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Abstract. Seizure prediction for untreatable epileptic patients, one of
the major challenges of present neuroinformatics researchers, will allow
a substantial improvement in their safety and quality of life. Neural net-
works, because of their plasticity and degrees of freedom, seem to be a
good approach to consider the enormous variability of physiological sys-
tems. Several architectures and training algorithms are comparatively
proposed in this work showing that it is possible to find an adequate
network for one patient, but care must be taken to generalize to other
patients. It is claimed that each patient will have his (her) own seizure
prediction algorithms.
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1 Introduction

About one third of epileptic people, meaning 0.4% of population, are not treat-
able by medication or ressective surgery [1]. At any time, anywhere, they can
suffer from a seizure, “like a bolt from the sky”, during some seconds or some
minutes, seriously affecting their motoricity, perception, language, memory and
conscious. If they could predict the seizures, their life would change substantially.

Seizure prediction has been the object of extensive and intensive research
for the last 20 years. For an excellent review see for example [2] and [3]. More
recently computational intelligence techniques, such as neuron-fuzzy systems [4]
or neuron-fuzzy systems associated with wavelets [5], have been identified as
having a high potential for seizure identification. Seizure prediction, the object
of the present work, is a different problem from seizure identification. Prediction
is much harder than identification. However, from the clinical point of view, no
significative practical advance has been verified: there is not any system usable
by patients allowing them to predict a coming seizure and to take action to
preserve his (her) safety and privacy, improving substantially his (her) social
integration. This is probably because most of the researchers look for a general
method and algorithm that would work for every patient. And although several
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authors propose methods to which they claim a high performance, the considered
performance criteria is only partial, neglecting other parts of the problem that
prevent them to be used in a clinical environment. Physiological systems, as
every biological one, have a high variability, and, in the case of seizure prediction,
it seems more advisable to look for a predictor well designed for each patient.
Neural networks, by their diversity in architectures and training algorithms, have
a high plasticity well suited for that purpose.

In the present study this problem is worked out as a classification task. The
ElectroEncephaloGram (EEG) is the main electrical measure of the activity of
the brain. It is supposed that epileptic seizures are an abrupt change in the
electrical activity of the brain and that these changes are captured by the EEG.
The challenge is then to process the EEG in such a way that four brain states can
be identified: the normal state, the time interval preceding a seizure, the seizure
itself, and the time interval for (re)normalization of the brain activity. This
cannot be done directly with the EEG; instead some special features must be
extracted from the EEG signal. These features must change as the brain evolves
among these states and these changes, particularly during the pre-seizure period,
may eventually lead the seizure prediction.

In the present work a set of features is extracted from the EEG signal.
They quantify several characteristics about energy, time-frequency decompo-
sition, nonlinear behavior, composing a 15 dimensional features space where
classification is then to be done into the four classes (brain states): inter-ictal,
pre-ictal, ictal, pos-ictal. These features have been considered by several authors
with a high potential for the discrimination of the brain state with respect all
or some of these four classes For example [6] and [7] used energy variation, [8]
accumulated energy, [9] nonlinear systems concepts, [10] wavelet transform, [11]
Fourier and wavelet transform, [12] wavelets and similarity analysis.

In this work two patients from Freiburg Database [13] are considered. They
have been chosen by their different epileptic zones, one in frontal lobe, and the
other in temporal lobe. Only one EEG channel is considered (the focus one)
to test the possibility of prediction in such circumstances. Other authors (for
example [14]) use more channels for other kind of approaches.

Several architectures and training algorithms are comparatively used for
seizure prediction in one and in the other. The performance criterion has three
facets: specificity, sensitivity, overall classification rate. The results show that
there are several architectures adequate for a patient but they do not work
properly for the other patient.

In the next Paragraph 2 the data and the features used for the classification
stage are presented. Then in Paragraph 3 the results obtained with several net-
work architectures are discussed. Conclusions and future work are set in the last
Paragraph 4.

2 The Data and the Set of Features for Classification

The data used in this investigation has been collected from the epilepsy database
of Freiburg Center for Data Analysis and Modeling (FDM) of Albert Ludwig
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University of Freiburg [13]. Two patients have been selected, patient A with
frontal lobe epilepsy and patient B with temporal lobe epilepsy. The intracranial
recordings utilized were acquired using Neurofile NT digital video system with
128 channels, 256 Hz sampling rate, and a 16 bit analogue-to-digital converter.

Applying energy concepts, wavelet transform, nonlinear dynamics, 14 features
have been extracted, listed in Table 1.

Intracranial EEG data is processed by the developed methods. The time in-
terval between two consecutive computations of the 14 presented features is 5
seconds. One single channel of the EEG, the focal one, is used. Other studies
use more channels [14] for an approach based on synchronization of neurons in
different regions of the brain.

This section presents an overview of the methods which lead to this set of
features. The methods were developed in Matlab and its toolboxes (including
Neural Networks Toolbox) [15], and other freely available software, like the non-
linear time series analysis TSTOOL) [16].

Energy variation analysis is based on the algorithm presented in [7]. EEG
signal is processed through two windows with different length to analyze energy
patterns. The main objective is to confirm the increase of energy bursts in the
periods that precede seizures. Accumulated energy was approximated by using
moving averages of signal energy (using a short-term energy observation window
versus a long-term energy observation window). A similar displacement was ap-
plied to both windows and both ended at the same time point. These features
allow the observation of energy patterns before epileptic seizures.

Wavelet coefficients have been submitted to a similar energy analysis, al-
lowing by this way the identification of variations in the different frequency
bands that constitute the EEG signal. Based on the mechanism previously ex-
plained, the coefficients obtained by wavelet decomposition are processed and the

Table 1. The 14 extracted features from EEG to be used in classification of the brain
state

Concept Feature

Signal Energy Accumulated energy

Signal Energy Energy level

Signal Energy Energy variation (short term energy)
Signal Energy Energy variation (long term energy)

Wavelet Transform coeficient energy short term energy band (0Hz — 12,5Hz)
Wavelet Transform coeficient energy long term energy band (0Hz — 12,5Hz)
Wavelet Transform coeficient energy short term energy band (12,5Hz — 25Hz)
Wavelet Transform coeficient energy long term energy band (12,5Hz — 25Hz)
Wavelet Transform coeficient energy short term energy band (25Hz — 50Hz)
Wavelet Transform coeficient energy long term energy band (25Hz — 50Hz)
Wavelet Transform coeficient energy short term energy band (50Hz — 100Hz)
Wavelet Transform coeficient energy long term energy band (50Hz — 100Hz)
Nonlinear system dynamics Correlation dimension

Nonlinear system dynamics Max Lyapunov Exponent
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accumulated energy of these series is determined. As before, accumulated en-
ergy was approximated by using moving averages of coefficients energy (using
a short-term energy observation window versus a long-term energy observation
window). The mother wavelet used in the presented study was daubechies-4; the
decomposition was completed with four levels.

Nonlinear analysis faces the EEG as trajectories of a nonlinear system. Two
nonlinear dynamic features, maximum Lyapunov exponent and correlation di-
mension through a sliding window, are computed using [15]. The construction
of the attractor, after the determination of the parameters delay time and em-
bedding dimension, allows the calculation of the maximum Lyapunov exponents
and correlation dimension. The estimation of the maximum Lyapunov exponents
consists in the quantification of the exponential growth of the average distance
between two nearby trajectories of the attractor, through error approximation.
Correlation dimension is determined by takens estimator method [15].

The joint analysis of the extracted features created a 14-dimension space which
represents the EEG signal in several components (energy signal, frequency and
system dynamics). The objective of the study is to investigate the eventual
occurrence of hidden characteristics in data such that clusters can be discovered
allowing an acceptable classification of EEG data into 4 classes:

- inter-ictal (normal EEG pattern)

- pre-ictal (two minutes prior to the seizure onset)
- ictal (the seizure onset)

- pos-ictal (two minutes subsequent to seizure end)

One cycle is composed of one series of these classes.
The overall approach is illustrated in Fig. 1.

EEG signal I
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EEG signal
decomposition —
Wavelet mother e
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<>

Average energy calculation — e . .
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Short term Wavelet energy vs. temporal variations
Long term Wavelet energy

Fig. 1. The approach EEG features extraction-classification
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3 The Applied Neural Network Architectures and Its
Results

The data sets have the following characteristics: patient A- 2 cycles, 1366 points;
patient B- 3 cycles, 1824 points. Data have been normalized feature by feature
in [0 1].

3.1 The Best Found Architectures and Training Algorithms

After an extensive experimentation, the following neural network structures have
been applied and compared, because they have been found to be the most
promising:

(i) Three layer logsig feedforward (FFNN): 14 neurons in the first layer, 56 in
the second and 4 in the output layer, Fig. 2. The output layer numerical values
are rounded to integers and it has been trained to classify each class accordingly
to the following coding;:

]
i i DL
(o1
14 56 4

Fig. 2. The best architecture found patients A and B. Bias and weights are proper to
each patient.

14

Class 1 (inter-ictal) : [1 0 0 0] Class 2 (pre-ictal): [0 1 0 0] Class 3 (ictal): [0
0 1 0] and Class 4 (pos-ictal) [0 0 0 1].Training was done using the Levenberg-
Marquardt algorithm, better that the backpropagation one.

(ii) In order to catch the nonlinear dynamic nature of the signal, experiments
have been made introducing a taped delay line in the network inputs (first layer),
as implemented in the Matlab Neural Networks Toolbox. Delays of 1 and 2 have
been experimented.

(iii) Radial Basis Function neural network (RBF) with variable size of the
first (radial) layer and 4 linear neurons in the output layer. It was trained by
the hybrid algorithm.

3.2 The Performance Criteria of the Classifier

In seizure prediction (as in the general problem of medical diagnosis) there are
four possible outcomes to a diagnosis operation:

— positive true (PT), when the diagnose is positive and the event has been
confirmed,
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— positive false (PF) when the diagnose is positive and the event has not been
confirmed,

— negative true (NT), when the diagnose is negative and the event has been
confirmed as not existing,

— negative false (NF') when the diagnose is negative abut the event has finally
been confirmed as true.

For clinical applications any automatic diagnosis systems must give all the PT
events and all the NT events. But it must also give zero PF and zero NF answers.
Two performance indexes are defined:

Sensitivity: related to the Positive outcome, given by (1)

PT

ENSIT =
SENS PT'+ NF

Specificity: related to Negative outcome, given by (2)

NT

SPECIF = NT 4 PF
We can also define the overall index given by (3)

PT +NT _ PT+NT

OVERALL = PT+PF+NT+NF  ALL

It is frequent that one author presents one of these indexes to measure the
performance of a seizure prediction algorithm. However from a clinical judgment,

) guide_teste [;J 0 @
Network Test

Select the file with the test dataset

The file must be in proper format ...
Wait far the resoits, they will be printed in the following I

Total number of well classified points 442 among 455 = 97.1429 %
Specificity 96818 %
Sensitivity 96.875 %
PT 3 PF 5 NT 418 NF 1
Implemented by Jodo Duarte&Ricando Martins MSc students of Biomedical Enginesing, March 2008

Fig.3. The interface for testing the networks. It works under Matlab 2007b
with NN Toolbox. The networks, data sets and interface are freely available at
http://eden.dei.uc.pt/dourado/seizureprediction/ICANN2008BESTNNETS.zip.
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only when the sensitivity and the specificity are both near to 1 can the algo-
rithm be applied. A perfect system has both sensitivity and specificity equal to
one. Probably that is why very few application of automatic diagnosis systems
are really working today, although there is an extensive published literature on
diagnosis algorithms with or high sensitivity or high specificity.

All the three indexes are used, as shown in the interface in Fig. 3.

Results. Table 2 shows some results for patient A. The FFNN has been used
with and without input delays. But, although in theory a better result could be
expected with delays (considering the brain as a dynamic system), in fact these
two networks have a much worse performance. RBF shows also a poor perfor-
mance. If one only cares about specificity, then all four nets are very good. The
FFNN with 2 delays shows an absolutely good specificity of 1 and an absolutely
bad sensitivity of 0. This illustrates the fact that only one of these parameters is
not a proper performance index. The data set has 1366 instants (70% for train-
ing and 30% for testing). When the input delay isn’t zero, the data is separated
in two blocks: the first 70% instants of the data set are used for training, the
remaining 30% are used for testing, avoiding the separation to be done in the
midlle of a crisis. When the input delay is zero the data is separated selecting
in each 3 successive instants of the data set, 2 for training and 1 for testing.

Table 2. Some results for patient A wth FFNN and RBF in test training set. The
training criteria has been SSE (sum of Squared Error), with Levenberg-Marquard al-
gorithm. Data is normalized. The last line is for RBF.

Input Delay Size of test N° well PT PF NT NF SENSIT SPECIF
(FFNN)  data set classified

0 455 442 31 5 418 1 0.9688 0.9812

1 409 252 0 2 348 59 0 0.9943

2 409 203 0 0 350 59 0 1
RBF 455 391 14 1 422 18 0.4375 0.9976

Table 3 shows similar results for patient B and the same comments can be
done. The RBF in last line has been trained and tested, in this case, with original,
non normalized data. It shows a slightly better specificity but a much worse
sensitivity. The data set is bigger, with 1824 instants, and the training and
testing data separation was done the same way as for patient A.

If the FFNN is trained simultouneously for the datasets of both patients, the
training performance is rather poor. It is very hard, because of the different
patients and different types of epilepsy, to find a network that, with the same
weights and bias, works well for both. Of course one can always increase the
dimension and improve training, until probably overtraining, loosing the gener-
alization capability of the network. From a pratical clinic use, for example in
ambulatory, where a patient transports with him some alarmig device forecast-
ing the eminent coming of a seizure, the need for a personalized neural network
is not a serious problem.
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Table 3. Some results for patient B wth FFNN and RBF in test training set. The
training criteria has been SSE (sum of Squared Error), with Levenberg-Marquard al-
gorithm. Data is normalized. The last 2 lines are for RBF: normalized and original
data.

Input Delay Size of test N° well PT PF NT NF SENSIT SPECIF
(FFNN)  data set classified

0 608 594 55 4 544 5 0.9167 0.9967

1 547 167 0 0 486 61 0 1

2 547 409 0 0 486 61 0 1
RBF 608 499 48 52 496 12 0.8 0.9051
RBF 608 465 1 0 548 59 0.0167 1

Table 4. Case of joining the data sets of both patients (training results) with
Levenberg-Marquardt algorithm

Input Delay Size of test N° well PT PF NT NF SENSIT SPECIF
(FFNN)  data set classified
0 1064 912 18 12 958 75 0.20 0.98

Table 5. Testing patient A network into patient B and vice-versa

Case Size of test data set N° well classified PT PF NT NF SENSIT SPECIF
Ain B 608 406 0 35 513 60 0 0.9361
Bin A 455 255 2 69 354 30 0.625 0.8368

Testing the network A in patient B, or network B in patient A, gives the
results presented in table 5. The degradation of performance is evident.

4 Conclusions

There is still a long way to set extensive guidelines for building seizure predictors
for epileptic patients. However the shown results evidence two simple principles:
(i) there is no general predictor good for all patients, and (ii) the predictor of
one patient is not acceptable for other patient. This has as consequence that
each patient must be the object of a personalized study, using as much data
as possible, following its behavior and training it permanently. Neural networks
have a high plasticity that can be profitably used for this purpose. However, other
techniques should also be studied, such as support vector machines (SVM) that
may have an important role in constructing nonlinear boundaries in the high
dimensional features space, resulting eventually in better classification among
the four classes in the context of seizure prediction.
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