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Abstract—The problem of guaranteeing ‘five-nines’ availabil-
ity between the controllers in a SDN network is addressed.
We consider the problem of controller placement under delay
constraints, while assuming a sub-graph of enhanced availability
between the controllers. The sub-graph can be upgraded at a
given cost, to achieve the desired availability requirements. To
solve this problem, we propose a heuristic method to evaluate
several controller node sets and the upgrade cost of the sub-
graph for enhanced availability. The computational results show
that slightly increasing the number of controllers can lead to a
significant reduction in the upgrade cost.

Index Terms—SDN, controller placement, availability, Steiner
tree, heuristics, integer linear programming

I. INTRODUCTION

In software-defined networking (SDN), the control plane is
decoupled from the data plane. The devices in the data plane
are basically forwarding devices, leaving the control decisions
to the SDN controller in the control plane. Having only one
controller in the network, can lead to the network totally
crashing if the controller fails. Therefore, several studies have
been made on how many controllers to deploy in the network
and where to place them. This is known as the controller
placement problem (CPP) [1], which has been extensively
studied. The set of controllers should function as a logically
centralized unit, where each controller has a complete and
updated topology view of the complete network. Therefore
having too many controllers in the network will increase
intercontroller communication overhead [2]. The CPP is
mainly driven by delay constraints between the controllers
themselves, and between the switches and the controllers that
manage them [3], [4].

In this paper, we focus mainly on the control plane avail-
ability, namely between the controllers. There has been an
increasing number of research on SDN control plane avail-
ability. Usually availability is evaluated in terms of control
plane connectivity [5], [6] or reachability [7]. In [8], a more
exhaustive study was performed to assess the control plane
availability against several types of failures. Traditionally,
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end-to-end availability is increased by path protection [9],
which is also considered in the present paper.

Controller placement can be used to increase control plane
availability. In [10], the CPP variant with backup controllers
is studied in order to guarantee the ‘five nines’ requirement
(i.e. an availability of at least 0.99999) for the control plane.
In [11], the availability is evaluated in terms of the expected
percentage of control path loss (a control path is the path
connecting a switch to its controller). The authors propose
several heuristics for the controller placement, in order to
increase of the availability of the control paths. In [12], a
response time and availability study is conducted for the
distributed SDN control plane.

The desired availability is not always achievable by re-
positioning the controllers and/or by guaranteeing path pro-
tection [13]. To ensure high availability in the control plane
between the controllers, we assume a sub-graph whose links
can be upgraded to have higher availability, for example
by reducing the average time to repair on the links. We
focus on the intercontroller connections, since the set of
controllers are the brain of the SDN network. Although not as
frequent as switch-controller communication, intercontroller
communication is critical for the control and management of
the network [14].

In this work, we assume that there is a sub-graph connect-
ing all the controllers, and that the links of the sub-graph can
be upgraded to have enhanced availability at a given cost [15].
This is based on the spine concept first proposed in [16] and
explored in [13]. Related previous works [17] and [18] also
address the CPP and spine link upgrade problem. However,
both these works consider availability guarantees between
the switches and the controllers that manage them, and not
between the controllers themselves. While path protection is
not considered in [17], it is considered in [18].

The innovation of this paper is incorporating the high-
availability spine concept as a Steiner tree structure, where
the controller nodes are the terminal nodes. The primary paths
between the controllers are routed on the Steiner tree, whereas
the backup paths are node-disjoint to the respective primary
paths and are not imposed to be routed on the Steiner tree.
The spine problem alone of selecting which links to upgrade
is NP-complete [15] and the Steiner tree problem is also



NP-complete [19]. Therefore, our joint optimization problem
is NP-complete. Hence, we propose a heuristic method to
solve the problem of placing the controllers driven by delay
requirements, and of determining a Steiner tree substructure
for enhanced availability driven by the controller placement
and the desired availability requirements.

The paper is organized as follows: in Section II we present
the controller placement and Steiner tree upgrade problem;
in Section III we describe the heuristic method implemented
to solve the problem; in Section IV we analyze the compu-
tational results obtained; and in Section V we draw some
conclusions and propose some approaches for future work.

II. CONTROLLER PLACEMENT AND STEINER TREE
UPGRADE

The optimization problem addressed in this paper deals
with several issues: (i) controller placement satisfying delay
constraints; (ii) determination of a Steiner tree connecting all
the controllers, to have enhanced availability; (iii) determi-
nation of protection routing between controllers; (iv) cost of
the availability enhancement of the Steiner tree, to achieve the
availability requirements between controllers. This problem is
inherently multiobjective. In general, finding a Steiner tree
using integer linear programming (ILP) can be very time
consuming. Therefore, solving our joint optimization prob-
lem exactly is impractical. We break down the optimization
problem into subproblems and we choose a heuristic approach
to tackle it.

A. Controller Placement Problem

Consider that the SDN data plane is represented by a graph
G = (N,E), where N is the set of nodes and E is the set
of links. Each link is represented by its end nodes {i, j}. We
assume the delay between two nodes is proportional to the
shortest path length between them and is denoted as dij [1].

We assume that the delay between each switch and the
controller that manages it cannot exceed a given maximum
value Dsc, while the delay between any two controllers cannot
exceed a given maximum value Dcc. Since communication
between the controllers and the switches they manage is more
frequent than the intercontroller communciation, we assume
that Dsc < Dcc [3].

The number of controllers and their placements are deter-
mined by an ILP model, satisfying the delay constraints and
minimizing the number of controllers. The objective function
is motivated by the fact that intercontroller communication
overhead should be kept to a minimum, so not to jeopardize
the network’s performance. Consider the following decision
variables:
• yi ∈ {0, 1} binary variable that is 1 if there is a controller

placed in node i, and 0 otherwise
The ILP model for the controller placement is given by

min
∑
i∈N

yi (1)

s.t.

∑
j∈N :

dij≤Dsc

yj ≥ 1 i ∈ N (2)

yi + yj ≤ 1 i, j ∈ N : dij > Dcc (3)
yi ∈ {0, 1} i ∈ N (4)

The objective function (1) aims to minimize the number
of controllers. Constraints (2) guarantee that for any node i,
there is a controller distanced at most Dsc from it. Constraints
(3) guarantee that two controller nodes cannot be distanced
further than Dcc. Finally, constraints (4) are the variable
domain constraints.

B. Steiner Tree as the Control Plane Sub-graph

Once the controller placement is known, it is possible to
determine a sub-graph connecting all the controllers. This
sub-graph or spine, should be designed to provide highly
available intercontroller connections in the control plane. In
this paper, we have assumed that the sub-graph is a Steiner
tree, where the controller nodes are the terminal nodes.

The primary paths connecting any two controllers are
routed over the Steiner tree, and should satisfy the maximum
intercontroller delay value Dcc. To increase intercontroller
availability, backup protection is considered. Therefore, for
any two controllers, a node-disjoint backup path is also com-
puted (which is not imposed to avoid using the Steiner tree).

We assume that the end-to-end availability of the inter-
controller connections must be at least a given minimum
value Λ. This cannot always be achieved by backup protection
alone. Therefore, we consider that the links belonging to the
Steiner tree can be upgraded to have enhanced availability at
a given cost.

We consider that each link of the network has a default
distance-based availability given as in [20] (page 186):

a0ij = 1− MTTR

MTBFij
(5)

where MTTR denotes the mean time to repair (in hours) and
MTBFij denotes the mean time between failures (in hours)
of link {i, j}. We assume MTTR = 24 h and MTBFij =
CC × 365 × 24/`ij where CC = 450 km results from the
cable cut rate and `ij denotes the link length.

Each link of the Steiner tree can be upgraded to differ-
ent levels of enhanced availability. In each level, the link
unavailability is decreased by a given value ε ∈ (0, 1).
Assuming K levels, the unavailability of link {i, j} upgraded
to level k is given by ukij = (1 − ε)uk−1ij , k = 1, ...,K
where u0ij = 1 − a0ij denotes the default unavailability
(we do not consider any downgrade level here) [15]. In
terms of availability, we have that ukij = 1 − akij and so
akij = ak−1ij + ε(1− ak−1ij ), k = 1, ...,K.

The cost for upgrading the link availability to level k is
given by [15], [21],

ckij = −`ij · ln

(
1− akij
1− a0ij

)
k = 1, ...,K (6)



C. Steiner Tree Upgrade Problem

The problem of upgrading the Steiner tree links can be
formulated as an ILP model. Consider set CP as the set of
controller nodes given by (1)-(4), i.e., the set of nodes i such
that yi = 1 in the solution. Moreover, consider set ST as
the set of links belonging to the Steiner tree selected for
interconnecting the controller nodes. Consider pc1c2 and bc1c2
as the primary and backup paths between controller nodes c1
and c2, respectively.

Since only the primary paths are imposed to be routed
on the Steiner tree, they are the ones that can impose
the necessary link upgrade that is needed to satisfy the
minimum value Λ for the end-to-end availability between
each pair of controllers. Hence for each pair of controller
nodes c1 and c2, the default backup path availability Ab0c1c2
is computed (as the product of the default availabilities of
the links belonging to the path). Then, the necessary primary
path availability Apc1c2 can also be computed to satisfy
1− (1−Apc1c2)(1−Ab0c1c2) = Λ.

Consider the following decision variables:
• z0ij ∈ {0, 1} binary variable that is 1 if link {i, j} ∈ ST

is not upgraded, and 0 otherwise;
• zkij ∈ {0, 1} binary variable that is 1 if link {i, j} ∈ ST

is upgraded to level k, and 0 otherwise (k = 1, ...,K).
The ILP model for upgrading the links of the Steiner tree

is given by

min

K∑
k=1

∑
{i,j}∈ST

ckijz
k
ij (7)

s.t.
K∑
k=0

zkij = 1 {i, j} ∈ ST (8)

∑
(i,j)∈pc1c2

K∑
k=0

zkij log(akij) ≥ log
(
Apc1c2

)
c1, c2 ∈ CP (9)

zkij ∈ {0, 1} {i, j} ∈ ST , k = 0, ...,K (10)

The objective function (7) is the minimization of the cost
of upgrading the links of the Steiner tree to level k ≥ 1.
Constraints (8) ensure that each link is either not upgraded
or is upgraded to only one level k ≥ 1 simultaneously.
Constraints (10) are the variable domain constraints.

Constraints (9) ensure that the availability of each primary
path must be at least the necessary availability Apc1c2 . Since
these constraints are nonlinear in nature, they have been
linearized in the classical manner. Recall that the default
availability of a path p is given by

A0 =
∏
{i,j}∈p

a0ij (11)

Applying the logarithm to (11), we have that

log(A0) =
∑
{i,j}∈p

log(a0ij) (12)

Since each link is either not upgraded or upgraded to a given
level k, and since variables zkij carry this information, the
logarithm of the upgraded availability is given by

log(A) =
∑
{i,j}∈p

K∑
k=0

zkij log(akij) (13)

which is the expression appearing in constraints (9). A more
general and detailed derivation can be found in [18].

III. HEURISTIC METHOD

Different controller placements provide different Steiner
trees, and in turn different upgrading costs. Finding optimal
Steiner trees with delay constraints using exact methods can
be time-consuming [22]. The problem addressed here involves
determining the controller placement set and then obtaining
a Steiner tree between the controllers. Finally, the links of
the Steiner tree for upgrading are selected. Therefore, as the
overall problem is highly complex, we implemented a first-
approach heuristic to evaluate different controller placements
and the upgrade costs of the resulting Steiner trees.

The pseudo-code for the heuristic is shown in Fig. 1. The
heuristic starts by solving the ILP model given by (1)-(4)
for the CPP (line 5). The solution provides the first set of
controller nodes CP , or the problem is infeasible and so
there is no controller placement that can satisfy the delay
constraints and the heuristic stops (lines 6-7).

In case a controller placement set CP exists, then a Steiner
tree ST is determined by using Takahasi’s algorithm [23].
The algorithm is based on the link lengths and considers the
controller nodes in CP as the terminal nodes of the Steiner
tree (line 9).

For each pair of controllers (lines 10-15), the primary
path over the Steiner tree is determined (line 11). Then a
shortest node-disjoint backup path is computed (line 12) and
its default availability is determined (line 13). Finally, the
primary path availability which is necessary to satisfy the
availability minimum Λ is computed (line 14).

Sometimes, the heuristic cannot find a Steiner tree, such
that the primary paths routed over it, satisfies the maximum
delay value Dcc between controllers. In these cases, the
controller placement set is considered as an invalid solution
(in the heuristic method), and so is not included in the set of
obtained solutions, Sols (line 18). This is omitted in Fig. 1
for readability. We do not consider that the backup paths need
to satisfy the maximum delay value Dcc.

Once all the required primary path availabilities have been
computed, the ILP model given by (7)-(10), is solved for the
Steiner tree upgrade problem (line 16). The solution provides
the upgrade cost, cost, and the level of upgrade of the set
of links, L. If the problem is infeasible, then the upgrade
problem cannot achieve the required primary availabilities,
and the set of controller nodes is considered as an invalid set
in the heuristic. If the set of controller nodes is a valid set,
then CP is added to the solution set, Sols (line 18). If the
upgrade cost is zero (line 19), then the heuristic also stops



1: VCP ← {} B Empty set of visited CPP sets
2: Sols← {} B Empty set of valid CPP solutions
3: continue← true
4: while continue = true do
5: CP ← ControllerP lacement(Dsc, Dcc)\VCP
6: if CP = {} then
7: continue← false
8: else
9: ST ← TakahasiAlgorithm(CP)

10: for all c1, c2 ∈ CP do
11: pc1c2 ← primary path on ST between c1 and c2
12: bc1c2 ← node-disjoint backup path
13: Ab0c1c2 ← default availability of bc1c2
14: Apc1c2 ← (Λ−Ab0c1c2)/(1−Ab0c1,c2)
15: end for
16: (cost,L)← SteinerTreeUpgrade({Apc1c2})
17: if L 6= {} then
18: Sols← Sols ∪ {CP}
19: if cost = 0 then
20: continue← false
21: end if
22: end if
23: VCP ← VCP ∪ {CP}
24: end if
25: end while

Fig. 1. Pseudo-code for the heuristic method proposed.

since the upgrade cost can improve no further (no upgrading
is needed).

The controller set CP is also added to the visited controller
sets VCP (line 23), which is then used to eliminate the already
obtained sets from the search space of the ILP model for the
CPP. Another set of controller nodes is then computed by
the ILP model given by (1)-(4), by adding a constraint to
eliminate the previous sets from the search space (line 5).
Assume that the current number of controllers is C. Then if
γ1, ..., γC denotes the set of controller nodes obtained, the
constraint to eliminate this set from the search space is given
by yγ1 + · · ·+ yγC ≤ C − 1

However, if a set of C controller nodes is no longer
possible, the ILP will return a set of C ′ > C of controller
nodes. Then all the sets of η controller nodes γ1, ..., γη , such
that η < C ′, are eliminated by the set of constraints∑

i∈N
yi ≥ C ′ (14)

yγ1 + · · ·+ yγη ≤ C ′ − 1 (15)

and the sets of C ′ controller sets previously
obtained γ1, ..., γ

′
C are eliminated by the constraints

yγ1 + · · ·+ yγ′
C
≤ C ′ − 1.

When the ILP model given by (1)-(4) eventually becomes
infeasible, then all the possible controller sets have been
found and the heuristic stops (line 6-7), else the heuristic
proceeds (lines 9-23).

It may happen that there is a large number of possible
controller sets, and so another stopping criteria is that if the
upgrade cost, cost, is higher than zero but does not decrease
after a given maximum number of valid solutions, the heuris-
tic stops. This is also omitted in Fig. 1 for readability.

In the end, we have the set of obtained valid solutions in
Sols. We then evaluate these solutions in terms of the trade-
off between the number of controllers and upgrade cost. We
consider the non-dominated solutions in function of these
two objectives: minimizing the number of controllers and
minimizing the upgrade cost. A non-dominated solution is
such that any other solution which has a smaller number
of controllers must have a higher upgrade cost, or that
has a smaller upgrade cost must have a higher number of
controllers. In other words, a non-dominated solution is such
that it is not possible to further improve both objectives
simultaneously.

In the next section, we will loosely use the term non-
dominated solutions, for the solutions which are not domi-
nated by any solution in set Sols, although these solutions
might be dominated by other solutions not found by the
heuristic.

IV. COMPUTATIONAL RESULTS

To evaluate our heuristic we have used the following
networks: polska, nobel germany and cost266 networks from
SNDlib [24], and the spain network from [25]. The topologi-
cal characteristics of the networks are summarized in Table I,
which shows the number of nodes, the number of edges, the
average node degree and the graph diameter (longest shortest
path between any two nodes) for each network.

Network #nodes #links avg deg Dg [km]
polska 12 18 3.00 811
spain 14 22 3.14 1034

nobel germany 17 26 3.06 790
cost266 37 57 3.08 4032

TABLE I
TOPOLOGICAL CHARACTERISTICS OF THE NETWORKS

We have considered the maximum delay values Dsc and
Dcc given as percentages of the graph diameter Dg [3]. We
have considered the Dsc values to be 35%, 40%, 45%, while
the Dcc values were considered to be 65%, 70%, 75%. For all
the networks, we have considered the minimum availability
between controllers to be ‘five-nines’, Λ = 0.99999. To obtain
the desired availability levels, each link of the Steiner tree can
be upgraded up to K = 4 levels where, for each level, the
link unavailability is reduced by a factor of ε = 0.5.

Next we will discuss in detail the results obtained for the
networks in Table I, which will show that in most instances
path protection is insufficient to ensure the target ‘five nines’
availability. Results will also be discussed seeking to highlight
the trade-off between the number of controllers and the cost
of upgrading the links to achieve the desired availability.

For the nobel germany network, in all instances the min-
imum number of controllers was 2, and the best sets of 2



controllers do not need upgrading any of the links to achieve
the desired availability. This means that for nobel germany,
path protection is sufficient to ensure the availability require-
ments.

In turn, the results for the polska network are shown in
Table II, while for the spain network are shown in Table III,
and for the cost266 network are shown in Table IV. The tables
show the respective Dsc and Dcc values for each instance.
In column ‘C’ the number of controllers is shown for each
non-dominated solution and the respective upgrade cost in
column ‘cost’. If ‘-’ is shown in these columns, the instance
is either infeasible if a set of controllers cannot be obtained
for the given maximum delay values, or the heuristic failed to
find a valid Steiner tree for each set of controllers obtained,
using Takahashi’s algorithm, although one may exist. A valid
Steiner tree is, in this sense, a Steiner tree that satisfies the
maximum Dcc delay between any pair of controllers on the
Steiner tree.

In column ‘#upg’, the total number of upgraded links is
shown, and in the group of columns ‘k’ the number of links
for each level of upgrade k = 1, 2, 3, 4 is also shown. For each
non-dominated solution, the minimum, average and maximum
end-to-end availabilities are shown as their corresponding
unavailabilities, in columns ‘1 − minA’, ‘1 − avgA’ and
1−maxA’ respectively. The last column ‘t(s)’ refers to the
total runtime for the heuristic in each instance.

As can be seen in Table II, for all instances there are
sets with 3 controllers where no upgrading is necessary. For
Dsc = 35% and Dsc = 40%, 3 controllers is the minimum
number. However, for Dsc = 45%, the minimum number is 2
controllers, for which the upgrade cost is 274.9. In this case,
2 links are upgraded to level k = 1. Note that for Dsc = 35%
and for Dcc = 65% and 70%, the heuristic could not obtain a
solution. In these instances, the heuristic failed to find a valid
Steiner tree.

As Dsc and Dcc increases, the number of possible con-
troller placement sets also increases, while the minimum
number of required controllers decreases. This results in
improvement of the upgrade cost for a fixed number of
controllers. This effect is better observed in Tables III and IV.

As can be seen in Table III, only for Dsc = 45%, having
3 controllers yields solutions with upgrade cost equal to zero
(best possible solution). For smaller Dsc values, either the
instance is infeasible when Dcc = 65%, or the smallest
possible number of controllers is 4.

The best controller set found for C = 5 has an upgrade cost
of 850.5, where 2 links are upgraded to level k = 1 and 1 link
is upgraded to level k = 3. The best controller set for C = 4
has an higher upgrade cost. This is illustrated in Fig. 2 for
Dsc = 40% and Dcc = 70%, where the Steiner tree for each
case is shown as solid lines, where the thickness of each link
is proportional to the level of upgrade. The controller nodes
are marked with red circles. For 4 controllers (top network),
node 8 is Steiner node, link {8,11} is not upgraded, link
{4,12} is upgraded to level k = 1, link {8,9} is upgraded to
level k = 2 and the link {4,8} is upgraded to level k = 3.

For 5 controllers (bottom network), there are no Steiner nodes
(just terminal nodes) and link {8,7} is not upgraded, links
{4,8} and {4,12} are upgraded to level k = 1, and link {5,8}
is upgraded to level k = 3. Although in both cases a total
of 3 links are upgraded, the cost with 5 controllers is lower
because 2 links are now upgraded to level k = 1, instead
of having one of these upgraded to level k = 2. Recall that
according to the cost function used in (6), upgrading to a
higher level causes the cost to grow exponentially.
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Fig. 2. Spain network for Dsc = 40% and Dcc = 70%, with 4 controllers
(top) and 5 controllers (bottom). The controller nodes are marked with red
circles, and the Steiner tree is shown in solid lines, where the thickness of
the solid lines reflects the upgrade level of the links.

Adding more than 5 controllers does not yield better costs –
in other words, solutions with a higher number of controllers
are dominated by the solution with 5 controllers. As expected,
relaxing the Dsc delay values can improve the values of the
upgrade cost. Note that when Dsc is relaxed from 35% to
40%, the upgrade cost for C = 4 decreases from 1212.3



Dsc Dcc C cost #upg k
1−minA 1− avgA 1−maxA t(s)1 2 3 4

35%
65% - - - - - - - - - - -
70% - - - - - - - - - - -
75% 3 0 0 0 0 0 0 7E-06 6E-06 4E-06 2.36

40%
65% 3 0 0 0 0 0 0 1E-05 9E-06 8E-06 0.24
70% 3 0 0 0 0 0 0 1E-05 9E-06 8E-06 0.57
75% 3 0 0 0 0 0 0 8E-06 6E-06 3E-06 0.76

45%

65% 3 0 0 0 0 0 0 8E-06 5E-06 2E-06 0.66

70% 2 274.9 2 2 0 0 0 1E-05 1E-05 1E-05 1.083 0 0 0 0 0 0 1E-05 9E-06 8E-06

75% 2 274.9 2 2 0 0 0 1E-05 1E-05 1E-05 1.493 0 0 0 0 0 0 9E-06 6E-06 3E-06
TABLE II

NON-DOMINATED SOLUTIONS FOR POLSKA WITH Λ = 0.99999

Dsc Dcc C cost #upg k
1−minA 1− avgA 1−maxA t(s)1 2 3 4

35%

65% - - - - - - - - - - -

70% 4 1212.3 5 3 1 1 0 9E-06 7E-06 3E-06 3.755 850.5 3 2 0 1 0 9E-06 5E-06 1E-06

75% 4 1212.3 5 3 1 1 0 9E-06 7E-06 3E-06 7.685 850.5 3 2 0 1 0 9E-06 5E-06 1E-06

40%

65% - - - - - - - - - - -

70% 4 999.5 3 1 1 1 0 9E-06 7E-06 2E-06 4.985 850.5 3 2 0 1 0 9E-06 5E-06 1E-06

75% 4 999.5 3 1 1 1 0 9E-06 7E-06 2E-06 7.995 850.5 3 2 0 1 0 9E-06 5E-06 1E-06

45%
65% 3 0 0 0 0 0 0 6E-06 6E-06 6E-06 1.64
70% 3 0 0 0 0 0 0 6E-06 6E-06 6E-06 3.31
75% 3 0 0 0 0 0 0 6E-06 6E-06 6E-06 3.51

TABLE III
NON-DOMINATED SOLUTIONS FOR SPAIN WITH Λ = 0.99999

to 999.5. However, for these instances relaxing the Dcc

values does not yield improvements in cost upgrade, since
Dsc � Dcc. Moreover, relaxing the delay values also results
in that the minimum number of controllers required decreases
(minimum of 4 controllers for Dsc = 35% and 40%, while
for Dsc = 45% the minimum number possible number of
controllers is 3). The runtimes are still quite small for all
instances in this network.

As can be seen in Table IV for the cost266 network,
for Dsc = 35% and for Dcc = 65%, there are two non-
dominated solutions, one with 3 controllers and another with
4 controllers. With the increase of Dcc only one of these
two solutions can be found. This is because the number of
possible solutions increases and the search stops before the
best 4 controller solution is obtained. For Dsc = 40%, note
that increasing the number of controllers from 2 to 3, the
upgrade cost improves although the number of upgraded links
increases from 4 to 6. This is illustrated in Fig. 3. In the case
for 2 controllers, link {22, 29} is upgraded to level k = 3,
while the remaining 3 links are upgraded to level k = 4. In the
case for 3 controllers, links {1, 15} and {5, 15} are upgraded
to level k = 4, while the remaining 4 links are upgraded
to level k = 3. The sum of the link lengths upgraded to
level k = 3 is 604.07 and 1111.52 for 2 and 3 controllers,
respectively. We can observe that the sum is higher for 3
controllers. However, the sum of the link lengths upgraded to

level k = 4 is 1038.73 and 620.89 for 2 and 3 controllers,
respectively. Since the sum of the link lengths for k = 4 is
much higher for 2 controllers, this impacts the upgrade cost
more significantly than the links upgraded to k = 3, resulting
in a reduction of the cost for 3 controllers.

A related observation can be made for Dsc = 45%, where
the upgrade cost for 3 controllers is better than that for 2
controllers, although the number of upgraded links are the
same. In both cases, 2 links are upgraded to level k = 2,
and 1 link is upgraded to level k = 3. The sum of the
lengths of the two links upgraded to level k = 2 is slightly
smaller for the case with 2 controllers than for 3 controllers.
However, the link upgraded to level k = 3 is longer for the
case with 2 controllers, than for the case with 3 controllers,
and according to (6) the length of this link has a higher impact
on the upgrade cost. Therefore, there is an improvement of
the cost for the case with 3 controllers. Increasing the number
of controllers to 4, the best solution obtained has a cost of
1855.38 with 5 links upgraded to level k = 2, which is clearly
dominated by the previous solutions.

Note that the spain network is smaller than the cost266
network, as shown by the graph diameter in Table I. The
spain network requires more controllers than cost266, since
the percentages used reflect a much smaller absolute distance
for spain than for cost266. The runtimes for cost266 are
significantly higher, although still reasonable.



Dsc Dcc C cost #upg k
1−minA 1− avgA 1−maxA t(s)1 2 3 4

35%
65% 3 5658.5 7 0 0 1 6 1E-05 7E-06 1E-06 87.724 5317.3 7 0 0 3 4 1E-05 5E-06 1E-06
70% 3 5658.5 7 0 0 1 6 1E-05 7E-06 1E-06 70.36
75% 3 5658.5 7 0 0 1 6 1E-05 7E-06 1E-06 107.20

40%

65% 2 4136.1 4 0 0 1 3 1E-05 1E-05 1E-05 28.123 4032.8 6 0 0 4 2 1E-05 6E-06 2E-06

70% 2 4136.1 4 0 0 1 3 1E-05 1E-05 1E-05 37.953 4032.8 6 0 0 4 2 1E-05 6E-06 2E-06

75% 2 4136.1 4 0 0 1 3 1E-05 1E-05 1E-05 49.483 4032.8 6 0 0 4 2 1E-05 6E-06 2E-06

45%

65% 2 1402.7 3 0 2 1 0 9E-06 9E-06 9E-06 24.57

70% 2 1402.7 3 0 2 1 0 9E-06 9E-06 9E-06 36.843 1352.4 3 0 2 1 0 1E-05 7E-06 5E-06

75% 2 1402.7 3 0 2 1 0 9E-06 9E-06 9E-06 66.663 1352.4 3 0 2 1 0 1E-05 7E-06 5E-06
TABLE IV

NON-DOMINATED SOLUTIONS FOR COST266 WITH Λ = 0.99999
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Fig. 3. Cost266 network for Dsc = 40% and Dcc = 70%, with 2
controllers (top) and 3 controllers (bottom). The controller nodes are marked
with red circles, and the Steiner tree is shown in solid lines, where the
thickness of the solid lines reflects the upgrade level of the links.

In all tables, the minimum, average and maximum end-to-
end availabilities are shown, translated into unavailabilities
for better readability. Analyzing the second last column of
Table II, i.e. column ‘1 − maxA’, we can see that for
Dcc = 75% and 3 controllers, although there is no link

upgrade, there is at least one pair of paths that has an excess
end-to-end availability, i.e., much higher than 0.99999. For
the solution with 2 controllers, the availabilities achieved by
upgrading the 2 links is just enough to satisfy the target
availability.

In Table III, we can see that all feasible instances present
excess end-to-end availability for one or more path pairs,
although the cases without upgrade (with zero cost) present
the smallest excess. In Table IV, we can also observe ex-
cess availability for C ≥ 3. For 2 controllers, the target
availabilities achieved are at the limit. These observations
means that a more careful analysis may reveal that, since
some backup paths use upgraded links of the Steiner tree, the
links being used by the respective primary paths may actually
be downgraded (from a higher level to a lower level). In other
words, there may be room for a post-processing optimization
for the upgrade cost of the Steiner tree, in future work.

V. CONCLUSIONS

We have addressed the problem of controller placement
and link availability upgrade of a Steiner tree sub-graph
connecting the controllers. This multiobjective optimization
problem is NP-complete. Solving it using exact methods is
impractical due to its high complexity, and so we propose a
heuristic approach, which tackles the problem broken down
into its constituent subproblems. The first subproblem is
the controller placement problem under delay constraints
which is solved via an ILP model. The heuristic starts
by determining sets of controller nodes, starting with the
minimum possible number for the maximum Dsc and Dcc

values imposed. The different controller sets, which are given
as input to Takahashi’s algorithm, lead to different Steiner
trees connecting the controllers. The upgrade cost of the links
belonging to the Steiner tree is computed to achieve ‘five-
nines’ availability between the controllers and solved via an
ILP model. The solutions are then evaluated considering the
number of controllers against the upgrade cost. The non-
dominated solutions in the set are then retrieved. Since this is
a heuristic, these non-dominated solutions may not be truly



non-dominated, since better solutions may exist although the
heuristic did not find them.

It is possible to conclude that in general, increasing the
number of controllers from the minimum number to one
more, usually translates in a drastic cost reduction. However,
adding more controllers does not usually improve the cost
significantly or at all. This was also observed in the related
work [18]. However the problem dealt in this reference, is
much simpler because the spine is considered as a spanning
tree to guarantee the desired end-to-end availability between
the switches and the controllers managing each one. The
fact that here we consider only the connections between the
controllers, and therefore, the spine is now a Steiner tree,
significantly increases the complexity of the problem (the
Steiner problem is NP-complete).

Due to control plane performance, the number of con-
trollers in the network should not be too large. Therefore,
having a little more than the required minimum is usually
sufficient to get good end-to-end availabilities, given the
placements for the best sets. It was also observed that the
links upgraded to higher availability levels have a much
more significant impact on the cost, as is expected by the
cost function used. This is particularly noticeable in the
computational results of cost266, where having a total of 4
upgraded links – 3 links upgraded to level k = 4 and 1 link
upgraded to level k = 3 – is more costly than having a total
of 6 upgraded links – 4 links upgraded to level k = 3 and 2
links upgraded to level k = 4.

The upgraded links prove, that the required availability
guarantees cannot be achieved by path protection alone. This
means that without the spine sub-graph, the required end-to-
end availabilities could not be achieved as pointed out in [15],
except for those instances where upgrading was not necessary.
For the instances with zero upgrade cost, path protection
is sufficient to guarantee the desired availabilities (as was
observed for nobel germany).

Finally, we observed excess end-to-end availabilities in
many instances. This means that there may be links that can
be upgraded to lower levels, if some of the backup paths
happen to use any of the upgraded links. Therefore, in future
work, an analysis of the excess end-to-end availability in some
of the paths, will be carried out. This analysis may allow
for post-processing optimization of the upgrade cost of the
Steiner tree, by downgrading some of the upgraded links to
lower levels, consequently reducing the cost.
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