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ABSTRACT: The concept of bioeconomy has been promoted worldwide in order to
replace fossil-based resources and to find new strategies for waste management, by
converting biomass into energy, chemicals, and value-added products, in a sustainable
way. Despite the efforts that have been made in this area, there are still some
unexplored raw materials globally, namely from agricultural and forestry industries.
Therefore, the aim of this work was to characterize four abundant residues from the
Portuguese agroforestry industry, including pruning residues (pine branches, PB) and
stumps (PS), tomato waste (TW), and winery wastewater (WW), for analyzing their
potential within the biorefinery context. Volatiles were analyzed by gas-chromatog-
raphy, and compounds with repellent/attractant properties were found for PB and PS,
while flavor-enhancers were particularly identified in agrowastes. Composition analysis
revealed that both TW and WW had the potential for biogas generation (BMP ∼340
and ∼250 NL CH4/kg VS, respectively), whereas forestry residues (PS and PB) can
be recovered for thermal energy (HHV ∼20 MJ/kg) and bioethanol production
(∼0.3−0.4 L/kg). Among all the aqueous extracts that were obtained, PS showed both the highest antioxidant activity (IC50 ∼6
μg/mL) and total phenolic content (∼400 mg GAE/g extract). All residues were demonstrated to be promising for the
Portuguese biobased economy.
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■ INTRODUCTION

The biorefinery concept is nowadays an essential strategy to
convert biomass residues into value-added products and
energy.1 In fact, the European Union has been encouraging
the use of renewable raw materials and their conversion into
energy, to achieve sustainable growth in the context of the
bioeconomy and circular economy strategies.1 Among the
waste materials (agricultural, industrial, zootechnical, fishery,
and forestry wastes), more than 120 million tons per year
correspond to crop residues, while 40 million tons per year are
originated from the forestry industry, with these two sectors
being responsible for 30% of the waste produced in Europe.1,2

From a biorefinery perspective, the main use of these residues
is the energetic route. There is a lack of data regarding the
assessment of the potential of lignocellulosic materials,3 such as
agricultural and forestry residues, for other applications, from a
more holistic approach.4 In Portugal, a similar situation is
observed,5 and some residues have not been valorized yet.
Thus, a “National plan for the promotion of biorefineries”, with
a strategy until 2030 was developed by the Portuguese
Government to promote a sustainable use of renewable
resources and to take advantage of readily available residues
from residual and natural biomass sources.6 In this context, it is
important to identify and to characterize easily accessible

residues, not explored until now, and to assess their potential
to produce innovative value-added products.
Forestry biomass is the most relevant renewable source of

bioenergy in Europe. In Portugal, the forest area corresponds
to 35% of the national surface (13 million m3 production),
generating distinct wastes from this economic activity. Primary
forestry residues include logging residues, stumps, and early
thinning (e.g., branches), while secondary residues correspond
to those from the wood processing.1 These wastes (e.g., from
wood and bark) have adequate heating value to produce
thermal energy, and hemicelluloses and lignin content make
this type of materials suitable for obtaining second-generation
biofuels, such as biogas and bioethanol.7 Cellulose and
hemicelluloses can be used in food, textile, paper, petroleum,
and mining industries,8 among others. The worldwide
industrial production of lignin is ca. 70 million tons, but
only 1% is used as chemical precursors and materials
manufacture, in spite of its potential for the production of
aromatic substitutes, nowadays derived from petroleum.9

Other less explored products may be obtained from pine
residues, especially for food and pharmaceutical applications,
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due to their phenolic content and antioxidant activity.10 Pine
residues are also sources of important volatiles in ecosystems,
with some of them being repellents or attractants, that mediate
the interaction of the tree with insects and pathogens.11

The agricultural sector also produces a large amount of
wastes, as already mentioned, with straw (wheat, barley, and
rapeseed) being the most promising in the European
bioeconomy approach. Agrowastes usually include materials
such as stalk, leaves, peel, seed, or pulp from fruits, legumes, or
cereals.3 Nonedible parts of plants, postharvest or postprocess-
ing food residues, are also sources of valuable compounds and
energy.12

Portugal is one of the largest European producers of tomato
(1.2 million tons by 2018),13 and the tomato pulp industry
generates about 8% of residue (d.b), which is mainly
composed of seeds and peel.14 Other residues include those
from the crop growing, packaging, storage, and sale, which
include plant remains, green tomato fruits, and red
unmarketable fruits.15 Such materials are inexpensive resour-
ces, rich in bioactive compounds and antioxidant ingredients.15

The corresponding volatiles16 may be extracted, and they have
been investigated in order to promote the desirable aroma in
tomatoes and to avoid the loss of their traditional organoleptic
characteristics. The extraction of carotenoids, from tomato
pomace,17 has also been explored since these compounds have
antioxidant properties and may provide health benefits.
Many wastes are also generated from the winery industry,

mainly from Southwestern Europe (Italy, France, Greece,
Portugal, and Spain), which is responsible for almost 50% of
worldwide wine production.1 In Greece, for example, ∼5 MhL
of wine are produced per year,18 resulting in about 5 tons of
waste per hectare of land, during cultivation and harvesting,
and in 650,000 m3 of winery wastewater.19 Portugal is the 12th
wine producing country worldwide with 6.6 MhL in 2017,20

and therefore, the amount of winery wastes generated is, at
least, similar to Greece values. Residues from the winery
industry may be obtained from the pruning activities and from
the process of wine elaboration. These residues have
lignocellulosic nature, as well as phenolics, tannins, and
anthocyanins, therefore having the potential to be used in
food, cosmetic, and pharmaceutical industries.1 Wine volatiles
also play an important role in understanding the influence of
different growing regions and other factors on wine aroma
characteristics. Wine residues may be a source of those

volatiles and may have potential as flavor-enhancing com-
pounds.21

Therefore, based on biorefinery and sustainable economy
concepts, the aim of this work was (i) to characterize four
residues easily obtained from the Portuguese agroforestry
industry: pruning residues (pine branches) and stumps, tomato
waste, and winery wastewater, and (ii) to evaluate, for the first
time, their potential by pointing out possible uses according to
the main compounds, and considering criteria to produce
energy, materials, and aromatic compounds for the flavoring
industry. Therefore, this is an innovative study which includes
the characterization of these four residues by using many
techniques in order to explore their potential for distinct
applications.

■ EXPERIMENTAL SECTION
Raw Material Sampling. The four agroforestry residues were

collected and preprepared for the characterization techniques (Figures
1 and S1). Pruning residues (Pinus pinaster branches) were collected
in Coimbra (Portugal), in September of 2017. For the extraction
procedures, this raw material was milled (cross beater mill, Retsch) in
order to obtain a particle size <2 mm, and stored at −18 °C.

Pine (P. pinaster) stump chips were kindly supplied by Central
Termoelet́rica de Biomassa das Terras de Santa Maria (Oliveira de
Azemeís, Portugal), in January of 2017, washed, milled, and sieved, to
obtain a fraction with particle size in the 0.210−0.841 mm range.

Tomato (Solanum lycopersicum) fruits were obtained from a local
store in Coimbra (Portugal), in a semirotten state, minced
mechanically, and frozen at −18 °C.

The winery wastewater was formed during the production of wine
spirits in a wine distillery and corresponds to the fraction that was not
distillated. A sample of 40 L was kindly provided by the wine house
Quinta das Bageiras (Sangalhos, Portugal), fractionated in bottles, and
frozen at −18 °C.

Henceforward, these four residues will be designated as PB (pine
branches); PS (pine stumps); TW (tomato waste); and WW (winery
wastewater).

Chemicals. Folin-Ciocalteu’s reagent, iron sulfate II (99%, p.a.),
and anhydrous copper sulfate (98%, p.a.) from PanReac; sodium
carbonate from Scharlau; gallic acid (97.5−102.5%), ethanol
(≥99.8%, p.a.), D(−)-fructose (>99%), sulfuric acid (95−98%,
reagent grade), and 1,1-diphenyl-2-picrylhydrazyl (DPPH) from
Sigma-Aldrich; n-hexane (≥95%, p.a.) from Carlo Erba; boric acid
(>99.8%, p.a.), hydrochloric acid (37%, p.a.), and potassium sulfate
(>99%, p.a.) from Chem-Lab; sodium hydroxide (99%) from
Labsolve; furfural (>99%), bromocresol green and methyl red from
Merck; calcium carbonate (99.0%) from Alfa Aesar; anhydrous D(+)-
glucose (>99%), D(+)-mannose, and L(+)-arabinose from Riedel-de

Figure 1. Diagram of the analyses performed on the four agroforestry residues for evaluating their composition.
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Haen̈; glucuronic acid and succinic acid (99%) from Acros Organics;
acetic acid (99.8%) and D(+)-galacturonic acid (99%) from Fluka;
glycerol (99.5%) and L(+)-lactic acid (90%) from VWR Chemicals.
Raw Materials Composition. The residues were analyzed in

terms of elemental composition and content of lipids, fibers, proteins,
carbohydrates, and lignin. Extractable compounds by water and
volatiles were also determined (Figure 1).
The identification and semiquantification of emitted volatiles were

performed before the decomposition/fractionation methodologies,
since it is important to preserve the volatiles naturally emitted by the
raw materials.
The solid-phase microextraction/gas chromatography−mass spec-

trometry (SPME-GC/MS) method was carried out, in duplicate,
using the headspace mode at 35 °C, without solvents, and a 65 μm
polydimethylsiloxane/divinylbenzene (PDMS/DVB) coated fiber
(Sigma-Aldrich) to adsorb the volatiles. PB was cut into one portion
per sample and transferred to an empty flask to have a fixed ratio of
raw material per volume of air (1/100, w/v). The same mass/air ratio
was applied for PS. In the case of agrowastes, an aliquot was
transferred to a flask, to attain a ratio of 1:10 (v/v), in relation to air
volume. Adsorption time was 5 min for PB and PS. For agrowastes, 10
and 15 min were needed for WW and TW, respectively. These
conditions of analysis (ratio, time, and temperature) were previously
optimized to allow the adsorption of volatiles by the chromatographic
fiber, while avoiding their thermal degradation. The composition of
the emitted volatiles was determined by coupled GC/MS (7890A,
5975 C inert MSD with triple axis-detector, Agilent Technologies).
After the adsorption step, the chromatographic fiber was immediately
introduced in the injection port of the GC equipment, and the
trapped compounds were desorbed at 250 °C, for 1 min. The
separation was achieved on a DB5-MS fused silica capillary column
(30 m × 0.25 mm i.d. × 0.25 μm, Agilent J & W Scientific), using
helium as the carrier gas, at 1 mL/min. The temperature program
included an isothermal hold at 50 °C (5 min), followed by a
temperature ramp of 10 °C/min up to 270 °C (5 min).22 Volatiles
identification was carried out by comparing their mass spectra with
the libraries NIST and Flavours and Fragrances of Natural and
Synthetic Compounds. The semiquantitative analysis was based on
the peak relative areas of the detected compounds.
Elemental analysis (C, H, N, and S) was performed using 2 mg

(dry basis), in triplicate, and an EA-1108 CHNS-O Element Analyzer
(Fisons Instruments).23 Oxygen was calculated as 100% minus the
sum of C, H, N, and S.
Lipids content of residues was evaluated, in duplicate, according to

the Official Methods of Analysis of AOAC International (No.
950.54),24 using 3 g (d.b.) of raw material in 200 mL of hexane, and a
Soxhlet extraction (6 h).
Fibers quantification was performed based on the method from the

American Association of Cereal Chemists (AACC),25 in duplicate, by
using 3 g (d.b.), and an acid hydrolysis (1.25% H2SO4, 30 min)
followed by an alkaline hydrolysis (1.25% NaOH, 30 min). After
filtration and washing, the material retained on the filter was oven-
dried (100 °C) and weighed, and the ash content was determined to
calculate the fibers amount.
The protein content was evaluated in duplicate by measuring the

total nitrogen present in the residues (Kjeldahl method, System 20, P.
J. Selecta S. A.).26

Structural carbohydrates (cellulose and hemicelluloses) and lignin
contents were analyzed, in duplicate, after water extraction, on the
remaining residues, which were oven-dried at 40 °C for 48 h. The
analysis was based on a National Renewable Energy Laboratory
(NREL) standard analytical procedure (NREL/TP-510-42618
Technical Report),27 consisting of a hydrolysis method. Concisely,
300.0 ± 10 mg of extracted and dried samples was digested (72%
H2SO4 solution, 30 °C, 60 min), and the resulting hydrolysates were
diluted and autoclaved (121 °C, 60 min). Then, they were cooled to
room temperature, followed by vacuum filtration. The acid insoluble
lignin was gravimetrically determined after oven-drying at 105 °C.
The acid soluble lignin determination was carried out by
spectrophotometry at 205 nm (Beckman DU 650). For the structural

carbohydrates analysis, the same filtrate was neutralized with calcium
carbonate to reach pH 5−6, filtered, and analyzed by high
performance liquid chromatography (HPLC-RI, Knauer model K-
301). The identification and quantification of carbohydrates, organic
acids, alcohols, and carbohydrate degradation products were
performed with a Phenomenex Rezex ROA Organic Acid H+ column
(300 × 7.8 mm) kept at 40 °C. The mobile phase (0.005 N H2SO4
solution) was pumped at 0.6 mL/min. Mannose, xylose, and galactose
coelute in this column, and the global value will be expressed as
mannose equivalents. Cellulose and hemicellulose contents were
calculated based on the content of carbohydrates, organic acids,
alcohols, and carbohydrate degradation products presented in the
extracted residues.

Water-extractable compounds were obtained, in duplicate, from the
freeze-dried and not comminuted agrowastes (TW and WW), and
from pine residues (PB and PS), which were milled and used in
natura. Agrowastes became fragile after the freeze-drying process, and
therefore, no milling was needed. The extraction was carried out by
using water, a Soxhlet extractor, a refrigeration system kept at 0 °C,
and a ratio of solid/solvent of 2−10:200 (w/v, g/mL). The reflux was
carried out for 6 h,28 and the aqueous extract quantified, for yield
determination. All of the dried extracts were stored at −18 °C and
protected from light, until further analysis. The water-soluble
carbohydrates, organic acids, alcohols, and carbohydrate degradation
products in the aqueous extracts were also evaluated by the HPLC-RI
method.

Aqueous Extracts Characterization. The extracts described
previously were evaluated regarding their total phenolic content and
antioxidant activity.

Phenolic content was determined, in triplicate, using the
colorimetric Folin and Ciocalteu method.29 Extracts were diluted in
water (2 mg/mL), the Folin−Ciocalteu’s reagent and a solution of
Na2CO3 were added, and the mixture was kept in the dark for 2 h.
The absorbance was read at 765 nm on a UV/vis spectrophotometer
(T60 model, PG Instruments LTD),30 and the results were expressed
as gallic acid equivalents (mg GAE/g extract).

The DPPH scavenging radical assay was carried out, in triplicate,
for the evaluation of the antioxidant potential.31 The extracts were
diluted in ethanol:water (50:50) and antioxidant activities were
expressed as IC50 (μg/mL), defined as the extract concentration that
is able to scavenge 50% of the DPPH radical.

Energy Production Potential. The residues were analyzed to
evaluate their potential for energy production, namely regarding the
high heating values (HHV) and the amount of bioethanol and biogas
that could be produced.

The combustion potential for thermal energy production was
evaluated by determining the HHV of the four residues. These values
were calculated using the results of the elemental analysis and the
standard procedure DIN 51900.32

Bioethanol production potential was evaluated by the volumetric
yield (YV,EtOH), defined as the maximum volume of ethanol that could
be theoretically produced per kg of agroforestry biomass (L/kgresidue).
It was based on an established procedure33 and estimated as YEtOH =
0.51 × f total sugars/0.789, where 0.51 is the theoretical mass conversion
factor of hexoses and pentoses to ethanol (kgEtOH/kgsugar), f total sugars is
the total sugars fraction in the dry weight agroforestry residue
(structural and water-soluble carbohydrates, kg/kgbm), and 0.789 is
ethanol density at 20 °C (kg/L).

Biogas production was estimated by using experimental and
theoretical methods. Some parameters were evaluated for selecting
the conditions of the anaerobic digestion process: total chemical
oxygen demand (COD), determined by the close reflux method
according to the American Public Health Association (APHA)
method;34 total solids (TS) calculated by drying samples at 105 °C
until constant weight; volatile solids (VS) and ash determined by
weighing the sample before and after calcination in a muffle at 550 °C
for 2 h;35 the pH measured in a suspension at a liquid to solid ratio of
10 L/kg. Anaerobic biodegradability, BDanae, was estimated as the
ratio of the experimental biochemical methane potential (BMP) and
the theoretical maximal production (Equation S1). The BMP
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corresponds to the methane yield at infinite anaerobic digestion (AD)
time and reflects the biological decomposition of an organic substrate,
and it was assessed in 5 L reactors with a working volume of 75%, at
37 °C. The biogas was quantified in a graduated gasometer sealed
with a solution of NaCl 60% and pH 2. The methane was measured
by washing 10 mL of biogas with NaOH 4 M to remove CO2. Three
theoretical models (MT_I to MT_III), based on chemical
composition of substrates, and two multivariate regression equations
(MR_I and MR_II)36,37 were used to predict the BMP value (Table
S1).
All the results presented in this work are expressed as mean ±

standard deviation (SD).

■ RESULTS AND DISCUSSION
Residues Composition. Volatiles emitted by PB, PS, TW,

and WW, identified and semiquantified by the SPME-GC/MS
method, are included in Figure 2 and Table S2. For all the

samples, the main volatiles were identified between 1 and 18
min, while a few were observed up to 28 min. Most of them are
composed of 10 carbons, such as some monoterpenes
(camphene, α-pinene, β-myrcene, limonene, and β-(E)-
ocimene). Others contain 15 carbons, e.g. sesquiterpenes
such as α-cedrene, α-cubebene, α-copaene, and longifolene,
and a few volatiles are composed by 20 carbons (e.g., rimuene,
abietadiene, and eicosane).
For PB, 32 compounds were identified (∼94%) and special

attention should be given to monoterpenes α-pinene, β-pinene,
β-myrcene, and limonene and to the sesquiterpene β-
caryophyllene (Figure 2). All these volatiles showed antifungal
activity.38 Therefore, PB and/or respective extracts may be
applied to the control of certain fungal species. Moreover, α-
pinene has been reported as an attractant for the insect vector
of the pinewood nematode,39 while limonene is a known

Figure 2. SPME-GC/MS profile of the volatile fraction emitted by forestry residues PB and PS (A) and agrowastes WW and TW (B). The main
compounds are 1. ethanol; 3. ethyl acetate; 4. acetic acid; 5. oxaloacetic acid; 8. 3-methyl-1-butanol; 9. α-caryophyllene; 11. hex-(3Z)-enol; 12. 2-
methyl-1-pentene; 14. 3-methyl-1-butanol acetate; 16. N-ethyl-1,3-dithioisoindoline; 18. α-pinene; 20. glycerol; 21. β-pinene; 23. sabinene; 24. 2-
pentyl-furan; 26. β-myrcene; 29. ethyl hexanoate; 32. 2-isobutyl-thiazole; 34. limonene; 37. 2-octenal; 39. γ-terpinene; 44. benzeneethanol; 45.
borneol; 46. 4-terpinenol; 47. 4-ethyl phenol; 48. ethyl ester octanoic acid; 49. α-terpineol; 50. 2-phenethyl acetate; 53. deca-(2E,4E)-dienal; 56.
2,4-diisocyanato-1-methylbenzene; 57. α-copaene; 62. 3,4-dihydro-2(1H)-quinazolinone; 63. longifolene; 64. β-caryophyllene; 67. α-humulene; 70.
γ-amorphene.
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repellent and for β-caryophyllene, repellent properties were
also found, particularly to the pine shoot beetle.40,41 Other
volatiles emitted by PB (Table S2) include abietadiene, the
precursor of abietic acid, which is produced against pathogen
attacks.42 For PS, a total of 16 compounds were identified,
corresponding to 67% of the total area (Table S2). The main
volatile component of PS was α-pinene, followed by β-
caryophyllene. Other compounds present in lower amounts
included limonene, longifolene, and 4-terpineol. Longifolene
has been reported as a compound with particular interest for
the insect vector of the pinewood nematode, namely to be
used as an attractant in insect bait traps.22

Taking into account the identified volatiles, these forestry
residues have potential to be used in insects’ management
strategies, namely by the extraction of repellent or attractive
compounds and by their incorporation in controlled-release
systems.
Volatiles from agrowastes (TW and WW) are included in

Figure 2. For TW, 20 compounds were identified and
semiquantified (∼80%), and 2-isobutyl-thiazole was the main
volatile identified (Table S2), which is considered as a tomato
flavor enhancer.43 Some others were identified, and hex-(3Z)-
enol, 2-isobutyl-thiazole, 2-octenal, and deca-(2E, 4E)-dienal
were already identified by other authors in tomato
samples.16,44 Some differences in relation to the literature
regarding volatile fraction composition may be attributed to
the fact that volatiles emitted by fresh samples are different
from those emitted by tomato residues. Thus, these samples
may be used to extract volatile compounds (e.g., 2-isobutyl-
thiazole) to enhance flavor-properties of tomato-based
products and to improve organoleptic properties. However,
the off-flavors have to be removed, in order to isolate the
flavor-enhancing volatiles.
WW revealed the presence of 24 volatiles (∼80%) and

denoted the presence of limonene and benzeneethanol, as the
main volatiles. Limonene was already reported as an aroma

component of wines,45 while benzeneethanol was detected in
high concentrations, in wines after distinct treatments.46 Ethyl
esters of octanoic and decanoic acids were also identified and
correspond to flavor compounds that arise from the
fermentation process.45 Acetic acid, benzylalcohol, 3-methyl-
1-butanol, and 3-methyl-1-butanol-acetate were also emitted
from WW, in agreement with other authors.45,46 In spite of
being a residue, this sample may be important to extract
relevant components of wine aroma, corresponding to an
important source of flavor-enhancers compounds. Similarly to
TW, some off-flavors have to be removed from the WW,
namely 4-ethyl guaiacol (Table S2), that was already reported
as a volatile phenolic off-flavor that results from the wine
fermentation.47

Overall, the identified volatile compounds in all residues
may be important as flavors in food and pharmaceutical
industries, and in insects’ management strategies.12,41

The main results of elemental and compositional analysis of
the residues are included in Table 1, as well as other
characteristics (pH, particle size, total solids, and volatile
solids).
Both forestry residues presented higher C and O contents

(>45%) than agrowastes (Table 1). On the contrary, the N
contents of TW and WW were higher than those of PS and PB.
Thus, agrowastes have lower C/N ratios when compared to
both forestry residues. It is noteworthy that the C/N ratio of
PS was more than 2-fold of the C/N ratio of PB (Table 1), due
to the higher N content of PB as compared to PS. The results
in Table 1 support the finding that biomass is highly variable,
and these differences can be meaningful in similar materials
and between different parts of the same plant species.48,49 The
C, H, and N contents of PS and PB were in agreement with
literature values.50

The different stages of maturation of tomato, the
edaphoclimatic conditions of production, and the applied
industrial processes described in the literature51 may

Table 1. Characteristics and Composition of the Four Agroforestry Residues

Raw material PB PS TW WW

pH 3.8 ± 0.0 4.9 ± 0.0 4.4 ± 0.0 4.2 ± 0.0
Particle size (mm) <2 0.2−0.8 <1 n/a
Total solids (TS, % wt.) 40.4 ± 2.3 90.1 ± 0.2 6.0 ± 0.5 3.0 ± 0.1
Volatile solids (VS, %wt., d.b.) 97.5 ± 0.2 97.9 ± 0.2 81.1 ± 1.2 64.9 ± 0.7

Elemental analysis C (%wt., d.b.) 49.0 ± 0.5 46.7 ± 1.2 44.4 ± 0.2 33.9 ± 0.6
N (%wt., d.b.) 0.9 ± 0.1 0.3 ± 0.0 3.9 ± 0.0 1.2 ± 0.0
O (%wt., d.b.) 40.5 ± 0.6 43.2 ± 1.2 27.0 ± 0.2 25.1 ± 0.7
H (%wt., d.b.) 7.2 ± 0.2 6.0 ± 1.6 5.7 ± 0.0 5.3 ± 0.0
S (%wt., d.b.) <DL <DL <DL <DL
C/N ratio 57.1 ± 3.2 136.3 ± 3.0 11.4 ± 0.1 27.5 ± 0.3

Compositional analysis Fiberd (%wt., d.b.) 28.0 ± 0.8 57.0 ± 0.3 10.4 ± 0.6 0.4 ± 0.0
Water-soluble carbohydrates (%wt., d.b.) 5.5 ± 0.2 0.2 ± 0.0 30.2 ± 2.2 5.1 ± 0.9
Ash (%wt., d.b.) 2.5 ± 0.2 2.1 ± 0.2 18.9 ± 1.2 34.5 ± 0.7
Lipid (%wt., d.b.) 4.1 ± 0.0 1.9 ± 0.0 2.3 ± 1.0 0.3 ± 0.1
Protein (% nitrogen) 0.3 ± 0.0 0.1 ± 0.0 1.7 ± 0.0 1.2 ± 0.0
Acid soluble lignin (%wt., d.b.) 1.3 ± 0.0 1.5 ± 0.0 1.8 ± 0.4 0.8 ± 0.1
Acid insoluble lignin (%wt., d.b.) 32.1 ± 0.1 28.1 ± 0.2 18.1 ± 0.3 4.0 ± 0.7
Cellulose (%wt., d.b.) 23.0 ± 1.9 43.4 ± 0.7 11.9 ± 1.1 4.4 ± 1.2
Hemicelluloses (%wt., d.b.) 14.9 ± 0.0 22.6 ± 0.2 8.0 ± 1.4 1.3 ± 0.3
Water-soluble compoundsb (%wt., d.b.) 5.7 ± 0.2 0.2 ± 0.0 32.3 ± 1.9 48.3 ± 6.7
Sumc (%wt., d.b.) 83.9 ± 2.5 99.9 ± 1.3 95.0 ± 7.3 94.8 ± 9.8

an/a, not applicable; DL, detection limit (100 ppm). bThe fraction that was detected and quantified by HPLC, including carbohydrates, organic
acids, and alcohols. cSum from ash to water-soluble compounds. dIncluded in the lignocellulosic fraction.
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contribute to some differences in the elemental composition,
when compared with this work. The semirotten state of tomato
fruits (TW) could also be responsible for those differences.
However, another study37 with tomato residues not processed
and similar to TW from this study reported closer elemental
compositions to those obtained in this work. The elemental
analysis of WW is in agreement with the literature,52−55 but
some authors detected sulfur contents from 0.03%55 up to
5.34%,54 which may be explained by the different processing
methods that were applied to obtain the winery wastes. The
higher C/N ratios of forestry residues, when compared to the
agrowastes, confer them a higher resistance to biological

degradation, since microorganisms need a proper balance of
those elements.
Lignin comprises the sum of acid soluble and acid insoluble

lignin, and the latter was the major fraction. WW showed the
lowest value of acid soluble lignin content (0.8%), but the
others have also presented a low value (1.3−1.8%). However,
significant differences were observed in the acid insoluble
lignin (Table 1), with PB presenting the highest content
(32%), followed by PS (28%) and TW (18%). The total lignin
content in each agroforestry residue was in agreement with the
vast variability found in the literature (%wt, d.b.): 2.4 to 37%
were reported for tomato wastes;56−58 4.2% for winery

Figure 3. Carbohydrates, organic acids, alcohols, and carbohydrate degradation products detected and quantified by HPLC in the water-extracted
agroforestry residues (A) and in the corresponding aqueous extracts (B).
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wastewater;37 29.5−31.5% for pine branches;59,60 and 24.0−
28.7% for pine stumps.59 Differences in the amount of
insoluble lignin between pine and tomato residues are due to
the different composition of lignins. Pine lignin, almost
exclusively derived from guaiacyl alcohols, has more trend to
condensate in acid medium and to form an insoluble material.
In the composition of nonwoody plants, other types of phenyl-
propane units are also present.9 Concerning the results of this
work, PB and PS are the most suitable for lignin recovery.
The highest cellulose and hemicellulose fractions were

determined for PS with a total of 66.02%. Contrarily, PS
presented the lowest water-soluble carbohydrates, as expected.
The few available studies on pine stumps reported cellulose
and hemicellulose contents of 36.4 and 28.2%, respectively,59

slightly different from the results of the present study in which
higher cellulose and lower hemicelluloses contents were
observed. High cellulose and hemicelluloses fractions were
found in PB, totalizing 37.88% of structural carbohydrates
(cellulose plus hemicelluloses). The cellulose content in pine
branches reported in the literature is in the range 20.7 to
32%,60,61 while higher hemicellulose fraction was observed in
other studies61 compared to the present one (Table 1).
Regarding the water-soluble carbohydrates, a higher content
was determined in PB in comparison to PS. Structural
carbohydrates content was lower in TW (19.85%) than in
pine samples, consisting of 11.86% cellulose and 7.99%
hemicelluloses, while the water-soluble carbohydrate content
was the highest among the four agroforestry residues. These
results were consistent with the information found in the
existing literature, in which cellulose and hemicellulose
contents of 7.7−16.2% d.b. and 7.5−15.7% d.b. were observed,
respectively.56,58 The lowest structural carbohydrates content
was measured for WW. Figure 3A shows the compounds
analyzed in the water-extracted residues by HPLC, derived
from the acid hydrolysis of structural carbohydrates (cellulose
and hemicelluloses), while the water-soluble compounds
(analyzed in the aqueous extracts) are included in Figure 3B.
The predominant carbohydrates in the water-extracted
residues were glucose and mannose equivalents (Figure 3A).
Arabinose, uronic acid, acetic acid, and furfural were found in
minor quantities. TW and WW showed the higher diversity
and quantity of compounds in the aqueous extracts, in
comparison to PS and PB (Figure 3B). Glucose and fructose
were the main water-soluble carbohydrates in TW, which is in
accordance with other studies.62,63 Glycerol and organic acids
(lactic, succinic, and acetic acids) were the major compounds
in the WW aqueous extracts, while a low quantity of
carbohydrates was quantified, in agreement with the
literature.19 For WW, as received (before extraction and
hydrolysis), other compounds were also detected: succinic
acid; lactic acid; glycerol; ethanol; and arabinose (Figure S2).
This is in accordance with Figure 3B and the high yield
obtained for the WW aqueous extract (90%, Table 2).
Furthermore, ethanol, acetic acid, and glycerol were also
identified as volatiles by GC/MS (Table S2).

PS had the highest amount of fibers, followed by PB, TW,
and WW (Table 1). This content is somewhat related to the
respective carbohydrates content, confirmed by HPLC (Figure
3A).
Protein levels were higher in TW and WW, while minor

quantities were determined for PB and PS (Table 1). TW
revealed lower content when compared with the literature
(6.38−16.4% d.b.).62−64 This variability depends on the
tomato variety, fruit maturity, and agronomic and environ-
mental conditions during cultivation.62,63 For WW, similar
protein contents were reported in another study (1.73% d.b.)
with winery wastewater from different wines production (red
and white).18 Regarding pine species, the protein content
achieved in this work was lower than that indicated in the
literature (1.35%, d.b.).65 Nevertheless, a different wood part
was analyzed, other than stumps or branches, which were
targeted in the present study.
The highest lipids content was attained for PB, followed by

TW, PS, and WW (Table 1). Lipids determined for both PS
and PB are within the range of the values found in the
literature: 1.6−5.1% of lipids in different parts of pine trees.66

In this work, PB were used, which are mainly composed of
needles that possess higher surface area than other parts of the
tree (e.g., trunks and roots) and contain secretory structures
able to release volatile oils. This explains the obtained value
(4.11%), close to the maximum found in the literature. In
tomato fruits, lipid contents from 1.45 up to 11.3% (d.b.)63,64

were stated in other studies, which is in agreement with the
result ∼2.3% (Table 1). The low lipid content measured in
WW is in agreement with the results showed by other authors,
0.61−0.69% (d.b.), for winery wastewaters from red and white
wines production.18

Aqueous Extracts Characterization. Aqueous extracts
were characterized in terms of their total phenolic content and
antioxidant activity. The corresponding results and the total
yields are included in Table 2.
High extraction yields were obtained for WW (∼90%), while

values ∼50% were obtained for TW. For tomato samples,
aqueous extractions usually are not performed and literature
mainly reports yield values for high pressure extractions,
ultrasound-assisted extractions, or extractions with organic
solvents.17 Lower yields were achieved for both forestry
residues, with values ∼22% for PB and ∼6% for PS. These
findings are in agreement with results obtained by other
authors, ∼18% yield for aqueous extracts of Pinus densif lora
needles.67 For pine stumps, the literature is scarce, and some
authors have already reported very different yield values (∼15
to 85%) of aqueous extracts obtained from distinct P. pinaster
wood samples.68

PS extracts showed the highest total phenolic content close
to 440 mg GAE/g extract, and the highest antioxidant activity,
denoted by the low IC50, about 6 μg/mL (Table 2). This
indicates phenolic compounds appear to be the main
responsible components for the obtained antioxidant activity.
High radical scavenging capacities have also been reported, in
the literature, for hydrophilic extracts from P. pinaster wood

Table 2. Total Phenolic Content and Antioxidant Activity in the Aqueous Extracts of the Four Agroforestry Residues

Raw material PB PS TW WW

Aqueous extract yield (%wt., d.b.) 21.6 ± 0.1 6.0 ± 0.5 52.5 ± 5.7 89.9 ± 4.6
Total phenolic content (mg GAE/g extract) 121.9 ± 7.4 438.1 ± 5.8 14.2 ± 1.4 23.6 ± 1.9
Antioxidant activity (IC50, μg/mL) 51.9 ± 1.6 6.5 ± 0.6 1316.3 ± 6.2 386.5 ± 2.9
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samples.68 Extracts from PB revealed the second highest
antioxidant activity, IC50 ∼ 52 μg/mL, with the total phenolic
content being also the second highest value, >120 mg GAE/g
extract. These interesting antioxidant values for PB are higher
than those obtained by other authors for pine needles (373.7 ±
60.7 μg/mL),67 and this difference may be attributed to the
fact that PB also include wood in their composition, contrarily
to needles (which only correspond to the pine leaves).
With respect to agrowastes, lower antioxidant potential was

obtained, with IC50 ∼400 and ∼1300 μg/mL for WW and TW,
respectively. Also the phenolic contents were the lowest, 24
and 14 mg GAE/g extract for WW and TW, respectively. The
obtained value of total phenolic content for WW is in
agreement with the range 14−470 mg GAE/g extract, already
reported for wine residue extracts.69 For TW extracts, the
values are in accordance with works carried out by other
authors, with phenolic content in the range 5−39 mg GAE/g
extract.15,70 The extracts, namely from PS, have potential to be
incorporated in food and/or pharmaceutical products due to
their antioxidant properties.
Moreover, despite the fact that distinct raw materials were

considered, a relationship between total phenolic content and
antioxidant activity appears to exist as showed in Figure S3, in
agreement with the literature.70 This correlation is not linear,
but lower IC50 values (high antioxidant activity) corresponded
to higher total phenolic contents, and the opposite for higher
IC50 values. This nonlinearity may be explained by different
types of phenolic compounds that are present in the raw
materials and by the presence of other nonphenolic
compounds (e.g., carotenoids and fatty acids) with antioxidant
activity.
Energy Production Potential. The main results regarding

the potential of these residues for energy production (heat,
bioethanol, and biogas) are presented in Table 3.
The HHV obtained for TW and WW were in agreement

with the literature,51,53,54 as well as the values observed for PS
and PB.50 The higher H of PB associated with the slightly
higher C, and the lower O contributed to the superior HHV of
PB as compared to PS (Tables 1 and 3). Forestry residues
reflected the real calorific values of those materials, while the
agrowastes had to be dehydrated in order to perform elemental
analysis since the solid contents of these residues were 3 and 6
wt %, respectively. Therefore, based on calorific values of TW
and WW, it would not be economically viable to evaporate
such an amount of water in order to promote the combustion
of them into thermal energy. However, these residues may be

concentrated by partial evaporation in order to process them
by anaerobic digestion into methane71,72 or by hydrothermal
liquefaction into bio-oil.73 PB and PS can be handled directly
as a whole using thermochemical technologies, such as
pyrolysis74 and direct gasification of lignocellulosic biomass.75

Bioethanol production through bioprocesses (enzymatic
saccharification and fermentation) requires suitable carbon-
rich substrates, along with the control of other relevant factors,
such as temperature, substrate concentration, and pH.12,76 The
potential use of each residue for bioethanol production was
assessed, considering the total sugars fraction in the residue
(structural and water-soluble carbohydrates, shown in Figure
3) and the theoretical mass conversion yield of sugar to
ethanol. The maximum ethanol volume that could theoretically
be produced was evaluated and rated from the lowest to the
highest: WW < PB < TW < PS (Table 3). According to this
rating, WW is not suitable for sugar fermentation processes.
Tomato pomace has been used as a single substrate or mixed
with other food wastes to produce fermentable sugars or
bioethanol,58,64 and a recent study reported a product
concentration of ∼16 g/L, achieving more than 60% of the
theoretical yield.77 Several studies on bioethanol production
from woody biomass are available, mostly dedicated to
hardwoods. Softwoods (such as pine trees) are also a target
substrate. However, information regarding waste tree parts
(particularly stumps) is still very scarce.60 Contrarily to food
wastes, the lignocellulose structure of woody biomass is more
recalcitrant, and thus, severe pretreatments must be applied for
lignin removal and carbohydrates recovery before enzymatic
saccharification and fermentation processes.60,78,79 Other
authors determined low glucose and bioethanol yields (up to
55 and 48%, respectively) in enzymatic hydrolysis and
simultaneous saccharification and fermentation (SSF) pro-
cesses applied on pretreated pine branches and observed that
the pretreatment had a significant effect on bioconversion
yields.60 PS presented in this work were already tested in SSF
processes after a sequential pretreatment,80 and high ethanol
concentrations were produced (79 g/L) from a cellulosic pine
stump pulp, with high sugar-to-ethanol conversion yield
(97%). However, the global process yield (stump-to-ethanol
conversion) was 44% of the maximum theoretical value, mainly
due to low pulp yields obtained in the pretreatment (29%),
showing the importance of pretreatment selection.
Biogas production through AD requires adequate control

not only of the operating conditions but also of the substrate
properties. The natural pH of the substrates is <5, and thus an

Table 3. Parameters of Combustion and Bioethanol and Biogas Production to Evaluate the Potential of Agroforestry Residues
to Obtain Energya

Raw material (d.b.) PB PS TW WW

HHV (MJ/kg) 21.7 ± 0.4 17.8 ± 1.8 19.8 ± 0.1 15.7 ± 0.3
Y V,EtOH (L/kg) 0.30 ± 0.02 0.47 ± 0.01 0.33 ± 0.00 0.06 ± 0.01
COD (gO2/kg SV) 1376 ± 295 1185 ± 162 1419 ± 270 2509 ± 4
BDanae (%COD) 5 4 69 27
BMPEXP (NL CH4/kg VS)b 22 ± 1 16 ± 2 341 ± 28 251 ± 6
BMPth (NL CH4/kg VS) MT_I 24c 17c 387c 157c

MT_II 20c 16c 297c 115c

MT_III n/a n/a 371 279
MR_I 19c 13c 243 290
MR_II 16c 13c 346 352

ad.b., dry basis; COD, total chemical oxygen demand; BDanae, anaerobic biodegradability; BMP, biochemical methane potential. bNormal
temperature and pressure (NTP) conditions. cBDanae corrective factor applied
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adjustment to the range of 6.5 to 7.5 must be done when
assessed by AD.81 Although all the substrates comprise high
organic matter content (COD and VS), in the scope of
biological processes, the assessment of the biodegradability is
required. Thus, considering BDanae reported in Table 3, TW is
the most biodegradable substrate (69%) followed by WW
(27%), while low biodegradability was observed for PB (5%)
and PS (4%).
Table 3 shows that agrowastes exhibited the highest BMP,

while forestry residues revealed a very low methane production
(<25 NL CH4/kg VS). Indeed, PS and PB were characterized
by a very low BDanae, probably due to the high content of total
lignin.82 Therefore, PS and PB require in general a pretreat-
ment (e.g., mechanical, thermal, and chemical) before
valorization by AD.82,83 The valorization of these two
substrates in a context of biorefinery could be interesting
because after processing the material for the recovery of the
value-added products, the biodegradability may be increased.
Similar experimental BMP values are reported in the literature
for TW,71 PS, and PB,84,85 whereas some studies indicated a
higher BMP for WW.72

Since the experimental assessment of BMP involves a time-
consuming procedure (more than 30 days), three theoretical
models and two multivariate regression equations were applied
to evaluate their ability to predict BMP values for further
studies.37 In the case of MT_I and MT_II, a corrective factor
was applied based on the BDanae of each substrate, since their
biodegradability was not considered in those methods.
Regarding MR_I and MR_II, this correction was also applied
for PS and PB, because the models did not take into account
the lignocellulosic nature of the substrates. All the models
applied in this study showed a very good prediction capability
of BMP for TW (Table 3). In fact, MR_II and MT_III are able
to estimate the experimental value with a relative error of 2%
and 9%, respectively. For WW, only MT_III and MR_I
displayed an acceptable error, between 11% and 16%,
respectively. For PS and PB, with the exception of MT_III, a
very good BMP prediction was obtained for all the models.
Overall, the models applied in this study exhibited good BMP
estimation capacity for agrowastes and forestry residues.
In conclusion, all the residues may be applied in a

biorefinery approach, based on their composition, main
emitted volatiles, and potential for thermal energy, bioethanol,
and biogas production. The main volatiles identified in PB and
PS may be applied as repellents/attractants for insects’
management strategies, while TW and WW revealed the
emission of flavor-enhancers compounds. The aqueous extracts
obtained from the four residues showed antioxidant activity,
which was related to the content in phenolic compounds.
Special attention should be given to the stump extract, which
revealed the highest antioxidant properties, and may be used in
food and pharmaceutical applications to increase shelf life of
different products. The potential for biogas production was
especially important for the agrowastes, while residues from P.
pinaster can be recovered through thermo- and biochemical
platforms to produce energy, biofuels (e.g., bioethanol), and
value-added products from lignin, hemicelluloses, and cellulose
fractions. The four agroforestry wastes are produced in
abundance in the Portuguese territory, and based on these
results, they should be valorized in the biorefinery context.
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