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Resumo

A Artroplastia Total do Joelho (ATJ) é um procedimento cirúrgico realizado em

pacientes que sofrem de artrite do joelho. O posicionamento correcto dos implantes

está fortemente relacionado com múltiplas variáveis cirúrgicas que têm um impacto

tremendo no sucesso da cirurgia. Foram investigados e desenvolvidos sistemas de

navegação baseados em computador, com o objetivo de auxiliar o cirurgião a con-

trolar, com precisão, essas variáveis cirúrgicas. Esta tese centra-se na navegação

em ATJ e aborda dois problemas que são apontados por muitos como fundamentais

para a sua adoção consensual.

O primeiro problema é que as tecnologias existentes são muito dispendiosas e re-

querem incisões ósseas adicionais para a fixação de marcadores, geralmente muito

volumosos, interferindo com o t́ıpico fluxo cirúrgico. Este trabalho apresenta um

sistema de navegação sem marcadores que apoia o cirurgião na execução precisa do

procedimento de ATJ. O sistema proposto utiliza uma câmara RGB-D móvel para

substituir os sistemas de navegação ópticos existentes, eliminando a necessidade de

marcadores. A metodologia apresentada combina uma abordagem eficaz baseada em

Deep Learning para segmentar com precisão a superf́ıcie óssea com um algoritmo

robusto baseado na geometria para registar os ossos com modelos pré-operatórios. O

desempenho favorável da nossa metodologia é alcançado através (1) do uso de uma

estratégia semi-supervisionada para gerar dados de treino a partir de dados reais de

cirurgia ATJ, (2) utilizando técnicas eficazes de aumento de dados para melhorar

a capacidade de generalização, e (3) utilizando dados de profundidade adequados.

A utilidade deste método completo de registo sem marcadores, que generaliza para

diferentes dados intra-operatórios, é evidente e os resultados experimentais mostram

um desempenho promissor para ATJ baseada em v́ıdeo.

O segundo problema está relacionado com a falta de precisão na localização de

pontos de referência no joelho durante a navegação, o que pode levar a erros signi-

ficativos no posicionamento dos implantes. Esta tese apresenta um método de prova
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Resumo

de conceito que utiliza Deep Learning para a detecção automática dos pontos de

referência apenas a partir de imagens. O objetivo é fornecer sugestões em tempo

real para auxiliar o cirurgião nesta tarefa, o que pode ser útil na tomada de decisões

e na redução da variabilidade. A validação experimental num ponto de referência

mostra que o método atinge resultados fiáveis, podendo ser feita a sua aplicação aos

restantes pontos de referência.

Palavras-chave: Navegação cirúrgica; Deep Learning; Segmentação de imagem;

Estimação de pose; Cirurgia no joelho.
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Abstract

Total Knee Arthroplasty (TKA) is a surgical procedure performed in patients suffer-

ing from knee arthritis. The correct positioning of the implants is strongly related

to multiple surgical variables that have a tremendous impact on the success of the

surgery. Computer-based navigation systems have been investigated and developed

in order to assist the surgeon in accurately controlling those surgical variables. This

thesis focuses in navigation for TKA and addresses two problems that are pointed

by many as fundamental for its broader acceptance.

The first problem is that existing technologies are very costly, require additional

bone incisions for fixing markers to be tracked, and these markers are usually bulky,

interfering with the standard surgical flow. This work presents a markerless naviga-

tion system that supports the surgeon in accurately performing the TKA procedure.

The proposed system uses a mobile RGB-D camera for replacing the existing opti-

cal tracking systems and does not require markers to be tracked. We combine an

effective deep learning-based approach for accurately segmenting the bone surface

with a robust geometry-based algorithm for registering the bones with pre-operative

models. The favorable performance of our pipeline is achieved by (1) employing

a semi-supervised labeling approach for generating training data from real TKA

surgery data, (2) using effective data augmentation techniques for improving the

generalization capability, and (3) using appropriate depth data. The construction

of this complete markerless registration prototype that generalizes for unseen intra-

operative data is non-obvious, and relevant insights and future research directions

can be derived. The experimental results show encouraging performance for video-

based TKA.

The second problem is related to the lack of accuracy in localizing landmarks during

image-free navigation, that can lead to significant errors in implant positioning. This

thesis presents a proof-of-concept method that uses deep learning for automatic

detection of landmarks from only visual input. The aim is to provide real time
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Abstract

suggestions to assist the surgeon in this task, which can be useful in decision making

and to reduce variability. Experimental validation with one landmark shows that

the method achieves reliable results, and extension to the remaining landmarks can

be extrapolated.

Keywords: Surgical Navigation; Deep Learning; Image Segmentation; Pose Es-

timation; Knee Surgery.

xiv



Acronyms

Adam Adaptive momentum estimation.

AI Artificial Intelligence.

AR Average Recall.

ATJ Artroplastia Total do Joelho.

BOP Benchmark for Object Pose Estimation.

CAS Computer-Aided Surgery.

CNN Convolutional Neural Networks.

CT Computed Tomography.

CV Computer Vision.

DL Deep Learning.

EMT Electromagnetic Tracking.

FCN Fully Convolutional Network.

FN False Negatives.

FP False Positives.

FPN Feature Pyramid Network.

fps Frames Per Second.

GPU Graphics Processing Unit.

ICP Iterative Closest Point.

xv



Acronyms

IoU Intersection over Union.

mAP Mean Average Precision.

ML Machine Learning.

MRI Magnetic Resonance Imaging.

MS COCO Microsoft Common Objects in Context.

OT Optical Tracking.

P3D Perceive3D S.A..

PnP Perspective-n-Point.

px pixels.

RANSAC RANdom SAmple Consensus.

ReLU Rectified Linear Unit.

RGB Red-Blue-Green.

RGB-D Red-Blue-Green and Depth.

RMSprop Root mean square prop.

ROI Regions of Interest.

RPN Region Proposal Network.

TKA Total Knee Arthroplasty.

TP True Positives.

VT Video Tracking.

xvi



List of Figures

1.1 Proposed video-based surgical navigation. . . . . . . . . . . . . . . . 3

1.2 Acquisition of anatomical landmarks during a navigated TKA. . . . . 5

1.3 Landmarks acquired in different trials. . . . . . . . . . . . . . . . . . 5

2.1 Example of a CNN architecture. . . . . . . . . . . . . . . . . . . . . . 8

2.2 Representation of CV tasks. . . . . . . . . . . . . . . . . . . . . . . . 9

2.3 Diagram of the U-net network architecture [1]. . . . . . . . . . . . . . 10

3.1 Markerless video-based surgical navigation pipeline. . . . . . . . . . . 15

3.2 Depth maps from the depth sensors. . . . . . . . . . . . . . . . . . . 16

3.3 Examples of images from each knee. . . . . . . . . . . . . . . . . . . 19

3.4 Image with (a) markers and (b) markers inpainted. . . . . . . . . . . 19

3.5 Deep Learning network architecture used for bone segmentation. . . . 21

3.6 Representation of the labelling approach of [2]. . . . . . . . . . . . . . 22

3.7 Representation of our labelling solution. . . . . . . . . . . . . . . . . 22

3.8 Data augmentation techniques. . . . . . . . . . . . . . . . . . . . . . 23

3.9 Aligned color and depth frames. . . . . . . . . . . . . . . . . . . . . . 25

3.10 Experimental setup to measure the maximum registration accuracy. . 27

3.11 Examples of images with reflection of light on bone surface. . . . . . . 27

3.12 Segmentation metric distribution in the Knee 6 dataset. . . . . . . . . 29

3.13 Distribution of registration errors in the Knee 6 dataset. . . . . . . . 30

3.14 Segmentation metric distribution in the Knee 7 dataset. . . . . . . . . 31

3.15 Distribution of registration errors in the Knee 7 dataset. . . . . . . . 31

3.16 Qualitative results on images from the Knee 6 dataset. . . . . . . . . 34

3.17 Qualitative results on images from the Knee 7 dataset. . . . . . . . . 35

3.18 Segmentation results in images from videos found in the VuMedi library. 36

4.1 Synthetic training images of the BOP datasets. . . . . . . . . . . . . 42

4.2 BOP Challenge 2019 results [3]. . . . . . . . . . . . . . . . . . . . . . 43

xvii



List of Figures

5.1 Steps for generating landmark segmentation masks. . . . . . . . . . . 46

5.2 Evaluation protocol for line outputs. . . . . . . . . . . . . . . . . . . 47

5.3 Measurements for the whiteside’s line in Knee 7. . . . . . . . . . . . . 49

5.4 Error distribution for the predicted landmark location. . . . . . . . . 50

5.5 Images from the test dataset presenting landmark location results. . . 51

5.6 Images from another dataset presenting landmark location predictions. 51

xviii



List of Tables

2.1 Required landmarks for navigation in image-free TKA. . . . . . . . . 14

3.1 Specifications from the depth sensors. . . . . . . . . . . . . . . . . . . 16

3.2 Information about each knee. . . . . . . . . . . . . . . . . . . . . . . 17

3.3 Dataset distribution for bone segmentation. . . . . . . . . . . . . . . 28

3.4 5-fold cross-validation division of the train and validation sets. . . . . 28

3.5 U-net models trained for bone segmentation. . . . . . . . . . . . . . . 29

3.6 Percentage of the Knee 6 dataset considered in the registration step. . 30

3.7 Percentage of the Knee 7 dataset considered in the registration step. . 31

3.8 Segmentation and registration results in the test datasets. . . . . . . 32

3.9 Segmentation results comparing our model with the one from [2]. . . 37

4.1 Description of the datasets from the BOP Challenge 2019. . . . . . . 41

4.2 Results of our method in the BOP datasets. . . . . . . . . . . . . . . 43

5.1 Dataset distribution for landmark detection. . . . . . . . . . . . . . . 48

5.2 U-net models trained for landmark detection. . . . . . . . . . . . . . 48

xix



List of Tables

xx



Contents

Acronyms xv

List of Figures xvii

List of Tables xix

1 Introduction 1

1.1 Markerless video-based surgical navigation system . . . . . . . . . . . 2

1.2 Automatic detection of anatomical landmarks . . . . . . . . . . . . . 4

1.3 Research Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . 6

1.4 Document Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2 Background and Related Work 7

2.1 Deep learning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.1.1 DL in medical applications . . . . . . . . . . . . . . . . . . . . 10

2.2 Image-based surgical navigation . . . . . . . . . . . . . . . . . . . . . 11

2.2.1 Markerless video-based surgical navigation system . . . . . . . 11

2.3 Image-free surgical navigation . . . . . . . . . . . . . . . . . . . . . . 13

3 Markerless video-based surgical navigation 15

3.1 Data acquisition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

3.1.1 System for data acquisition . . . . . . . . . . . . . . . . . . . 16

3.1.2 Dataset description . . . . . . . . . . . . . . . . . . . . . . . . 17

3.2 Bone segmentation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

3.2.1 Deep Learning architecture . . . . . . . . . . . . . . . . . . . . 20

3.2.2 Generating label images . . . . . . . . . . . . . . . . . . . . . 21

3.2.3 Data augmentation techniques . . . . . . . . . . . . . . . . . . 22

3.2.4 Evaluation metrics . . . . . . . . . . . . . . . . . . . . . . . . 23

3.3 Extraction of bone point cloud . . . . . . . . . . . . . . . . . . . . . . 23

3.4 Bone registration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

xxi



Contents

3.4.1 Registration algorithm . . . . . . . . . . . . . . . . . . . . . . 25

3.4.2 Evaluation metrics . . . . . . . . . . . . . . . . . . . . . . . . 25

3.5 Experiments and results . . . . . . . . . . . . . . . . . . . . . . . . . 26

3.5.1 Maximum registration accuracy . . . . . . . . . . . . . . . . . 26

3.5.2 Ex-vivo experiments . . . . . . . . . . . . . . . . . . . . . . . 27

3.5.2.1 Training the network . . . . . . . . . . . . . . . . . . 27

3.5.2.2 Quantitative results . . . . . . . . . . . . . . . . . . 29

3.5.2.3 Qualitative results . . . . . . . . . . . . . . . . . . . 33

3.5.2.4 Comparison with the baseline method . . . . . . . . 37

4 Evaluation of video-based surgical navigation system 39

4.1 BOP Challenge 2019 . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

4.1.1 Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

4.1.1.1 Deep Learning architecture . . . . . . . . . . . . . . 40

4.1.2 Experimental setup . . . . . . . . . . . . . . . . . . . . . . . . 40

4.1.2.1 Datasets . . . . . . . . . . . . . . . . . . . . . . . . . 40

4.1.2.2 Training images . . . . . . . . . . . . . . . . . . . . . 42

4.1.2.3 Training the network . . . . . . . . . . . . . . . . . . 42

4.1.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

5 Automatic detection of anatomical landmarks for image-free navi-

gation 45

5.1 Method overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

5.1.1 Generating label images . . . . . . . . . . . . . . . . . . . . . 46

5.1.2 Evaluation protocol . . . . . . . . . . . . . . . . . . . . . . . . 46

5.2 Experiments and results . . . . . . . . . . . . . . . . . . . . . . . . . 48

5.2.1 Training the network . . . . . . . . . . . . . . . . . . . . . . . 48

5.2.2 Quantitative results . . . . . . . . . . . . . . . . . . . . . . . . 49

5.2.3 Qualitative results . . . . . . . . . . . . . . . . . . . . . . . . 50

6 Discussion and future work 53

Bibliography 55

xxii



1

Introduction

Computer-Aided Surgery (CAS) has improved the effectiveness of a large variety

of orthopaedic procedures, such as total knee and hip arthoplasties [4, 5], spinal

surgery [6] and arthroscopic interventions [7]. CAS allows the surgeon to get real-

time feedback about the relative positioning of surgical instruments with respect to

the anatomies of the patient, allowing the practitioner to more easily inspect and

visualize the patient’s anatomies, as well as get support in following a particular

surgical plan [8, 9].

Total Knee Arthroplasty (TKA) is the main choice for improving the quality of life

of patients suffering from knee arthritis [10]. There is a particular set of surgical

variables (e.g. implant component alignment, soft-tissue balancing, lower leg align-

ment) that is important for the success of a TKA intervention, and not controlling

these variables accurately can lead to pain, knee instability and even periprosthetic

fractures [11]. Traditionally, these variables are controlled manually with mechanical

instruments, requiring many years of training and experience for accurately com-

bining all these surgical variables into an appropriate implant plan [2]. From the

literature, satisfactory component and lower limb alignment is achieved only within

3 degrees of varus/valgus relative to mechanical axis [12, 13, 14], while the transla-

tion ”safe zone” for implant sizing and joint line variation is +/- 3-4 mm [15, 16].

In order to assist the surgeon in appropriately determining these variables, several

computer navigation systems have been developed [11, 17].

The navigation systems can be usually divided into two main groups: image-based

navigation, whose main objective is to align a pre-operative model with the intra-

operative anatomical data such that a pre-specified surgical plan is followed; and

image-free navigation, which requires the acquisition of particular bone landmarks

which are used for determining the surgical plan [18].

Existing navigation solutions for TKA establish the relation between anatomy and

tools through a tracking technology that enables to determine relative 3D poses
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1. Introduction

in real-time. There are three different tracking technologies: (1) Electromagnetic

Tracking (EMT): utilizes magnetic fields to determine the pose of sensors for mea-

suring magnetic flux [19]; (2) Optical Tracking (OT): comprised by a workstation

that controls the system with infrared cameras for tracking the position and orienta-

tion of markers attached to the femur, tibia and surgical instruments [20]; (3) Video

Tracking (VT): the most recent technology, originally developed for navigation in

arthroscopy [7], uses a monocular RGB camera to detect markers attached to the

bones and instruments and estimate their relative pose in 3D. In terms of accuracy,

it has been shown in [21] that optical tracking is more accurate than EMT, and [22]

states that video-based tracking is at least as accurate as optical tracking, the most

widely used technology of all three solutions, when performing open surgery.

This thesis focuses in video-based navigation for TKA and addresses two problems

that are pointed by many as fundamental for its broader acceptance:

1. The first problem concerns the attachment of markers to the anatomies, which

is required by all existing tracking technologies used in CAS. The markers are

bulky, can interfere with the surgical flow and their attachment consumes

surgery time. This work presents a markerless image-based navigation system

(Section 1.1) that supports the surgeon in accurately performing the TKA

procedure.

2. It is well known in image-free navigation that the manual digitalization of

landmarks is a time-consuming task and lacks accuracy [23, 24, 25]. This thesis

presents a proof-of-concept method for automatic detection of landmarks from

only visual input (Section 1.2). This could be relevant for guiding the surgeon

in this task by providing real time suggestions.

1.1 Markerless video-based surgical navigation sys-

tem

All tracking technologies require attaching markers to anatomy which consumes

surgery time, are bulky and can interfere with the surgical flow and, more impor-

tantly, it endangers the patient by increasing risk of fracture in osteoporotic bone

[26]. For these reasons, markerless navigation is highly desirable and can be the

step to make navigation more widely used. Video-based tracking can be the step

forward to accomplish markerless navigation if combined with a suitable method for

visual 6D pose estimation able to determine the rotation and translation of targeted

2



1. Introduction

anatomies without the help of artificial fiducial markers (Figure 1.1).

(a) (b) (c)

Figure 1.1: Proposed video-based surgical navigation: (a) Frame with knee and
tool; (b) Frame with overlaid 3D femur model and detected tool; (c) Video tracking
using RGB-D camera allows to track bones and the tools, without requiring to fix
markers to the bones.

The estimation of the 6D pose of a known object from an image is a long studied

problem with the original P3P algorithm coming from the photogrammetry studies

of the XIX century, and the topic having had substantial evolution in the last few

years [27]. With the introduction of depth cameras, different methods have been

presented for estimating the objects’ pose from RGB-D images [28]. More recently,

the dissemination of deep learning avoided the use of ad-hoc methods to establish

explicit correspondences to be used as input in the geometric algorithms. Neverthe-

less, the pose estimation problem to be solved in this work is specially challenging

because of (i) high medical accuracy requirements, (ii) robustness and resilience to

large occlusions that often occur in the context of a TKA procedure, not only due to

the tissues surrounding the targeted anatomy (bone) but also because of the tools

and instruments used during the surgery, and (iii) real-time performance to know

the location of the anatomy at every frame time instant.

The work of [2] is the first one trying to tackle these issues in the context of accom-

plishing markerless navigation for TKA. The work uses a commercial, off-the-shelf

RGB-D camera and combines deep learning-based segmentation in RGB to locate

the bone region and segment the point cloud, with a state-of-the-art method for

3D registration to align a pre-operative anatomical model of the patient such that

the bone resections for the implant positioning can be guided according to a pre-

operative plan. Despite showing promising results, the proposed system has some

limitations: (1) bone surface segmentation from RGB images was trained on a lim-

ited set of femurs and no generalization analysis to bones not contained in the

training set was performed, (2) it requires very specific training data that is scarce

(intra-operative data with registered pre-operative 3D model), (3) the navigation of

3
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the proximal cut, which involves the segmentation and registration of the tibia, was

not considered and is required for a successful TKA procedure, and (4) the registra-

tion errors (rotation error of 3.17 degrees and translation error of 6.18 mm) do not

fulfil the medical accuracy requirements described previously (3 degrees/3-4 mm),

and were obtained on a limited test set with data from knee joints also contained in

the training set.

The work performed in this thesis tries to overcome the limitations of the proto-

type described in [2] and it is a clear step forward towards markerless navigation,

demonstrating its feasibility in the near future. In particular, the contributions are:

1. A new approach for fast labeling which dramatically facilitates the generation

of training data, without the need of tracking instrumentation and constant

supervision;

2. Accurate femur and tibia segmentation from RGB images, showing high gen-

eralization capabilities to unseen bones from different TKA experiments;

3. The combination of robust and accurate bone segmentation with the use of

a recent consumer RGB-D camera and a properly tuned registration algo-

rithm, which leads to a system that is close to fulfilling the medical accuracy

requirements. In this regard, we show that the most significant part of the

error is due to the limited depth resolution arising from off-the-shelf sensors.

Nevertheless, with the constant evolution of depth sensors performance [29],

it is reasonable to anticipate that markerless navigation will be feasible with

comercial, off-the-shelf sensors in the near future;

4. Extension to the segmentation and registration of the tibia, which presents

additional difficulties when compared to the femur (e.g. more and larger oc-

clusions).

1.2 Automatic detection of anatomical landmarks

Image-free systems require a data acquisition step, in which anatomical landmarks

are gathered for navigation [30].

The acquisition of most anatomical landmarks is performed through manual digi-

talization using a marker tool (refer to Figure 1.2). This task is very challenging,

time-consuming, demands high level of expertise and may lack accuracy [23, 24, 25].

Small errors in performing this step can lead to significant errors in the implant

positioning [4]. Localization of landmarks also suffers from inter- and intra-observer
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Figure 1.2: Acquisition of anatomical landmarks during a navigated TKA. Copy-
right by P3D.

variability [31]. For instance, Figure 1.3 shows localization of some landmarks ac-

quired by an orthopaedic surgeon in different trials in the same knee.

(a) (b)

Figure 1.3: Femur landmarks (a) knee center and (b) whiteside’s line acquired by
an orthopaedic surgeon in 5 different trials (represented with different colors) in the
same knee.

There are some works that aid the identification and detection of anatomical land-

marks on 3D models [23, 24, 25], however, and to the best of our knowledge, none

tackle yet the task of providing real time localization of the landmarks from input

visual only in image-free navigation.

For this part of the thesis, it was developed a method for automatic detection and

localization of bone landmarks in RGB images captured during the surgery, through

using a Deep Learning network. The proposed method was conceived for image-

based navigation, and aids in the landmark acquisition step, providing real time

suggestions to the surgeon with predicted landmark locations. This can be useful

in decision making and hopefully help to minimise the errors usually introduced at

this stage.
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1.3 Research Contributions

The work in this project has resulted in the submission of a method to the BOP

Challenge 20191: Félix&Neves-ICRA2017-IET2019, that ranked 6th place.

Additionally, a paper was submitted to the AE-CAI | CARE | OR 2.0 joint workshop
2:

Inês Félix, Carolina Raposo, Michel Antunes, Pedro Rodrigues, João P. Barreto.

Towards markerless computer-aided surgery combining deep segmentation and geo-

metric pose estimation: Application in Total Knee Arthroplasty.

1.4 Document Overview

The remainder of this thesis is structured as follows:

Chapter 2 overviews some Deep Learning concepts that are useful for better

understanding the proposed algorithms. In addition, it reviews the literature on the

topics related to the subject of this thesis;

Chapter 3 provides a detailed description of the proposed markerless video-based

navigation system and the experimental results;

Chapter 4 documents the submitted method to the BOP Challenge 2019;

Chapter 5 presents the proof-of-concept method for automatic detection of

anatomical landmarks and its experimental validation;

Chapter 6 discusses the results and suggests future work.

1https://bop.felk.cvut.cz/
2https://workshops.ap-lab.ca/aecai2020/
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2

Background and Related Work

This chapter provides a general introduction to Deep Learning (DL), with particular

focus on DL techniques employed in medical applications. It also gives a compact

review of previous work related to surgical navigation.

2.1 Deep learning

In recent years, several methods based on DL have emerged in Machine Learning

and Artificial Intelligence research. Among the existing DL algorithms, the most

popular in the Computer Vision field is Convolutional Neural Networks (CNN), with

great breakthroughs in processing images and video [32].

CNN architectures are usually comprised of convolutional, pooling, and fully-connected

layers [33]. Convolutional layers allow feature extraction and are composed of a set

of filters or kernels, which outputs different feature maps. Each feature map is gen-

erated by convolving the input with a filter and then applying a nonlinear activation

function, such as a ReLU. Filters used at early stages in the network capture low-

level features from the input image, such as color, edge and texture information. As

the network deepens, it gradually encodes more abstract features. Pooling layers are

often placed in between convolutional layers to reduce the dimensionality of feature

maps with the purpose of providing shift-invariance to the output. Nearing the end,

one or more fully connected layers convert the feature maps into a feature vector.

The last layer is an output layer in which the sigmoid operator is commonly used

for binary classification tasks, while the softmax operator is chosen for multiclass

classifications. An example of a CNN architecture is represented in Figure 2.1.

A major problem in DL is creating a model that performs well on training data,

without overfitting, that is able to generalize to unseen data [34]. To overcome this

issue, many strategies were designed for regularization.
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2. Background and Related Work

Figure 2.1: Example of a CNN architecture, comprised of convolutional, pooling
and fully connected layers.

Dropout This method allows to combine different neural network architectures

efficiently, and is implemented by probabilistically dropping out units in the network,

along with its connections [35].

Data augmentation A leading cause for overfitting is training DL models with

reduced datasets [36]. However, in most cases, the amount of training data is lim-

ited. Data augmentation techniques consist on performing transformations to the

available data, in order to increase the size of the training set. In image related tasks,

recurring methods are geometric transformations (e.g. rotations, shits, scaling) and

photometric transformations.

Transfer learning This strategy helps to improve learning of a new task by

transferring information from a previous learned task [37]. A common approach is

initializing the neural network with weights pre-trained on similar data.

During the training of CNN, the model predicts the output, computes the model

error using the selected loss function and then back-propagates to update the pa-

rameters (weights and bias) using the gradient descent method. As an optimization

process, the goal is to find the parameters that minimizes the loss function. The

choice of the loss function, depending on the specific task, impacts the performance

of the network [38]. There are several optimization techniques for improving accu-

racy and training speed on neural network models.

Hyperparameter tuning Hyperparameters can relate to the structure of the

model (e.g. number of hidden layers, activation function) or the efficiency and

accuracy of the model (e.g. learning rate, batch size, dropout) [39]. Hyperparameter

tuning is the process of finding the combination of hyperparameters that allows the

network to achieve the best performance.

Mini-batch algorithm Performing the gradient descent method over the en-
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2. Background and Related Work

tire training set to update only a single parameter is computationally expensive.

The mini-batch algorithm accelerates the training process, by computing the gra-

dient over batches of the training data instead [34]. Mini-batch size is taken as an

hyperparameter of the model.

Momentum update Momentum helps the gradient descent to faster converge

and reduces the oscillations [40]. This is performed by adding a fraction (a hyper-

parameter) of the update at the past step to the current update.

Adaptive learning rate methods The learning rate has a significant impact

on the learning process of the model: setting it too high does not allow the loss

function to converge; otherwise, setting it too low, results in slow learning. Hence,

optimization methods, such as Adagrad [41], Adadelta [42], Root mean square prop

(RMSprop) [43] and Adaptive momentum estimation (Adam) [44], adapt this hy-

perparameter during training.

Convolutional Neural Networks have been applied to the classification, detection and

segmentation of objects and regions in images [32]. The classification task retrieves

the objects categories presented in the image (Fig. 2.2a). The object detection task

besides recognizing the object in the image, also locates it with bounding boxes

(Fig. 2.2b). Segmentation tasks consist in pixel-wise location of each object. While

semantic segmentation classifies each pixel into a class in a single mask (Fig. 2.2c),

instance segmentation creates a different mask for each instance of an object (Fig.

2.2d).

Figure 2.2: Representation of classification, detection and segmentation tasks.
Figure adapted from [45].
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2.1.1 DL in medical applications

Recently, the medical field has also adopted DL techniques, in particular Convolu-

tional Neural Networks, for a wide range of applications in image analysis. These

techniques are deemed helpful for intra-operative guidance [46], diagnosis and treat-

ment [47].

Image segmentation plays a crucial role in many medical imaging applications, by

providing the location of anatomical structures and other areas of interest [48]. For

this purpose, the most commonly used architecture is U-Net [1], that comprises a

contracting path (encoder) and an expansive path (decoder). The encoder portion

repeats the sequence of 2 convolutions followed by a ReLU and a pooling operation

for downsampling, while increasing the number of feature maps. The bottleneck

portion is the middle part of the network, where usually dropout is added for reg-

ularization. Then, the decoder portion repeats the new sequence of a convolution

operation to upsample the feature maps, followed by the typical convolution and

ReLU combination. The feature maps from the encoder are copied to the decoder

through skip connections, to enable precise pixel-wise localization. The final step in

the network is a 1x1 convolutional layer to output a mask with the predicted class

in each pixel. The U-net network is illustrated in Figure 2.3.

Figure 2.3: Diagram of the U-net network architecture [1]. Each box represents a
multi-channel feature map and the arrows correspond to the different operations.
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2.2 Image-based surgical navigation

As previously mentioned, image-based navigation require a 3D model of the anatomy,

which is acquired pre-operatively through medical imaging (such as CT or MRI).

The 3D model relates with tools and instruments in the operating room, using one of

the tracking technologies, to support the surgeon in following a pre-specified surgical

plan. The typical navigation workflow starts by rigidly attach a reference marker to

the patient’s anatomy, followed by touching the bone surface with a calibrated tool

marker, allowing the 3D model to be registered with the anatomy [22, 49]. From

here, the bone can be tracked considering the relative pose of the reference marker

to the tracking system at each instance.

The MAKO Stryker Robotic Arm System [50] is an example of an image-based

surgical navigation that uses optical tracking. It also qualifies as a semi-active

robotic system since it has a robotic arm that assists the surgeon during the surgery.

2.2.1 Markerless video-based surgical navigation system

Markerless navigation from video-based tracking inevitably passes by being able to

estimate the 6D pose of femur and/or tibia given an accurate 3D model of the bone

obtained from a pre-operative image of the patient. Due to medical requirements,

the method to accomplish 6D pose estimation must be accurate, presenting errors

below 3 deg and 3-4mm, robust, being able to work in challenging situations where

there are significant levels of occlusion, light changes and variability across subjects,

and fast. State of the art methods for 6D pose estimation are reviewed next, divided

into categories based on the input type.

Depth The common solution is 3D registration that consists in finding the rigid

transformation that best aligns the input point cloud with the 3D model [51]. The

3D registration methods are usually comprised of global alignment, followed by

local refinement performed with the Iterative Closest Point (ICP) [52] algorithm.

The global alignment can be achieved by matching features extracted from the

model and estimating the pose using a RANSAC-like framework [53]. However,

these approaches fail when the point clouds are too smooth and/or noisy because

of the difficulty in finding repeatable saliences that can be matched [51]. Global

alignment can also be achieved by defining correspondences on points, such as the

family of algorithms 4PCS [54, 55, 56] that uses hypothesize-and-test schemes, by

finding sets of 4 points in one point cloud that are congruent to 4 points selected

in the other, or the point pair feature approach, first introduced by Drost et al.
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[57] and later improved by Vidal et al. [58], that creates a global model descriptor

based on oriented point pair features and matches that model locally using a voting

scheme. Registration methods are not suitable for the recognition of objects in

complex and cluttered scenes, usually requiring a previous step for object detection/

segmentation. More recently, methods based on DL, such as VoxelNet [59], present

deep networks for object pose estimation from 3D point cloud inputs.

RGB Classical methods determine the correspondences between the 3D model

and the input image, and estimate the pose using the Perspective-n-Point (PnP)

algorithm [60, 61]. Modern approaches combine CNN architectures to predict 2D

keypoints with the PnP algorithm to retrieve the object pose [62, 63, 64]. Other

methods propose end-to-end deep networks: SSD-6D [65] builds 6D pose hypotheses

from viewpoints and in-plane rotations predictions; PoseCNN [66] trains the network

to perform semantic labeling, 3D translation estimation and 3D rotation regression;

Sundermeyer et al. [67] learns implicit orientation with Augmented Autoencoders.

However, [65, 66, 67] report improved performance when using additional depth data

to refine the poses with the ICP algorithm, moving them into the latter category.

RGB-D Methods can be divided into template-based and learning-based. Template-

based approaches estimate the object pose by matching a defined template to the

input image. Hinterstoisser et al. [68] extracts color gradients from the color images

and computes 3D surface normals from the depth map. Learning-based approaches

extract discriminative features from the data and use classification algorithms to

predict pose hypotheses. Brachmann et al. [69] employs a random forest to obtain

pixelwise classification and optimizes the output with a RANSAC-based scheme.

Tejani et al. proposed Latent-Class Hough Forest, learning only from positive sam-

ples at the training stage. Recent methods are based on CNN architectures, such

as PointFusion [70] and DenseFusion [71] that combine data coming from RGB and

depth channels in end-to-end deep networks.

Conclusions Classical PnP approaches for 6D pose estimation from RGB can-

not handle the problem because of the difficulty in locating keypoints in medical

images, where bone surface is poorly textured, in an accurate and robust manner.

Fortunately, the introduction of deep learning-based methods and generic 6D pose

estimation from RGB images opened new possibilities by using deep networks to

replace naive, ad-hoc schemes that establish explicit image-model correspondences.

Nevertheless, and despite the many progresses in 6D pose from RGB, the outcome

of the BOP challenge [3, 27] clearly shows that results are substantially inferior to

the ones that can be accomplished with a depth camera. In addition, [71] shows
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that combining the color and depth information from RGB-D inputs boosts the

performance of end-to-end deep learning methods. For this reason, and given the

accuracy and robustness requirements in one hand, and the availability of commer-

cial, off-the-shelf RGB-D sensors on the other, it is wise to include depth cues in the

task of 6D pose estimation, instead of relying exclusively in RGB.

The aforementioned deep learning RGB/RGB-D methods for pose estimation require

training the 3D model of an object instance. However, for video-based markerless

navigation, the algorithm needs to handle high structure variation of bone surfaces,

given that in each surgery a new 3D pre-operative model of the bones is consid-

ered. There are very recent research efforts in category level tracking [72], but the

experimental results do not exhibit robust performance yet.

6D pose estimation is already being used in TKA navigation systems [49, 2]. Pre-

vious work [49] has employed 3D registration in the context of CAS for aligning a

pre-operative model with the patient’s anatomy. However, in [49] the anatomy is

reconstructed by touching the bone with an instrumented tool and the registration

process aligns 3D curves with a dense surface, still relying on the use of fiducial

markers.

The first attempt to accomplish markerless surgical navigation in TKA that we are

aware of is [2]. The presented prototype is an RGB-D based system that uses deep

segmentation to leverage geometric pose estimation: first, it uses a deep learning

technique to perform bone segmentation from RGB images; then, the depth infor-

mation corresponding to the targeted anatomy is extracted from the depth map

considering the segmented portion of the image; finally, the reconstructed point

cloud is used to register the 3D pre-operative model. As stated before, this proto-

type has some limitations, thus in Chapter 3 we provide further improvements for

this solution.

2.3 Image-free surgical navigation

Image-free navigation systems using optical tracking are the most widely used com-

puter assisted solutions in TKA [4]. In this type of navigation, the acquisition of

landmarks is a required step to create reference frames that relate the base markers

attached to the bones to the patient’s anatomy. Thus, intra-operatively, the surgeon

has to indicate the location of the landmarks presented in Table 2.1. Unlike the hip

center, that is estimated through a kinematic method, all the other landmarks are

localized using the tool marker. Additional points in the bone surface are also col-
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lected to allow the 3D reconstruction of the model [73]. Based on the acquired data,

the system proposes a surgical plan for the implant positioning [74].

Table 2.1: Required landmarks for navigation in image-free TKA. Copyright by
P3D.

Femur landmarks Tibia landmarks

Hip center Ankle center

Knee center Knee center

Whiteside’s line Anterior-posterior
axis

Epicondylar line Medial third tubercle

Anterior cortex Plateau points

State-of-the-art image-free surgical navigation systems for performing the TKA

surgery are mostly optical tracking systems. As an example, there is the Smith&Nephew’s

NAVIO Surgical System [75], which is robotics-assisted by using a robotic handheld

instrument that aids the surgeon in executing bone resections. More recently, Intelli-

joint launched Intellijoint KNEETM [76], that innovated with a mini-optical tracking

device that is portable.

As previously mentioned, all image-free navigation systems require the explicit pin-

pointing of several bony landmarks, yet, this task is time-consuming and error-prone.

A solution for this problem is given in Chapter 5, where we present a proof-of-concept

method to assist in this task.
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3

Markerless video-based surgical

navigation

This chapter provides a detailed description of an improved system based on the

prototype from [2]. The diagram in Figure 3.1 illustrates the markerless video-

based surgical navigation pipeline. The pipeline consists of four main stages: (1)

A depth camera is used to capture RGB and depth data during the surgery; (2)

Bone segmentation is performed in the RGB images; (3) The 3D surface of the bone

is reconstructed by applying the segmentation to the point cloud from the depth

sensor; (4) The reconstructed point cloud is aligned with the 3D pre-operative model

to retrieve the relative pose.

Figure 3.1: Markerless video-based surgical navigation pipeline, with the main
steps represented: (1) data acquisition, (2) bone segmentation, (3) extraction of
bone point cloud, and (4) bone registration.

The following sections 3.1, 3.2, 3.3 and 3.4 describe all the methods used in each

step. In the final section, 3.5, the experiments conducted to validate the proposed

system are presented, along with the obtained results.
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3.1 Data acquisition

3.1.1 System for data acquisition

For training the segmentation DL architecture, only RGB data is necessary, thus

any standard RGB camera can be used. The acquisition is in video, and frames are

then extracted, at 10 frames per second, using the open source library FFmpeg [77].

For evaluating the proposed TKA navigation solution, RGB and depth data need

to be captured. The platform setup in [2] was composed of a video camera and the

Occipital Structure Core Depth Sensor, with these components fixed together and

calibrated. Considering that the depth data from the sensor was very noisy, which

affected the registration results, research was done to find a new, more effective,

depth sensor.

The chosen equipment was the Intel RealSense Depth Camera D435i, a compact

camera that offers high RGB and depth resolution. Comparison between the speci-

fications of both cameras is presented in Table 3.1, as well as depth maps from both

sensors in Figure 3.2.

Table 3.1: Specifications from the Occipital Structure Core Depth Sensor and the
Intel RealSense Depth Camera D435i [78, 79].

Specifications Occipital Structure Core Intel RealSense D435i
Depth resolution Up to 1280 x 960 Up to 1280 x 720
Depth frame rate Up to 54 fps Up to 90 fps
Depth Min Z distance 30 cm 10,5 cm
RGB resolution 640 x 480 1920 x 1080
RGB frame rate Up to 100 fps 30 fps

(a) (b) (c)

Figure 3.2: Depth maps from (a) Occipital Structure Core Depth Sensor and
(b) Intel RealSense Depth Camera D435i. (c) Color bar represents the Z-values in
millimetres.
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The Intel RealSense SDK [80] was used to record and save the data through the

RealSense Viewer. The settings for data acquisition were RGB resolution of 1920 x

1080 px and depth resolution of 848 x 480 px, at 30 fps.

The acquisition of data in each experiment followed a protocol to capture video

sequences under different lighting conditions, from various perspectives and with

occlusions from hands and surgical tools, to represent the intra-operative scenarios

in a realistic manner. Figure 3.3 shows examples of frames in different scenarios.

3.1.2 Dataset description

The full dataset is a combination of video sequences captured from 8 different TKA

ex-vivo surgeries. During the execution of this project, I was given the opportunity

to attend some of these cadaver trials to collect data following the process described

in Section 3.1 (Knees from 4 to 8). The remaining data was taken from Perceive3D’s

database.

Table 3.2 presents the data used in this chapter. Some knees belong to the same

individual, not presenting much variability other than side difference. Differences

in knee anatomy and body structure across individuals contribute to inter-subject

variability. The images from each experiment also differ in the background and

lighting conditions. Examples of frames from each knee are given in Figure 3.3.

In some images, the femur and tibia have markers attached to the bones, that are

removed (as in Figure 3.4) before being introduced to the learning algorithm in order

to avoid any relationships between the location of the markers and the bones. This

is done automatically by detecting the markers through their pose, removing the

pixels corresponding to the area around them and inpainting that area.

Table 3.2: Information about each knee, such as knee side, individual’s gender and
data type.

Subject Dataset Side Gender Data type
1 Knee 1 Left Female RGB
2 Knee 2 Right Female RGB
3 Knee 3 Left Male RGB-D (Structure Core Sensor)

4
Knee 4 Left

Female RGB-D (RealSense Depth Camera)
Knee 5 Right

5
Knee 6 Right

Female RGB-D (RealSense Depth Camera)
Knee 7 Left

6 Knee 8 Right Male RGB-D (RealSense Depth Camera)
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(a) Knee 1.

(b) Knee 2.

(c) Knee 3.

(d) Knee 4.

(e) Knee 5.
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(f) Knee 6.

(g) Knee 7.

(h) Knee 8.

Figure 3.3: Examples of images from each knee.

(a) (b)

Figure 3.4: Image with (a) markers and (b) markers inpainted.
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3.2 Bone segmentation

3.2.1 Deep Learning architecture

As in [2], the chosen network to perform bone segmentation was the TernausNet

[81], an adaptation of the U-net network architecture (presented earlier in Section

2.1.1). In this architecture, the encoder is initialized with VGG11 neural network,

pre-trained on ImageNet [82].

To the original implementation provided by [81], Rodrigues et al. [2] suggested

adding dropout to prevent overfitting and freezing the encoder weights to optimize

only the decoder portion. Both suggestions are taken in our implementation as

hyperparameters. Hence, the hyperparameter search space for optimization contains

the number of epochs, learning rate, dropout ratio, the possibility to freeze the

encoder weights and the number of filters in the decoder portion of the network.

The number of filters influences the number of feature maps in the convolutional

layers of the decoder. The mini-batch size was set to 10 and the Adam algorithm

was used as an optimizer.

In this dataset, only a small percentage of the pixels in the images correspond to the

target anatomies, identifying a very common problem in the medical imaging field

that is class imbalance [83]. The TernausNet architecture applies the cross-entropy

loss function in the optimization process of the network [81]. Although this loss is

the most used for classification purposes, it is not the best choice when handling seg-

mentation tasks in datasets with unbalanced classes, since it averages the pixel-wise

error. Inspired by [84], we implemented a loss function (loss) that incorporates the

cross-entropy and dice losses, LCE and LDICE respectively (Equation 3.1, complete

definition of both losses in [84]), to help in achieving the optimal pixel-wise accuracy

and segmentation metrics. The dice loss measures the overlap between the predicted

output and the label.

loss = LCE + (1− LDICE) (3.1)

This time, in the final stage, a convolutional layer with softmax activation was

used to create a pixel-wise mask of three classes (background, femur and tibia),

to predict simultaneously at each instant both anatomies, instead of the sigmoid

activation used in [2] to predict only two classes (background and femur).

The network implementation was done in Pytorch [85], a Python library for Deep
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Learning, that allows to use GPU for fast computation. Thus, it was used a computer

with 4 GPUs, which accelerated the training process.

The final network architecture is illustrated in Figure 3.5.

Figure 3.5: Deep Learning network architecture used for bone segmentation, based
on TernausNet [81]. The output mask predicts simultaneously the femur and tibia.

3.2.2 Generating label images

The network in Figure 3.5 requires to be trained with thousands of images in

which each pixel has a label corresponding to one of the classes (background, femur

or tibia). Manually labeling every image would be extremely tedious and time-

consuming, and infeasible in an acceptable amount of time.

The approach presented by [2] to perform the labelling task of a similar dataset

was accomplished with the manual segmentation of some images and propagating

the segmentation to the neighboring frames using the initial pose registration, the

detected marker pose at that frame and the 3D bone model. The method proved to

be effective in relieving the extensive manual segmentation, however, it still needed

constant supervision, since it was not sensitive to occlusions and shifts in the view-

point.

To overcome this issue, we developed a scheme for the automatic labeling of images

that only requires the manual labelling of 100 images per bone instance. For each

bone instance, the images to be manually labeled are temporally sampled to make

a good discretization of the variability of poses and occlusions. Then, the manually

labelled data is modeled using the network presented in Section 3.2.1 and, in this

specific case, we aim that the model overfits the data so it can predict the remaining
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labels for the same bone. Without the need of any tracking instrumentation using

this method, it’s much easier to gather training data intra-operatively and grow the

dataset to improve generalization capabilities.

Figure 3.6: Representation of the labelling approach of [2]. The method needs con-
stant supervision to define when new manual segmentations need to be performed.

Figure 3.7: Representation of our labelling solution. A small sample of the dataset
is manually labeled at once and introduced to the network. The overfitted model al-
lows to generate accurate segmentations for the rest of the dataset, without requiring
constant supervision and tracking instrumentation.

3.2.3 Data augmentation techniques

To provide robustness to the model, training data was augmented by applying ran-

dom vertical/horizontal flips (Fig. 3.8b), shift, scale and rotation transformations

(Fig. 3.8c) and by randomly adjusting brightness and contrast (Fig. 3.8d), resort-

ing to Albumentations [86], an open source library for fast implementation of data

augmentation operations.
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(a) (b)

(c) (d)

Figure 3.8: Data augmentation techniques in (a) original image and mask: (b)
Flip, (c) ShiftScaleRotate and (c) RandomBrightnessContrast.

3.2.4 Evaluation metrics

To evaluate the segmentation performance, two metrics often used in image seg-

mentation tasks were adopted: Intersection over Union (IoU) and Dice coefficient.

These measure the overlap between the label and the predicted mask, for each class

individually. Formulation of the metrics are denoted as shown:

IoU =
TP

TP + FP + FN
(3.2)

Dice =
2× TP

2× TP + FP + FN
(3.3)

with TP being the number of pixels correctly classified as femur or tibia, FP the

number of pixels incorrectly classified as femur or tibia and FN the number of pixels

incorrectly classified as background.

3.3 Extraction of bone point cloud

Color and depth data are captured from different components in the depth camera

(RGB color sensor and depth module, respectively), translating in data associated

to different coordinate systems. A set of transformations need to be performed in

order to align the depth stream with the color stream.
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The calibration of each component is represented in Equation 3.4:

Kd =

f
d
x 0 cdx

0 fd
y cdy

0 0 1

 Krgb =

f
rgb
x 0 crgbx

0 f rgb
y crgby

0 0 1

 (3.4)

where fx and fy describe the focal length of the image; cx and cy are the pixel

coordinates of the principal point (center of projection). These parameters are

provided by the manufacturer.

Back-projection From the pixel coordinates of the depth image, pd(x,y), consid-

ering the depth camera intrinsics, Kd, the 3D point in the depth coordinate space

is Pd(X,Y,Z), as follows:

Pd = d


x−cdx
fd
x

y−cdy
fd
y

1

 (3.5)

with d = pd(x,y), being the depth value obtained with the depth sensor.

Transformation The 3D point in the depth coordinate space, Pd(X,Y,Z), is

transformed to the RGB coordinate space, Prgb(X,Y,Z), using the extrinsic pa-

rameters, also given by the manufacturer, defined as a rotation matrix, R, and a

translation vector, t :

Prgb = RPd + t (3.6)

Projection The final step is recovering the pixel coordinates of the RGB im-

age, prgb(x,y), from the projection of the 3D point in the RGB coordinate space,

Prgb(X,Y,Z), this time considering the RGB camera intrinsics, Krgb:

prgb =

[
frgb
x ·X
Z

+ crgbx

frgb
y ·Y
Z

+ crgby

]
(3.7)

Once the color and depth frames are aligned (Figure 3.9), the obtained segmentation

mask from the previous step (Section 3.2) is applied to the depth map in order to

extract only the points corresponding to the bones.
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(a) (b) (c)

Figure 3.9: (a) Color frame with resolution 1920x1080 px. (b) Depth frame with
resolution 848x480 px. (c) Aligned color and depth frames. Representation not to
scale.

3.4 Bone registration

3.4.1 Registration algorithm

Similarly to [2], we decided to employ the method proposed in [51] to solve the reg-

istration task, which consists in aligning the 3D surface of the bone reconstructed

by making use of the depth sensor with the pre-operative model. This method has

proved to be faster and more accurate than the family of algorithms 4PCS (presented

in 2.2.1) [51]. It is also resilient to very high levels of outliers, which is desirable

in our case because small errors in the segmentation step (Section 3.2) can cause a

significant amount of outliers. Such characteristics of speed and robustness to out-

liers are achieved by extracting pairs of points and their normals in one point cloud,

finding congruent pairs of points in the other to establish alignment hypotheses and

testing them in a RANSAC scheme.

Experiments on the registration of the femur using this method had already been

performed in [2], presenting good accuracy. However, and to the best of our knowl-

edge, attempts on registering the tibia have never been performed. Comparing to

the femur, performing markerless alignment of the tibia with a pre-operative model

is much more challenging due to the significantly smaller area of exposed bone. The

registration parameters were tuned for accommodating the noise in the data and

the small area of exposed bone.

3.4.2 Evaluation metrics

In the test set, the femur and tibia have markers attached to the bones, that are

tracked for evaluation of pose estimation. The quantitative analysis of the 6D pose

estimation is performed in images where the markers are visible and can be tracked

using [22]. Using the marker’s pose in each image, the reconstructed point cloud is
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represented in the marker’s reference frame and registration is afterwards performed.

Registrations are then considered successful if the algorithm converges to a stable

solution, and if they have at least 80% inliers, which means that at least 80% of the

points of the reconstructed surface are at a maximum distance of 2 mm from the

model.

In theory, since the marker is rigid with respect to the bone, the registration result

should provide the same transformation for all images. Thus, in order to assess the

registration performance, the ground truth, Tgt, is deemed as the median transfor-

mation computed from the set of all considered registrations and compared with

each estimation:

dTi = Ti
−1Tgt (3.8)

Consider that dTi is composed of a rotation matrix, Ri, and a translation vector,

ti. The relative rotation errors, eroti , are taken as the angular magnitude computed

from the the Rodrigues’ rotation formula (Equation 3.9), and the relative translation

errors, eti, are taken as the norm of the translation component (Equation 3.10):

eroti = cos−1(
1

2
(tr(Ri)− 1)) (3.9) eti = ‖ti‖ (3.10)

The final rotation and translation errors, erot and et, are reported as the median of

the relative errors, in degrees and millimeters, respectively.

3.5 Experiments and results

This section reports results of the segmentation and registration stages of the pro-

posed pipeline in ex-vivo data (in Sections 3.5.2.2 and 3.5.2.3), and provides a com-

parison with the baseline method [2] (Section 3.5.2.4). It begins with an experiment

for analysing the accuracy of the depth sensor is performed (Section 3.5.1).

3.5.1 Maximum registration accuracy

As previously mentioned, in a TKA procedure, it is medically required that the

alignment between the patient’s anatomy and the pre-operative model presents an

error below 3 deg and 4 mm. Since it is known that the accuracy of consumer depth

sensors is typically in the range of 2 to 5 mm [87], which is considerable when com-

pared to the medical accuracy requirements, we decided to measure the maximum
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possible accuracy achieved when performing registration with our depth sensor. For

this, we used the experimental setup illustrated in Figure 3.10 to acquire a dataset

of around 200 RGB-D images of a dry femur model in a controlled environment

without occlusions, light changes, specularities or any other sources of error. The

pixels corresponding to the femur were manually segmented in the RGB images for

generating 3D point clouds that were then registered with the virtual model. Under

these controlled circumstances, the median registration error was 1.13 deg and 1.78

mm, which can be considered as the amount of error induced solely by the depth

sensor.

Prior to acquiring the RGB-D images, it was experimentally observed that the white

surface of the dry knee model caused specularities that significantly increased the

error in the measured depth. This source of error was eliminated by painting the

model with a matt color, as can be seen in Figure 3.10. However, in the ex-vivo

sequences, the reflection of light on bone surface occurs (refer to Figure 3.11) and

cannot be eliminated. This is, besides the depth sensor’s low accuracy, another

relevant source of error, which is, unlike the first, difficult to quantify.

Figure 3.10: RGB-D camera (right)
used for the experiments presented in
this thesis, and the 3D printed femur
model with a marker attached (left) used
for analyzing the depth measurement er-
rors of the sensor.

Figure 3.11: Examples of images with
reflection of light on bone surface (iden-
tified with circles), which affects the
depth quality.

3.5.2 Ex-vivo experiments

3.5.2.1 Training the network

The DL network was trained considering the data from 6 ex-vivo experiments (Table

3.3). The experiments to tune the hyperparameters were conducted using leave-
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one-patient-out cross-validation, resulting in 5-fold cross-validation (remember from

Table 3.2 that Knee 4 and 5 are from the same subject). Table 3.4 presents the

division of the train and validation sets into each fold. This validation approach

allows to evaluate the behavior of each model when tested to unseen data from

different individuals.

Table 3.3: Dataset distribution for bone segmentation.

Dataset Number of images

Train/
Validation

Knee 1 600
Knee 2 5023
Knee 3 9486
Knee 4 6588
Knee 5 7918
Knee 8 10518

Test
Knee 6 8376
Knee 7 8273

Table 3.4: 5-fold cross-validation division of the train and validation sets.

Fold Train set Validation set
1 Knee 1, 2, 3, 4, 5 Knee 8
2 Knee 2, 3, 4, 5, 8 Knee 1
3 Knee 1, 3, 4, 5, 8 Knee 2
4 Knee 1, 2, 4, 5, 8 Knee 3
5 Knee 1, 2, 3, 8 Knee 4, 5

Several models were trained with different combinations of hyperparameters, ran-

domly chosen from a defined range of values:

• Number of epochs: 3, 4, 5, 6, 7, 8, 9, 10

• Learning rate: [0.00001, 0.001]

• Dropout ratio: [0, 0.9]

• Freeze encoder weights: 0, 1

• Number of filters in the decoder: 16, 32

The hyperparameters selected to train the final network were the ones that yielded

the best results in the cross-validation process (Table 3.5). Thus, the final Deep

Learning model was trained only in the decoder weights of the network with the

number of filters defined to 16, a learning rate of 2e-4 and a dropout probability of

52% for 6 epochs.
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Table 3.5: U-net models trained for bone segmentation with different hyperparam-
eter combinations. Mean Dice and Mean IoU are the average metrics of all classes
in the images from the validation sets of all folds. The best results (model 003) are
highlighted in bold.

Model
Number of

epochs
Learning

rate
Dropout

ratio
Freeze

encoder
Number of

filters
Mean IoU Mean Dice

000 10 0,000218 0,309 1 32 0,512 0,629
001 9 0,000028 0,263 1 16 0,505 0,624
002 4 0,000015 0,563 1 32 0,490 0,613
003 6 0,000213 0,516 1 16 0,532 0,648
004 10 0,000012 0,018 1 16 0,505 0,622
005 10 0,000044 0,752 0 16 0,475 0,575
006 7 0,000087 0,083 0 16 0,409 0,493
007 4 0,000052 0,876 0 16 0,460 0,558
008 4 0,000030 0,541 0 16 0,525 0,632
009 4 0,000014 0,862 0 32 0,484 0,593
010 7 0,000131 0,609 0 32 0,431 0,528

3.5.2.2 Quantitative results

The final model was tested individually in two test datasets: Knee 6 and Knee 7.

The quantitative results for each dataset are presented below.

Knee 6

The Knee 6 dataset is composed of 8376 images. Figure 3.12 shows the distribution

of the segmentation metrics in this dataset. The Deep Learning model achieved a

median IoU of 0.794 and a median Dice coefficient of 0.885 for femur segmentation,

with the outliers displayed in the distribution corresponding to 8% of the total

number of images. As for the segmentation of the tibia, the metrics obtained were

IoU of median 0.610 and Dice coefficient of median 0.758.

(a) (b)

Figure 3.12: Metric distribution for the (a) femur and (b) tibia segmentation in
the Knee 6 dataset.
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Following the constraints explained in Section 3.4.2, Table 3.6 presents the percent-

age of the dataset that was used for registration (images with anatomy’s marker

detected) and the percentage of the dataset with successful registrations.

Table 3.6: Percentage to the total number of images of the Knee 6 dataset consid-
ered in the registration step.

Bone
Point clouds

for registration
Successful

registrations
Femur 84,5% 36,4%
Tibia 80,5% 39,3%

Distribution of the errors calculated from the registrations is showed in Figure 3.13.

Considering the distribution of successful registrations, for the femur registration,

the obtained median rotation error was 3.13 deg and the median translation error

was 1.85 mm, and for the tibia registration, the results were 10.34 deg of median

rotation error and 3.78 mm of median translation error.

(a) (b)

Figure 3.13: Distribution of registration errors for the (a) femur and (b) tibia in
the Knee 6 dataset.

Knee 7

The Knee 7 dataset is comprised of 8273 images. Figure 3.14 shows the distribution

of the segmentation metrics in this dataset. The femur segmentation results were

IoU of median 0.854 and Dice coefficient of median 0.921, where around 4% of the

segmentations are outliers in the distribution. Regarding the tibia segmentation,

the model obtained a median IoU of 0.689 and a median Dice coefficient of 0.816,

with the outlier percentage being 8% of the images in the dataset.

Table 3.7 specifies the percentage of the dataset that is used for registration and the

percentage of the dataset that has successful registrations.
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(a) (b)

Figure 3.14: Metric distribution for the (a) femur and (b) tibia segmentation in
the Knee 7 dataset.

Table 3.7: Percentage to the total number of images of the Knee 7 dataset consid-
ered in the registration step.

Bone
Point clouds

for registration
Successful

registrations
Femur 80,3% 33,9%
Tibia 81,9% 67,9%

Distribution of the errors assessed from the registrations is showed in Figure 3.15.

Regarding the distribution of successful registrations, for the femur registration, the

results were 1.58 deg of median rotation error and 2.25 mm of median translation

error. As for the tibia registration, the achieved median rotation error was 5.18 deg

and the median translation error was 2.57 mm.

(a) (b)

Figure 3.15: Distribution of registration errors for the (a) femur and (b) tibia in
the Knee 7 dataset.
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Results summary

Table 3.8 summarizes the segmentation and registration results for each test dataset.

Table 3.8: Segmentation and registration results in the test datasets.

Dataset Bone
Number of

images
Median

IoU
Median

Dice
Successful

registrations
Median erot

(deg)
Median et

(mm)

Knee 6
Femur

8376
0.794 0.885 3052 3,13 1,86

Tibia 0.610 0.758 3295 10,34 3,78

Knee 7
Femur

8273
0.854 0.921 2801 1,58 2,25

Tibia 0.689 0.816 5620 5,18 2,57

From the quantitative analysis, some observations can be made:

• Considering the segmentation results, we can verify that the Deep Learning

model generalizes to unseen knees from different individuals, presenting good

results for the femur and reasonable results for the tibia.

• In both datasets, the segmentation and registration accuracies of the tibia

are inferior than for the femur. This is due to the fact that only a small

portion of the tibia is exposed, with large occlusions caused by the patella and

surrounding tissue.

• In all cases except the registration of the tibia in Knee 7, it can be seen that a

significant amount of registration results are considered unsuccessful. This can

be explained by the noise of the depth sensor that, according to our experiment

in Section 3.5.1, is in the same order of magnitude as the threshold for selecting

inliers, causing many registration attempts to be discarded because significant

percentages of reconstructed points are considered as outliers. By relaxing

this threshold, more registrations would be accepted but the medical accuracy

requirements would be compromised.

• For the case of the registration of the tibia in Knee 7, almost 68% of the

dataset has registrations considered successful. Since the segmentation accu-

racy is high, it can be assumed that there are few outliers caused by incorrectly

classified pixels. However, the fact that the visible area of the tibia is small

and considering the existence of other sources of occlusions, such as objects

obstructing the line-of-sight and the camera’s viewpoint, it is common for the

reconstructed point cloud to be very local, causing the registration algorithm

to converge to incorrect solutions with high percentages of inliers. Although

the percentage of registrations of the tibia in Knee 6 is larger than of both fe-

murs, this difference is not so evident because i) there are more outliers caused

by incorrect segmentations and ii) due to occlusions, the area of reconstructed

32



3. Markerless video-based surgical navigation

points becomes so small that the algorithm does not even attempt to perform

registration.

• Another observation is that the registration accuracy obtained in Knee 7 is

higher than that of Knee 6. This comes from the fact that the segmentation

results in Knee 7 were also better and, in the case of the tibia, it was better

exposed in this dataset.

3.5.2.3 Qualitative results

Figures 3.16 and 3.17 show qualitative examples for segmentation and registration

of femur and tibia in the Knee 6 and Knee 7 datasets, respectively.

These examples prove that it is feasible to track both bones for different poses with

accurate results and even handle small occlusions. Note that for Knee 6 the tibia is

less exposed than in Knee 7, which is related to the higher error displayed in Table

3.8.
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(a) Femur results. (b) Tibia results.

Figure 3.16: Images from the Knee 6 dataset with overlaid segmentation masks
(ground truth: purple; predicted: green; both: cyan) and projection of the registered
3D model.
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(a) Femur results. (b) Tibia results.

Figure 3.17: Images from the Knee 7 dataset with overlaid segmentation masks
(ground truth: purple; predicted: green; both: cyan) and projection of the registered
3D model.
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To further test the Deep Learning model, we ran it in images from videos found in

the VuMedi 1 library, to predict femur and tibia segmentations. From the examples

presented in Figure 3.18, it is possible to verify that the model generates accurate

predictions, being able to generalize to different surgeries.

(a) Video from [88].

(b) Video from [89].

(c) Video from [90].

(d) Video from [91].

Figure 3.18: Images from videos found in the VuMedi library with overlaid seg-
mentation predicted masks (femur: purple; tibia: green).

1www.vumedi.com
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3.5.2.4 Comparison with the baseline method

For direct comparison with the work of [2], the author provided the trained model

to run in our test set. The model was trained on approximately 9000 images from

the datasets of Knee 2 and 3. However, it was also tested in images from Knee 3,

not presenting additional experiments to analyse the model performance on unseen

data. In these conditions, the model scored an IoU of median 0.853 and a Dice

coefficient of median 0.921 for femur segmentation.

Table 3.9 presents the segmentation results using the trained model from [2] in

our test datasets. Note that with this model, it is only possible to predict femur

segmentation masks.

Table 3.9: Segmentation results comparing our model with the model from [2] in
our test datasets.

Our results Results with [2]

Dataset Bone
Number of

images
Median

IoU
Median

Dice
Median

IoU
Median

Dice
Knee 6 Femur 8376 0.794 0.885 0.350 0.461
Knee 7 Femur 8273 0.854 0.921 0.488 0.616

Considering the results obtained by the model from [2] in our test set, we can

state that it doesn’t perform as well on unseen bones. Comparing with the results

achieved with our final model, we can establish that the addition of new data to

the training set and the adjustments made to the network led to an increase in the

generalization power of the method, improving the segmentation step of the system.

With these segmentation results, we decided not to perform the registration step

since it is obvious that the errors would be worse than ours.
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4

Evaluation of video-based surgical

navigation system

In order to evaluate how a system with a structure similar to the one in Chapter

3 performs as a 6D pose estimation algorithm, and to simultaneously compare it

with the state-of-the-art, a method was submitted to the BOP Challenge 2019,

under the name of Félix&Neves-ICRA2017-IET2019. This chapter documents its

implementation and reports the achieved results.

4.1 BOP Challenge 2019

BOP stands for Benchmark for Object Pose Estimation, whose goal is to capture

the state-of-the-art in estimating the 6D pose. The BOP Challenge 2019 consisted

in the task of recovering the 6D localization of a varying number of instances of a

varying number of objects (ViVo for short) in a single RGB-D image.

4.1.1 Method

The method follows the pipeline presented in Chapter 3:

1. Segmentation of the object in the image

Since U-net is a semantic segmentation network (refer to Figure 2.2), is not

suitable for the ViVo task, which requires a segmentation mask for each in-

stance of an object. Therefore, an alternative Deep Learning architecture was

implemented to perform the segmentation step of the pipeline. Section 4.1.1.1

describes the chosen architecture.

2. Extraction of the targeted object’s point cloud

The provided test RGB-D data was already aligned, so it was only necessary

39



4. Evaluation of video-based surgical navigation system

to apply the segmentation mask of each instance to the depth map in order to

retrieve its point cloud.

3. Registration of the reconstructed point cloud with the object’s 3D

model

The registration algorithm from [51] was used to deliver the pose estimation

for each instance resulting from the previous step.

4.1.1.1 Deep Learning architecture

The chosen DL architecture to accomplish instance segmentation was Mask-RCNN

[92]. This network is introduced as an extension to the R-CNNs [93, 94], that already

successfully performed the task of object classification and detection. Considering

the Faster R-CNN architecture [94], two different CNN can be used as the backbone,

either a ResNet or a Feature Pyramid Network (FPN), for feature extraction. Then

follows a Region Proposal Network (RPN) to find Regions of Interest (ROI) and

finally a ROIPool extracts feature maps from each region and performs classification

and bounding-box regression. The Mask R-CNN architecture adds a branch to this

last stage, with a Fully Convolutional Network (FCN) that generates a mask to each

region [92].

The implementation was provided by [95], which uses Keras [96], a deep learning

interface that runs on top of Tensorflow [97], a machine learning platform. The

implementation was adapted to the BOP datasets format.

Our implementation considered the ResNet backbone, since it reported better per-

formance in [92]. Additionally, the network was initialized with pre-trained weights

on the MS COCO dataset.

4.1.2 Experimental setup

4.1.2.1 Datasets

BOP combines different datasets that were previously introduced in the literature

for the evaluation of methods for 6D object pose estimation. Table 4.1 shares details

about each of the datasets, such as the number of objects, number of test images,

type of training data provided and conditions on the test images.
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Table 4.1: Description of the datasets from the BOP Challenge 2019. Figures from
[3].

LM-O [69]

15 objects

200 test images

Synthetic training data

Objects with occlusions in cluttered scenes

T-LESS [98]

30 objects

1000 test images

Synthetic training data

Varying complexity with cluttered scenes

ITODD [99]

28 objects

721 test images (grayscale)

Synthetic training data

Several instances of the objects

HB [100]

16 objects

300 test images

Synthetic training data

Varying complexity with cluttered scenes

YCB-V [66]

21 objects

900 test images

Real training data

Limited clutter

IC-BIN [101]

2 objects

150 test images

Synthetic training data

Several instances with heavy occlusion

TUD-L [27]

3 objects

600 test images

Real training data

Moving objects and different light conditions
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4.1.2.2 Training images

Besides the YCB-V and TUD-L datasets, which had real training data, all the other

datasets had only synthetic training data available, that was generated by projecting

the 3D models at different poses on a black background (Fig. 4.1a).

Training the network with the provided synthetic images would not allow generaliza-

tion for the test sets. Hence, we generated 30 000 new synthetic images per dataset

for training. This was accomplished by adding randomly different objects/ instance

of objects with different poses to images from the NYU Depth dataset [102] as the

background. Figure 4.1 shows some examples of generated images.

(a) (b) (c) (d)

Figure 4.1: Synthetic training images of the BOP datasets: (a) provided; (b-d)
generated.

4.1.2.3 Training the network

A specific model was considered for each dataset. Real training images were used, if

available, otherwise, the network was trained with the generated synthetic images.

The network architecture was trained with the configurations of the original imple-

mentation [95], across all datasets, since tunning of hyperparameters was not allowed

by the challenge rules (”each method has to use an identical set of hyperparameters

across all objects and datasets” [3]).

4.1.3 Results

The test images annotated with ground-truth are publicly available for most datasets,

except for the HB and ITODD that only have validation images. The instance seg-

mentation performance is assessed using the Mean Average Precision (mAP) metric,

for detections with IoU > 0.5. The performance score for the pose estimations in

each dataset is measured by the Average Recall (AR) (explained in [3]). Table 4.2

shows the results of our method in the test set of each dataset (validation set for

HB and ITODD).
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Table 4.2: Results of our method for the BOP datasets.

Dataset LM-O T-LESS ITODD HB YCB-V IC-BIN TUD-L
mAP 0.483 0.314 0.374 0.667 0.845 0.381 0.974
AR 0.394 0.212 0.065 0.526 0.529 0.510 0.851

From Table 4.2 some conclusions can be drawn: as expected, the segmentation

network works better when trained with real data, which leads to better pose esti-

mations; datasets with occlusions and cluttered scenes have increased difficulty.

The final results for the BOP Challenge 2019 are presented in Figure 4.2. Consid-

ering the overall results of all participants, our method ranked 6th place.

Figure 4.2: BOP Challenge 2019 results [3], where the performance is measured
by the Average Recall (AR) for each dataset and the overall score is calculated as
the average of the per-dataset scores. Our method ranked 6th place.

Methods classified above ours are based in point pair features and use mostly depth

information [58, 57]. We were the first classified that used a DL-based method.

Actually, this year, the challenge opened again with the addition of photorealistic

synthetic training data for all datasets to reduce the entry barrier of DL-based solu-

tions. This made a huge difference and currently the DL-based methods surpassed

the previous leaders. We did not had the opportunity to submit this year, however,

we intend to in the future, since we believe the new training data would help improve

the method’s performance.
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5

Automatic detection of anatomical

landmarks for image-free

navigation

This chapter overviews the concept for automatic detection of landmarks in RGB

images. At this early stage of work, validation of the method will be performed

only for one specific landmark of the femur (whiteside’s line). However, the same

methodology can be extended to the remaining landmarks of the femur and tibia.

5.1 Method overview

The U-net architecture was already explored to perform the task of landmark lo-

calization in medical image data, more specifically applied to hand images [103],

achieving great results. Therefore, we decided to adapt the implementation previ-

ously presented in Section 3.2 for this purpose.

In this case, the network has to be trained individually for each landmark, since

some of the landmarks are located in the same pixels, e.g. knee center of the femur

with the whiteside’s line and knee center of the tibia with the anterior-posterior axis.

Thus, the DL network is trained considering only one positive class and the resulting

output is a binary mask (with each pixel classified into landmark or background),

that is created by using a sigmoid activation in the last convolutional layer.

A new labelling scheme had to be developed for generating the landmark segmenta-

tion masks, required to train the deep learning model (described in Section 5.1.1).

The segmentation metrics are considered for the training process of the network,

however, these are not the metrics used to assess the performance of the method.

Instead, the network’s prediction masks undergo a post-processing step in order to
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deliver the final results (all the details in Section 5.1.2).

5.1.1 Generating label images

The process to generate labels to the images is automatic, divided into four steps,

illustrated in Figure 5.1. The landmarks were acquired intra-operatively by an

orthopedic surgeon and saved in the model’s reference frame (Fig. 5.1a). The

model and the landmarks are projected to the RGB image using the initial model-

to-anatomy registration and the detected marker pose (Fig. 5.1b). The labeled

segmentation of the bone earlier performed (Section 3.2.2) is applied to define the

points of the model that are exposed (Fig. 5.1c). This step allows to deal with

occlusions, if applicable. Finally, the region related to the landmark is used to

create a pixelwise mask (Fig. 5.1d).

(a) (b)

(c) (d)

Figure 5.1: Steps for generating landmarks segmentation masks: (a) whiteside’s
line depicted in black in the model’s reference frame; (b) Model and landmark
projected into one image; (c) Projection after applying the bone segmentation; (d)
The generated mask for the landmark is overlaid in the image (in white).

5.1.2 Evaluation protocol

Some post-processing steps need to be executed after retrieving the DL model’s

prediction masks, in order to assess its performance. The post-processing is imple-
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mented in MATLAB, resorting to the geom2d toolbox [104].

Regarding the landmark detection task, we aim at two different types of outputs:

either a point, for landmarks such as the knee center and anterior cortex; or a line

when referring to the whiteside’s line and the anterior-posterior axis.

Line output The pixels classified as positives in the predicted segmentation

mask are taken as inputs to the lineFit function [104], that fits a straight line to

this set of points. Then, the orthogonal distance of each endpoint of the ground-

truth line segment (p1 and p2) to the predicted line is calculated, with the function

distancePointLine [104], resulting the values d1 and d2, that are averaged to measure

the error, in px. For a better comprehension, these operations are represented in

Figure 5.2.

Point output For this type of output, it is determined the centroid of the pix-

els classified as positives in the predicted segmentation mask. Then, the distance

between the ground-truth point and the predicted corresponds to the error.

(a) (b)

(c)

Figure 5.2: Evaluation protocol for line outputs: (a) Image with overlaid predicted
segmentation mask (in white); (b) Line fitted to the set of predicted points (in
orange); (c) Operation to measure the error between the ground-truth line segment
and the predicted line.
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5.2 Experiments and results

This section reports the experiments for testing the validity of the proposed method

and its results. As mentioned before, the experiments were only conducted for the

whiteside’s line.

5.2.1 Training the network

From the ex-vivo experiments described in Section 3.1.2, only four had ground-truth

available (landmarks digitalized intra-operatively): Knee 4, 5, 6 and 7. Since the

data we have is limited, the same dataset is used for both validation and testing

purposes. Additionally, instead of considering the total images of these experiments,

only a small set that avoids the presence of occlusions was used, in order to facilitate

the process and test whether the method works in optimal conditions. The dataset

distribution is presented in Table 5.1.

Table 5.1: Dataset distribution for landmark detection.

Dataset Number of images

Train
Knee 4 1077
Knee 5 2026
Knee 6 1858

Validation/
Test

Knee 7 2147

Once again, a search for the best hyperparameters combination was carried (Table

5.2).

Table 5.2: U-net models trained for landmark detection with different hyperpa-
rameter combinations. The best results (model 002) are highlighted in bold.

Model
Number of

epochs
Learning

rate
Dropout

ratio
Freeze

encoder
Number of

filters
Mean IoU Mean Dice

001 5 0,000019 0,451 1 32 0,168 0,265
002 6 0,000047 0,630 0 32 0,287 0,425
003 10 0,000142 0,578 0 32 0,274 0,408
004 7 0,000021 0,143 0 32 0,249 0,376
005 10 0,000017 0,296 0 32 0,259 0,393
006 10 0,000995 0,239 0 32 0,108 0,170
007 6 0,000018 0,690 1 32 0,163 0,258
008 8 0,000055 0,301 1 16 0,149 0,235
009 8 0,000018 0,793 1 16 0,142 0,226
010 10 0,000349 0,822 1 16 0,228 0,350
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Even though the segmentation metrics are not representative of our final results, they

are considered to choose the Deep Learning model from Table 5.2. Therefore, the

selected model was trained in the complete network (encoder and decoder weights),

with the number of filters set to 32, a learning rate of approximately 5e-5 and a

dropout probability of 63% for 6 epochs.

5.2.2 Quantitative results

During the experiment of the Knee 7, two trials were done intra-operatively by an

ortopedic surgeon to acquire the bone landmarks (Figure 5.3a). Thus, one of the

measurements was chosen to be the ground truth, and the other will be considered

to compare the amount of error introduced by the proposed method with the intra-

observer error.

(a) (b)

(c) (d)

Figure 5.3: Measurements for the whiteside’s line acquired intra-operatively in
Knee 7 (a) represented in the model’s reference frame and (b-d) projected into
images. The measurement chosen as the ground truth is depicted in black.

The model is tested in the images of Knee 7 and the predictions are evaluated follow-

ing the directions presented previously (Section 5.1.2). Additionally, the evaluation

methodology is also performed to the projection of the second intra-operative ac-

quisition of the same landmark (represented in red in Figure 5.3). Figure 5.4 shows

the error distribution for both cases.
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5. Automatic detection of anatomical landmarks for image-free navigation

Figure 5.4: Error distribution for the predicted landmark location and for the
projection of the landmark acquired intra-operatively in the test images.

For our method predictions, the obtained median error was 4.94 px, while the test

for the landmark acquired intra-operatively achieved a median error of 7.25 px. Our

method can generate outliers in some images (50 images in the presented distribu-

tion), however, these correspond to only a small percentage of the dataset. From

these results it’s clear that the automatic method is closer to the ground truth than

the other measurement acquired intra-operatively.

5.2.3 Qualitative results

Figure 5.5 allows visualization of the obtained results in the test dataset.

Given that the model was validated and tested in one knee that is similar to one that

is present at training time (since they belong to the same individual), further tests

were needed to establish that the proposed method can generalize. Therefore, the

method was tried in another knee (Knee 8) and the qualitative results are provided in

Figure 5.6. Although this knee doesn’t have ground truth acquired intra-operatively,

it’s possible to see the dashed lines physically marked in the bone that were made

by an experienced surgeon and compare with our results, which have proven to be

very accurate.
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5. Automatic detection of anatomical landmarks for image-free navigation

Figure 5.5: Images from the test dataset with the ground-truth (black) and the
predicted (orange) whiteside’s line.

Figure 5.6: Images from another dataset with the predicted (orange) whiteside’s
line. The dashed lines physically marked in the bone were made by an experienced
surgeon to localize the landmark.
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6

Discussion and future work

Total Knee Arthroplasty (TKA) is a surgical procedure performed in patients suf-

fering from knee arthritis. Several computer-based navigation systems have been

developed in order to assist the surgeon in performing the surgery with optimal

outcome. This thesis focused in navigation for TKA and addressed two problems

that are pointed by many as fundamental for its broader acceptance.

The main part of this thesis was committed to surpassing the limitations of the

system proposed by [2] to allow video-based navigation in TKA surgery without the

help of fiducial markers attached to the knee bones:

1. The proposed algorithm works well for the femur and has difficulties in han-

dling the tibia. The main problem of the tibia is that only a small portion of

the bone is exposed, which complicates both the segmentation and registration

stages. Nonetheless, results in tracking the tibia are encouraging and can be

improved with additional training data;

2. It improves considerably the performance over the work of [2] in terms of

accuracy and generalization, as shown in Section 3.5.2.4;

3. We achieved results within the accurate requirements of clinical practice, how-

ever, these are highly dependent on the dataset. Still, as analyzed in section

3.5.1, the main limitation currently is the depth sensor that contributes to a

considerable portion of the rotation and translation errors. Nevertheless, and

considering the constant improvements in depth sensing research and develop-

ment [29], it is reasonable to consider that our pipeline will fulfill the medical

requirements across all datasets in the near future. This will be a cornerstone

for CAS and will make accurate surgical navigation possible, solely based on

video, without requiring the attachment of markers to the bones.

As future work, we plan on adding more training data, ideally from in-vivo surgeries,

and combine end-to-end the segmentation and the geometric based registration algo-
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6. Discussion and future work

rithms to allow real time test on real individuals. Additionally, improve for working

with bones that were already resected - one possible strategy would be to update

the 3D model with the cuts actually performed.

Considering the proposed system as a 6D pose estimation algorithm, additional

evaluation of the method’s performance was accomplished in the BOP Challenge

2019 (Chapter 4). Comparing with other state-of-the-art approaches, our method

obtained competitive results. In the future, a new submission should be developed

with the new photorealistic training data to assess possible improvements. Also,

these state-of-the-art methods should be tested in our original dataset from the

clinical environment.

In the final chapter, a proof-of-concept algorithm is introduced for automatic detec-

tion of landmarks using Deep Learning. The proposed method was validated for one

landmark and the preliminary results are promising, showing that the characteristic

variability associated with this task can be minimized. Extension to the remaining

landmarks must be implemented and different DL architectures should be tested.

Overall, the solutions presented in this project are a novelty and future research

directions can be derived, that allow the implementation of navigation systems in

TKA to become an increasingly accepted reality.

54



Bibliography

[1] O. Ronneberger, P. Fischer, and T. Brox, “U-Net: Convolutional Networks

for Biomedical Image Segmentation,” CoRR, vol. abs/1505.04597, 2015.

[2] P. Rodrigues, M. Antunes, C. Raposo, P. Marques, F. Fonseca, and J. P.

Barreto, “Deep segmentation leverages geometric pose estimation in computer-

aided total knee arthroplasty,” Healthcare Technology Letters, vol. 6, no. 6,

pp. 226–230, 2019.
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[27] T. Hodaň, F. Michel, E. Brachmann, W. Kehl, A. Glent Buch, D. Kraft,

B. Drost, J. Vidal, S. Ihrke, X. Zabulis, C. Sahin, F. Manhardt, F. Tombari,

T.-K. Kim, J. Matas, and C. Rother, “BOP: Benchmark for 6D object pose

estimation,” European Conference on Computer Vision (ECCV), 2018.

[28] T. Hodan, D. Barath, and J. Matas, “Epos: Estimating 6d pose of objects

with symmetries,” in Proceedings of the IEEE/CVF Conference on Computer

Vision and Pattern Recognition, pp. 11703–11712, 2020.
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