
ORIGINAL ARTICLE Open Access

Automatic conversion of OSM data into
LULC maps: comparing FOSS4G based
approaches towards an enhanced
performance
J. Patriarca1* , C. C. Fonte1,2, J. Estima3,5, J.-P. de Almeida1,2 and A. Cardoso2,4

Abstract

OSM2LULC is a software package developed to automatically convert OpenStreetMap (OSM) data into Land Use
Land Cover (LULC) maps using Free and Open Source Software for Geospatial (FOSS4G) tools. It needs to be highly
efficient given the increasing detail of OSM data and the need to apply it to large extent regions. In this article, a
comparison between the implementation of OSM2LULC in different available GIS platforms is made using both
vector and raster data structures, which resulted in different versions. A description of the differences of each
version is made and, to assess their performance, they were applied to four different study areas with different
characteristics, in terms of available OSM data and area size. The performance of each version was evaluated taking
into account: the overall processing time required to obtain LULC maps; and differences in the results obtained
when different data structures (vector and raster) were used. Results showed that the adoption of a strategy that
favors interoperability between FOSS4G and the combined use of both vector and raster data promotes a
performance increase. After analysing the topological relationships of OSM data, the conversion to raster data
format and the execution of procedural parts with such data indicated significant performance gains, without any
positional distortions that significantly compromise the applicability of the final result in further case scenarios.

Keywords: GIS performance, FOSS4G, Interoperability, OSM to LULC

Introduction
Geospatial distribution of land-use and land-cover
(LULC) is of most interest in both research and urban/
regional planning. LULC is typically one of the input pa-
rameters of models applied to several domains, e.g. en-
vironmental monitoring, multi-hazard risk & disaster
modelling, urban & regional planning, natural resources
management, or natural species distribution modelling
[2, 4, 6, 9, 11, 16, 17, 28, 30, 34]. As such, efforts and re-
sources spent in creating LULC maps are well justified
by official mapping agencies as well as scientific re-
searchers who constantly seek higher detail and quality
at lower cost [8–10, 14, 29–31, 35].

Although traditional approaches to generate LULC data
are usually based on aerial or satellite imagery classifica-
tion, recent technology developments allow other options
based on new data acquisition methods. In particular, de-
velopments on citizen-science, geo-crowdsourcing, and
Web 2.0 based applications enable the creation, dissemin-
ation and update of volunteered geographic information
(VGI). These allow the development of new approaches
envisaging the derivation of LULC maps or their valid-
ation (e.g. [1, 3, 5, 7]). Regarding VGI resources of geospa-
tial data, OpenStreetMap (OSM)1 is one of the very first
collaborative projects to provide free geospatial data. Be-
cause OSM covers a wide range of thematic domains
across the whole world, it has a considerable potential for
LULC mapping. Moreover, the fact that OSM data are
continuously updated by its huge community of

© The Author(s). 2019 Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and
reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to
the Creative Commons license, and indicate if changes were made.

1https://www.openstreetmap.org

* Correspondence: joaquimaspatriarca@gmail.com
1Institute for Systems Engineering & Computers at Coimbra (INESCC), Rua
Sílvio Lima -Edifício DEEC, S.3.4, 3030-290 Coimbra, Portugal
Full list of author information is available at the end of the article

Open Geospatial Data,
Software and Standards

Patriarca et al. Open Geospatial Data, Software and Standards (2019) 4:11
https://doi.org/10.1186/s40965-019-0070-2

http://crossmark.crossref.org/dialog/?doi=10.1186/s40965-019-0070-2&domain=pdf
http://orcid.org/0000-0001-6517-3322
http://creativecommons.org/licenses/by/4.0/
https://www.openstreetmap.org
mailto:joaquimaspatriarca@gmail.com

collaborators, makes it the largest, most diverse, complete,
and up-to-date geospatial database [22]. As a key compo-
nent in any derived data product, quality evaluation is
even more important for VGI, given their volunteered na-
ture. Several approaches are used to validate OSM data,
which include validation by the crowd itself (e.g. volun-
teers can edit contributions and correct possible wrong
data, apply algorithms to detect wrong edits created, for
example, by vandalism), as well as validation by experts
[13, 20, 21, 25]. Tools to assist contributors in the creation
of high quality data are also available, such as those to cor-
rect feature shapes (for example, to convert irregular poly-
gons into a rectangular shape), or the availability of
snapping mechanisms for line connection purposes.
The overall need of LULC maps along with the avail-

ability of a large amount of free geospatial data in OSM
became the motivation for the development of method-
ologies to generate LULC information from OSM.
Arsanjani et al. [3] tested the conversion of OSM data
into a LULC map using the Urban Atlas nomenclature
with encouraging results. Fonte et al. [8, 10] proposed
an automated methodology to convert OSM data into
LULC maps and Fonte et al. [9] showed the potential of
merging LULC data extracted from OSM with existing
LULC products, namely the GlobeLand30. The use of
OSM extracted LULC data to validate LULC maps was
also tested with promising results, as for Urban Atlas
level 1 nomenclature the accuracy indices obtained using
OSM data (where available) to obtain the reference class
were not very different from the ones obtained when the
reference class was always obtained by photo interpret-
ation [7]. Shultz et al. [29] produced a global Land Cover
product using OSM data, and used the available data to
train a classifier that was used to classify satellite im-
agery in order to generate data for the regions when
OSM data is not available. The encouraging results
obtained in the previous efforts motivated the cre-
ation of OSM2LULC – a FOSS4G aiming to automat-
ically convert OSM data into LULC maps [8–10].
OSM2LULC2 is part of the GeoData Algorithms for
Spatial Problems (GASP) Python package,3 whose ul-
timate aim is to provide various tools to extract, to
convert, to analyse, and to validate geospatial infor-
mation. Furthermore, OSM2LULC is free software
under GNU-GPL v3.0 [12, 15, 18, 19, 27, 32, 33]. The de-
cision of making OSM2LULC a free software has been
made to provide a tool without usage restrictions to re-
searchers and GIS analysts who need to work with LULC
information.

The decision to make OSM2LULC free software unre-
stricted has been made to make free of charge an im-
portant tool for GIS researchers and analysts who need
to work with LULC information.
OSM2LULC constitutes a sequential logical integra-

tion of several tools belonging to other FOSS4G pack-
ages. Such integration establishes a relation between the
OSM features and the LULC classes of the LULC no-
menclatures of Urban Atlas, Corine Land Cover, or Glo-
beLand30. In cases where such relation is not direct,
OSM2LULC uses other geographic information system
(GIS) software packages to analyze their geometric and
topological properties to judge whether or not they
should be associated with a certain LULC class. For line-
based OSM features, these geometries are converted into
polygons by creating buffer zones using the distance
(predefined or calculated with spatial analysis ap-
proaches) to other OSM features. Finally, after associat-
ing each OSM feature to a LULC class, inconsistencies
are frequent and became evident when there are overlap-
ping regions classified with different classes. The algo-
rithm eliminates remaining inconsistencies (or instance,
when there are overlapping regions classified with differ-
ent classes) by applying a rule based on different priorities
assigned to each LULC class (see Table 1 for an example),
which aggregates all classes in a single vector or raster
based theme [9].
OSM2LULC has already been applied to different case

study regions [8–10]. These case studies allowed the
identification of the main problems of the algorithm.
First, the results quality was identified as a key problem
hampering the use of OSM2LULC due to: 1) quality of
the original OSM data; 2) lack of additional rules to as-
sign OSM features to the correct LULC class, which
should be based on the 2D and 3D topological relations
between OSM features. In addition, the lack of perform-
ance was also identified as a key problem capable
enough of decreasing the interest in using OSM2LULC.
Increasing efficiency is a key aspect in future develop-
ments of OSM2LULC, since it will allow the production
of detailed LULC maps for very large extent areas

2Available at https://github.com/jasp382/gasp/tree/master/gasp/osm2
lulc
3Available at https://github.com/jasp382/gasp

Table 1 Example of priorities referring to level 2 of Urban Atlas
(UA)

Priority UA Level 2 Classes Class name

1 1.2 Artificial surfaces

2 5.0 Water

3 1.4 Artificial non-agricultural vegetated areas

4 1.3 Mine, dump and construction sites

5 1.1 Urban Fabric

6 2.0 Agricultural, semi-natural areas, wetlands

7 3.0 Forests

Patriarca et al. Open Geospatial Data, Software and Standards (2019) 4:11 Page 2 of 19

https://github.com/jasp382/gasp/tree/master/gasp/osm2lulc
https://github.com/jasp382/gasp/tree/master/gasp/osm2lulc
https://github.com/jasp382/gasp

(countries or continents) and the regular derivation of
LULC maps from OSM data to map changes in LULC
distribution, taking advantage of the fact that OSM data
is constantly being updated. Furthermore, performance
increment may be essential to maximize the number of
OSM2LULC users: 1) motivation for GIS programmers;
2) possibility of making the derivation of LULC from
OSM data available on the Internet as a web service, so
that non-programmers can also use it.
Moving on that direction, this work aims to compare

various implementation approaches for OSM2LULC and
quantify their performance. To verify to which extent
these could be generalized, we tested and evaluated such
implementations over four study areas with different
characteristics. The ultimate aim was to identify and
minimize performance issues and to evaluate the impact
of such strategies on the final product.
The remainder of the article is structured as follows:

section 2 describes the characteristics of OSM data and
the study areas, and describes the methodology followed.
Section 3 describes the implementation of OSM2LULC,
along with the several versions that were implemented.
Section 4 discusses the results and section 5 draws some
conclusions and presents ideas for future work.

Data and methodology
Data
OSM data is formed by the following elements: points
(called nodes), ways (which may be open or closed lines,
or polygons), and relations (which may be used to con-
nect elements that are not physically connected).4 Tags
can be associated with the elements, which are formed
by a key and a value - for example: “building” = “school”,
where “building” is the key and “school” is the value.
Each element may have one or multiple tags. For ex-
ample, a line representing a street may have the tag
“highway” = “secondary” and an additional tag with the
name of the street “name” = “Street A”. There is a long
list of tags suggested by the OSM community,5 but map-
pers can create additional tags. This, on one hand has
the advantage of not imposing restrictions to the volun-
teers edits, which contributes to the richness of OSM,
but on the other hand makes the use of the existing
OSM data more complex, as, for example, different tags
may be found in different regions, the meaning of some
tags may not be clear to OSM users, and different tags
may be used to represent the same type of features.

The current implementation of OSM2LULC considers
only the tags listed in the OSM Map Features wiki page.6

Table 2 shows some of the most important tags provid-
ing data about LULC used in the conversion.
This work uses four study areas to test the implemen-

tation methodologies described in section 2.2, located in
the regions of Coimbra (Portugal), Lisbon (Portugal),
London (United Kingdom) and Milan (Italy). Table 3
presents their characteristics and Fig. 1 a) - d) show the
OSM data available for them.
All tests performed in this work may be replicated

using osm2lulc.ipynb, which is a jupyter notebook avail-
able at GitHub, as part of the GASP Python package.7

To use this notebook, the GASP Python package must
be configured correctly, according the instructions pro-
vided in the GASP GitHub page (https://github.com/
jasp382/gasp, accessed July 5, 2019).

Methodology
To achieve the objectives defined in the previous section,
the methodology proposed in this work is separated into
three distinct parts.
The first part covers the restructuring and optimization

of the code from the first version of OSM2LULC (Version
1.0), described in [8–10]), which resulted in a new version
(Version 1.1). Two essential aspects were changed and
improved:

1. The code structure was modified - in version 1.0,
the processing was based on LULC classes, that is,
for each LULC class there was an associate module/
sub-procedure; whereas Version 1.1 has been
organized according to the type of operations/
calculations performed over the data - i.e. one
module for each single sequence of tasks. Thus,
processing of LULC classes involving the same
conversion strategies is now performed within the
same OSM2LULC module. This approach
eliminated sequences of tasks that were replicated
throughout the source code, accelerating, in turn,
the production of the final LULC map;

2. GDAL replaced osm2pgsql8 and osmosis9 and is
now used to convert OSM XML files into files
readable by any GIS software.

4https://wiki.openstreetmap.org/wiki/Beginners_Guide_1.3, accessed
March 10, 2019
5https://wiki.openstreetmap.org/wiki/Map_Features, accessed March
10, 2019

6https://wiki.openstreetmap.org/wiki/Map_Features, accessed March
10, 2019
7osm2lulc.ipynb is available at https://github.com/jasp382/gasp/blob/
master/gasp/osm2lulc/osm2lulc.ipynb (accessed July 5, 2019).
8https://github.com/openstreetmap/osm2pgsql, accessed March 10,
2019.
9https://github.com/openstreetmap/osmosis, accessed March 10, 2019.

Patriarca et al. Open Geospatial Data, Software and Standards (2019) 4:11 Page 3 of 19

https://github.com/jasp382/gasp
https://github.com/jasp382/gasp
https://wiki.openstreetmap.org/wiki/Beginners_Guide_1.3
https://wiki.openstreetmap.org/wiki/Map_Features
https://wiki.openstreetmap.org/wiki/Map_Features
https://github.com/jasp382/gasp/blob/master/gasp/osm2lulc/osm2lulc.ipynb
https://github.com/jasp382/gasp/blob/master/gasp/osm2lulc/osm2lulc.ipynb
https://github.com/openstreetmap/osm2pgsql
https://github.com/openstreetmap/osmosis

Version 1.1 of OSM2LULC was defined as the baseline
implementation for the discussion developed in the next
sections.
The second part referred to testing if the processing

time of Version 1.1 could be improved. To achieve this,
three more implementations were developed and tested:
Version 1.2, 1.3 and 1.4.
The third part was related to the application of the

four aforementioned implementations (Versions 1.1,
1.2, 1.3 and 1.4) to OSM data, covering different geo-
spatial locations with different volumes of OSM data.
Different study areas, indicated in section 2.1 (Table 3
and Fig. 1), were used in order to understand two
types of differences:

1. Differences in terms of the program overall
execution time, as well as values of the execution
time of particular tasks. Those differences enable
two types of analysis: on one hand, comparing
results obtained for the same case study, it is
possible to understand which version obtains better

results in terms of performance time; on the other
hand, comparing the results obtained for different
case studies gives an idea of the capacity that each
OSM2LULC version has for processing different
volumes of data, and the impact of data volume on
the application performance. In cases where a raster
data model was used, additional analyses were
accomplished using several cell dimensions (10, 5,
and 2 m respectively), allowing an understanding to
what extent different cell size conditions affect the
overall algorithm performance;

2. Differences resulting from the usage of several
OSM2LULC implementations which may in fact
generate different results (as explained below in
Section 4). The identification and quantification of
areas classified differently by each implementation
were undertaken through a process applied
individually to results obtained for each study area
(which is outlined in Fig. 2). This procedure
consists of: identifying all possible pairs of results;
considering each of these pairs individually, the

Table 2 List of some OSM tags (keys and values) used in the conversion to LULC classes

Key Key values

amenity (area) animal_shelter, arts_centre, bank, bar, brothel, cafe, car_rental, car_wash, casino, cinema, clinic, college,
community_centre, courthouse, crematorium, crypt, dentist, dive_centre, driving_school, embassy,
fast_food, ferry_terminal, fire_station, food_court, fuel, grave_yard, gym, hospital, internet_cafe

amenity (point) bar, hospital, pub, restaurant, school, university

building (area) apartments, cathedral, chapel, church, civic, commercial, garage, hangar, hospital, hotel, house, industrial,
kiosk, mosque, office, public, residential, retail, school, shrine, stadium, synagogue, temple, train_station,
transportation, warehouse, yes

building (point) hotel, office, commercial,hospital, industrial, retail, warehouse, cathedral, chapel, church, mosque, temple,
synagogue, school, stadium, train_station, transportation, public, shrine, civic, hangar, kiosk

highway (line) living_street, motorway, motorway_link, pedestrian, primary, primary_link, residential, road, secondary,
secondary_link, service, tertiary, tertiary_link, trunk, trunk_link, unclassified

landuse (area) allotments, beer-garden, brownfield, cemetery, commercial, construction, depot, farm, farmland, farmyard,
flowers, forest, grass, greenfield, greenhouse-horticulture, industrial, landfill, meadow, military, orchard, plants,
pond, quarry, railway, recreation_ground, recreational_area, recreational, reservoir, residential, retail, scrub,
village_green, vineyard

leisure (area) adult_gaming_centre, amusement_arcade, beach_resort, dance, dog_park, garden, golf_course, hackerspace,
ice_rink, marina, miniature_golf, nature_reserve, park, pitch, playground, sports_centre, stadium, summer_camp,
swimming_area, swimming_pool, track, track, water_park

natural (area) bay, bare_rock, beach, fell, forest, glacier, grassland, heath, mud, park, sand, scree, scrub, shingle, water, wetland,
wood, riverbank

railway (line) rail

waterway (line) dock, river, riverbank, stream

Table 3 - Characteristics of the study areas

Characteristics Study areas

Coimbra (Portugal) Lisbon (Portugal) London (United Kingdom) Milan (Italy)

Area (km2) 400 100 100 400

Size of OSM data available (MB) 26 60 109 196

Number of OSM features to be processed 19,449 66,696 128,410 235,887

Number of OSM features used in more demanding operations 11,425 36,711 29,964 67,176

Patriarca et al. Open Geospatial Data, Software and Standards (2019) 4:11 Page 4 of 19

Fig. 1 Study areas used to test the performance of implementation approaches: a) Coimbra, b) Lisbon, c) London, d) Milan

Fig. 2 Assessing agreement and discordance between results obtained by different implementations of OSM2LULC algorithm

Patriarca et al. Open Geospatial Data, Software and Standards (2019) 4:11 Page 5 of 19

geometric union of a pair was performed; in turn,
the union result was then used to generate the
contingency tables with the agreements and
disagreements by LULC class; finally, a single table
was created based on all contingency tables that
systemize agreement/disagreement percentages of
each pair of results.

Regarding the last aforementioned point, although the
evaluation of the quality and thematic accuracy of the
results generated by OSM2LULC would be an important
topic, it is out of scope in this work. The assessment
performed within this paper relates only to evaluating
the impact of vector to raster conversions executed in
some implementations, i.e. we are only assessing if the
improvement we are having in terms of performance by
running some implementations using raster formats re-
sults in major differences on the output.
All the performance benchmarks comparing the differ-

ent implementations were performed on a computer
with the following characteristics: Intel® Core™ i7–6700
CPU 3.40Ghz × 64-based; 16 GB of RAM; Solid State
Driver with 1 TB; Ubuntu 18.04 64 bit LTS.

OSM2LULC implementation
Implementing support technologies
To minimize development efforts, OSM2LULC was im-
plemented in Python programming language. All pro-
cesses of the conversion algorithm can be implemented
using functionalities and tools provided by various
FOSS4G (e.g. GRASS GIS, SAGA GIS). Thus, it is possible
to implement and run these tools from a wide variety of
FOSS4G in the same script through their Python based
API. The OSM2LULC development process was faster
due to this choice (no need of developing spatial analysis
tools from scratch) and allowed us to take best advantage
of each package. Further to this orientation, it was neces-
sary to decide which FOSS4G to be chosen and respective
tools to be integrated. Such procedure was based on two
steps, as follows: selection of most prominent alternatives
based on literature review from Patriarca [26]; definition
of a set of criteria to build a hierarchy of the pre-selected
alternatives in the previous step.
Among a wide variety of FOSS4G packages, GRASS

GIS,10 gvSIG,11 QGIS,12 GDAL/OGR,13 SAGA GIS,14

and PostGIS15 stand out from others for their maturity
and robustness. In fact, with the exception of SAGA

GIS, all these packages are “OSGeo projects”, which
proves its quality – one of the main goals of OSGeo
foundation16 is to ensure a high degree of quality of pro-
jects supported by them. The criteria considered to se-
lect the software used in the development of
OSM2LULC are listed in Table 4. GRASS GIS 7.6.0 was
selected since it fulfilled all criteria. In addition, GDAL /
OGR 2.4.0 was also adopted for ensuring interoperability
between OSM data and GRASS GIS (GRASS GIS can’t
read OSM files without GDAL/OGR).
After the selection process of the FOSS4G to be used in

the development of OSM2LULC software package, its Ver-
sions 1.0 and 1.1 were implemented (Version 1.0 was then
discarded and replaced by Version 1.1 - see Section 2).
Some performance tests of Version 1.1 revealed a few

limitations. Seeking performance maximization, further
versions were considered and developed. For the new
versions, the FOSS4G packages compared in Table 4
were tested to find tools to replace the slower ones of
Version 1.1.

Implementation structure
OSM2LULC software is based on a chain of logical pro-
cedures for the derivation of LULC maps from OSM
data. All developed versions followed the logic outlined
in Fig. 3; differences between them are only procedural
relating: i) to the execution of the logical sequence of
tasks inherent to assumptions of each module; ii) to the
application of the hierarchical approach used to aggre-
gate results of the various modules into a single layer.
Versions 1.1 to 1.4 were developed upon a set of six
modules prepared to address three needs, as follows:

� To generalize, to simplify, and to remove errors
present in OSM feature geometries, namely in those
cases where there are overlapping polygons that
must be associated with same class;

� To determine whether the assignment of a LULC
class to a particular OSM feature is the right one or
is, at least, the more likely one, based on some kind
of topological relationship between geometries or
geometric properties;

� In the case of line-based OSM features, to transform
this type of geometry into polygons according to a
certain criterion. This effort is essential to ensure
that information relating to roads and railways is not
lost, since it is not included in the polygon-based
layer of the OSM file. In addition, in a closer
representation of reality, geographical entities
represented in the line-based layer should be
represented as polygons – recall that a road has a

10https://grass.osgeo.org/, accessed March 10, 2019.
11http://www.gvsig.com/en/home, accessed March 10, 2019.
12https://qgis.org/en/site/, accessed March 10, 2019.
13https://www.gdal.org/, accessed March 10, 2019.
14http://www.saga-gis.org/en/index.html, accessed March 10, 2019.
15http://postgis.net/, accessed March 10, 2019. 16https://www.osgeo.org/, accessed March 10, 2019.

Patriarca et al. Open Geospatial Data, Software and Standards (2019) 4:11 Page 6 of 19

https://grass.osgeo.org/
http://www.gvsig.com/en/home
https://qgis.org/en/site/
https://www.gdal.org/
http://www.saga-gis.org/en/index.html
http://postgis.net/
https://www.osgeo.org/

Table 4 Criteria used to select which GIS Software to be integrated in OSM2LULC

GRASS
GIS

gvSIG QGIS GDAL/OGR SAGA GIS PostGIS

Do they provide
fundamental tools
for the envisaged
processes?

Yes No tool to
compute near
distance between
features is available

Yes, but most of the
relevant tools were
from other FOSS4G

Yes, but depends of
other packages (e.g.
Spatialite) to accomplish
some analysis

No tool to
compute near
distance between
features is available

Yes

OSGeo project? Yes No, by the time our
work started

Yes Yes No Yes

Quality
documentation
available?

Yes No Yes Yes Yes Yes

Examples of its
application available?

Yes Yes Yes Yes Yes Yes

Python-based API
available?

Yes No Yes Yes Yes Yes

Is the implementation
of tools in Python
Scripts easy?

Yes No Yes No. All types of analysis
could be done, but some
would need additional
configurations and the
use of SQL (e. g.
difference of polygons
or near distance analysis)

Yes No, layers are
treated as database
tables; advanced SQL
queries are needed for
some tools

Previous experience
of the team?

Yes No No Yes No Yes

Fig. 3 Schema of OSM2LULC implementation

Patriarca et al. Open Geospatial Data, Software and Standards (2019) 4:11 Page 7 of 19

certain geospatial extent and thus has a certain area
on the ground.

The implementation process was then based on the
creation of six modules. Each module can be defined as
a set of procedures that should be applied to a specific
group of OSM features, transforming them into LULC
classes, which are then merged together and ambiguities
solved to generate the final LULC map (see Fig. 3).
The implementation requires a prior association of the

various OSM features involved: 1) to LULC classes; and
2) to each module, depending on the type of processing
required by each feature type, such as the creation of a
buffer around the feature or its validation based on a set
of rules (e.g. its area or neighbouring features). These re-
lationships were declared in a relational database (see
Fig. 4), hereinafter referred to as OSM2LULC Support
DB, which is accessed each time the program runs. In
some cases, the association between the various OSM
features and the respective module is accompanied by
other attributes (i.e. columns buffer_dist and area, as
depicted in Fig. 4). Column area is used in situations
where the conversion to LULC depends on the area (in
square meters) of the OSM Polygon Features; column
buffer_dist has the buffer distance used to transform
lines into polygons (Module 2 and 5).
In subsection 3.3.1 the pre-processing phase necessary

for the application of the logical steps performed in the
modules is described and in section 3.3.2 each of the six
modules is explained.

Pre-processing applied to OSM data
All versions of OSM2LULC apply the same set of pre-
liminary tasks, which are intended to prepare the OSM
data, consisting of:

� The original OSM file is transformed to: i) an
SQLITE database for Version 1.1; or ii) a
PostgreSQL database (PSQL DB) for Versions 1.2,
1.3 and 1.4;

� Based on the existing relationships in OSM2LULC
Support DB, several queries are applied to update
the original tables, adding new columns, which
indicate: 1) the module that should be applied to
each OSM feature; 2) LULC class (or classes)
corresponding to a particular OSM feature; and 3)
default values to be applied at specific processing
times (i.e. fields buffer_dist and area, as shown in
Fig. 4);

� Finally, the original spatial reference system (SRS) of
OSM needs to be changed; because the original
WGS84 (EPSG: 4326) is not projected; in fact, given
that processing tasks involve operations comprising
distance and area calculation, the various
OSM2LULC modules have been prepared to receive
projected SRS input data.

Modules description
Module 1 MODULE 1 is applied to OSM features that
have a direct and unambiguous relationship with a LULC
class. From a procedural point of view, this module only

Fig. 4 Entity-relationship model for the database supporting the OSM2LULC Versions

Patriarca et al. Open Geospatial Data, Software and Standards (2019) 4:11 Page 8 of 19

presupposes the simplification and generalization of
geometries associated with a given LULC class.

Module 2 MODULE 2 is used to transform line-based
OSM features into polygons by creating “buffer zones”,
where the “buffer distance” depends on the distance be-
tween lines and buildings. This is the case of OSM Lines
representing highways; this module is applied exclusively
to this type of entities. The width of buffer zones associ-
ated with each line corresponds to the minimum dis-
tance between this feature and the nearest building
multiplied by two. This rule was defined this way be-
cause the buffer distance for roads in urban areas should
not exceed the minimum distance between the road axis
and the nearest building. However, this rule is not ap-
plied when the distance between lines and nearest build-
ings is greater than 12m, since it would be unlikely to
find a highway with a width greater than 25m in urban
areas. In previous cases, a default buffer distance is ap-
plied according to the width that a highway with a cer-
tain “key/value” is expected to have.

MODULE 3 and MODULE 4 MODULE 3 and MOD-
ULE 4 are used in cases where the OSM feature-LULC
Class relationship only occurs if the OSM feature’s area
is bigger (MODULE 3) or smaller (MODULE 4) than a
default value (i.e. a threshold) predefined for that OSM
feature, which depends on the OSM feature tag. For ex-
ample, a feature with a “key” equal to “Landuse” and a
“value” equal to “Forest” can be associated with more
than one LULC category (forests or urban green spaces);
the area of the feature’s polygon is used to determine
which LULC class it belongs to: if the area is bigger than
10,000 m2, the feature is treated as “Forest”, otherwise it
is considered as “Green Urban Space”.

Module 5 MODULE 5 transforms line-based OSM fea-
tures representing railways or waterways into polygon
features by creating buffer zones around them. Unlike
MODULE 2, which takes into account a comparison of
distances, in MODULE 5 “buffer distance” is a param-
eter previously defined for each OSM feature.
Such strategy entails though some drawbacks. For in-

stance, for different study areas, the area occupied by a
body/watercourse feature may be quite distinct, so the
definition of a static buffer distance is not the best op-
tion. In the future, developments are planned to elimin-
ate this limitation, either through spatial analysis or
through integration of other sources, namely satellite
imagery.

Module 6 Finally, MODULE 6 complements the infor-
mation associated with OSM polygons that have the
value “yes” for the key “building” with complementary

information from the point-based building representa-
tion, which was previously associated with LULC classes.
This is achieved through the intersection of both geom-
etries and allows to complete the information about the
buildings and hence helps to reduce the uncertainty
around the classification of the OSM features, as, for ex-
ample, residential, industrial or commercial. When it is
not possible to obtain further information about the
buildings, they are assumed to be residential and will be
associated with the corresponding LULC class.
It should be stressed that all modules above are inde-

pendent of one another and there is no data sharing be-
tween them, i.e. the output of a certain module is never
the input of another.

Priority rule
After applying the aforementioned modules, results pro-
duced by all modules are integrated. This is done by ag-
gregating features corresponding to each LULC class
into a single layer. Additionally, this process also seeks
to tackle some inconsistencies that may still occur, such
as cases of overlapping polygons that have been classi-
fied with distinct LULC classes. Such fact is very much
related to the nature of OSM itself and may occur for
different reasons: classification of OSM features with
keys or values that do not characterize correctly the type
of land-use or land-cover; lack of accuracy in defining
geographical edges of entities; or simply because in real-
ity entities above overlap or include one another – i.e.
roads or railway lines over river lines; green spaces that
are within urban areas [9]. In order to tackle these prob-
lems, a hierarchical approach was adopted consisting on
the assignment of different levels of priority to LULC
classes considered in the OSM data transformation
process; such hierarchy of priority levels is based on the
importance, size, spatial relationships, and topology of
OSM data (see Table 1). As an example, Fig. 5 demon-
strates how the hierarchical rule is applied using some
classes in Table 1.

Differences among OSM2LULC versions
Version 1.1 were implemented using GRASS GIS. This
version workflow is described in Table 5. Some perform-
ance tests of this code revealed some limitations to
process datasets similar of those in Table 3 in a short
time window. If for some reason, we seek to get results
in less than 5 min, the definition of a zone of interest
will be highly conditioned in terms of its geographic
extent.
Aiming to minimize restrictions in applications of

OSM2LULC, (e.g., making it available as a web service),
performance improvement was sought based on the re-
placement of some tools in time consuming processes.
Version 1.2 of OSM2LULC was the result of such

Patriarca et al. Open Geospatial Data, Software and Standards (2019) 4:11 Page 9 of 19

improvement - this implementation used the baseline ap-
proach defined in Table 6, but some of the spatial analysis
operations were run inside a PostgreSQL database, using
PostGIS tools (these operations are those in which GRASS
GIS data processing is more time consuming).
Nevertheless, the general performance of the new ver-

sion was not totally satisfactory, mainly due to limita-
tions in the tool used in the priority rule application.
Therefore, a new hypothesis was formulated based on
two assumptions, as follows:

� Although limiting beforehand the quality of results,
due to the simplification of a given geospatial
geometry shape, better performance can be achieved
using raster data format instead of vector format
when applying the priority rule. Such change implies
a simplification of geospatial analysis tasks for
operations no longer dependent on the irregularity
of vector geometries;

� In applying the priority rule, better performance
may also be achieved by replacing the usage of
FOSS4G tools for a Numpy-based17 implementation
of these operations.

Versions 1.3 and 1.4 were then developed based upon
the assumptions described above. Version 1.3 imple-
mented only the first assumption, whereas version 1.4
implemented both together. In Version 1.3, at certain
point vector data were converted to a raster data model
within GRASS GIS and the priority rule operations were
carried out using that data model. Area and distance cal-
culations and buffering operations were performed on
vector data. In the implementation of Version 1.4, OSM
data was converted into Numpy arrays using GDAL
2.2.4 and the priority rule operations were accomplished
using Numpy 1.15 tools. Area and distance calculations
and buffering operations were done by PostGIS func-
tions within a PostgreSQL database, avoiding GRASS
GIS entirely (see Table 5).

Results and discussion
In this section we present the results of applying the
aforementioned four versions of OSM2LULC to the
different study areas described in section 2.1. Such
tests provided us with results both related to their
execution time and also enabled the comparison of
the different LULC outputs resulting from the conver-
sion operations.

Fig. 5 – Priority rule exemplification

17http://www.numpy.org/, accessed March 10, 2019

Patriarca et al. Open Geospatial Data, Software and Standards (2019) 4:11 Page 10 of 19

http://www.numpy.org/

Execution time results
Figure 6 shows in graph plots: a) the execution time of all
implementations; b) graph zoom-ins to provide details on
the 12min-time slot, so that a more detailed analysis may
be done regarding the faster versions; and c) a closer look
at the performance of Versions 1.3 and 1.4 considering
spatial resolutions of 10m, 5m, and 2m.
Results obtained showed that Version 1.1 is less effi-

cient in all study areas compared to other versions. One
can also see that the processing time is particularly high
for Milan dataset (approximately 3 h00), where data size
is almost the double of data available for London (see
Table 3). This showed that this version was particularly
sensitive to the input data size. Processing time got

significantly reduced from Version 1.1 to Version 1.2,
and even more from the latter to Versions 1.3 and 1.4,
in which raster data is used in the priority rule applica-
tion. In Version 1.2, processing time for Milan was re-
duced to approximately 7 min (i.e. an improvement of
96%), while for London it was reduced from a little more
than 11min to only approximately 2 min (i.e. an im-
provement of 80%). Similar proportional improvements
were observed for Lisbon and Coimbra. Version 1.3
(Fig. 6c) enabled processing time reduction for Milan to
less than 3 min with the three considered spatial resolu-
tions (10 m, 5 m, and 2m). Moreover, differences in pro-
cessing time between these were very small. Processing
time for the other study areas was between 30 s and 43 s

Table 5 OSM2LULC Version 1.1 workflow and main differences in subsequent versions

Version 1.1 - Baseline workflow/approacha Differences in subsequent versions

MOD 1 Import data related with Module 1 into GRASS GIS (v.in.ogr) >
Generalize data (v.dissolve)

Vers. 1.2 - Same as Version 1.1.
Vers. 1.3 - Vector to raster (v.to.rast) replaced v.dissolve.
Vers. 1.4 - GRASS GIS was set aside; data was exported to file
(ogr2ogr) and converted to raster using GDAL Python Bindings.

MOD 2 Import data related with Module 2 (roads and buildings) into
GRASS GIS (v.in.ogr) > Calculate distance between roads and
buildings (v.distance) > calculate buffer using distances obtained
or default thresholds (v.buffer) > dissolve polygons (v.dissolve).

Vers. 1.2 - Procedure is done inside PGSQL DB; results are
imported to GRASS GIS at the end (v.in.ogr); ST_Distance and
ST_DWithin replaced v.distance; ST_Buffer and ST_Unary Union
replaced v.buffer and v.dissolve.
Vers. 1.3 - One difference from Version 1.2: vector data is
converted to raster (v.to.rast) at the end.
Vers. 1.4 - Three differences from Version 1.2: GRASS GIS was set
aside; ST_Unary Union was not used to dissolve buffer polygons;
data was converted to raster using GDAL Python Bindings.

MOD 3 and 4 Select data related with Module 3/4 and bigger/smaller than
threshold > Import it to GRASS GIS (v.in.ogr) > Generalize data
(v.dissolve)

Vers. 1.2 - Same as Version 1.1.
Vers. 1.3 - Vector to raster (v.to.rast) replaced v.dissolve.
Vers. 1.4 - GRASS GIS was set aside; data was exported to file
(ogr2ogr) and converted to raster using GDAL Python Bindings.

MOD 5 Select data related with Module 5 and import it to GRASS GIS
(v.in.ogr) > Buffer calculation using default thresholds (v.buffer) >
dissolve polygons (v.dissolve)

Vers. 1.2 - Same as Version 1.1.
Vers. 1.3 - Vector to raster (v.to.rast) replaced v.dissolve.
Vers. 1.4 - GRASS GIS was set aside; ST_Buffer replaced v.buffer;
data was exported to file (ogr2ogr) and converted to raster using
GDAL Python Bindings.

MOD 6 Select Polygon OSM Features related with Module 6 that
intersects with Point OSM Features and import it to GRASS
GIS (v.in.ogr) > dissolve polygons (v.dissolve);
Select Polygon OSM Features related with Module 6 that not
intersects with Point OSM Features and import it to GRASS GIS
(v.in.ogr) > assign polygons to the LULC Class including
residential and generalize polygons (v.dissolve).

Vers. 1.2 - Same as Version 1.1.
Vers. 1.3 - Vector to raster (v.to.rast) replaced v.dissolve.
Vers. 1.4 - GRASS GIS was set aside; ST_Buffer replaced v.buffer;
data was exported to file (ogr2ogr) and converted to raster using
GDAL Python Bindings.

PRIORITY Rule The result of each module is a Vector Layer with several LULC
Classes, so first thing to do is create a layer for each LULC Class
(Geopandas) > these layers were compared to each other in an
iterative process, which performs the intersection between one
layer and the others with lower hierarchical rank, removing the
common areas from the second one (v.overlay was used)

Vers. 1.2 - Same as Version 1.1.
Vers. 1.3 - The result of each module is a list with raster files
representing the presence of a certain class; r.patch was used to
obtain a single raster for each LULC class; r.patch was used to
apply the priority rule and generate the final result.
Vers. 1.4 - The result of each module is a list with raster files
representing the presence of a certain class; these files were
converted to Numpy Arrays; arrays associated with the same
LULC class were summed up to obtain an Array for each LULC
class; these Arrays were compared to each other in an iterative
process: At each iteration, considering each of the Arrays (ARRAY
Y) and the Arrays with a lower hierarchical order (ARRAYS E), the
values of each ARRAY E are replaced by NULL when, in the same
position, the ARRAY Y value is greater or equal to one.

aFor more information on how the different OSM2LULC Versions are implemented, its documentation can be found at https://github.com/jasp382/gasp/tree/master/gasp/osm2lulc

Patriarca et al. Open Geospatial Data, Software and Standards (2019) 4:11 Page 11 of 19

https://github.com/jasp382/gasp/tree/master/gasp/osm2lulc

- except for Coimbra, where it took a little more than 1
min for the 2 m spatial resolution version. Version 1.4
showed to be very fast when compared to all the other
implementations, taking always less than 40 s to obtain
results, and no significant time differences occurred
when using different spatial resolutions.
The analysis of time consumed in each part of the

process (Fig. 7) allowed to conclude that in Version 1.1,
MODULE 2 is the one consuming most of the time. If
the performance of each tool used in MODULE 2 is ana-
lyzed in more detail, it can be seen that the GRASS GIS
v.dissolve tool has an impact in the performance of the
whole process, and in particular of MODULE 2, as it
proved to be particularly slow when processing a greater
number of features (6473 OSM features in Coimbra;
9461 in Lisbon; 12,005 in London; 38,076 in Milan).
In fact, polygon generalization operations are time

consuming if performed with FOSS4G, which is a limita-
tion when compared to some proprietary software pack-
ages, such as ArcGIS. Table 6 shows time taken in
MODULE 2, if v.dissolve tool was replaced by analogue
tools from other software, including ArcGIS. This shows
that time taken by ArcGIS was much smaller when com-
pared to all others - except PostGIS, which presented a
better value than ArcGIS for Coimbra, the same value
for London, and closer values for Lisbon and Milan
when comparing differences between ArcGIS and the
others.
In MODULE 2, v.dissolve tool is used to generalize

polygons obtained with v.buffer tool, as this tool does
not permit to keep the alphanumeric attributes associ-
ated with the lines used to generate the buffers. Tools to
generate buffers in other GIS software provide this

possibility. In the case of ArcGIS and PostGIS, running
the buffer tool with the option “dissolve polygons” is
more efficient than running these tools sequentially
(Table 6).
In Version 1.2, v.buffer and v.dissolve were eliminated

from the MODULE 2 workflow and replaced by PostGIS
tools, since it proved to be the most efficient in perform-
ing tasks of distance calculation and buffering with poly-
gon generalization (Table 6 and Table 7). The combined
use of PostGIS tools ST_Distance and ST_DWithin
allowed a rather efficient calculation of the distance be-
tween a set of input features and the closest entity of an-
other layer (equivalent to the v.distance of GRASS GIS)
(i.e. about 1 s in all study areas). In addition, the com-
bined use of ST_Buffer, ST_Collect, and ST_UnaryUnion
(equivalent to GRASS GIS v.dissolve) was also quite effi-
cient in creating and generalizing a buffer built around a
set of features. The combined use of ST_UnaryUnion
and ST_Collect explains most of the efficiency gains,
since this combined use leaves on our side the choice of
how many geometries should be dissolved at once, hence
allowing us to better control the memory size and CPU
time. The integration of these PostGIS functions into
MODULE 2 of Version 1.2 justifies the amplitudes veri-
fied between the two OSM2LULC implementations con-
sidered (Table 7).
However, the ability of Versions 1.3 and 1.4 to be even

faster is related to the use of the raster data model. In
these implementations, at a given moment, vector data
was converted to raster, making the outputs of each
module to be a set of raster files. Consequently, the hier-
archical approach that seeks to solve subsistent incon-
sistencies and aggregates each class in a final layer was

Table 6 Comparing performance of GRASS GIS in MODULE 2 with other alternatives

Coimbra Lisbon London Milan

Polygon generalization (dissolve) in MODULE 2 Reference value

GRASS GIS 7.6 00:03:11 00:07:35 00:08:55 02:53:20

v.dissolve replaced by similar tools in other GIS Software

ArcGIS 10.6 00:00:38 00:00:34 00:00:52 00:03:31

PostGIS 2.5 00:00:31 00:00:47 00:00:52 00:05:04

Spatialite 00:59:00 > 1 h > 1 h > 1 h

SAGA GIS 7.2 00:35:39 > 1 h > 1 h > 1 h

Buffering with generalization of buffer polygons in MODULE 2 Reference value

GRASS GIS 7.6 00:03:24 00:07:55 00:09:14 02:55:05

v.buffer and v.dissolve replaced by buffer tool with dissolve option in other GIS
Software

ArcGIS 10.6 00:00:27 00:00:30 00:00:33 00:00:59

PostGIS 2.5 00:00:10 00:00:13 00:00:13 00:01:12

Spatialite 00:00:28 00:00:48 00:01:06 00:11:38

SAGA GIS 7.2 00:25:34 00:43:56 > 1 h > 1 h

Patriarca et al. Open Geospatial Data, Software and Standards (2019) 4:11 Page 12 of 19

performed using raster files, which performed much fas-
ter (Fig. 8). In the specific case of Version 1.3, the per-
formance enhancement also depends on the fact that
this specific process is done by using r.patch tool, unlike
Version 1.1 and 1.2, in which the implementation of the
hierarchical approach is performed through several exe-
cutions of v.overlay tool within a loop.
The way the hierarchical rule is implemented also ex-

plains why Version 1.4 was faster than 1.3 (Fig. 9). At
this stage of processing, Version 1.3 works with r.patch

tool and Version 1.4, on the contrary, operates with a
tool we have developed (r.numpy.patch), which uses
GDAL to convert raster files into Numpy Arrays and
Numpy data structures to apply the priority rule. In Ver-
sion 1.3, r.patch is used several times (to merge all ras-
ters related with one particular LULC class into a single
one; to apply the priority rule and producing the final re-
sult), which generates several temporary files throughout
the process. Instead, in Version 1.4, with r.numpy.patch,
no temporary files are produced; all data and all priority

Fig. 6 Overview of the execution time of: a) all different versions; b) zoom-ins to provide details on the 12-min time slot; and c) an overview of
results for Versions 1.3 and 1.4 for spatial resolutions of 10 m, 5 m, and 2 m

Patriarca et al. Open Geospatial Data, Software and Standards (2019) 4:11 Page 13 of 19

rule processes are respectively stored and done using
only RAM memory, being the final result the only per-
sisted file.
Despite the strengths of r.numpy.patch tool, it is

important to point out that this tool still needs fur-
ther development to properly manage memory usage.
Numpy structures are stored in memory, so there is
the possibility of breaking the execution of the pro-
gram if the entire memory is taken. This indeed hap-
pens when the defined inputs have a geographical
extent greater than those presented in this study, par-
ticularly if the cell size is very small. Therefore, the
consolidation of Version 1.4 of OSM2LULC implies
the development of memory control and management
mechanisms to avoid error messages when the user
considers a large extent area. This management sys-
tem should restrict the size of the area of interest
that can be defined by the user, and/or segment the
area of interest running the process individually for
each part.
Nonetheless, there are other factors that may help

explaining why Version 1.4 is faster: (i) in Version 1.3,
data must be imported into GRASS GIS and then

converted to raster, which is a time-consuming task; (ii)
in MODULE 2 of Version 1.3, buffer calculation includes
the generalization of existing polygons, while in module
2 of Version 1.4, buffer calculation is performed without
generalization. This causes PostGIS to take a longer time
to return the results in Version 1.3. However, if the
generalization operation is skipped, GRASS GIS takes
even longer to import the output.
Only MODULE 2 and the PRIORITY RULE were de-

bated in this discussion, since they concern parts of the
process that consume more time. In fact, the remaining
modules do not significantly affect the performance of
the various implementations, namely MODULES 3, 4
and 5, which is explained by the reduced number of
OSM features processed by them (Fig. 10).

Positional distortions in the results
All versions described in the article implement the same
algorithm. However, on one hand, the use of different
tools available in different software packages generate
output differences, and, on the other hand, in some ver-
sions and modules raster data is used (with different
pixel sizes) instead of vector, which also produced

Fig. 7 Execution time in each part of the procedure for London and Milan datasets using Versions 1.1 and 1.2

Table 7 Gains of using PostGIS instead of GRASS GIS in MODULE 2 for Milan study area

MODULE 2 GRASS GIS POSTGIS

Import Roads and Buildings into GRASS GIS 00:00:15 –

Near analysis - distance between roads and buildings 00:00:05 00:00:01

Buffer analysis 02:55:05 00:01:12

Import result of buffer analysis into GRASS GIS – 00:00:13

Total 02:55:25 00:01:26

Patriarca et al. Open Geospatial Data, Software and Standards (2019) 4:11 Page 14 of 19

differences in the final outputs. To assess the magnitude
of such differences, positional distortions in the results
obtained with the different versions of OSM2LULC were
analysed for each study area considered. Table 8 shows
the percentage of areas not coincident with the results
obtained with Version 1.1. It can be seen that results ob-
tained with Version 1.2 are almost identical to the ones
obtained with Version 1.1, with differences smaller than
0.1% for the four study areas. These differences are due
to the use of different tools in the versions. For example,

in Version 1.1 MODULE 2 uses only GRASS GIS tools,
while in Version 1.2 PostGIS tools are used. This results
in minor differences in the buffer shapes, mainly at their
ends.
As expected, differences between Version 1.1 and Ver-

sions 1.3 and 1.4 are larger, as raster results are obtained
with these versions. Such differences depend mainly on
the spatial resolution used for raster files, decreasing
with an increase in spatial resolution. For all study areas,
differences between 8% and 10% were obtained when

Fig. 8 Execution time consumption in each part of the procedure - Version 1.2 and 1.3; Lisbon and Milan datasets

Fig. 9 Execution time consumption in each part of the procedure – Version 1.3 and 1.4; London and Milan datasets

Patriarca et al. Open Geospatial Data, Software and Standards (2019) 4:11 Page 15 of 19

considering a cell size of 10 m, decreasing to values be-
tween 4% and 6% when considering a cell size of 5 m,
and to around 2% when considering a cell size of 2 m.
Using London as an example, Fig. 11 illustrates differ-
ences caused by cell size definition, found in all study
areas.
Table 9 shows the contribution of each class to the

areas of disagreement between version 1.1 and versions
1.3/1.4 for the 2 m spatial resolution outputs. It can be
seen that class 1.2 and the regions with no data in OSM
are, by far, the ones contributing more to the disagree-
ments. Class 1.2 includes all roads, which are narrow
and long linear features that, when converted to the
raster structure, in order to adapt to the pixel shape end
up increasing their width a little bit (depending of course
on the size of the pixel). As this occurs all over along
the roads, it ends up increasing considerably the total
area of features. Regarding regions with no data in OSM,
when vector features are converted to the raster format

their limits will occupy neighbouring regions, which fre-
quently are not occupied by any other feature in OSM.
This is particularly evident for roads, and it was ob-
served that there is positive correlation between the con-
tribution of roads within class 1.2 to the disagreement
and the contribution of regions with no data.
The identified differences between vector and raster

outputs with the three spatial resolutions, correspond to
normal differences between data represented with vector
and raster data structure. Our concern here is, however,
if the use of versions providing results at higher speed
may compromise their use for some applications. Even
though, differences in percentages are not as consider-
able (see Table 8); in fact, they may still correspond to a
few hundreds of hectares (for Milan study area, with a 2
m spatial resolution, differences reached more than 600
ha). Therefore, for each application, it is necessary to
check if raster LULC maps may be used or if versions
providing vector results should be used instead.

Fig. 10 Number of Features processed in each MODULE by study area

Table 8 Disagreement (in percentage relative to the data in OSM and area in ha) between Version 1.1 and Versions 1.2, 1.3 and 1.4,
these last with 10 m, 5 m and 2m spatial resolution

Disagreement area Version 1.2 Version 1.3/1.4 10m Version 1.3/1.4 5 m Version 1.3/1.4 2 m

Version 1.1
Coimbra

0.01%
0.86 ha

10.05%
902.83 ha

5.71%
503.96 ha

2.20%
191.24 ha

Version 1.1
Lisbon

0.04%
3.38 ha

8.31%
716.80 ha

4.86%
415.19 ha

2.01%
170.70 ha

Version 1.1
London

0.05%
4.18 ha

11.17%
963.93 ha

6.49%
553.26 ha

2.58%
217.41 ha

Version 1.1.
Milan

0.05%
15.78 ha

8.76%
2834.48 ha

5.00%
1601.09 ha

1.94%
614.55 ha

Patriarca et al. Open Geospatial Data, Software and Standards (2019) 4:11 Page 16 of 19

Conclusions and further work
OSM2LULC software package was developed to convert
OSM data into LULC maps. In order to maximize per-
formance, four versions of the underlying algorithm
were implemented using different FOSS4G software
tools. The performance of the four versions was tested
by considering four study areas with different data vol-
umes and area sizes. Results showed that Version 1.4

was the one showing the overall best performance - in-
deed, when applied to the four study areas, it always
took less than 1 min; this was a substantial improvement
when compared with the execution time taken by Ver-
sion 1.1 - for example, it took more than three hours
when dealing with Milan study area. Version 1.3 also
showed to have a relatively good performance; but, when
data volume increases, time required for the conversion

Fig. 11 Left: results obtained for the London study area with Version 1.1. Right: examples of results obtained with Versions 1.3 and 1.4 with 2 and
10 spatial resolution overlapped with the results obtained with version 1.1

Table 9 Contribution of each LULC class (in %) to the disagreements between Versions 1.1 and 1.3/1.4 (2 m cell size) for all study
areas

LULC Class Coimbra Lisbon London Milan

1.1 - Urban Fabric 6.11 23.14 14.11 14.10

1.2 - Industrial, comercial, public, militar, private and transport units 43.89 43.69 43.77 42.87

1.3 - Mine, dump and construction sites 0 0.14 0.69 0.56

1.4 - Artifical non-agricultural vegetated areas 0.61 2.66 2.23 3.14

2 - Agricultural, semi-natural areas 1.47 1.77 0.34 2.7

3 - Forests 0.43 0.07 0.06 0.08

5 - Water 2.93 0.61 0.86 0.64

NoData 44.56 27.92 0.64 35.75

Patriarca et al. Open Geospatial Data, Software and Standards (2019) 4:11 Page 17 of 19

process may increase too (for Milan study area, with 196
MB, it took already more than 2min). This difference oc-
curred because in Version 1.3 GRASS GIS was used and
this requires the use of data in GRASS vector format,
while in Version 1.4 GRASS GIS was not used at all. Un-
like ESRI Shapefile data structure, the GRASS Vector data
model includes topology describing spatial relations be-
tween feature location and geometry [23]. Therefore, be-
sides the need to convert data into GRASS Vector format,
GRASS GIS explores the topological relations between
data, which may be very useful in some cases taking add-
itional time though, affecting therefore the overall per-
formance. In this test case, GRASS GIS confirmed to
provide results with high quality [24], however the effi-
ciency of some tools may still to be improved.
Currently, the efficiency of Version 1.4 is only con-

strained by the geospatial extent of the study area and
the considered cell size, and is not dependent on the
amount of data available in OSM. Despite the differences
obtained by using raster data and by changing cell sizes,
results with smaller cell sizes (such as 2 m) can be used
for many applications. The main limitation of this ver-
sion is related to the dimension of the arrays used when
applying the hierarchical approach. In order to minimize
this limitation and to further optimize the performance
of Version 1.4, the execution of each module will be per-
formed in parallel leveraging the multiprocessing Python
package, since the various modules are completely inde-
pendent, with no data sharing between them. In
addition, when applying the hierarchical approach to
very large extent areas, r.numpy.patch will subdivide the
whole area into smaller regions to take advantage of the
parallel processing. By default, Python is limited to use a
single CPU-core due to the Python Global Interpreter
Lock (GIL), even when a multi-threading approach is
used. However, it is possible to split the workflow of a
Python program into multiple processes instead of
threads. With multiprocessing, each created process runs
separately using a single CPU-core and has its own Py-
thon interpreter and RAM memory space. This will en-
able OSM2LULC to be applied to much larger areas and
to take full advantage of CPU’s processing capabilities.
Even though results provided by Versions 1.3 and 1.4 are

not very different from the ones obtained with the other
versions (i.e. the ones with final results in vector format),
for applications where positional accuracy is critical vector
results should be used instead. Therefore, efforts will be
made in the future to improve the efficiency of OSM2-
LULC versions that provide vector outputs, namely Ver-
sion 1.2. Tests made so far with FOSS4G suggests the
possibility to develop more efficient methodologies inte-
grating several FOSS4G tools, along with input data seg-
mentation and parallel processing, using a multiprocessing
approach. The modules could be executed in parallel using

only PostGIS tools; the priority rule could be applied using
GRASS GIS and a strategy based on geographic data seg-
mentation and parallelization with the multiprocessing Py-
thon module. PostGIS will progressively replace GRASS
GIS because it is faster in buffering and polygon aggrega-
tion tasks, but the latter will remain the primary solution
when applying the priority rule. Our experience tells us
that GRASS GIS is significantly faster when working with
less data, even if there are other tasks running in parallel.
Thus, dividing data into different parts and running v.over-
lay for each part in parallel seems to be the most promising
solution.
Should be noted that the parallel processing of data

can only be applied to the different modules, and not
within each module. Otherwise we could end up losing
geospatial relations and geometric attributes of the data.
For the time being, it was possible to implement

OSM2LULC using only FOSS4G tools. However, in
order to obtain an overall better performance, it is ne-
cessary to identify which tools have the best perform-
ance in each step of the algorithm, and integrate them
considering an interoperability approach. This will allow
to overcome identified limitations and eventual bugs of
tools available in the software packages. Furthermore, a
substantial comparative study of tools available, which
may work out time consuming and requires prior ex-
perience with such software packages, is also needed.
As stated in Section 1, the underlying algorithm of

OSM2LULC has revealed some limitations and improve-
ments are needed. Thus, it is envisaged the implementa-
tion of further logical rules based on expected thematic-
geospatial relationships between the OSM features in-
volved in the process, as well as the use of other data
sources that may contribute towards a more accurate
thematic and positional validation of OSM data.

Abbreviations
CPU: Central Processing Unit; EPSG: European Petroleum Survey Group;
FOSS4G: Free and Open Source Software for Geospatial; FSF: Free Software
Foundation; GASP: GeoData Algorithms for Spatial Problems;
GDAL: Geospatial Data Abstraction Library; GIL: Global Interpreter Lock;
GIS: Geographic Information System; GRASS GIS: Geographic Resources
Analysis Support System; LTS: Long Term Support; LULC: Land Use Land
Cover; OSM: OpenStreetMap; OSM2LULC: OpenStreetMap to Land Use/Land
Cover; RAM: Random Access Memory; SAGA GIS: System for Automated
Geoscientific Analyses; SRS: Spatial Reference System; VGI: Volunteered
Geographic Information

Acknowledgments
The study has been partly supported by the Portuguese Foundation for
Science and Technology (FCT) under project grant UID/MULTI/ 00308/2019
(J.P., C.C.F., J.A.).

Authors’ contributions
CCF and JP contributed to the development of the OSM2LULC algorithm, J.
P implemented the code of all versions and run the algorithm for several
case studies, JP was responsible for the comparison of results, JE contributed
to the implementation choices, all authors contributed to discussions on the
article preparation and writing. All authors read and approved the final
manuscript.

Patriarca et al. Open Geospatial Data, Software and Standards (2019) 4:11 Page 18 of 19

Funding
Not applicable.

Availability of data and materials
Datasets generated and/or analysed during the current study are not
publicly available but are available from the corresponding author on
reasonable request.

Competing interests
The authors declare that they have no competing interests.

Author details
1Institute for Systems Engineering & Computers at Coimbra (INESCC), Rua
Sílvio Lima -Edifício DEEC, S.3.4, 3030-290 Coimbra, Portugal. 2Department of
Mathematics – Geomatic Engineering Group, Faculty of Science &
Technology, University of Coimbra, Apartado 3008, 3001-501 Coimbra,
Portugal. 3Setúbal School of Technology, Campus do IPS, Estefanilha,
2914-504 Setúbal, Portugal. 4Department of Informatics Engineering, Faculty
of Science & Technology, CISUC – University of Coimbra, Rua Sílvio Lima,
3030-290 Coimbra, Portugal. 5Institute for Systems Engineering & Computers,
Research and Development at Lisboa (INESC-ID), Rua Alves Redol, 9 (office
435), 1000-029 Lisbon, Portugal.

Received: 22 March 2019 Accepted: 31 July 2019

References
1. Antoniou V, Fonte C, See L, Estima J, Arsanjani J, Lupia F, Minghini M, Foody

G, Fritz S. Investigating the feasibility of geo-tagged photographs as sources
of land cover input data. ISPRS Int J Geo Inf. 2016;5:64.

2. Arpaci A, Malowerschnig B, Sass O, Vacik H. Using multi variate data mining
techniques for estimating fire susceptibility of Tyrolean forests. Appl Geogr.
2014;53:258–70.

3. Arsanjani J, Helbich M, Bakillah M, Hagenauer J, Zipf A. Toward mapping
land-use patterns from volunteered geographic information. Int J Geogr
Inform Sci. 2013;27:2264–78.

4. Chen W, Peng J, Hong H, Shahabi H, Pradhan B, Liu J, Zhu A, Pei X, Duan Z.
Landslide susceptibility modelling using GIS-based machine learning
techniques for Chongren County, Jiangxi Province, China. Sci Total Environ.
2018;626:1121–35.

5. Estima J, Fonte CC, Painho M. Comparative study of land use/cover
classification using Flickr photos, satellite imagery and Corine land cover
database. In: Proceedings of the 17th AGILE conference on geographic
information science. Castellón: Association of Geographic Information
Laboratories in Europe (AGILE); 2014. p. 3–6.

6. Feddema JJ, Oleson KW, Bonan GB, Mearns LO, Buja LE, Meehl GA,
Washington WM. The importance of land-cover change in simulating future
climates. Science. 2005;310:1674–8.

7. Fonte CC, Martinho N. Assessing the applicability of OpenStreetMap data to
assist the validation of land use/land cover maps. Int J Geogr Inf Sci. 2017;
31:12: 1–19.

8. Fonte CC, Minghini M, Antoniou V, See L, Patriarca J, Brovelli M, Milcinski G.
Automated methodology for converting OSM data into a land use/land
cover map. In: 6th international conference on cartography & GIS. Albena:
Bulgarian Cartographic Association; 2016. p. 13–7.

9. Fonte CC, Minghini M, Patriarca J, Antoniou V, See L, Skopeliti A. Generating
up-to-data and detailed land use and land cover maps using
OpenStreetMap and GlobeLand30. ISPRS Int J Geo Inf. 2017;6:125. https://
doi.org/10.3390/ijgi6040125.

10. Fonte CC, Patriarca J, Minghini M, Antoniou V, See L, Brovelli MA. Using
OpenStreetMap to create land use and land cover maps: development of
an application. In: Campelo C, Bertolotto M, Corcoran P, editors.
Volunteered geographic information and the future of geospatial data.
Hershey. ISBN: 9781522524465: IGI Global; 2017. https://doi.org/10.4018/
978-1-5225-2446-5.ch007.

11. Fritz S, McCallum I, Schill C, Perger C, See L, Schepaschenko D, Velde M,
Kraxner F, Obersteiner M. Geo-wiki: an online platform for improving global
land cover. Environ Model Softw. 2012;31:110–23.

12. Fuggetta J. Open source software: na evaluation. J Syst Software. 2003;66:
77–90.

13. Ganesh A. Validating OpenStreetMap. 2017 https://2017.stateofthemap.org/2
017/validating-openstreetmap/ (accessed March 10, 2019).

14. Gauci A, Abela J, Austad M, Cassar L, Adami K. A machine learning
approach for automatic land cover mapping from DSLR images over the
Maltese islands. Environ Model Softw. 2018;99:1–10.

15. Gay J. Free software, free society: selected essays of Richard Stallman.
Boston: GNU Press; 2002.

16. Hollmann R, Merchant CJ, Saunders R, Downy C, Buchwitz M, Cazenave A,
Chuvieco E, Defourny P, de Leeuw G, Forsberg R, Holzer-Popp T, Paul F,
Sandven S, Sathyendranath S, van Roozendael M, Wagner W. The ESA
climate change initiative: satellite data Records for Essential Climate
Variables. Bull Am Meteorol Soc. 2013;94:1541–52.

17. Lai C, Shao Q, Chen X, Wang Z, Zhou X, Yang B, Zhang L. Flood risk zoning
using a rule mining based on ant colony algorithm. J Hydrol. 2016;542:268–
80.

18. Laurent A. Understanding open source & free software licensing.
Sebastopol: O’Reilly; 2004. First Edition

19. Lindberg V. Intellectual property and open source – a practical guide to
protecting code. Sebastopol: O’Reilly Media; 2008. First Edition

20. Mapbox. Validating OpenStreetMap – Mapping Guides. 2018. https://labs.
mapbox.com/mapping/validating-osm/ (accessed March 10, 2019).

21. Martinelli L. Can we validate every change on OSM? 2018 https://2018.
stateofthemap.org/2018/T079-Can_we_validate_every_change_on_OSM_/
(accessed March 10, 2019)

22. Mooney P, Minghini M. A Review of OpenStreetMap Data. In: Foody G, See
L, Fritz S, Mooney P, Olteanu-Raimond A-M, Fonte CC, Antoniou V, editors.
Mapping and the Citizen Sensor. London: Ubiquity Press; 2017. p. 37–59.

23. Neteler M, Mitasova H. Open source GIS: a GRASS GIS approach. New York:
Springer; 2008.

24. Neteler M, Bowman M, Landa M, Metz M. GRASS GIS: a multi-purpose open
source GIS. Environ Model Softw. 2012;31:124–30.

25. OSMWiki (2018) OSM Tasking Manager/Validating data. https://wiki.
openstreetmap.org/wiki/OSM_Tasking_Manager/Validating_data (accessed
March 10, 2019).

26. Patriarca J (2016) O Software Livre e de Código Aberto na Administração
Pública - Dos mitos às questões de natureza legal, ética e de optimização
de recursos públicos. Master Dissertation, University of Coimbra. Available at
https://estudogeral.sib.uc.pt/handle/10316/30768. accessed March 10, 2019).

27. Phillips D. Unveiled - how legislation by license controls software access.
New York: Oxford University Press; 2009.

28. Santos JG. GIS-based hazard and risk maps of the Douro river basin (North-
Eastern Portugal). Geomatics Nat Hazards Risk. 2015;6:90–114.

29. Schultz M, Voss J, Auer M, Carter S, Zipf A. Open land cover from
OpenStreetMap and remote sensing. Int J Appl Earth Obs Geoinf. 2017;63:
206–13.

30. See L, Schepaschenko D, Lesiv M, McCallum I, Fritz S, Comber A, Perger C,
Schill C, Zhao Y, Maus V, Siraj M, Albrecht F, Cripriani A, Vakolyuk M, Garcia
A, Rabia A, Singha K, Marcarini A, Kattenborn T, Hazarika R, Schepaschenko
M, Velde M, Kraxner F, Obersteiner M. Building a hybrid land cover map
with crowdsourcing and geographically weighted regression. ISPRS J
Photogramm Remote Sens. 2015;103:48–56.

31. Steinhausen M, Wagner P, Narasimhan B, Waske B. Combining Sentinel-1
and Sentinel-2 data for improved land use and land cover mapping of
monsoon regions. Int J Appl Earth Obs Geoinf. 2018;73:595–604.

32. Steiniger S, Bocher E. Na overview on current free and open source desktop
GIS developments. Int J Geogr Inform Sci. 2009;23:1345–70.

33. Steiniger S, Hunter A. The 2012 free and open source software GIS software
map – a guide to facilitate research, development, and adoption. Comput
Environ Urban Syst. 2013;39:136–50.

34. Turner BL, Lambin E, Reenberg A. The emergence of land change science
for global environmental change and sustainability. Proc Natl Acad Sci.
2007;104(52):20666–71.

35. Zhang X, Liu L, Wang Y, Hu Y, Zhang B. A SPECLib-based operational
classification approach: a preliminary test on China land cover mapping at
30 m. Int J Appl Earth Obs Geoinf. 2018;71:83–94.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

Patriarca et al. Open Geospatial Data, Software and Standards (2019) 4:11 Page 19 of 19

https://doi.org/10.3390/ijgi6040125
https://doi.org/10.3390/ijgi6040125
https://doi.org/10.4018/978-1-5225-2446-5.ch007
https://doi.org/10.4018/978-1-5225-2446-5.ch007
https://2017.stateofthemap.org/2017/validating-openstreetmap/
https://2017.stateofthemap.org/2017/validating-openstreetmap/
https://labs.mapbox.com/mapping/validating-osm/
https://labs.mapbox.com/mapping/validating-osm/
https://2018.stateofthemap.org/2018/T079-Can_we_validate_every_change_on_OSM_/
https://2018.stateofthemap.org/2018/T079-Can_we_validate_every_change_on_OSM_/
https://wiki.openstreetmap.org/wiki/OSM_Tasking_Manager/Validating_data
https://wiki.openstreetmap.org/wiki/OSM_Tasking_Manager/Validating_data
https://estudogeral.sib.uc.pt/handle/10316/30768

	Abstract
	Introduction
	Data and methodology
	Data
	Methodology

	OSM2LULC implementation
	Implementing support technologies
	Implementation structure
	Pre-processing applied to OSM data
	Modules description
	Priority rule

	Differences among OSM2LULC versions

	Results and discussion
	Execution time results
	Positional distortions in the results

	Conclusions and further work
	Abbreviations
	Acknowledgments
	Authors’ contributions
	Funding
	Availability of data and materials
	Competing interests
	Author details
	References
	Publisher’s Note

