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Abstract

A Brain-Computer Interface (BCI) provides a direct communication pathway between
the brain and an external device. BCI systems have improved significantly in recent years,
but are still unsuitable for many applications and not prepared for contexts out of the lab.
BCI has been researched primarily as a communication device for people with severe motor
disabilities, but a wide range of new areas of application is emerging. One of these areas
is personal identification/recognition in security systems.

The goal of this dissertation was to explore the use of Code-modulated Visual Evoked
Potentials (C-VEP) in two different contexts: as a BCI system for interaction, and as
user identifier. The C-VEP is a neural mechanism that results from a visual stimulus
modulated by a given bit pattern called pseudorandom binary sequence (PRBS). The use
of EEG and in particular C-VEP has been relatively unexplored in the context of user
identification. To evaluate the feasibility of these approaches, we tested an extensive set
of feature extraction methods (spatial domain and time domain), combined with different
normalization methods.

In addition to these methods, the first and second derivatives of the EEG data were
also proposed as a preprocessing step, to explore the effect of different dynamics of the
signal. Initially, the methods were applied and tested with public benchmark datasets
and after with data gathered with our framework and acquisition setup. We proposed
and validated our own binary stimulation sequence, and we tested several methods of
complexity to analyse the correlation between complexity and accuracy. Task-Related
Component Analysis (TRCA) was the feature extraction method that attained the best
accuracy, 96%, with our proposed binary sequence, in the context of user identification in
a database of 10 participants. The use of EEG data derivative form showed that the first
derivative of the acquired C-VEP signals improves user identification performance.

The results were promising, showing as a proof-of-concept the possibility of using C-VEP
for identification and authentication systems, which might allow to develop alternative
security systems in the future.

Keywords : Brain-Computer Interface (BCI), Electroencephalography (EEG), Code-modulated
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Visual Evoked Potentials (C-VEP), Visual Evoked Potentials (VEP), Biometric Identifi-
cation, M-Sequences, Complexity Analysis.
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Resumo

Uma interface cérebro-computador (ICC) providencia uma via de comunicação direta
entre o cérebro e um dispositivo externo. Os sistemas ICC têm melhorado significati-
vamente nos últimos anos mas ainda são insuficientes para muitas aplicações e não se
encontram preparados para serem aplicados a situações fora do laboratório. ICC tem sido
investigado primariamente como dispositivo de comunicação para pessoas com deficiência
motora grave, mas um vasto grupo de novas áreas para esta aplicação tem vindo a ser
desenvolvida. Uma destas áreas é a identificação/reconhecimento pessoal nos sistemas de
segurança.

O objetivo desta dissertação foi explorar o uso do Código modulado por Potenciais
Visuais Evocados (C-VEP) em dois contextos diferentes: como um sistema ICC para in-
teração e como um identificador de utilizadores. O C-VEP é um mecanismo neuronal que
resulta do estímulo visual modulado por um padrão de bits denominado sequência binária
pseudoaleatorizada. O uso do EEG e em particular do C-VEP tem sido relativamente
inexplorado no contexto da identificação de utilizadores. Para avaliar a exequibilidade
destas abordagens, testámos um extenso grupo de métodos de extração de características
(domínio espacial e domínio temporal), combinado com diferentes métodos de normaliza-
ção.

Em adição a esses métodos, as primeiras e segundas derivadas dos dados do EEG foram
propostas como etapas de pré-processamento, de forma a explorar o efeito das diferentes
dinâmicas do sinal. Inicialmente, os métodos foram aplicados e testados utilizando bases
de dados públicas e posteriormente com dados coletados do nosso sistema de aquisição
implementado. Nós propusemos e validámos a nossa própria sequência de estimulação
binária e testámos vários métodos de complexidade para analisar a correlação entre com-
plexidade e precisão de identificação. A Análise de Componentes Relacionados com Tare-
fas (TRCA) foi o método de extração que conseguiu melhor precisão, 96%, com a nossa
sequência binária proposta, no contexto de identificação de utilizadores numa base de da-
dos de 10 participantes. A utilização da forma derivada dos dados EEG revelaram que a
primeira derivada dos sinais C-VEP adquiridos melhora a performance de identificação de
utilizadores.

Os resultados são promissores ilustrando a prova de conceito da possibilidade de uti-
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Resumo

lização de C-VEP para sistemas de identificação e autenticação, o que pode permitir
desenvolver sistemas de segurança alternativos no futuro.

Palavras − chave : Interface Cérebro-Computador (ICC), Eletroencefalografia (EEG),
Código modulado por Potenciais Visuais Evocados (C-VEP), Identificação Biométrica,
M-Sequências, Análise da Complexidade.
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“There are many hypotheses in Science that are wrong.
That’s perfectly alright; it’s the aperture to finding out what’s right.”

Carl Sagan
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1
Introduction

This chapter presents the context and motivation of the developed work, as well as the
main goals and key contributions.

1.1 Motivation and Context

In recent years, the area of Brain-Computer Interfaces (BCI) based on electroencephalog-
raphy (EEG) has grown exponentially due to its enormous potential for different applica-
tions. BCI can be used to facilitate communication for people with severe motor disabil-
ities. Particularly for people in complete locked-in state (CLIS) who have lost all motor
control ability but are consciously aware, BCI may represent the single available com-
munication channel with the external world. Moreover, BCI is being researched in many
different contexts expanding the number of people who can take advantage of a BCI in
areas such as neurorehabilitation (motor, cognitive, social and development disorders),
driver attention and fatigue monitoring, gaming and virtual reality applications, interac-
tion/control augmentation, education, security and other non-medical applications, such
as smart houses or workplaces with the cooperation between AI (Artificial Intelligence)
and IoT (Internet of Things) [1, 23]. An emergent BCI topic, explored in this disserta-
tion, is is the use of EEG for user identification/recognition. EEG can be used to fight
vulnerabilities existing in actual security and authentication systems, since it cannot be
acquired by external observers and is difficult to recreate by a computer [14].

The Institute of Systems and Robotics – University of Coimbra (ISR – UC), in particular
in the Human-Centered Mobile Robotics (HCMR) laboratory, has been working in many
Research and Development (R&D) projects that are researching methods to improve sev-
eral aspects regarding the information transfer rate, reliability, control methods and the
general usability of BCI systems. One of the ongoing projects is ”B-RELIABLE1: Boosting
reliability and interaction on brain-machine interface systems integrating automatic error-
detection”, whose main goals are to increase the reliability of brain-machine/computer
interfaces (BMI/BCI) intended to people with severe motor disabilities in communica-
tion and collaborative control applications, and to design new and more natural forms

1B-RELIABLE Project Link: https://sites.google.com/view/b-reliable/
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of human-machine interaction (HMI) and new paradigms for neurofeedback intervention,
based on the automatic detection of system/user errors from brain activity.

BCI systems face many limitations that reduce their effectiveness and use in possible
applications. Two such limitations are the low reliability and low wearability of BCI sys-
tems, which make them unsuitable for many applications and not prepared for out of
lab contexts (e.g., issues related to wearability, portability, and standalone computational
processing and calibration) [40]. Low Information Transfer Rate (ITR) is another limita-
tion of BCI systems, as it is only possible to detect a few commands per minute, which
limits the type of applications that can be controlled (i.e., applications usually need to be
adapted and simplified). Research is being carried out to overcome these limitations and
to expand the range of BCI applications.

There are several neural mechanisms currently used in EEG-based BCI namely, Event
Related Desynchronization (ERD) related to motor imagery, Slow Cortical Potentials
(SCPs), P300 Event Related Potentials (ERP) and Visual Evoked Potentials (VEP). The
ERPs result from selective attention to external events that can be visual, auditory or
tactile, while VEPs are automatic responses of the visual cortex to visual stimuli gazed by
the subject. Motor imagery and SCP are internally induced and depend on user’s men-
tal strategies. VEPs can be grouped into two approaches, Steady-State Visual Evoked
Potential (SSVEP) and Code-modulated Visual Evoked Potential (C-VEP). C-VEP was
the neural mechanism researched in this dissertation in two different contexts: target
selection and user identification. C-VEP approaches have several advantages over ERP
and motor imagery, particularly, they allow for a higher number of possible commands,
leading to a higher information transfer rate (ITR), they provide higher communication
speed, and usually they do not require training [9]. However, VEP-BCIs depend on eye
movements to gaze the stimulus and cause some eye discomfort due to the strong flicker-
ing. In a C-VEP based BCI, the external stimulus is a flicker coded by a number of bits
called pseudorandom binary sequence (PRBS). A C-VEP signal is evoked in the occipital
area, containing the visual target information. Then, the BCI system executes the signal
processing algorithms translating the target that the person is gazing.

1.2 Goals and Contributions

The main objective of this dissertation was the use of Code-modulated Visual Evoked
Potential (C-VEP) in two different contexts:

1. C-VEP BCI: development of a C-VEP based BCI for computer interaction and
control of home devices. Using different stimulation sequences, each one associated
with a command, we applied a C-VEP decoder to discriminate different commands;

2. C-VEP identification: use C-VEP as a security system for people identification.
Here, using a single sequence stimulation we analyzed the subjects’ unique digital

2
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signatures from EEG to allow the identification of people whose EEG data were
previously recorded in a database.

The methods were tested and validated using public datasets, and the best methods
were tested later with data collected with the EEG setup (g.USBamp and Unicorn) and
framework developed in the HCMR-ISR laboratory.

Figure 1.1 shows the general pipeline of the BCI system that was implemented for the
two approaches (SSVEP/C-VEP BCI and C-VEP user identification), which share most
of the methods. The blocks in black (EEG Signal Acquisition, Preprocessing and Feature
Extraction Methods) represent the BCI system modules common to both approaches.

The visual stimuli are synchronized with the EEG signal acquisition system. This is a
crucial requirement because visual evoked potentials are time and phase-locked with the
stimuli.

For the EEG preprocessing, basic filtering was applied and then the signal was nor-
malized following different approaches. The application of the first derivative of the EEG
signals was also proposed as a preprocessing step contributing to an improvement in the
classification accuracy for most of the feature extraction methods.

The implemented feature extraction methods followed two approaches, namely, methods
that explore the spatial correlation of EEG data (Individual Template CCA and Task-
Related Component Analysis) and methods based on the distance or correlation between
time series of EEG signals (Pearson Correlation Coefficient, Cosine Similarity and Dynamic
Time Warping). Additionnaly, the Welch and Cepstrum methods were implemented for
SSVEP detection. The SSVEP paradigm was used in the initial phase of the project,
as a preliminary step to move forward to C-VEPs detection. Since SSVEP is a much
more established approach in BCI, but sharing many methodological and implementation
features with C-VEP, we used it to validate the initial frameworks, setups and some signal
processing methods.

The output of the implemented feature extraction is a single value and not a vector
of characteristics. Therefore, a threshold-based decision-maker was implemented, which
indicates the identified target or subject.

The following specific developments were carried out:

• Extensive implementation and validation of feature extraction methods for SSVEP
(Welch, Cepstrum, CCA, ITCCA and TRCA) and for C-VEP (ITCCA, TRCA,
Correlation Coefficients, Cosine Similarity and Dynamic Time Warping). These
methods were tested and validated in two public datasets;

• Implementation and comparison of different methods of EEG signal normalization,
aiming to optimize the results obtained with the above feature extraction methods;

3
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Figure 1.1: Architecture of BCI interface used for computer interaction, control of home
appliances and subject identification.
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• Proposal of a signal derivative approach, as a preprocessing step, applied before
feature extraction in C-VEP;

• Deep analysis of how Pseudorandom Binary Sequences (PRBS) are generated. This
allowed us to propose our own PRBS. Moreover, an analysis of the complexity of
PRBS was carried out to analyse the correlation between complexity and accuracy;

• Development of a stimulation and EEG acquisition framework to implement C-VEP
BCI and C-VEP identification. The approaches that obtained the best classification
results with the public datasets were implemented pseudo-online and tested with our
setup.

The course flow of this dissertation and content of each chapter are the following:

• Chapter 2 reviews the state of the art on the C-VEP paradigm with different stimula-
tion devices, different types of stimulation sequences and different feature extraction
and classification methods, as well as the various studies that use biometric identi-
fication and authentication with different visual paradigms;

• Chapter 3 presents the general concepts about C-VEP as well as the signal processing
methods studied in this work;

• Chapter 4 describes the entire architecture of the identification pipeline used for the
proposed architecture with C-VEP and the implementation of the signal processing
methods;

• In chapter 5, the results obtained are presented and discussed;

• Chapter 6 draws some conclusions, as well as some proposals for future work.

The following manuscript is being prepared for submission:

• Francisco Roque, João Perdiz, Gabriel Pires, Urbano Nunes - An extensive evaluation
of methods for C-VEP detection in the context of user-identification.
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2
State of the art

In the last years, the number of publications focused on C-VEP based BCI has been
increasing exponentially. In this chapter, we present the most relevant applications and
methods related to C-VEP, and we introduce the use of EEG for identification/authenti-
cation of people.

Appendix D presents more information regarding some basic EEG concepts (the EEG
International 10-20 System that defines the location of scalp electrodes and additional
information about the sub-bands of the EEG waves).

2.1 Code-Modulated Visual Evoked Potentials (C-VEP)

There are many research works based on the C-VEP paradigm, however, the diversity of
applications is still reduced. C-VEP has been applied mainly in communication Spellers
with stimuli encoded by binary sequences using LCD screens. The targets are usually
arranged in a matrix layout that allows for target selection and to provide feedback indi-
cating the target selected by the user. In a C-VEP visual paradigm, it is important that
the subject gazes the stimulus he/she wants to select. For a given selection, this stimulus
is called the ’target stimulus’ and the others are called the ’non-target stimuli’ (each target
is modulated with one binary sequence called m-sequence).

The first BCI based on C-VEP was proposed by Erich Sutter [69] in 1984, to control a
communication speller, and eight years later it was tested in a patient with amyotrophic
lateral sclerosis, using an invasive approach (four platinum electrodes implanted into the
epidural space through a small hole in the skull). The subject was able to write 10 to 12
words/min [70]. Despite of these promising results it was only in 2008 that C-VEP was
researched again.

BCI applications based on C-VEP have very high classification accuracy and ITR. This
is partly due to a couple of methods that have proven to be very effective for feature
extraction, such as template matching and canonical correlation analysis (CCA) [10]. The
output of these feature extraction methods is usually a single value (single feature), and
therefore the decision is based on the definition of a threshold (or selecting the maximum
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value) without needing the use of a classifier. In cases where the feature extractor returns
a vector of features, a classifier is required, such as Support Vector Machine (SVM), One-
Class SVM (OCSVM) and Linear Discriminant Analysis (LDA) [66].

The implementations of C-VEP differ mainly in three aspects: 1) Stimulation devices
and properties, 2) Sequences used to encode the stimuli; and 3) Signal processing and
classification methods. In terms of applications, C-VEPs have been tested mostly as
a BCI for communication/control. More recently, it has been researched for biometric
identification/authentication.

2.2 Stimulation Devices and Properties

2.2.1 LED Matrices

Stimulation based on LEDs are usually organized in a matrix and driven from a mi-
crocontroller board acting as a generator, such as an Arduino or Raspberry [3]. Using
LEDs it is possible to generate stimuli at higher frequencies than LCDs, and in a much
cheaper way. With higher frequencies it is possible to shorten the time of sequences and
therefore increase the information transfer rate (ITR). While in SSVEP the stimulus is a
flickering frequency with a given frequency, in C-VEP the stimulus is encoded by a binary
pattern [6, 43, 45]. Generally, each of the target LEDs used in a C-VEP protocol has
an associated m-sequence (a shifted sequence or a new sequence). Despite the need for
additional hardware and software to generate different frequencies and sequences, LEDs
have proven to be the most suitable choice for visual stimuli, as they present low energy
consumption, greater contrasts, allow multi-chromatic function and support a wider fre-
quency range. However, LEDs have limitations in terms of shape, colour and patterns
that can be reproduced [44]. The main applications in which LEDs have been used are in
the control of external devices and home automation.

LED stimuli typically use different colors and patterns, being the most used the monochrome
colors (black and white stimuli) [25, 27, 67]. More recently, frameworks that used multi-
chromatic stimuli were implemented (stimuli with different colors depending on whether
the bit is ’0’ or ’1’) [3, 4, 75]. More specifically, blue-green LEDs with four high-frequency
green-blue chromatic flashing stimuli was implemented by Aminaka et al. [3]. In [4],
monochromatic stimuli at 30Hz and 40Hz and stimuli with green-blue colors with the
same frequencies were used, to compare accuracy with the four types of visual stimulation
but the results were inconclusive regarding the best stimulation. The main applications in
which LEDs have been used are in the control of external devices and home automation.

2.2.2 LCDs

LCDs are the most used approach in C-VEP [39, 47, 26]. LCDs have been shown as
capable visual stimulators by changing a selected of the screen managed by software. Using
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2. State of the art

Figure 2.1: Interface of the QWERTZ speller. The n-gram based word suggestions were
provided in the lowest row. Source: [25]

a computer screen provides high flexibility to design the form and select the colour of the
visual stimuli compared to LEDs. However, the LCD screen has a restriction related to its
limited refresh rate which results in issues related to frequency modulation. The C-VEPs
based on LCD are mostly used in communication spellers, some of them presented below.

The interface proposed in [25] uses 32 rectangular boxes, consisting of 26 letters of the
alphabet, two signs, 3 suggested words (updated after each selection) and the back-space
button. For this protocol, only one sequence was used and for the remaining boxes a 2-bit
shift of the original sequence was used. A screenshot of the paradigm is shown in Fig. 2.1,
showing the organization of the different buttons.

Another possibility for using a Speller interface with C-VEP is shown in Fig. 2.2 [28].
Contrary to the previous one, there are only eight targets, organized in a 2x4 matrix,
which are selected several times by steps. Each target in the upper line has up to seven
letters of the alphabet and if you choose one of these targets, a second step is presented
that allow to choose the desired letter. In the bottom line of the first layer, the suggested
words are presented to facilitate the choice. In the center of the screen, between the two
lines, the chosen letters are displayed.

Figure 2.3 presents an example of a visual representation of the described target ar-
rangement organized in matrix is used, surrounded by non-target stimuli. Each target
was periodically modulated by a 63-bit binary m-sequence. This representation satisfies
the condition for the C-VEP BCI of the equivalent neighbours. With the inclusion of
complementary non-targets, a peripheral target is surrounded by other targets and also
by non-complementary targets, just as it happens with a central target that is surrounded
by eight targets.
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Figure 2.2: Graphical user interface of the C-VEP-based eight-target speller. By se-
lecting a group of letters (e.g., H–N), a second layer containing individual letters was
displayed. In the example, the letter K was selected. In addition to letter groups, the
first layer of the interface also presented three word suggestions based on an integrated
dictionary function. The lower right target represent an undo function. Source: [28]

Figure 2.3: In left, the target arrangement of the C-VEP-based BCI, illustrating the 32
targets distributed as a 4x8 array (the gray area in the center of the screen) surrounded
by 28 complementary flickers (white background). In right, an example of modulation
sequences of 32 targets in one stimulation cycle, with two-frame time lag between two
consecutive targets. Source: [10]

Another existing target arrangement uses 64 targets organized in a stimulus matrix of
8x8 size, being divided into four groups of 16 targets (4x4 size stimulus matrix), thus
allowing to increase the number of existing targets [39]. Figure 2.4 presents a visual
representation of the described target arrangement. Each group of stimuli is modulated
by a distinct binary sequence (the original and the repetitive sequences with circularly
shifting).

10
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Figure 2.4: The visual stimulator consisting of four groups of stimulus targets. From
left to right and from up to bottom, the number of the four target groups is 1, 2, 3 and 4
respectively. Each group contains 16 stimulus targets arranged in a 4x4 stimulus matrix.
Source: [39]

2.3 Encoding Sequences

Most of the studies apply directly the binary patterns (m-sequences) and their shifted
version, as detailed in section 3.2.1 [75, 3, 67, 25]. However, some researchers have explored
different approaches to build variants of the m-sequences. Two relevant approaches are
the quintary m-sequences and the periodicity detection presented in the following.

2.3.1 Quintary m-Sequences

Quintary m-sequences is an adaptation of the m-sequences, changing the states be-
tween five different shades of grey, replacing the switching between black and white of
the commonly used binary stimulation patterns [28]. For the modulation of these stimuli,
the alpha blending process was used, which allows changing the transparency effect by
applying a two-color convex combination. With this process, the two colours combined
were black and white, creating the different shades of grey. The degree of translucency,
α, contained in the range from 0.0 to 1.0. The degree of translucency of the stimuli was
updated every bit of the sequence and this values were derived from the code pattern.
For the quintary m-sequences, the quintary digits 0, 1, 2, 3, and 4 were mapped to the
corresponding α-values 0, 0.25, 0.5, 0.75, and 1. Figure 2.5 shows an example of a binary
sequence with 63 bits and a quintary sequence with 124 bits. The average accuracy of the
eighteen participants of the experiment was 97.7% for the binary sequences and 98.7% for
the quintary sequences at 60Hz.
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Figure 2.5: α-Values of the stimulation object for two tested flickering patterns. The
α-values range from 0 (fully transparent) to 1 (fully opaque), with a 0.25 gap between the
α-values. (a) Stimulus pattern of the binary 63-digit m-sequence. (b) Stimulus pattern of
the quintary 124-digit m-sequence. Adapted from [28].

2.3.2 Periodicity Detection

In periodicity detection, periodic binary codes are used [47]. The periodicity of EEG
signals is obtained from periodic sequences in addition to non-periodic sequences used in
the BCI application with C-VEP, as exemplified in Fig. 2.6. Using this periodicity it is
also possible to identify several targets using the respective circular-shifted periodic codes.

Figure 2.6: Example of modulation codes. (a) Non-periodic modulation code. (b) Two-
cycle periodic modulation code.(c) Three-cycle periodic modulation code. (d) M-cycle
periodic modulation code. Source: [47]

Table 2.1 shows a summary of relevant studies of features extraction methods and
interfaces for C-VEP based BCI detection, including also the signal processing methods
applied.
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2.4 Signal Processing and Classification Methods

There are several processing methods to extract features and classifying C-VEP. The
feature extraction methods that provide best results are the Individual Template Canonical
Correlation Analysis (ITCCA) [25, 10, 28, 83], the Task-Related Component Analysis
(TRCA) [83, 47, 48] and the Spatiotemporal Beamformer Decoding (SBD) [77].

Several methods of machine learning classification are also used when the feature ex-
tractor returns more than a single value, for example, Support Vector Machine (SVM)
[4, 67], Linear Discriminant Analysis (LDA) [32] and Convolutional Neural Network (CNN)
[46, 80]. However most of successful approaches don’t use classifiers. For example, Wit-
tervrongel et al. [77] compared a decoding algorithm based on SBD which achieved high
results with the implementation of an SVM-based classifier in a framework with 32 targets
for a reduced number of repetitions of the m-sequence, reaching a maximum average ITR
of 172.87 bits per minute (bpm).

In Gembler et al. [28], the authors use a template-matching method using spatial
filters generated using Canonical Correlation Analysis (CCA). The average accuracy of
the eighteen participants in a two-step target selection with eight targets at each step
used in the experiment was 97% and the ITR was 64 bits/min, approximately. Also, in
[25], the same authors designed a filter bank based on alpha, beta and gamma sub-bands
and use the CCA method to obtain results of 97% for accuracy and 93.1 bpm using a
framework with 32 targets.

In Zhao et al. [83], the authors used the CCA and TRCA methods, using a filter bank
to decompose the EEG signals into multiple components of sub-bands. The proposed
system obtained results of 100% for the correct recognition rate (CRR) using 5.25 seconds
of stimulation.

Sato et al. [65] compared the linear (with least mean square error) and nonlinear (with
a Neural Network) spatio-temporal inverse filtering methods, exhibiting better decoding
performance, and higher classification accuracies than conventional CCA spatial filtered.

In Zúquete et al. [60], the authors use two different one-class classifiers by subject (K-
Nearest Neighbor and Support Vector Data) and allowed to obtain accuracy results with
values between 75% and 99% on the 70 subjects tested, with eight channels in the occipital
zone. In Das et al. [18], the authors obtain a classification accuracy between 75% and
88% for LDA performance and between 91% and 94% for the SVM performance.

In Das et al. [19], the authors applied a Convolutional Neural Network (CNN) to im-
prove the accuracy values obtained in the extraction of features with this protocol. In this
experiment, the EEG was acquired from two different sessions with a week interval from
40 subjects, allowing to obtain results between 80% and 100% for accuracy parameters.
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2.5 Biometric Identification and Authentication

A biometric authentication system is a pattern recognition system that makes a personal
identification by determining the authenticity of specific physiological characteristics of a
person [55]. The objective of a person authentication is to accept or to reject a person
requesting an identity (one-to-one matching), (i.e. comparing a biometric data to tem-
plates), while the goal of person identification is to match the biometric data against all
the records in a database (one-to-N matching).

The use of biometrics to identify or authenticate a person requires to measure some
physical and behavioral characteristics and presents several advantages in comparison with
traditional identification methods like passwords or key cards, establishing a strong bond
between an individual and his identity. Within the biometric options, brain activity may
represent a good alternative for user identification/authentication, although not in the near
future, since it provides high confidentiality, is difficult to copy and steal. Brain signals
have all the necessary properties to be used for identification/authentication, namely [16,
15]:

• Universality: once all of the human brains are composed with neurons that pro-
duce electrical activity, which can be read as EEG signals, possessing physical and
behavioral characteristics;

• Distinctiveness: because two different individuals have different biometric repre-
sentations;

• Stability: brain signals are relatively stable over time but can be affected by signal
recording conditions (e.g. setup) or emotional conditions of the person;

• Collectability: since brain signals can be collected through several modalities being
EEG the most suitable (dry electrodes should be considered to increase usability);

• Acceptance: the acceptance is mostly related with the constraints of brain signal
acquisition setups, which are currently not very wearable and aesthetic.

• Circumvention: EEG is difficult to circumvent once EEG can not be easily falsified,
unlike fingerprints, voice and faces that can be artificially reproduced or recorded.
Additionally, if a person is coerced into accessing the system, stress changes will
have an effect on EEG leading to failure on identification/authentication.

• Performance: currently, performance depends heavily of the approaches being
followed but several proofs of concept have shown promising results in terms of
accuracy. Performance is also influenced by operational and environmental changes.

• Friendly Privacy: in a EEG database it is more difficult to find the true identity
of an individual if the database has been compromised.
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We summarize below some of the challenges in the area of EEG-based biometric recog-
nition that need to be addressed to improve the usability of the system [15]:

• Robustness to Psychological and Physiological Changes: The system must
be robust to people under pain, diseases, mental states, emotional states, stress and
other emotions, allowing the access of the subjects even when they are in these
conditions.

• User Databases: The databases must consider the number of users that tends
to grow more and more; the variations between the subjects (gender and age, for
example); the individual variations of each subject in each train and test (must
have stable features with long durations); consider intruders (people who have no
information in the database and must be rejected by the system).

• Protocol Design: design suitable protocols that can evoked reliable and stable
EEG features. Evoked potentials have been considered particularly suitable.

• Performance Evaluation: the testing data must be (almost) independent of the
training data in order not to influence the system.

The first biometric identification system based on EEG was implemented in 1980 by
Hans Stassen [68]. In this research, the identification was based on spectral patterns when
participants were with closed eyes. The experiment with 82 participants achieved 90%
confidence. Despite these results, it was only in the last few years that new works have
appeared in this area [14].

EEG-based approaches are mainly based on: 1) mental and cognitive tasks (e.g., motor
imagery) [20] and 2) visual evoked potentials. One of the most recent approaches is based
on VEP stimuli. Given its relationship with the work carried out in this dissertation, we
will focus more on this last approach.

The first biometric identification system using VEP was based on pictures and objects
stimuli [52] was implemented in 2003 by Palaniappan et al., obtaining an average rating
of 94% for the identification of 20 subjects. Current approaches include visual tasks with:
Visual tasks with images, with geometric shapes, letters and numbers, visual flickering
stimuli (to evoke SSVEP) and bit patterns visual stimuli (to evoke C-VEP), although
applications for C-VEP identification and authentication are very few.

2.5.1 VEP based on Image Recognition

This stimulation technique is based on the presentation of images of objects or faces,
which appear over a short period of time. With this type of stimulus, the subject has
to focus on the image and must recognize what is represented in that image, which is
expected to evoke a VEP. Figures 2.7 and 2.8 shows two examples of a visual representation
procedure from [60] and [18]. In [60], using a dataset with the EEG from 70 subjects, it
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Figure 2.7: (a) Examples of pictures of the Snodgrass & Vanderwart standard 260 picture
set. (b) Stimuli visualization procedure. The visual stimuli used in the experiment are
in the form of presentation of black and white image sequences from the Snodgrass &
Vanderwart picture set. Source: [60]

Figure 2.8: Illustration of experiment with images from the Max Planck Institute for
Biological Cybernetics face database. Source: [18]

was possible to achieve various results of recognition, while in [18] the EEG of 20 subjects
was acquired to achieve a performance between 75% and 94%.

2.5.2 VEP based on Geometric Shapes

In this stimulation method, images of eight different geometric shapes are presented,
with the circle formula being the target stimulus, while the remaining seven geometric
shapes (triangle, rectangle, square, pentagon, hexagon, octagon and diamond) are the
non-target stimuli displayed on an LCD monitor [21]. The stimuli are organized in a
matrix m x n. The subject has to focus on the target stimulus occurrence on the screen
and ignore the occurrence of the other stimuli. A VEP signal is evoked from the subject
when the target image is shown. In [21] was possible to achieve an equal error rate of
20-23% employing EEG data of 50 subjects.
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Figure 2.9: Shapes employed for the geometric shapes protocol. Source: [21]

2.5.3 VEP based on letters and numbers

This process uses 62 images as a visual stimulus (26 lowercase letters, 26 uppercase
letters and 10 digits between 0 and 9), with the numbers being the target stimuli and the
letters being the non-target stimuli [22]. The objective is the subject to focus on targets
(numbers) at the moment they appear and ignore non-targets (letters). The target images
are randomly shown for a total of 60 times and the letters are randomly displayed 660
times. Each image is shown during 250 ms and a black screen between two images during
450 ms. The total acquisition time is 8 minutes and 24 seconds with the presentation
of 720 stimuli. In [22] was possible to achieved a performance of the equal error rate of
10-22% with the EEG signals from 50 subjects.

2.5.4 SSVEP

This protocol intends to extract discriminative features through SSVEP. Usually, sub-
jects are asked to focus on a flickering target for a certain time for each of the stimulus
frequencies considered. Piciucco et al. [58] propose a biometric recognition system based
on the SSVEP paradigm using frequencies with values of 6, 12, 18 and 24 Hz. Yu et al.
[80] use frequencies between 8 and 15.8Hz and Phothisonothai et al. [57] use frequencies
between 6 and 9Hz. In [58] the database is composed by EEG signals from 25 subjects and
it was possible to have a correct recognition rate of 95%; in [80] achieved 97% accuracy
of user authentication using 8 subjects, and in [57] was possible to achieve a performance
between 60-100% testing 5 subjects.

2.5.5 C-VEP

The use of C-VEP for biometric identification is very recent, and it is still a very
emerging area. The only work that uses C-VEP for biometric identification was proposed
by Zhao et al. [83]. In this paper, different stimulation patterns with 63-bit sequences
displayed on an LCD are compared. The EEG database consisted of 25 subjects. The
detection approach was based on a filter bank followed by the ITCCA or the TRCA meth-
ods. The approaches were validated in intra-session and cross-session scenarios achieving
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a performance of 97-100%, which are very promising results.

Our proposed approach is very close to this implementation. We tested TRCA and
ITCCA methods but without the application of a filter bank. However, we used LED
stimulation, modulated by 31-bit sequences. Moreover, we tested several other detection
methods and their combination with different normalization and preprocessing techniques.
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3
Background Material

This chapter presents the background material required to understand the approaches
and methods that have been developed in this dissertation. The chapter is organized
as follows: BCI introductory concepts, Code-Modulated VEP concepts, signal processing
methods that were considered for C-VEP detection, and description of the public datasets
used for methods validation.

3.1 Introduction to BCI

A BCI measures electrical, magnetic or other physical signals from brain activity and
translates these into commands to control a computer or other device [41]. In this dis-
sertation we focus on methods based on electroencephalography (EEG), a technique that
measures electrical activity at the surface of the scalp using electrodes [12].

Electrical signals generated by a EEG-based BCI system can be divided into two dif-
ferent approaches: evoked potentials (EP) (transient waveforms or perturbations in the
ongoing activity, phase-locked to an event like a visual stimulation) and event-related
desynchronization/synchronization (ERD / ERS) which occurs in response to specific in-
ternal events induced by mental tasks (motor imagery, mental arithmetic, mental object
rotation). ERD/ERS does not need external stimulation but requires extensive training
that may take several weeks.

In EP approach, subjects receive a set of visual or auditory stimuli [23]. EP can be
divided into two classes: the steady-state evoked potential (SSEP) (where the signals
are evoked by a visual stimulus modulated at a fixed frequency, eliciting an increase in
EEG activity at the stimulation frequency) and event related potentials (ERPs) which are
evoked by a relevant external event (visual auditory or tactile) with a sensory or cognitive
meaning, and usually requiring selective attention [78]. The most well studied ERP is the
P300, a peak usually occuring 300 ms after a relevant target in an oddball paradigm [24].

Visual Evoked Potentials (VEP) are evoked by sensory stimulation of a subject’s visual
field and reflect visual information processing mechanisms in the brain. VEPs can be
modulated in different ways [66, 9]:
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• Time modulation in event related potentials (oddball P300 paradigms);

• Frequency modulation (SSVEP);

• Frequency and phase modulation (P-SSVEP);

• Code modulation (C-VEP).

Generically, an EEG-based BCI system consists of four modular subsystems. The first
subsystem is the signal acquisition which acquires the EEG signals from the scalp. The sec-
ond module processes these signals and extract features that are classified and translated
to an output command that controls a computer application or a device. This dissertation
will focus on C-VEP approaches.

3.2 Code-Modulated Visual Evoked Potentials (C-VEP)

Instead of using visual stimulus with a constant frequency like in SSVEP, C-VEP is
the response to visual stimulation modulated by a pseudorandom code (binary sequence
pattern) sequences [11].

3.2.1 C-VEP sequences

In a C-VEP system, there is a special category of pseudorandom binary sequences
(PRBS) called m-sequences which proved to be effective for BCI, due to their low au-
tocorrelation and shifted versions nearly orthogonal. The main sequence can be used to
generate other shifted versions of the m-sequence, which can then be associated to dif-
ferent targets/commands of a BCI. To identify a target that has been modulated by a
given sequence, the basic approach consists in matching the VEP with a pre-recorded
user’s template [26, 25]. The m-sequences with non-periodic binary code can be generated
using maximal linear feedback shift registers (LFSR) (i.e., a shift register where the input
bit is the result from a linear function of the previous state - linear recursion) [66, 28].
M-sequences are used in several areas, such as the creation of pseudorandom sequences
for communications (Cyclic Redundancy Check, ATM Networks), for cryptography, for
impedance spectroscopy, acoustic pulse reflectometry and also in the design of some ex-
periments using Functional Magnetic Resonance Imaging (fMRI) [56, 13, 63, 36].

Figure 3.1 shows an example of an LFSR with N bits. The output bit is the rightmost
bit of the LFSR and the taps are the bits that modify the next state of the LFSR. The
coefficients of the general polynomial must be ′0′ or ′1′. The generator polynomial of a
LFSR is

g(x) = gNxN + gN−1x
N−1 + ...+ g2x

2 + g1x+ g0 (mod 2) (3.1)
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Figure 3.1: A basic LFSR architecture with N bits. In this diagram, the taps are [N,N−
1, N − 5, 4], with the rightmost bit being the output bit of the sequence. The primitive
polynomial of this diagram is x(n) = x(n−N)⊕x(n−(N−1))⊕x(n−(N−5))⊕x(n−4),
where x(n) is the nth element of the sequence obtained by the exclusive-or (XOR) binary
operation, denoted here by ⊕.

and the generator polynomial for the LFSR in Fig. 3.1 is

g(x) = xN + xN−1 + xN−5 + x4 + 1 (3.2)

The initial N values of the sequence are called the seed, a non-zero sequence with an
odd number of elements that obeys the following rules that starts the process of building
the m-sequences. The seed can be generated randomly or selected using the bits that
correspond to the degrees of the polynomial with a value of ′1′ and the rest with a value
of ′0′. The rest of the sequence is created using the respective equation.

A primitive polynomial must be used to generate an m-sequence. A primitive polynomial
must be irreducible of degree n, i.e., it cannot be written as the multiplication of two non-
constant polynomials (of degree 0). The polynomial x + 1 is a primitive polynomial and
all other primitive polynomials have an odd number of terms since if you have an even
number of terms it is divisible by x + 1. Table 3.1 shows some primitive polynomials
to generate m-sequences with a degree between 1 and 12 [73]. For example, considering
the 10 degree polynomial in table 3.1, the polynomial taps are 10 and 3 and therefore a
non-zero 10-bit seed will be needed, occupying positions 1 to 10 of the LFSR starting the
process of the construction of m-sequence at the least significant bit that will give rise of
the remaining sequence. The XOR operation between the 10th and 3rd bits will give rise
to the new 0th bit. After that, the sequence is shifted one position to the right so that the
0th bit moves to position 1. This process can be repeated to generate 1023 bits.
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Table 3.1: Examples of primitive polynomials up to degree N=12

Degree (N) Sequence
Length (L = 2N − 1)

Primitive polynomial

1 1 x+ 1

2 3 x2 + x+ 1

3 7 x3 + x+ 1

4 15 x4 + x+ 1

5 31 x5 + x2 + 1

6 63 x6 + x+ 1

7 127 x7 + x+ 1

8 255 x8 + x7 + x2 + x+ 1

9 511 x9 + x4 + 1

10 1023 x10 + x3 + 1

11 2047 x11 + x2 + 1

12 4095 x12 + x6 + x4 + x+ 1

The length of an m-sequence is always an odd number, 2n−1, where n is the number of
bits used to generate the sequence. Despite that, in an m-sequence the difference between
the numbers of zeros and the number of ones is always one, leading to a balanced stimulus
with stability [50]. A run from a m-sequence is considered to be a consecutive subsequence
consisting only of ’0’ or ’1’. For any m-sequence, and considering r the maximum number
of consecutive ’ones’, there are [29]:

• One run of ’ones’ of length r;

• One run of ’zeros’ of length r − 1;

• One run of ’ones’ and one run of ’zeros’ of length r − 2;

• Two runs of ’ones’ and two runs of ’zeros’ of length r − 3;

• Four runs of ’ones’ and four runs of ’zeros’ of length r − 4;

• ...

• 2r−3 runs of ’ones’ and 2r−3 runs of ’zeros’ of length 1

In the context of C-VEP, m-sequences can be divided into two groups: one sequence give
rise to several m-sequences using codes to circularly shifting; or different PRBS sequences
with the same length, are used for each of the stimulation targets. The shifted versions
of an m-sequence are almost orthogonal, so different shifts of a unique m-sequence can be
used for numerous commands to the BCI system [50]. With this method, it is possible to
create a template of all targets using only one target, decreasing the training time, with
the possibility to back-shift the EEG-class to obtain a problem with a single one-class.
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Figure 3.2: Example of a C-VEP implementation (adapted from [3]). At the left side, two
types of possible stimulation are presented, conventional monochromatic (white–black;ON-
OFF) and the proposed chromatic (green-blue) flickering patterns. At the right side are
4 sequences created from sequence 1, with a shift of τ = 7 bits.

Though, the number of targets that can be used will be limited by the number of bits in
the circular shift. If the BCI uses different sequences for different targets, a template for
each sequence will be required [39].

Figure 3.2 (adapted from [3]) illustrates an example of the construction of PRBS used
in the C-VEP paradigm. Each sequence with a total of 31 bits, is shifted by a value
τ = 7 bits, and it has a period of time with a value T. In this example, four different
sequences called si (i = 1,2,3,4) were generated, creating the respective averaged EEG
C-VEP responses, ȳj (j = 1,2,3,4).

3.3 EEG Signal Processing

The preprocessing and the feature extraction are two of the modules of a BCI architec-
ture, required to select the most relevant features.

3.3.1 Preprocessing

In the preprocessing stage, the recorded EEG data is filtered to remove muscle artifacts
and the electrical noise, and to limit the signal to the band of interest, increasing the
signal-to-noise ratio (SNR).

In general, at this stage, the EEG signals are filtered to remove the powerline interference
at 50Hz, to remove the signal DC component and to remove the irrelevant band frequencies.
However, only filtering the signal is not enough to increase the SNR to a level that allows C-
VEP detection. The identification of patterns of interest require effective signal processing
methods to extract discriminative characteristics.
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3.3.2 Feature Extraction Methods

Feature extraction is one of the most important stages of a BCI architecture because
it allows to find the most discriminative features to identify the signals of interest. This
section describes methods to detect the two neural mechanisms considered in this disser-
tation, SSVEP and C-VEP. The methods presented here include: 1) approaches in the
frequency domain (applied only for SSVEP); 2) methods based on the distance or corre-
lation between time-series (applied only for C-VEP); and 3) methods that take advantage
of the spatial correlation of EEG data (applied for SSVEP and C-VEP). It is worth to
remember that, in SSVEP the main goal is to identify a frequency modulated by a sta-
tionary stimulus at a constant frequency, while in C-VEP the purpose is to identify a
given pattern modulated by a binary code.

3.3.2.1 WELCH

The Welch’s method was developed by Peter D. Welch in 1967 [76] and it is based on
the averaged periodogram spectrum estimates that results of the conversion of a signal
from the time domain to the frequency domain.

The method consists of dividing the signal into successive segments as described by:

xm[n] ≜ w[n]x[n+mR], n = 0, 1, . . . , M − 1,m = 0, 1, . . . , K − 1, (3.3)

where R is defined as the window hop size, andK denote the number of available frames. It
is possible to use different types of windows, w[n], such as rectangular, Hamming, Hanning,
as well as different overlap percentages allowing to adjust power spectral resolution and
standard deviation.

The periodogram of the m-th segment is defined by:

Pxm,M (wk) =
1

M
|FFTN,k[xm]|2≜ 1

M

∣∣∣∣∣
N−1∑
n=0

xm[n].e−j2πkn/N

∣∣∣∣∣
2

(3.4)

where N is the number of points of the Fast Fourier Transform (FFT). The Welch esti-
mate of the power spectral density is defined by the average of periodograms across time,
computed according to:

ŜW
x (wk) ≜

1

K

K−1∑
m=0

Pxm,M (wk). (3.5)
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3.3.2.2 Cepstrum

Cepstrum analysis was proposed by Bogert et al. in 1963 as the ”power spectrum of
the logarithm of the power spectrum” with the purpose of detecting echoes in seismic sig-
nals. The term “cepstrum” and “quefrency” are anagrams of “spectrum” and “frequency”,
respectively, changing the syllables of the two terms [51, 79]. This method is used to ex-
plore the periodic structures within frequency spectra and it is used in speech analysis and
voice recognition, medical imaging and analysis of machine vibration on harmonic patterns
like gearbox faults and turbine blade failures. This method was applied to explore the
frequency nature of SSVEPs which are characterized by several harmonics.

The Cepstrum of a discrete-time signal neglects the information of phase, turning the
convolution into sum, and it is defined by:

c[n] = IDFT{log|DFT (x[n])|} ≡ 1

2π

∫ π

−π
log|X(ejw)|ejwn dw (3.6)

where log|X(ejw)|means the log-magnitude of the Discrete-Time Fourier Transform (DTFT)
implemented with the FFT. The variable ”n” in the c[n] corresponds to the quefrency term
of the frequency inversion, denoting the independent variable of this method [79].

Figure 3.3 shows a block diagram representing the Cepstrum computation. The sequence
x[n] is the digital signal applied to the input of the transformation system of the Cepstrum
method, while X[k] is its correspondence in the frequency spectrum. X∗[k] characterizes
the log-magnitude form of the frequency spectrum and c[n] represents the Cepstrum at
the output of the inverse discrete Fourier transform (IDFT) block.

Figure 3.3: Diagram of Cepstrum estimation method.

3.3.2.3 Correlation Coefficients

The correlation between two random variables is a statistical measure of similarity
between the relative movements of the two variables. There are several types of correlation
measures and one of the most used is the Pearson product-moment correlation [8]. For N
scalar observations for each variable, the Pearson correlation coefficient is defined by:

ρ(A,B) =
1

(N − 1)

N∑
i=1

(
Ai − µA

σA

)(
Bi − µB

σB

)
(3.7)
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where µA, σA, µB and σB are the mean and standard deviation of A and the mean and
standard deviation of B, respectively.

In a matrix form, the correlation coefficient matrix of two random variables is the matrix
of the correlation coefficients for each combination of variables in pairs defined by:

R =

(
ρ(A,A) ρ(A,B)

ρ(B,A) ρ(B,B)

)
=

(
1 ρ(A,B)

ρ(B,A) 1

)
(3.8)

The main diagonal of the matrix has values equal to one because the variables A and
B are always directly correlated to themselves.

3.3.2.4 Time Series Similarity based on Distance

There are several metrics to calculate the distance, one of the most used is the Euclidean
or l2 metric. Considering X and Y two N -dimensional signals, then the distance between
the mth sample of X and the nth sample of Y using the Euclidean metric is defined by:

dmn(X,Y ) =

√√√√ N∑
k=1

(xk,m − yk,n)2 (3.9)

Other metrics are the Manhattan or l1 metric, the Square of the Euclidean metric and
the Symmetric Kullback-Leibler metric (only for real and positive X and Y because of the
logarithmic function).

The Dynamic Time Warping (DTW) is a more complex algorithm also used to measure
the similarity or calculate the distance between temporal sequences with different length.
DTW has been applied to temporal sequences of video, audio and graphics data, and
speaker recognition and online signature recognition [53]. The method searches for a path
through the grid parameterized by the two sequences of the same length ix and iy, such
that the distance minimum is defined by:

d =
∑

m ∈ ix

n ∈ iy

dmn(X,Y ) (3.10)

Another similarity metric is the Cosine Similarity, that measures cosine of the angle
between two N -dimensional vectors in an N -dimensional space [61]. The method corre-
sponds to the division between the dot product of the two vectors and the product of the
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lengths or magnitudes of the two vectors:

similarity(A,B) =
A.B

∥A∥ ∥B∥
=

∑N
i=1AiBi√∑N

i=1A
2
i

√∑N
i=1B

2
i

(3.11)

where ∥x∥ is the Euclidean norm of vector x.

A cosine value of zero means that the two vectors are orthogonal, with π/2 radians
between each other and have no match, while a cosine value close to one means that the
two vectors have a high match between them and the vectors are very similar.

3.3.2.5 Canonical Correlation Analysis

Canonical Correlation Analysis (CCA) is a multivariable statistical method which allows
a multichannel data processing approach to infer cross-covariance information between two
variables that may have some correlation. The method finds a set of linear combination
between the two variables, so that the correlation between the two variables is maximized
[11]. It optimizes the recognition procedure because it combines information from multiple
channels to improve the SNR [82].

In the context of BCI, CCA was used for the first time to detect SSVEP frequencies
in 2007 [38]. CCA is currently one of the most used methods in VEP due to its high
efficiency, robustness, simple implementation, low computation cost and because it does
not require calibration. CCA is however affected by the interferences of EEG artefacts
and spontaneous activities.

Different variants of the CCA methods have been proposed in the context of BCI for
target detection:

• Cluster Analysis of CCA coefficient (CACC) proposed by Poryzala et al. to realize
an asynchronous BCI system [59].

• Phase Constrained CCA (PCCA) proposed by Pan et al., fixing the phases of the
sinusoidal references signals according to the visual latency estimated from the cali-
bration data [54].

• Multi-way CCA (MwayCCA) proposed by Zhang et al. to find appropriate reference
signals for SSVEP detection based on multiple standard CCA processes with the
calibration data [81].

• Individual Template-based CCA method (IT-CCA) developed by Bin et al., in [10],
using the averaging EEG trials from the calibration data to each individual as VEP
reference signals.

In this dissertation, CCA is used for detection of SSVEP and C-VEP, which may present
some minor differences in its application, as shown bellow.
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CCA-based method for detecting SSVEP

The CCA method calculates the canonical correlation ρn between the multi-channel
EEG signals matrixXN×T (N : number of channels and T : time samples) and the reference
signals at each stimulus frequency Y2M×T (M : number of harmonics and T : time samples).

Figure 3.4: CCA-based method for EEG signals analysis in SSVEP. (Fig adapted from
[11]).

The reference signals Y (fn) in the SSVEP detection are a group of sines and cosines
waveforms with frequencies containing the frequency of the stimuli fn and the respective
harmonics, defined by:

Y (fn) =


sin(2π × fn × t)

cos(2π × fn × t)

...

sin(2π ×Nh × fn × t)

cos(2π ×Nh × fn × t)

 , t =
1

fs
,
2

fs
, ...,

NS

fs
(3.12)

where fn is the base stimulation frequency, fs is the sample rate, and Nh is the number
of harmonics used [49].

The multi-channel EEG signals and each of the reference signals is used as an input of
the CCA method, which is applied to each frequency of the reference signal.

Considering these two multidimensional variables and their linear combinations x =

XTwx and y = Y Twy, where wx and wy are the weight vectors, this method finds the
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Figure 3.5: Pipeline for the calculation of the weights in the CCA.

vectors wx and wy, which maximizes the correlation between the variables x and y solving:

max
wx,wy

ρ(x, y) =
E[xyT ]√

E[xxT ]E[yyT ]
=

E[wT
xXY Twy]√

E[wT
xXXTwx]E[wT

y Y Y Twy]
(3.13)

with the operator E[x] representing the average of x data. The optimization problem is
solved using a eigenvalue decomposition problem.

The cross-covariance matrix between X and Y is calculated by:

K = cov[X,Y ] = E[(X −E[X])(Y −E[Y ])T ] = E[(X −µx)(Y −µy)
T ] = E[XY T ]−µxµ

T
y

(3.14)

The classification can be done simply by choosing the highest value of ρi to which corre-
sponds the target frequency fi, that is the reference signal with the maximal correlation.
The canonical correlation output ρ can then be used for frequency recognition where ρi

are the CCA coefficients obtained with the frequency of reference signals being f1, f2,... ,
fK [11, 49].

ρ = max
i

ρi, i = 1, 2, ...,K, (3.15)

Individual Template CCA-based method for detecting SSVEP and C-VEP

The above approach can be easily adjusted to replace the reference signals by a template,
and therefore be used for SSVEP and C-VEP. During the training stage, the user is
required to fixate on a reference target, and the recorded EEG will be used as a template
for that target. The multichannel EEG data during k stimulus cycles will be acquired
as X. After that, it is necessary to average the segments of data from the k cycles of
stimulation, producing the variable R containing the multichannel evoked response. The
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variable S is the replication of the evoked response R during k times, corresponds to:

S = [R,R, ..., R] (3.16)

Considering these two multidimensional variables and their linear transformations Wx

and Ws, the maximization of the correlation between the variables X and S is obtained
from:

ρ = max
Wx,WS

W T
x XSTWS√

W T
x XXTWx.W T

S SSTWS

(3.17)

Figure 3.6: Pipeline of the ITCCA-based method for EEG signals analysis in C-VEP.

3.3.2.6 Task-Related Component Analysis

Task-related component analysis (TRCA) method was developed by Tanaka et al. in
2013 [71], in the context of the near-infrared spectroscopy (NIRS) data in time-locked
activities, such as ERD/ERS. The objective of this method is to optimize the coefficients
to show the maximum temporal similarity that exists between the task sessions, using as a
starting point a temporal profile of a component related to the task. With TRCA, there are
two signals initially considered: 1) task-related signal, s(t); 2) task-unrelated signal, n(t).
The TRCA aims to recover the task-related component s(t) of the linear, weighted sum of
the multichannel EEG signal, maximizing the reproducibility of the activities during this
period, which is observed in:

y(t) =

NC∑
j=1

wjxj(t) =

NC∑
j=1

(wja1,js(t) + wja2,jn(t)) (3.18)

with j being the index of the number of channels (NC), and a1j and a2j being the coeffi-
cients which project the signals to the EEG signal.
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The inter-trial covariance between the h1-trial and the h2-trial is described by:

Ch1h2 = Cov(yh1(t), yh2(t)) =

NC∑
j1,j2=1

wj1wj2Cov(x
(h1)
j1 (t), x

(h2)
j2 (t)) (3.19)

and the sum of all possible combinations of trials is described as:

NT∑
h1,h2=1;h1 ̸=h2

Ch1h2 =

NT∑
h1,h2=1;h1 ̸=h2

NC∑
j1,j2=1

wj1wj2Cov(x
(h1)
j1 (t), x

(h2)
j2 (t)) = wTSw (3.20)

where Cov(a, b) relates to the covariance between a and b, j1 and j2 relate to the index
of the channels and h1 and h2 relate to the index of two blocks of the training trials, with
the two blocks regarded as task-related.

The matrix S = (Sj1j2)1≤j1,j2≤NC
is the sum of all covariance between blocks of the

task-related and it is defined by:

Sj1j2 =

NT∑
h1,h2=1;h1 ̸=h2

Cov(x
(h1)
j1 (t), x

(h2)
j2 (t)) (3.21)

To obtain a finite solution, the variance of y(t) must be equal to 1, defined by:

V ar(y(t)) =

NC∑
j1,j2=1

wj1wj2Cov(xj1(t), xj2(t)) = wTQw = 1 (3.22)

The spatial covariance matrix Q was obtained calculating the product between the con-
catenated matrix of all training trials and its transposed [83].

The constrained optimization problem can be solved using

ŵ = argmax
w

wTSw

wTQw
(3.23)

The optimal coefficient vector is the largest eigenvalue obtained of the eigenvector of
the matrix Q−1S with the spatial covariance matrices Q and S with size NC ×NC [71].

The correlation coefficient between the averaged training data for n-th visual stimulus
χ
(m)
n and the single-trial test data X(m) (both matrices have a size of NC × NS , being NS

the number of samples of the EEG signal) is calculated using

r(m)
n = ρ

((
X(m)

)T
w(m)
n ,

(
χ(m)
n

)T
w(m)
n

)
(3.24)
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where ρ(a, b) is the Pearson’s correlation analysis between the signals a and b.

3.4 Performance Evaluation

The performance evaluation was calculated using two different metrics: accuracy and
information transfer rate.

Accuracy is computed as the ratio between the number of targets that are correctly
identified C, and the set of all selections N.

ACC =
C

N
(3.25)

The same formula is used for user-identification, where C represents the number of times
users are correctly identified and N is the number of identification attempts.

Information transfer rate (ITR) is commonly applied to calculate the performance eval-
uation of BCI systems in bit/min, evaluating the communication speed of the system, in
the identification of targets. It is given by the product of the number of bits per target
and the number of targets per minute that are identified

ITR = log2

(
N.PP .

[
1− P

N − 1

]1−P
)

∗
(
60

T

)
(3.26)

where N is the number of possible selected commands, P is the classification accuracy
probability and T is the average target selection time (seconds/selection) [78].

To correctly interpret the results, ITR and accuracy should be presented together, as
low values of accuracy can provide a high ITR, if there is a high number of commands to
be detected.

3.5 Benchmark Datasets

Two datasets were used to validate the implemented feature extraction methods: SSVEP-
dataset and C-VEP-dataset.

3.5.1 SSVEP Benchmark Dataset

The SSVEP dataset allowed the comparison of methods to detect different stimulation
frequencies associated to each target.

The SSVEP dataset [74] was recorded from 35 subjects (8 experienced and 27 naive)
undergoing a BCI speller task with 40 targets, as shown in Fig. 3.7 with each target
representing a letter of the alphabet, a number or a signal. Each target stimulus of the
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framework was coded with a frequency and phase modulation, associating a stimulation
corresponding to a different frequency between 8Hz and 15.8Hz, spaced by 0.2Hz.

The EEG data was recorded with the Synamps2 EEG system (Compumedics Neuroscan,
Australia) at a sampling rate of 1000 Hz, after which the samples were down-sampled to
250 Hz to reduce computational costs and storage. The dataset’s data are organized by
files, each of which corresponds to a different subject. Each file has a four-dimensional
matrix with dimensions of NC × NS × NT × NB, corresponding to NC = 64 channels,
NS = 1500 time samples, NT = 40 targets, NB = 6 blocks. Each block corresponds to
the number of recorded trials per target. A trial corresponded to a task including the six
seconds recorded for each target.

Figure 3.7: Frequency and phase values for all targets using the joint frequency and
phase modulation method. (Source: [74]).

Figure 3.8: 64 electrode recording positions of the international 10-20 extended system
used in the SSVEP Benchmark Dataset. The black circle is the ground.
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Figure 3.9: Time-course of one trial during the experiment in SSVEP Benchmark Dataset
(based in [74]).

Each trial lasted a total of 6 seconds, as shown in Fig. 3.9. Each trial started with a
0.5 seconds target cue, and subjects were asked to change their gaze at the target as soon
as possible. After that, all stimuli started to flicker on the screen simultaneously for 5
seconds. Subjects were asked to avoid blinking their eyes during the stimulation. After
stimulation, the screen did not flash for 0.5 seconds before starting the next trial. There
was a rest period of a few minutes between two consecutive blocks [74].

3.5.2 C-VEP Benchmark Dataset

The C-VEP dataset [77] was used as a benchmark dataset to compare the preprocessing
and feature extraction methods presented in Section 3.3.2.

This dataset consists of data from 17 subjects, with normal or corrected-to-normal
vision, performing a BCI speller experiment. The interface consists of 32 white circular
targets, arranged in an 8x4 matrix, using a stimulus presentation with a high-frequency
LCD (120 Hz). Users were seated approximately 60 cm from the monitor.

The m-sequence used to code the targets was 63 bits long, with a 2-bit offset for each
of the targets. The original sequence was:

000100001011001010100100111100000110111001100011101011111101101

The identification of different targets in C-VEP based BCIs used different shifts of the
presented m-sequence.

The EEG data were recorded with the SynampsRT device (Compumedics Neuroscan,
Australia) at a sampling rate of 2000 Hz, with a down-sampling to 200 Hz. The dataset’s
data are organized by files, each of which corresponds to a different subject. Each file
has a four-dimensional matrix with dimensions of NC × NS × Ntrials, corresponding to
the Ntrials = 160 trials (32 targets × 5 blocks). Each block consisted of the recording of
the number of trials per target. A trial corresponded to a task including the 5.25 seconds
collected for each target trial consisting of NC = 32 channels and NS = 1050 time samples.

Figure 3.11 shows the time-course of a trial. Each trial started with the presentation
of the target to select, highlighted in red. Subjects were asked to redirect their gaze to
the target in red and to press a button to start stimulation. After that, all targets were
hidden for 1 second. During the next 5.25 seconds, stimulation (10 repetitions of the 31
bit sequence) was performed for each of the targets.
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Figure 3.10: Location of 32 electrodes according to the 10-20 system in C-VEP Bench-
mark Dataset. The ground was AFz channel and the reference was FCz channel. (Based
in: [77])

Figure 3.11: Time-course of one trial during the experiment in C-VEP Benchmark
Dataset (based in [77]).
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4
BCI and User Identification:

SSVEP and C-VEP

This chapter presents the work developed in the context of: 1) SSVEP BCI; 2) C-VEP
BCI and 3) C-VEP identification. Moreover, we describe our acquisition setup, processing
framework and pseudo-online implementation.

In the first stage of the work, public benchmarks datasets (SSVEP-dataset and C-
VEP-dataset) were used to validate the methods, which were implemented in Matlab. An
extensive set of different methods was implemented and compared, as well as different types
of signal normalization. The underlying concepts to generate m-sequences is analyzed,
and our own m-sequence for C-VEP is proposed. The correlation between m-sequence
complexity and classification accuracy is also explored.

Figure 4.1 shows the modules of the pipeline used to identify users and targets: the EEG
acquisition module or benchmark dataset; the normalization and preprocessing module;
the first and second derivatives module (optional); the feature extraction module and the
threshold-based decision-making module. Since the correlation output value of the feature
extraction module is a single variable, classifiers will not be applied, and the decision is
only considered through thresholds. The text below each block indicates some of the
methods that were applied.

4.1 SSVEP and C-VEP detection

The SSVEP and C-VEP datasets, described in section 3.5, were used to assess the
methods. The overall detection pipeline is represented in Fig. 4.1. The methods to
detect SSVEP were tested using the SSVEP dataset and also synthetic data (see more
information in appendix B).

After analyzing the files of all the subjects in C-VEP Benchmark Dataset, it was possible
to detect a failure in the file of subject 11, since target 14 occurred six times, while target
16 only happened four times. Since it was not possible to conclude anything with this
subject, it was decided to exclude the data of this subject from the dataset, having used
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Figure 4.1: Identification Pipeline for BCI and user identification.

the EEG data of the remaining 16 users. To allow data analysis, a script was created
to reorganize the trials in the correct order of targets, being stored in a four-dimensional
matrix with dimensions of 32 channels × 1050 time samples × 32 targets × 5 blocks. Each
block corresponds to the number of recorded trials per target.

The C-VEP dataset for identifying targets has been reorganized so that it can be used
in the context of user identification. The new C-VEP dataset for user identification was
organized by a file, per each target, encoded by an m-sequence, with a 4-dimensional
matrix for each file with dimensions 32 channels × 1050 time samples × 16 subjects × 5
blocks, in which each block consists of the EEG data recorded for a trial for each subject.

4.1.1 Preprocessing

The EEG signal preprocessing stage comprises three sequential steps, as shown in Fig.
4.2.

First, EEG signals were filtered using a 48 to 52 Hz notch filter to attenuate the powerline
interference. After that, a bandpass filter was applied depending on the frequencies to be
isolated. The bandpass filter applied before normalization in the SSVEP dataset was a
third-order Butterworth filter (bandpass) with a minimum cut-off frequency of 5Hz, and
a maximum cut-off frequency of 50Hz.

Regarding the data from the C-VEP dataset, the signals were filtered using a filter with
a fourth-order Butterworth filter between 4Hz and 31Hz, to attenuate the low-frequency
oscillations due to the movements of the electrodes and high-frequency extra physiologic

40



4. BCI and User Identification: SSVEP and C-VEP

Figure 4.2: Preprocessing module used in SSVEP and C-VEP.

noise. The cut-off frequency of the C-VEP is lower than in the SSVEP since the signal
harmonics are not detected because this information is not relevant for the analysis in
question.

Finally, EEG signals were normalized using two different methods of normalization. The
first method was the DC offset removal defined by:

X ′ = X −mean(X) (4.1)

and the second method was the reduce amplitude signal to the value range [-1, 1] defined
by:

X ′ =
X

max(|X|)
(4.2)

For the SSVEP dataset, only the DC Offset Removal normalization was used, while for
C-VEP dataset both normalizations were used.

4.1.2 Feature Extraction Methods

For the SSVEP paradigm, the Welch, CCA and Cepstrum methods were used, while
for the C-VEP paradigm the Correlation Coefficients, Dynamic Time Warping and Cosine
Similarity methods were used. The methods ITCCA and TRCA were used for both
paradigms. All methods were applied after filtering and normalization.

4.1.2.1 Welch’s Method

The welch method was used to increase the robustness of the target frequency esti-
mation. This method required to adjust the EEG data at the input of the method to
maximize the resolution of the method.

To take advantage of the Welch method, the concatenation of the largest amount of
data from the various channels was made in a single temporal sequence for each trial,
using a window with 2048 samples and overlap of 50% of the window. With the use
of this window, information was not lost, since the frequency resolution was 0.12 HZ(

Fs
window = 250Hz

2048points = 0.12Hz
)
, while the frequency resolution of the benchmark dataset

was 0.2 Hz.
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Figure 4.3: Example of a Cepstrum of SSVEPs responses at 8.0 Hz measured at channel
Oz.

In the next step, the decision is made, considering the target frequency is deemed to
be the central frequency fc. If the frequency value detected during the Welch method
extraction process is in the range between fc − ϵ and fc + ϵ (with ϵ = 0.1Hz), this target
is selected as an answer; otherwise, the target that has obtained the most significant
amplitude is selected.

4.1.2.2 Cepstrum

The Cepstrum method was applied in order to identify the fundamental frequency of the
SSVEP, taking into account the different harmonics existing in the EEG signal. Initially,
a window was applied for each channel to be possible to have a periodic extension of the
signal implicit in the discrete Fourier transform. With these signals, it was possible to
extract the Cepstrum signal for each channel by applying (3.6). Then, the average signal
of the Cepstrum was obtained for each trial. Figure 4.3 shows an example of a Cepstrum
obtained from channel Oz.

The cepstrum signal obtained for each trial is analyzed and limited to the values of the
quefrency vector between the values of 1/7.8 seconds and 1/16 seconds. The maximum
amplitude that gives rise to the identified frequency of the resulting signal is verified in
the decision-maker, where the frequency is specified in the same way as in the Welch
method, considering fc as the target frequency to be determined and evaluating whether
the frequency detected in Cepstrum signal is in the interval between between fc − ϵ and
fc + ϵ (with ϵ = 0.15Hz).
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4.1.2.3 Correlation Coefficients, Dynamic Time Warping and Cosine Similar-
ity

These methods of correlation and similarities between time series aim to maximize the
correlation or to minimize the distance that differs between the time series. For each
trial, the average of 4 data blocks was used to compare with the test block, creating the
template from training data and always testing with unseen data.

The Pearson correlation (3.7) was applied to the individual template with the training
EEG and the test EEG was subsequently utilised, creating the matrix of correlation co-
efficients between the data from train and the test. The element (1,2) of each matrix for
all targets (BCI) and all subjects (subject identification) was extracted. The output was
the maximum value of the resulting vector.

For the application of the Dynamic TimeWarping method, the formula (3.9) was applied
to calculate the distance between two-time sequences (each channel) between the training
template and the test trial. After that, the average of the distances was calculated and
the minimum value of the resulting vector is chosen.

With the Cosine Similarity method, the objective was to compare the similarities by
choosing the targets or subjects in which the test data were most similar to the training
template. The formula (3.11) was applied to each block of data compared to the template,
and then the average of the distances to the channels was applied. The target that has
the maximum similarity value was the one selected.

4.1.2.4 CCA

The selected target was extracted based on the CCA output. The reference signal
was created, which was constructed considering the equation 3.12, in section 3.3.2. The
SSVEP benchmark dataset has 40 targets in total, requiring a reference signal for each of
the frequencies fn, between 8 Hz and 15.8Hz, spaced by 0.2 Hz, defined by:

Y (fn) =


sin(2π × fn × t)

cos(2π × fn × t)

...

sin(2π × 4× fn × t)

cos(2π × 4× fn × t)

 , t = {0, 4ms, 8ms..., 6sec} (4.3)

The next step was the implementation of the CCA shown in Fig. 4.4, with the method
inputs being the X(i) corresponding to multi-channel signal from the ith trial, with dimen-
sions NC channels × NS samples and the reference signal, with dimenions 8 harmonics
× NS samples, and the variables Cxx of size NC × NC , Cxy of size NC × 8, Cyx of size
8 × NC and Cyy of size 8 × 8. The procedure represented in Fig. 4.4 was replicated for
all of the reference signals (40 targets). At last, the canonical correlation output ρ has a
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Figure 4.4: Implementation of the CCA and ITCCA algorithm.

dimension of 1 × NT targets, where the maximum value corresponds to the target that
has the highest correlation with the reference signal.

4.1.2.5 ITCCA

The ITCCA method requires an individual template for each target (C-VEP-BCI or
SSVEP-BCI) or each user (C-VEP identification). As an individual template, we used
the average of the trials of the training blocks for each of the targets (NC channels ×NS

samples - depending on ’NC ’ and ’NS ’ of the dataset for the respective paradigm). After
that, the method was applied as described in Fig. 4.4, with the inputs being the test multi-
channel EEG signal and the individual template signal, both inputs with NC channels ×
NS samples. At last, the canonical correlation output ρ has a dimension of 1 × NT targets,
where the maximum value corresponds to the target with the highest correlation with the
individual template.

4.1.2.6 TRCA

The TRCA was implemented in Matlab following the methodology described in [71].
The implementation of the TRCA method involves the calculation and optimization of
weights to maximize the correlation between the various data trials, and for that, it needs
to perform the weighted linear sum of the various time series. It should be noted that the
necessary inputs for the TRCA method are only the target (BCI) or subject (identification)
EEG data.

Initially, in the extraction process for each target or subject, the component related to
the task is obtained, and the covariance matrix SNC×NC

is built and updated with each
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combination between two trials Xi and Xj of a total of B trials of that target, using

S =
B−1∑
i=1

B∑
j=i+1

Cov(Xi, Xj) =
B−1∑
i=1

B∑
j=i+1

(
Xi × (Xj)T +Xj × (Xi)T

)
(4.4)

The EEG signals for all trials of each target are concatenated in a single time series,
creating the matrix UNC×B∗NS

. The covariance matrix QNC×NC
is created using Q =

U × UT .

Figure 4.5 presents an example diagram for the implementation of the TRCA method
containing three trials of EEG data with NC channels and NS samples each for a given
target (X(1), X(2), X(3)). The matrix S was obtained by

S = Cov(X(1), X(2)) + Cov(X(1), X(3)) + Cov(X(2), X(3)) (4.5)

The EEG data from the three trials were concatenated into a single vector UNC×3NS
=

[X(1)X(2)X(3)], to calculate the matrix QNC×NC
.

Q =
[
X(1) X(2) X(3)

]
.

X
(1)

X(2)

X(3)

 (4.6)

The eigenvalues that maximizes Q−1S are the spatial filters W for each target or user.
The decision is made using formula (3.24), i.e., applies the projections to test data and
computes its correlation to the projected model data.

4.1.3 EEG Differentiation

Generally, EEG waves recorded based on voltage amplitudes in different channels of
the biosignal amplifier are used as input for algorithms to make the respective classifica-
tion and identification of features [5]. The 1st and 2nd derivatives of the EEG signal is
proposed as a implementation step before the feature extraction methods, to explore the
dynamics of C-VEP as response the stimulation steps (binary transitions). Particularly,
the first derivative has shown improved results, as will be verified in sections 5.1.2.1 and
5.1.3.1. This implementation led to a new differentiated version of some of the methods
implemented in the previous section, for example, D-TRCA (Differentiated TRCA) and
D-Correlation Coefficients (Differentiated Correlation Coefficients).

The derivatives of the EEG signals were obtained using the finite difference formulas,
used as an approximation of the derivative, with:

f ′(k) =
f(k)− f(k − 1)

h
; f ′′(k) =

f ′(k)− f ′(k − 1)

h
(4.7)
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Figure 4.5: Diagram of the TRCA with continuous multi-channel EEG. The shaded
areas correspond to the stimulus duration segments corresponding to a target in three
different trials. The gray block shows the covariance between the different trials, to create
the covariance matrix S.
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where h is the value of the sampling period.

4.2 Generation of m-sequences

The creation of our sequence allowed the validation of the logic necessary for the gen-
eration of sequences to expand the different codes to be used in C-VEP, not only being
dependent on the already existing sequences.

The m-sequences chosen to modulate the targets in the experiment described in section
4.3 have a length of 31 bits. For the creation of a 31-bit m-sequence, there are six possible
primitive polynomials of degree 5, defined by

x5 + x2

x5 + x3

x5 + x3 + x2 + x

x5 + x4 + x3 + x2

x5 + x4 + x2 + x

x5 + x4 + x3 + x

(4.8)

Each of these primitive polynomials can generate a different m-sequence, making it pos-
sible to have different sequences, considering all the possibilities of initial seed with 5 bits
(excluding seeds consisting only of ’0’ and only ’1’). After an analysis of all combinations
for the m-sequences and their shifted sequences and the lowest values of the complexities
were verified, the coded modulation using the taps of the polynomial x5 + x2 and the
initial seed 01010 were used, creating the m-sequence:

0101011101100011111001101001000

4.3 Experimental Laboratory Setup

This section explain each aspect of the experimental setup, which is composed of the
stimulation module, the data acquisition module, the signal processing module and finally,
decision-module that selects target (C-VEP BCI) or the user (C-VEP identification). The
datasets recorded are referred to as C-VEP-ISR datasets.

4.3.1 Stimulation Module

The C-VEP system requires a strict synchronization between the acquisition data and
the stimulus events and the delay between the presentation of the stimuli and the acqui-
sition event needs to be very small and always constant. The stimulation module receives
information about the moment of the stimulus presentation using a trigger signal sent by
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Figure 4.6: Stimulation based on LED matrices.

the EEG recording system. Here, this trigger is sent from Simulink, that embeds an EEG
acquisition driver provided by g.tec, that runs in real time (see section 4.3.2.1).

The stimulation module is composed of 4 LED matrices 8x8 (2 yellow-green and 2 blue)
and it is controlled by an Adafruit Feather HUZZAH ESP82661, as shown in the picture
and circuit of the Figs. 4.6 and 4.7. This module generates visual stimuli independent of
the use of a computer screen, allowing a greater portability of the system.

Feather HUZZAH ESP8266 has an ESP8266 WiFi microcontroller clocked at 80 MHz
and with a 3.3V logic, containing a Tensilica chip core that implements a WiFi stack. The
3.7V Lithium polymer batteries enables the use of this development board in portable
projects [2].

Each of the LED matrices flashes according to a pre-programmed binary sequence to
be generated directly by the development board. The stimulus alternates between two
states: dark and light (color yellow-green or blue), so a binary sequence can be used as
a modulation sequence, where dark and light represent a bit ’0’ and ’1’ in the binary
sequence, respectively. The triggers indicating the onsets of the m−sequences were sent
from the computer directly to the HUZZAH ESP8266 microcontroller to mark the begin-
ning of each C-VEP response acquisition. The LED matrices are activated via the I2C
bus through the generator program for stimuli, which was written in C-language.

Since there are only four targets in our setup, it is guaranteed that a sequence with
31 bits and a 7-bit shift for its shifted sequences is sufficiently spaced from the original
sequence to ensure identification. For the stimulus modulation, the sequences proposed in
[3] were used, as well as our sequences generated in section 4.2.

1Adafruit Feather HUZZAH ESP8266: https://learn.adafruit.com/adafruit-feather-huzzah-esp8266/
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Figure 4.7: Stimulation circuit based on LED matrices.

4.3.2 EEG Recording Systems

The EEG acquisition system is composed of the electrodes, the cap and the bio amplifier.
The two systems used are from g.tec (Austria, the Unicorn and the gUSBamp. The
experimental setups are shown in Fig. 4.8 and Fig. 4.9. The Unicorn Hybrid Black has
the advantage of being portable and has few is a low-cost portable EEG system with eight
channels, while the g.USBamp has a 16 channel high-end device with high performance.
In appendix E, it is possible to find more details about the two systems.

4.3.2.1 Signal Acquistion with g.USBamp

g.USBamp (g.tec medical engineering GmbH, Austria) is a medical and research-grade
device. The system is connected by USB to the PC. It supports 16 DC-coupled wide-
range input channels (electrodes) per unit simultaneously sampled biosignal with a 24-bit
resolution, allowing a high precision data acquisition [31].

The g.USBamp Simulink block used in the data acquisition on the ’recording’ computer
allows several hardware configurations: sampling rate, unipolar and bipolar montages, pre-
set filters, etc. The g.USBamp acquisition system records the brain’s EEG signals using
the g.EEGcap, which can be used up to a maximum of 65 active Ag/AgCl electrodes
that pre-amplify the EEG signals which are then sent to the system. Figure 4.10a) shows
the location of the g.USBamp amplifier electrodes according to the international 10/20
system. The EEG signals were recorded at 256Hz and 512 Hz sample rates in a unipolar
way using 12 electrodes. The left or right earlobe was chosen as a reference and the ground
electrode placed in the AFz. The channels selected were the Fz, Cz, C3, C4, CPz, Pz, P3,
P4, POz, Oz, PO7 and PO8.

The acquisition system performs as a preprocessing step a band-pass filter between 0.5
and 100 Hz to remove high-frequency noise and a notch filter at 50 Hz to reject the power
line noise source.
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Figure 4.8: Picture of the experimental setup with a user wearing the EEG cap and
the g.USBamp amplifier is acquiring the data simultaneous with the occurrence of the
stimulation.

4.3.2.2 Signal Acquistion with Unicorn Hybrid Black

Unicorn Hybrid Black allows to read EEG data with 24-bit resolution and sampled
with 250 Hz per channel and can be filtered with a notch and band-pass filters to suppress
artefacts or to extract certain frequency bands like alpha and beta sub-bands [30].

Unicorn uses Bluetooth data transfer and has its own application (Unicorn Suite Soft-
ware) and some tools to acquire, view, and store data or perform real-time analysis of
brain activity and to calibrate the amplifier electrodes.

Figure 4.10b) shows the location of the Unicorn amplifier electrodes according to the
international 10/20 system. The EEG signals were recorded at 250Hz sample rates from
8 electrodes. The electrodes positions of the cap are Fz, C3, Cz, C4, Pz, PO7, Oz and
PO8 according to the 10/20 system. The reference and ground EEG electrodes was fixed
on the mastoids of the user. The EEG signals was filtered with a 50Hz Notch filter and a
0.5 to 60Hz Bandpass filter.
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Figure 4.9: Picture of the experimental setup with a user wearing the Unicorn Hybrid
Black headset is acquiring the data simultaneous with the occurrence of the stimulation.

Figure 4.10: Location of electrodes of the EEG amplifiers used in the experiments,
according to the international 10/20 system. Blue circles illustrate the channels used in
the C-VEP experiments: a) Electrodes in g.USBamp; b) Electrodes in Unicorn.

4.3.3 EEG Data Acquisition and Stimulation Synchronization

The synchronization between the signals collected and the stimulus presentation is ob-
tained through a marker that is transmitted from the Matlab/Simulink to the stimulation
microcontroller and at the same time labels the EEG being recorded.

The Callback functions of the Simulink model were used to allow the acquisition to be
synchronized with the stimulation, allowing the execution of commands at specific times

51



Code-Modulated Visual Evoked Potentials for BCI and Biometric Authentication

points. Therefore, it was possible to send the trigger to start, directly to the EEG amplifier
and the stimulation. Three of the existing Callback functions were used: InitFcn, StartFcn
and StopFcn. The InitFcn was used to create the connection to serial port between the
acquisition computer and the microcontroller; the StartFcn allows sending the flag to start
the stimulation at the beginning of the acquisition, and StopFcn allows to stop the stimuli
and the simulation when the trial ends.

4.3.4 C-VEP-ISR Datasets

The proposed C-VEP setup allowed to acquire data (C-VEP ISR Datasets) and apply
the best detection approaches in a pseudo-online way. We tested the system with m-
sequences already used and with our own m-sequences, originating four different C-VEP-
ISR Datasets.

Twelve participants enrolled the experiment. During the c-VEP experiments, the users
were seated on a comfortable chair in front of the stimulation module, with users sitting
approximately 40-50 cm from the stimulation module, and were instructed not to move
their neck when changing their eye-gaze among the four LEDs to reduce the electromyo-
graphic noise caused during the movement. Each session was separated with breaks of 2-3
minutes during the experimental sessions, to avoid user’s eye blinks.

For each of the contexts analyzed with C-VEP (BCI and identification), different
datasets were acquired with varying conditions regarding the way users looked at targets.
In the acquisitions made to identify targets, all LEDs continued to flash simultaneously,
each with the time-shifted m-sequence, with the user focus in a central point of mod-
ule. During the acquisitions made for the identification of subjects, only one of the LEDs
flashed at a time, and it was requested to the users to focus the gaze on that particular
LED during these recordings.

During the preliminary acquisitions, the bit time was evaluated, which would allow
repeating the binary sequence multiple times, but in such a way that the user does not feel
tired, nor makes an effort to gaze to the target. The selected bit time was 25 milliseconds
per bit, allowing each sequence of 31 bits to run 0.775 seconds and the stimulation of each
target for each trial lasted between 0.775 seconds (1 time) and 7.75 seconds (10 times).

Figure 4.11 shows the experimental time-course during one target acquisition, starting
with the indication of the target where the subjects should direct their gaze, followed by
the stimulation phase in which all targets adopt their lagged and repeated this sequence
ten times during 7.75 seconds. After the stimulation period, subjects could rest for 30
seconds until the next target.

The data processing and storage were performed on a ’recording’ computer TOSHIBA
laptop (Intel Core i7 2.50 GHz 16.00 GB RAM, Microsoft Windows 7 Home). EEG data
were recorded for each of the five sessions of the four targets viewed. The selection of
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Figure 4.11: Time-course of one target during the experiment in C-VEP-ISR Dataset.

targets during data acquisition was performed randomly to each subject to avoid a bias
in the collaboration of participants in the experiment.

The EEG was then cut into 7.75-second epochs starting from the moment of stimulation
initiation and labelled and saved with the corresponding cues target. The ISR_C-VEP
Dataset contains a data file in MATLAB for each of the participants tested in the ex-
periment, named as subject indices (i.e., S01.mat). For each file, the data generate a
4-dimensional array with dimensions of 12 channels × 3969 time samples × 4 targets × 5
blocks.

4.4 Complexity of Pseudorandom Binary Sequences

To determine which are the best sequences that could be used to code the visual stimula-
tion, we explored complexity measures of the pseudorandomness of binary sequences were
evaluated, which is defined as a behaviour similar to random nature, despite presenting a
pattern of deterministic mathematical nature. A binary sequence is considered ”good” if
the values of these parameters are low, depending on the number of bits used, i.e, it is a
sequence that allows the identification of subjects with greater accuracy.

The first analysis model used was the sequence distribution formula. Considering the
binary sequence with N bits EN = (e1, e2, ..., eN ) ∈ {−1,+1}N , it is possible to defined a
well-distribution measure of EN as:

W (En) = max
a,b,t

∣∣∣∣∣∣
t−1∑
j=0

ea+jb

∣∣∣∣∣∣ (4.9)

where the maximum is taken considering all values for a,b and t such that a, b, t ∈ N and
1 ⩽ a < a+ b(t− 1) ⩽ N [64].

The second and third methods of analysis assume that S is a binary sequence of n bits,
composed of ’zeros’ and’ ones’. In the second one, Andrei Kolmogorov [35] defines the
complexity of S as being the number of bits in the smallest sequence that is capable of
generating the sequence S. The number c is the value of complexity, i.e., the number of
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Figure 4.12: Diagram for the algorithm to calculate the Kolmogorov complexity c(n) of
a string of length n (figure based in [33]).

iterations required to create the sequence S [33]. Figure 4.12 presents a flowchart of the
implemented method to determine the Kolmogorov’s complexity.

The third method of analysis is the Lempel-Ziv complexity presented in [37]. This
method is the Kolmogorov Complexity computed with a limited set of programs that
only allows the recursive copy and insertion in strings [33]. Each bit of the S sequence is
analyzed, from left to right. The complexity value is increased by one when a subsequence
of consecutive bits that was not found in the analysis previously made is discovered. The
analysis using the third method was done using the code provided by [72]. This algorithm
evaluates two types of complexity in a sequence [84]:

• Exhaustive - Lower limit of the complexity measurement - based on finding exten-
sions to a sequence, which are not reproducible from that sequence, using a recursive
symbol-copying procedure.
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• Primitive - Upper limit of the complexity measurement - the sequence decomposition
occurs at points where the eigenfunction of a sequence increases in value from the
previous one.

Figure 4.13: Diagram for the algorithm to calculate the Kolmogorov complexity c(n) of
a string of length n using the Lempel-Zev algorithm (figure based in [42]).
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5
Results and Discussion

This chapter presents the offline results obtained with the SSVEP and C-VEP bench-
mark datasets and with our own C-VEP datasets. First, all methods are tested on bench-
mark datasets. Then, EEG signals recorded with our setup is compared using the same
detection approaches. Appendix A presents the tables with the most detailed classification
results for each user (C-VEP BCI) and each m-sequence (C-VEP identification).

Tests were carried out with the g.USBamp acquisition system, and also with the Unicorn
headset. However, due to the excessive existing noise in the recorded signals, it was not
possible to obtain consistent results with the Unicorn headset.

5.1 Validation Results

In the first stage of experiments, the public benchmark datasets for SSVEP [74] and
C-VEP [77] were tested with the feature extraction methods analyzed in section 3.3.2 and
implemented in the section 4.1.2. The goal was to evaluate different feature extraction
methods for SSVEP and C-VEP detection to decide the optimal configuration for each one.
With the different methods applied, it was possible to study two different perspectives: 1)
the best methods to obtain the highest possible accuracy; 2) less computational demanding
techniques for identifying targets or subjects in real-time, and test smaller subsets of
channels.

For a direct comparison with our wearable EEG system (Unicorn), the methods were
applied considering all channels of the public dataset, considering 8 channels from the
visual cortex and considering only 8 preset channels, which have the same scalp location
as the Unicorn headset, our wearable EEG acquisition system.

Cross-validation was used for assessment of the methods. For the detection methods
in which a statistical model was required, the individual template was estimated using
leave-one-out cross-validation, thereby ensuring that the results were never obtained from
seen data, and providing a reliable metric [7]. With the cross-validation, the data was split
in train and test sets. Given that the test data was not used in the training procedure, the
performance obtained in that trial can provide an insight into the generalization capabil-
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ities of the method. Each dataset is divided into blocks (repetitions of the same target or
user). For the SSVEP dataset with 6 data blocks, the validation was performed using 5
blocks for training and 1 test block, while for the C-VEP dataset with 5 data blocks the
validation was done with 4 training blocks and one test block.

For the C-VEP paradigm, four analyzes were performed regarding normalization: 1)
DC Offset Removal using the entire acquired signal (10 repetitions of the 31 bit sequence);
2) Signal normalized to [-1; 1] across ten repetitions ; 3) DC Offset Removal with the
average of the ten acquired repetitions ; 4) Signal normalized to [-1; 1] with the average
of the ten acquired repetitions .

Appendix A presents the tables with the most detailed results of the various tests
performed for each subject (BCI) and each target (subject identification).

5.1.1 SSVEP-based BCI

Five feature extraction methods were used with the public benchmark dataset for
SSVEP: the Welch, Cepstrum, CCA, ITCCA and TRCA.

The mean classification results are shown in table 5.1. The method that performed best
accuracy for all subset of channels was the TRCA. The best accuracy was achieved using
the 8 occipital channels, with the TRCA. Using only the subset channels corresponding
to the channels of the Unicorn, best results were obtained also using the TRCA, reaching
95% accuracy.

It is possible to verify that the methods that have a user model obtained previously
(CCA, ITCCA and TRCA) show better results than the Welch and Cepstrum methods,
which do not have the training component or use the correlation between channels.

The best results achieved with occipital channels can be explained by two reasons: 1)
these channels are part of the visual cortex channels allow to obtain better results since
it is in this area that the SSVEP is evoked; 2) the use of electrodes with signals with high
contamination due to movement muscle and eye, causing irrelevant features.

The Cepstrum values were low due to the existence of too many signals convolved
together to cepstrum to extract correctly. However, a more particular analysis was made,
using fewer targets, that is explained in Annex C.

The computational effort of each method was another variable analyzed during the
implementation of the methods. Table 5.2 shows the processing time for each feature
extraction method. It should be noted that the processing times presented for ITCCA
and TRCA exclude the time required for calculating the template. The TRCA method
is the most effective since it has the best accuracy results and was found to have a very
short processing time, which shows that it can be implemented in devices with lower
computation power. The processing time has decreased with the use of just 8 channels,
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compared to using the 64 channels.

Table 5.1: Mean classification results in the SSVEP benchmark dataset (based on 5
seconds stimulation) for each method.

All channels Visual 8 channels Unicorn 8 channels

Method Accuracy
[%]

ITR
[bpm]

Accuracy
[%]

ITR
[bpm]

Accuracy
[%]

ITR
[bpm]

Welch 34,05 30,10 51,63 49,31 46,02 43,32
Cepstrum 54,75 46,68 30,76 18,32 33,05 21,29

CCA 86,45 102,14 93,95 115,11 77,22 87,85
ITCCA 81,53 94,64 93,74 114,23 80,27 92,26
TRCA 96,55 120,93 97,36 121,63 95,68 118,12

Table 5.2: Processing time in Matlab, in seconds, for the methods implemented in the
SSVEP benchmark dataset.

All channels Visual 8 channels Unicorn 8 channels
Welch 0,36 0,06 0,06

Cepstrum 62,12 9,51 9,72
CCA 7,20 0,87 0,87

ITCCA 10,00 0,55 0,56
TRCA 0,89 0,16 0,19

5.1.2 C-VEP-based BCI

With the public benchmark dataset used for identification of targets with C-VEP, four
feature extraction methods were applied: the ITCCA, the TRCA, the Correlation Coeffi-
cients and the Cosine Similarity.

5.1.2.1 C-VEP Benchmark Dataset

Table 5.3 shows the results obtained for the identification of targets by applying the
different combinations of signal normalization functions and feature extraction methods,
while table 5.4 presents the results obtained for the various combinations with the appli-
cation of the first derivative of the EEG signals. Table 5.3 shows the best result using
a subset of channels corresponding to the channels located in the visual cortex, obtained
with the averaged data of ten repetitions , normalized with DC offset removal and applied
to the TRCA method (97.66%), close to those presented in [77]. For all channels in the
public dataset, it was possible to achieve an accuracy of 94.22% and with the subset cor-
responding to Unicorn channels, a maximum of 88.48%. Table 5.4 shows the best result
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was also obtained using a subset of channels corresponding to the channels located in the
visual cortex and as the same method attained with the averaged data of ten repetitions,
normalized with [-1; 1] interval (98.79%). For all channels in the public dataset, it was
possible to achieve an accuracy of 97.57% and with the subset corresponding to Unicorn
channels, a maximum of 91.95%.

The application of the derivative proved to be an excellent improvement for the iden-
tification of targets, seen when comparing results between both tables, having improved
the results in all tested combinations.

The use of normalization at the interval [-1; 1] allowed to improve the results obtained,
as can be seen in both tables, reaching an improvement of 9 percentage points with the
application of data from the channels located in the visual cortex to the Correlation
Coefficients method.

The effect of using the average of the various ten repetitions of data, comparing with
the use of the concatenated signal, greatly improved the performance of the system, with
maximal improvements of 30 percentage points being obtained in certain tests, except
with the application of the ITCCA method, in that the use of the average dropped the
results dramatically. These results were motivated by the small number of signal samples
used to create the template to apply the canonical correlation.

Table A.2 shows the best classifications results for each method and each subset of
channels with different normalizations. It can be seen that S9 and S15 obtained the best
target identification accuracy, especially with TRCA, while S7 was the subject with the
lowest mean accuracy values. Table A.3 shows that all participants had improvements in
many of the tests performed, with the previously worse result seen for S7 having improved
by 30 percentage points.

The comparison between the accuracy values with all channels and only with the visual
cortex channels suggests that the evoked potentials are driven by visual stimulation.

Table 5.5 shows the processing time for each method implemented. The Cosine Similar-
ity method has the best processing times when considering only the use of visual channels
or the Unicorn channels. When all channels in the dataset are used, the best method is
TRCA with a processing time of 36 milliseconds. As would be expected, given the amount
of data processed differs with the number of channels used, processing time is lower for 8
channels than for the full set of channels.
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Table 5.3: Mean classification results for the C-VEP benchmark dataset for each subject
to target identification with different methods of normalization.a

Method ITCCA TRCA Correlation
Coefficients

Cosine
Similarity

Normalization Acc
[%]

ITR
[bpm]

Acc
[%]

ITR
[bpm]

Acc
[%]

ITR
[bpm]

Acc
[%]

ITR
[bpm]

All
chans

DC Offset
Removal 60,70 24,75 92,23 45,56 46,76 16,62 49,49 17,19

Range [-1 1] 61,41 25,15 94,22 47,12 52,42 18,74 50,47 17,66
DC Offset
Removal

(Average)
10,16 1,12 92,27 45,07 75,31 34,08 76,84 33,51

Range [-1 1]
(Average) 9,30 0,93 90,70 43,64 80,00 35,69 78,24 34,50

Visual
8chans

DC Offset
Removal 82,81 38,47 94,14 46,82 66,80 28,32 72,66 30,93

Range [-1 1] 82,62 38,35 94,57 47,20 75,47 32,82 74,14 31,93
DC Offset
Removal

(Average)
62,50 24,36 97,66 49,75 83,28 39,79 90,27 43,35

Range [-1 1]
(Average) 62,07 23,94 97,54 49,56 91,00 43,98 90,78 43,77

Unicorn
8chans

DC Offset
Removal 67,97 30,73 80,31 38,88 43,75 15,11 47,77 16,65

Range [-1 1] 68,16 30,70 80,82 39,12 50,63 18,16 48,05 16,79
DC Offset
Removal

(Average)
47,46 16,84 88,48 43,60 74,22 33,54 73,36 31,71

Range [-1 1]
(Average) 47,46 16,70 88,32 43,25 76,50 33,87 73,63 31,84

a The term ’All chans’ is the label for tests performed using the 31 channels of the dataset. The term
’Visual 8chans’ is the label for the use of the 8 channels of the visual cortex used in the dataset (Oz, O1,
O2, POz, PO3, PO4, PO7, PO8). The term ’Unicorn 8chans’ is the label for the use of the 8 channels of
the dataset that correspond to the channels existing in the Unicorn Hybrid Black headset (Fz, C1, Cz, C2,
Pz, PO7, PO8 and Oz).
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Table 5.4: Mean classification results for the C-VEP benchmark dataset for each subject
to target identification with different methods of normalization, using the first derivative
of the EEG data. a

Method D-ITCCA D-TRCA D-Correlation
Coefficients

D-Cosine
Similarity

Normalization Acc
[%]

ITR
[bpm]

Acc
[%]

ITR
[bpm]

Acc
[%]

ITR
[bpm]

Acc
[%]

ITR
[bpm]

All
chans

DC Offset
Removal 72,27 31,96 96,48 48,79 50,70 18,81 52,14 17,01

Range [-1 1] 73,24 32,65 97,57 49,68 56,50 20,88 52,89 17,41
DC Offset
Removal

(Average)
10,55 1,17 96,56 48,79 79,61 37,28 80,74 34,84

Range [-1 1]
(Average) 9,88 1,09 96,45 48,48 89,26 42,90 81,33 35,28

Visual
8chans

DC Offset
Removal 88,87 42,68 96,17 48,53 66,56 28,45 73,63 29,86

Range [-1 1] 89,45 43,11 96,80 48,96 75,51 33,11 74,37 30,36
DC Offset
Removal

(Average)
30,05 30,05 98,44 50,57 84,53 40,83 90,98 42,95

Range [-1 1]
(Average) 30,05 30,05 98,79 50,88 93,44 46,25 91,17 43,11

Unicorn
8chans

DC Offset
Removal 72,38 33,99 82,50 40,15 48,59 17,63 50,63 16,22

Range [-1 1] 72,30 34,22 82,85 40,37 55,94 21,07 51,41 16,63
DC Offset
Removal

(Average)
56,41 21,90 91,41 45,52 79,18 37,44 77,62 32,60

Range [-1 1]
(Average) 56,48 21,79 91,95 45,80 86,80 41,90 78,13 32,96

Table 5.5: Processing time in Matlab, in seconds, for the methods implemented in the
C-VEP benchmark dataset.

All chans Visual 8chans Unicorn 8chans
ITCCA 0,700 0,103 0,105
TRCA 0,036 0,026 0,027

Correlation Coefficients 0,063 0,031 0,032
Cosine Similarity 0,051 0,017 0,017
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5.1.2.2 C-VEP-ISR Dataset

The tests were experimentally conducted on 13 healthy patients with normal or corrected
vision. Table 5.6 presents some information about the participants in the experiment. Ten
of the participants were male, and three were female. The mean age of the participants
was 22.4 years. Only three participants had previous experience with BCIs.

Table 5.7 shows the results obtained when visual stimuli were modulated by the se-
quences proposed in [3], for the target identification approach. With these results, it is
possible to verify that the method that presents the best results is the TRCA, which can
achieve 100% accuracy when using only the four channels, reaching results above 98% for
all combinations of methods and normalizations, without the application of the derivative
form. Using the derivative form of the EEG data was possible to achieve 97.08% of accu-
racy using all channels of the system. In general, the use of the form derived from EEG
data as preprocessing maintains or improves the results obtained.

The application of normalization in [-1; 1] interval maintained or increased the accuracy
of the tests performed, with the most significant improvement being seen in the Correlation
Coefficients and Cosine Similarity methods.

The tables A.4 and A.5 present the detailed results for each subject, and the participants
that achieved the best results for all the tested methods were the S12 and S13. In these
tables, it is possible to verify that the application of the first derivative to the EEG data,
improved the results for some subjects and worsened for others (S5, S9 and S11).

The results obtained for target identification approach from the EEG acquired during
stimulation modulated by our proposed m-sequences are shown in table 5.8. With this
table, it is possible to verify that the best results were obtain with the ITCCA and TRCA
method. The best result was possible to achieve with a subset of 8 EEG channels and
the application of the ITCCA method with the normalization of the amplitude to [-1,
1] interval, allowing a 98% accuracy target identification. The results obtained after the
application of the derivative form showed a heterogeneous effect in all configurations,
increasing the accuracy for some individuals, despite the decreasing of accuracy mean for
the majority of the methods. For this dataset, the change in the applied normalization
method did not change the results significantly, being similar between both methods.

The tables A.6 and A.7 present the detailed results for each participant with the stim-
ulation modulated by our proposed sequence for the target identification approach. It
should be noted the results obtained with the subject S3, where it was possible to obtain
100% accuracy for almost all tests performed.
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5.1.3 C-VEP-based user identification

For the identification of subjects, the different methods of normalization were applied
with the feature extraction methods and with the application of the first derivative to the
subjects’ EEG data. Five feature extraction methods were applied: the ITCCA, TRCA,
correlation coefficients, Cosine Similarity and Dynamic Time Warping, which given the
processing complexity was only used with the data from the visual cortex channels.

5.1.3.1 C-VEP Benchmark Dataset

Table 5.9 shows the results obtained for subject identification approach, using the mod-
ulated m-sequences for the targets in the framework from [77]. In contrast, table 5.10
presents the improved results with the data differentiation before the application of the
feature extraction method. The first table shows that the best result was obtained with
the subset of channels of the visual cortex, using the TRCA with the average data of
the ten repetitions normalized with the DC Offset Removal (91.52%). The best result
obtained with the application of the derivative was obtained in the same test, improving
the previous result to 94.02%.

The values presented in both tables show that the application of the derivative form
allowed to improve all the results, except with the Cosine Similarity method using all
EEG channels and with the subset that uses the channels corresponding to the location
in Unicorn.

In both tables, is possible to verify that the application of the normalization method
in the [-1; 1] interval, in comparison with the DC Offset Removal, allowed to maintain or
improve the results with the different feature extraction methods, except in the TRCA
method that worsened the results.

The results obtained with the application of the different combinations to the average
of the 10 repetitions, comparing with the concatenated data, improved in all tests except
with the use of the ITCCA method, allowing to verify what already had the analysis
carried out for the target identification. One of the possibilities is the ITCCA method to
create a separability in the correct identification. The results with the DTW are low when
considering only the eight channels of the visual cortex, which does not happen with the
other methods.

The tables A.8 and A.9 show the best results, detailed for each m-sequence of the
dataset, for the subject identification approach. Through these values, it is possible to
verify which sequences are more efficient in discriminating subjects. The m-sequences that
get the best results for all methods were T7, T12, T15, T21, T22 and T28.

The values presented in table 5.11 confirm what is shown in the processing times of
the implemented methods of table 5.5 for the target identification. The processing time
for the Cosine Similarity method is the lowest, followed by TRCA, using the subset of
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eight EEG channels. The ITCCA method showed a high processing time with the results
obtained when considering the classification results obtained with the other methods. The
DTW method’s computational demands were consistent to what is shown in the state of
the art, with higher processing times even when compared to other methods processing a
higher channel count.

Table 5.9: Mean accuracy classification (%) results for the C-VEP benchmark dataset
to each target sequence for user identification with different methods of normalization.a

Method ITCCA TRCA Correlation
Coefficients

Cosine
Similarity

DTW

All
chans

DC Offset Removal 57,77 86,48 50,55 50,82 -
Range [-1 1] 57,77 84,45 52,62 50,82 -

DC Offset Removal
(Average)

15,27 81,72 74,37 72,46 -

Range [-1 1]
(Average)

15,55 76,95 81,95 73,09 -

Visual
8chans

DC Offset Removal 66,91 86,6 60,98 63,59 21,76
Range [-1 1] 67,11 84,14 66,25 64,06 16,45

DC Offset Removal
(Average)

58,71 91,52 81,64 82,3 33,09

Range [-1 1]
(Average)

58,6 89,3 87,5 83,36 37,54

Unicorn
8chans

DC Offset Removal 57,66 72,54 45,51 44,77 -
Range [-1 1]

(Average)
57,65 69,49 47,15 46 -

DC Offset Removal
(Average)

48,79 82,58 71,29 67,15 -

Range [-1 1]
(Average)

49,11 79,26 77,77 68 -

a The term ’All chans’ is the label for tests performed using the 31 channels of the dataset. The term
’Visual 8chans’ is the label for the use of the 8 channels of the visual cortex used in the dataset (Oz, O1,
O2, POz, PO3, PO4, PO7, PO8). The term ’Unicorn 8chans’ is the label for the use of the 8 channels of
the dataset that correspond to the channels existing in the Unicorn Hybrid Black headset (Fz, C1, Cz, C2,
Pz, PO7, PO8 and Oz).
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Table 5.10: Mean accuracy classification (%) results for the C-VEP benchmark dataset
to each target sequence for user identification with different methods of normalization,
using the first derivative of the EEG data. a

Method D-ITCCA D-TRCA D-Correlation
Coefficients

D-Cosine
Similarity

All
chans

DC Offset Removal 66,17 91,33 51,09 38,79
Range [-1 1] 65,08 90,39 53,63 38,59

DC Offset Removal
(Average)

16,68 88,87 77,27 62,85

Range [-1 1]
(Average)

16,02 86,41 84,69 68,98

Visual
8chans

DC Offset Removal 70,78 89,69 60,70 63,98
Range [-1 1] 71,29 85,00 66,09 65,00

DC Offset Removal
(Average)

65,66 94,02 82,34 85,31

Range [-1 1]
(Average)

65,74 92,30 88,91 86,00

Unicorn
8chans

DC Offset Removal 62,54 73,36 47,15 38,79
Range [-1 1] 63,09 71,13 49,77 38,59

DC Offset Removal
(Average)

55,39 83,91 76,17 62,85

Range [-1 1]
(Average)

55,94 83,48 81,21 63,13

a The term ’All chans’ is the label for tests performed using the 31 channels of the dataset. The term
’Visual 8chans’ is the label for the use of the 8 channels of the visual cortex used in the dataset (Oz, O1,
O2, POz, PO3, PO4, PO7, PO8). The term ’Unicorn 8chans’ is the label for the use of the 8 channels of
the dataset that correspond to the channels existing in the Unicorn Hybrid Black headset (Fz, C1, Cz, C2,
Pz, PO7, PO8 and Oz).

Table 5.11: Processing time in Matlab, in seconds, for the methods implemented in the
C-VEP benchmark dataset for user identification.

All channels Visual 8 channels Unicorn 8 channels
ITCCA 0,584 0,106 0,085
TRCA 0,043 0,020 0,022

Correlation Coefficients 0,095 0,053 0,038
Cosine Similarity 0,067 0,020 0,019

DTW - 1,462 -

Figure 5.1 presents a plot of the EEG signals, the first derivative and the second deriva-
tive of the signals of the Oz channel of the subjects S14 and S17 of the C-VEP Benchmark
Dataset, that evidences the differences between the signals for the same target (T7).
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Figure 5.1: Plot of the EEG signal, the first and second derivative of channel Oz with
target 7 for the subjects S14 and S17 of the dataset [77]. The graphics on the left use the
full EEG signal, while the pictures on the right use the average of the repetitions of the
EEG signal.
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5.1.3.2 C-VEP-ISR Dataset

Table 5.13 shows the results obtained for the stimulation modulated with the sequences
proposed in [3] to the user identification approach.

The best result achieved was with the use of EEG data from a subset consisting of
8 channels, standardized with DC Offset Removal and applied to the TRCA method
(91.67%). Although the average of the highest accuracy values was 91.67%, it was possible
to achieve 96.67% with the T3 sequence, using a subset of eight channels of the acquisition
system, as it is possible to verify in table A.10. The application of the derivative with the
same combination allows reaching the best result with a value of 89.17%. The application
of the derivative to the ITCCA and TRCA methods decreases the accuracy results, while
the methods based on correlation or distance between time-series increase. Meanwhile,
the T2 and T3 sequences achieved 93.33% accuracy with the TRCA method.

The application of normalization [-1; 1] interval allowed to improve the accuracy values
with all methods except TRCA.

Table 5.12 shows the results obtained for the stimulation modulated with the sequences
proposed by us to the user identification approach. The best method achieved an accuracy
of 93% for the TRCA using a subset of eight channels of the EEG. In contrast, the
application of the derivative form only reached 86% in subject identification accuracy, with
the same combination. The application of the derivative form of the EEG to Correlation
Coefficients and Cosine Similarity methods increases the results.

The detailed results presented in tables A.12 and A.13 show that it was possible to
achieve 96% results with the T2 sequence for a subset with 4 and 8 g.USBamp channels
and an accuracy of 90% applying the derivative form and using all channels and a subset
of 8 channels.
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Figure 5.2: EEG signal for one stimulation repetition and for the average of the ten rep-
etitions, acquired from two subjects of the C-VEP-ISR Dataset. The modulated sequence
is presented under each plot.

Figure 5.2 shows the signals of the C-VEP responses to one repetition of stimulation
and the average of the ten repetitions of stimulus modulated by the sequence shown in
the figure of two subjects from the C-VEP-ISR Dataset. With these signals, it is possible
to graphically check the differences between the two time series for the results in the user
identification.

After all the tests and analysis of the results, it was found that:

• the best feature extraction method was TRCA;

• the application of the derivative made it possible to substantially improve the results
in the C-VEP dataset with the ITCCA and TRCA methods, with no significant effect
on the results obtained with the C-VEP-ISR dataset;

• the results obtained with the average of the repetitions of the EEG signals allowed
to improve the results obtained with the methods except for the ITCCA;

• the normalization of the data with the [-1; 1] interval improves the results with the
ITCCA and TRCA methods, not significantly altering the results with the Correla-
tion Coefficients and Cosine Similarity methods.

Table 5.14 presents the parameters used that allowed to obtain the best results with the
public dataset and the acquired dataset for the two analyzed approaches (BCI and user
identification).
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Table 5.14: Parameters for the best results obtained for each dataset and each identifi-
cation approach.

Dataset Identif. M-Seq Chans Filters
(Hz) Normaliz. Mean

Rep
Deriv.
Form

Feature
Extraction
Method

Acc
(%

C-VEP
Dataset

Target - Visual
Cortex Bandpass:

4 - 31

Range
[-1;1] Yes Yes TRCA 98,79

Subject - Visual
Cortex

DC Offset
Removal Yes Yes TRCA 94,02

C-VEP
ISR

Dataset

Target Amin. 4chans Notch:
48-52

Bandpass:
1 - 60

DC Offset No No TRCA 100

Our 8chans Range
[-1;1] No No ITCCA 98

Subject Amin. 8chans DC Offset No No TRCA 91,67
Our 8chans DC Offset No No TRCA 93

5.2 Sequences Analysis

In this section, the results obtained with the analysis of the various complexity methods
implemented in the previous chapter are analyzed. The objective of implementing these
methods was to find a direct relationship between the m-sequences that modulate the
stimuli and the results of accuracy in the identification of subjects, to be able to find
efficient sequences that would allow reaching values of 100% accuracy.

5.2.1 C-VEP Benchmark Dataset Sequences

Figure 5.3 shows the linear regression between the accuracy values using the ITCCA
method with the normalization of the signal amplitude to the range of [-1 1] and the com-
plexity values of the m-sequences calculated in table 5.15 with the Lempel-Ziv Primitive
method. This linear regression originated a line with a slope of -0.7155.

The value of the line’s slope will depend on the accuracy value obtained for each of the
m-sequences. However, although the variables are not directly related, there is a small
linearization that can explain the variability of the results obtained for specific sequences.
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Table 5.15: Pseudorandomness results for the C-VEP benchmark dataset sequences for
subject identification.

Kolmogorov LZ Primitive Distribution
T1 14 40 9
T2 15 42 7
T3 14 40 8
T4 15 40 7
T5 16 41 7
T6 14 39 7
T7 14 37 7
T8 14 37 7
T9 14 39 7

T10 16 40 7
T11 16 39 7
T12 14 36 7
T13 14 33 9
T14 14 33 7
T15 13 33 5
T16 14 34 7
T17 15 36 9
T18 15 38 9
T19 14 37 9
T20 15 39 7
T21 15 38 7
T22 14 38 7
T23 14 38 7
T24 13 35 9
T25 14 36 7
T26 15 37 7
T27 13 36 7
T28 14 38 7
T29 14 39 7
T30 15 43 8
T31 14 41 8
T32 15 41 8

Figure 5.3: Linear regression between the accuracy and the complexity of the sequences
used in [77].
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Table 5.16: Complexity results for the C-VEP sequences for subject identification in [3].

Kolmogorov LZ Primitive Distribution
S1 10 17 5
S2 8 18 4
S3 9 16 5
S4 9 18 6

Figure 5.4: Linear regression between the accuracy and the complexity of the sequences
used in [3].

5.2.2 C-VEP-ISR Dataset Sequences

Figure 5.4 shows the linear regression between the complexity calculated in table 5.16
and the results obtained from the identification of subjects with the TRCA method. The
slope of the linear regression line was -2.42.

The m-sequences have an autocorrelation function approximate to the unit impulse
function, and are approximately orthogonal to its time lag sequences, allowing their use in
C-VEP BCI systems. Figure 5.5a) shows the autocorrelation of the proposed m-sequence,
while fig. 5.5b) shows the autocorrelation of the EEG signals in response to targets modu-
lated with the proposed m-sequence. This result proves the property of the orthogonality,
which is established in the response evoked by the m-sequences. The linear regression in
Fig. 5.6, between the results of complexity and the accuracy values obtained from the
tests performed, shows a slope with a value of -2.

Table 5.17: Complexity results for the C-VEP proposed sequence.

Kolmogorov LZ Primitive Distribution
P1 9 17 5
P2 10 18 5
P3 9 17 5
P4 9 17 4
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Figure 5.5: a) Autocorrelation of the proposed m-sequence; b) Autocorrelation of the
EEG signals acquired for C-VEP-ISR Dataset.

Figure 5.6: Linear regression between the accuracy and the complexity of the propose
sequence.
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5.2.3 Different Sequences

The average results of accuracy obtained in the identification of subjects in [83] with
the ITCCA method were M1: 94.52%, M2: 93.92%, M3: 93.94 M4: 94.96%, M5: 95.48%,
M6: 92.76%.

Table 5.18 presents the results of the complexity methods tested for the sequences used
in [83], where it is possible to verify that the M3 sequence has the highest Lempel-Ziv
complexity value.

Figure 5.7 shows the linear regression between the accuracy values and the complexity
values used with the Lempel-Ziv method. The slope of the linear regression function has
a value of -0.1771. The obtained results show that there is no statistically significant
correlation between the two variables.

Table 5.18: Complexity results for the C-VEP sequences for subject identification in
[83].

Kolmogorov LZ Primitive Distribution
M1 15 37 7
M2 13 40 10
M3 15 43 8
M4 15 41 7
M5 16 37 9
M6 14 40 6

Figure 5.7: Linear regression between the accuracy and the complexity of the sequences
used in [83].
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6
Conclusions and Future Work

The goal of this dissertation was to develop a stimulation and EEG acquisition frame-
work to implement C-VEP in two different approaches: C-VEP BCI and C-VEP identifica-
tion. To achieve this objective, several feature extraction methods were applied combined
with different data normalizations. First, we applied the algorithms to the C-VEP Bench-
mark dataset, and then the same methods on our own datasets collected from a group
of participants who underwent C-VEP experiments with our laboratory acquisition and
framework setup.

Using the results obtained in this experiment, it was possible to conclude that the
method that provides the best results was TRCA, achieving a maximum of 100% accuracy
in the two application contexts. In addition to that, it was also possible to ascertain that
the methods which utilize the spatial correlation of EEG data (TRCA and ITCCA) had
a better performance by using the DC Offset Removal normalization. On the other hand,
the methods that utilize the correlation or distance between time-series achieved better
results using the normalization in the [-1, 1] interval. For some extraction methods, the
results were significantly improved with the implementation of the first derivative to the
EEG signals, showing that the differentiation of data and the dynamics of C-VEP allows to
obtain more discriminative features for the identification of users (C-VEP identification)
and targets (C-VEP BCI).

The understanding of the generation of a PBRS and its analysis of complexity allowed us
to propose a new sequence for data acquisition. Although the linear regressions estimated
between the accuracy values and the sequence complexity values indicate a correlation,
the estimates did not prove to be statistically relevant.

Considering the work developed and the results obtained, there are several possibilities
for continuing the project to improve the current work, such as:

• Implementation of other types of pseudorandom sequences for stimulation such as
gold-code and Barker-code, which enable better ITR results in target identification,
because of the smaller number of bits in the sequence compared to the m-sequences;

• Implementation of trinary (base 3) m-sequences where the three digits correspond
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to different colours (for example, blue, green and yellow);

• Implementation of an authenticator that uses a different sequence for each subject,
allowing to improve the performance in identifying subjects (used only in a user
recognition system and not in a user identification approach);

• Use of a larger group of participants to validate the implemented approaches over
several sessions;

• Implementation of security layers in the biometric authenticator with the use of
encryption cyphers (Vernam Cipher, e.g.) of the binary sequences.
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A
Detailed Results

The tables presented in this annex refer to the tests performed, showing more detailed
results for each subject (BCI) and each target (Subject identification).

1. SSVEP - Target Identification - SSVEP Dataset - Table A.1;

2. C-VEP

(a) Target Identification

i. C-VEP Dataset - Tables A.2 and A.3

ii. C-VEP-ISR Dataset

A. Aminaka Sequences - Tables A.4 and A.5

B. Own Sequences - Tables A.6 and A.7

(b) Subject Identification

i. C-VEP Dataset - Tables A.8 and A.9

ii. C-VEP-ISR Dataset

A. Aminaka Sequences - Tables A.10 and A.11

B. Own Sequences - Tables A.12 and A.13
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Code-Modulated Visual Evoked Potentials for BCI and Biometric Authentication
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Code-Modulated Visual Evoked Potentials for BCI and Biometric Authentication
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labelfor

tests
perform

ed
using

the
31

channels
ofthe

dataset.
T

he
term

’V
isual8chans’is

the
labelfor

the
use

ofthe
8

channels
ofthe
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the

dataset
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8).
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term
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that

correspond
to

the
channels

existing
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U

nicorn
H
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B

lack
headset
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1,C
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7,PO
8
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O

z).
b

N
orm

alization
using

D
C

O
ffset

R
em

oval(EEG
signalw

ith
10

stim
ulation

iterations);
c

N
orm

alization
using

am
plitude

signalin
the

range
[-1

1](EEG
signalw

ith
10

stim
ulation

iterations);
d

N
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using

D
C

O
ffset

R
em

oval(EEG
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ith
an
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of10

stim
ulation

iterations);
e

N
orm
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signalin
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[-1
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signalw

ith
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of10

stim
ulation

iterations).
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Code-Modulated Visual Evoked Potentials for BCI and Biometric Authentication

Table
A

.12:
C
lassification

accuracy
(%

)
results

for
the

C
-V

EP
benchm

ark
dataset

to
each

target
sequence

for
subject

identification,using
our

propose
sequence

a

M
ethods

IT
C

C
A

T
R

C
A

C
orrelation

C
oeffi

cients
C

osine
Sim

ilarity

Sequence
A

ll
chans

c
8

chans
c

4
chans

c
U

nicorn
8chans

c
A

ll
chans

b
8

chans
b

4
chans

b
U

nicorn
8chans

b
A

ll
chans

b
8

chans
b

4
chans

b
U

nicorn
8chans

b
A

ll
chans

c
8

chans
c

4
chans

c
U

nicorn
8chans

c

T
1

76,00
86,00

80,00
78,00

88,00
88,00

86,00
86,00

20,00
28,00

32,00
20,00

20,00
30,00

32,00
22,00

T
2

88,00
92,00

92,00
88,00

94,00
96,00

96,00
94,00

26,00
34,00

48,00
30,00

26,00
32,00

50,00
26,00

T
3

92,00
94,00

92,00
86,00

92,00
94,00

88,00
92,00

40,00
38,00
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38,00
38,00

48,00
38,00

T
4

82,00
96,00

82,00
76,00

94,00
94,00

94,00
86,00

34,00
42,00

46,00
30,00

34,00
42,00

46,00
34,00

M
ean

84,50
92,00

86,50
82,00

92,00
93,00

91,00
89,50

30,00
35,50

42,00
30,00

29,50
35,50

44,00
30,00

ST
D

6,06
3,74

5,55
5,10

2,45
3,00

4,12
3,57

7,62
5,17

6,16
7,07

6,98
4,77

7,07
6,32
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lassification

accuracy
(%

)resultsfortheC
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benchm

ark
to

each
targetsequenceforsubjectidentification

w
ith

different
m
ethods

ofnorm
alization,using

the
first

derivative
ofthe

EEG
data,w

ith
our

proposed
m
-sequence.
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B
SSVEP Synthetic Data

The EEG signals acquired with the SSVEP paradigm contain the target frequency
identified in the frequency domain [17]. To validate the implementation of the algorithms
of the EEG signal processing methods, files were generated using synthetic data that made
it possible to carry out tests to confirm the correct construction of the different methods.
The use of synthetic data has the advantage of manipulating the amplitudes of the different
signals that constitute a real EEG signal (fundamental, harmonics and noise).

These data files were created for the validation of the Cepstrum method, particularly,
since there is not much information on the use of this method in an SSVEP framework
with a high number of targets such as that presented in [74].

To guarantee the greatest possible equality with the study datasets [74], tested in the
chapter 4, an algorithm was created to organize a four-dimensional matrix, with dimensions
of the matrix similar to a subject’s data file. The output signal for each of the targets were
obtained by sampling the sum of sinusoidal functions of the fundamental frequency and
and the signals constituted by five harmonics of the respective frequency. After several
tests with only noise-free data, the noise was introduced in the form of a vector with
standard normal distribution pseudorandom values, which were added to each sample of
each channel, for each of the simulated trials.

In the following figures, it is possible to see the graphics for an example of one of the
synthetic data files created, for the target with a frequency of 12 Hz. In figure B.1, a null
value was used for the amplitude of the noise signal that is added, while the fundamental
signal has an amplitude equal to 2 and the amplitude of the harmonics is equal to 1. In
figure B.2, the noise signal that is added has an amplitude of 1.4. In both figures, it is
possible to find the original signal at the fundamental frequency (a)) and its respective
FFT (c)), as well as the contaminated signal (b)) and its respective FFT (d)).

Through the graphs of the signals represented as a function of time and the graphs of
the respective FFT, it is possible to validate the synthetic data and the desired target
frequencies, thus proving the correct construction of the synthetic data that were used to
test the methods used in the SSVEP paradigm.
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Figure B.1: Synthetic data for a frequency of 12 Hz, without noise component.

Figure B.2: Synthetic data for a frequency of 12 Hz, with noise component.
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C
Analysis of Cepstrum Results

In tables A.1 and 5.1 of chapter 5 are presented the results of the various processing
methods applied, including the Cepstrum method. In those results, it appears that the
average accuracy values for 40 different targets, with Cepstrum, are 54.75% with the use
of all channels in the dataset and between 30% and 35% for the other tested scenarios (8
channels of the visual cortex - PO4, PO6, PO8, CB1, CB2, O1, O2 and Oz and 8 channels
corresponding to the channels of the Unicorn Hybrid Black headset - Fz, C3, Cz, C4, Pz,
PO7, PO8 and Oz).

Due to this fact, an intensive analysis of frequencies that were not detected by the
Cepstrum method was carried out and it is possible to verify that these results are due to
2 reasons: 1) the 0.2 Hz interval between the target frequencies used in the experiment; 2)
the effect of the non-linear distortion caused by the non-linearity of the Infinite impulse
response filter (IIR) used in the pre-processing stage of EEG data. To solve this problem, a
finite impulse response filter (FIR) with higher-order was used, since it does not introduce
distortion due to the linear phase response.

Table C.1 resulted from the analysis performed on some subjects with a different number
of targets, where it is possible to conclude that Cepstrum is a fast method and that
guarantees high accuracy values for the identification of targets, to be implemented in
real-time for more practical applications, with a set of commands, as long as the number
of targets is reduced and the interval between frequencies is high enough for the method
to be able to detect correctly. For 5 different targets it was possible to obtain values of
accuracy higher than 85% in all the scenarios and with the 4 subjects tested.

Figure C.1 shows the plots resulting from processing one of the channels for one of the
trials acquired from subject 9. In these plots, it is possible to visualize the signal resulting
from the acquisition in the time domain during the 6 seconds of stimulation, the respective
FFT and the signal resulting from the application of Cepstrum. In this example, where
stimulation was performed at a frequency of 10Hz, Cepstrum can identify a frequency of
7.812Hz, that is, a difference of 0.188 Hz to the target frequency.

103



Code-Modulated Visual Evoked Potentials for BCI and Biometric Authentication

Table C.1: Classification accuracy (%) results for the offline mode in the SSVEP bench-
mark dataset (based on 5 seconds stimulation) with Cepstrum method for 4 different
subjects.

Subject Nº targets Frequencies (Hz) All chans Visual
8chans

Unicorn
8chans

S5

20
8; 8,4; 8,8; 9,2; 9,6; 10; 10,4;

10,8; 11,2; 11,6; 12; 12,4; 12,8; 13,2;
13,6; 14; 14,4; 14,8; 15,2; 15,6

83,33% 41,67% 45,83%
S15 78,33% 37,50% 44,17%
S20 85,00% 38,33% 47,50%
S35 84,17% 39,17% 43,33%

S5

14 8; 8,6; 9,2; 9,8; 10,4; 11; 11,6; 12,2;
12,8; 13,4; 14; 14,6; 15,2; 15,8

94,05% 38,10% 55,95%
S15 95,24% 48,81% 57,14%
S20 95,24% 44,05% 60,71%
S35 91,67% 34,52% 55,95%

S5

10 8; 8,8; 9,6; 10,4; 11,2; 12;
12,8; 13,6; 14,4; 15,2

98,33% 56,67% 60,00%
S15 100,00% 56,67% 71,67%
S20 95,00% 45,00% 70,00%
S35 100,00% 45,00% 71,67%

S5

8 8; 9; 10; 11; 12; 13; 14; 15

97,92% 85,42% 89,58%
S15 97,42% 85,42% 79,17%
S20 100,00% 79,17% 77,08%
S35 100,00% 77,08% 85,42%

S5

5 8; 9; 10; 11; 12

100,00% 90,00% 96,67%
S15 100,00% 90,00% 93,33%
S20 100,00% 83,33% 83,33%
S35 100,00% 90,00% 90,00%

Figure C.1: Time-domain signal resulting from the Oz channel of the international 10/20
system during a trial conducted on subject 9 for target 1 and respective FFT and analysis
of Cepstrum.
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D
International 10/20 System and
Brain Signal Frequency Bands

EEG is a complementary diagnostic examination that by placing electrodes on the scalp
will allow, through various leads between these electrodes, the detection, amplification,
recording and interpretation of patterns of electrical activity associated with the cerebral
cortex. Brain electrical activity is in the order of millionths of Volts (µV). This activity
is amplified to be picked up by scalp electrodes. The electrical potential captured in the
scalp reflects the electrical activity of a given area (height, depth and width).

The International 10/20 system is an international method to describe the location of
scalp electrodes and it is based on the relationship between the location of an electrode
and the respective area of the cerebral cortex. The numbers ’10’ and ’20’ in the name of
the system refers to the that that the distance between adjacent electrodes are 10% or
20% of the total front to back or left to right distance, the letters identify the lobe and
the number identify the hemisphere location in the skull.

The letters covers the following lobes:

• ’F’ - Frontal;

• ’T’ - Temporal;

• ’C’ - Central (used only for identification purposes);

• ’P’ - Parietal;

• ’O’ - Occipital.

The ’z’ zero in the electrode refers to an electrode placed on the mid line of the skull,
while even numbers (2,4,6,8) refers to electrodes positioned on the right hemisphere and
odd numbers (1,3,5,7) refers to electrodes positioned on the left hemisphere.

The skull was divided in four anatomical landmarks used for the essential electrode
positioning:

• Nasion - point between the forehead and the nose;
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• Inion - lowest point of the skull from the back of the head;

• Pre aurical left point - point anterior to the left ear;

• Pre aurical right point - point anterior to the right ear.

Figure D.1: Map of the 10/20 Electrode Placement System. 1

Figure D.2: Map with the Electrodes Placement System and the EEG cap for 16, 64
and 256 sensors.

1https://alivelearn.net/?p=664
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D. International 10/20 System and Brain Signal Frequency Bands

The rhythmic activity of a EEG is divided into bands separated by frequency and the
brain waves can be represented by six typical bands based on the frequency range between
1 and 100 Hz with an amplitude between 10 and 200 µV.

Principal Brain Waves
Brain
Wave Location Mental State Amplitude

(µV)
Frequency
(Hz)

Delta δ Everywhere Reduced consciousness or dur-
ing sleep 100-150 <4

Theta θ
Temporal and
Parietal During emotional stress 40-80 4-7.9

Alpha α
Occipital and
Parietal

Associated to mental relax-
ation and have a reduce am-
plitude during mental im-
agery

50-100 8-12

Mu µ Frontal Associated to intension of
movement - 8-13

Beta β
Parietal and
Frontal

Consciously alert, thinking
activities 10-20 14-25

Gamma
γ

Originated in
the thalamus

Associated with attention,
perception and cognition ≃10 25-100

Table D.1: Principal brain waves.
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E
Headsets

E.0.1 Unicorn Hybrid Black

The Unicorn Hybrid Black (g.tec) is a high-quality wearable EEG-headset for brain-
computer interface (BCI) applications to perfectly acquire brain waves, with the correct
positions of EEG electrodes for real brain wave recordings. It is possible to many people
without the BCI knowledge the ability to acquire and process brain signals, from only
display the signals, to design and control attached devices or interact with computer
programs or applications, toys, for example, with his own software from g.tec.

Users can not only acquire EEG data from eight Unicorn Hybrid EEG Electrodes (8
positions on the head (FZ, C3, CZ, C4, PZ, PO7, OZ, PO8, in the international 10/20
system), but also may analyze and process the data with the Unicorn Suite, the main
software environment. Reference and ground EEG electrodes are fixed on the mastoids
of the user for perfect noise reduction. Unicorn Hybrid EEG electrodes are patented and
allows to record dry or with gel and therefore enables the usage for many different BCI
applications. The electrodes are placed per default on the:

• sensorimotor cortex to realize motor imagery-based BCIs,

• over the central, parietal and occipital areas for P300 paradigms

• over the parietal regions for steady-state visual evoked potential (SSVEP) and code-
based VEP paradigms.

In order to provide perfect noise reduction, reference and ground EEG electrodes are
fixed on the mastoids of the user.

The Unicorn Brain Interface is wearable and extremely lightweight to reduce movement
artefacts. It fits perfectly to different head shapes and keeps the device in position. This
guarantees the solid contact of the electrode to the scalp which is key for high-quality
EEG recordings.
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Figure E.1: Unicorn Hybrid Black Amplifier from g.tec. Source: G.tec

E.0.2 g.USBamp

g.USBamp is a high-performance and high-accuracy biosignal amplifier and acquisi-
tion/processing system from g.tec (Austria). With g.USBamp, it is possible to record
activity from the brain, eyes, heart, muscles and more – including respiration, galvanic
skin response, temperature and other physiological and physical parameters.

g.USBamp has a total of 4 independent grounds guarantee that there is no interfer-
ence between the recorded signals. The amplifier connects easily to the USB port on
your PC/notebook and can be used for data recording. It is also possible to build a
multi-channel system with more than 16 channels using multiple g.USBamp devices. A
synchronization cable guarantees that all devices are sampling at exactly the same fre-
quency.

Figure E.2: gUSBamp amplifier board from g.tec 1

1https://www.mathworks.com/hardware-support/gtec.html
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