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Abstract

Remainders of subspaces are important e.g. in the realm of compactifications. Their
extension to pointfree topology faces a difficulty: sublocale lattices are more complicated
than their topological counterparts (complete atomic Boolean algebras). Nevertheless,
the co-Heyting structure of sublocale lattices is enough to provide a counterpart to sub-
space remainders: the sublocale supplements. In this paper we give an account of their
fundamental properties, emphasizing their similarities and differences with classical re-
mainders, and provide several examples and applications to illustrate their scope. In
particular, we study their behaviour under image and preimage maps, as well as their
preservation by pointfree continuous maps (i.e. localic maps). We then use them to char-
acterize nearly realcompact and nearly pseudocompact frames. In addition, we introduce
and study hyper-real localic maps.
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1. Introduction

In general topology, by a remainder of a Tychonoff space X it is usually understood
the subspace bX ~\ X of some compactification bX of X. Remainders of subspaces
and their preservation by continuous maps play an important role in some classical
results. E.g., by the Henriksen-Isbell Theorem (cf. [21]), a continuous map f: X — Y
of Tychonoff spaces is proper (= perfect [19, 3.7]) if and only if any of the following
equivalent conditions hold:

(R1) The Stone-Cech extension S(f): X — BY of f takes remainder to remainder,
that is,
BUNIBX ~ X] € BY Y,
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(R2) For every compactification kY of Y, the extension f: BX — KY of f takes remain-
der to remainder, that is,

~

fIBX N X] € kY \Y.

Hence, in the point-set context, remainder preserving maps are precisely the proper
maps.

This provides nice categorical characterizations of proper maps since remainder pre-
serving condition (R1) means precisely that the square

8X B(f) BY

is a pullback diagram (i.e., f is S-cartesian [35]), while (R2) is equivalent to the fact that

f

X———Y

Bx Ky

BX — L kY

is a pullback diagram. (For a broad categorical approach to properness and perfectness
see [14] and [35].)

The generalization of Henriksen-Isbell Theorem to pointfree topology faces a diffi-
culty: unlike the algebra P(X) of subspaces of a space X, the sublocale lattice S(L) of
a locale (frame) L is generally not Boolean, and therefore complements (and hence the
difference of two sublocales) do not necessarily exist. He and Luo [20] circumvented this
by grabbing the categorical conditions rather than (R1) and (R2) to characterize proper
maps of locales:

Theorem 1.1. [20, Theorem 1] Let f: L — M be a localic map between completely
reqular locales. Then the following statements are equivalent:

(i) f is proper.

(ii) For the Stone-Cech compactification Byr: M — BM of M, the following diagram is
a pullback square:

- - M

L
8L B(f

— > 8M

f
Bum
)
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(iii) For every compactification kpr: M — «M of M, the following diagram is a pullback
square:
f

L———M
6L KM

BL kM

Nevertheless, in spite of being no longer a (atomic) Boolean algebra, S(L) is always
a coframe (i.e., the dual of a frame). This means that S(L) is a co-Heyting algebra
and, therefore, ‘residuated’ in the sense that there is a binary operation that acts like
a subtraction. The existence of such an operation permits the computation of residuals
L ~ S in the absence of a unary complement operation.

Thus, the class of localic maps that take remainder to remainder i.e., that satisfy the
counterpart of conditions (R1) or (R2) with respect to that subtraction, still remains to
be studied, and compared with that of proper maps.

In [17], Dube and Naidoo approached remainder preservation with a definition heavily
dependent on the point spectra of the generalized pointfree spaces. It is the aim of this
paper to make the notion of remainders and remainder preservation truly pointfree, by
investigating the natural, alternative, direct approach based on the co-Heyting structure
of sublocale lattices, with no reference to points whatsoever. We would like to stress
that this approach is not new in the literature. In fact, one may find it, formulated in
terms of the frame of congruences, somewhat hidden amidst the study of some perfect
compactifications in a paper by D. Baboolal ([1]; see also [2] where it appears in an even
more particular situation). Our goal here is to collect the basic algebraic structure and
results for its use in the general pointfree setting.

Note that the fundamental fact that, for any frame L, S(L) is generally a coframe
rather than a frame is, after all, a pleasant surprise. Actually, in the classical case, the
Heyting operator A — B in the Boolean P(X) is given by —A u B, never used in point-
set topology, whereas it is the co-Heyting operator given by the set-theoretic difference
B n—A = B~ A that is actually used. Thus, in the category of locales one should take
the co-Heyting operator in S(L) as the natural substitute for the set-theoretic difference.
This idea goes back to Isbell and Plewe [23, 32, 33] (cf. [29, VI.5]) and provides the
right definition for the remainder of a locale and the corresponding concept of mapping
remainder preservation.

The paper is organized as follows. In the first sections, we mostly survey familiar
material of pointfree topology and lattice theory (but also including a few new results)
that are of relevance for the study of remainders. More specifically, we start in Section 2
with some basic background on the categories of frames and locales, and in Section 3 we
survey the structure of coframes (meaning complete co-Heyting algebras, the dual lattices
of frames) and the properties of the co-Heyting operator (here called pseudodifference
operator). Then, in Section 4, we look for additional properties of pseudodifferences in
the more special coframe of sublocales of a locale. Section 5 deals with their behaviour
under image and preimage maps. Remainders and remainder preservation are introduced
and studied respectively in sections 6 and 7 and in Section 8 we compare remainder
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preserving maps to proper maps. In particular, Section 6 provides several examples that
illustrate the usefulness of our approach (namely, in the study of the Alexandroff, Stone-
Cech and Freudenthal compactifications). In Section 9, we present some more illustrative
examples, now concerning the study of some particular classes of locales and localic maps
as e.g. nearly realcompact and nearly pseudocompact locales and hyper-real localic maps.
Finally, in the last section we compare our approach to the previous treatment by Dube
and Naidoo [18].

Some of the results in this paper were presented for the first time by J. Picado at the
conference held at the University of Cape Town in March 2016 to celebrate Bernhard
Banaschewski’s 90th birthday. We were pleased to see in a very recent paper ([16]) that
T. Dube uses our approach to characterize realcompact locales.

2. Frames and locales

In the pointfree (localic) approach to topology, topological spaces are replaced by
locales, seen as generalised spaces where points are not explicitly mentioned. Formally, a
locale L is defined to be a special complete lattice (where we denote top, resp. bottom,
by 1, resp. 0), usually called a frame, in which finite meets distribute over arbitrary
joins, i.e.

an\/S=\V{anb|beS} forallaeL and S < L.
Thus, in a frame L the mappings (z — (a A x)) : L — L preserve suprema and hence we
have the right Galois adjoints (y — (e — y)) : L — L, satisfying

arnz<y ff z<a—y (2.1)

and making L a (complete) Heyting algebra. The element a — y (the relative pseudo-
complement of a with respect to y) is given by the formula

a—y=\{rlanz<y).
The (absolute) pseudocomplement of a is the element
a*=a—->0=\/{z|zAra=0}

If X is a topological space we have the frame DX of its open sets. A frame is spatial
if it is isomorphic with some DX.
Regarding morphisms, the role of the usual continuous functions is taken by those

maps f: L — M between locales, called localic maps [29], such that, for every a € L,
beM,SclL,

(L1) f(AS) = A f[S] (and, in particular, f(1) = 1),
(L2) f(f*(b) = a) =b— f(a), and
(L3) fla)=1=a=1,



where f*: M — L denotes the left adjoint of f provided by property (L1). These left
adjoints are the frame homomorphisms, i.e. the maps between frames that preserve
arbitrary joins (in particular, the top element 1) and finite meets (in particular, the
bottom element 0). Note that, for each frame homomorphism h: M — L, h(z*) < h(z)*
for every z € M.

If f: X — Y is a continuous maps of spaces, we have the frame homomorphism
O(f): OY — OX defined by O(f)(V) = f~[V] for every V € OY.

Locales and localic maps form the category Loc of locales while frames (= locales) and
frame homomorphisms form precisely its dual category Frm. Our references for locales
and frames are [25] and [29]. Here we just recall the definitions of some of the main
classes of frames mentioned along the paper.

A frame L is compact (resp. Lindeldf) whenever \/ A =1 for A € L implies 1 = \/ B
for some finite (resp. countable) B € A. A frame L is regular if, for each a € L,
a=\{beL|b< a} where b < a (‘b is rather below a’) means that b* v a = 1.
The completely below relation << is the interpolative modification of the rather below
relation. Elements a,b € L satisfy b<< a if and only if there exists a subset {a, | ¢ €
[0,1] n Q} < L with ag = b and a1 = a such that a, < a; whenever p < ¢ in [0,1] N Q.
A frame L is completely regular if, for each a € L, a = \/{be L | b<< a}.

The points of a locale L are the prime (or meet-irreducible) elements, that is, the
p € L~ {1} such that p = a A b implies p = a or p = b. A special kind of points are the
completely prime elements of L that satisfy the condition p = A S = p € S for every
S € L. For any locale L, its spectrum XL is the space of all points of L with the open
sets ¥, = {p|a € p}, a€ L.

3. Coframes

Dual lattices of frames, that is, complete co-Heyting algebras play a crucial role in
this paper. As usual, we refer to them as coframes. Thus, in a coframe L the mappings
(y— (avy)): L— L have left Galois adjoints (z — (z \ a)) : L — L, satisfying

zNna<y iff z<avy. (3.1)
Hence we have an extra operation, the co-Heyting operation z \ a given by the formula

z~na=A{y|zr<avyl (3.2)

We refer to x \ a as the relative pseudodifference of a with respect to x.
Clearly, (—) \ a being a left adjoint, we have

i€J i€J
From (3.1) we can also obtain the contravariant adjunction

cxa<b iff eNb<a (3.4)

which yields
b~ /\CL,‘= \/(b\al) (35)
i€ i€
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Each Boolean algebra is both a Heyting and a co-Heyting algebra: just set
a—>b=—-avb and b~a=0bAn —a. (3.6)
Dualising the proofs in [29, Prop. II1.3.1.1], one gets immediately the following:

Proposition 3.1. In any complete co-Heyting algebra L we have:

(P1) a~a=0anda~0=a for all a.
(P2) b<a iff b~a=0.

(P3) b~ a<

(P4) b~a=(bva)~a.

(P5) av (b~a)=avb.

(P6) a~ (a~b)<anb.

(P7) avb=ave iff bna=c~a.

(P8) ¢~ (a v b) = (c~b)~a and therefore (c~b) ~ a = (¢ ~ a) \ b.
(P9)

P9) for everya,be L, b= (bra)v (b\a).

The (absolute) pseudodifference (supplement in [26, 32]) of an element a is the element

d=1va=A{ylavy=1} (3.7)

Of course, a v @/ = 1 (and @’ is the smallest « such that ¢ v £ = 1) but in general
a A a’ = 0. The following properties are also obvious:

Proposition 3.2. In any complete co-Heyting algebra L we have:

)a<s<b=d=0.

" !/

2) a" <aandad” =a'.

4)d =0iffa=1.

(1)
(2)
(3) 0'=1and 1 =0.
(4)
() (Niesai)' = Vies i

Remarks 3.3. (a) Let a be complemented with complement —a. Then, for every b, we
have:

(6) a~xb=aAl.
(7) bNa=bA —a.



Indeed: (6) bv (a Ab) =0bv a = a; moreover, if z v b > a then
zvbv-a=1=azv—-az2l = (zrv-a)razanrbl = x=>xra=anb.
(7) (b A —a)va=>bvaz=b;on the other hand,
xrvazb = (zva)r—-azbar—-a = z=2xA—-a=bA —a.

This shows how the co-Heyting operation mimics the set difference B . A in the
Boolean algebra P(X).

(b) Under some condition of existence of complements, we have another formula of set-
theoretical differences:

(8) a~ (b~c)=(anAc)v (a~b) whenever ¢ is complemented.

Indeed: By the previous remark, a ~ (b~ ¢) = a~ (b A —¢) while (a A ¢) v (a \b) =
(a~ —c) v (a~\b). Now apply identity (3.5).

(c¢) It might be added that Boolean algebras are precisely the co-Heyting algebras in
which a” = a for every a (as already menioned, in any Boolean algebra B the operator

b~ a = b A —a is a co-Heyting operation; conversely, if a” = a for all a € B, then
ana =(and) =(ava") =0 Dby Proposition 3.2).

(d) For any coframe homomorphism f: L — M (i.e. a map between coframes that
preserves arbitrary meets and finite joins), f(a’) = f(a)’ for every a € L (because f(a’) v

fla) = f(1) =1).

Proposition 3.4. Let L be a complete co-Heyting algebra and a,b,x € L. Ifarnx =bAx
thenav ' =bva.

Proof. 1t is a consequence of the following obvious fact:

(anz)va' =barz)va if ava =bva. O

We recall that a lattice L is subfit resp. weakly subfit if
a¥binL = 3JceL(avec=1#bve)

resp.
a<0inL = 3JceLl(ave=1+#c).

Using (3.7), it is clear that weak subfitness means precisely that
d=1 = a=0
(this is the dual property of (4) in Proposition 3.2).

Under co-subfitness conditions, there are surprising formulas for pseudodifferences as
certain joins (see [30, Prop. 6.1] for the proof of the dual result):



Proposition 3.5. In a complete co-Heyting algebra L, the formula
bna=\{z|arz=0, z<b} (3.8)

for the co-Heyting operation holds if and only if the dual lattice L°P is subfit.
The formula
ad=\{z|anrz=0} (3.9)

for pseudodifference holds if and only if L°P is weakly subfit.

Proposition 3.6. Let L be a complete co-Heyting algebra such that L°P is subfit. Then,
for any a,be L and any complemented c,

cn(bNa)=(cArd)\a. (3.10)

Proof. Using (3.8) and the well-known fact that in any distributive lattice each comple-
mented element c satisfies the distributivity law cA\/ S = \/{cA s: s € S} for any subset
S, we have c A (bNa) =\{crz:zra=0,2<b} <\{y:yra=0,y<cnab}=
(c A b)\a. O

The next result was first proved by Plewe in [32, Lemma 1.1] for coframes of sublocales
but it is indeed a general result on coframes.

Proposition 3.7. Let L be a complete co-Heyting algebra such that L°P is weakly subfit.
Then, for any x € L and any complemented ¢ and d,

cvx=dvze iff c~Nz=d\zx.

Proof. =:cvae=(cva)ar (@ va)=(crd)ve=dnra)ve=dvuz.

=: Now, using (3.9) we get
ecxz=crr'=cAV{t|trz=0=\{cat|trz=0}

But, for each such t, cat=(cat) v (trz)=(cva)at=(dva)art=dnt Hence

exz=\{dat|trz=0}=drz’ =d\u=. O

4. Coframes of sublocales
A sublocale of a locale L is a subset S L closed under arbitrary meets such that
VeeL VseS (xz— selbl).

The set S(L) of all sublocales of L forms a coframe under inclusion (see [29, Th. IT1.3.2.1]
for a proof), in which arbitrary infima coincide with intersections, {1} is the bottom
element and L is the top element (that we simply denote by 0 and 1, respectively).
Regarding suprema, there is the formula

el iel

for every {S, € S(L): i e I}.



For any a € L, the sets
cr(a)=ta={zxeLl|xz>a}andor(a)={a—>b|be L}

are the closed and open sublocales of L, respectively (that we shall denote simply by
¢(a) and o(a) when there is no danger of confusion). For each a € L, ¢(a) and o(a)
are complements of each other in S(L), (), ¢(a;) = ¢(\V/; a:), ¢(a) v ¢(b) = ¢(a A D),
V,; 0(a;) = o(\/; a;) and o(a) no(b) = o(a A b).

Recall the following basic facts about sublocales S of L (cf. [29]):

(F1) S(S) ={T' n S| T € S(L)} and lattice operations in S(S) are given by those in
S(L) (the only difference is that the two lattices may have different top elements).

(F2) For any open (resp. closed) sublocale U of L, U n S is an open (resp. closed)
sublocale of S. More specifically, for U = ( ) (resp. U = ¢i(a), UnS =
0s(vs(a)) (resp. U n S = cs(vs(a)), where vg(a) = A{s€ S |s=a}.

(F3) If T is an open (resp. closed) sublocale of S, then T'= U n S for some U = o(a)
(resp. U = ¢(a)) with a € S.

(F4) Each S € S(L) is an intersection of complemented sublocales, specifically
S =c(a) v o(b) | vs(a) = vs(b),a > b}.

Note that (F4) means that the dual of S(L) is a zero-dimensional frame and therefore
a subfit frame. Hence, all the formulas for pseudodifferences from the preceding section,
valid in any coframe whose dual frame is subfit, specialize to the following formulas in

S(L):
Proposition 4.1. For any A, B € S(L) and any complemented C, D € S(L) we have:
1) BNA=\{SeS(L)|AnS=0, Sc B}.

2) BNA={SeS(L)|S complemented, B< S v A}.

(1)

(2) )

(8) B~ A =\/{e(a) o) n B | va(a) = va(b),a < b}.

(4) LN A=\/{SeS(IL)|AnS =0}

(5) L~ A={SeS(L)|S complemented,S v A = 1}.

(6) L~ A=V{c(a) no(d)|va(a) =va(b),a <b}.

(7) C A (A~ B) = (CnA)~ B.

8) CvA=DvAiffCn(L~A) =Dn (L~ A).

(9) A S B iff for any complemented C € S(L), B C = Ac C.
)

(10) L~ A< L~ B iff for any complemented C € S(L), CvB=1=Cv A=1.



Proof. (1) follows from (3.8), and (2) can be derived from (3.2) and the fact that every
sublocale is an intersection of complemented ones.
(3): Using (F4) and (3.5) one gets

B~ A=\/{B~ (c(a) vob))|va(a) =rva(b),a > b}
and then, by property (7) in Remark 3.3,
B~ A=\{cb)no(a) nB|va(a) =va(b),a = b}.

(4) is a particular case of (1), (5) is a particular case of (2), (6) is a particular case of
(3), while (7) resp. (8) is just Proposition 3.6 resp. 3.7 applied to S(L).

(9): The implication “=" is obvious. Conversely, let B = [)._; C; for some complemented
C;. Then A < C; for every i, that is, A < B.

Finally, (10) follows immediately from (9). O

iel

Remarks 4.2. (a) Regarding property (9) above, note that, on the other hand, the
condition (C' € A = C < B) for every complemented C in S(L) does not necessarily
imply that A € B.
(b) It is clear from formulas (1) and (3) above that for sublocales A € B of L, B\ A
calculated in S(B) (that is, the pseudodifference A’ in S(B)) coincides with B \ A
calculated in S(L).

(c) Regarding property (8) of Remark 3.3(b), there is not much hope to improve it in
S(L). Indeed, if the formula holds for any A, B,C, the case A = B = L would mean
that C” = C and thus, by Remark 3.3(c), that S(L) would be Boolean.

(d) Let S € S(L). By (P2), L~ S =0iff S = L. On the other hand, there might
exist nonzero S such that L S = L. Tt is easy to check, using 4.1(5), that these are
precisely the sublocales S that contain no nonzero complemented sublocales, introduced
by T. Plewe [33] as the rare sublocales.

(e) [31] has a few more special formulas for the supplements in particular classes of frames
like the T7-spatial or subfit ones, where they are used to show that the system of all joins
of closed sublocales of L is the Booleanization of S(L). Recently, in [16], T. Dube uses
these formulas to compute remainders L\ L, SL ~ vL and SL ~ AL for any completely
regular L (see Section 7 below for details about vL and AL).

For each sublocale A of L, the closure and interior of A are defined, respectively, as
clpA =Y{c(a) | A< ¢(a)} and intp A = \/{o(a) | o(a) < A}. We shall write cl A instead
of clpA (and, similarly, for the interior) when there is no danger of confusion about
the ambient frame. It is clear that clA = ¢(/\ A); on the other hand, since o(a) € A
if and only if A’ € ¢(a), we have int A = o(/\ A’). In particular, clo(a) = ¢(a*) and
int ¢(a) = o(a™*).

It then follows that int A” = int A and their complement is

c(LNA)=clA =¢A\A4)=L~\int A (4.2)
Note, however, that the corresponding formula for the interior does not hold generally:

int (L~ A)=0(A\A) co(A\A")=L~clA.
10



In fact, from (4.2) it only follows that
int (LNA)=L~cl(L~(L~NA)=L~clA" (4.3)

In summary, the interior and closure operators generate from any sublocale A the
following three towers of inclusions (the arrow S <> T indicates that S and T are
complemented to each other):

int A c A clA
H ul Ul

n

intA” < A" C cl A”
A A
v v

cl A’ > A 2 intA

5. Images, preimages and pseudodifferences

Let f: L — M be alocalic map. The image f[S] of any sublocale S < L is a sublocale
of M and we have the localic image function

fl=1: (L) — S(M).

On the other hand, the set-theoretic preimage f~1[S] of a sublocale S is not necessarily
a sublocale. It is a subset closed under meets, though, and hence, by the formula (4.1),
there is the largest sublocale

falS1=V{TeS()|T < fs])
contained in f~1[S]. This defines the localic preimage function
fal=]: S(M) — S(L),

right adjoint of f[—] (that is, f[S] € T if and only if S < f_1[T]). Note that f_1[S] is
the pullback in Loc of S along f. For closed sublocales we have f_i[c(a)] = f~[c(a)] =
¢(f*(a)). For open sublocales the localic and set-theoretic preimages do not necessarily
coincide, but we do have f_i[o(a)] = o(f*(a)).

The preimage function is a coframe homomorphism (that preserves complements)
while f[—] is a colocalic map ([29]). Hence the latter satisfies the dual properties of
(L1)-(L3) in Section 2:

(L) F1V s 8] = Viey J1S:] (in particular, f[0] = 0).
(L2) f[S~ fa[T]] = fIS]~ T
(L3) f[S]=0= 8 =0.
On the other hand, the preimage being a coframe homomorphism satisfies

L~ f_1[T] < f_l[M N T] (51)
11



Remarks 5.1. (a) By (L1'), f[L ~ S] = VV{f[R] | Rn S = 0}. So, the inclusion
fIL N S] € M \ T means that

VIR [RnS =0 ({V [V VT =1},

that is, for every Re S(L) and Ve S(M), RnS=0and V vT =1 imply f[R] S V.
(b) The case S = L in (L2") says that

FIL~ fa[T]] = fIL]~T < M~ T. (5.2)

Thus
JILN falTl] = M\ T (5.3)

whenever f is onto.

(¢) By (5.1), fIL~ faa[T] € ffa[M\T] < M~T < M~ f[f-1[T]]. Hence, for any
sublocale S of L which is the preimage of some sublocale T" of M,

fIL~ S M~ f[5]. (5.4)

(d) The reverse inclusion of (5.4) holds for any sublocale S provided f is onto. Indeed,
we have S < f_1[f[S]], thus L ~ f_1[f[S]] € L ~ S and consequently (using (5.3) for
T = f[S])

M~ fIS] = fIL N falf[ST] < fIL N S]. (5.5)

6. Remainders

Recall that a sublocale S of a locale L is dense precisely when 0 € S, since S =1 (A S)
is all of L if and only if 0 = A S € S. Tt follows from formula (4.2) that L \ A is dense
iff int A = 0.

Remark 6.1. For sublocales S € T < L, if T is dense in L and S is closed in L, then
T~ Sisdensein L\ S. In fact, if S = ¢ (a) for some a € T, then T'\. S = op(a) while
L~ S =op(a); in particular, O s = a = Or = a — 0, = 0 g since O = Of..

Recall further that a compactification of a locale L is a compact regular locale M
together with a dense localic embedding x: L — M. Being dense means that x[L] is
dense in M, that is, k(0) = 0. For general background on compactifications of frames
and locales the reader is referred to Banaschewski [5].

It seems now appropriate to introduce the following definition:

Definition 6.2. For any compactification x: L »— M, the remainder of L in the com-
pactification is the sublocale M ~\ k[L] of M. Sometimes, when no confusion is possible,
we shall simply denote the sublocale x[L] of M by L and its remainder in M by M \ L.

Let us mention that this notion appeared already in the literature in a paper by D.
Baboolal [1], formulated for the Freudenthal compactification in terms of its frame of
congruences but it is readily seen to be equivalent to the definition above.

Let us compute remainders in some illustrative examples:

12



(A) Alexandroff compactification ([2, 3, 5]).

Let k: L — M be a compactification of a locally compact (i.e., continuous) frame
L and let my, = \/{k(z) | * « 1}. Since « is an embedding, that is, k*x = 1, we have
k*(mr) =V« ¢ = 1 by continuity. It follows that x[L] < o(mp): for every z € L,

k(z) = k(1 > 2) = k(k*(mL) > x) = mp — k(z).
Hence M ~\ L 2 ¢(my) and we may regard k as a localic embedding
k: L —o(mp).

If one assumes moreover that L is regular, one can say more. Indeed, as proved in [2, Th.
2.2], in that case k*: o(myg) — Lis a codense homomorphism, that is, k*(z) =1 =z = 1.

Remark 6.3. In localic terms, this means that x[L] is a codense sublocale of o(my)
([15], called replete in [30]), that is, ¢(a) n &[L] # 0 for every a # 1 in o(mp).

Lemma 6.4. Let f: L — M be a localic map with M regular and f[L] codense in M.
Then f is onto.

Proof. Let y be an arbitrary element of M and = = ff*(y). By regularity, x = \/{z |
z < z}. For each such z we have 1 = f*(z*) v f*(z) = f*(z*) v f*(y) = f*(z* v y).
Since f[L] is codense in M, this implies z < y. Hence y =« = ff*(y) € f[L]. O

Applying this property to our x: L — o(my) we get immediately the following:

Proposition 6.5. Let k: L — M be a compactification of a reqular continuous frame
L. Then k[L] = o(my) and therefore M ~ L = ¢(my,). O

Of course, if L is non-compact then my <1 and M ~ L # 0.

(B) Stone-Cech compactification ([8]).

A crucial example in this context is the pointfree Stone-Cech compactification, in-
troduced by Banaschewski and Mulvey in [8]. It establishes a reflection of the category
of completely regular locales into the (full) subcategory of compact, completely regular
locales. We recall it briefly here. Let J(L) be the poset of all ideals of L (ordered by in-
clusion). Its top element is L while {0} is the bottom element. Since any intersections of
ideals is an ideal, J(L) is a complete lattice with (arbitrary) meets given by intersections.
The joins are given by the formula

VI,={VF|Fc|Jl,F finite}. (6.1)

It follows from this formula that J(L) is a compact frame.

Now assume that L is completely regular: for each a € L, a = \/{r € L | z << a}.
An I € 3(L) is called regular (with respect to the strong relation <<) if it satisfies the
condition

Vael Fbel (a<<b). (6.2)

Examples of regular ideals are the la = {z € L | << a} for any a € L. The collection
R(L) of all regular ideals is a subframe of J(L) hence a compact frame. It is also easily
13



shown to be regular and hence, being compact, completely regular. The Stone-Cech
compactification of L is the dense localic embedding

Br: L — BL =R(L)

given by Br(a) = la. Its left adjoint is the frame homomorphism S¥: I — \/I. The
following properties are well known:

(a) BB =idg.

(b) VI eBL, I =\/{Br(a)|ae I} (by formula (6.1)).
(¢) Br(a*) = Br(a)*, I* = BL((V D)¥).

(d) B preserves << and fr(a) < I'iff ae 1.

Examples 6.6. (1) In any Boolean frame, every ideal is regular (since x < x for every
complemented z). Hence SL = R(L) = J(L) for any Boolean L. In particular, for L = 2,
BL = {]0, |1} ~ 2.

(2) For finite locales L, every ideal is principal. In this case, L being completely regular
makes it Boolean, so that SL is isomorphic to L.

(3) For any compact completely regular locale L, 8r: L — BL is an isomorphism and
thus SL = (L) = L ([8]).

The corresponding functor 3: CRegLoc — KCRegLoc (that shows that the cat-
egory KCRegLoc of compact completely regular locales is a reflective subcategory of
CRegLoc) is defined as follows:

L—" 1 LI*[]

A A A
7)o B | B B(H*
M—  BM 1

/81\/1

We call 5(f): BL — BM the Stone extension of f. It is defined directly by
BUFIWT) = VAT € BM | B(f)*(T) € T} = /AT € BM | 1] < 7).
By 4.1(4), the remainder of L in SL is given by
BLNL=\{SeSBL)|SnpL[L] =0} =\{SeSBL)| faeS=a=1}.

Note that
BL~L=0 iff L=pL (6.3)

but, on the other hand, SL ~ L = L does not imply in general that L = 0 (only the
converse implication holds).

(C) Freudenthal compactification ([1]).

A regular frame L is called rim-compact ([1]) if each a € L is a join of elements u
such that c¢(u v u*) is compact. A basis B of a frame L is a m-compact basis if, for every
a,be B, c(a v a*) is compact, a* € BaAnbe Band a v be B.

14



Remark 6.7. It is easy to check that in any rim-compact frame L, the subset By = {b €
L |c(bvb*)is compact} is a m-compact basis.

Given a m-compact basis B for a rim-compact frame L, define a relation <ig on L by
a <pg b if and only if there exists u € B such that a < u < b. This is a strong relation on
L ([5]) and hence establishes a compactification

vt L—ypL.

Here vp L is the frame of ideals of L regular with respect to <ip (i.e., the ideals that satisfy
a similar condition to (6.2) for <), and v2(a) = {x € L | x <ip a}. The left adjoint
(vB)* is again given by joins: (y2)*(I) = \/ I. Note that vB[B] = {y5(b) | be B} is a
basis for ygL.

This is the m-compactification of L induced by basis B. The Freudenthal compactifi-
cation of L ([1]) is just the compactification 42° induced by the basis By of the remark
above, that we denote as yr,: L — L.

Remark 6.8. Like the Stone-Cech compactification, this is an example of a perfect
compactification ([1]), i.e. yp(u v u*) = vy (u) v vr(u*) for every u € L.

Proposition 6.9. Letvr: L — L be the Freudenthal compactification of a rim-compact
frame L. Then yL \ L is a zero-dimensional sublocale of ~L.

Proof. We prove it in two steps:
(1) {jfvL(b) | b e By} is a basis for yL \ L (where j, denotes the sublocale embedding
~yL N L— ~vL);
(2) Each jfvi(b) (be By) is complemented in yL \ L.

Let us proceed with it:
(1) This is an immediate consequence of the fact that vz[Bo] is a basis for yvL. In fact,
each a € YL \ L is in yL thus there are some b; € By (i € I) such that a = \/,_; v.(b;);
then a = j¥(a) = \V,c; 570 (bs).
(2) First, for each b € By we have

Jrve(0) A dpye(®) = Gr(ve(d) Ay (b%)) = jzye(0) = 0
(since 7y, is dense). Moreover,
Jrye(®) v jpyn(*) = i (yo(b) v v (b%)) = jEye(b v b%)

(because vy, being perfect, preserves disjoint binary joins [1, Theorem 3.5(3)]). It suffices
now to check that jfvr(b v b*) is the top element of the remainder vL \ L, that is,
1,1. By the definition of j¥, the image jfv. (b v b*) is the element vy (v (b v b*)) of
~vL ~\ L. Let us consider the restriction of vz, : L — «L to the closed part ¢(b v b*). This
is clearly an embedding

YL |ewvory: €(b v b¥) = c(yo(b v b¥)),

a dense one obviously. In addition, ¢(b v b*) is compact (by the definition of By) and
regular (as a sublocale of a regular locale); ¢(vy.(b v b*)) is compact (because it is a
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closed sublocale of a compact locale) and regular too. In conclusion, vr, |cpvp*) is a
dense embedding between compact regular locales, hence an isomorphism. In particular,
Y[L] 2 ¢(y(b v b*)). Now, the required fact that vyr r(yr(b v b*)) = 1 is clear: if
s € YL~ L with s = v.(b v b*), then s € vL ~ ¢(y.(b v b*)) = o(yL(b v b*)); hence
sec(yr(bv b)) no(yL(bvb*)) =0, that is, s = 1. O

7. Remainder preservation

In this section, except when otherwise noted, all our frames (locales) are completely
regular.

Let f: L — M be a localic map between completely regular locales, S a sublocale of
L and T a sublocale of M. We say that f takes the remainder of S to the remainder of
T (briefly, takes S-remainder to T-remainder) if

fIL~S]cM~\T

that is,
L~NScf i [M\T].

In particular, when the Stone extension S(f): BL — SM of f takes the remainder of
B[L] to the remainder of S[M], we simply say that 5(f) takes remainder to remainder.
In that case, the given localic f is said to be g-remainder preserving. We use a similar
terminology for other examples of reflections in the category of completely regular locales.

Evidently, compositions of S-remainder preserving maps are S-remainder preserving.

Remark 7.1. Any localic map f: L — M with L compact is S-remainder preserving.
In fact, if L is compact, that is, BL = L, then 8L ~ L = 0, by (6.3), and therefore

BINIBL~ L] = B(f)[0] = 0.

Let 7 be the unique localic map L — 2 (which is given by 7(1) = 1 and m(a) = 0 for
every a # 1). In [13], Chen shows that properness of maps characterizes compact locales
in the sense that a locale L is compact if and only if 7: L — 2 is proper (see Section 8
below for the definition of proper map of locales). Now, we have:

Proposition 7.2. A locale L is compact if and only if m: L — 2 is S-remainder pre-
serving.

Proof. <: By Example 6.6(1), 82 = 2. Hence 8(m)[SL ~ L] < 82~ 2 = 0. Then, by
(L3"), BL ~ L = 0 and therefore L 2 L\ (8L ~\ L) = SL. Hence L = SL is compact.
=: if L is compact, that is, BL = L, then S(7) = m and thus 8(7)[SL~L] = n[0] =0. O

With vL and AL denoting, respectively, the realcompact reflection and the regular
Lindelof reflection of a completely regular locale L, we may also speak about v- and
A-remainder preserving maps.

The realcompact reflection v is a reflection of the subcategory of realcompact locales in
the category of completely regular frames. Recall that a frame L is said to be realcompact
[7] if, for any maximal ideal I of Coz L (the cozero part of L [7]) such that \/ I = 1, there
is a countable S < I such that \/ .S = 1. For more details about the construction of the
realcompact coreflection vL of an L see [7] (or [17]).
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The regular Lindeldf reflection A (the Lindeldfication), originally constructed by Mad-
den and Vermeer in [28], shows that regular Lindel6f locales form a reflective subcategory
of the category of completely regular locales. Note that this is a fact in locales that has
no counterpart in the classical setting of topological spaces and continuous maps; in
general, AL is not spatial even when L is spatial. The reflection AL of any completely
regular locale L is the intersection of all cozero-sublocales of SL that contain L. For a
description of this construction in terms of frames see e.g. [17]. There one may also see
that S dominates A and A dominates v, that is, there are dense embeddings

ly: vl — AL, kp:AL— BL. (7.1)

An inspection of the proof of Proposition 7.2 shows that a similar result holds more
generally for any monoreflection R on locales such that 982 = 2. Hence we have imme-
diately:

Corollary 7.3. Let L be a locale: Then:
(1) L is Lindelof if and only if m: L — 2 is A-remainder preserving.
(2) L is realcompact if and only if m: L — 2 is v-remainder preserving. O

Remark 7.4. The remainder preserving maps treated by Dube and Naidoo in [17] for
the extensions 5, A and v are referred to as, respectively, S-proper, A-proper and v-
proper. Corollary 7.3 above shows that our notion of remainder preserving maps does
not coincide with Dube-Naidoo’s one and might be viewed as a more satisfactory one.
Indeed, the latter notion of properness cannot distinguish between the preservation of
A-remainders and v-remainders: a localic map is A-proper if and only if it is v-proper
([17, Proposition 4.4]). This should not come as a surprise regarding the fact that Dube-
Naidoo’s properness definition relies on the points of the locale and the spectrum of
A(DX) for any space X is precisely vX ([28]). Our notion, being defined inside the
sublocale lattice, is able to distinguish the two cases.

The next result is the localic counterpart to Lemma 4.2 of [17].

Proposition 7.5. Suppose that in the diagram

S T

.
N

Jr

Js R

L M
f

the downward morphisms are embeddings, the triangles commute, the trapezoid commutes
and f takes S-remainder to T-remainder. If one of the following conditions holds then
g also takes S-remainder to T-remainder:
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(2) U is a complemented sublocale of M.
(b) T is a complemented sublocale of M.
Proof. By hypothesis, f[L ~ S] € M ~ T. Then
Un(MNT)2U 0 fILNS]2 fIfalUl 0 FILN ST 2 fIfalUTn (L S)].
In addition, f[R] = g[R] < U, that is, R < f_1[U]. Hence
gIR~ 8] = fIR~ S| fIRA (L~ S)] €U A (MT).
Finally:

(a) Under condition (a), we may apply Proposition 4.1(7) to conclude that g[R \ S| <
Un(M~\T)=U\T.

(b) On the other hand, under condition (b) we may use property (7) in 3.3 to get
GRS cUn(M\T)=Un-"T=U~T. O

Corollary 7.6. Let f: L — M with M complemented in BM.
(1) If f is B-remainder preserving then it is A-remainder preserving.
(2) If f is A-remainder preserving then it is v-remainder preserving.

Proof. (1) By (7.1), we have the diagram

L M
\ /\(f) /
BL / \ Bm
BM
AL B(f)
Apply Proposition 7.5.
(2) can be proved in a similar way. O

Example 7.7. As an example of a family of locales M satisfying the assumption of
Corollary 7.6 we mention the locally compact, completely regular locales. In fact, any
locally compact, completely regular locale is an open sublocale (thus complemented) of its
Stone-Cech compactification ([29, VIL5.3]). Hence, for any locally compact, completely
regular locale M and any localic map f: L — M,

f is B-remainder pres. = f is A-remainder pres. = f is v-remainder pres.

We end this section with several characterizations of remainder preservation by localic
maps.
18



Proposition 7.8. Let f: L — M be a localic map, S € S(L) and T € S(M). The
following are equivalent:

(i) f takes S-remainder to T-remainder.

(ii) For each U e S(M),
UvT=1= f41[U]lvS=1.

(iii) For each complemented C € S(M),

CvT=1= f4|[C]vS=1.

(iv) For each complemented C € S(M) and each complemented D 2 T,
CvD=1= f [C]vE=1
for every complemented E 2 S.

(v) For each Re S(L),
RQSZOQRgffl[M\T]

(vi) For each R e S(L) and for each complemented C € S(M),

(RnS=0,CvT=1)=Rc f4[C].

Proof. (i)« (ii): Since

fAalM\T) = fa[[WUeSM)|UvT=1}]
=W/ alUl|UeSM),UvT =1}

we have LN S € f_1[M ~T]ifand only if LS € f_1[U], that is, f_1[U] v S =1, for
each such U.

(ii)<>(iii) and (iii)<>(iv) follow immediately from characterizations (9) and (10) in Propo-
sition 4.1.

)eW): fFILNS]cM~\T< f[VIR|RnS=0]cM~T< \{f[Rl|RnS =
0} € M \ T and this is equivalent to f[R] € M \ T, that is, R € f_1[M \ T, for each
such R.

Finally, (v)<(vi) follows immediately from Proposition 4.1(5). O

For the sake of completeness let us also mention that our concept of remainder preser-
vation can be treated in the following more general setting. Let g: A — B be a localic
map with a left adjoint g*. For each x € A and y € B, g takes x-remainder to y-remainder
if

y* < g(z*), that is, g*(y*) < z*.

Note that in this section we have just treated the following two cases:

(1) A=S(L), B=8(M)*, g=f[-], ¢* = f1[-],a = S and y = T.
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(2) A=S8(BL)™?, B=S8(BM)", g =B(Nl=], g% = B(f)-1[-], 2= Landy = M.

For instance, characterizations (v) and (vi) of the preceding proposition are particular
cases of assertions (a) and (b) in the following result (which is an easy consequence of
Proposition 3.5):

Proposition 7.9. Let g: A — B be a localic map. If A is weakly subfit then we have:

(a) g takes x-remainder to y-remainder if and only if for each a € A,
avr=1= y*<gla) (ie, g*(y) <a).

(b) Moreover, if B is zero dimensional, then g takes x-remainder to y-remainder if and
only if for each a € A and for each complemented c € M,

(ave=1 cry=0) = ¢g*() <a.

8. Remainder preserving maps and proper maps

Recall from [20] (consult [36] for more information) that a localic map f: L — M is
proper (aka perfect [24, 12]) if it is closed (that is, f(f*(b) va) = bv f(a) for every a € L
and b e M) and preserves directed joins. By Theorem 1.1 quoted in the Introduction,

a localic map f: L — M between completely reqular locales is proper if and
only if B(f)-1[M] = L.

Proposition 8.1. Any proper localic map is B-remainder preserving.

Proof. Let B(f)1[M] = L. Then A(f)[SL ~ L] = A(f)IBL ~ A(f)1[M]], and by
property (L2') we get

B(IBL~ L] = B(f)[BL)~ M < BM ~ M. O

Let us analyse why, contrarily to what happens in the spatial case, the converse
implication does not hold in general. In the pullback condition

B(f)[M] =L,

the inclusion L € B(f)_1[M] means that S(f)[L] € M; on the other hand, the reverse
inclusion is just what is needed in the proof of the preceding proposition:

B(f)a[M] < L= B(f)IBL~ L] < B(f)IBL ~ B(f)-1[M]]
= B(f)[BL] ~ M < BM ~ M.

Hence
B(f)-aM]=L = [B(NHIBL~L]<BM M and B(f)[L] < M]. (8.1)

What about the converse to Proposition 8.17
In our situation, we have always f[L] € M, that is, B(f)[L] € M, so the equivalence
in Proposition 8.1 amounts to the equivalence between

B(f)_1[M]= L and B(f)[BL~ L] < M ~ M.

This is just a general question about Galois adjunctions on coframes:
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In a Galois adjunction

©

Y, <) (X, <)

¥

with ¥ a coframe homomorphism (preserving complements) and ¢ its colocalic
left adjoint, is there any relation between conditions ¥(z) <y and p(y') < z'?

Fact 8.2. For everyxze X andyeY,

U(z) <y =) <. (8.1)
Proof. ¥(z) <y =y <(z) and therefore
o(y) < e((x)) = (AN (z)) =p() Nz <INz =2 O

(Evidently, Proposition 8.1 is a particular case of this fact.)
The converse to (8.1) holds whenever ¥ (2')" = ¥ (z) (note that ¥ (a’) < () is always
true). Indeed,

o) <2 ey <yY@)=y=y" =) =) =Y().

In particular, this implies that the converse to (8.1) holds whenever x is complemented.
Hence:

Fact 8.3. If X is Boolean then the converse to (8.1) holds. O

Note that, since 1 preserves complements, then 1 also preserves pseudodifferences in
case X is Boolean. Furthermore:

Fact 8.4. If the converse to (8.1) holds, then ¢ preserves pseudodifferences.

Proof. Since ¢¥(z')vip(x”) = 1, we have ¢(z') = ¢ (a”)’, that is, 2’ = p(¥(2”)’). Then, by
hypothesis, it follows that ¢ (z) < ¢(2”) and thus ¢(2”) = ¢(x) (this means in particular
that ¢ is skeletal). So ¥(x”) = ¥(x) = ¥(x)”, that is, ” = p(¢(z)"”) and again by the
hypothesis we get 1 (z’) < 1 (z)’, which confirms that ¢ (z') = ¥ (z)’ for every z € X. O

This shows that in our context, any S-remainder preserving f: L — M, with SM non-
Boolean, such that 3(f)_1[—] does not preserve pseudodifferences is a counterexample
for the converse to Proposition 8.1.

9. Nearly realcompact frames

All frames L considered in this section are completely regular.

A Tychonoff space X has been defined by Blair and van Douwen [11] to be nearly
realcompact if X is nearly vX, that is, X \vX is dense in X ~\ X. This was extended
to pointfree topology in [18], again via a definition that strongly depends on the points
of the frame. Needless to say, we may take a more direct and natural way and just define
a completely regular locale L to be nearly realcompact if SL ~ vL is dense in SL \ L.
Clearly, any realcompact frame L is nearly realcompact since vL = L.
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Remarks 9.1. (a) As in spaces, pseudocompact frames are the frames in which every
real-valued function is bounded ([6]). They are also characterized as the frames L for
which v = BL. Hence, any pseudocompact nearly realcompact frame is compact:
0 = BL ~ vL dense in SL ~ L implies L ~ L = 0. This extends Corollary 4 of [7].

(b) A space X is nearly pseudocompact ([22]) if v X \ X is dense in X ~\ X. Similarly,
let us define a frame L as nearly pseudocompact whenever vL \ L is dense in SL \
L. Clearly every pseudocompact frame is nearly pseudocompact and every realcompact
nearly pseudocompact frame is compact (since, in that case, L~ L =vL \ L = 0).

The treatment of nearly realcompact frames in [18] is based on a result about dense
subspaces (Lemma 3.1) that one can immediately extend to frames with the help of the
following lemma:

Lemma 9.2. A sublocale S of a locale L is dense if and only if S meets every nonempty
open sublocale of L.

Proof. =: Let U = o(a) = {a — x | x € L} be a nonempty open sublocale of L. Since
a # 0, then a* # 1 and, of course, a* =a — 0€ S since 0 € S. Hence 1 # a* € S n U,
which shows that S nU # {1} = 0.

<=: The case ¢(a) 2 S for some c¢(a) # 1 (i.e., o(a) # 0) would imply o(a) n S = 0
(because o(a) N S € a(a) N c¢(a) = 0), a contradiction. O

Proposition 9.3. Let L be a locale, and A < B sublocales of L. Then B’ is dense in A’
if and only if every open sublocale in L which meets A’ also meets B'.

Proof. =: Suppose B’ is dense in A’ and let U be an open sublocale of L which meets
A’ that is, Un A’ # 0. Then U n A’ is a nonempty open sublocale of A’ and, by Lemma
92, B nU=B"nUnA #0.

<: Let W # 0 be an open sublocale of A" and consider an open sublocale U of L such that
W = UnA’. By the hypothesis, U meets B’. Therefore 0 # UnB' = UnA'nB' = WnB’
and finally, by the Lemma, B’ is dense in A’. O

Then we get the following characterizations of near realcompactness.

Corollary 9.4. For any completely reqular frame L, the following conditions are equiv-
alent:

(i) L is nearly realcompact.
(ii) Fvery open sublocale in SL which meets L' also meets (vL)'.

(iii) If there is some S € S(BL) such that SN L =0 and S no(a) # 0, then there is
some T € S(BL) such that T nvL =0 and T n o(a) # 0.

Proof. (1)< (ii) is an immediate consequence of the preceding proposition while (ii)<>(iii)

follows by using formula (4) of Proposition 4.1 and the fact that any open sublocale
distributes over arbitrary joins. O
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Hyper-real continuous maps were introduced by Blair in the unpublished manuscript
[10]. These are maps that preserve realcompactness by images and pseudocompactness
by preimages. Extending Blair’s terminology to the pointfree setting, we may say that a
localic map f: L — M is hyper-real if

B(H[BL ~vL] < M ~vM. (9.1)
Lemma 9.5. A frame L is nearly realcompact if and only if
L v clgrr(BL~vL) = BL. (9.2)

Proof. If L is nearly realcompact then clgr .(BL~vL) = L~ L. Hence Lvclgr (8L~
vL) =L v (BL ~ L) = BL. The converse is also obvious: L v clgr (8L ~vL) = gL
implies clgr (8L ~vL) 2 BL \ L. O

Remark 9.6. As in spaces, given a tower S € T < L of sublocales of L, clp(S) =
clp(S) n T. Hence clgr (8L ~ vL) € clgp(BL ~ vL) and it follows from (9.2) that
L v clgr(BL ~ vL) = BL holds in any nearly realcompact frame.

Lemma 9.7. Let f: L — M be a localic map. Then, for every sublocale S of L,
flele(S)] < cla (f[S])-

Proof. Actually,

fll(9)] = fINfea) | S < e(@)}] = {Fe(a)] | S < e(a)}

and the last intersection is contained in cly/(f[S]) as we now show:

Let ¢(b) with f[S] < ¢(b). This means that f(s) = b, that is, s > f*(b), for all
s € S. Hence S € ¢(f*(b)) and, moreover, f[c(f*(b))] < ¢(b) since x = f*(b) implies
f(2) > FF5(b) > b. O

Lemma 9.8. Let f: L — M be an hyper-real localic map. Then
,B(f)[clgL(ﬁL N UL)] - ClﬁM(ﬁM N ’UM).

Proof. Apply Lemma 9.7 to get 3(f)[clgr(BL ~ vL)] € clgnp (B(f)[BL ~ vL]) and then
use condition (9.1) of hyper-real maps. O

f*
f*

Finally, we can show that near realcompactness is an invariant property under hyper-
real localic maps.

Theorem 9.9. Let f: L — M be an hyper-real (localic) map. If L is nearly realcompact
and f is a surjection, then M is also nearly realcompact.

Proof. Using Lemma 9.5 we get
M = f[L] = B(f)[L] = BIHIBL] = B(fIL v clgr~r(BL ~ vL)].
Then, by Remark 9.6, we have

M € (DL v dpr(BL ~ vL)] = B(/)[BL] < BM.
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In particular, M is dense in S(f)[L v clgr(BL ~ vL)]. Since the latter is a compact
sublocale of M (because the image of any compact sublocale under a localic map is
compact), we may conclude that

B(f)[L v clgr.(BL ~ vL)] = BM.

Furthermore, by Lemma 9.8, we have

BUOIL v clgr(BL ~ vL)] = B(f)[L] v B(f)[clpr(BL ~ vL)]
cSMv ClBM(ﬁM N UM).

Hence M v clgp (BM ~ vM) = BM, that is, clgy (BM ~ vM) 2 M ~ M, from which
it follows that

ClﬂM\M(ﬂM AN UM) = Clﬁ]\{(ﬂM AN ’UM) N (ﬂM AN M) = ﬁM ~ M.
This shows that M is nearly realcompact. O

Theorem 9.9 is the pointfree version of Theorem 2.8 of [34].

Remark 9.10. If f: L — M is an hyper-real map and M is pseudocompact, it is
straightforward to check that L is also pseudocompact. Indeed, it follows from M = vM
and B(f)[BL~vL] € BM ~vM that B(f)[BL ~vL] = 0. Then, property (L3") of image
maps ensures that L\ vL = 0, that is, SL = v L.

The results in this section illustrate how remainders in the Stone-Cech compactifica-
tion may be used in pointfree topology to study special classes of compact-like frames
as the near realcompact ones. Much more could be said about e.g. near pseudocompact
or nowhere compact frames and their behaviour along localic maps and hyper-real maps
but we do not pursue this here, leaving it aside for further investigations.

10. Comparing our definition with the one of Dube-Naidoo

In [17] the authors treated the idea of remainder preservation from a different per-
spective. We conclude this paper with a brief analysis of the relationship between the
two approaches. First, let us recall their definition [17, Def. 3.2], here formulated inside
the category of locales:

Let f: L — M be a localic map between completely regular locales. They say that
f takes the remainder of a sublocale js: S — L of L to the remainder of a sublocale
jr: T — M of M if

J(f(p)) = 1 for every p € XL such that j&(p) = 1. (10.1)

In particular, they say that f is S-proper (resp. A-proper, resp. wv-proper) if S(f)
(resp. A(f), resp. v(f)) takes the remainder of L to the remainder of M.

Remark 10.1. Any = € L such that j%(x) = 1 is necessarily in L \ S. In fact, x € L =
S v (L~ S) means that © = s A r for some s € S and r € L\ S; but j&(z) = A{se S|
s = x} = 1 implies that s = 1, that is, z =re L\ S.
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For each a € L, b(a) = {x — a | x € L} is the least sublocale containing a ([29,
I11.10.2]). In case a is a point p of L, we have, for any x € L, p = (z v p) A (x — p) and,
therefore, p =z v p or p = x — p. Hence

1 ifx<p
r—p=
p otherwise.

and b(p) = {1, p} (these are the one-point sublocales [29]). The case where p is completely
prime has a special feature (cf. [4]):

Proposition 10.2. For each p € XL, b(p) is complemented if and only if p is completely
prime.

Proof. =: We have (L\b(p))nb(p) = {1} and hence p ¢ L~b(p). Since (L~\b(p))vb(p) =
L, theset A= {x e L |z > p}is contained in L\ b(p) (because no z > p can be obtained
as some y A p) and thus A\ A € L \ b(p). Hence A A > p which clearly shows that p is
completely prime.

«=: By Proposition 4.1(4), L\ b(p) = \/{S € S(L) | Snb(p) = 0}. Hence a € (L~ b(p))
if and only if a = /\ A for some A < [ J{S € S(L) | p¢ S}. In particular, p ¢ (L~ b(p)) by
the complete primeness of p. Hence b(p) n (L \ b(p)) = 0 and b(p) is complemented. O

It follows immediately from this proposition that, for any completely prime p € L and
any S € S(L),
pES < b(p)nS=0 < b(p) S L~\S. (10.2)

Next, we need to recall that a frame L is regular if and only if
a¥b = 3JceL: avec=1 and c* Lb
for every a,be L.
Proposition 10.3. Let L be a regular frame. Then:
(1) Ewvery p € XL is completely prime.
(2) For eachpe XL and S e S(L), ji(p) =1iffp¢ S.

Proof. (1) Let p # 1 be a prime element and p = A S. If s € p for every s € S then, by
regularity, there exists for each s € S some ¢, € L such that ¢; v s =1 and ¢* € p. But
then ¢; A ¢ =0 < p would imply ¢ < p (as the other alternative ¢* < p is impossible)
and finally we would get 1 =cs v s<pvs=s, thatis,p=AS = 1.

(2) The implication “=" is obvious since p # 1. Conversely, if p ¢ S then j&(p ) £ pan
thus, by regularity, there is some c satisfying j&(p)ve =1and ¢* £ p. But cac* =0 <
and p is meet-irreducible so ¢ < p. Hence 1 = j&(p) v ¢ < j&(p) v p = j§(p). O

As any localic map sends points to points ([29, I1.3.4]), it is fairly clear that this result
together with (10.2) asserts that in regular frames condition (10.1) is equivalent to

b(p) < (L~ S) = b(f(p)) < (M~T). (10.3)

Hence, we have:
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Corollary 10.4. Let f: L — M be a localic map, with L and M regular frames, and let
SeS(L) and T e S(M). If f takes S-remainder to T-remainder then it satisfies (10.1).

Proof. From b(p) < L~ S it follows that b(f(p)) = f[b(p)] € f[L~S] € M\ T, whence
(10.3) holds. O

Thus for regular frames we have the following picture depicting the relations between
the several mentioned classes of localic maps (with none of the indicated implications
reversible):

17 17 17
i proper 27]] <2 - =

|

Fop] — [Fron ] — [ ] = [ o]

Finally, in order to get the converse to Corollary 10.4 we need to impose some spa-
tiality condition on frames L and M, namely the Tp-axiom, the usual requirement under
which topological properties are faithfully described by the pointfree setting. For this,
recall that a space X is Tp if for each x € X there is an open U 3 x such that U \ {z} is
still open (clearly, T is strictly stronger than Tj and strictly weaker than 77). A frame
L is Tp-spatial ([9, 30]) if L = OX for some Tp-space X. In the following, CP(L) will be
the set of all completely prime elements of L. By [4, Cor. 2.5.2], a frame L is Tp-spatial
if and only if

L =\{b(p) |peCP(L)}. (10.4)
We have then:

Proposition 10.5. Let f: L — M be a localic map, with L and M both Tp-spatial and
regular, and let S € S(L) and T € S(M). If f satisfies (10.1) then it takes S-remainder
to T-remainder.

Proof. As a consequence of (10.4) and (3.3) we have

LnS= \ (b))~ =V (bp)n(L~S)).
peCP(L) peCP(L)

Therefore

FILN ST = VA{fb(p)] [pe CP(L) n (L~ S)} = V{b(f(p) [pe EL,p ¢ S}

Similarly,

MAT= \/ (bg)n (M~T)) = \V{blg) | g SM,q ¢ T},
qeCP(M)

Since p € XL implies f(p) € M and, by hypothesis, p ¢ S implies f(p) ¢ T, we have
fIL~ S] € M \ T, as required. O
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