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The structure of pollination networks, particularly its nestedness, contain important 
information on network assemblages. However, there is still limited understanding of 
the mechanisms underlying nested pollination network structures. Here, we investigate 
the role of adaptive interaction switching (AIS), island area, isolation, age and sam-
pling effort in explaining the nestedness of pollination networks across ten Galápagos 
Islands. The AIS algorithm is inspired by Wallace’s elimination of the unfit, where a 
species constantly replaces its least profitable mutualistic partner with a new partner 
selected at random. To explain network structures, we first use a dynamic model that 
includes functional response of pollination and AIS, with only species richness and 
binary connectance as input (hereafter the AIS model). Thereafter, other explanatory 
variables (isolation, area, age and sampling effort) were added to the model. In four out 
of ten islands, the pollination network was significantly nested, and predictions from 
the AIS model correlated with observed structures, explaining 69% variation in nest-
edness. Overall, in terms of independent contribution from hierarchical partitioning 
of variation in observed nestedness, the AIS model predictions contributed the most 
(37%), followed by sampling effort (28%) and island area (22%), with only trivial 
contributions from island isolation and age. Therefore, adaptive switching of biotic 
interactions seems to be key to ensure network function, with island biogeographic 
factors being only secondary. Although large islands could harbour more diverse 
assemblages and thus foster more nested structures, sufficient sampling proves to be 
essential for detecting non-random network structures.

Keywords: adaptive rewiring, island biogeography, mutualism, nestedness, 
pollination network, sampling effort

Introduction

Islands often harbour highly endemic community assemblages that are largely 
constrained by biogeographical factors such as island area, age and degree of isolation 
(MacArthur and Wilson 1967). Besides these physical constraints, climate and human 
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disturbance can also largely affect insular ecological networks, 
particularly through biological invasions (Menke et al. 2012, 
Sebastián-González  et  al. 2015, Roura-Pascual  et  al. 2016, 
Tylianakis and Morris 2017). In particular, many plants and 
pollinators exploit the mutual benefits of cross-fertilisation 
and nectar harvest, improving the fitness of both partners 
(Bronstein 2015). As such, mutualistic interactions are key 
for enhancing and maintaining insular biodiversity and com-
munity functioning (Heleno et al. 2012, Traveset et al. 2016).

Mutualistic interactions, such as pollination or seed dis-
persal, often display patterns of nestedness (Lewinsohn et al. 
2006, Bascompte and Jordano 2007, Bezerra  et  al. 2009, 
Fortuna  et  al. 2010, Sebastián-González  et  al. 2015). The 
degree of nestedness reflects the extent to which interac-
tions are hierarchically arranged, so that species with less 
mutualistic partners (i.e. specialists) interact only with a 
proper subset of the partners of the more generalist species 
(Bascompte  et  al. 2003). As other network structures, the 
degree of nestedness of mutualistic networks is often scale 
dependent (Bezerra  et  al. 2009) and varies with sampling 
intensity (Blüthgen  et  al. 2007). For instance, subsets of a 
nested pollination network are often structured in a more 
nested way than the overall network (Bezerra et al. 2009). As 
such, nested structures become possible within the network 
motifs, and the level of nestedness is often rising at smaller 
scales (Lewinsohn et al. 2006, Flores et al. 2013). This scale 
dependence is often described using multilayer networks 
(Genrich et al. 2017, Pilosof et al. 2017).

Although a consensus is yet to be reached, nested networks 
seem to have important implications to the stability and per-
sistence of mutualistic networks (Okuyama and Holland 
2008, Thébault and Fontaine 2010, Staniczenko et al. 2010, 
Allesina and Tang 2012, James  et  al. 2012). In particular, 
it has been argued that highly nested mutualistic networks 
not only can support more species (Bastolla et al. 2009) but 
might also be more robust against habitat loss (Fortuna and 
Bascompte 2006) or species extinctions (Burgos et al. 2007). 
In contrast, it has also been argued that nestedness is only 
a by-product of species relative abundances rather than an 
actual driver of species coexistence (James et  al. 2012) and 
network robustness (Minoarivelo and Hui 2016a). Although 
other network descriptors such as modularity have been 
found to decrease the stability of mutualistic communities 
(Thébault and Fontaine 2010), we confine our work solely to 
explaining observed levels of nestedness in mutualistic net-
works, as there exists an overall negative relationship between 
the levels of nestedness and modularity (Fortuna et al. 2010).

To explain structural emergence in ecological networks, 
earlier works have resorted to neutral processes such as random 
interactions between encountered individuals (Stang  et  al. 
2006, Vázquez  et  al. 2007), and/or processes acknowledg-
ing the differences in species abundance or dispersal capacity 
(Lewinsohn et al. 2006). However, species abundances and 
encounter rates, as well as the strength of mutualistic interac-
tions, are clearly not static, hinting at the need for a more 
dynamic model of adaptive network emergence. To this end, 
co-evolutionary processes have been proposed to affect not 

only the establishment of species interactions (Ehrlich and 
Raven 1964) but also the dynamics of ecological networks 
(Rezende et al. 2007a, Guimarães et al. 2011). Many studies 
have put forward different models and processes of network 
emergence based on evolutionary processes (Rezende  et  al. 
2007b, Guimarães et al. 2011, Minoarivelo and Hui 2016b, 
2018, Hui  et  al. 2017, Raimundo  et  al. 2018). However, 
although phylogenetic constraints on trait complemen-
tarity can influence interactions (Rezende  et  al. 2007b, 
Raimundo et al. 2018), they only account for a small amount 
of variation in network structure (Rezende  et  al. 2007b, 
Minoarivelo et al. 2014). To this end, evidence abounds that 
species can switch their interaction partners while searching 
for resources in both antagonistic and mutualistic networks 
(van Baalen et al. 2001, Kimbrell and Holt 2005, Basilio et al. 
2006, Petanidou et al. 2008). For instance, generalist pollina-
tors are constantly fine-tuning and rewiring their interaction 
partners to augment the accessible resources and, by doing 
so, shape the assembly of pollination networks (Ponisio et al. 
2017). Such adaptive rewiring by animals can enhance the 
tolerance of mutualistic networks to species loss (Ramos-
Jiliberto et al. 2012). On a different temporal scale, species 
also inevitably need to rearrange their interactions when 
expanding on areas outside their native ranges – establishing 
novel interactions with resident species in invaded ecosystems 
(Traveset et al. 2013, Saul and Jeschke 2015, Le Roux et al. 
2017, Hui and Richardson 2017, 2019), or after local extinc-
tion of co-occurring species (Costa et al. 2018). Such interac-
tion rewiring can be very rapid, and is definitely much faster 
than evolutionary processes. As such, a model based on short-
term dynamical processes of interaction rewiring could drive 
network structure.

Ecological fitting, the formation of biotic interactions 
through compatibility of traits after rapid try–error match-
ing, has been proposed as an alternative mechanism to 
coevolution for establishing novel biotic interactions (Janzen 
1985, Raimundo  et  al. 2018). Ecological fitting is ulti-
mately a process of rapid species rewiring – species adap-
tively switching and readjusting their interaction partners 
for short-term fitness gain regardless of whether they share 
any joint evolutionary history (Agosta and Klemens 2008). 
Because ecological fitting is also a sorting process, whereby 
only ‘fits’ can persist, its products resemble those that can be 
expected by coevolution (Agosta 2006). Previous studies have 
shown the importance of species rewiring in fostering spe-
cies coexistence and persistence in species-rich or nutrient-
poor communities (Murdoch 1969, Staniczenko et al. 2010, 
Valdovinos et al. 2010, Kaiser-Bunbury et al. 2010, Ramos-
Jiliberto et al. 2012, Suweis et al. 2013, but see Gilljam et al. 
2015). Indeed, a species can switch partners based on the 
quality and quantity of available resources, as well as on the 
cost of acquiring such resources (Whittall and Hodges 2007, 
Valdovinos et al. 2010). Since mutualism is essentially a case 
of reciprocal exploitation, both species rewiring and ecologi-
cal fitting can be framed under the theory of optimal and 
adaptive foraging, where species can adapt their diet based 
on current profitability, encounter rate and past experience 
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(Stephens and Krebs 1986, Fossette et al. 2012, Zhang and 
Hui 2014). This provides a behavioural strategy for adaptive 
interaction switching (AIS), which has been implemented in 
a number of network-emergence models for explaining net-
work structures in mutualistic communities (Kondoh 2003, 
Staniczenko  et  al. 2010, Zhang  et  al. 2011, Suweis  et  al. 
2013, Mougi and Kondoh 2016).

Here, we first intend to predict pollination network 
structures in ten islands of the Galápagos Archipelago, using 
a model that implements adaptive interaction switching (AIS) 
based on Alfred Wallace’s theory of natural selection via the 
elimination of the unfit, i.e. avoiding interactions with the less 
beneficial partners (Wallace 1864). In particular, the model 
uses observed species richness and network connectance 
as input, and adaptively reshuffles interactions between  
co-occurring species (Kondoh 2003, Zhang et al. 2011). We 
compare the results with a null model that maintains the mar-
ginal totals and connectance. Second, we intend to partition 
the amount of observed variation in network nestedness that 
is explained by the AIS model, by island biogeography theory 
(island area, isolation and age), and by sampling effort.

Material and methods

Study system and observed nestedness

The Galápagos Islands are located on the equator in the 
eastern Pacific Ocean, 960 km to the west of Ecuador in 
South America (Fig. 1). There are 18 main islands, with 

San Cristóbal Island being the southernmost and the oldest 
(about 4 Ma), having an average island size of 141 km2. The 
youngest island, Fernandina, erupted between about 0.035 
and 0.07 Ma (Poulakakis et al. 2012), and Isabela, the largest 
and highest (1710 m a.s.l.) dates to approximately 0.75 Ma 
(Ali and Aitchison 2014). About 30 000 people live in the 
archipelago, concentrated mostly in Santa Cruz and San 
Cristóbal, although ca 2000 inhabit Isabela and ca 100 live 
in Floreana (Galápagos Conservancy 2016). Using Google 
Earth, we measured the shortest distances between the shores 
of each island and used the mean value in each group of 
measurement as the degree of isolation for each island.

The Galápagos flora consists of more than 1400 vascular 
plants, of which 59% are aliens, 14% are endemic and 27% 
native (Jaramillo and Guézou 2013). Pollination data were 
collected from a survey of pollination events on 10 islands, 
including Fernandina, Pinta, San Cristóbal, Santa Cruz and 
Santiago (reported in Traveset et al. 2013; surveyed in February 
2010 and 2011); and Española, Floreana, Genovesa, Isabela 
and Marchena (reported here; surveyed from 2012 to 2015). 
Visits of animals to open flowers were quantified by direct 
observation to randomly selected plants on all islands with 
variable sampling effort (min. 6, max. 126 hours per island) 
(Traveset et al. 2013; Table 1). All animals that contacted the 
reproductive organs of the flowers are hereafter referred as 
pollinators. The rationale and justification for the sampling 
design was presented elsewhere (Traveset et al. 2013).

Data from each island were compiled into a specific 
pollination network, with weighted interactions recorded 

Figure 1. Map of the Galápagos Islands. Labels indicate the islands included in this study.
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as frequencies of flower visitations to focal flowers. The sur-
veyed data allowed us to calculate the interaction matrix of 
visitation frequency (Vobs), weighted connectance (WC) and 
binary connectance (the proportion of non-zero elements 
of Vobs) (Table 1). To measure to what degree specialist spe-
cies tend to interact with particular subsets of the partners 
of more generalist species, we used the weighted nestedness 
metric WNODF (weighted nestedness based on overlap 
and decreasing fill; Almeida-Neto and Ulrich 2011), imple-
mented using the R package bipartite 2.08 (Dormann et al. 
2009) for R ver. 3.4.3 (<www.r-project.org>). Thereafter, we 
calculated the level of nestedness for the observed interaction 
matrix of visiting frequency Vobs.

To test the significance of the observed nestedness from 
the pollination networks, we compared the observed network 
structure with those generated at random from a null model. 
Since nestedness considers how specialist species interact 
with generalists, maintaining the number of interactions per 
species is important, and the null model for detecting nest-
edness should reflect this feature. We thus choose the null 
model of swap.web in the bipartite package. The null model 
reshuffles a given weighted matrix of interactions in such a 
way that maintains the matrix dimension, the number of 
links and the marginal totals, i.e. the number of links per 
species (Dormann et al. 2009). An observed network was said 
to be significantly nested when the observed value of nested-
ness was located within the 5% upper tail of 1000 null-model 
predictions.

Adaptive interaction switching (AIS) model

The population dynamics of resident species in a pollina-
tion network was simulated using a modified Lotka–Volterra 
model (Zhang  et  al. 2011). The model implements the 
mutualistic relationship between plant and animal species 
using Holling’s (1959) type II functional response for recip-
rocal resource acquisition, and AIS of species interaction 
(Kondoh 2003, Zhang et al. 2011). Specifically, we depict 
the pollination network as a bipartite network of plants (P) 
and animals (A) for each island, where species in one parti-
tion interacts mutually with species in the other partition. 

Therefore, for m number of plants and n number of animals, 
the population dynamics can then be described by the fol-
lowing (Okuyama and Holland 2008, Bastolla et al. 2009, 
Zhang et al. 2011, Suweis et al. 2013):
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where Pi and Aj are population densities of plant species i and 
animal species j. Superscript (P) and (A) represents plant and 
animal species, respectively.

From the right-hand side of both equations above, the 
first term depicts population growth, with ri

P( )  and rj
A( )  

representing the intrinsic growth rates of plant species i and 
animal species j. The second term incorporates the density-
dependence, where αi

P( )  and α j
A( )  are the coefficients. The 

third term is the functional response that describes the fitness 
gain from the mutualistic interactions, where aij is the ele-
ment on row i and column j of the binary interaction matrix 
Mm×n, and indicates whether plant i interacts with animal j 
(aij = 1) or not (aij = 0). Parameters βij

P( )  and βij
A( )  describe the 

per-capita benefits obtained per unit of time by plant i from 
interacting with animal j and by animal j from pollinating 
plant i, respectively. The parameter h stands for the handling 
time, representing the proportion of time a species spends on 
searching and handling resources (i.e. not all time was used 
for consuming resources).

To implement AIS, where a species can adaptively rewire 
its interacting partners based on the elimination of the unfit 
algorithm (Zhang et al. 2011), we followed a two-step pro-
cedure: eliminating the least contributing partner and rewir-
ing to a randomly selected partner. In particular, at each 
time step when numerically solving the above equations, a 
species is selected at random. For example, say animal j is 
selected, we then evaluate the relative benefit contribution 
received from interacting with a plant species by comparing 

Table 1. Characterization of the flower visitation networks and biogeographic variables of the 10 Galápagos Islands included in this study. 
SP, SA and I are the number of plants, animals and interactions respectively; WC: weighted connectance; sampling effort is measured in 
hours; isolation, which is the average nearest distance of one island to the other is measured in km; Island size is given by the area, measured 
in km2. Age is measured in millions of years (Ma) (Poulakakis et al. 2012, Galapagos Conservancy 2016).

Islands SP SA I WC Sampling (h) Isolation (km) Area (km2) Age (Ma)

Española 11 16 31 0.12 16.75 162.58 60 3.50
Fernandina 18 60 125 0.06 70.25 128.00 642 0.07
Floreana 11 4 13 0.25 6.30 125.85 173 2.30
Genovesa 16 37 64 0.09 22.25 128.71 14 0.70
Isabela 12 16 28 0.13 23.42 75.65 4670 0.80
Marchena 8 14 20 0.13 12.25 108.00 130 0.70
Pinta 21 76 134 0.07 105.08 128.32 60 0.80
San Cristóbal 21 93 234 0.03 109.08 141.25 557 4.00
Santa Cruz 23 76 215 0.04 126.33 68.93 986 2.30
Santiago 24 69 167 0.03 107.83 72.25 572 1.40
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a Pij ij
A

iβ( )  for i = 1, …, m, and identify the plant species that 
interacts with animal j (those aij = 1) but contributes the least 
(say, plant k) to animal j’s benefit/fitness gain (thus the one 
with the minimum nonzero relative contribution). Once 
identified, animal j then stops its interaction with plant k, 
by setting akj from 1 to 0. We then choose a non-interacting 
plant species at random, say plant l (those currently with 
zero relative contribution, alj = 0), and switch the interaction 
between animal j and plant k to between animal j and plant 
l by setting akj = 0 and aij = 1.

Numerical simulation and parameterization

We conducted numerical simulations, solving the ordinary 
differential equations with the Runge–Kutta order 4 
method at a step size of 0.01, using deSolve package in R 
(Soetaert et al. 2010). At each time step, the AIS switching 
algorithm is implemented, and network structure computed 
(see Supplementary material Appendix 1 for R scripts). 
The initial interaction matrix aij were randomly assigned as 
a binary 0/1 matrix of dimension m × n with c proportion 
of elements being 1 and the rest 0, where m represents the 
number of plant species, n the number of animal species and 
c the binary connectance observed. Other model parameters 
were randomly assigned from uniform and normal distribu-
tions. Specifically, we assigned initial population densities, 
growth rates and density dependent coefficients from the 
uniform distribution U(0, 1); per capita benefits βij

P( )  and 
βij

A( )  were assigned from the nonnegative normal distribution 
|N(0, 0.05)|. For simplicity, the same handling time was 
assigned for all species, h = 0.1. The selection of the specific 
bounds of parameter distributions was simply to ensure the 
persistence of all species. Other bounds that still ensure the 
persistence of all species do not alter the results qualitatively 
(and thus are not shown).

Therefore, for each island we used three observed numbers 
(m, n and c) as model input and generated the encounter-
ing matrices VAIS = <aijPiAj>m×n for each of the last 1000 time 
steps (from a total 5000 time steps of running the model). 
We calculated the nestedness of encountering matrices also 
using WNODF. Due to the stochasticity associated with 
assigning parameters from random distributions (especially 
for small networks) and the lack of empirical estimates of 
population growth, density dependence and mutualistic ben-
efits, we ran 100 replicates of the model for each island. We 
then chose the set of parameters that generated the closest 
average nestedness of the last 1000 encountering matrices to 
the nestedness of observed visiting frequency matrix. From 
this semi-optimisation procedure of parameterisation, albeit 
still randomly drawn from the same specified probability 
distributions, the chosen parameter set should reflect, to 
some degree, the context- and island-dependent strengths of 
pairwise biotic interactions. That is, this procedure is a com-
promised solution to addressing the missing information on 
the population growth, density dependence and mutualistic 
benefits of the species on each island, which are required for 
running the model.

To assess how much variation in the observed nestedness 
can be explained by the AIS model, we first performed a 
linear regression of predicted versus observed values for 
each network, using reduced major axis regression from 
the R package lmodel2 1.7-2 (Legendre 2014). In addition 
to the AIS model predictions, other variables such as sam-
pling effort, island area, isolation and age, were combined 
to predict the observed network structures. Consequently, 
we checked for collinearity among these explanatory vari-
ables using variance inflation factor (VIF) in the R package 
fmsb 0.6.1 (Nakazawa 2017), keeping only variables with 
VIF values lower than 10. Thereafter, the combined vari-
ables were used to explain the observed nestedness using 
generalised linear model (GLM) in R.

Due to the low number of networks (i.e. 10 islands), and 
to avoid overfitting, we further ran cross-validation by fitting 
the GLM using data from nine islands and predicting the 
network structure of the tenth island. Because of the semi-
optimisation procedure of parameterisation and the potential 
of overfitting, the importance of AIS algorithm could have 
potentially been inflated (although not necessarily so). To 
address this problem, we partitioned the independent and 
conjoint contribution of these explanatory variables using the 
hierarchical variance partitioning method from the R pack-
age hier.part 1.0-4 (Walsh and Mac Nally 2013). The inde-
pendent contribution, by assessing the reduction of GLM 
performance from removing a variable, should thus reflect 
the minimum or conservative role of the AIS algorithm in 
explaining observed levels of nestedness. In addition, the dif-
ference between the conjoint and independent contribution 
should reflect the inflation from the procedure of parame-
terisation, interactions and correlations between explanatory 
variables, and potential overfitting.

Results

Nestedness from AIS model

The pollination networks assembled on four out of the ten 
islands were significantly nested (Table 2). In contrast, none 
of the ten pollination networks were significantly modu-
lar (Supplementary material Appendix 2 Table A2.1 and 
Fig. A2.1). From the AIS model simulations, the final num-
ber of species in the predicted networks (Fig. 2a) was the 
same as in the observed networks (Fig. 2b), i.e. no species 
became extinct (Fig. 2c–d). For each island, a specific set 
of parameters were chosen through the semi-optimisation 
procedure of parameterisation. The nestedness predicted 
by the AIS models gradually converged to the value of the 
observed nestedness, irrespective of the network’s initial 
structure (Fig. 3), and so the AIS model was not rejected 
for six pollination networks: Española, Isabela, Marchena, 
Pinta, Santa Cruz and Santiago (Fig. 4). According to the 
RMA regression, the AIS model predictions greatly corre-
lated with observed nestedness (R2 = 0.69, p = 0.003, RMA 
slope = 0.50) (Fig. 4).
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All the explanatory variables including the AIS model 
predictions, the geographical factors (island area, isolation, 
age) and sampling effort were found to be independent vari-
ables, significantly contributing for explaining nestedness 
(Supplementary material Appendix 3 Table A3.1). Hence, 
the GLM model combining all independent variables 

explained more than 90% of the variation in observed nest-
edness (i.e. R2 = 0.92, p < 0.0001). However, the correlation 
between observed and cross-validated nestedness was weak 
(r = −0.072, p = 0.844), indicating overfitting. As such, we 
relied on the independent contribution of each variable from 
the hierarchical partitioning as a conservative indicator of 
its role in explaining observed nestedness, whereas the dif-
ference between conjoint and independent contribution 
reflected the inflated contribution due to overfitting and 
other issues. Albeit the noteworthy difference between con-
joint and independent contribution (Fig. 5, Supplementary 
material Appendix 3 Table A3.2), the AIS model as an 
explanatory variable remained the greatest independent con-
tributor (37.27%), followed by sampling effort (27.76%) 
and island area (22.11%), whereas island isolation and age 
explained each less than 10% of the variation in observed 
nestedness.

Discussion

Adaptive rewiring

By using the algorithm for adaptive interaction switching, 
we could to some extent predict particularly the structure of 
those nested insular pollination networks on the Galápagos 
Islands (Table 2). Overall, when evaluated alone, the AIS 

Table 2. Nestedness of the pollination networks of 10 Galápagos 
Islands, predicted by adaptive interaction switching (AIS) and null 
model. Each value of the model corresponds to the 95% confidence 
interval X Z X±( )α σ/2 , where X  and σX  are the mean and stan-
dard deviation of the model predictions respectively; Zα/2 = 1.96 is 
the critical value; number of samples is 1000 for both the AIS model 
and the null model. The observed values in bold are significantly 
nested, while the underlined model predictions are not significantly 
different from the observed values.

Islands Observed
Model predictions

AIS Null

Española 0.082 0.116 ± 0.045 0.073 ± 0.040
Fernandina 0.092 0.109 ± 0.015 0.213 ± 0.045
Floreana 0.000 0.081 ± 0.078 0.029 ± 0.069
Genovesa 0.053 0.074 ± 0.017 0.057 ± 0.023
Isabela 0.163 0.109 ± 0.063 0.143 ± 0.058
Marchena 0.050 0.074 ± 0.047 0.050 ± 0.037
Pinta 0.104 0.091 ± 0.017 0.147 ± 0.026
San Cristóbal 0.182 0.158 ± 0.015 0.174 ± 0.018
Santa Cruz 0.160 0.160 ± 0.020 0.223 ± 0.027
Santiago 0.133 0.133 ± 0.014 0.203 ± 0.029

Figure 2. Data from the Española Island showing (a) predicted interaction matrix, (b) observed interaction matrix, (c) plant and (d) animal 
population abundances over the simulation time from the AIS model.
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model captured almost 70% of the cross-island variation 
in nestedness, supporting the claim that adaptive interac-
tion switching, not random rewiring (captured by the null 
model), is an important process of structural emergence in 

ecological networks (Kondoh 2003, Valdovinos et al. 2010, 
Zhang  et  al. 2011, Suweis  et  al. 2013, Nuwagaba  et  al. 
2015). To further explore the role of adaptive rewiring to 
network stability, we estimated the asymptotic stability using 
the lead eigenvalue of the encountering matrix and found 
that adaptive rewiring could destabilise a system by push-
ing it towards marginal instability (Supplementary material 
Appendix 5 Fig. A5.1; Hui and Richardson 2019). In par-
ticular, we discovered a positive correlation between nest-
edness and the lead eigenvalue from adaptive switching, 
but a negative correlation when switching was not allowed 
(Supplementary material Appendix 5 Fig. A5.2). This is con-
sistent with the notion of Suweis et al. (2013) that the cost to 
an optimised network from adaptive rewiring is its reduced 
stability. Therefore, adaptive rewiring can greatly affect net-
work stability and function, while the pattern of nestedness 
could simply be a by-product of marginal instability (Hui 
and Richardson 2019).

Conserving and restoring pollination interactions can 
be crucial for the functioning of island ecosystems (Kaiser-
Bunbury et al. 2010) as keystone species often foster strong 
asymmetric interactions and thus produce mostly nested 
structures in such isolated ecosystems (Dupont et al. 2003). 
Indeed, in contrast to significant nestedness in most insu-
lar pollination networks at the local island scale, none was 
significantly modular (Supplementary material Appendix 
2 Table A2.1). However, on a larger scale, the pattern of 
modularity is visible at the archipelago scale (Traveset et al. 
2013, using a subset of the datasets presented here as a single 
meta-network). This is consistent with the observation that 
relatively small pollination networks could hardly exhibit 
significant levels of modularity (Olesen et al. 2007), as well 
as the multiscale and multilayer nature of mutualistic net-
works (Genrich et al. 2017, Pilosof et al. 2017). As such, we 
argue that the AIS process is crucial to understanding non-
random network structure; however, when network structure 
is indistinguishable from random, the contribution of the 
AIS process to network emergence inevitably declines.
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versus observed nestedness (WNODF) of 10 pollination networks 
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Sampling effect

The number of pollination events recorded on each island 
was found to correlate with the sampling effort (R2 = 0.91, 
p < 0.001, y = 1.72x + 0.03; Supplementary material Appendix 
4 Fig. A4.1). When resampling an artificial large network 
(50 plants and 200 pollinator species, generated using the 
AIS model) under different levels of sampling effort, we dis-
covered a threshold for detecting its non-random structures, 
after observing more than 60 pollination events (equivalent to 
34.9 h) (Supplementary material Appendix 4 Fig. A4.2). With 
only 20–60 observed pollination events (11.6–34.9 h), sam-
pling incompleteness can strongly hinder our capacity to detect 
relevant patterns on network structure, likely underestimating 
nestedness (Supplementary material Appendix 4 Fig. A4.2, 
A4.3). As a result, sampling effort was positively correlated 
with nestedness for the insular pollination networks (r = 0.609, 
p = 0.06). Accordingly, sampling effort was the second best pre-
dictor for explaining nestedness (Fig. 5). Unlike Trøjelsgaard 
and Olesen (2013), where sampling effort explained <1% 
of the variation in nestedness in pollination networks, we 
found that sampling effort independently contributed 28% in 
explaining the cross-island nestedness pattern (Fig. 5). This is 
aligned with other studies that acknowledge the importance 
of sampling effect in detecting nestedness and other network 
structures (Blüthgen et al. 2007, Blüthgen 2010).

In contrast, however, even with sufficient sampling effort 
we did not discover any modular patterns at local island 
scales, suggesting that the pattern of compartmentalisation 
could be completely lacking within an island pollination 
network. This, however, could also mean that modularity is 
much more difficult to detect than nestedness on a local scale. 
This finding is in agreement with Vizentin-Bugoni  et  al. 
(2015) but contrasts with previous findings that nestedness 
is not highly sensitive to sampling completeness (Nielsen 
and Bascompte 2007). With the increase of sampling effort 
(Supplementary material Appendix 4 Fig. A4.2, A4.3), we 
could expect to discover more rare and aggregated species, as 
well as rare interactions which could alter interaction patterns 
and shift the distribution of interaction strength (Etienne 
and Alonso 2005). Consequently, sampling effort should 
continue to be regarded as a crucial factor to consider when 
comparing network structure (Rivera-Hutinel  et  al. 2012, 
Costa et al. 2016, Falcão et al. 2016).

Island biogeography

The emergence of structural patterns on the pollination 
networks on the Galápagos Islands is secondarily driven 
by biogeographical factors. Besides the AIS process and 
sampling effects, island area was also found to be an impor-
tant driver of nestedness across islands, though the level 
of island isolation was the highest conjoint contributor of 
modularity across islands (Supplementary material Appendix 
2 Fig. A2.2, Table A2.2). This is in line with Roura-
Pascual et al. (2016) that island isolation is a plausible expla-
nation for the spatial modularity of native ant assemblages. 
Similarly, large islands harbour more heterogeneous habitats 
and thus more diverse assemblages, allowing species to diver-
sify their interacting partners and interaction promiscuity 
(Ricklefs and Lovette 1999, Montoya  et  al. 2015), foster-
ing nested network structures. Taken together, biogeographi-
cal factors only partially explain the interaction patterns on 
local species assemblages, whereas the network structure 
emerges from each species surviving and negotiating in the 
games and tradeoffs with other members of the network 
(Nuwagaba  et  al. 2015, Pinheiro  et  al. 2016, Minoarivelo 
and Hui 2018). These games and tradeoffs, together with 
direct and indirect biotic interactions, shape the trait evolu-
tion in an ecological network (Guimarães et al. 2017, Hui 
and Richardson 2019), which in return also affects species 
interactions and abundances (Raimundo  et  al. 2018). It 
further suggests the need to consider trait matching and trait 
coevolution in future model of adaptive networks, aiming at 
capturing the structure and function of mutualistic networks 
(Traveset et al. 2013, Chamberlain et al. 2014, Minoarivelo 
and Hui 2016b). Biogeographical factors are important to 
network assembly, but only secondary to network structure 
and function which arise largely from the multiplayer games 
of resident species.

The reason that a previous study using datasets from 
five of the Galápagos Islands detected a significant mod-
ularity pattern (Traveset  et  al. 2013) could be because 
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a binary metric was used and the data was combined to 
form a large scale meta-network at the archipelago level, 
instead of considering the islands as separate networks. In 
so doing, several of the detected modules at the archipelago 
level largely coincided with specific island assemblages. 
This confirms the scale dependency of network modularity 
that often emerges at larger geographic and/or taxonomic 
scales, in contrast to nestedness that becomes more notable 
at local scales (Lewinsohn et al. 2006, Flores et al. 2013). 
This suggests that, first, modularity patterns in real mutu-
alistic networks could reflect multiple subnetworks that 
are divided by dispersal barriers, and are thus connected 
by limited dispersal – our result on island isolation being 
the second most important contributor to the cross-island 
variation in modularity further support this proposi-
tion (Supplementary material Appendix 2 Fig. A2.2; see 
also Timóteo  et  al. 2018). The implementation of spa-
tially explicit multilayer modularity (Pilosof  et  al. 2017, 
Timóteo et al. 2018), recognising the interdependence of 
islands within an archipelago context, holds great promise 
to further understand the implications of biogeography, 
including island isolation, on archipelago-level meta-com-
munity structure. Nevertheless, such approach would ide-
ally require an independent quantification of inter-island 
connectivity for each species, which remains a heady goal. 
We expect that at increasing spatial scales (from local to 
meta-network), a transition from a predominantly nested 
structure to a more modular pattern should be observed in 
mutualistic meta-networks.

Overall, we show that AIS seems a key driving mecha-
nism behind community nestedness, with a secondary role of 
biogeographic factors. However, sampling effort needs to be 
explicitly considered when exploring the drivers of network 
structure as there is a minimum sampling threshold below 
which some patterns will likely go undetected.
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