrM pβM r υMq “ clβM pβM r υMq X pβM rMq “ βM rM.

This shows that M is nearly realcompact.

Theorem 9.9 is the pointfree version of Theorem 2.8 of [34].

Remark 9.10. If f : L Ñ M is an hyper-real map and M is pseudocompact, it is
straightforward to check that L is also pseudocompact. Indeed, it follows from βM “ υM
and βpfqrβLrυLs Ď βM rυM that βpfqrβLrυLs “ 0. Then, property (L31) of image
maps ensures that βLr υL “ 0, that is, βL “ υL.

The results in this section illustrate how remainders in the Stone-Čech compactifica-
tion may be used in pointfree topology to study special classes of compact-like frames
as the near realcompact ones. Much more could be said about e.g. near pseudocompact
or nowhere compact frames and their behaviour along localic maps and hyper-real maps
but we do not pursue this here, leaving it aside for further investigations.

10. Comparing our definition with the one of Dube-Naidoo

In [17] the authors treated the idea of remainder preservation from a different per-
spective. We conclude this paper with a brief analysis of the relationship between the
two approaches. First, let us recall their definition [17, Def. 3.2], here formulated inside
the category of locales:

Let f : L Ñ M be a localic map between completely regular locales. They say that
f takes the remainder of a sublocale jS : S Ñ L of L to the remainder of a sublocale
jT : T ÑM of M if

j˚T pfppqq “ 1 for every p P ΣL such that j˚Sppq “ 1. (10.1)

In particular, they say that f is β-proper (resp. λ-proper, resp. υ-proper) if βpfq
(resp. λpfq, resp. υpfq) takes the remainder of L to the remainder of M .

Remark 10.1. Any x P L such that j˚Spxq “ 1 is necessarily in Lr S. In fact, x P L “
S _ pLr Sq means that x “ s^ r for some s P S and r P Lr S; but j˚Spxq “

Ź

ts P S |
s ě xu “ 1 implies that s “ 1, that is, x “ r P Lr S.
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For each a P L, bpaq “ tx Ñ a | x P Lu is the least sublocale containing a ([29,
III.10.2]). In case a is a point p of L, we have, for any x P L, p “ px_ pq ^ pxÑ pq and,
therefore, p “ x_ p or p “ xÑ p. Hence

xÑ p “

#

1 if x ď p

p otherwise.

and bppq “ t1, pu (these are the one-point sublocales [29]). The case where p is completely
prime has a special feature (cf. [4]):

Proposition 10.2. For each p P ΣL, bppq is complemented if and only if p is completely
prime.

Proof. ñ: We have pLrbppqqXbppq “ t1u and hence p R Lrbppq. Since pLrbppqq_bppq “
L, the set A “ tx P L | x ą pu is contained in Lrbppq (because no x ą p can be obtained
as some y ^ p) and thus

Ź

A P L r bppq. Hence
Ź

A ą p which clearly shows that p is
completely prime.

ð: By Proposition 4.1(4), Lr bppq “
Ž

tS P SpLq | S X bppq “ 0u. Hence a P pLr bppqq
if and only if a “

Ź

A for some A Ď
Ť

tS P SpLq | p R Su. In particular, p R pLrbppqq by
the complete primeness of p. Hence bppqX pLr bppqq “ 0 and bppq is complemented.

It follows immediately from this proposition that, for any completely prime p P L and
any S P SpLq,

p R S ô bppq X S “ 0 ô bppq Ď Lr S. (10.2)

Next, we need to recall that a frame L is regular if and only if

a ę b ñ Dc P L : a_ c “ 1 and c˚ ę b

for every a, b P L.

Proposition 10.3. Let L be a regular frame. Then:

(1) Every p P ΣL is completely prime.

(2) For each p P ΣL and S P SpLq, j˚Sppq “ 1 iff p R S.

Proof. (1) Let p ‰ 1 be a prime element and p “
Ź

S. If s ę p for every s P S then, by
regularity, there exists for each s P S some cs P L such that cs _ s “ 1 and c˚s ę p. But
then cs ^ c

˚
s “ 0 ď p would imply cs ď p (as the other alternative c˚s ď p is impossible)

and finally we would get 1 “ cs _ s ď p_ s “ s, that is, p “
Ź

S “ 1.

(2) The implication “ñ” is obvious since p ‰ 1. Conversely, if p R S then j˚Sppq ę p and
thus, by regularity, there is some c satisfying j˚Sppq_c “ 1 and c˚ ę p. But c^c˚ “ 0 ď p
and p is meet-irreducible so c ď p. Hence 1 “ j˚Sppq _ c ď j˚Sppq _ p “ j˚Sppq.

As any localic map sends points to points ([29, II.3.4]), it is fairly clear that this result
together with (10.2) asserts that in regular frames condition (10.1) is equivalent to

bppq Ď pLr Sq ñ bpfppqq Ď pM r T q. (10.3)

Hence, we have:
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Corollary 10.4. Let f : LÑM be a localic map, with L and M regular frames, and let
S P SpLq and T P SpMq. If f takes S-remainder to T -remainder then it satisfies (10.1).

Proof. From bppq Ď LrS it follows that bpfppqq “ f rbppqs Ď f rLrSs ĎM rT , whence
(10.3) holds.

Thus for regular frames we have the following picture depicting the relations between
the several mentioned classes of localic maps (with none of the indicated implications
reversible):

lax proper [27]
[17] +3 β-proper

[17] +3 β λ-proper ks [17] +3 β υ-proper

proper +3

KS

β-rem. pres.

KS

+3 λ-rem. pres.

KS

+3 βυ-rem. pres.

KS

Finally, in order to get the converse to Corollary 10.4 we need to impose some spa-
tiality condition on frames L and M , namely the TD-axiom, the usual requirement under
which topological properties are faithfully described by the pointfree setting. For this,
recall that a space X is TD if for each x P X there is an open U Q x such that U r txu is
still open (clearly, TD is strictly stronger than T0 and strictly weaker than T1). A frame
L is TD-spatial ([9, 30]) if L – OX for some TD-space X. In the following, CPpLq will be
the set of all completely prime elements of L. By [4, Cor. 2.5.2], a frame L is TD-spatial
if and only if

L “
Ž

tbppq | p P CPpLqu. (10.4)

We have then:

Proposition 10.5. Let f : LÑM be a localic map, with L and M both TD-spatial and
regular, and let S P SpLq and T P SpMq. If f satisfies (10.1) then it takes S-remainder
to T -remainder.

Proof. As a consequence of (10.4) and (3.3) we have

Lr S “
Ž

pPCPpLq

pbppqr Sq “
Ž

pPCPpLq

pbppq X pLr Sqq.

Therefore

f rLr Ss “
Ž

tf rbppqs | p P CPpLq X pLr Squ “
Ž

tbpfppqq | p P ΣL, p R Su.

Similarly,

M r T “
Ž

qPCPpMq

pbpqq X pM r T qq “
Ž

tbpqq | q P ΣM, q R T u.

Since p P ΣL implies fppq P ΣM and, by hypothesis, p R S implies fppq R T , we have
f rLr Ss ĎM r T , as required.
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