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Abstract

With the evolution of technology there is a need to improve the world, taking advantage
of it. And the aviation industry is no exception. As time went by, the need arose to
extend the useful life of a system or component, through an analysis based on its health
state (CBM). With the implementation of this type of methodologies it is also possible
to predict when it will fail, calculating the life left until this event. This is one of the
approaches that needs to be improved, once the timely detection of this type of anomalies
allows airlines to save money, as well as an adequate maintenance management by the
teams responsible for them.

In order to respond to these needs, the literature explains some approaches made in this
regard, highlighting the PHM methodologies. Through these, an analysis is made of the
behavior of the sensors, thus reflecting the health status of the respective systems, as well
as the corresponding degradation, making it possible to predict the occurrence of a failure.
In this way, most of the approaches found analyze the data of the sensors present in the
system, through the application of Machine Learning algorithms, Kalman Filters, among
others, which allow observing their behavior showing a possible degradation of the system.

The work done throughout this investigation resulted in the adoption of two different
approaches, benefiting from the data for the two phases of this work. For the diagnostic
phase, a methodology based on supervised Machine Learning algorithms was developed
and, for the prognosis phase, a method was developed based on the interpretation of the
behavior of the sensor signals.

Both approaches were applied, as proof of concept, for the systems Air Bleed and CACTCS
that belong to Boeing 747 and Boeing 787, respectively. Despite they belong to different
aircraft, the purpose of them is equivalent - extract the air from the outside of the airplane
and take it to the places where it is needed.

The obtained results, for these systems, are promising. Regardless exist some differences
between the systems, they, in general, predict with some security the health of the systems
and the occurrence of a failure. This way, these results could have a huge impact because
they permit to extend the life of a system, helping the schedule in the maintenance team.
However, these results need to be validated by the airline companies involved in the ReMAP
project.

Keywords
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Machine Learning, Predictive and Health Management, Prognosis
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Resumo

Com a evolução da tecnologia existe uma necessidade de melhorar o mundo, tirando par-
tido dela. E a indústria aeronáutica não é exceção. Com o evoluir dos tempos, surgiu a
necessidade de estender o tempo de vida útil de um sistema ou componente, através de
uma análise baseada no estado de saúde da mesma (CBM). Com a implementação deste
tipo de metodologias é possível também prever quando é que o mesmo irá falhar, calcu-
lando o tempo de vida restante até este acontecimento. Esta é uma das abordagens que
é necessário melhorar, uma vez que a deteção atempada deste tipo de anomalias permite
poupar dinheiro às companhias aéreas, bem como uma gestão adequada de manutenções
por parte das equipas responsáveis pelas mesmas.

Com o intuito de dar resposta a estas necessidades, a literatura explica algumas abordagens
feitas nesse sentido, destacando-se as metodologias PHM. Através destas é feita uma análise
ao comportamento dos sensores refletindo, assim, o estado de saúde dos respetivos sistemas,
bem como a correspondente degradação, possibilitando a previsão da ocorrência de uma
falha. Deste modo, a maioria das abordagens encontradas analisam os dados dos sensores
presentes no sistema, através da aplicação de algoritmos de Machine Learning, Filtros de
Kalman, entre outros, que permitem observar o seu comportamento evidenciando uma
possível degradação do sistema.

O trabalho realizado ao longo desta investigação resultou na adoção de duas abordagens
distintas, beneficiando dos dados para as duas fases deste trabalho. Para a fase de diag-
nóstico, foi desenvolvida uma metodologia baseada em algoritmos de Machine Learning
supervisionados e, para a fase de prognóstico, foi desenvolvido um método baseado na
interpretação do comportamento dos sinais dos sensores

Ambas as abordagens foram aplicadas, como prova de conceito, nos sistemas Air Bleed e
CACTCS, que pertencem ao Boeing 747 e ao Boeing 787, respetivamente. Apesar de os
sistemas fazerem parte de aviões diferentes, o objetivo de ambos é o mesmo - extrair o ar
do exterior e conduzi-lo adequadamente até aos locais onde ele é necessário.

Os resultados obtidos para estes sistemas são promissores. Apesar de existirem algumas
diferenças entre os sistemas, em geral, é prevista com alguma segurança o estado de saúde
dos mesmos e a respetiva ocorrências de falhas. Deste modo, estes resultados poderão ter
um enorme impacto, pois através da antecipação de possíveis falhas, poderão ser evitados
acidentes ou despesas avultadas para resolver os problemas, permitindo prever o estado dos
componentes e dos sistemas de forma a promover processos eficazes de manutenção. No
entanto, estes resultados necessitam de ser validados pelas companhias aéreas envolvidas
no projeto ReMAP.

Palavras-Chave

Diagnósitco, Inteligência Artificial, Manutenção Baseada na Condição, Manutenção de
Aviões, Machine Learning, Prognóstico, Prognósticos e Gestão de Saúde
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Chapter 1

Introduction

Diagnosis and Prognosis of Aircraft Systems State is the thesis’ theme that was developed
during the last academic year. It is inserted in a H2020 European project called Real-time
Condition-based Maintenance for Adaptative Aircraft Maintenance Planning (ReMAP) [1]
and also in the Master’s in Informatics Engineering of the Faculty of Sciences and Tech-
nology of the University of Coimbra.

This introductory Chapter includes a brief explanation about the main goals, the context
of the problem, as well as, the approach implemented, and the obtained results. With
these descriptions a general idea is given about the document content and the respective
structure.

1.1 Context and Problem Statement

Nowadays, people make predictions for organizing and planning their lives. These predic-
tions could have an impact that takes the people to spend more or less money, according to
the type of forecast made, depending of having a huge or tiny impact on their life. Progres-
sively, the tools that allow making the predictions are more trustworthy, which can help
people in their everyday life. They can be applied in different contexts in the life routines
either for in perspective personal, for example, to choose the clothes to wear according
to the wheater, or in a perspective professional, like good scheduling for the mechanical
maintenance for aircraft.

Focusing on mechanical maintenance prediction and, more specifically, in an airline com-
pany, these predictions can save money above all when they are related to a system or
component failure.

Suppose that a fault occurred, but it was not detected. It is possible that, in future events,
this fault can affect other systems or components in the aircraft. But, what would happen
if the defect was detected in time? Probably, the damage caused would be less and the
costs associated, too.

A statistical study reports some facts about the importance of the predictions in the main-
tenance of the aircraft and how the prompted detection helps the airline companies save
money and extend the lives of the systems of the aircraft [2]. Besides that, the mainte-
nance team has benefits when a failure is detected timely like greater ease to structure the
schedules or to organize the inventory, to allow quick maintenance for the airplane [3].
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Figure 1.1: Difference between the reactive, preventive and predictive maintenance, ex-
tracted from [3].

In Figure 1.1 is shown the difference between the reactive, preventive and predictive main-
tenance, explaining which one has more (red group), medium (orange group) or less (green
group) impact to the aircraft maintenance. Reactive maintenance occurs when a system
or component fails and needs to be removed, switching by another identical. The second
one, the preventive maintenance, establishes a relation between the age/flight hours and
the appearance, knowing that a failure will occur in the next flights. Finally, predictive
maintenance consists of finding out the condition of the system at a certain time, conclud-
ing when it is necessary to submit the system to the maintenance team. This approach will
have less impact on money and the time spent [3]. The work developed falls on predictive
maintenance, more specifically, in Condition Based Maintenance (CBM).

CBM helps to predict when a failure will occur based on the condition of the system
through the sensor measurements along the time and the respective behavior, providing
the diagnosis of the system state.

Nevertheless, even though the number of accidents is minor, they still happen, according
to a report that describes aviation accidents [4]. In Figure 1.2 is shown a general decline
in accidents, from 1998 until 2017, categorized by RE (green line), SCF (light brown line),
LOC-I (dark brown line), ARC (yellow line), and CFIT (blue line), that are described
after the Figure 1.3. This decline could be a result of the knowledge about all systems that
compose the airplane, as well as, the technology was improved in this matter.

Figure 1.2: Hull loss rate per million flights, by accident category, extracted from [4].
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Figure 1.3: Percentage of hull losses accidents by accident category, extracted from [4].

Where each acronym, that corresponds to an accident category, means [4]:

• RE: Runaway Execution, which means a lane deviation;

• SCF: System/Component Failure or Malfunction, which means that occurred a fail-
ure in a system;

• LOC-I: Loss of Control in Flight;

• ARC: Abnormal Runway Contact, which means that the landing was not normal;

• CFIT: Controlled Flight Into Terrain, which means that the accident happened
because of a collision with an obstacle (for example);

• Other: The accident was caused by a circumstance that is not labeled.

Analyzing the graphic in Figure 1.3, the main cause of their happening is related to the loss
of control in flight, and the second one is associated with the no detection of the failure,
on time. Despite they are not full losses, they are still losses that are associated with
expensive costs to the airline, which results in a problem for them either for the money or
time spent on that airplane.

In order to decrease the number of these values, and improve the statistical, is essential
to help the maintenance team to find out what is the condition of the system and the
possibility to occur a failure, to mitigating the losses caused by no attempted detection.

1.2 Goals

This thesis is integrated on the ReMAP Project, more precisely in Work Package 5 (WP5),
which is responsible for developing methodologies for aircraft systems based on prognostics
and health management. As such, the main goals of this thesis derive from the WP5 goals.

This work consists mainly of analyzing the health of a system/component (diagnosis) and
predict when a failure will occur (prognosis) through the sensor data behavior. In order
to obtain these results, there are a few steps that are needed to be processed:
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1. Processing the data: The outliers were removed, using a sliding window that
analysis which data are out of the established boundaries, and attribute a value that
is inside of them;

2. Diagnosis methodology: The health of the system is predicted, feeding Machine
Learning algorithms with sensor data, and predicting the Health Indicator for every
10 minutes;

3. Prognosis methodology: The behavior of the sensor data is analysed, in the
frequency domain, using DFT;

4. The points 2. and 3. are applied in different systems, in order to test and validate
these approaches.

More specifically, to have better results, the data is processed, whereby the outliers need
to be removed. Then, the data will be used for the diagnosis and prognosis phase that is
for the prediction of the health system and the Remaining Useful Life, respectively. After
that, the results are analyzed and, to validate the approach, it is applied to another system.
After these points are completed, the objective of this thesis is completed. This way, all of
these processes will be explained in the next sections.

1.3 Approach

Condition Based Maintenance is the base concept that allows to correspond to the main
objectives of this work is involved. The adopted approach takes into account the sensors’
measurement over the time and how it can be useful to solve two main issues related to
the diagnosis and prognosis.

The diagnosis phase consists in finding out the condition of the system and conclude if it
suffered extra degradation. Relatively to prognosis, this phase aims to know how much
time left (from the present) until the end of life. In this phase, is important to predict
when a failure will occur once the early prediction allows the airline company to avoid
expensive costs. So, the adopted approaches for these phases are:

• Diagnosis: Machine Learning algorithms were used to develop this phase, in order
to predict the state of a system, based on degradation over the time.

• Prognosis: The prognosis phase followed an approach based on the frequency and
magnitude analysis, with the main objective of anticipating the failure.

In the context of ReMAP, 13 different systems are considered. However, in this work only
2 of them will be treated: Air Bleed system, from Boeing 747, and Cabin Air Conditioning
and Temperature Control System, from Boeing 787.

The obtained results in this investigation help to increase the life of a system and decrease
the spent money when a failure is detected on time. However, it does not mean that a
system is not changed if a fault does not occur. All systems have an established deadline,
by the supplier, and when it is time to change, it will be exchanged for another, even if
there is no fault. So, this work complements the work of the maintenance team to help to
identify possible unusual behaviors and the respective origin, and it will not substitute the
defined deadlines.
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1.4 Main Achievements

According to the mentioned approaches, there were reached results in both phases.

In diagnosis, was developed a data-driven approach that is based on the health condition,
using Machine Learning algorithms. This phase, after testing a set of test cases, and
manipulate the data, was found the minimum MSE between the real and predicted health,
which means that in most situations the HI predicted is equal to the HI in the target.

In the prognosis phase, the failure was anticipated through three different approaches that
analyzed the magnitude, after each flight, in each sensor, over each trajectory.

1.5 Document Structure

Beyond this introductory chapter, this document has six more chapters.

In Chapter 2 is the Background. There will be explained the important concepts that
will be useful to understand the work performed.

In Chapter 3 is the State of the Art. Here is described and analyzed some performed
work related to the computation of the Health Indicator and the Remaining Useful Life,
in similar problems, and that could be adapted to this situation.

Chapter 4 explains the approach applied, whether in diagnosis or in prognosis.

In Chapter 5 is explained how Air Bleed system and CACTCS work and what are the
relevant information in the dataset that will be used to obtain the results.

In Chapter 6 is shown and explained the obtained results.

Finally, the conclusion of this work is described in Chapter 7.
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Chapter 2

Background

There exist some concepts and a set of themes that are important to support the under-
standing of the next sections. In order to explain all the process clearly, over the document,
these concepts and methods used in this work will be described.

2.1 Main Concepts

Before explaining the methodologies used, there are specific concepts that are essential to
understand the adopted approach and help to have a clearly idea about it.

2.1.1 Health Indicator

The Health Indicator (HI) of a given system reflects the combination of flight hours and
the deterioration process that increases flight after flight, resulting in a state of health [5].

The unit of the HI can be expressed in percentage [6] or an absolute value [7]. Over this
work, the absolute value will be considered, and in ideal conditions, after one hour of flight,
the HI value will be increased one hour. But in most cases, this doesn’t happen because
the systems have more deterioration in relation to the flight hours to which they have been
subjected.

2.1.2 Flight Deck Events

A Flight Deck Event (FDE) is a warning that advises the maintenance team that something
happened to the system. These warnings are classified depending on their severity.

The FDE is crucial because allows the maintenance team to find out what is wrong and
fix the problem to extend the life of the system.

Over this document, a FDE can be named by failure.

2.1.3 Remaining Useful Life

The Remaining Useful Life is the time left (from the present) until the end of life of a
certain system [8]. The evolution of this concept over the time is shown in Figure 2.1.
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Figure 2.1: RUL evolution, over the time.

In ideal conditions, the RUL is expected to have, after a certain period, a more pronounced
decrease, which will indicate that the end of life is near, as shown by the red line in
Figure 2.1. This value can be determined in a direct (when a pattern is recognized in the
data that could help to estimate the remaining life) or indirect way (where first is estimated
the damage, and then it will be compared with the real damage) [9].

However, the available data do not permit to compute this value simulating a real scenario,
where the future behavior is not known. So, the approach followed focuses on the prediction
of the failure instead of the computation of the RUL.

2.1.4 Removals

The removal matches the end of a trajectory, as well as, the maximum value of the Health
Indicator and the minimum value (zero) of the RUL. In order words, the removal corre-
sponds to the extraction of a certain system, when it is at the end of life.

They occur by routine because there is a maximum time, established by the maintenance
team, that a system can be a part of the airplane. So, after that, it needs to be removed
and substituted by another. However, other situations are responsible for the removals.
These situations can be caused by the damage that takes a high degradation of the system
or a FDE occurrence that, when the warning is dangerous, jeopardizes the security.

2.1.5 Trajectory

A trajectory is the time interval since a system is inserted in the airplane until it is re-
moved [10]. That way, the end of a trajectory matches with a removal, as well as, the value
0 of the Remaining Useful Life.

2.1.6 Flight Phase and Aggregated Phase

The flight phase is a number (between 1 and 14) that corresponds to a stage of the flight.
The number and the respective phase is described below:
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1. Power on

2. Engine start

3. Taxi out

4. Unknown

5. Take-off roll

6. Initial climb

7. Climb

8. Cruise

9. Descent

10. Approach

11. Rollout

12. Taxi in

13. Unknown

14. Engine shutdown

Some of these fourteen phases have a similar sensor behavior over time, which means that
these flight phases can be processed at the same time. The result of these combinations of
the flight phases are designated by aggregated phases and are described in Table 2.1.

Table 2.1: Aggregated phase explanation.

Number of the
Aggregated Phase

Name of the
Aggregated Phase Phase Flight

1 Start Phase 1
2 Climb Phase 2, 3, 4, 5, 6, and 7
3 Cruise Phase 8
4 Descent Phase 9, 10, 11, 12, and 13
5 Finish Phase 14

Analyzing the table were assumed five different aggregated phrases that represent the 14
flight phases and, consequently, each flight.

2.2 Machine Learning Algorithms

To predict the HI, in the diagnosis phase, three Machine Learning algorithms (Linear
Regression, Support Vector Machines, and Random Forest) were used.

First of all, the Machine Learning algorithms are divided into three main groups [11] [12]:

• Supervised: Each instance of the data has a label, and a label is like a tag that
will help the training phase of the algorithm, helping to get a correct solution in the
testing phase. So, the algorithm result is computed based on data patterns that were
associated with the respective labels;

• Unsupervised: The algorithm does not need labels. So, it finds the pattern in the
data by its own. These methods are used in problems that, in general, are more
complex than those that use supervised algorithms;

• Reinforcement Learning: The algorithm learns to react to the environment through
the feedback given for the right choices. These methods are not labeled, like the su-
pervised algorithms, whereby the decision for a given task is not previously defined.

Moreover, it is possible to divide the problem as follows [13]:
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• Classification: The model divides the data into labeled classes;

• Regression: The model predict continuous values, through the input data, instead
of using classes.

So, the algorithms used to perform the diagnosis phase are supervised, once the HI for
each instance is defined. As the HI is a real value, that starts in 0 and increases over time,
it is a regression problem. Relatively to the prognosis phase, there were not used Machine
Learning algorithms. The approach is based on the analysis of behavior of the provided
sensor data.

2.2.1 Linear Regression

The technique that allows finding a linear relationship between x and y, which means,
between input and output, respectively, is named as Linear Regression. This Machine
Learning Algorithm is characterized by the equation explained below [14]:

y = β0 + β1x+ ε (2.1)

Where each variable means:

• y: Is the dependent variable. In other words, it is the output from the Linear
Regression. This variable returns the value that is intended to be predicted;

• β0: Is the value where the line intersects the Y-axis;

• β1: Is the slope of the line;

• x: Is the independent variable, that is, the value of the data point;

• ε: Is the noise that is generated by unexplained factors.

The Equation 2.1 can be explained, more detailed, in Figure 2.2, where the relationship
between all variables is shown.

Figure 2.2: Example of how the Linear Regression algorithm works, extracted from [15].
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Looking at Figure 2.2, the variables of Equation 2.1 and the data that are analyzed (blue
dots) are represented. The main goal of the Linear Regression algorithm is to draw a line
between the data that will minimize the error. This line (green line, in Figure 2.2) is mostly
defined by the ordinate at the origin, the slope, and the error. This way, β0 represents the
point where the green line intersects the Y -axis. Moreover β1 is the slope, that is obtained
by Equation 2.2, considering the points A = (x1, y1) and B = (x2, y2).

β1 =
dy
dx

=
y2 − y1
x2 − x1

(2.2)

The ε mentioned in Equation 2.1 is obtained through the sum of the distance of each blue
dot to the green line. In short, in order to get a minor error, this algorithm has been trying
to identify which is the best line.

2.2.2 Support Vector Machines

On the SVM algorithm the main goal is the drawn line, which is denominated hyperplane,
that divides the data into classes in a dimensional space considered. So, this hyperplane
separates the data classes allowing the best division between them. For example, consid-
ering that exist two classes (A and B), most elements of class A are on one side, and the
ones of class B are mainly on the other side. In Figure 2.3, is shown an example of how
SVM works.

Figure 2.3: SVM example, extracted from [16].

In Figure 2.3 is shown the hyperplane that was drawn with the help of the SVM algorithm
through the bold line. This line allows observing that the two classes considered were
separated almost correctly. Also, in the same Figure is shown that the distance between
the hyperplane and the closest data is given by the expression 1

‖w‖ . So, the Equation 2.3,
where w is the vector of values that will be computed, that maximizes the separation,
minimizing the distance, is given by:

min
1

2
‖w‖2 (2.3)
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However, it is crucial to reduce the cost function, assuring that the weight vector is min-
imized, too. As this is a quadratic function, there exists a method that will solve this
problem based on Lagrangian function, computing the saddle point, as is shown in Equa-
tion 2.4:

J(w,wo, α) =
1

2
‖w‖2 −

n∑
i=1

αi(ti(w
′xi + w0)− 1) (2.4)

Where w is the vector of values that will be computed, αi is the Lagrange Multipliers, ti
is the target values, xi is the vector that correspond to the distance between the data and
the hyperplane, and b is the bias defined.

In order to improve the results that could be obtained, it is crucial to change the way the
SVM will separate the data. Thus, it is possible to change the way the algorithm does
that, changing the functions that are responsible for that, which are below described:

• Linear: K(xi, xj) =< xi, xj >;

• Polynomial: K(xi, xj) = (γ < xi, xj > +r)b;

• Radial Basis Function (RBF): K(xi, xj) = e(−γ‖xi−xj‖
2);

• Sigmoid: K(xi, xj) = tanh(γ < xi, xj > +r).

For some of those algorithms, it is feasible to change two values: γ and r. The γ value
is responsible for defining how much influence the training examples have. So, how lower
is γ’s value, more close should be the examples. The r value is a kernel parameter which
represents the interception with the y axis.

This algorithm can be applied to the regression problems [17], with Support Vector Re-
gressor (SVR). The difference between the regression and the classification problems had
been mainly in the creation of the margin of tolerance (ε), shown in figure 2.4, as a way
to approximate the SVR to SVM. The remaining algorithm works in the same way, as
explained before.

Figure 2.4: SVR example, adapted from [16].
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2.2.3 Random Forest

Random Forest is an algorithm that works with decision trees. A decision tree draws all
the possible paths with feasible solutions, based on the data features [18] [19]. In Figure 2.5
is shown an example of how is created one tree, using this algorithm.

Figure 2.5: Creation of trees with the Random Forest algorithm, extracted from [18].

As demonstrated in Figure 2.5, there are two features in the considered data. The color
(that could be red or blue) and the underline (if the considered data is, or not, underlined)
are the features that will be analyzed.

First of all, a branch was created, and the target was divided into the colors. So, it was
built two branches: one to the red color and another one to the blue color. Then, the two
forks that were created are considered, and, for each one, it will be checked if the elements
are underlined or not. This way, on the left side, it was created another branch, and on
the right side, it wasn’t created another branch, because this feature is not presented. The
algorithm is stopped here because there are no more features.

After concluding this process, some individual trees will be created and will be operated
as an ensemble, once they will be submitted to a voting process, that will decide which
tree is the best for the problem/data.

Finally, there is an important topic that distinguishes the difference between the classi-
fication and the regression problems on the voting process, with the Linear Regression
algorithm. To the classification problem, the voting process is computed using the mode,
considering the result for each tree. To the regression problem, the voting process was
computed using the mean, that was obtained for all of the output of the trees created [20].

2.3 Discrete Fourier Transform

The Discrete Fourier Transform (DFT) is a mathematical method that is applied in the
signal frequency domain [21] and is derived from the Fourier Transform (FT), which is
given through Equation 2.5.

DFT (wk) =

N−1∑
n=0

x(tn)e
−iwktn , k = 0, ..., N − 1 (2.5)
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Where each variable means [21]:

• wk: Is the kth frequence sample

• N : Number of samples

• tn: Is the nth sampling instant

The DFT is calculated with the help of the Fast Fourier Transformation (FFT) that al-
lows computing the frequency components simply and efficiently, relatively to other ap-
proaches [22] [23].

So, the FFT receives as input the signal, and then it is processed to obtain the respective
frequencies, which range starts in 0 until maximum frequency (less than half of the sampling
rate) [23].

2.4 Normalization

A way to have better performance with Machine Learning algorithms is the normalization
of the data, either the sensor measurements or target. This normalization consists in
transforming these values into a small interval, typically between 0 and 1, as is shown in
Equation 2.6.

Normalization =
Xmax −Xmin

Ymax − Ymin
∗ (c1 − Ymax) +Xmin (2.6)

After the normalization, and in order to obtain the original values, is mandatory to invert
the normalization, through Equation 2.7.

Inv_Normalization =
Ymax − Ymin
Xmax −Xmin

∗ (c2 −Xmax) + Ymin (2.7)

In Equation 2.6, the x values belonged to the new interval that the values will be converted.
In this case, Xmin and Xmax correspond to the interval between 0 and 1, respectively. The
Ymax and Ymin are correlated to the maximum and minimum values, respectively, on the
analyzed array. The element c1 of Y will be converted into a number between Xmin and
Xmax.

Relatively to the Equation 2.7, the X and Y means the same relative to Equation 2.6.
However, the number c2 is the analyzed element, and it will be converted into a number
between Ymin and Ymax.

2.5 Mean Square Error

A measure that evaluates the Machine Learning Algorithms is the Mean Squared Error
(MSE) and is expressed through Equation 2.8. This metric allows an understanding of
how big the error is, between the ground truth and the obtained predicted values, once
this distance is squared. This metric allows us to conclude that the greater the result, the
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greater the error. For example, when a distance between two points is minimal (less or
equal than 1), the distance will be continued minimal. Otherwise, if the distance between
two points was significant, it mean that the squared result will be more significant.

MSE =
1

n

n∑
i=1

(Xi − X̂i)
2 (2.8)

Where n is the number of the elements of the array, Xi is the ground truth and X̂i is the
predicted array.
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Chapter 3

State of the Art

In this section is described some methodologies based on Prognostics and Health Manage-
ment (PHM) that allow computing the Health Indicator and the Remaining Useful Life,
which will be useful for the improvement of this work, in order to help the maintenance
team to estimate how long will take the system to fail.

So, first of all, in Section 3.1, is given a context about the different methods that could be
used in PHM. Then, in Sections 2.1.1 and 3.3 are reported some methodologies that were
used in other works. Furthermore, this section finishes with a summary that will give an
idea about the approach that will be followed, considering the developed work.

3.1 Prognostics and Health Management

Prognostics and Health Management (PHM) help the maintenance team to find and solve
some problems through algorithms that detect unusual behaviors. This detection can be
helpful because permits to estimate the Remaining Useful Life (explained in Section 2.1.3),
and the state of the health of a system, contributing to safety. In addition to these purposes,
these methods could help to extend the lifetime of a system that will result in saving
money to the airline company as well as, in an easy for the scheduling, for the maintenance
team [24].

This way, there exist three different methods that can be used in PHM, which will be
described in the next sections.

3.1.1 Model-based method

Model-based methods describe the degradation of a system through mathematical or phys-
ical models, doing the update of model parameters through the data that was measured.
This degradation can be a reflection of high deterioration, which results in fewer hours for
the end of life of a system. So it will help the maintenance team to fix some problems that
have occurred, extending the life of a system [25].

Modeling using Physics-of-Failure

This method is applied when occurs a physical failure, like a crack, that will influence the
normal condition and behavior of a system.
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Marble and Morton et al. [26] defend that a physical failure can be disseminated, over
time, with the use. They explain that this propagation can affect the condition of the
correspondent system and even others, increasing the damage, as can be seen in Figure 3.1.

Figure 3.1: Example of a damage propagation, extracted from [26].

The photos shown in Figure 3.1, were taken at different times of the experience described in
the mentioned article. The first one was taken earliest than the second, which means that
over time the physical failure increased and could become major. Moreover, this failure
could affect the performance of the own system as well as, the others that are depending
on it.

Model-based Fault Detection and Isolation

Model-based Fault Detection and Isolation (FDI) is an approach whose decision is taken
considering a mathematical model that is based on the physical condition.

Frank et al. [27] identified four types of FDI:

• Parity Space: Uses a model to simulate the output, based on input data. The fault
is calculated based on the computed error between the prediction of the model and
the physical state of the system;

• Dedicated Observer: Estimates the Health Indicator using the inputs and the
outputs of the physical system.

• Fault Detection Filter: Is a model that identifies the failures, and isolates them,
according to the behavior of the system’s input-output.

• Parameter Identification: Identifies the parameters of the model, according to
the input/output of the physical model.
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Abdulhamed and Reza et al. [28] developed an approach based on HI. First of all, they
developed a mathematical fault model and, consequently, they designed an observer-based
sensor Fault Detection and Isolation. These models, according to the defined equations
explained in their article, permit to read the sensor signal and identify where the fault
occurs.

3.1.2 Data-driven method

Data-driven methods are methods that predict the system state, based on degradation
behavior, obtained from time series. The degradation behavior is typically obtained from
the sensors’ measurements [8].

Once no priori knowledge is needed, these methods are used to detect a failure because
they can establish a relation between the input and the output data and the respective
degradation [29]. The following sections topics have some examples where this method can
be applied.

ARMA

ARMA is the acronym for Auto-Regressive Moving Average, in which the main goal is to
capture the entire history of fault events and predict the next event [30]. It can be useful
when the goal is to predict failure, being necessary, previously, to train an algorithm, based
on sensor measurements and the respective behavior.

Figure 3.2: Workflow using ARMA model, extracted from [30].

Márcia et al. [30] developed an approach which is detailed in Figure 3.2. First of all, a
model is created in the training phase, which will predict failure in the prediction phase.
In this phase, the ARMA model is used to obtain the historical data of failures. Then, it
will be used to train a Machine Learning Algorithm which target is the current time of
the failure. Then, proceeds with the prediction phase, where was extracted the historical
data too, and the output is the prediction of the next failure. Finally, it is created a data-
driven model, which is fed with the historical data obtained from the ARMA and with the
Machine Learning model created in the training phase. The result is the prediction of the
next failure of the system.
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Artificial Neural Networks

Artificial Neural Networks (ANN), which also are known by Neural Networks (NN), sim-
ulate a representation of the brain. These structures are composed of neurons that make
connections between them, processing and transmitting the information [31]. In Figure 3.3
is shown an example of the representation of the Neural Networks.

Figure 3.3: Example of a Neural Network.

Interpreting the Figure 3.3, the NN receives the input through Layer 1. This input could
be an array or an image, for example, consonant the considered objective. Then, it is
processed, based on some mathematical calculations, in the Layers 2 and 3, also called
hidden layers, and the Layer 4 returns all the possible outputs.

Wang and Vachtsevanos et al. [32] used two variants of Neural Networks that, in general,
could have successful results: the Wavelet Neural Networks (WNN) and the Dynamic
Wavelet Neural Network (DWNN). The first step of their work consisted of analyzing and
evaluating a physical failure, like a crack, using a WNN. Then, they used a DWNN to
predict this failure propagation over time, as well as, to compute the RUL.

3.1.3 Hybrid method

The hybrid method joins the data-driven and model-based approach. More specifically,
this method combines the sensor measurements with the state of a system, respectively.
So, the results obtained with this method could be an improvement when compared just
with the data-driven model, or just with the model-based approach, because the results of
these two methods are compared, which help to avoid the false positives and compute a
more precise Remaining Useful Life.

3.2 Health Indicator extraction

The Health Indicator is a measure that reflects the age of a system or a component (in
flight hours), as was explained in Section 2.1.1. So, in literature, there are many ways to
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express this value. As mentioned before, a typical way to compute it is by analyzing the
sensor values and the respective behavior, for example. This way, it was identified three
different methods that permit to compute the Health Indicator value, as will be described
in the following sections.

3.2.1 Physical Health Indicator

The Physical Health Indicator describes the health of a system based on the actual state of
the system and the occurred failures. These attributes are analyzed according to statistical
or signal processing methods that, in general, will be interpreted typically with the Root
Mean Square (RMS) metric. The extra degradation occurs when the obtained result from
the RMS is higher than a threshold, defined previously by the system’s specification [8] [33].

3.2.2 Probabilistic Health Indicator

The Probabilistic Health Indicator is a probability between 0 and 1 that reflects how
healthy is a system, where the meaning of the boundaries depends on the context. Gener-
ally, 1 means that the system is healthy, and 0 means the opposite. However, sometimes
is the opposite because of the system’s properties, being necessary to specify this char-
acteristic. Such as the Physical Health Indicator, the Probabilistic Health Indicator has
a threshold, which expresses the degradation that is defined by a statistical confidence
level. [8].

3.2.3 Virtual Health Indicator

The difference between Physical Health Indicator and Virtual Health Indicator (VHI) is
related to physical degradation. The VHI is computed through the signal of the sensors and
doesn’t need the physical state, as was observed in Physical Health Indicator. To visualize
the behavior of this method, a dimension reduction technique, like principal component
analysis, is used [33].

3.2.4 HI Computation

The Health Indicator Computation can be done in different ways, using one of the methods
mentioned above. However, the following topics will explain how the Health Indicator is
computed, based on what is reported in the literature allied to the described concepts.

Artificial Intelligence

Another way to explore data-driven methods is to use Artificial Intelligence beyond the
Neural Networks, as mentioned before. So, many algorithms can be applied for analyzing
the sensor behavior, like Support Vector Machines, Random Forest, among others, and
obtaining good results with them.

Marcia et al. [34] used an approach based on Artificial Intelligence. The methodology
applied in her work consists of two main phases: the training and testing/predicting the
failure. The first stage consists of training a Machine Learning Algorithm, with sensor
data and which target is the fault events. In this phase, it is created a model that will be
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used in the second stage. After that, the second phase starts. Here, the idea is to predict
the next failure, analyzing the sensor data with the help of the created model. The results
are analyzed considering specific metrics like Mean Squared Error.

Integrated Systems Health Management

The Integrated Systems Health Management (ISHM), with the provided data, information,
and knowledge about the systems, can describe the capability that permits to compute the
health condition [35]. These systems receive as input the sensor values and, based on their
behavior, will help to identify an anomaly occurrence and fix it, to prevent other future
failures [36]. The ISHM method is divided into four groups of faults diagnosis that, all
together, allows to identify the problem:

• Fault Detection: Catching that something is wrong;

• Fault Isolation: Find out where the failure occurred;

• Fault Identification: Identify what happened to occur the failure;

• Fault Prognostics: Determining the usage of the system and anticipate the next
failure.

ISHM, consonant to the data and the respective behavior, works with different algorithms.
If the data belongs to a problem that uses the model-based approach, the algorithm that
will be used with the ISHM is a Finite State Machine. Otherwise, if the data belongs to
a problem that uses the data-driven approach, the algorithms that will be used could be
the Linear Regressions or the Decision Trees.

Figueroa et al. [35] developed an architecture whose main goal is to develop a credible
ISHM, that could be used in complex systems, for the industrial community.

3.3 Remaining Useful Life Computation

In literature, exist many ways to find the Remaining Useful Life. However, most of them
are depending on the information of the entire trajectory. So, in the following topics are
explained two methods that follow a data-based model, where the behavior of the data
measurements is analyzed and interpreted, and there is not needed to know all trajectory
behavior.

Elbow Point

The normal degradation behavior of a system consists of a linear and smooth degradation
behavior until a certain time of flight hours/cycles, and after that, the deterioration is
accentuated. The point from which the degradation is more emphasized is the elbow
point, as is illustrated in Figure 3.4.

Elsevier et al. [37] uses an approach that permits to detect the change-point of the degra-
dation of a system. The identification of this point is important because it is possible
to anticipate a future failure that could be caused by the detected degradation that is
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Figure 3.4: Example of RUL, extracted from [37].

reflected in the sensors measurements. The estimation of the Remaining Useful Life, from
that point, is made based on the conditions that were detected.

This is a classification problem, where there are two different classes in the target: 0 and
1. So, first of all, the elbow point is detected using a sliding window with a Z-test. Then,
the target that will be used is composed of 0 (until the elbow point detection) and 1 (from
the elbow point until the end of life). After that, the sensor data are normalized according
to the standard rule in Equation 3.1.

s(t)norm =
s(t)− µ

σ
(3.1)

Where s(t)norm is the normalized signal resulted from the division of the subtraction of the
s(t), that is the signal at time t, and the µ, that is the mean of the signal, by the standard
deviation of the values of the signal σ.

After that, a model that permits to detect the elbow point is created. This model is trained
with the sensors data, and the ground truth is the obtained target, in the first step. Then,
the acquired model (that was obtained through the training of a Neural Networks) is
used to estimate the RUL, considering that the end of life (EoL) is known, through the
Equation 3.2.

RUL(tp) = EOL− tp (3.2)

Where tp is the time where the RUL is calculated, and the EOL is the end of life of the
system, which is defined by a value that characterizes the limit of flight hours/cycles that
a system could suffer.

Combining Data-Driven and Kalman Filtering

The Kalman Filter (KF) is an algorithm that estimates the measurements from the noisy
time series [38].
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Márcia et al. [39] compares the computing of the RUL using this method with Machine
Learning algorithms (like the Support Vector Machines or Random Forest) and without
this method. In this work was created a framework that transforms each RUL observed
into a RUL KF-Estimation, as is shown in Figure 3.5.

Figure 3.5: Example of Kalman Filter, extracted from [39].

After this processing, a Machine Learning algorithm is used, which is feed with the sensor
measurements, and the target is the RUL predicted through the Kalman Filter. Then,
it is predicted the RUL of the system, over time, and the results are compared when the
Kalman Filter is used, or not, existing, in general, better results using this filter.

3.4 Summary

Over this section, some used approaches were briefly described that permit to compute the
Health Indicator or the Remaining Useful Life of a certain system or component.

To identify which procedure will be followed, first of all, it is needed to recognize the
type of the available data, that will help to compute the HI and the RUL. As mentioned,
there are three types of approaches that are depending on the kind of data: model-based,
data-driven, and hybrid approach. As the available data is just the sensors measurements,
that were extracted during flights, for each trajectory, this means that it will be followed
a data-driven method. The remaining approaches could not be used because there is no
access to the physical state of the system.

As explained above, this thesis is divided into two main phases: diagnosis and prognosis.
In the diagnosis phase, the healthy of a system will be estimated, more specifically, the
Health Indicator, and in the prognosis phase, the main goal is to compute the Remaining
Useful Life over trajectory time.

To compute the Health Indicator, there were proposed two approaches: one related to
Artificial Intelligence, where were used Machine Learning algorithms, and another one
that uses Integrated Systems Health Management. However, the approach chosen follows
an artificial intelligence because is the one that will match the data available (sensor data
and the respective Health Indicator, over time). Of note that the available HI was obtained
from a previous thesis work [10] and then were provided to improve this dissertation.

For the prognosis phase was described two different advances: the Combining Data-Driven
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and Kalman Filtering and the elbow point. The Combining Data-Driven and Kalman Fil-
tering method was rejected because the final Remaining Useful Life is unknown. However,
this problem remains in the elbow point approach. So, the idea of the adopted approach
in this phase is inspired in this approach with a little difference: instead of calculating the
Remaining Useful Life, it will be predicted the occurrence of a failure, as will be described
in the next section.
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Chapter 4

Methodologies

The datasets used, as was refered before, have the sensor measurements over each trajec-
tory. Furthermore, the datasets have the timestamp for each measurement even as the
information that described each flight, like the flight ID or the flight phase, enabling a
detailed study. According to the available data were identified a different number of tra-
jectories, for each system. Thus, it was found 8 trajectories for the Air Bleed system and
9 for the CACTCS system, which corresponds, respectively, to 8 and 9 removals.

The following sections explain, in detail, the approaches adopted for the Diagnosis and
Prognosis phases. Despite the datasets belong to different systems and the respective
structure are not the same, it was possible to apply the same methodology in both situa-
tions.

4.1 Diagnosis Approach

The diagnosis phase consists of predicting the health of a system, analyzing if its behavior
suffered an extra degradation that could be caused by an anomaly or generate one. This
information is important for the maintenance team because these predictions, combined
with the knowledge of a maintenance team about a system, will allow to understanding if
the HI is increasing quickly, helping to understand if a failure will occur in a near future.

The followed approach takes into account the sensor measurements and the respective HI
considered in the timestamp of the extraction. Considering that the sensor measurements
and the respective HI are normalized, the first step is to aggregate data, according to the
aggregated phase. After that, the data is again aggregated, considering a sampling period.
These two steps are important because there are thousands (and millions, in some cases)
of instances to analyze that will influence the execution time.

In Figure 4.1 is shown the differences, before and after applying the aggregation data. The
first column, in both of the data examples (ap), is the aggregated phase (that was explained
in Section 2.1.6) that is considered. So, analyzing the left side of the scheme is exemplified
the original data, and on the right side is the result of this aggregation. The result of the
process is the computation of the mean, the standard deviation, for each sensor, and the
variation of the Health Indicator for the interval time considered.

The next step consists of training the Machine Learning Algorithms (Linear Regression,
Support Vector Machines, and Random Forest) with the means and standard deviations
obtained, whose target is the variation of the Health Indicator, as is explained in Figure 4.2.
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Figure 4.1: Example of how data is aggregated.

Figure 4.2: Input and output scheme of the Machine Learning Algorithm.

This approach was chosen, because this type of approaches has associated low costs of
development and there is no need of specific previous knowledge about the system, to
perform a solution that could analyze the health of the system. However, this is a black
box methodology, which means that, after applying the sensors measurements in the Ma-
chine Learning algorithm, there is no way to know what happens during the HI prediction
process.

Before applying this approach to the Machine Learning algorithms, it was verified different
sampling period, in order to know in which one the Mean Squared Error is minor, as is
detailed in the Figure 4.3.

The best results were obtained when the sampling period is 10 minutes. This happens
because, in this situation, is extracted more information than the in remaining ones.

Another important subject is related to the best Mean Squared Error obtained. In some
algorithms, like Support Vector Regressor or Random Forest is possible to change some
arguments, that will have a huge impact on the obtained results. The Linear Regression
does not have a way to change the parameters, using Sklearn, in Python.

One possible parameter to change in the Support Vector Regressor is the gamma (γ)
value, as explained in Section 2.2.2. This variable has a different performance according to
the kernel function used. In this Machine Learning algorithm exists four different kernel
functions and, some of them, could be influenced by this parameter as is detailed below:

• Linear: This function is given by the equation K(xi, xj) =< xi, xj >, where there
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is no influence of γ parameter.

• Polynomial: K(xi, xj) = (γ < xi, xj > +a)b is the equation that describes the
polynomial function. Here, γ is multiplying by a number so, how biggest is γ, biggest
will be the base of the power. Moreover, b is the degree of the function, which means
that if the base if higher the result will be higher too. So, to get a better final
result, that minimizes the distances between i and j, the γ value would be as small
as possible.

• Radial Basis Function (RBF): The RBF is given through the equationK(xi, xj) =

e(−γ‖xi−xj‖
2). Here, the γ value defines the influence that a single training has on the

result. So, higher γ value means that the model has no much tolerance when a value
is predicted. However, a lower γ value means that has more tolerance, so the pre-
dicted values can be more "distant" than the true values. This way, this parameter
needed to be tested for some different values.

• Sigmoid: The equation of Sigmoid function is K(xi, xj) = tanh(γ < xi, xj > +r),
where the γ value is multiplying by a norm. The computation of this function is
made applying a hyperbolic tangent, which allows to conclude that the greater the
γ, the greater the result. So, the value chosen should be lower.

Figure 4.3: Mean Squared Error with different sampling period, using Linear Regression.

Taking into account these conditions, a battery tests were made to both systems. The γ
values for each kernel function are between 0.001 and 3 because when is lower than 0.001
or higher than 3, the computation time increases, consonant the kernel function that is
analyzed.

Relatively to the Random Forest, the parameter that could be changed is the number of
estimators, which means, the number of trees that are created. The number of estima-
tors varied between 2 and 100, however there are illustrated just 3 different numbers for
this parameter. The number of estimators stops at 100 because, after that, performance
stagnates and the obtained MSE is the same.
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4.2 Prognosis Approach

In the prognosis phase, the main goal is to compute the RUL. However, the information
available does not allow to estimate this value over the trajectory or when the slope curve
degradation is higher. Moreover, the founded solutions depend on the knowledge of the
entire trajectory. So, the solution proposed is to predict when a failure will occur based on
the sensor data, using the Discrete Fourier Transform. For this analysis was not considered
all data sensors, because some aggregated phases have some noise, that will produce outliers
and could affect the final result. This way, it was just analyzed the data measured during
the third aggregated phase (cruise), for all flights, in each trajectory, because this phase is
more stable and produce fewer outliers. The considered process for the prognostics phase
is detailed in Figure 4.4.

Figure 4.4: Approach flowchart.

For each sensor, in each flight, will be applied a DFT using a sliding window, with 10
minutes of the sampling period. The DFT function returns the transformation of the
signal into the frequencies, and then the 80% highest are selected. After that, from the
80% highest peaks selected, the most relevant frequencies are chosen, and the ones that
have higher amplitudes. Then, the amplitudes that were selected are counted based on a
defined threshold, either for the frequencies or amplitudes.

This threshold was determined according to the behavior in each flight. So, in both situa-
tions, were computed the maximum of the frequency and the maximum of the amplitude
obtained. Then, these values were multiplied by 0.25 and 0.5 (empiric values, after a few
tests), respectively, selecting just a small number of frequencies and amplitudes. Finally,
the number of highest amplitudes are counted and normalized, because some trajectories
have more noise than others, which could return scattered values. So, the final normalized
result returns 0, 1 or 2, according to the following rules:
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• 0: Which means that there is no highest amplitude for the highest frequencies, under
the defined threshold, detected;

• 1: If there is 1 or 2 amplitudes for the highest frequencies found, above the threshold;

• 2: If there are more than 2 amplitudes for the highest frequencies, above the thresh-
old, detected;

Then, all the counter results are saved (one value for each flight) and are analyzed until
the occurrence of the first failure, sensor by sensor, taking into account the three different
approaches mentioned in Figure 4.4, and that will be described below.

Worst Case

In Figure 4.5 is shown what happens when is considered the Worst Case approach. For
each sensor, in each flight, the value of the normalized counter obtained (blue points) is
compared. So, the major value between each sensor, for each flight, is considered as the
worst situation. Then, this value is saved (orange points) until the failure. The result of
this approach is the sum of the orange points.

Figure 4.5: Worst case approach, for the first trajectory, in Air Bleed System.
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Mean

In Figure 4.6 is described what is the procedure when the Mean Approach is considered.
For each sensor, it will be seen the obtained counter for each flight, and then the mean
is computed. The result, one for each flight, is saved (which is represented through the
orange dots), and the final result is the sum of these orange dots, until the occurrence of
the first failure.

Figure 4.6: Mean approach, for the first trajectory, in Air Bleed System.

Weighted Mean

The result obtained for the weighted mean approach is detailed in Figure 4.7. For each
flight, it will be analyzed the result for each sensor. Then, the number of ones and the
number of twos will be counted and attributed a weight. The weight for the number of
occurrences of numbers two is different from the number of occurrences of ones because
when is obtained the number two, it could be a reflection of a major degradation. So, for
each flight, each orange point is obtained by Equation 4.1.

WeightedMean =
nones
150

+
ntwos
115

(4.1)

The final results, described in Chapter 6, are computed through the sum of the orange
points. Of note that these weights are a result from several tests, but they are not validated
by the maintenance team.
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Figure 4.7: Weighted mean approach, for the first trajectory, in Air Bleed System.
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Chapter 5

Case Studies

This chapter describes the systems where was implemented the approach described in
Chapter 4. Both of them are responsible for bringing the air from the outside to inside
of the airplane. However, they are used in different airplanes. Moreover, they have some
differences in the process of how the air is transported and processed, as will be explained
in the following sections.

Besides that, this section reports the structure of the datasets used to develop the solutions
to the problems, and the respective pre-processing done to obtain better results.

5.1 Air Bleed System

The Air Bleed system dataset belongs to the Boeing 747 and is one of the systems that
was submitted to this case study. The following Sections will describe this system as well
as, describe what were the necessary data used to develop the approach.

5.1.1 How does Air Bleed system works?

Figure 5.1: Air Bleed System example.

Figure 5.1 shows the place, in the airplane, where the Air Bleed system is. This system
has a fan that extracts the air from the outside and conducts it to the places where it is
necessary. As the air is carried to different places, its characteristics are changed with the
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help of the ducts, valves, and regulators. These components will adjust the temperature
and the pressure of the air, consonant the final destiny [40] [41].

The Air Bleed System is responsible for carrying the air that was previously processed to
the engine start, air conditioning, water system pressurization, among others.

5.1.2 Dataset Struture

The dataset that belongs to the Air Bleed system has eight trajectories, and each trajectory
has a different number of flights. However, all of them have the same information, which
will be described below:

• H51394154: Index value for each flight;

• H20790882: It’s a number that is associated to the flight phase:

1. Power on

2. Engine start

3. Taxi out

4. Unknown

5. Take-off roll

6. Initial climb

7. Climb

8. Cruise

9. Descent

10. Approach

11. Rollout

12. Taxi in

13. Unknown

14. Engine shutdown

• H13768180: It’s the date that the data file was created. This file contains the data
that was extracted from sensors;

• H62778170: It’s the tail number (plane ID);

• H64936356: Filename where the values of sensors were saved;

• H73670103: It represents a time;

• H22124930: It represents a date;

• H55759866: It corresponds to a second identifier, like the flight ID;

• custom_id: Is the flight number;

• my_flight_counter: Flight counter that is restarted on each trajectory;

• System: Each airplane has 4 Air Bleed systems. So, this column is a number
between 1 and 4, and represents what system that corresponds the data analyzed.

• HI: Health Indicator value. This value will increase over time, starting in zero, in
each trajectory;

• presence_FDE: This column indicates if occurred, or not, a failure or was emitted a
warning. If one of these situations happened, it will appear the number 1. Otherwise,
it will appear 0.

• s_1: Sensor values for the shaft 1;

• s_2: Sensor values for the shaft 2;

36



Case Studies

• s_3: Sensor values for the oil temperature;

• s_4: Sensor values for the air pressure;

• s_5: Sensor values for the air temperature;

• aggregated_phase: It’s a number, between 1 and 5, that is corresponded to one,
or more, phase flights. These phases were aggregated taken into account the sensor
values and the respective variations over the time. In Table 2.1 was explained which
aggregated phase corresponds to each phase flight;

• timestamp: The timestamp that the data sensors was measured.

For this work, it was not necessary to use all of these data. So, the most important ones
considered are:

• timestamp: Because is important to know the duration of a flight and the behavior
during it, in order to analyze the results;

• s_i: Where i is between 1 and 5. This corresponds to the sensor measurements;
they are important, because they are used either in diagnosis or prognosis;

• aggregated_phase: Because is essential to divide the dataset in the diagnosis
phase, according to the approach described in Section 2.1.6;

• HI: Once is needed to the diagnosis phase.

The remaining ones were not used, so the pre-processing of data will focus on these ones,
more specifically, in sensor data and HI values.

5.1.3 Preprocessing of the Air Bleed data

Before using the datasets either diagnosis or prognosis approach, the data was processed.
First of all, the sensor measurements, as well as the variation of the Health Indicator, were
normalized into the interval between 0 and 1.

Specifically for the prognosis phase, the outliers were removed, because the behavior of the
sensors has some values unusual (outliers), taking into account the pattern of the sensor
in general, over the aggregated phase 3.

5.2 Cabin Air Conditioning and Temperature Control Sys-
tem

The Cabin Air Conditioning and Temperature Control System (CACTCS), belongs to
Boeing 787, and is similar to the Air Bleed system. However, this system suffered an
improvement from the previous systems (like the Air Bleed System) to guarantee safety
and loyalty for the airline and the respective costumers.
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5.2.1 How does CACTCS works?

The difference between this system and the Air Bleed System is mainly the way the air is
extracted and used in the different places in the airplane. CACTCS has an architecture
that allows distributing the air to the cabin in an efficient way, that does not use so many
sources during the flight, decreasing the fuel spent, as well as, maintaining engine power
during cruise phase [42] [43] [44].

CACTCS has compressors that are activated in an electrical form, instead of a mechanical
form that needs and spends more fuel for the same objective. The final purpose of this
system is the same of Air Bleed system.

5.2.2 Dataset Struture

This case study focuses on Air Conditioning Pack which appearance is shown in Figure 5.2.

Figure 5.2: Air Conditioning Pack, extracted from [42]

Each Boeing 787 has two packs of Air Conditioning packs: one on the left side (left pack)
and another on the right side (right pack), under the airplane.

The sensors that were studied and analyzed concern to Cabin Air Compressor (CAC)
system. As was shown in Figure 5.2, the Air Conditioning Pack has two CACs and, each
CAC has 11 sensors, which result in a total of 22. Moreover, the Air Condition Pack has
23 other sensors that do not belong to the CAC, whereby they were not considered.

Beyond these 45 sensors (22 for the CAC and 23 for the other components), the dataset
has 12 informative features like the timestamp, flight ID, flight phase, among others, that
are useful to understand the behavior of the trajectory, as well as the problem. This
way, the dataset has 102 anonymous features - twelve informative features plus 90 sensor
measurements (45 for each pack).
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5.2.3 Preprocessing of the CACTCS data

The results in the diagnostic phase are depending on the Machine Learning algorithms.
They are very sensitive to the inputs and, because the input data and the target have a
huge range, the better way to train these algorithms is to process them. So, to estimate
the variation of HI, the data will be normalized in an interval between 0 and 1, as was
done in Air Bleed data.

Another consideration for this dataset is that there are no data available that permits to
construct complete trajectory. Thus, the trajectories have more or less 3000 hours. This
value corresponds to the minimum flight hours considered that a system is submitted,
defined by the maintenance team. In total, exist 9 trajectories that will be analyzed. The
removal of the outliers was made, as in the Air Bleed system.
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Chapter 6

Results

This chapter describes the obtained results for each case study, as well as, for each approach.
The first section explains the obtained results either for diagnosis or prognosis, for Air Bleed
system. The second section describes the same results for CACTCS system.

6.1 Air Bleed System

The following sections describes the obtained results for the Air Bleed system, applying
the diagnosis and prognosis approach, described in Chapter 4.

6.1.1 Diagnosis

In the diagnosis phase is analyzed how healthy is a system, considering the degradation that
is presented through the data. One of the most important steps, as mentioned over this
document, is to predict how will be the health of the system in future flights, considering
the past and the actual data, analyzed until then. This way, the adopted approach aims
to predict this state and was divided into two different ways:

• Train and Test Trajectories: A trajectory is used to train a Machine Learning
algorithm, and then, a model is obtained that will be used to predict the Health
Indicator in the remaining trajectories.

• 1 Trajectory to Train and Test: A percentage (30%, 40%, 50%, 60%, or 70%)
of a trajectory is used to train an algorithm, and then, the created model is used to
predict the health in the remaining trajectory.

Note that the results obtained, in this section, were analyzed in the same conditions, which
means that the chosen parameters for each algorithm are the same for both situations. This
way, the Linear Regression has no changed parameters because there is no parameter to
change with the library used. In SVR, when the kernel function is linear, there is no
parameter to change. However, when the kernel function is Polynomial, RBF, or Sigmoid,
the γ value is 0.2, 0.2, and 0.01, respectively. In the Random Forest Algorithm, the
parameter that was changed was the nestimators, that will have the values 2, 32, and 100.
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Train and Test Trajectories

The approach Train and Test Trajectories creates a model that was previously trained,
with a complete trajectory. Then, this model is used to predict the Health Indicator for
the remaining trajectories. The obtained results, applying the Mean Squared Error for
analyze the quality of prediction of the Health Indicator, are shown in Table 6.1. The
created model that is responsible for these results was constructed based on the data for
the trajectory 1. Then, it was applied to all trajectories, to know if the predicted Health
Indicator was close to the real.

Table 6.1: MSE obtained for the model created with Trajectory 1, for Air Bleed system.

Trajectory LR SVR - Linear SVR - Poly SVR - RBF SVR - Sigmoid RF - 2 RF - 32 RF - 100
1 0.004 0.004 0.004 0.003 0.004 0.001 0.001 0.001
2 0.007 0.007 0.026 0.006 0.006 0.009 0.007 0.007
3 0.003 0.004 0.011 0.004 0.004 0.005 0.004 0.004
4 0.014 0.013 0.016 0.012 0.013 0.015 0.009 0.011
5 0.047 0.044 0.048 0.039 0.044 0.048 0.034 0.039
6 0.004 0.004 0.004 0.004 0.004 0.006 0.004 0.004
7 0.023 0.021 0.025 0.021 0.022 0.029 0.027 0.026
8 0.002 0.002 0.002 0.002 0.002 0.004 0.002 0.002

As was expected, the minor MSE obtained is when is predicted the Health Indicator
for trajectory 1, because it was the trajectory responsible for the creation of the model.
Despite does not know what is happening inside of each Machine Learning algorithm,
during the predicting phase, it was expected than some Machine Learning algorithms had
a better performance than others. These results are a reflection of many conditions like
the algorithm efficiency, the chosen parameters, or the data that were used to training the
algorithm that are good for the training phase. This way, these situations produce many
different conditions that are reflected in the remaining trajectories, which conduct a higher
ability model to predict the Health Indicator.

Figure 6.1: Boxplot that compares MSE obtained, for each algorithm, when the model is
created with Trajectory 1, for Air Bleed system.
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As explained, the results of the algorithms are depending not only on the data quality but
also on the algorithms. The conjugation of these two factors is the key to the success of the
results. In Figure 6.1 is shown a boxplot that describes for which algorithm was obtained
the best MSE.

For the considered model, the best result was obtained with the SVR algorithm, the kernel
function RBF, and the γ = 0.2. One algorithm with similar results is also the SVR
algorithm but with kernel function Sigmoid, and γ = 0.01. As mentioned, the γ values
were chosen empirically.

There were created more models with the remaining trajectories, and then, they were
applied to the rest of trajectories, as was explained in this topic, whose results obtained
are in Appendix A. Analyzing these results, it is verified that the obtained Mean Squared
Error is similar to the results that were described above. For most situations, the algorithm
SVR has the best MSE, with the RBF kernel function. However, the Random Forest with
a number of estimators equal to 32 and 100 have good performance, too. The results in
Random Forest are very similar because after a certain number of estimators the final
result tends to stagnate.

1 Trajectory to Train and Test

The approach 1 Trajectory to Train and Test creates a model that was previously trained,
with the first 30% of instances of a trajectory. Then, this model is used to predict the Health
Indicator for the remaining trajectory. In Table 6.2 is shown the obtained MSE when is
used the first 30% instances of each trajectory to train a Machine Learning algorithm. The
created model is used to predict the Health Indicator in the left 70% of the data of each
trajectory.

Table 6.2: MSE obtained with the models created, for each trajectory, for the first 30%
instances, for Air Bleed system.

Trajectory LR SVR - Linear SVR - Poly SVR - RBF SVR - Sigmoid RF - 2 RF - 32 RF - 100
1 0.004 0.005 0.005 0.005 0.005 0.007 0.006 0.006
2 0.006 0.006 0.007 0.006 0.006 0.007 0.006 0.006
3 0.003 0.004 0.004 0.003 0.004 0.005 0.004 0.003
4 0.009 0.009 0.011 0.011 0.009 0.011 0.010 0.010
5 0.009 0.009 0.011 0.010 0.011 0.010 0.008 0.008
6 0.004 0.004 0.004 0.004 0.004 0.006 0.004 0.004
7 0.010 0.008 0.014 0.007 0.010 0.008 0.006 0.006
8 0.002 0.002 0.045 0.002 0.002 0.002 0.002 0.002

The obtained MSE is similar in all algorithms, for all trajectories. It could mean that the
data that was used to train the algorithm is good enough to predict what will be the future
HI, in the remaining trajectory. Moreover, the main conclusion of these results is that the
set of circumstances, like the duration flights, or the behavior of the data in each flight,
who make part of the creation of the model, were reached and considered in the future
situations (in the remaining 70% of each trajectory).

Observing the Figure 6.2 the algorithms whose had better performance were the SVR
algorithm with the kernel function RBF, and the γ = 0.2, and the SVR algorithm, but
with kernel function Sigmoid, and γ = 0.01. These results, as happened previously, are
depending on the data and the chosen parameters.

Moreover, there were created more models with 40%, 50%, 60%, and 70% of the first
instances, for all trajectories, which results are in Appendix A.
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Figure 6.2: Boxplot that compares the MSE obtained, for each algorithm, when the model
is created with 30% of data, for each trajectory, for Air Bleed system.

Analyzing these results, it was expected that the MSE would decrease the amount of data
the model has. However, this did not happen. In most situations the MSE remained the
same or increases. The reason why this value does not decrease could be related to the
fact that the data have, more or less, the same duration of flights (when the MSE is the
same), or the data have noise that will affect the performance and, consequently, the results
(when the MSE increases). Furthermore, inspecting the boxplots of these results, for most
situations, the Random Forest algorithm with a number of estimators equals to 32, and
100 was the one that had better results. Nevertheless, the SVR algorithm with the RBF
kernel function was also good.

6.1.2 Prognosis

The prognosis phase consists of predict when a failure will occur. This prediction is made
taking into account the signal frequency and magnitude analysis, using a DFT. After defin-
ing a certain threshold, the highest peaks above it are counted, normalized and analyzed,
using three different approaches:

• Worst Case: For each sensor, in each flight, is analyzed what was the highest
normalized value obtained, and it is saved. The result of this approach is the sum of
the highest values for each flight.

• Mean: For this approach is computed the mean of the normalized result, for each
sensor, in each flight. The result of this approach is the sum of the mean obtained
for each flight.

• Weighted Mean: In this approach is attributed weight to the normalized result,
for each sensor, in each flight. The result of this approach is the sum of the weighted
results obtained for each flight.
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These three approaches are detailed in Section 4.2. Table 6.3 shows the results for each
prognosis approach adopted.

Table 6.3: Sum of normalized counter, for each approach, considering the trajectory until
the failure, using Air Bleed system.

Trajectory Worst Case Mean Weighted Mean
1 46 13.6 0.365
2 147 50.4 1.313
3 74 25.8 0.688
4 37 13.8 0.367
5 160 62.0 1.570
6 126 39.4 1.035
7 74 29.4 0.720
8 55 17.2 0.443

The obtained results are inconsistent in the three approaches adopted, which leads to
conclude that this is not a good approach to follow. However, this result can be different
for each trajectory because it could be dependent on the trajectory dimension, the flight
that occurs the first failure, or some noise in sensor measurements. As the outliers were
removed in a previous step, the remaining hypothesis will be tested.

In order to know if these results are depending on the related topics, it was verified which
trajectory has the first occurrence of the failure, and then, the dimension of this trajectory
will be considered in the remaining ones. So, as in trajectory 1 occurs the first failure at
flight 34, earlier than others, will be considered the 34 flights before the failure in other
ones, because it is necessary to guarantee that the trajectories start at the same time.
This could result in a problem, once with the available data is impossible to know if the
trajectory comes from a new system or a repaired system, being unfair to compare two
different systems that will have different behavior before the occorrence of a failure. The
results are shown in Table 6.4.

Table 6.4: Sum of normalized counter, for each approach, considering the minor trajectory,
using Air Bleed system.

Trajectory Worst Case Mean Weighted Mean
1 46 13.6 0.365
2 42 15.4 0.411
3 35 11.2 0.303
4 36 13.2 0.347
5 43 19.8 0.493
6 41 12.6 0.317
7 42 14.6 0.375
8 39 13.4 0.533

To analyze the difference of the results for each approach, between the first trajectory and
the remaining others, the relative error was computed. This way, it is possible to under-
stand if the results of these approaches are too far from the initial trajectory, concluding
if they reflect or not a good approach to follow. In Table 6.5 are represented the obtained
results for the relative error.

The obtained percentages indicate that, in general, the results are very close between
Trajectory 1 and the remaining ones, concluding that the three approaches, apparently,
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Table 6.5: Comparison of approaches, using Air Bleed system, with minor trajectory di-
mension until the failure.

Trajectory Worst Case Mean Weighted Mean

1 0% 0% 0%

2 |42−46|
46 ∗ 100 = 8.695% |15.4−13.6|

13.6 ∗ 100 = 13.235% |0.411−0.365|
0.365 ∗ 100 = 12.603%

3 |35−46|
46 ∗ 100 = 23.913% |11.2−13.6|

13.6 ∗ 100 = 17.647% |0.303−0.365|
0.365 ∗ 100 = 16.986%

4 |36−46|
46 ∗ 100 = 21.739% |13.2−13.6|

13.6 ∗ 100 = 2.941% |0.347−0.365|
0.365 ∗ 100 = 4.931%

5 |43−46|
46 ∗ 100 = 6.521% |19.79−13.6|

13.6 ∗ 100 = 30.808% |0.493−0.365|
0.365 ∗ 100 = 35.068%

6 |41−46|
46 ∗ 100 = 10.869% |12.6−13.6|

13.6 ∗ 100 = 7.352% |0.317−0.365|
0.365 ∗ 100 = 13.15%

7 |42−46|
46 ∗ 100 = 8.695% |14.6−13.6|

13.6 ∗ 100 = 7.352% |0.375−0.365|
0.365 ∗ 100 = 2.739%

8 |39−46|
46 ∗ 100 = 15.217% |13.39−13.6|

13.6 ∗ 100 = 1.544% |0.533−0.365|
0.365 ∗ 100 = 46.027%

could be used to anticipate the failure.

The ideal for the maintenance team is to predict failure with some antecedence, scheduling
the maintenance of the aircraft timely. This way, for each approach, will be defined a
threshold, assuming that the real value of the prediction is the value obtained for the
first trajectory. A way to suppose this threshold could be 3 flights before the occurrence
of a failure. So, if the value of failure for trajectory 1, in the worst case approach, is
46, and considering the worst scenario, the threshold defined for this situation could be
40, supposing that three flights before the failure returned the value 2. The upper bound
considered is the value obtained for this trajectory plus 3 flights, in the same conditions that
were defined the lower bound, for each situation. The following analyses the occurrence
of true positives and false positives that are identified, considering the threshold defined
bellow, for each approach.

• Worst Case

– Minimum Threshold: 40;

– Maximum Threshold: 52;

– True Positives: Trajectories 1, 2, 5, 6, and 7;

– True Negatives: 0;

– False Positives: Trajectories 3, 4, and 8;

– False Negatives: 0.

• Mean

– Minimum Threshold: 7.6

– Maximum Threshold: 20.6

– True Positives: Trajectories 1, 2, 3, 4, 5, 6, 7 and 8;

– True Negatives: 0;

– False Positives: 0;

– False Negatives: 0.

• Weighted Mean

– Minimum Threshold: 0.245
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– Maximum Threshold: 0.485

– True Positives: Trajectories 1, 2, 3, 4, 6, and 7;

– True Negatives: 0;

– False Positives: Trajectories 5 and 8;

– False Negatives: 0.

As explained, these results are dependent on the defined threshold. The value considered
is empiric, so it is needed to be confirmed for the maintenance team and tested as well.
However, in this situation, and considering the thresholds defined, the best approach was
the worst case, followed by mean and weighted mean. This was an expected result, because
the relative error from the first trajectory, in this approach, was the lowest in most of the
situations, relatively to the remaining ones.

6.2 CACTCS System

The next sections describe the obtained results for the CACTCS system, using the approach
described in Chapter 4.

6.2.1 Diagnosis

In the diagnosis phase is analyzed how healthy is a system, considering the degradation
that is presented through the data. This way, the adopted approach that aims to predict
this state was divided into two different ways, like in the Air Bleed system:

• Train and Test Trajectories: It is used a trajectory to train a Machine Learning
algorithm, and then, a model is obtained that will be used to predict the Health
Indicator in the remaining trajectories.

• 1 Trajectory to Train and Test: A percentage (30%, 40%, 50%, 60%, or 70%)
of a trajectory is used to train an algorithm, and then, the created model is used to
predict the health in the remaining trajectory.

Of note that the results obtained, in this section, were analyzed in the same conditions,
which means that the chosen parameters for each algorithm are the same for both ways.
This way, the Linear Regression has no changed parameters because there is no parameter
to change using the library used. In SVR, when the linear function is linear, there is no
parameter to change. However, when the kernel function is Polynomial, RBF, or Sigmoid,
the γ value is 0.2, 0.2, and 0.01, respectively. In the Random Forest Algorithm, the
parameter that was changed was the nestimators, that will have the values 2, 32, and 100.

Train and Test Trajectories

The approach Train and Test Trajectories creates a model that was previously trained,
with a complete trajectory. Then, this model is used to predict the Health Indicator for
the own and remaining trajectories. In Table 6.6 is shown the obtained Mean Squared
Error when is used the Trajectory 1 to train a Machine Learning algorithm.
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Table 6.6: MSE obtained for the model created with Trajectory 1, for CACTCS.

Trajectory LR SVR - Linear SVR - Poly SVR - RBF SVR - Sigmoid RF - 2 RF - 32 RF - 100
1 0.0002 0.002 0.006 0.006 0.005 0.0 0.0 0.0
2 35.882 3.252 3.185 3.209 3.288 3.055 2.921 3.059
3 50.004 3.494 3.372 3.457 3.570 3.222 3.445 2.878
4 6.467 3.607 3.275 3.309 3.377 3.298 2.918 2.568
5 19.857 3.430 3.284 3.302 3.379 3.401 2.970 2.976
6 33.748 3.303 3.247 3.263 3.352 1.938 3.145 3.227
7 0.0004 0.001 0.006 0.006 0.005 2e-05 2e-05 2e-05
8 22.395 3.288 3.094 3.112 3.195 2.823 3.214 2.967
9 19.797 3.270 3.129 3.147 3.229 3.551 3.018 3.257

Analyzing the results, the worst algorithm, when is applied to the mentioned approach,
is the Linear Regression. As was expected, the best MSE obtained was for trajectory 1
because is the trajectory that trained the algorithm and that created the model. However,
stands out the prediction results for trajectory 4. The MSE here is lower because the char-
acteristics of the first trajectory and the fourth are similar regarding the flights duration.
The remaining algorithms have, in general, good results because the parameters could help
them have a better performance.

Figure 6.3: Boxplot that compares MSE obtained, for each algorithm, when the model is
created with Trajectory 1, for CACTCS.

Examining the boxplot shown in Figure 6.3, the SVR and the Random Forest algorithms
have better performance than the Linear Regression, as observed. However, the adjustment
of the parameters could have a higher impact but, as mentioned, in the Linear Regression
algorithm, there are no parameters to change in the library used.

Relatively to the remaining results, they are in Appendix B. Analyzing them, the conclusion
is that the best algorithms that predict the Health Indicator are mainly the SVR with
Sigmoid kernel function and the Random Forest, where the number of estimators seems
not to have a significant impact. However, analyzing the tables in the same Appendix, the
conclusion is that there are models that are better to predict the Health Indicator than
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others. This could be caused by the diversity of characteristics of each trajectory, which
means that exist trajectories with more consistent flight hours and data behavior, for each
flight, and others where these characteristics are not consistent. So, when a trajectory is
consistent in his behavior, and the model is created according to it, the result of the HI
prediction for the trajectories where the duration of flights is not consistent will be not so
good. However, the chosen parameters could improve these situations.

1 Trajectory to Train and Test

The approach 1 Trajectory to Train and Test creates a model that was previously trained,
with the first 30% of instances of a trajectory. Then, this model is used to predict the
Health Indicator for the remaining trajectory. In Table 6.7 is shown the obtained Mean
Squared Error when is used the first 30% instances of all trajectories to train a Machine
Learning algorithm. The created models are used to predict the Health Indicator in the
left 70% of data, of each trajectory.

Table 6.7: MSE obtained with the models created, for each trajectory, for the first 30%
instances, for CACTCS.

Trajectory LR SVR - Linear SVR - Poly SVR - RBF SVR - Sigmoid RF - 2 RF - 32 RF - 100
1 0.001 0.001 0.001 0.004 0.003 2e-05 0.0001 0.0001
2 0.102 0.101 0.100 0.093 0.108 0.102 0.070 0.069
3 0.155 0.155 0.101 0.091 0.175 0.120 0.079 0.078
4 0.305 0.115 0.080 0.085 0.123 0.095 0.058 0.056
5 0.115 0.100 0.081 0.082 0.109 0.082 0.053 0.050
6 0.089 0.090 0.084 0.079 0.099 0.088 0.060 0.059
7 0.0003 0.004 0.005 0.004 0.004 5e-05 4e-05 3e-05
8 0.109 0.100 0.089 0.088 0.104 0.087 0.056 0.056
9 0.067 0.070 0.056 0.055 0.076 0.071 0.045 0.045

The obtained MSE is similar in all algorithms, for all trajectories. It could mean that
the data that trained the algorithm is good enough to predict what will be the future HI,
in the remaining trajectories. Moreover, the main conclusion of these results is that the
set of circumstances, like the duration flights, or the behavior of the data in each flight,
who make part of the creation of the model, were reached and considered in the future
situations (in the remaining 70% of each trajectory).

Analyzing Figure 6.4, the algorithm which had better performance was the Random Forest
with the number of estimators equals to 32 and 100. The results in these situations are very
similar because, after a certain number of estimators, the performance of the algorithm
tends to stagnate. Moreover, these results, as happened previously, are depending on the
data and the chosen parameters.

Moreover, there were created more models with 40%, 50%, 60%, and 70% of the first
instances, for all trajectories, which results are in Appendix B.

Inspecting the results in Appendix B, for all of the considered situations, the best MSE
obtained is when the Random Forest algorithm, with the number of estimators is equal to
32 and 100, is applied, because is an algorithm that works based on the evaluation of all the
possible solutions and finds a result that is better than the others. Relatively to the tables
in the same Appendix, it was expected that the MSE was decreasing over time, because
if the algorithm has more data to train, the results should be better. So, analyzing the
obtained results, the MSE was decreasing, despite the difference is not significant, what
permit to conclude that the data that were added to the algorithm, when it was trained,
has infomation that will make the model skillful to predict the Health Indicator.
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Figure 6.4: Boxplot that compares the MSE obtained, for each algorithm, when the model
is created with 30% of data, for each trajectory, for CACTCS.

6.2.2 Prognosis

The prognosis phase consists of predict when a failure will occur. This prediction is made
taking into account the signal frequency and magnitude analysis, using a DFT. After defin-
ing a certain threshold, the highest peaks above it are counted, normalized and analyzed,
using three different approaches:

• Worst Case: For each sensor, in each flight, is analyzed what was the highest
normalized value obtained, and it is saved. The result of this approach is the sum of
the highest values for each flight.

• Mean: For this approach is computed the mean of the normalized result, for each
sensor, in each flight. The result of this approach is the sum of the mean obtained
for each flight.

• Weighted Mean: In this approach is attributed weight to the normalized result,
for each sensor, in each flight. The result of this approach is the sum of the weighted
results obtained for each flight.

These three approaches are detailed in Section 4.2. Table 6.8 shows the results for each
prognosis approach adopted.

The obtained results are inconsistent in the three adopted approaches as happened with
the results of the prognostic in the Air Bleed system. Moreover, as mentioned before, this
result can be different for each trajectory because it could be dependent on the trajectory
dimension, the flight where the first failure occurs, or some noise in sensor measurements.

As was done for the Air Bleed system, the shortest trajectory was verified. That is,
the trajectory with fewer flights from the beginning to the appearance of the failure was
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Table 6.8: Sum of normalized counter, for each approach, considering the trajectory until
the failure, using CACTCS.

Trajectory Worst Case Mean Weighted Mean
1 89 16.727 0.971
2 146 30.909 1.853
3 185 38.818 2.234
4 119 20.090 1.246
5 111 20.454 1.235
6 229 22.272 2.509
7 288 57.818 3.210
8 145 28.540 1.708
9 169 27.818 1.585

considered, and this dimension will be regarded in the others. Thus, following this idea, the
181 flights until the occurrence of the fault will be considered in all trajectories, because
this is the smallest number of flights between the beginning of the trajectory and the fault,
considering the 9 available trajectories. This way, it is simulated that all trajectories start
at the same time and the results are shown in the Table 6.9.

Table 6.9: Sum of normalized counter, for each approach, considering the minor trajectory
dimension until the failure, using CACTCS.

Trajectory Worst Case Mean Weighted Mean
1 89 16.272 0.971
2 100 20.272 1.278
3 115 24.181 1.397
4 99 16.818 1.047
5 85 15.636 0.937
6 147 27.909 1.606
7 175 35.454 1.955
8 82 15.818 0.955
9 156 26.636 1.457

The obtained results indicate that, in general, the values obtained are not close between
trajectory 1 and the remaining ones. It could happen because the flight duration is more
inconstant than the other dataset. To confirm this statement, in the Table 6.10, is com-
puted the relative error, between the minor trajectory - Trajectory 1 - and the remaining
ones.

As could be seen, the relative error from the first trajectory to the remaining ones is
very high, which means that after defining a threshold for each approach, it could be
very complicated to detect a failure in time. However, a description of when a failure is
detected correctively or not, according to a defined threshold - considering 3 days before
the occurrence of failure - is described below.
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Table 6.10: Relative error, for each approach, considering the minor trajectory dimension
until the failure, using CACTCS.

Trajectory Worst Case Mean Weighted Mean

1 0% 0% 0%

2 |100−89|
89 ∗ 100 = 12.359% |20.272−16.272|

16.272 ∗ 100 = 24.982% |1.278−0.971|
0.971 ∗ 100 = 31.616%

3 |115−89|
89 ∗ 100 = 29.213% |24.181−16.272|

16.272 ∗ 100 = 48.604% |1.397−0.971|
0.971 ∗ 100 = 43.872%

4 |99−89|
89 ∗ 100 = 11.23% |16.818−16.272|

16.272 ∗ 100 = 3.355% |1.047−0.971|
0.971 ∗ 100 = 12.976%

5 |85−89|
89 ∗ 100 = 4.494% |15.636−16.272|

16.272 ∗ 100 = 3.908% |0.937−0.971|
0.971 ∗ 100 = 3.501%

6 |147−89|
89 ∗ 100 = 65.168% |27.909−16.272|

16.272 ∗ 100 = 71.515% |1.606−0.971|
0.971 ∗ 100 = 65.396%

7 |175−89|
89 ∗ 100 = 96.629% |35.454−16.272|

16.272 ∗ 100 = 117.883% |1.955−0.971|
0.971 ∗ 100 = 101.338%

8 |82−89|
89 ∗ 100 = 7.865% |15.818−16.272|

16.272 ∗ 100 = 2.79% |0.955−0.971|
0.971 ∗ 100 = 1.647%

9 |156−89|
89 ∗ 100 = 75.280% |26.636−16.272|

16.272 ∗ 100 = 63.692% |1.457−0.971|
0.971 ∗ 100 = 50.051%

• Worst Case

– Minimum Threshold: 83
– Maximum Threshold: 95
– True Positives: Trajectory 1;
– True Negatives: 0;
– False Positives: Trajectory 1 2, 3, 4, 5, 6, 7, 8, and 9;
– False Negatives: 0;

• Mean

– Minimum Threshold: 10.727
– Maximum Threshold: 22.727
– True Positives: Trajectory 1, 2, 4, 5, and 8;
– True Negatives: 0;
– False Positives: Trajectory 3, 6, 7 and 9;
– False Negatives: 0;

• Weighted Mean

– Minimum Threshold: 0.851
– Maximum Threshold: 1.901
– True Positives: Trajectory 1, 2, 3, 4, 5, 6, 8, and 9;
– True Negatives: 0;
– False Positives: Trajectory 7;
– False Negatives: 0.

These results are dependent on the defined threshold. The value considered is empiric,
so it is needed to be confirmed for the maintenance team and tested as well. However,
in this situation, and considering the thresholds defined, the best situation was the mean
approach. As was expected, the results were not good, in general, because the relative error
from the first trajectory, in all approaches, is very high, which impossibilities predicting
the error before it occurs with some confidence. The reason why this happens is that the
time of each flight has a significant variation in the same trajectory.
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6.3 Summary of Results

The mentioned approaches, for both datasets, have promising results.

For the diagnosis contribution, in general, the MSE obtained, for all algorithms, is low.
This means that this approach could be good to predict the HI, over a trajectory. More
specifically, if the HI will have an unexpected degradation or if the system, after a certain
moment, will have a more accentuated degradation. For this situation, as mentioned, a
battery of tests were made empirically.

Despite the results for the prognosis contribution are interesting, the results are dependent
on the trajectory dimension as well as the occurrence of the first failure. This approach
is also dependent on the chosen thresholds. Regardless that they were defined taking into
account the same conditions, the approach to defining it can be improved.

However, the fact that it is not know whether a system is new or repaired, is a problem
for both approaches, which can be reflected in the final results, such as the evolution of
the HI or the prediction of the failure.
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Conclusion

This work, as mentioned several times over this document, is inserted in a European
Project - ReMAP - which the main goal is to develop solutions, based on the condition of
the system, replacing the fixed inspections by adaptive interventions.

As was detailed, this thesis is divided into two main contributions: diagnosis and progno-
sis. For the diagnosis, the main goal was to predict the Health Indicator every 10 minutes,
using 3 different Machine Learning algorithms - Linear Regression, Support Vector Re-
gressor, and Random Forest. With this approach could happen false positives either for a
prediction that will mislead the maintenance team or for a prediction that will not advise
the maintenance team timely, causing more costs for the airline company. For the prog-
nosis phase, the major challenge was to find a way that could predict the RUL, without
the knowledge about the future. So, to solve this problem, an approach that anticipates
the failure was adopted, considering the behavior of the sensor data. The biggest chal-
lenge in this contribution was to obtain consistent results between trajectories. When each
approach is analyzed, for each trajectory, exists some discrepancy between the obtained
values. These differences occur because is possible that some trajectories are associated
with new or repaired systems. So, it is possible that reflects a different behavior and con-
sequently early or late detection of the failure. However, it is not possible to be certain
which situation is regarded for each trajectory. Also, the results in this approach could
be affected according to the considered thresholds, either for the extraction of the relevant
frequencies or the anticipation of a failure. As each sensor has a different range of values,
it means that the thresholds are dependent on the sensor and the system.

Analysis of the Schedule Plane

The proposed schedule plane for the second semester, is illustrated in Figure 7.1.

February March April May June

10-16 17-23 24-29 1-8 9-15 16-22 23-29 30-31 1-5 6-12 13-19 20-26 27-30 1-3 4-10 11-17 18-24 25-31 1-7 8-14 15-22

T1 - Adapt Approach to the New Data

T2 - Implement New Approach

T3 - Test and Validation

T4 - Write the Final Report

Figure 7.1: Proposed Gantt Chart of the Second Semester.

However, there happened some delays, because to improve the approach, it was necessary
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to research the way that the RUL could be calculated. So, after the validation of the results
of the first semester, occurred some research that was not in the plans about different ways
to solve the found problems.

Another reason for the delay was the fact that parallel with the thesis existed a course
related to this master. Moreover, the problem relative to the pandemic made work less
productive, causing a delay in the established plans. So, in the face of these events, the
schedule plan was changed, suffering some delays, as is demonstrated in Figure 7.2.

February March April May June July August/September

10-16 17-23 24-29 1-8 9-15 16-22 23-29 30-31 1-5 6-12 13-19 20-26 27-30 1-3 4-10 11-17 18-24 25-31 1-7 8-14 15-21 22-30 1-5 6-12 13-19 20-26 27-31 1-9 10-16 17-23 24-1

T1 - Validation of the Results of the First Semester

T2 - Research for methods for Prognosis Phase

T3 - Implementation of Prognosis Phase

T4 - Test and Validation of Prognosis Phase

T4 - Adapt Prognosis Approach to CACTCS data

T4 - Write the Final Report

Figure 7.2: Gantt Chart of the Second Semester.

They are detailed in Appendix C.

Analysis of the Risks

For the intermediate defense, were identified two risks. However, it was suggested in this
defense, add one more. So, the Risk Matrix and their impact on this work are described
in Table 7.1.

Table 7.1: Risk Matrix.

Probability/Impact Negligible Marginal Moderate Critical Catastrophic
Improbable
Remote

Occasional Risk 2
Probable Risk 1 Risk 3
Frequent

• Risk 1 - High Execution Time:

The execution time, mostly in the last part of this work, was high. However, it didn’t
take long more than 4 days. During these days, were made another work, like the
writing of this document, so this has no huge impact on the developed work. Thus,
it is important to take into account this risk in the future, in order to mitigate it
using machines with more computational power or use a part of a dataset, when it
could be possible.

• Risk 2 - Poor Data Quality:

According to the information transmitted through the ReMAP team and with the
done analysis, the conclusion was that the data has relevant information that is
important to explore, in order to improve the results. This way, there was not
required a mitigation action.

• Risk 3 - Huge Number of Data:

The quantity of the available data was not too huge, so was possible to solve the
problem, without problems of execution. Thus, it is not a risk for these datasets
whereby there is no needed mitigation action.
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Future Work

In the future, should be done an analysis that combines the diagnosis phase with the
prognosis phase, investigating the health of a system together with the prediction of the
failure, and the duration of the flight. This approach is proposed because believes that the
duration of flights could influence the system’s deterioration.

Also, the way that the thresholds are defined should be improved because the outcomes are
dependent on them. When is chosen a minor threshold are selected too many frequencies
and, consequently, too many magnitudes. However, when is chosen a major threshold, the
opposite happens. So, is relevant to guarantee that, for different systems, the frequencies
and magnitudes are selected in similar conditions.

Moreover, the obtained results in the diagnosis phase could be improved if there is an
improvement of a combination of parameters for each Machine Learning algorithm used.
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Appendix A

Air Bleed Results

The following sections will present the remaining results that were described in Section 6.1.

Train and Test Trajectories

The next tables and figures will show the results for each situation considered. More
specifically, below are the results when a model is created with the trajectories 2, 3, 4, 5,
6, 7, and 8, and then the Health Indicator is predicted for the remaining ones.

Figure A.1: Boxplot that compares MSE obtained, for each algorithm, when the model is
created with Trajectory 2, for Air Bleed system.
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Figure A.2: Boxplot that compares MSE obtained, for each algorithm, when the model is
created with Trajectory 3, for Air Bleed system.

Figure A.3: Boxplot that compares MSE obtained, for each algorithm, when the model is
created with Trajectory 4, for Air Bleed system.
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Figure A.4: Boxplot that compares MSE obtained, for each algorithm, when the model is
created with Trajectory 5, for Air Bleed system.

Figure A.5: Boxplot that compares MSE obtained, for each algorithm, when the model is
created with Trajectory 6, for Air Bleed system.
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Figure A.6: Boxplot that compares MSE obtained, for each algorithm, when the model is
created with Trajectory 7, for Air Bleed system.

Figure A.7: Boxplot that compares MSE obtained, for each algorithm, when the model is
created with Trajectory 8, for Air Bleed system.
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Table A.1: MSE obtained for the model created with Trajectory 2, for Air Bleed system.

Trajectory LR SVR - Linear SVR - Poly SVR - RBF SVR - Sigmoid RF - 2 RF - 32 RF - 100
1 0.005 0.006 0.007 0.006 0.011 0.005 0.004 0.004
2 0.004 0.004 0.003 0.003 0.024 0.001 0.004 0.004
3 0.006 0.007 0.012 0.007 0.012 0.007 0.006 0.006
4 0.006 0.005 0.011 0.005 0.018 0.013 0.010 0.010
5 0.021 0.020 0.025 0.019 0.029 0.039 0.032 0.040
6 0.004 0.004 0.007 0.004 0.011 0.007 0.005 0.005
7 0.012 0.012 0.016 0.012 0.020 0.017 0.015 0.015
8 0.002 0.002 0.004 0.003 0.004 0.003 0.003 0.002

Table A.2: MSE obtained for the model created with Trajectory 3, for Air Bleed system.

Trajectory LR SVR - Linear SVR - Poly SVR - RBF SVR - Sigmoid RF - 2 RF - 32 RF - 100
1 0.004 0.004 0.004 0.004 0.005 0.006 0.004 0.004
2 0.008 0.008 0.008 0.009 0.011 0.014 0.012 0.012
3 0.003 0.003 0.003 0.002 0.004 0.001 0.001 0.001
4 0.018 0.016 0.017 0.011 0.018 0.014 0.014 0.015
5 0.057 0.052 0.054 0.042 0.054 0.053 0.047 0.048
6 0.005 0.004 0.005 0.004 0.005 0.006 0.005 0.005
7 0.028 0.025 0.027 0.029 0.027 0.031 0.027 0.027
8 0.002 0.002 0.002 0.002 0.002 0.003 0.002 0.002

Table A.3: MSE obtained for the model created with Trajectory 4, for Air Bleed system.

Trajectory LR SVR - Linear SVR - Poly SVR - RBF SVR - Sigmoid RF - 2 RF - 32 RF - 100
1 0.009 0.009 0.009 0.008 0.009 0.009 0.007 0.007
2 0.005 0.006 0.011 0.004 0.006 0.007 0.004 0.004
3 0.011 0.011 0.012 0.008 0.011 0.010 0.009 0.008
4 0.004 0.004 0.003 0.003 0.005 0.001 0.001 0.001
5 0.011 0.011 0.013 0.012 0.012 0.015 0.012 0.011
6 0.005 0.006 0.006 0.005 0.006 0.005 0.004 0.004
7 0.009 0.010 0.012 0.010 0.012 0.011 0.009 0.009
8 0.004 0.004 0.004 0.004 0.004 0.005 0.004 0.003

Table A.4: MSE obtained for the model created with Trajectory 5, for Air Bleed system.

Trajectory LR SVR - Linear SVR - Poly SVR - RBF SVR - Sigmoid RF - 2 RF - 32 RF - 100
1 0.013 0.014 0.014 0.013 0.015 0.014 0.014 0.014
2 0.009 0.010 0.011 0.007 0.010 0.012 0.009 0.009
3 0.016 0.018 0.018 0.015 0.018 0.018 0.017 0.017
4 0.005 0.006 0.006 0.006 0.007 0.007 0.006 0.006
5 0.008 0.008 0.008 0.005 0.009 0.001 0.001 0.001
6 0.009 0.009 0.010 0.009 0.010 0.008 0.008 0.008
7 0.012 0.013 0.015 0.011 0.015 0.015 0.011 0.010
8 0.006 0.007 0.007 0.007 0.007 0.006 0.006 0.006

Table A.5: MSE obtained for the model created with Trajectory 6, for Air Bleed system.

Trajectory LR SVR - Linear SVR - Poly SVR - RBF SVR - Sigmoid RF - 2 RF - 32 RF - 100
1 0.004 0.005 0.005 0.005 0.006 0.0080 0.005 0.005
2 0.005 0.005 0.006 0.005 0.010 0.008 0.006 0.005
3 0.004 0.005 0.006 0.005 0.006 0.007 0.005 0.005
4 0.008 0.007 0.007 0.005 0.010 0.018 0.018 0.016
5 0.031 0.026 0.027 0.020 0.031 0.050 0.048 0.048
6 0.003 0.003 0.003 0.003 0.005 0.001 0.001 0.001
7 0.016 0.015 0.018 0.017 0.017 0.024 0.018 0.018
8 0.001 0.002 0.002 0.003 0.002 0.004 0.003 0.003
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Table A.6: MSE obtained for the model created with Trajectory 7, for Air Bleed system.

Trajectory LR SVR - Linear SVR - Poly SVR - RBF SVR - Sigmoid RF - 2 RF - 32 RF - 100
1 0.008 0.010 0.010 0.009 0.010 0.009 0.008 0.008
2 0.005 0.006 0.013 0.005 0.006 0.006 0.005 0.005
3 0.010 0.011 0.014 0.011 0.012 0.010 0.010 0.010
4 0.004 0.004 0.006 0.004 0.004 0.006 0.004 0.004
5 0.013 0.011 0.011 0.010 0.011 0.011 0.010 0.009
6 0.005 0.006 0.008 0.006 0.006 0.005 0.005 0.005
7 0.007 0.008 0.009 0.005 0.009 0.001 0.001 0.001
8 0.004 0.004 0.005 0.006 0.004 0.004 0.004 0.004

Table A.7: MSE obtained for the model created with Trajectory 8, for Air Bleed system.

Trajectory LR SVR - Linear SVR - Poly SVR - RBF SVR - Sigmoid RF - 2 RF - 32 RF - 100
1 0.004 0.004 0.005 0.004 0.005 0.006 0.004 0.004
2 0.007 0.006 0.015 0.006 0.007 0.011 0.008 0.007
3 0.004 0.004 0.005 0.004 0.004 0.005 0.004 0.004
4 0.012 0.012 0.005 0.011 0.012 0.015 0.015 0.016
5 0.042 0.043 0.042 0.042 0.043 0.063 0.053 0.055
6 0.004 0.004 0.005 0.003 0.004 0.007 0.004 0.004
7 0.024 0.023 0.026 0.023 0.023 0.030 0.030 0.027
8 0.001 0.001 0.001 0.001 0.001 0.000 0.001 0.001

1 Trajectory to Train and Test

The next tables and figures will show the results for each situation considered. More
specifically, below are the results when a model is created with a percentage of the first
instances of a trajectory and then is predicted, for the remaining trajectory, the Health
Indicator.

Figure A.8: Boxplot that compares the MSE obtained, for each algorithm, when the model
is created with 40% of data, for each trajectory, for Air Bleed system.
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Figure A.9: Boxplot that compares the MSE obtained, for each algorithm, when the model
is created with 50% of data, for each trajectory, for Air Bleed system.

Figure A.10: Boxplot that compares the MSE obtained, for each algorithm, when the
model is created with 60% of data, for each trajectory, for Air Bleed system.
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Figure A.11: Boxplot that compares the MSE obtained, for each algorithm, when the
model is created with 70% of data, for each trajectory, for Air Bleed system.

Table A.8: MSE obtained with the models created, for each trajectory, for the 40% in-
stances, for Air Bleed system.

Trajectory LR SVR - Linear SVR - Poly SVR - RBF SVR - Sigmoid RF - 2 RF - 32 RF - 100
1 0.005 0.005 0.005 0.005 0.005 0.007 0.005 0.006
2 0.006 0.006 0.007 0.006 0.006 0.007 0.006 0.006
3 0.003 0.004 0.004 0.003 0.004 0.005 0.003 0.003
4 0.009 0.009 0.009 0.009 0.009 0.009 0.008 0.008
5 0.010 0.010 0.014 0.009 0.012 0.009 0.007 0.007
6 0.004 0.004 0.004 0.004 0.004 0.006 0.004 0.004
7 0.009 0.008 0.011 0.006 0.008 0.007 0.005 0.005
8 0.002 0.002 0.030 0.002 0.002 0.002 0.002 0.002

Table A.9: MSE obtained with the models created, for each trajectory, for the first 50%
instances, for Air Bleed system.

Trajectory LR SVR - Linear SVR - Poly SVR - RBF SVR - Sigmoid RF - 2 RF - 32 RF - 100
1 0.005 0.005 0.005 0.005 0.005 0.006 0.005 0.005
2 0.006 0.006 0.006 0.006 0.006 0.007 0.006 0.006
3 0.003 0.004 0.005 0.003 0.004 0.005 0.003 0.003
4 0.009 0.010 0.010 0.009 0.010 0.009 0.009 0.009
5 0.010 0.010 0.015 0.009 0.012 0.009 0.007 0.007
6 0.002 0.002 0.002 0.003 0.003 0.004 0.002 0.002
7 0.008 0.008 0.011 0.006 0.008 0.007 0.004 0.004
8 0.002 0.002 0.002 0.002 0.002 0.003 0.002 0.002
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Table A.10: MSE obtained with the models created, for each trajectory, for the first 60%
instances, for Air Bleed system.

Trajectory LR SVR - Linear SVR - Poly SVR - RBF SVR - Sigmoid RF - 2 RF - 32 RF - 100
1 0.005 0.005 0.005 0.005 0.005 0.005 0.004 0.004
2 0.005 0.006 0.006 0.006 0.005 0.007 0.006 0.006
3 0.004 0.004 0.006 0.004 0.005 0.005 0.003 0.003
4 0.01 0.01 0.01 0.009 0.011 0.01 0.009 0.009
5 0.011 0.011 0.026 0.009 0.014 0.011 0.008 0.008
6 0.002 0.002 0.002 0.002 0.003 0.004 0.002 0.002
7 0.008 0.008 0.012 0.007 0.009 0.007 0.005 0.004
8 0.002 0.002 0.002 0.002 0.002 0.003 0.002 0.002

Table A.11: MSE obtained with the models created, for each trajectory, for the first 70%
instances, for Air Bleed system.

Trajectory LR SVR - Linear SVR - Poly SVR - RBF SVR - Sigmoid RF - 2 RF - 32 RF - 100
1 0.004 0.004 0.004 0.004 0.004 0.004 0.004 0.004
2 0.004 0.004 0.004 0.004 0.006 0.006 0.004 0.004
3 0.003 0.003 0.003 0.003 0.004 0.005 0.003 0.003
4 0.006 0.007 0.007 0.006 0.007 0.007 0.006 0.006
5 0.012 0.014 0.016 0.012 0.014 0.013 0.012 0.012
6 0.003 0.003 0.003 0.002 0.003 0.003 0.002 0.002
7 0.009 0.011 0.011 0.014 0.012 0.012 0.012 0.012
8 0.003 0.003 0.004 0.004 0.003 0.003 0.003 0.003
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Appendix B

CACTCS Results

The next sections will show the remaining results that were described in Section 6.2.

Train and Test Trajectories

The following tables and figures will show the results for each situation considered. More
specifically, below are the results when a model is created with the trajectories 2, 3, 4, 5,
6, 7, and 8, and then the Health Indicator is predicted for the remaining ones.

Figure B.1: Boxplot that compares MSE obtained, for each algorithm, when the model is
created with Trajectory 2, for CACTCS.
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Figure B.2: Boxplot that compares MSE obtained, for each algorithm, when the model is
created with Trajectory 3, for CACTCS.

Figure B.3: Boxplot that compares MSE obtained, for each algorithm, when the model is
created with Trajectory 4, for CACTCS.
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Figure B.4: Boxplot that compares MSE obtained, for each algorithm, when the model is
created with Trajectory 5, for CACTCS.

Figure B.5: Boxplot that compares MSE obtained, for each algorithm, when the model is
created with Trajectory 6, for CACTCS.

77



Appendix B

Figure B.6: Boxplot that compares MSE obtained, for each algorithm, when the model is
created with Trajectory 7, for CACTCS.

Figure B.7: Boxplot that compares MSE obtained, for each algorithm, when the model is
created with Trajectory 8, for CACTCS.
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Figure B.8: Boxplot that compares MSE obtained, for each algorithm, when the model is
created with Trajectory 9, for CACTCS.

Table B.1: MSE obtained for the model created with Trajectory 2, for CACTCS.

Trajectory LR SVR - Linear SVR - Poly SVR - RBF SVR - Sigmoid RF - 2 RF - 32 RF - 100
1 1.178 1.073 0.807 1.089 1.011 0.974 0.988 0.981
2 0.098 0.099 0.084 0.080 0.105 0.023 0.007 0.007
3 0.378 0.276 0.450 0.224 0.186 0.274 0.146 0.146
4 0.361 0.373 0.412 0.319 0.168 0.217 0.141 0.154
5 0.211 0.196 0.429 0.232 0.107 0.174 0.114 0.111
6 0.148 0.138 0.206 0.153 0.098 0.132 0.093 0.090
7 0.828 0.887 0.855 1.165 0.968 1.049 0.982 0.988
8 0.156 0.146 0.377 0.173 0.102 0.131 0.101 0.103
9 0.249 0.199 0.339 0.288 0.073 0.116 0.093 0.088

Table B.2: MSE obtained for the model created with Trajectory 3, for CACTCS.

Trajectory LR SVR - Linear SVR - Poly SVR - RBF SVR - Sigmoid RF - 2 RF - 32 RF - 100
1 1.578 1.400 1.546 1.544 1.088 0.955 0.980 0.979
2 0.135 0.112 0.361 0.404 0.113 0.173 0.110 0.111
3 0.151 0.157 0.080 0.076 0.169 0.024 0.008 0.007
4 1.089 0.837 4.738 1.848 0.309 0.273 0.132 0.124
5 0.237 0.171 0.814 1.240 0.144 0.233 0.135 0.126
6 0.210 0.145 0.779 1.163 0.137 0.194 0.111 0.102
7 1.381 1.246 1.611 1.581 1.046 0.977 0.984 0.983
8 0.171 0.133 0.583 0.839 0.120 0.156 0.115 0.114
9 0.236 0.146 0.942 1.955 0.111 0.120 0.089 0.086
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Table B.3: MSE obtained for the model created with Trajectory 4, for CACTCS.

Trajectory LR SVR - Linear SVR - Poly SVR - RBF SVR - Sigmoid RF - 2 RF - 32 RF - 100
1 1349.372 0.788 0.683 0.758 0.795 1.268 0.984 0.977
2 11032.632 33.891 0.444 0.179 0.123 0.206 0.172 0.165
3 9958.635 15.480 0.355 0.164 0.195 1.549 0.240 0.255
4 0.0919 0.105 0.066 0.067 0.117 0.017 0.006 0.006
5 10991.173 25.302 0.492 0.258 0.116 0.318 0.155 0.167
6 13457.056 27.7168 0.452 0.163 0.110 0.561 0.181 0.182
7 1824.079 0.592 0.737 0.942 0.840 1.324 1.102 1.022
8 10316.339 26.603 0.414 0.279 0.118 0.331 0.153 0.149
9 11805.140 29.911 0.424 0.223 0.083 0.190 0.128 0.120

Table B.4: MSE obtained for the model created with Trajectory 5, for CACTCS.

Trajectory LR SVR - Linear SVR - Poly SVR - RBF SVR - Sigmoid RF - 2 RF - 32 RF - 100
1 1.148 1.112 0.793 0.925 1.014 0.990 0.983 0.987
2 0.163 0.148 0.180 0.161 0.109 0.184 0.115 0.107
3 0.581 0.359 0.295 0.263 0.198 0.342 0.279 0.248
4 0.206 0.217 0.529 0.405 0.133 0.151 0.144 0.136
5 0.091 0.094 0.064 0.061 0.104 0.020 0.006 0.005
6 0.123 0.123 0.118 0.097 0.101 0.155 0.106 0.103
7 0.886 0.949 1.138 1.088 0.987 0.982 0.993 0.992
8 0.119 0.114 0.104 0.091 0.102 0.103 0.08 0.077
9 0.078 0.070 0.065 0.062 0.071 0.086 0.065 0.062

Table B.5: MSE obtained for the model created with Trajectory 6, for CACTCS.

Trajectory LR SVR - Linear SVR - Poly SVR - RBF SVR - Sigmoid RF - 2 RF - 32 RF - 100
1 1.139 0.999 0.863 0.988 0.993 0.982 0.936 0.955
2 0.173 0.184 0.113 0.099 0.105 0.141 0.085 0.083
3 0.312 0.297 0.386 0.330 0.185 0.269 0.209 0.200
4 0.301 0.150 0.385 0.343 0.143 0.235 0.140 0.144
5 0.140 0.166 0.091 0.087 0.106 0.184 0.139 0.134
6 0.089 0.091 0.076 0.074 0.097 0.023 0.008 0.007
7 1.033 1 1.215 1.258 0.989 0.898 0.936 0.953
8 0.145 0.162 0.126 0.116 0.102 0.164 0.093 0.094
9 0.112 0.140 0.093 0.085 0.073 0.152 0.114 0.101

Table B.6: MSE obtained for the model created with Trajectory 7, for CACTCS.

Trajectory LR SVR - Linear SVR - Poly SVR - RBF SVR - Sigmoid RF - 2 RF - 32 RF - 100
1 0.0006 0.002 0.006 0.005 0.005 4e-05 2e-05 3e-05
2 26.385 3.238 3.189 3.280 3.283 2.507 2.774 2.733
3 34.665 3.555 3.385 3.544 3.564 2.906 3.101 3.102
4 10.789 3.921 3.297 3.418 3.441 3.201 2.881 2.765
5 12.213 3.435 3.292 3.380 3.376 3.166 2.834 2.974
6 27.280 3.326 3.245 3.344 3.342 2.533 2.977 3.014
7 0.0002 0.001 0.005 0.004 0.005 1e-05 0.0 0.0
8 16 3.303 3.099 3.184 3.184 3.057 3.196 3.091
9 16.349 3.261 3.125 3.223 3.216 3.116 3.239 3.274

Table B.7: MSE obtained for the model created with Trajectory 8, for CACTCS.

Trajectory LR SVR - Linear SVR - Poly SVR - RBF SVR - Sigmoid RF - 2 RF - 32 RF - 100
1 1.134 1.036 1.112 1.151 0.949 0.963 0.953 0.953
2 0.116 0.109 0.164 0.191 0.109 0.196 0.1 0.098
3 0.582 0.333 0.298 0.339 0.199 0.262 0.202 0.201
4 0.243 0.388 3.137 1.707 0.163 0.197 0.142 0.141
5 0.127 0.126 0.077 0.08 0.106 0.111 0.077 0.070
6 0.107 0.103 0.149 0.152 0.101 0.144 0.087 0.089
7 0.697 0.760 1.419 1.340 0.880 0.972 0.975 0.976
8 0.096 0.098 0.073 0.069 0.101 0.022 0.007 0.006
9 0.141 0.113 0.069 0.076 0.073 0.096 0.069 0.066
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Table B.8: MSE obtained for the model created with Trajectory 9, for CACTCS.

Trajectory LR SVR - Linear SVR - Poly SVR - RBF SVR - Sigmoid RF - 2 RF - 32 RF - 100
1 1.711 1.291 1.237 1.109 0.980 0.935 0.954 0.947
2 0.256 0.173 0.137 0.122 0.111 0.180 0.115 0.115
3 0.785 0.251 0.268 0.248 0.197 0.468 0.291 0.278
4 0.799 0.215 0.538 0.221 0.124 0.203 0.148 0.137
5 0.115 0.107 0.117 0.109 0.106 0.131 0.089 0.088
6 0.198 0.156 0.119 0.114 0.101 0.148 0.110 0.106
7 1.018 1.116 1.500 1.296 0.926 0.974 0.973 0.967
8 0.108 0.131 0.106 0.099 0.103 0.148 0.101 0.100
9 0.060 0.062 0.050 0.048 0.071 0.019 0.005 0.005

1 Trajectory to Train and Test

In the following tables and figures the results will be shown for each situation considered.
More specifically, below are the results when a model is created with a percentage of the
first instances of a trajectory and then is predicted, for the remaining trajectory, the Health
Indicator.

Figure B.9: Boxplot that compares the MSE obtained, for each algorithm, when the model
is created with 40% of data, for each trajectory, for CACTCS.
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Figure B.10: Boxplot that compares the MSE obtained, for each algorithm, when the
model is created with 50% of data, for each trajectory, for CACTCS.

Figure B.11: Boxplot that compares the MSE obtained, for each algorithm, when the
model is created with 60% of data, for each trajectory, for CACTCS.
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Figure B.12: Boxplot that compares the MSE obtained, for each algorithm, when the
model is created with 70% of data, for each trajectory, for CACTCS.

Table B.9: MSE obtained with the models created, for each trajectory, for the first 40%
instances, for CACTCS.

Trajectory LR SVR - Linear SVR - Poly SVR - RBF SVR - Sigmoid RF - 2 RF - 32 RF - 100
1 0.0004 0.001 0.005 0.004 0.004 0.0001 0.0001 7e-05
2 0.100 0.101 0.097 0.091 0.108 0.096 0.069 0.068
3 0.153 0.155 0.093 0.087 0.173 0.111 0.070 0.070
4 0.386 0.115 0.080 0.084 0.124 0.098 0.057 0.056
5 0.098 0.097 0.072 0.071 0.107 0.073 0.048 0.049
6 0.081 0.088 0.082 0.077 0.096 0.091 0.059 0.058
7 0.0003 0.004 0.005 0.004 0.004 2e-05 2e-05 2e-05
8 0.100 0.102 0.089 0.085 0.105 0.089 0.053 0.054
9 0.066 0.068 0.055 0.053 0.074 0.069 0.040 0.039

Table B.10: MSE obtained with the models created, for each trajectory, for the first 50%
instances, for CACTCS.

Trajectory LR SVR - Linear SVR - Poly SVR - RBF SVR - Sigmoid RF - 2 RF - 32 RF - 100
1 0.0001 0.003 0.002 0.004 0.004 2e-05 2e-05 2e-05
2 0.100 0.100 0.096 0.090 0.108 0.102 0.068 0.067
3 0.155 0.159 0.093 0.088 0.176 0.102 0.067 0.065
4 0.412 0.113 0.074 0.077 0.122 0.086 0.055 0.053
5 0.097 0.096 0.071 0.069 0.106 0.074 0.048 0.047
6 0.085 0.086 0.077 0.073 0.092 0.086 0.055 0.054
7 0.0002 0.0007 0.003 0.002 0.002 4e-05 5e-05 5e-05
8 0.100 0.101 0.086 0.082 0.105 0.081 0.054 0.053
9 0.064 0.065 0.051 0.050 0.072 0.053 0.040 0.039
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Table B.11: MSE obtained with the models created, for each trajectory, for the first 60%
instances, for CACTCS.

Trajectory LR SVR - Linear SVR - Poly SVR - RBF SVR - Sigmoid RF - 2 RF - 32 RF - 100
1 0.0001 0.003 0.003 0.004 0.005 2e-05 2e-05 2e-05
2 0.100 0.100 0.093 0.088 0.108 0.094 0.068 0.066
3 0.154 0.159 0.092 0.088 0.176 0.103 0.067 0.064
4 0.449 0.114 0.074 0.077 0.125 0.085 0.055 0.054
5 0.094 0.096 0.070 0.068 0.105 0.071 0.047 0.046
6 0.087 0.087 0.080 0.073 0.093 0.084 0.054 0.054
7 0.0002 0.002 0.002 0.002 0.002 5e-05 7e-05 5e-05
8 0.097 0.100 0.082 0.078 0.103 0.076 0.051 0.050
9 0.064 0.064 0.050 0.048 0.070 0.058 0.038 0.038

Table B.12: MSE obtained with the models created, for each trajectory, for the first 70%
instances, for CACTCS.

Trajectory LR SVR - Linear SVR - Poly SVR - RBF SVR - Sigmoid RF - 2 RF - 32 RF - 100
1 0.0001 0.004 0.003 0.004 0.005 0.0005 2e-05 3e-05
2 0.103 0.103 0.095 0.091 0.111 0.096 0.070 0.068
3 0.155 0.163 0.097 0.092 0.179 0.106 0.069 0.065
4 0.547 0.110 0.070 0.072 0.120 0.071 0.051 0.050
5 0.091 0.093 0.064 0.062 0.102 0.065 0.043 0.043
6 0.089 0.090 0.082 0.078 0.096 0.088 0.057 0.056
7 0.0002 0.003 0.002 0.002 0.002 4e-05 4e-05 4e-05
8 0.098 0.100 0.081 0.078 0.103 0.081 0.051 0.051
9 0.060 0.064 0.051 0.048 0.069 0.063 0.039 0.035
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Appendix C

Gantt Charts

In the next two pages the Gantt Charts, which are referred to Chapter 7, will be shown.
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Chapter 7
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Figure C.1: Proposed Gantt Chart for the Second Semester.
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Figure C.2: Gantt Chart for the Second Semester.
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