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Resumo

O objetivo da distribuição de chaves quânticas (em inglês QKD, ”quantum key dis-

tribution”) é transferir de forma segura chaves de encriptação entre dois utilizadores

através de um canal de comunicação não protegido, com recurso às propriedades da

mecânica quântica. As provas de segurança de protocolos padrão de sistemas de dis-

tribuição de chaves quânticas, requerem uma caracterização completa das operações

de medida e dos estados quânticos preparados. Estas suposições são, no entanto,

impraticáveis numa aplicação real devido às imperfeições inerentes aos instrumen-

tos f́ısicos que são utilizados. A solução que surge naturalmente é a aplicação de

um sistema de distribuição de chaves quânticas cuja segurança seja assegurada in-

dependentemente dos intrumentos experimentais utilizados. No entanto, aplicações

práticas deste tipo de protocolos continuam a ser um grande desafio atualmente. A

alternativa que surgiu foi uma abordagem semi- independente dos instrumentos uti-

lizados. Nesta situação, os instrumentos utilizados não são caracterizados. A única

caracterização a fazer é da informação do produto interno dos estados quânticos que

codificam a informação enviada por Alice.

O meu projecto de mestrado tem como objectivo a implementação de um protocolo

de distribuição de chaves quânticas semi-independente dos dispositivos usados. A

dissertação incicia-se com uma breve exposição do estado da arte e introdução ao

tema.

Segue-se um caṕıtulo com a análise de como os estados quânticos serão preparados.

A exatidão desta preparação tem um papel fulcral no funcionamento do protocolo.

Para assegurar a sua precisão, é necessário fazer uma caracterização dos contro-

ladores de polarização utilizados para codificar os estados. Com base nesta carac-

terização, calcularam-se então os parâmetros necessários para preparar os estados

quânticos. Neste segundo caṕıtulo é também abordada a construção dos sistemas

necessários para controlar a polarização.

Na terceira parte da dissertação a implementação experimental do protocolo semi-
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independente de dispositivos é analisada com mais detalhe. Os componentes uti-

lizados são enunciados e a sua escolha é discutida e fundamentada. Os métodos

utilizados para controlar toda experiência são também abordados. Isto inclui uma

análise das técnicas de caracterização dos pulsos coerentes. Por fim é discutida a

implementação experimental do protocolo.

Keywords— Distributição de Chaves Quânticas, Semi-Device Independent, Criptografia,

Comunicações Quânticas
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Abstract

The goal of quantum key distribution is to safely transfer secret data between two legiti-

mate users through an unreliable network. This is done so by exploiting the properties of

quantum mechanics. The security proofs of standard quantum key distribution protocols

rely heavily on the characterization of the measurements and prepared quantum states.

These assumptions, however, prove to be difficult to meet in real-life implementations.

The obvious solution would come as device-independent (DI) security proofs. However,

this type of implementation remains a challenge to this day. The alternative to DI found

was a semi-device independent approach. Here the devices are non-characterized, and the

only assumption made is the inner product information of the sent coherent states. As

it is currently one of the most well-established quantum-information technologies, I shall

provide a brief introduction and state-of-the-art of quantum key distribution.

In this dissertation, I will expound on the implementation of a semi-device independent

quantum key distribution protocol. Firstly, state preparation is discussed. The accuracy

of the state preparation as well as the measurement operation will have a great impact on

the performance of the protocol based on polarization states encoded on weak coherent

light pulses. To ensure these are correctly implemented, a full characterization of the

polarization controllers used to encode the states is made. After that, the estimation

of the parameters needed to prepare the desired polarization states and their respective

optimization is explained. In this chapter, the building of the systems needed to control

the polarization is also discussed.

In the second part of the dissertation, the experimental implementation of the semi-device

independent protocol is examined in more depth. Here, the components used shall be

specified and their choice is explained. The full control of the experimental set-up will also

be discussed. This includes an analysis of the alignment procedures and a characterization

of the weak coherent pulses. Lastly, we shall discuss the experimental realization of the

protocol and the discussion of the obtained results.

Keywords— Quantum Key Distribution, Semi-Device Independent, Cryptography, Quan-

tum Communication
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2.1 The Poincaré sphere. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

2.2 Degenerate polarization states shown in the Poincaré sphere. . . . . . . . . 19
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Introduction

Secure communication has been a concern of humanity for thousands of years, with the

first use of cryptography being attributed to the Egyptians. Cryptography remained

rudimental for a great number of years until World War II, where major advances were

made, and the rotor machine Enigma opened the door for more complex and sophisticated

means of encoding and decoding.

With the development of integrated circuits in the 1960s, came the Third Generation of

computers. Around this time the usage of computers increased greatly and so did the

concern of the private sector with security, resulting in an increased demand for security

services. This also gave a new dimension to cryptography, distancing it from the military

and governmental affairs and bringing it closer to the common public.

Cryptography is now defined as a set of techniques that ensure confidentiality, data in-

tegrity, authentication, and non-repudiation of information [1].

1.1 Cryptography

Confidentiality is ensured with the use of a key. This key is combined with the information

one wishes to keep secret, resulting in a cryptogram. This process is called encryption.

For a cryptosystem to be considered secure, it must only be solved with the use of its

corresponding key [2].

In classical cryptography, there are two types of cryptosystems. Symmetrical systems in

which Alice and Bob share the same key, and asymmetrical systems, where Alice and Bob

use different keys.

Public key

In asymmetrical systems, also known as public-key systems, Bob creates a private key that

only he has access to. From this key, Bob creates a public key. The public key is then

1



1. Introduction

used by Alice to encrypt her message, which in turn can only be decrypted using Bob’s

private key.

The first practical application of asymmetric cryptosystem was in 1978 by Rivest, Shamir,

and Adleman, in a protocol named after them - RSA. It is based on the mathematical

difficulty of factoring integers [3]. This protocol is still largely used to this day. The

main idea of public-key systems is then to use one-way functions i.e. functions z = f(x,y)

is easy to compute for a given x,y but the inverse function f−1(z) is arduous to obtain

with the computational resources at disposal. ‘Arduous’ means the solving time increases

exponentially with the amount of information. So the security of these systems is not based

in mathematical principles but rather computational limitations, and time constraints.

However, further developments in quantum computing, will allow for the implementation

of Shor’s Algorithm, which allows the factorization of integers and the finding of discrete

logarithms [4]. It’s implementation will reduce greatly the time it would take to solve

these factorization problems, allowing for a violation of these public keys.

Private key

In symmetrical systems, also referred to as private-key systems, the same key is used to

encode and decode the messages. Therefore, both Alice and Bob must have the said key

in their possession [1].

The only truly theoretically unbreakable method of encryption, the One-Time Pad (OTP),

is an example of application of a symmetrical system. OTP requires the use of an encryp-

tion key that is at least as long as the message one wants to send. Each element of the

message will then be combined with an element of the key, thus creating the cipher. To

ensure the OTP’s security the following conditions must be met:

• The OTP is comprised of truly random elements;

• It should be as long as the message;

• It should never be re-used;

• Its secrecy shall be preserved even after use.

These conditions raise a few problems. The first and most evident one is achieving true

randomness. A second issue may arise with the treatment of the key after its first use.

The OTP’s should be discarded properly in order to assure they remain secret.

From this type of cryptosystems also arises the “key distribution problem”. Since both

Alice and Bob need to have the same key, it must be securely transferred to both parties. If

someone intercepts even part of it during transmission, they can decipher a future message

2



1. Introduction

encrypted with that one OTP. Unfortunately, the security of this transmission cannot be

completely assured by classical methods [5].

The shortcomings of classical cryptography are evident. Further advances in compu-

tational sciences or mathematics may render asymmetric cryptosystems useless. The

question is whether there is a way to solve the key distribution problem in symmetric

cryptosystems? The answer is yes, using quantum key distribution.

1.2 Quantum Cryptography

The aim of QKD is to distribute a secret key using the properties of quantum mechanics.

Unlike classical transmissions, in QKD, the information cannot be copied and stored as

a consequence of the non-cloning theorem [6]. This theorem also applies to a potential

eavesdropper.

Moreover, when polarization is encoded in non-orthogonal quantum states, any attempt to

obtain information on the communication, will result in a high probability of a disturbance

of the transmission [7]. This allows the two legitimate participants in the communication,

Alice, and Bob, to detect an unauthorized third party who has had access to the informa-

tion.

A quantum channel will not be used to distribute a message but rather the encryption

key, which is no more than a random sequence of bits containing no crucial information.

They will then have to communicate through an authenticated classical channel for the

safety analysis. If an intrusion is detected Alice and Bob can simply discard the unsafe

key and try again [2].

The Qubit

In classical information, the elementary unit is the bit, which can take one of the values

0 or 1. They can be used to represent classical properties for example, 0 if a switch in a

circuit is open and 1 if it is closed. Bits can be stored, copied, and read as many times

as one desires without the loss of information. However, some physical states cannot be

described by a classical bit. Quantum systems do not follow the rules set by deterministic

classical mechanics, thus not allowing them to be described by bits. A solution to that is

the qubit.

Unlike his classical counterpart, the qubit is a state in a two-dimensional Hilbert space.

The qubit can take any value of |ψ〉 = α|0〉+ β|1〉 for α and β complex. Where | α |2 + |
β |2= 1. With a measurement operation, one can project the qubit into one of the bases

|0〉 or |1〉 with a probability of either | α2 | or | β2 | respectively [8].

3



1. Introduction

Figure 1.1: Graphical representation of the Bloch sphere.

Qubits can be represented by a vector in 3D space. A common representation is when

they fall into a sphere of radius 1 known as the Bloch sphere. Its representation can be

seen in Fig.1.1 In the poles we will have the states 0 and 1. Antipodal points in the sphere

are orthogonal and form a base. Points in the surface of the sphere represent pure states,

any point in the interior will represent a mixed state [9].

1.2.1 Fiber Based QKD

The act of measurement is inherently different in quantum mechanics than it is in classical

physics. The main security advantage of QKD relies precisely in the limitations imposed

by the act of quantum measurement.

A QKD protocol can be looked at in two steps, the quantum communication and a classical

post-processing. In the first phase, Alice encodes classical information in quantum states,

creating the optical signal. The states are sent to Bob through a quantum channel. We

assume this quantum channel is under Eve’s control. Bob receives and measures the states

sent by Alice, as a result, he acquires a sequence of classical bits enclosing information.

During classical post-processing, both legitimate parties perform error corrections and

privacy amplifications (reducing the amount of information acquired by Eve) and a key

sifting. In the key sifting, Alice and Bob communicate through a classic channel to filter

out unusable preparation/measurement pairings. After performing both stages, Alice and

Bob will have a secret key.

1.2.1.1 BB84

The first QKD protocol was proposed by Bennet and Brassard in 1984, hence the given

name BB84 [2].

This protocol has a basic principle using photons and polarization to encode the infor-

4



1. Introduction

Quantum Communication
Alice Bits 0 0 1 1 1 0 1 1 0 1 0
Encoding Basis D R D R R R D R D D R
Photon Polarization ↗ ↔ ↖ l l ↔ ↖ l ↗ ↖ ↔
Bob Measuring Basis R D D R D R R D D D R
Bob’s Bits 1 0 1 1 0 0 0 1 0 0 0

Discussion
Bob’s Base Reveal R D D R D R R D D D R
Alice’s Basis Confirmation D R R D D R
Shared Bits 1 1 0 0 1 0

Table 1.1: Secret key distribution in the BB84 implementation. Table adapted
from the original paper [2]. D and R stand for diagonal and rectilinear basis re-
spectively.

mation. Alice chooses a random string of bits and an equally . long sequence defining

the corresponding polarization basis to be used, which can be either rectilinear, R, or

diagonal, D. Alice then encodes the previous bit sequence in a train of photons using the

bit’s corresponding base.

Bob chooses randomly the basis (rectilinear or diagonal) in which he measures the received

photon. He only gets relevant information when he guesses the basis correctly (about 50%

of the time). Note that when measuring on a basis different from the one the photon

was encoded in, Bob gets a random answer and induces a loss of the previously encoded

information.

The next steps of the protocol take place on an authenticated public channel. This is a

classic channel susceptible to eavesdropping but no message traveling through it can be

altered.

Firstly, Alice and Bob must check which photons Bob received. Afterward, they determine

the photons that were measured on the correct basis and discard the others. Alice and Bob

can then check for eavesdropping by comparing publicly a small sequence of the remaining

bits. These then must be discarded since their secrecy was renounced. If the bits appear

undisturbed, free of significant eavesdropping, the sequence of remaining bits can then be

used as a secret key.

Further analysis of the protocol can be found in [2].

One limitation of this protocol is that it assumes perfect single-photon sources i.e. sources

that emit one photon at a time. These sources are incredibly hard to build and not

widely available. A simpler alternative is to use attenuated coherent sources. However,

attenuated coherent pulses are comprised of a vacuum and a multi-photon component. It

5



1. Introduction

is this multi-photon component that creates complications. An hypothetical eavesdropper

may split the multi-photon signals, keeping one to themselves and sending the remaining

to Bob [10]. These multi-photon sources then lead to a new type of eavesdropping attacks,

photon splitting attacks.

Decoy-States

To correct for this, decoy-state protocols are used [8]. In these protocols, Alice prepares

signal states that encode the information to create the key as well as decoy sates that are

used to detect eavesdropping attacks. An in-depth analysis can be found in [11].

A decoy-state protocol was first implemented in 2006, achieving distances of 15km and a

key rate of 165bits per second [12].

The current record distance using decoy-state protocols was set in 2018 [13]. The protocol

was based on a simplification of the BB84 protocol, using two states in the Z basis (to

generate the raw key) and one decoy-state in X the basis (to estimate the eavesdropper

information) [14]. A. Boaron et. al. achieved a key distribution over 421km with a SKR

of 0.25 bits per second, and 6.5 bits per second over 404.9km. Details of the protocol can

be viewed in [14][15].

1.2.1.2 Device Independent-QKD

Although the security of QKD is based on the principles of quantum mechanics, any

inconsistency in the physical implementation due to technological shortcomings can cause a

breach in security. These practical imperfections were first exploited in reference [16] where

the authors demonstrated a security breach without it being detected by the legitimate

parties. More specifically, they use the vulnerability of single-photon detectors being

blinded under strong illumination. By using this method, the gated detectors are converted

into classical linear detectors allowing them to be fully remote-controlled by an external

party[17].

All the features of the real devices that are not modelled in the security proof will therefore

compromise the security of the protocols. When these inconsistencies in the physical

implementation are exploited for attacks performed by Eve, they have the name of side-

channel attacks. This has led to a cycle of finding security breaches in the implementations

and then finding more generalized security proofs to close them [18]. A way to escape this

never-ending cycle is using Device-Independent protocols (DI).

A protocol is deemed device-independent if its security is conserved heedless of the quality

of the devices used in its implementation, and no assumptions about them are needed.

The security is derived only from the classical input-output relationship observed by the

legitimate parties, the validity of quantum mechanics, as well as the safety and isolation of
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1. Introduction

Alice and Bob’s physical location. Without this last inference, any type of cryptography

will completely loose its meaning [19].

As a fundamental aspect of DI-QKD relies on Bell’s theorem. Therefore, to understand

the basis of DI-QKD, we must first take a look at the paper where Einstein, Podolsky,

and Rosen presented the famous EPR paradox [20]. In this paper, they concluded that

quantum mechanics is not a complete theory and its intrinsic “randomness” is justified

by the existence of “hidden variables”. In 1965 Bell disproved this conclusion and demon-

strated it to be incompatible with the statistical predictions of quantum mechanics [21].

A few years later, Clauser, Horne, Shimony, and Holt presented a generalization of Bell’s

theorem and proved the Bell test to be decisive in the experimental assessment of the

theories of “hidden variables”. In this paper they also derived one of the most studied of

Bell’s inequalities, the CHSH inequality [22].

S ≡ Exy + Ex′y + Exy′ − Ex′y′ (1.1)

Where as predicted by the theory of hidden variables:

| S |≤ 2 (1.2)

In a Bell experiment, we have two measurement devices A and B, how they work is

irrelevant and they can be deemed black boxes. Each device has an input (measurement

settings) and an output (measurement results). For every run A and B randomly choose

an input (x or y) and measure the corresponding outcome (a or b). After the desired

number of trials, A and B compute together the statistics of what they observed [23].

As stated previously, when performing a Bell experiment, quantum mechanics predicts a

violation of inequality 1.2.

In 1991 Ekert found an application for the generalized Bell’s theorem in QKD [24]. The

scheme he proposed exploits the CHSH inequality to test for eavesdropping. A single

source emits a pair of particles with spin | 12 | and sends one to each legitimate user, Alice,

and Bob. Once they receive the particles, Alice and Bob measure their spin component

concerning one of two avalilable basis (x,x for Alice and y,y for Bob).

After the quantum communication is over, Alice and bob announce the bases used. Any

round with a failed measurement is discarded. When both measured in bases with a

different orientation, they reveal the measurement outcomes to estimate S. The correlation

for when Alice and Bob measure with bases with a different orientation can then be

calculated. In this case, due to the mathematical formalism of quantum mechanics for S
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1. Introduction

we will for a choice of basis which maximizes | S |,

| S |= 2
√

2 (1.3)

If S has not been disturbed, then the outcome should be the one of equation 1.3. However,

if an eavesdropper has had access to the system, one should measure:

−
√

2 ≤ S ≤
√

2

Thus, not violating the CHSH bound, revealing this way the presence of the eavesdropper.

Based in Ekert’s intuition, Aćın et. al. [25] proposed a device independent security

scenario. In their approach, Alice has three possible measurement basis {A0;A1;A2} and

Bob two {B0;B1} and two possible measuring outcomes ai, bj ∈ {+1, − 1}. The key is

obtained from the measurement settings {A0,B1}. As a result, the QBER (quantum bit

error rate) can be calculated as the probability of the outcomes a0 and b1 being different:

Q = prob(a0 6= b1)

And the secret key rate is given by

r ≥ 1− h(Q)− χ(B1 : E)

Where χ(B1 : E) is known as the Holevo quantity between Eve and Bob. The Holevo

bound is a measure of the upper bound of the amount of information that can be known

about a quantum state. In this case, it relates to what Eve can know about Bob. To find

Eve’s optimal attack χ must be optimized to the maximum. It can be proved [25] that

the largest value for the Holevo quantity between Eve and Bob in a CHSH experiment

yielding an S value, is given by:

χ(B1 : E) ≤

1 +

√(
S
2

)2 − 1

2

 (1.4)

The key rate can then be plotted for values of both Q and S. This ensures security for a

sufficiently large violation of the CHSH bound.

To successfully implement a DI protocol, one must close simultaneously the locality loop-

hole and the detection loophole. These loopholes are nothing more than flaws in the exper-

imental implementation that compromise the validity of a Bell test. The first loophole, the

locality loophole, must be closed due to concerns regarding communication between Alice

and Bob during the experiment. If, for example, Bob, can know the measurement choices

of Alice in real-time, then the violation of Bell’s inequality becomes inconsequential. This

8



1. Introduction

Figure 1.2: Device independent protocol where x and y are the randomly chosen
measurement settings and a and b are the measured outputs.

loophole can be closed by performing the measurements with space separation.

The detection loophole however, proves to be more troublesome to be closed. It refers to

the losses in the quantum channel resulting in not all photons being detected. This effect

can be neglected in Bell tests with the fair sampling assumption. However, it is naive

to assume that an eavesdropper has no malicious intent. As a result, the closing of this

loophole is mandatory for any DI implementation [26]. For that, a total efficiency of over

82.8% must be ensured to dismiss possible attacks based on the detection loophole [27].

This transmission problem may be bypassed by performing QND (quantum-nondemolition

measurements) [28], using quantum repeaters, or using a heralded Qubit amplifier [29].

Nonetheless, DI protocols, have not yet been successfully implemented due to the hardship

of single-photon detection and generation of entangled states. Below a certain detection

threshold, no key can be extracted. Satisfactory key extraction rates have been obtained

but in turn, their security has been compromised [30][31].

1.2.1.3 Measurement Device Independent-QKD

As DI protocols prove to be impractical, since they require near-unity detection efficiency

and QND (quantum non-demolition) measurements, another solution to remove the con-

cern with detector side-channel attacks was presented in 2012. Lo et. al. [32] proposed a

Measurement-Device-Independent (MDI) protocol. Unlike “full” DI-QKD, this protocol

requires the assumption that Alice and Bob, must have almost perfect control over the

preparation of their quantum states. This removes any concern one may have with the

measurement apparatus.

In this approach, both Alice and Bob prepare weak coherent pulses in one of the four

polarization states used in BB84 and send them to an untrusted third party, Charlie. This

middle party, Charlie, can be the eavesdropper usually call Eve. It is this middle party

that performs the Bell state measurements and must announce the outcomes to Alice and
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Bob. Note the states sent by Alice and Bob are statistically independent. Fig.1.3 presents

a schematic representation of a MDI protocol.

Its properties make MDI-QKD ideal for communication networks with star-type topology,

with all users connected to the middle node and having the measurement device accessible

to all on-demand. As a result, MDI networks are more cost-effective and simpler to

implement than their ”Prepare and Measure” counterparts, where all users are required

to have both a sender and receiver module. With their added appeal, MDI-QKD boosts

the commercial viability of quantum communications.

Figure 1.3: Simplified scheme of a SDI protocol. In light blue users were added to
demonstrate a star-type topology.

1.2.1.4 Twin Field-QKD

A considerable focus of research in QKD is increasing the transmission distance as well

as key rates. However, as it was proven by Pirandola et. al. in [33] it is impossible to

overcome a certain limit without the use of quantum repeaters. The maximal acquirable

secret-key is bounded by the secret-key capacity (SKC) of a quantum channel. This bound

is known as the PLOB (Pirandola-Laurenza-Ottaviani-Banchi) bound:

RPLOB = − log2(1− η)

η being the transmissivity of the communication channel.

The SKC of a quantum channel quantifies the maximum amount of information that can

be transmitted in QKD.
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Up until the proposal of Twin-Field QKD [34], no existing QKD scheme had surpassed

this SKC bound. In [34] it was predicted that TF-QKD subjected to realistic parameters

would overcome the ideal repeaterless bound in optical fiber at a distance of 340Km. This

distance advantage comes from the fact that the proposed TF protocol scales at η
1
2 with

transmittance instead of η like conventional QKD protocols.

MDI-QKD TF-QKD
Alice and Bob send two

photons to Charlie
Alice and Bob send two
optical fields to Charlie

Two-photon interference Single-photon interference
Coincidence detection Single-photon detection

Table 1.2: Comparison table between Measurement Device Independent and Twin
Field QKD.

Similarly to MDI-QKD, in TF-QKD, Alice and Bob are both transmitters and a middle

node, Charlie is responsible for the measurements. In Table 1.2 a comparison between TF

and MDI can be seen. Alice and Bob each have one light source and one interferometer

arm. Charlie then makes the two pulses interfere on a beam splitter to later be detected

by a single-photon detector.

Recently, experimental implementations of variations of the original TF protocol have been

carried out, and in [35], the fundamental rate-distance limit of QKD was finally overcome

at a distance of 300km. The record distances attained with TF protocols were 509km in

fiber [36].

Figure 1.4: Schematic representation of a Twin-Field QKD protocol.

1.2.2 Satellite QKD

So far only optical fiber quantum channels have been mentioned in this review. However,

QKD protocols are also suited to be applied in free space. Satellites will play a major role in

quantum communications as they do currently with classical information. Satellites, while
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creators and distributors of a secret key, will allow communications between separated

networks on the ground [37].

A single-photon source on a satellite was first established in 2003 [37]. The experiment used

the Matera Laser Ranging Observatory, belonging to the Italian Space Agency, to both

detect and transmit photons. The ground station, the Matera Laser Ranging Observatory,

emitted weak laser pulses towards the satellite. The satellite equipped with retroreflectors

reflected a fraction of the pulse (less than one photon per pulse) towards the receiver at

the ground.

This technique matured and, quantum communication between a satellite and ground was

established, as they demonstrated the preservation of single-photon polarization over a

greater length when compared to ground experiments [38]. This procedure presents itself

as a possible candidate for space-to-earth QKD.

Asia has been leading the investment in satellite quantum communications. In 2016 China

launched the Micius Satellite. The satellite featured a Quantum Optics laboratory that

allows it to generate coherent entangled states and measure received qubits [39].

A quantum teleportation uplink was established between a ground station in Tibet and the

Micius satellite. This setup achieved a fidelity of 0.80 ± 0.01 [40]. QKD using a decoy-

state version of the BB84 protocol was performed obtaining a key rate of over 10kbps

with channel loss of 22dB [41]. The satellite also demonstrated entanglement-based QKD

between two ground stations separated by 1200km with a key rate of 0,5 bps [42].

The experiments mentioned have taken place during the night-time, but they can also

be performed during the day, as long as one strongly rejects background radiation, and

reduce the temporal integration intervals of the incident qubits [43]. Another important

aspect to consider in satellite-to-ground and ground-to-satellite quantum communications

is the effect of atmospheric turbulence. When an uplink is established the turbulence is

at the beginning of the path. This results in beam diameter broadening and scintillation

that will affect the link transmissivity. On the other hand, when we have a downlink,

photons will only suffer atmospheric effects by the end of their path. This will result in

the diffraction of the photons and significative less scintillation.

1.3 Semi-device Independent-QKD

Before looking at our Semi Device Independent (SDI) protocol let us quickly review the

main characteristics of the types of QKD previously mentioned. In a full device-dependent

protocol, the users must characterize completely the prepared states, the measurement ap-

paratus, and the security proofs only hold if the states sent are qubits. Trying to stray away

from these limitations, the device-independent approach was proposed. In this method,
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the security of the implementations is guaranteed based on an analysis of the input/output

relationship while also requiring a Bell test violation. Since the implementation of pure

DI-QKD proved to be difficult, a MDI approach was proposed. the MDI approach was

proposed. Here we have a relaxation of the assumptions on the measurement apparatus

however still needing well-characterized state preparation.

1.3.1 The security

Figure 1.5: Schematic representation of the semi-device independent protocol.

The approach presented in this thesis (Fig.1.5) can be deemed SDI since its security

analysis does not require full knowledge of either the operation of the network or of the

measurements. For encoding the quantum state prepared by Alice |ψz〉, this method only

requires the characterization of of a matrix known as Gram matrix, G, that can be derived

from inner products of the quantum states [44].

G =

n∑
z,z′=1

Gz,z
′ ⊗ |ez〉〈ez′ |

for
n∑

z,z′=1

Gz,z
′

= 〈ψz|S†i · Sj |ψz〉

∑n
z,z′=1G

z,z′ is the inner product of vectors 〈ψz|S†i and |ψz〉Sj . Sj and Si are operators of

the set S = {S1, ..., Sn}. |ez〉nz are representations of a standard orthonormal basis in IRn.

This feature presents an added benefit when compared to previous SDI methods [45] [46],

for the dimension of the system of encoding (often difficult to fix) is no longer necessary to

bound the security of the protocol. The inner-product knowledge is enough to characterize

the quantum-set as it tells how non-orthogonal the encoded states are. This approach can

be used since while working in a high-dimensional Hilbert space, the transmission channel

can be seen as an isometric evolution. This means that, even though the dimension and
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other properties of the sent state |ψz〉 may change in transmission, the inner product

remains the same:

〈ψz|ψ′z〉 = 〈φz|φ′z〉 = λzz′

Note that the entropy of a variable, in information theory, is a measurement of the amount

of information one can extract from it [47]. It is then fundamental that the amount of

information Eve can extract from her measurements is less than what Bob can extract.

Therefore, the security is bound by:

Hmin(A | E)–H(A | B) ≥ 0

where H(A | E) is the amount information produced from A, for measurement E, and

Hmin(A | E) is given by:

Hmin(A | E) = − log2(pg(e = x))

Where pg is the probability of Eve guessing correctly the state prepared by Alice in a valid

round - we will see what makes a round valid a few paragraphs down.

To bound the security of our key distribution, then, we must get an estimation of pg,

based on the expected statistics. This characterization problem is, however, unmanageable

to solve directly. The solution is then to use semidefinite programming (SDP), more

specifically, a computational toolbox introduced by Wang. et. al. in [48] to get an

approximation of pg.

The security analysis has also bound the amount of losses allowed in the quantum channel.

As seen in Fig.1.6, the lowest transmission of the quantum channel allowed in order to

generate key for π
4 is 55%.

Figure 1.6: Plot of Alice-Eve entropy bound in function of channel losses.

1.3.2 The protocol

B92

Before expounding on the protocol we have implemented, it is worth going back to 1992

to Bennett’s paper [49], where he demonstrated that QKD could be performed with any
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two nonorthogonal quantum states.

In the protocol B92, Alice prepares randomly one of two nonorthogonal states. Let us

consider states |0〉 and |+〉, representing bit 0 and 1 respectively. Note that these states

are non-orthogonal. Bob will choose randomly the basis for his projective measurements,

either X or Z. The possible outcomes can be seen in Table 1.3.

Bob
Alice |+〉 |0〉

X
|+〉 1 | 1

2
|2

|−〉 0 1− | 1
2
|2

Z
|0〉 | 1

2
|2 1

|1〉 1− | 1
2
|2 0

Table 1.3: Representation of the probabilities of the possible outcomes measured
by Bob, given Alice prepared state |+〉or |0〉, and Bob measured in basis X or Z,
assuming no losses.

From Table 1.3, it is easy to see that if Alice prepares |+〉, Bob will never measure the

state |−〉 and the same happens for prepared state |0〉 and measured state |1〉. Knowing

this, if Bob measures the states |1〉 and |−〉 , he can infer that Alice had to prepare the

states |+〉 and |0〉 respectively, thus acquiring bits 1 and 0, in this order. Results where

anything else is measured, or nothing is measured. are considered inconclusive and should

be discarded by both users in the sifting.

Semi-device Independent

The SDI scenario we will implement, can be seen as a generalization of protocol B92. Here

Alice begins by randomly choosing the “basis” in which she will prepare the states among

4 possible alternatives. Each basis corresponds to a different combination of two states 0

- {ψ1, ψ0}; 1 – {ψ2, ψ1}; 1 - {ψ3, ψ2}; 3 – {ψ3, ψ0}. After that, Alice picks one of the

available states from the chosen basis, prepares it, and sends it to Bob. Bob picks one

basis to perform his measurement in Mb|y for y ∈ {0,1,2,3} and b ∈ 1,2. In Table 1.4 we

can see the possible outcomes of this measurement.

After the quantum communication stage, only for when b = 2 in Mb|y, Alice is asked

to reveal her preparation basis. In other instances, the round is discarded. Then Bob

compares his measurement basis y with the available states from Alice’s preparation basis.

If y is equal to one of the possible i, then the round is kept, if the requirement is not met,

the round is scrapped. Let’s assume Bob measured in M2|0 and Alice announces she

prepared her state in basis 0. Then, Bob could infer that, if he detected something, Alice

must have prepared state ψ1. This is how the information of the key will be extracted.

To test this protocol, we shall implement the experimental scheme shown in Fig.1.7. A
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B
A 0 1 2 3

ψ0 ψ1 ψ1 ψ2 ψ2 ψ3 ψ3 ψ0

0
ψ0 1 | δ |2 | δ |2 1
ψ0∗ 0 1-| δ |2 1-| δ |2 0

1
ψ1 | δ |2 1 1 | δ |2
ψ1∗ 1-| δ |2 0 0 1-| δ |2

2
ψ2 | δ |2 1 1 | δ |2
ψ2∗ 1-| δ |2 0 0 1-| δ |2

3
ψ3 | δ |2 1 1 | δ |2
ψ3∗ 1-| δ |2 0 0 1-| δ |2

Table 1.4: Probabilities of Bob detecting an event, given Alice prepared state ψi,
for i ∈ {0; 1; 2; 3}, and Bob measured in basis y, for y ∈ {0; 1; 2; 3}.
Note that M1|y = ψy = |ψy〉〈ψy| and M2|y = ψy∗ = 1 − |ψy〉〈ψy| and | 〈ψy|ψx〉 |2=|
δ |2

Figure 1.7: Simplified schematic of the proposed SDI-QKD protocol.

telecom pulsed laser will be used as the source of weak coherent pulses, where the key will

be encoded. A polarization controller will be used to prepare the states Alice sends to

Bob. Similarly, another polarization controller, with the help of a polarizing beam splitter,

will be used to perform Bob’s measurement. The photons resulting from the measurement

operation will then be detected at a single-photon detector with high-efficiency.
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State Preparation

The prepared states and the measurement bases are a crucial part of the experiment. The

accuracy of the states determined by theory and the agreement between prepared states

and the measurement basis will have a great impact on the performance of the protocol.

As a result, it is required testing and full characterization of the Polarization controllers

used.

All the codes used for the microcontrollers were written with Arduino Software (IDE)

version 1.8.10. All Python programs mentioned were written using Python 3.8.5.

2.1 The Poincaré Sphere

There are many many degrees of freedom to a qubit, but for this work, we opted to use the

polarization states of photons. The polarization of a photon, like in any electromagnetic

wave, is the direction of the wave’s electric field. The photon can be linearly, circularly,

or elliptically polarized, depending on the oscillation of the electric field.

A more convenient way to describe polarized light was given by Sir George Gabriel Stokes.

He proposed a characterization based on four measurable properties that allowed the

portrayal of polarized and unpolarized light. These four parameters are now known as the

Stokes parameters S0, S1,S2,S3.

S0 = E2
0x + E2

0y

S1 = E2
0x − E2

0y

S2 = 2E0xE0y cos(δ)

S3 = 2E0xE0y sin(δ)

S0 represents the total intensity of the light, S1 S2, and S3 the amount of linear horizontal

and vertical, linear antidiagonal and diagonal, and circular left and right in the light beam,
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respectively. The Stokes parameters can also be written as:

S1 = S0 cos(2θ) cos(2η)

S2 = S0 cos(2θ) sin(2η)

S1 = S0 sin(2θ)

and follow the relationship:

S2
0 ≥ S2

1 + S2
2 + S2

3

Where E0x and E0y are the amplitudes of the electric field in the x and y directions,

respectively. The angle δ is the initial phase difference between the two components of the

electric field.

This relationship turns to S2
0 = S2

1 + S2
2 + S2

3 when we have completely polarized light.

One can use the angles θ and η to represent the polarization of an optical beam in spherical

coordinates. The polarization state can then be represented as a point in a sphere with

a unitary radius. The origin will correspond to unpolarized light and in the surface is

represented completely polarized light. The spere depicted in 2.11 is named Poincaré

sphere.

Figure 2.1: The Poincaré sphere.

As a result of these properties, any polarization state of monochromatic light can be

represented as a single point on the Poincaré sphere. The degenerate states shown in 2.2

are Linear: Horizontal |H〉, Vertical |V 〉, Diagonal |D〉, Antidiagonal |A〉, and circular:

Left |L〉, Right |R〉. The linear polarized states lie among the equator and the circularly

polarized can be found in the two poles. All other points represent states with elliptical

polarization.
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Figure 2.2: Degenerate polarization states shown in the Poincaré sphere.

2.2 Controlling the Polarization

To prepare the 4 polarization states needed for Alice’s encoding and Bob’s basis selection,

we used two General Photonics’ PolaRITETM III polarization controllers. These polariza-

tion controllers were chosen due to their low insertion loss (0.05 dB without connectors

and 0.3 with connectors).

2.2.1 Operation

The polarization controller is comprised of 4 piezoelectric fiber squeezers. The squeezers,

driven by voltage, deform the fiber resulting in a linear birefringence that will alter the

polarization of passing light.

Since the squeezers have different orientation, pressing each one will result in a different

shift in polarization. In principle, an increase and decrease of voltage in entry channels

1 and 3, results in a clockwise and counterclockwise rotation around |A〉 respectively. A

similar rotation, orthogonal to the first one is seen around |H〉 when tension is applied to

entry channels 2 and 4. With only two orthogonal channels it is then possible to achieve

any desired polarization. These shifts in polarization can be visualized as rotations in the

Poincaré sphere 2.2.

The polarization controller is then mounted on piezoelectric driver boards (MPD-001).

The board is controlled by a digital input signal. The digital inputs accept TTL levels for

the read/write, reset, chip select, 2 channel, and 12 data pins. We used a microcontroller

(Teensy 3.6) to provide this digital signal. The digital input line operates sequentially,

the 12-bit voltage is written to one channel at a time. The timing sequence should go as

follows: the TTL levels should be set for the read/write followed by the channel pins and

then the data lines, it finishes by pulling the chip select pin low for 50ns.
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(a) Back view of the developed
printed circuit boards

(b) Front view of the developed
printed circuit boards

(c) The MPD-001 driver board with the PCB attached.
The Teensy3.6 can be seen mounted on the PCB.

Figure 2.3: Electronic interface used to control the polarization comprised of a
MPD-001 driver board, the developed PCB and a microcontroller (Teensy 3.6).

To establish the communication between the microcontroller, the clock signal (responsible

for the synchronization of the experiment), and the polarization controller, a printed circuit

board (PCB) had to be created. The PCB was designed using using Circuit Maker from

Altium. The PCB was made to accommodate two 22 positions male pin connector for the

Teensy, 1 side-mounted 20-positions male connector for the polarization controller, and

an 11mm SMA connector for the clock connection. The schematics and PCB layout can

be found in Appendix A. Pictures of the PCB and driver board can be found in Fig.2.3.
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Figure 2.4: Setup used for the characterization of the polarization controllers.
DFB laser - distributed feedback laser; PC - manual polarization controller PC-
A/PC-B - piezoelectric polarization controllers; PBS - polarizing beam splitter; PD
- photodiode.

2.2.2 Characterization

Setup

To characterize the polarization controllers the setup shown in Fig.2.4 was used. For the

optical signal source we used a distributed feedback laser at 1550nm. The light then passes

through a manual polarization controller before entering the piezoelectric polarization

controllers. Then two variations of the setup were used. In a) a polarimeter was used

to measure the angles θ and η of the polarization states. In setup b) a polarizing beam

splitter (PBS) was placed after the polarization controller followed by a photodiode in

order to measure the intesity of the ligth coming out of one the PBS’ arm. The manual

polarization controller allows us to align the polarization of the incoming photons with

both the desired states in the Poincaré sphere seen in the polarimeter, and the transmission

axis of the PBS.

Angle with Applied Voltage

Since the piezoelectic fiber squeezers are not perfectly aligned, the rotation they apply

to polarization state does not correspond to what was expected in the specifications.

Consequently, a characterization of the angle as a function of the applied voltage was

done. For that, the input polarization was aligned with one of the rotation axes and

then increments of 10 were added to the DAC values of an orthogonal channel. Note the

voltage values written in the microcontroller are already set to match the range of the

digital input. This was repeated for all channels of both polarization controllers.

With the aid of a polarimeter (Thorlabs - Profile PAT 9000 Polarimeter & Polarizer) the

polar angle and the azimuthal angle (θ,η) of each polarization were saved (refer to Fig.2.1).
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The readings of the polarimeter were written into a file with the help of a Python program.

The results were plotted and processed using the computing environment, MATLAB R©.

To obtain the function that correlates the displacement angle to the applied voltage, the

measured (θ,η) pairs were converted into vectors with origin in the center and end on the

surface of the Poincaré sphere.

Another important aspect to consider is the fluctuation of the polarization state measure-

ment. This results in slight variations of the angles measured by the polarimeter. The

polarimeter will then output an average of these different angles for each polarization

state. Consequently, the pairs of angles measured will not create a perfect circumference

in turn of the rotation angle. It will look more like a zig-zag along the surface of the

sphere. Therefore, one cannot measure the distance between two consecutive vectors. The

angle given will be larger than the actual rotation angle. The solution is then to project

these vectors to the same plane and only then measure the angle on the projected plane.

Firstly, we should find the rotation angle needed to project the circumference formed by

the vectors into z=0, the equator of the sphere. This is done by iterating over all the

possible values of θ and calculating for which ones the elevation is minimal.

Rx(θ) =

1 0 0

0 cos(θ) −sin(θ)

0 sin(θ) cos(θ)

 Ry(θ) =

 cos(θ) 0 sin(θ)

0 1 0

−sin(θ) 0 cos(θ)



Rz(θ) =

cos(θ) −sin(θ) 0

sin(θ) cos(θ) 0

0 0 1)



After finding the optimal rotation angles, it is now time to apply the rotation matrices

Rx, Ry, and Rz to each of the vectors. Once the set of vectors is rotated, we calculate the

projection of each of them onto the equator of the sphere. In figure 2.5 can be seen the

polarization rotation before and after corrections.

Now we are only left to find the relationship between the applied voltage and the rotation

angle. The vector for zero applied voltage was used as the reference vector. The angle

between all other vectors and this reference vector was then calculated. The outcome

relation between angle and applied voltage was used to perform the curve fitting to create

the characterization function of the channels.

Now we are only left to find the relationship between the applied voltage and the rotation
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(a) PC-A: Channel 0 (b) PC-A: Channel 1

(c) PC-B: Channel 0 (d) PC-B: Channel 1

Figure 2.5: The states before and after the correction are represented in black and
red respectively.

angle.

The vector for zero applied voltage was used as the reference vector. The angle between

all other vectors and this reference vector was then calculated. The outcome relation

between angle and applied voltage was used to perform the curve fitting to create the

characterization function of the channels. An example of curve fitting can be seen in

Fig.2.6.

Speed with Applied Voltage

The fiber squeezers are a mechanical component of the polarization controller and thus

do not have an instantaneous effect. As a result, the polarization will spend time in

an intermediate state between two desired polarization states. All the photons passing

through the polarization controller during this rise and fall time cannot be used in the

experiment since they will be prepared with an improper state. As a result, the length of

this process is what is going to determine the maximum speed of the state preparation.

The microcontroller was programmed so that, using one channel, two states were prepared
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Figure 2.6: Plot of angle shift as a function of applied voltage for channel 0 of
PC-A, with the corresponding curve fitting.

alternately, separated by a rotation of π and 2π. The voltage values needed to perform

these rotations were taken from the angleXvoltage function determined in the previous

step. For this characterization setup b) of Fig.3.1 was used. To measure this feature, the

output of the polarization controller was connected to a PBS that in turn was connected

to a photodiode (Thorlabs, DET01CFC - InGaAs FC/PC-Coupled Photodetector). The

electrical signal of the detector was viewed in an oscilloscope (OWON SDS6062). A PBS

divides the incident light into two polarized beams orthogonal to each other making use

of a phenomenon known as polarization splitting. The portion of incident light with the

same polarization as the transmission axis of the polarizer will be transmitted while its

orthogonal counterpart is reflected. The transmitted and reflected light is, as a result,

polarized to a very high degree. This PBS is thus used to study the change of polarization

of the incoming light.

For both polarization controllers, the rise and fall time measured was of 325µs for a

rotation of the polarization states of 3
2π, which corresponds to the maximum displacement

performed in the experiment. The results can be seen in Fig.2.7. This is in accordance

with the specification sheet that state the rise and fall time for a displacement angle of π

(10% to 90% transition), has an upper bound of 400µs. From this measurements we can

infer the maximum frequency for the state preparation is 1.4kHz.

Stability

Next, we proceeded to analyse the overall polarization drift of all the fibered components.

For that, the setup in Fig.2.4 a) was used, the polarization controllers were left preparing

4 random states overnight for a period of 7 hours. The prepared states were recorded by

a polarimeter and then ploted using Matlab. Three different plots were made. In one the
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Figure 2.7: Rise time of a shift in polarization of 3
2
π using only one piezoelectric

fiber squeezer.

polarization states were represented in the Poincaré sphere, Fig.2.8a. In Fig.2.8b η and θ

were ploted in function of time.

The drifts seen at the beginning of the measurement can be attributed to the effect on

the optical fibers of temperature shifts in the laboratory, due to improper lab temperature

management (AC or people going around). Looking only at data collected later in the

night, the polarization is considerably more stable.

2.3 Finding the Four States

For this protocol, four states placed in the same plane with an elevation of 1
4π had to

be prepared. With the help of the angleXvoltage function that we previously calculated,

the voltage values for π , 1
2π, 3

2π for channel 0 and 1
4π for channel 1 of each polarization

controller were obtained.

2.3.1 Test

To test the quality of the voltages obtained, we used the same setup shown in Fig.2.4 b),

composed of a telecom laser, a manual polarization controller, and one of the piezoelectric

polarization controllers (PC-A or PC-B), followed by a PBS and a photodetector (PD).

The signal of the PD is viewed in a digital oscilloscope. The test is performed in one

polarization controller at a time.

To prepare the 4 desired states, we align the polarization controller input polarization

with the rotation axis of channel 0. Then we apply a voltage on channel 1 to “rise” the
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(a) Angles characterizing the four polarization states over time.

(b) Four random polarization states ploted in the Poincaré sphere.

Figure 2.8: Stability of state preparation over a period of seven hours.

polarization to 1
4π. After that, we turn around channel 0 by applying the voltages we

calculated for π , 1
2π, 3

2π, 2π. Table 2.1 shows the voltage values corresponding to each

state in both polarization controllers.

We prepare the four polarization states using the voltage combinations from Table 2.1

at a rate of 100Hz. Using the manual polarization controller, we rotate the incoming

polarization to align one of the prepared states, with the transmission axis of the PBS

output connected to the oscilloscope. Consequently, the state aligned with the PBS will
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PC-A PC-B
State CH0 CH1 CH2 CH3 CH0 CH1 CH2 CH3
0 170 0 0 0 183 0 0 0
1 170 454 0 0 183 485 0 0
2 170 900 0 0 183 850 0 0
3 170 1286 0 0 183 1270 0 0

Table 2.1: DAC voltage values to prepare each of the four sates for both polariza-
tion controllers.

display the highest intensity in the oscilloscope and the other states will display as steps

of lower intensities.

(a) The four polarization states seen
in the oscilloscope.

(b) The four polarization states in the
Poincaré sphere.

Figure 2.9: The four polarization states. If the polarization of state 1 is aligned
with the polarization of the transmission axis of the PBS, then state 1 will have a
full projection onto the axis. States 0 and 2, equidistant from state 1, will have an
equal projection onto the axis, and state3 will have the smallest projection.

The results are shown in Fig.2.10a. As predicted, the same pattern can be seen on both

polarization controllers.

Using the setup of Fig.2.4 a), by connecting the output of the polarization controller

directly to the polarimeter we saw the polarization of the states being prepared in the

Poincaré sphere. The results were ploted using MATLAB R© and they can be seen in

Fig.2.10b. With the data from both Fig.2.10a and Fig.2.10b we conclude the states pre-

pared are appropriate to be used in the experiment.

We took this opportunity to also re-test the maximum speed of the state preparation.

For this we used the setup shown if Fig.2.4 b). After aligning the states, we gradually

increased the frequency of the state preparation until the states seen in an oscilloscope lost

their rectangular shape. When the signal approaches the shape of a sinusoidal function,
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(a) The four polarization states seen
in the oscilloscope, being prepared at
100Hz.

(b) The four polarization states in the
Poincaré sphere.

Figure 2.10: The four polarization states prepared at 100Hz

the desired states can no longer be prepared. This threshold marks the speed limit. Here

we confirmed once again that the maximum allowed speed was around 1.4kHz as seen in

Fig.2.11.

Figure 2.11: The four polarization states being prepared at 1.5kHz.

2.3.2 Optimization

The higher the voltage difference between the two states, the longer the rise and fall time

will be. The method previously mentioned only uses two channels. As a result, greater

voltage amplitudes are needed in order to achieve the same polarization shift than using

the four channels would achieve. To reduce this effect, a different method of preparing
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the 4 states was needed. However, as the pairs of channels are not perfectly aligned, it is

not possible to predict the movement the polarization state would make in the Poincaré

sphere when the voltage was applied on the 4 channels simultaneously.

To overcome this issue we performed an optimization to find the set of voltages needed

in order to prepare a desired polarization state using the four channels. The four states

chosen as the optimal states corresponded to the angle pairs (0,15); (-45◦,15◦); (45◦,15◦);

(90◦,15◦) with (θ,η). Every optimization sequence runs and optimizes for one of the four

states at a time. The outcome of every run of the optimization program is a DAC value that

represents the voltages applied to the piezoelectric squeezers, needed to prepare one of the

chosen polarization states. This process is repeated until the voltages for all preparation

states are obtained, and for both polarization controllers.

The polarimeter outputs are read and processed with the help of a python program. The

python program also sends and receives from the microcontroller (Teensy) the voltages that

should and are being applied to each channel. The optimization function was written with

the computing environment MATLAB R© R2018b and is called by the Python program.

A manual polarization controller was placed before the piezoelectric polarization controller

to align the incoming light polarization to |L〉(0◦,0◦)). The voltage applied in channel

1 is gradually increased until the rotation of 2π is achieved. The polarimeter readout

and corresponding applied voltage are saved into a 30x2 matrix. The readings of the

polarimeter are converted into a vector of the Poincaré sphere. After that, with the help

of the optimization function, the angle between the optimal state, and every vector of the

matrix is calculated.

The voltage with the smallest corresponding angle in then sent to the microcontroller.

The microcontroller, in turn, writes this voltage value to the polarization controller as the

voltage of the current channel. Afterward, the previous process is repeated for the next

piezoelectric squeezer. This loop continues until it converges to a state separated from the

optimal state by an angle smaller than 0.1◦.

The optimization code can be found in Appendix B. The corresponding block diagram

can be seen in Fig.2.12.

One of the polarization controllers, PC-A, converged to the voltage configuration shown

in Table 2.2. However, PC-B did not converge. Since this optimization task lasts for

over 7 hours, drifts in the input polarization are experienced, limiting the accuracy of he

optimized polarization states. They can be a result of varying temperature and moving

optical fibers.

Nonetheless, we tested the speed of the state preparation for the obtained voltage config-

uration for PC-A. The same method was used as in 2.3.1. For this we measured a rise

time of 150µs (see Fig.2.13), about 2.3 times faster than the preparation using only two
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Figure 2.12: Block diagram of the optimization.

piezoelectric channels. As a result, the maximum frequency at what the experiment could

be ran is 6.6kHz.

State CH0 CH1 CH2 CH3
0 950 600 1200 1250
1 50 150 150 150
2 150 350 1450 350
3 150 750 600 600

Table 2.2: Optimized DAC voltage values to prepare each of the four sates, for
polarization controller PC-A.

2.4 Conclusion

In this part of the thesis project the systems needed to control the polarization controllers

were built. With them we mounted the optical setup needed to characterize the state
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Figure 2.13: Rise time of the transition between two opposite states.

preparation. The polarization controllers were characterized in terms of their speed and

the relationship voltage vs. angle of each one of their channels. With the polarization

controllers characterized, we then calculated the parameters needed to prepare the four

polarization states required by the protocol, as well as the maximal achievable speed of

1.4kHz.

In order to increase the speed of the state preparation, an optimization program was ran.

This optimization proved to be successful in only one of the polarization controllers not

allowing us to use these optimal voltage configurations in the end. In order to reduce

the effects of polarization drifts, the speed of the polarization process would have to be

increased, so that we could obtain the desired states. After testing this new technique we

could increase the frequency of the state preparation up to 6.6kHz.
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The Experiment

In the previous chapter we discussed the characterization of the polarization controllers

and defined how the polarization states are going to be prepared. In Chapter 1 we have

already presented a simplified layout of the experiment. In Chapter 2 we described how we

built built the hardware needed to control the polarization controllers and characterized

the state preparation. In Chapter 3, we will examine a more in-depth implementation

of this experimental set-up, namely how the necessary alignments and characterization of

coherent are performed and how it is controlled.

3.1 The Experimental Set-Up

The expanded experimental realization can be found in Fig.3.1. The optical signal is

generated by a DFB laser at 1559nm on Alice’s side (Mitsubishi, FU-68 PDF-5 - 1.58

µm (L-Band) DFB-LD Module With Polarization Maintaining Fiber Pigtail). The laser,

being unable to maintain the lasing threshold when triggered at 1kHz, had to be triggered

at 1MHz, while creating 90ps pulses. To remove the unwanted pulses, an Electro-optic

modulator (EOM) was placed after the laser. It is used as an almplitude modulator that

attenuates 999 pulses out of the 1000 created. The polarization encoding is done with the

help of the voltage-driven piezoelectric polarization controllers (General Photonics PCD-

M02) described in 2. The encoded pulses then go through a variable attenuator to reduce

the mean photon number per pulse to the desired sum. The output of Alice is connected

to the input of Bob.

Bob makes an active choice for the measurement basis by preparing one of the four available

polarization states with the help of a polarization controller (General Photonics PCD-

M02). The pulses then pass through a polarizing beam splitter (PBS).

The detector used for all the preliminary tests is an InGaAs avalanche photodiode (ID

Quantique id210) set with 10% efficiency and 25µs deadtime and dark count rate of 2kHz.

The detector used in runs of the experiment is a superconduncting nano-wire single photon

detector (SNSPD) from IDQuantique with 90% efficiency and dark count rate of 200Hz.
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Figure 3.1: The experimental set-up. EOM: Electro Optical Modulator; PC-1:
Manual polarization controller 1; PC-2: Manual polarization controller 2; PC-A:
Alice’s polarization controller; PC-B: Bob’s polarization controller; VA: Variable
attenuator; PBS: Polarizing beam-splitter; SPD: Single photon detector; TDC -
Time-to-digital converter; PC - Personal Computer.

The fibers were spliced from the output of Alice’s setup to the detector’s input to reduce

losses in the channel. The quantum channel has an overall attenuation of -0.45dB (90%

transmission) from the output of Alice to the detector input. The detector is connected to

a Time-to-digital converter (id800-TDC 8-channel time-to-digital converter). As the name

entails, the TDC converts the events caught by the detector into a digital representation

of their timestamp (time recorded in 81ps bins). The time stamps are thus forwarded to

the PC and read by a Python program.

To monitor the stability of the prepared states, on the output of Alice’s polarization

controller, is placed a 50/50 beamsplitter that will veer 50% of PC-A’s output beam into

the monitoring setup. This monitoring system is comprised of a manual polarization

controller, a polarizing beamsplitter and a single photon detector connected to the TDC.

The detector used is an InGaAs avalanche photodiode (ID Quantique id210) set with 10%

efficiency and 25µs deadtime and dark count rate of 2kHz.

PC-3 is used to uniformly align all the incoming polarized states to the PBS’s transmission

axis so that only the phase varies between the four preparations. As a result, if an

oscilloscope is placed after the PBS, we should be able to see a flat line when the four

states are being prepared. This results in a constant photon flux to be detected at the
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SPD. Any fluctuations in the count rate will thus indicate a misalignment of the states

being prepared.

Note that all time driven components of the set-up are synchronized with an external clock

(Silicon Labs, Clock & Timer Development Tools SI5341-D-EVB).

3.2 Control

The experiment is controlled by a Python program, developed previously by the group for

past QKD experiments and adapted here. It is responsible for generating the states used

in the experiment, for the communication with the microcontrollers of Alice and Bob, and

for receiving and analyzing the data received from the detector. Among these features, the

Python Gui also allows the user to synchronize and align the states used in the experiment

and respective measurements.

Since we were unable to conclude the optimization described in 2.3.2 for PC-B, the set of

voltage values used in experiment will be the ones seen in Table 2.1. By using this method,

a 3
2π rotation is performed with channel 1. We opted to implement the experiment at a

rate of 1kHz, to ensure the photon pulses were prepared in the desired polarization states.

The bigger the difference between the transition times and the time where the polarization

is flat, the easier it will be to align the photon pulses with the respective polarization state.

Also, potential delays in the software will not cause critical misalignments.

3.2.1 Microcontrollers

Alice and Bob’s polarization controllers are controlled by one microcontroller, Teensy 3.6,

each. The Teensy is responsible for sending the preparation states and the measure-

ment basis to Alice and Bob at a rate of 1KHz. The Teensys are connected to the clock

through an interrupt pin, and every 1ms, receive a trigger to prepare a state. Each teensy

has a buffer (statesBuffer) of 200 polarization states following a FIFO (first-in, first-out)

scheduling. When in need, each Teensy asks the computer for a new queue of 100 states,

and recieves them through Serial communication.

The Teensy uses an interrupt function to ensure adequate timing of the state preparation.

When the Teensy recieves a trigger from the clock through the digital interrupt pin, the

interrupt flag is set to TRUE and the Teensy enters the state preparation loop. In this loop,

the Teensy, with the help of a counter, runs through the statesBuffer and extracts the state

to be prepared, deleting it from the buffer. Once the state is known, the corresponding

DAC values for each channel can be obtained. Then, iterating over the four channels,

the binary value of the DAC voltage is sent sequentially to the polarization controller.

Whenever the counter is 0 or 100 (every 100ms) Alice and Bob send a request to the

35



3. The Experiment

Python program to receive more states. If the counter is at 0 then the new 100 state

queue is put on the second half of the buffer. Otherwise, the states are written to the first

half. The new states queue is received as a Serial communication from the computer.

The Teensy can also receive new voltage values to set as the new voltages of a state. It

can also receive a message to request emptying the buffer. The full code can be found in

Appendix C.

3.2.2 Data Collection

The states that are sent to the microcontrollers are saved in the python memory in two

queues (one for Alice and one for Bob) to later be used for the key sifting.

The Python program collects the time stamps by the TDC and shows them in a histogram

on the display window while the code is running, updated every 5 seconds. The collected

timestamps are converted into the format an bn dn, where n ranges from 0 to 3. This data

is then saved to a file every 5 second. The file log can be read as:

• an – Alice prepares state n

• bn - Bob measures in basis n

• d0 - detector 1 clicks

• d1 - detector 2 clicks

• d2 - coincidence detection (both detectors click)

• d3 - no detector clicks

Giving origin to a matrix:

a0 a1 a2 a3

M = b0

b1

b2

b3


x x x x

x x x x

x x x x

x x x x


Where x is the number of detections on detector 1 when state an is prepared and bn is

the measurement basis. Note that the detections in detector 1 are the ones that will be

used for the key sifting.

The system is aligned so that, when Alice and Bob prepare and measure coincidentally

on the same basis, one arm of the PBS will have no light. Following the security analysis

of the protocol, we are interested in collecting data that comes from the ”0%” arm as

we may call it. Hence, this is the only output connected to the detector. We only used
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the values from d0 and d3 for the data analysis for the key. The values from the second

detector will be used to monitor the stability of the state preparation.

One experimental challenge we faced was having Alice and Bob’s polarization controllers

preparing the correct state pairs. If we assume two sequences of n random states, such

that (Ai;Bj) ∀i,j = {0;n} is the pair of polarization states being prepared simultaneously,

it is indispensable that i = j. This stems from the fact that the state combination used

for the key sifting is generated in the software and extracts elements with the same index

from the respective state preparation queues.

To correct for that, the user can also add/remove states and detections from their respec-

tive sifting queue. The display window also allows the user to choose the sequences sent to

Alice and Bob between a list of fixed pre-made sequences and a random sequence. In this

interface, the user is also able to choose the detection window, in number of time bases,

and set the delay of the detector, also in time bases. On the display window, it also shows

the normalized sum of the diagonal of matrix seen above divided by the normalized sum

of the non-diagonal elements of the matrix 3.1. This will later be used for aligning the

detections in time and shall be discussed later. An image of the display window can be

found in 3.2.

V =

1

4

3∑
(n=m):0

an.bm

1

12

3∑
(n6=m):0

an.bm

(3.1)

3.3 Alignment

To correct the alignment in time, with the Python code running, we used the experimental

setup seen in Fig.3.3 and repetitive fixed sequences of Alice and Bob’s states. The output

of the PBS can be monitored either with an APD, ploted and viewed in a histogram with

the help of quTAU’s user’s interface Fig.3.3 a), or, with PD and viewed in an oscilloscope

Fig.3.3 b).

3.3.1 Time

When the Python program starts and the serial communication with the microcontrollers is

established, the pointer of the state’s buffer is set to 0 on both microcontrollers. However,

this restart is done sequentially, first in PC-A and then on PC-B, which may result in the

pointers not being coincidental. This can in turn result in a misalignment in time of the
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Figure 3.2: Display window of the Python code used in this experiment.

Figure 3.3: Setup used for aligning the state preparation. EOM - Electro-optic
modulator; PC-1/PC-2 - manual polarization controller PC-A/PC-B - piezoelectric
polarization controllers; VA - variable attenuator; PBS - polarizing beam splitter;
PD- photodiode; APD - Avalanch photodector; TDC - Time-to-digital converter;
PC - Personal Computer.

state preparation. The separation between pulses will depend on how close in time the

initialization of both microcontrollers is done.
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To correct this, a remove state/add state function was needed in the Python software.

This function allows the removal of states from Alice’s and Bob’s state queues that are

being sent to their Teensy. When a state is removed it is also removed from the sifting

queue.

With the Python code running, a sequence is uploaded to both Alice and Bob. It is

comprised of ninety-nine state0, and one state1. In the oscilloscope, we will be able to see

one pulse if the state preparation is aligned in time and two if it is misaligned.

3.3.2 Polarization

Once we are sure the states are aligned in time, it is important to make sure the polarization

states prepared by both Alice and Bob are the same i.e. they are defined by the same

ellipticity and elevation (θ,η) in the Poincaré sphere. To check for this, we used the same

setup described in Fig.3.3 a). We send to Alice and Bob a sequence of 100 states following

the order 0123. As a result, Bob should always measure in the same basis that Alice

prepared her states in. We see this alignment either as a signal of 0V in the oscilloscope,

meaning we are looking at the PBS’s output orthogonal to the axis of PBS’s polarizer,

corresponding to 0% transmission. Alternatively, the value measured by the PD can take

its maximum value, meaning the prepared states are aligned with the polarizer’s axis,

resulting in 100% transmission.

With the help of the manual polarization controllers, we then align the polarization of the

incoming light so that the steps seen in the output signal are no longer visible and the

signal is a straight line. This means both polarization controllers are correctly preparing

the same polarization state.

After making sure the preparation states and the measurement basis are in agreement, it

is important to also analyze the relationship between different states. The state sequences

sent to Bob and Alice are the following:

A = 0000111122223333(. . . )

B = 0123012301230123(. . . )

Figure 3.4: Relationship between all prepared states.
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If the state preparation of both polarization controllers is aligned in both time and po-

larization, in the oscilloscope, looking at the output where the alignment results in 0%

transmission, we would, in theory, see the sequence in Fig.3.4.

Figure 3.5: Relationship between all prepared states displayed in the oscilloscope.

The oscilloscope display is shown in Fig.3.5. All the combinations were distinguishable.

From this, we can confirm the relationship between the prepared states and the measure-

ment basis is correct.

3.3.3 Detections

Another misalignment to account for was detections with prepared states. The Python

script starts receiving detections from the TDC’s internal buffer, before the microcon-

trollers start to in fact prepare the states. The received detections are saved in a queue

that later will be used for the key sifting. The same happens with the states prepared by

Alice and the measurement basis chosen by Bob. When the computer is initializing all

the controllers and models at the beginning of every run, it is receiving data from TDC.

However, during this time, the serial connection with the microcontrollers is blocked. As

a result, the sifting queues for Alice and Bob’s states will not be aligned with the detec-

tion sifting queue. To correct this, a remove detection function is needed. This function

removes n detections from the detection queue, with n an arbitrary integer number chosen

by the user.

To align the detections in time, we used the setup shown in 3.1 and made use of Python’s

user interface created for this experiment. As mention in section 3.2.2, the interface

displays in real time (updated every 5 seconds) the normalized sum of the diagonal of

matrix divided by the normalized sum of the non-diagonal elements of the matrix described

by eq.3.1.

As it is described in section 3.2.2,we align Alice and Bob’s state preparation and sent

to both queues of randomly generated states. If we examine matrix M again with more

detail, it is easy to realise that under these conditions, in the diagonal of the matrix (a0b0

; a1b1 ; a2b2 ; a3b3) will never be recorded detections. Consequently V should be zero.
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However, if the Alice and Bob’s sifting queues are not aligned with the detection sifting

queue, then V is close to unity. This is how we use V as a real-time indicator of the

detections’ alignment in time. Using the remove detections function we then remove the

necessary number of detections from the beginning of the sifting queue until V is zero.

3.4 Weak Coherent Pulses

Since perfect single photon sources are not widely available, we opted to use a weak

coherent laser source that generates a pulse with probability of having n photons given

by:

P (n) =
µn

n!
exp(−µ)

Where µ is the average photon number per pulse. Thus, the smaller the µ the least infor-

mation an eavesdropper will be able to extract from the communication [50]. Therefore we

must ensure that the weak coherent states we prepare for this experiment are appropriate.

The characterization of the coherence pulses where the information is encoded in the

experiment will be discussed in this section.

3.4.1 The Laser

The Power Meter (Thorlabs - Digital Optical Power and Energy Meter + Thorlabs -

Fiber Photodiode Power Sensors S154C) used to measure the output power of Alice is not

sensitive enough to measure the power when the EOM is on, i.e. when the laser pulses

pass through at 1kHz. And depending on the frequency at which the EOM is triggered

its attenuation may vary, that is why we cannot measure with the EOM ON triggered at

1MHz. Consequently, to measure the number of photons per pulse, µ, at the output of

Alice’s system, we needed to measure with the EOM OFF (1 MHz pulsed laser frequency)

and then take into account the attenuation the EOM causes in the pulses that are not

filtered out.

To measure the EOM’s attenuation, the laser output was connected to the EOM which in

turn was connected to an SPD (ID Quantique id210) linked to a TDC. With the help of

the graphical user interface quTAU, we were able to view the detection’s timestamps on

the computer which were being plotted in a histogram (Fig.3.6). Choosing an integration

time of 500s, we then measured the number of counts in the peak that corresponded to

the photon pulses.

We did the same measurement but this time with the EOM ON, resulting in laser pulses

with a 1KHz frequency. We measured once again for a period of 500s. Dark counts were

also measured for both samplings, 1KHz, and 1MHz, with the optical fiber unplugged

from the detector. We measured a transmission of 91%.
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Figure 3.6: Display of quTAU’s histogram interface showing the time histogram
of the weak coherent state measured by the SPD.

3.4.2 Test

Figure 3.7: Setup used to measure the intensity of light leaving Alice when the
EOM is off.

As mentioned previously, the mean photon number had to be 0.01 for optimal performance.

To achieve this value, a variable attenuator must be used to reduce the number of photons

in each pulse.

Firstly, we quickly measured µ at the output of Alice’s setup with the power meter with

the laser at 1MHz and the EOM OFF (Fig.3.7). As mentioned previously, with the EOM

triggered at 1kHz the power is too low to be detected by the power meter. Without

the attenuator it yields 80nW. Which, considering the EOM attenuation, corresponds to

5,671× 105 photons per pulse. Note that the average mean photon number µ is given by:

µ =

P
Npulses

EP

so that EP = hc
λ is the photon energy , P is the beam power and Npulses is the number of

pulses per time unit

We want to attenuate to 0.01 photons per pulse as a result, an attenuation of -77dB is
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needed. For the attenuation defined as:

atenuation = 10.log10

(
µout
µin

)

We must then confirm that the attenuation calculated is also valid for a repetition rate of

1KHz. For that, we used once again the SPD and placed it at the output of Alice’s setup

(Fig.3.8). It is important to mention that the free running detector used has a dead time

of 25 µs and 10% efficiency.

Figure 3.8: Setup used to measure the number of photons per pulse.

Note that dead time is defined as the time after the detection of one event, in which the

system is not able to perform any other detection. As a result, we must consider the

dead-time correction as well as dark-counts when calculating the number of photons that

reach the detector. The event rate given by the detector corrected for dead time minus

the dark counts should yield the number of photons arriving at the detector per second.

So, if N is the number of photons that reach the detector, d is the number of detections,

Td is the dead-time and DC the dark counts, then, we have an N of:

N =
d

1− dxTd
−DC

The detector was connected to the TDC and the user interface provided by quTAU (3.9)

was once again used to collect the timestamps of the detections and show the photon

counts over an integration time of 500s. We measured both the detection rate of DC and

photons. The results can be found in below:

d = 17.9k photons (500s)

dc = 15.9k photons (500s)

Td = 25µs

N = 1.201 photons/s (10% efficiency)

N = 12.01 photons/s (100% efficiency)
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Measuring

µ =
12.01

1000
= 0.0120 photons/pulse

Figure 3.9: Display of quTAU’s interface.

The mean photon number was tested a second time with the same detector, gated at

1KHz, with a detection window of 20ns and again set to 10% efficiency. We used the

setup shown in Fig.3.8 for this measurement.

Using quTAU the collected time stamps were displayed in a histogram. Increasing the

coincidence window to 100 bins allows all the pulse photons to be acquired on a solo peak

in the histogram. With this, the number of detected photons can directly be measured

from the peak’s hight. Since the detector is gated, we will not need to use dead time

corrections.

With the gated detector, 115 photons were measured over an integration time of 100s of the

histogram. Since this corresponds to a detector of 10% efficiency, the number of photons

from the pulse arriving at the detector over a 100s period is 1150. This corresponds to a

mean photon number of

µ = 0.0115 photons/pulse

3.5 Experimental Results

Firstly, we ran test measurements with the INGAS single photon detector with 10% ef-

ficiency and compensated the quantum channel losses by increasing the mean photon

number. Here we collected some preliminary probability distribution matrices to assess

the set up before running the experiment with the high efficiency detector.

We ran the experiment for a period of 3 hours, using the experimental setup pictured

in Fig.3.1. The single photon detector used by Bob for his measurements was the 90%

44



3. The Experiment

efficiency SNSPD discussed earlier in Section 3.1. The total transmission from Alice’s

output to Bob’s detector measured 92%, and the mean photon number was prepared to

be µ = 0.01 For a dark count probability of 3.24 × 10−7 and 1.144125 × 107 total trials,

we obtained the following detection probability matrix:

prob =


1.00845280× 10−4 1.89569084× 10−3 4.23695029× 10−3 2.72414919× 10−3

2.32493803× 10−4 1.07624722× 10−4 1.53587076× 10−3 3.76759283× 10−3

3.54147433× 10−3 1.56870202× 10−4 5.46026537× 10−5 1.65985771× 10−3

1.99347159× 10−3 3.74898445× 10−3 1.94928230× 10−3 6.57426330× 10−5


And the matrix of total number of clicks:

clicks =


72 1355 3029 1952

1664 77 1099 2693

2528 1122 39 1188

1426 2681 1394 47



Remember the data was registered in the format of matrix M (please refer to Section

3.2.2).

Alice’s monitoring results are plotted in Fig.3.10. Allowing us to infer that the state

preparation was stable throughout the run of the experiment.

3.6 Discussion

For a total transmission of the setup of 82.5% and a mean photon number of µ = 0.01

and the measured dark count probability of 3.24 × 10−7, we calculated the probability

distribution matrix that is foreseen by theory and can be seen below.

probt =


3.24000000× 10−7 2.07317268× 10−3 4.14172465× 10−3 2.07317268× 103

2.07317268× 10−3 3.24000000× 10−7 2.07317268× 10−4 4.14172465× 10−3

4.14172465× 10−3 2.07317268× 10−3 3.24000000× 10−7 1.65985771× 10−3

2.07317268× 10−3 4.14172465× 10−3 2.07317268× 10−3 3.24000000× 10−7


As one can see, probtheory differs from the measured probability distribution. Since in

matrix prob the order of magnitude of the diagonal elements is much greater than the dark

count probability, we can infer dark counts are not the main prompter of the discrepancies

seen in the matrices. For that, we must look for another phenomenon capable of inducing
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Figure 3.10: Alice’s monitoring results over a span o 3 hours. Each colored line
represents one of the four states being prepared.

such outcomes.

The difference in the diagonal states stems from the states prepared in both polarization

controllers not being exactly the same, as well as imperfect polarization alignment at the

beginning of the experiment. The discrepancies of the probabilities in other elements of the

matrix are likely due to an incorrect estimation of µ or faulty assessment of the detector’s

efficiency and fiber transmission.

The collected data was sent to the theory group to perform the key sifting and security

analysis.
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Conclusion

The aim of this project was to experimentally implement the testing of a semi-device

independent QKD protocol. With that goal in mind, we were able to realize an experi-

mental set-up that allowed a stable manipulation of the polarization states needed for the

encoding as well as measurement.

We built the hardware needed to control the polarization controllers responsible for the

state preparation and measurement basis selection. These polarization controllers were

characterized for speed and polarization shift with applied voltage. With this information,

we were then able to estimate the parameters needed to prepare the four desired polar-

ization states. We also showed that, using an optimization function, we could in principle

increase the state preparation frequency up to 6.6 kHz. However, to go any further, we

would have to fully redesign the experimental setup. One idea would be to use time-bin

based encoding. For that the different states would be set using phase modulators that

can work in the GHz range.

The full experiment was then implemented. Using a SNSPD with 90% detection efficiency,

we could achieve a quantum channel with 83% transmission efficiency. The probability

distribution was thus measured for the following parameters, µ = 0.01 and dark count

probability of 3.24× 10−7, and compared with the theoretical distribution.

This work did however not provide a complete result of the key sifting nor the security

analysis, since the theory behind the security proof is still an ongoing investigation by the

theory group.

To conclude, in this thesis, is expounded the experimental implementation for a novel ap-

proach to a semi-device independent QKD protocol with four-coherent-state polarization-

encoding. The work discussed stands as a starting ground for future works. The following

stages of this project will focus on complementing the experimental realization with real-

time key sifting. The results will then also be analysed with latest security proof of the

protocol.
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Second appendix

State Optimization

Teensy code:

// current v o l t a g e v a l u e

int vo l tage = 0 ;

// current channel

int ch = 0 ;

// optmia l v o l t a g e v a l u e s per channel

int optV [ ] = {0 , 0 , 0 , 0} ;

// === PINS ===

// D i g i t a l S i g n a l B i t s

const int DB0 = 35 ; //LSB

const int DB1 = 15 ;

const int DB2 = 36 ;

const int DB3 = 16 ;

const int DB4 = 37 ;

const int DB5 = 17 ;

const int DB6 = 38 ;

const int DB7 = 18 ;

const int DB8 = 26 ;

const int DB9 = 19 ;

const int DB10 = 27 ;

const int DB11 = 20 ; //MSB

// Channel c o n t r o l b i t s

int Ch1 = 34 ;

int Ch2 = 14 ;
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//Read/Write

int RW = 39 ;

// Chip S e l e c t

int CS = 33 ;

// === GLOBAL VARIABLES ===

// Array wi th the d i g i t a l s i g n a l input in b inary

int d i g i t a l S i g [ 1 3 ] ;

// Array wi th the channel # in b inary

int d ig i t a lCh [ 3 ] ;

// Array wi th the d i g i t a l s i g n a l p ins

int d igP in ar ray [ 1 3 ] = {DB11 , DB10 , DB9, DB8, DB7, DB6, DB5, DB4,

DB3, DB2, DB1, DB0} ;

// Array wi th the channel p ins

int ChPin array [ 3 ] = {Ch1 , Ch2} ;

// Array wi th the channel #s in b inary

int d i g i t a l C h s [ 4 ] [ 2 ] = {{0 ,0} ,{1 ,0} ,{0 ,1} ,{1 ,1}} ;

// Clock Flag Var iab l e

volat i le int s t a t eF lag ;

// Array wi th Vol tage Values per S t a t e

// To c a l l −> S t a t e s x V o l t a g e s [ v o l t a g e ] [ s t a t e ]

int State sxVo l tages [ 4 ] [ 4 ] = {{209 ,455 ,0 ,0}} ;

// S t a t e s Queue in Arduino

int s t a t e s B u f f e r [ 2 0 0 0 ] ;

// Message Recieved from Python ( Array )

char s e r i a l A r r a y [ 2 0 0 ] ;

// Message Recieved from Python ( S t r i n g )

St r ing s e r i a lMes sage ( s e r i a l A r r a y ) ;

// Delay

int microsec s = 0 ;
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void setup ( ) {// //////////////////////////////////////////////////////

S e r i a l . begin ( 9 6 0 0 ) ;

S e r i a l . p r i n t l n ( ”Arduino Ready” ) ;

// −−−−−−−−− INITIALIZE DIGITAL PINS AS OUTPUTS −−−−−−−−
for ( int i = 0 ; i < 12 ; i ++){

pinMode ( d igP in ar ray [ i ] , OUTPUT) ;

}

pinMode (Ch1 , OUTPUT) ;

pinMode (Ch2 , OUTPUT) ;

pinMode (RW, OUTPUT) ;

pinMode (CS, OUTPUT) ;

// −−−−−−−− INITIALIZE CHANNEL VALUES −−−−−−−−

//−−−−−−−−−−−−−−−− CH = 0 −−−−−−−−−−−−−−−−−−
d ig i t a lCh [ 0 ] = 0 ;

d i g i t a lCh [ 1 ] = 0 ;

for ( int i = 0 ; i < 2 ; i++) { // channel

i f ( d i g i t a lCh [ i ] == 0) {
d i g i t a l W r i t e ( ChPin array [ i ] , LOW) ;

}
else i f ( d i g i t a lCh [ i ] == 1) {

d i g i t a l W r i t e ( ChPin array [ i ] , HIGH) ;

}
}

for ( int i = 0 ; i < 12 ; i++) { // v a l u e

d i g i t a l W r i t e ( d igP in ar ray [ i ] , LOW) ;

}

d i g i t a l W r i t e (CS, LOW) ;

de layMicroseconds ( 1 ) ;

d i g i t a l W r i t e (CS, HIGH) ;

//−−−−−−−−−−−−−−−− CH = 1 −−−−−−−−−−−−−−−−−−
d ig i t a lCh [ 0 ] = 1 ;
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d ig i t a lCh [ 1 ] = 0 ;

for ( int i = 0 ; i < 2 ; i++) { // channel

i f ( d i g i t a lCh [ i ] == 0) {
d i g i t a l W r i t e ( ChPin array [ i ] , LOW) ;

}
else i f ( d i g i t a lCh [ i ] == 1) {

d i g i t a l W r i t e ( ChPin array [ i ] , HIGH) ;

}
}

for ( int i = 0 ; i < 12 ; i++) { // v a l u e

d i g i t a l W r i t e ( d igP in ar ray [ i ] , LOW) ;

}

d i g i t a l W r i t e (CS, LOW) ;

de layMicroseconds ( 1 ) ;

d i g i t a l W r i t e (CS, HIGH) ;

//−−−−−−−−−−−−−−−− CH = 2 −−−−−−−−−−−−−−−−−−
d ig i t a lCh [ 0 ] = 0 ; //<∗
d ig i t a lCh [ 1 ] = 1 ; //<∗

for ( int i = 0 ; i < 2 ; i++) { // channel

i f ( d i g i t a lCh [ i ] == 0) {
d i g i t a l W r i t e ( ChPin array [ i ] , LOW) ;

}
else i f ( d i g i t a lCh [ i ] == 1) {

d i g i t a l W r i t e ( ChPin array [ i ] , HIGH) ;

}
}

for ( int i = 0 ; i < 12 ; i++) { // v a l u e

d i g i t a l W r i t e ( d igP in ar ray [ i ] , LOW) ;

}

d i g i t a l W r i t e (CS, LOW) ;

de layMicroseconds ( 1 ) ;

d i g i t a l W r i t e (CS, HIGH) ;

//−−−−−−−−−−−−−−−− CH = 3 −−−−−−−−−−−−−−−−−−
d ig i t a lCh [ 0 ] = 1 ; //<∗
d ig i t a lCh [ 1 ] = 1 ; //<∗
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for ( int i = 0 ; i < 2 ; i++) { // channel

i f ( d i g i t a lCh [ i ] == 0) {
d i g i t a l W r i t e ( ChPin array [ i ] , LOW) ;

}
else i f ( d i g i t a lCh [ i ] == 1) {

d i g i t a l W r i t e ( ChPin array [ i ] , HIGH) ;

}
}

for ( int i = 0 ; i < 12 ; i++) { // v a l u e

d i g i t a l W r i t e ( d igP in ar ray [ i ] , LOW) ;

}

d i g i t a l W r i t e (CS, LOW) ;

de layMicroseconds ( 1 ) ;

d i g i t a l W r i t e (CS, HIGH) ;

}// ///////////////////////////////////////////////////////////////////

void loop ( ) {########################################################

i f ( S e r i a l . a v a i l a b l e ( ) > 0) {
S e r i a l . r eadBytesUnt i l ( ’ \n ’ , s e r i a lAr ray , 5 0 ) ;

S t r ing s e r i a lMes sage ( s e r i a l A r r a y ) ;

i f ( s e r i a lMes sage . s ub s t r i n g (0 , 7 ) == ”VOLTAGE” ){
S e r i a l . p r i n t ( vo l t age ) ;

de layMicroseconds ( 1 ) ;

S e r i a l . f l u s h ( ) ;

// w r i t e current v o l t a g e v a l u e to ch

convertBinary ( vo l tage , d i g i t a l S i g ) ;

wr i t eS ta t e ( d i g i t a l C h s [ ch ] [ 0 ] , d i g i t a l C h s [ ch ] [ 1 ] ,

ChPin array , d i g i t a l S i g , d igP in ar ray ) ;

// i n c r e a s e s v o l t a g e v a l u e

vo l tage = vo l tage + 50 ;

}
else i f ( s e r i a lMes sage . s ub s t r i n g (0 , 4 ) == ”VAL” ){

int newV = se r i a lMes sage . s ub s t r i n g ( 5 , 9 ) . t o In t ( ) ;

// save opt Vol tage to array

65



B. Second appendix
State Optimization

optV [ ch ] = newV ;

// w r i t e current v o l t a g e v a l u e to ch

convertBinary (newV, d i g i t a l S i g ) ;

wr i t eS ta t e ( d i g i t a l C h s [ ch ] [ 0 ] , d i g i t a l C h s [ ch ] [ 1 ] ,

ChPin array , d i g i t a l S i g , d igP in ar ray ) ;

}

//Quando chega a 2PI r e c o m e a para um novo ch

i f ( vo l t age > 1500){
vo l tage = 0 ;

i f ( ch == 3) {ch = 0 ;}
else {ch=ch+1;}

}
}

}####################################################################

//−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−(1)

void convertBinary ( int val , int d i g i t a l S i g [ ] ) {

// c o n v e r t s the v o l t a g e v a l u e s to b inary ( s t o r e d in an Array

d i g i t a l S i g [ ] )

int remainders [ ] = {0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0} ;

int cont = 0 ;

int i = 0 ;

while ( va l > 0 ) {
remainders [ cont ] = va l % 2 ; // saves the remainders a l l in one

l i s t

va l = va l / 2 ; // keeps the v a l u e g iven d i v i d e d by 2

cont++; // adds to counter

}

int a = 0 ;

for ( int i = 11 ; i >= 0 ; i−−) {
d i g i t a l S i g [ i ] = remainders [ a ] ;

a++;

}
}//

//−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−− (2)

void wr i t eS ta t e ( int dig i ta lCh0 , int dig i ta lCh1 , int ChPin array [ ] ,

int d i g i t a l S i g [ ] , int d igP in ar ray [ ] ) {
// w r i t e channel # and v o l t a g e v a l u e to the PolCont
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for ( int i = 0 ; i < 2 ; i++) { // channel

i f ( d ig i t a lCh0 == 0) {
d i g i t a l W r i t e ( ChPin array [ i ] , LOW) ;

}
else i f ( d ig i t a lCh1 == 1) {

d i g i t a l W r i t e ( ChPin array [ i ] , HIGH) ;

}
}

for ( int i = 0 ; i < 12 ; i++) { // d i gPi n ar ray

i f ( d i g i t a l S i g [ i ]==0){
d i g i t a l W r i t e ( d igP in ar ray [ i ] ,LOW) ;

}
else i f ( d i g i t a l S i g [ i ]==1){

d i g i t a l W r i t e ( d igP in ar ray [ i ] ,HIGH) ;

}
}

d i g i t a l W r i t e (CS, LOW) ;

for ( int i = 0 ; i <10000; i ++){};
d i g i t a l W r i t e (CS, HIGH) ;

}//

Python code:

# −∗− coding : u t f−8 −∗−
import os

import po la r imete r as pol

import time

from datet ime import datet ime

import numpy as np

import matp lo t l i b . pyplot as p l t

import matlab . eng ine

import s e r i a l

# timing parameters

s l e ep t ime = 5

t0 = datet ime . utcfromtimestamp (0) # epoch

# i n i t i a l i z e data array

T = np . array ( [ ] )

theta = np . array ( [ ] )

eta = np . array ( [ ] )

v o l t a g e s = np . array ( [ ] )
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#i n i t i a l i z e p o l a r i m e t e r

polo = pol . po l a r imete r ( )

#i n i t i a l i z e matlab . engine

eng = matlab . eng ine . s ta r t mat l ab ( )

#i n i t i a l i z e s e r i a l connect ion

teensy = s e r i a l . S e r i a l ( ’COM4’ ,9600)

time . s l e e p (1 ) #g i v e the connect ion a second to s e t t l e

ch = 0

# === COMMUNICATION LOOP ===

try :

while True :

# − − − − − TEENSY LOOP − − − − − −
while True :

# Recieves v o l t a g e v a l u e s from arduino ==> Reads p o l a r i m e t e r

teensy . wr i t e ( ’VOLTAGE’ ) # r e q u e s t v o l t a g e

time . s l e e p ( 0 . 5 )# w a i t s f o r r e p l y

data = teensy . r e a d l i n e ( ) [ : −2 ] #the l a s t b i t g e t s r i d o f the

new−l i n e chars

i f data :

#saves curren t v o l t a g e v a l u e

v o l t a g e s = np . append ( vo l tages , data )

#saves p o l a r i m e t e r data

az , e l = polo . r e ad po l a r ime t e r ( )

t1 = datet ime . now ( )

t s1 = ( t1−t0 ) . t o t a l s e c o n d s ( )

T = np . append (T, t s1 )

theta = np . append ( theta , az )

eta = np . append ( eta , e l )

time . s l e e p ( s l e ep t ime )

# Quando 2PI termina w h i l e : True

i f int ( data ) == 1500 :

break

# − − − − − END TEENSY LOOP − − − − − −
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# =========== AFTER 1 s t 2PI =====================

# −− OPTIMIZATION FUNCTION −−
vol t , ang = eng . V min ( vo l tages , theta , eta )

f . wr i t e ( ch , v o l t ) #saves ch and corresponding opt v o l t a g e

teensy . wr i t e ( ’VAL’ , v o l t )

ch=ch+1

# −−− END OF OPTIMIZATION −−−
i f ang < 0 .1

break

# === End Data A c q u i s i t i o n Loop ===

#r e s e t v o l t a g e s , the ta , e ta

v o l t a g e s . c l e a r ( )

theta . c l e a r ( )

eta . c l e a r ( )

except KeyboardInterrupt : #c l o s e connect ion

polo . c l o s e p o l a r i m e t e r ( )

f . c l o s e ( )

Matlab function:

function [ vo l t , ang ] = V min ( vo l tages , theta , eta )

%[LINHA ] [COLUNA]

%v o l t a g e s [ 1 0 0 ] array com as t e n s e s preparadas n e s t e cana l

%a n g l e s [ 1 0 0 ] [ 2 ] array com os angu los correspondentes as t e n s o e s

%% − SELECT REFERENCE STATE −
s t a t e = 1 ;

i f s t a t e == 1

stateTheta = 0 ;

s tateEta = 15 ;

e l s e i f s t a t e == 2

stateTheta = −45;

s tateEta = 15 ;

e l s e i f s t a t e == 3

stateTheta = 45 ;

s tateEta = 15 ;

else

stateTheta = 90 ;
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s tateEta = 15 ;

end

%% CREATING 3 ELEMENT VECTORS

% −− REFERENCE VECTOR −−
x0 = cos ( stateTheta .∗ pi . / 9 0 ) . ∗ cos ( s tateEta .∗ pi . / 9 0 ) ;

y0 = sin ( stateTheta .∗ pi . / 9 0 ) . ∗ cos ( s tateEta .∗ pi . / 9 0 ) ;

z0 = sin ( s tateEta .∗ pi . / 9 0 ) ;

Vec0 = [ x0 y0 z0 ] ;

% −− LIST RECIEVED VECTORS −−
x = cos ( theta .∗ pi . / 9 0 ) . ∗ cos ( eta .∗ pi . / 9 0 ) ;

y = sin ( theta .∗ pi . / 9 0 ) . ∗ cos ( eta .∗ pi . / 9 0 ) ;

z = sin ( eta .∗ pi . / 9 0 ) ;

Vecs = [ x y z ] ;

%% CALCULATE ANGLES

s ize = length ( v o l t a g e s ) ;

a = zeros ( size , 1 ) ;

% −− CALCULATE ANGLES IN RELATION TO THE REFERENCE VECTOR −−

for i = 1 : s ize

a ( i ) = atan2 (norm( cross ( Vec0 , Vecs ( i , : ) ) ) , dot ( Vec0 , Vecs ( i , : ) ) )

% Angle in rad ians

end

[M, I ] = min( a )

ang = a ( I ) ;

v o l t = v o l t a g e s ( I ) ;
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#d e f i n e BUFFER SIZE 200

// ===== PINS =====

// D i g i t a l S i g n a l B i t s

const int DB0 = 35 ; //LSB

const int DB1 = 15 ;

const int DB2 = 36 ;

const int DB3 = 16 ;

const int DB4 = 37 ;

const int DB5 = 17 ;

const int DB6 = 38 ;

const int DB7 = 18 ;

const int DB8 = 26 ;

const int DB9 = 19 ;

const int DB10 = 27 ;

const int DB11 = 20 ; //MSB

// Channel c o n t r o l b i t s

int CH1 = 34 ;

int CH2 = 14 ;

//Read/Write

int RW = 39 ;

// Chip S e l e c t

int CS = 33 ;
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// ===== GLOBAL VARIABLES =====

// − − − WRITE TO PC − − −

// Array wi th the d i g i t a l s i g n a l p ins

int SIG PIN ARRAY [ 1 3 ] = {DB11 , DB10 , DB9, DB8, DB7, DB6, DB5, DB4,

DB3, DB2, DB1, DB0} ;

// Array wi th the channel p ins

int CH PIN ARRAY [ 3 ] = {CH1, CH2} ;

// Array wi th the d i g i t a l s i g n a l input in b inary

int d i g i t a l S i g [ 1 3 ] ;

// Array wi th the channel number in b inary

int d ig i t a lCh [ 2 ] ;

// Array wi th Vol tage Values per S t a t e

// To c a l l −> STATE VOLTAGES [ v o l t a g e ] [ s t a t e ]

// = = = = = PC1 = = = = =

// (COM 20) BOB

int STATE VOLTAGES [ 5 ] [ 4 ] = { {183 , 0 , 0 , 0} , //0 226

{183 , 485 , 0 , 0} , //1

{183 , 850 , 0 , 0} , //2

{183 , 1270 , 0 , 0} , //3

{ 0 , 0 , 0 , 0}} ;

// = = = = = PC2 = = = = =

// (COM 16) ALICE

// i n t STATE VOLTAGES[ 5 ] [ 4 ] = { {170 , 0 , 0 , 0} , //0 219

// {170 , 454 , 0 , 0} , //1

// {170 , 900 , 0 , 0} , //2 o l d (948)

// {170 , 1286 , 0 , 0} , //3

// { 0 , 0 , 0 , 0}} ;

// Vol tage o f each CH of a S t a t e

int ch vo l t age [ 4 ] ; // [0 1 2 3 ]
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// − − − BUFFER − − −
// S t a t e s Queue in Arduino

int s t a t e s B u f f e r [ BUFFER SIZE ] ;

// S t a t e Preparat ion Pointer

int cont = 0 ;

// S t a t e to be Prepared

int s t a t e ;

// Marker f o r Buf fer Update

int marker ;

// − − − SERIAL COM − − −
// Message Recieved from Python ( Array )

char s e r i a l A r r a y [ BUFFER SIZE∗3 / 4 ] ;

// Message Recieved from Python ( S t r i n g )

St r ing s e r i a lMes sage ( s e r i a l A r r a y ) ;

// S t a t e s to be Added to the Buf fer

int newStates [ BUFFER SIZE / 2 ] ;

// Delay

int de lay mic ro s = 0 ;

// −−− INTERRUPT −−−
// Clock Flag Var iab l e

volat i le int STATE FLAG;

void setup ( ) {// ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗
S e r i a l . begin (912600 ) ;

// −−−−−−−−− INITIALIZE DIGITAL PINS AS OUTPUTS −−−−−−−−
for ( int i = 0 ; i < 12 ; i++) {

pinMode (SIG PIN ARRAY [ i ] , OUTPUT) ;

}

pinMode (CH1, OUTPUT) ;

pinMode (CH2, OUTPUT) ;
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pinMode (RW, OUTPUT) ;

pinMode (CS, OUTPUT) ;

// −−−−−−−− INITIALIZE DIGITAL PIN AS INTERRUPT −−−−−−−−
a t ta ch In t e r rup t ( d i g i t a l P i nT o I n t e r ru p t ( 3 ) , ISR state , RISING ) ;

// −−−−−−−− INITIALIZE CHANNEL VOLTAGES −−−−−−−−
setUp (CH PIN ARRAY, SIG PIN ARRAY , d i g i t a l S i g ) ;

// −−−−−− i n i t i a l i z e s t a t e queue −−−−−
for ( int j = 0 ; j < BUFFER SIZE ; j++) {

i f ( j % 2 == 0){
s t a t e s B u f f e r [ j ] == 1 ;

}
else {

s t a t e s B u f f e r [ j ] == 0 ;

}
}

}

// ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗

void loop ( ) { //%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

// ===================== STATE PREPARATION =====================

// −−−−−−−−−− Reads S t a t e s from Buf fer −−−−−−−−−−
boolean reque s t = fa l se ;

i f (STATE FLAG) {

STATE FLAG = 0 ;

// de layMicroseconds ( d e l a y m i c r o s ) ; // d e l a y i s now done e x t e r n a l l y

s t a t e = s t a t e s B u f f e r [ cont ] ; // S t a t e to be prepared

// −−−−− Prepares S t a t e −−−−
prepareState ( s ta te , ch vo l t age ) ; // Set corresponding s t a t e

value to each Pol Cont channel

for ( int channel = 0 ; channel < 4 ; channel++) {
// −−−− I t e r a t e s over channe ls −−−−−

convertBinary ( ch vo l t age [ channel ] , d i g i t a l S i g ) ;
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// Converts v o l t a g e to b inary

wr i t eS ta t e ( channel , CH PIN ARRAY, d i g i t a l S i g , SIG PIN ARRAY ) ;

}

// D e l e t e s preapared s t a t e from Buf fer

// s t a t e s B u f f e r [ cont ] = 4 ;

// −−−− Checks f o r s t a t e s −−−−
// i f ( cont == BUFFER SIZE/4 or cont == BUFFER SIZE∗3/4) {
i f ( cont == 0 or cont == BUFFER SIZE/2) { //ALICE

// i f ( cont == 10 or cont == (BUFFER SIZE/2)+10) { //BOB

marker = cont ;

r eque s t = true ;

}
cont++;

i f ( cont == BUFFER SIZE) {
cont = 0 ;

}
}

// −−−−−−−−−− Request More S t a t e s −−−−−−−−−−
i f ( r eque s t ) {

r eque s t = fa l se ;

S e r i a l . wr i t e ( ”G” ) ;

}

//=================================================================

//======================== PYTHON COM ========================

i f ( S e r i a l . a v a i l a b l e ( ) > 0) {
S e r i a l . r eadBytesUnt i l ( ’ \n ’ , s e r i a lAr ray , 1012 ) ;

S t r ing s e r i a lMes sage ( s e r i a l A r r a y ) ;

// START

i f ( s e r i a lMes sage . s ub s t r i n g (0 , 5 ) == ”START” ){
cont = 0 ;

}

// STATES QUEUE

i f ( s e r i a lMes sage . s ub s t r i n g (0 , 9 ) == ”SETSTATES” ){

75



C. Third appendix
Teensy’s State Preparation Software

int s e r i a l M e s s a g e a r r a y [ 1 1 0 ] ;

for ( int i = 0 ; i < 100 ; i++) {
newStates [ i ] = s e r i a l A r r a y [ i +10]−48;

// Array wi th S t a t e s i n t (0 ,1 ,2 ,3) −> to be added to BUFFER

}
writeToBuf fer ( marker , s t a t e s B u f f e r , newStates ) ;

}
// SET NEW VOLTAGE VALUES

else i f ( s e r i a lMes sage . s ub s t r i n g (0 , 11) == ”SETVOLTAGES” ) {
setNewVoltages ( s e r i a lMes sage ) ;

}
// EMPTY BUFFER

else i f ( s e r i a lMes sage . s ub s t r i n g (0 , 5) == ”RESET” ) {
emptyBuffer ( s t a t e s B u f f e r ) ;

}
// ADD DELAY

else i f ( s e r i a lMes sage . s ub s t r i n g (0 , 5) == ”DELAY” ) {
de lay mic ro s = se r i a lMes sage . s ub s t r i n g (6 , 1 0 ) . t o In t ( ) ; //

}
}

}//%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

//######################## −−− FUNCTIONS −−− ########################

//−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−(1)

void ISR state ( ) {
STATE FLAG = 1 ;

}//

//−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−(2)

void convertBinary ( int val , int d i g i t a l S i g [ ] ) {

// c o n v e r t s the v o l t a g e v a l u e s to b inary ( s t o r e d in an Array

d i g i t a l S i g [ ] )

int remainders [ ] = {0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0} ;

int cont = 0 ;
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int i = 0 ;

while ( va l > 0 ) {
remainders [ cont ] = va l % 2 ; // saves the remainders a l l in one l i s t

va l = va l / 2 ; // keeps the v a l u e g iven d i v i d e d by 2

cont++; // adds to counter

}

int a = 0 ;

for ( int i = 11 ; i >= 0 ; i−−) {
d i g i t a l S i g [ i ] = remainders [ a ] ;

a++;

}
}//

//−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−(3)

void prepareState ( int s ta te , int ch vo l t age [ ] ) {

// . . . . . . . . . . .

//

// SETS CHANNEL VOLTAGE VALUES DEPENDING ON THE SELECTED STATE

// STATE VOLTAGES[ s t a t e ] [ v o l t a g e ]

//

// . . . . . . . . . . .

i f ( s t a t e == 0) {
ch vo l t age [ 0 ] = STATE VOLTAGES [ 0 ] [ 0 ] ;

ch vo l t age [ 1 ] = STATE VOLTAGES [ 0 ] [ 1 ] ;

ch vo l t age [ 2 ] = STATE VOLTAGES [ 0 ] [ 2 ] ;

ch vo l t age [ 3 ] = STATE VOLTAGES [ 0 ] [ 3 ] ;

} else i f ( s t a t e == 1) {
ch vo l t age [ 0 ] = STATE VOLTAGES [ 1 ] [ 0 ] ;

ch vo l t age [ 1 ] = STATE VOLTAGES [ 1 ] [ 1 ] ;

ch vo l t age [ 2 ] = STATE VOLTAGES [ 1 ] [ 2 ] ;

ch vo l t age [ 3 ] = STATE VOLTAGES [ 1 ] [ 3 ] ;

} else i f ( s t a t e == 2) {
ch vo l t age [ 0 ] = STATE VOLTAGES [ 2 ] [ 0 ] ;

ch vo l t age [ 1 ] = STATE VOLTAGES [ 2 ] [ 1 ] ;

ch vo l t age [ 2 ] = STATE VOLTAGES [ 2 ] [ 2 ] ;

ch vo l t age [ 3 ] = STATE VOLTAGES [ 2 ] [ 3 ] ;

} else i f ( s t a t e == 3) {
ch vo l t age [ 0 ] = STATE VOLTAGES [ 3 ] [ 0 ] ;

ch vo l t age [ 1 ] = STATE VOLTAGES [ 3 ] [ 1 ] ;
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ch vo l t age [ 2 ] = STATE VOLTAGES [ 3 ] [ 2 ] ;

ch vo l t age [ 3 ] = STATE VOLTAGES [ 3 ] [ 3 ] ;

} else i f ( s t a t e == 4) {
ch vo l t age [ 0 ] = STATE VOLTAGES [ 4 ] [ 0 ] ;

ch vo l t age [ 1 ] = STATE VOLTAGES [ 4 ] [ 1 ] ;

ch vo l t age [ 2 ] = STATE VOLTAGES [ 4 ] [ 2 ] ;

ch vo l t age [ 3 ] = STATE VOLTAGES [ 4 ] [ 3 ] ;

}

}//

//−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−(4)

void wr i t eS ta t e ( int channel , int CH PIN ARRAY [ ] , int d i g i t a l S i g [ ] ,

int SIG PIN ARRAY [ ] ) {
// w r i t e channel # and v o l t a g e v a l u e to the PolCont

d i g i t a l W r i t e (RW,LOW) ; // load data

i f ( channel == 0){
//−−−−−−− CH = 0 −−−−−−−−−−

d ig i t a lCh [ 0 ] = 0 ;

d i g i t a lCh [ 1 ] = 0 ;

} else i f ( channel == 1){
//−−−−−−− CH = 1 −−−−−−−−−−

d ig i t a lCh [ 0 ] = 1 ;

d i g i t a lCh [ 1 ] = 0 ;

} else i f ( channel == 2){
//−−−−−−− CH = 2 −−−−−−−−−−

d ig i t a lCh [ 0 ] = 0 ;

d i g i t a lCh [ 1 ] = 1 ;

} else i f ( channel == 3){
//−−−−−−− CH = 3 −−−−−−−−−−

d ig i t a lCh [ 0 ] = 1 ;

d i g i t a lCh [ 1 ] = 1 ;

}

for ( int i = 0 ; i < 2 ; i++) { //CHANNEL

i f ( d i g i t a lCh [ i ] == 0) {
d i g i t a l W r i t e (CH PIN ARRAY[ i ] , LOW) ;

}
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else i f ( d i g i t a lCh [ i ] == 1) {
d i g i t a l W r i t e (CH PIN ARRAY[ i ] , HIGH) ;

}
}
for ( int i = 0 ; i < 12 ; i++) { //VOLTAGE

i f ( d i g i t a l S i g [ i ] == 0) {
d i g i t a l W r i t e (SIG PIN ARRAY [ i ] , LOW) ;

}
else i f ( d i g i t a l S i g [ i ] == 1) {

d i g i t a l W r i t e (SIG PIN ARRAY [ i ] , HIGH) ;

}
}

d i g i t a l W r i t e (CS, LOW) ;

// f o r ( i n t i = 0 ; i < 150000000; i++) {} ; //DELAY

d i g i t a l W r i t e (CS, HIGH) ;

}//

//−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−(5)

void setNewVoltages ( S t r ing s e r i a lMes sage ) {

int s t a t e = se r i a lMes sage . s ub s t r i n g ( 1 2 ) . t o In t ( ) ; // −> s t a t e #

// assumi t e n s e s V.V (3 char )

int V1 = se r i a lMes sage . s u b s t r i ng (14 , 1 7 ) . t o In t ( ) ;

int V2 = se r i a lMes sage . s u b s t r i ng (18 , 2 1 ) . t o In t ( ) ;

int V3 = se r i a lMes sage . s u b s t r i ng (22 , 2 5 ) . t o In t ( ) ;

int V4 = se r i a lMes sage . s u b s t r i ng (26 , 2 9 ) . t o In t ( ) ;

int newVoltages [ ] = {V1 , V2 , V3 , V4} ;

for ( int i ; i < 4 ; i++) {

STATE VOLTAGES [ i ] [ s t a t e ] = round ( ( newVoltages [ i ] ∗ 4096) / 1 5 0 ) ;

}
// −> STATE / V1 / V2 / V3 / V4 / NEWVOLTAGES [ ] / STATE VOLTAGES [ ] [ ]

}//
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//−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−(6)

void emptyBuffer ( int s t a t e s B u f f e r [ ] ) {

for ( int i = 0 ; i < s izeof ( s t a t e s B u f f e r ) ; i++) {
s t a t e s B u f f e r [ i ] = 0 ;

}
}//

//−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−(7)

void writeToBuf fer ( int marker , int s t a t e s B u f f e r [ ] , int newStates [ ] ) {

// i f ( marker == BUFFER SIZE/4) {
// puts in the ” second par t ” o f the b u f f e r

i f ( marker == 0) {
// puts in the ” second par t ” o f the b u f f e r −− ALICE

// i f ( marker == 10) {
// puts in the ” second par t ” o f the b u f f e r −− BOB

for ( int j = BUFFER SIZE / 2 ; j < BUFFER SIZE ; j++) {
s t a t e s B u f f e r [ j ] = newStates [ j − BUFFER SIZE / 2 ] ;

}
}
// e l s e i f ( marker == BUFFER SIZE∗3/4) {
// puts in the ”1 par t ” o f the b u f f e r

else i f ( marker == BUFFER SIZE/2) {
// puts in the ”1 par t ” o f the b u f f e r −− ALICE

// e l s e i f ( marker == (BUFFER SIZE/2)+10) {
// puts in the ”1 par t ” o f the b u f f e r −− BOB

for ( int j = 0 ; j < BUFFER SIZE / 2 ; j++) {
s t a t e s B u f f e r [ j ] = newStates [ j ] ;

}
}

marker = 0 ;

}//

//−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−(8)

void setUp ( int CH PIN ARRAY [ ] , int SIG PIN ARRAY [ ] , int d i g i t a l S i g [ ] ) {
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//−−−−−−−−−−−−−−−− CH = 0 −−−−−−−−−−−−−−−−−−
d ig i t a lCh [ 0 ] = 0 ;

d i g i t a lCh [ 1 ] = 0 ;

for ( int i = 0 ; i < 2 ; i++) { // WRITES CHANNEL # TO PC

i f ( d i g i t a lCh [ i ] == 0) {
d i g i t a l W r i t e (CH PIN ARRAY[ i ] , LOW) ;

}
else i f ( d i g i t a lCh [ i ] == 1) {

d i g i t a l W r i t e (CH PIN ARRAY[ i ] , HIGH) ;

}
}

//PC1 − 208

//PC2 − 209

convertBinary (0 , d i g i t a l S i g ) ; // c o n v e r t s the v o l t a g e v a l u e to

binary

for ( int i = 0 ; i < 12 ; i++) { // WRITES VOLTAGE VAL TO PC

i f ( d i g i t a l S i g [ i ] == 0) {
d i g i t a l W r i t e (SIG PIN ARRAY [ i ] , LOW) ;

}
else i f ( d i g i t a l S i g [ i ] == 1) {

d i g i t a l W r i t e (SIG PIN ARRAY [ i ] , HIGH) ;

}
}

d i g i t a l W r i t e (CS, LOW) ;

de layMicroseconds ( 1 ) ;

d i g i t a l W r i t e (CS, HIGH) ;

//−−−−−−−−−−−−−−−− CH = 1 −−−−−−−−−−−−−−−−−−
d ig i t a lCh [ 0 ] = 1 ;

d i g i t a lCh [ 1 ] = 0 ;

for ( int i = 0 ; i < 2 ; i++) { // WRITES CHANNEL # TO PC

i f ( d i g i t a lCh [ i ] == 0) {
d i g i t a l W r i t e (CH PIN ARRAY[ i ] , LOW) ;

}
else i f ( d i g i t a lCh [ i ] == 1) {

d i g i t a l W r i t e (CH PIN ARRAY[ i ] , HIGH) ;

}
}
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for ( int i = 0 ; i < 12 ; i++) { // WRITES VOLTAGE VAL TO PC

d i g i t a l W r i t e (SIG PIN ARRAY [ i ] , LOW) ;

}
d i g i t a l W r i t e (CS, LOW) ;

de layMicroseconds ( 1 ) ;

d i g i t a l W r i t e (CS, HIGH) ;

//−−−−−−−−−−−−−−−− CH = 2 −−−−−−−−−−−−−−−−−−
d ig i t a lCh [ 0 ] = 0 ;

d i g i t a lCh [ 1 ] = 1 ;

for ( int i = 0 ; i < 2 ; i++) { // WRITES CHANNEL # TO PC

i f ( d i g i t a lCh [ i ] == 0) {
d i g i t a l W r i t e (CH PIN ARRAY[ i ] , LOW) ;

}
else i f ( d i g i t a lCh [ i ] == 1) {

d i g i t a l W r i t e (CH PIN ARRAY[ i ] , HIGH) ;

}
}

for ( int i = 0 ; i < 12 ; i++) { // WRITES VOLTAGE VAL TO PC

d i g i t a l W r i t e (SIG PIN ARRAY [ i ] , LOW) ;

}

d i g i t a l W r i t e (CS, LOW) ;

de layMicroseconds ( 1 ) ;

d i g i t a l W r i t e (CS, HIGH) ;

//−−−−−−−−−−−−−−−− CH = 3 −−−−−−−−−−−−−−−−−−
d ig i t a lCh [ 0 ] = 1 ;

d i g i t a lCh [ 1 ] = 1 ;

for ( int i = 0 ; i < 2 ; i++) { // WRITES CHANNEL # TO PC

i f ( d i g i t a lCh [ i ] == 0) {
d i g i t a l W r i t e (CH PIN ARRAY[ i ] , LOW) ;

}
else i f ( d i g i t a lCh [ i ] == 1) {

d i g i t a l W r i t e (CH PIN ARRAY[ i ] , HIGH) ;

}
}

for ( int i = 0 ; i < 12 ; i++) { // WRITES VOLTAGE VAL TO PC

d i g i t a l W r i t e (SIG PIN ARRAY [ i ] , LOW) ;
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}

d i g i t a l W r i t e (CS, LOW) ;

de layMicroseconds ( 1 ) ;

d i g i t a l W r i t e (CS, HIGH) ;

}//

//##############################################################
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