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Abstract— In this work we present a general structure of an ini-
tial Bayesian framework to describe the mechanisms underlying
the human strategies that define the appropriate characteristics
of the reach-to-grasp movements to specific contexts, objects and
how these strategies can be extended and replicated to other
contexts and objects. The Bayesian framework uses information
extracted from data about the pose of the hand, fingers and
head acquired by a magnetic tracker device, finger flexure data
acquired by a data glove, as well as, data about eye gaze and
saccade movements of the subject.

I. INTRODUCTION

Some of the most performed actions by humans in their

daily activities involve the manipulation of objects from one

place to another and its in-hand manipulation to adjust the

pose of the object with the final goal of the action which will

be performed with it.

Typically, the global hand’s trajectory during a manipulation

task can be segmented in different stages: reach, lift, transport

and release[6]. We focus our attention in the reach stage

(reach-to-grasp movement). The conclusions of several pre-

vious studies suggest that the human decision making process

of how (type of grasp [5], hand trajectory characteristics and

maximum grip aperture [4][10]) the reach-to-grasp movement

is performed, is influenced by different factors, such as the

presence or absence of visual feedback [9] or the eye-hand

coordination in object manipulation with and without obstacles

[7].

We intend to develop a Bayesian framework which will

describe what are the specific and elementary factors which

are involved in the planning and control of a reach-to-grasp

movement. This can contribute to the description of the human

strategies that are used to extract the physical properties of

the object which will be grasped and how humans relate

those highlighted physical properties with the object’s possible

applications (affordance). Our main concern is to provide a

framework that can define a general description of the human

strategies (generalization), instead of a model that is specific

and restricted to the learnt object/context. An initial structure

of the framework is presented in section II. The experiments

carried out to validate this initial framework will be used to

refine and detail it in the future.

II. BAYESIAN APPROACH

Based on the studies about the grasp model [8] and studies

of neuroscience of grasping [4], we intend to develop a

Bayesian framework to generalize the human strategies to

perform a reach-to-grasp tasks and to transfer and integrate

this knowledge to robotic platforms.

Figure 1 - Overview of the expected inputs and outputs of the

Bayesian framework integrated in a robotic platform.

Figure 1 shows a schematic representation of the global

overview of the expected inputs and outputs of the framework.

The robotic platform must have the ability to estimate the

identity (Oi) (dimensions, shape), position (Op) and relative

orientation (Oo) of the object to be manipulated. The robotic

platform must be instructed about the task (T ) which should

be performed with the object. In this initial approach the

considered possible tasks are restricted to the indication of

what type of grasp must be performed, such as top-grasp or

side-grasp. In future developments, it is expected to increase

the set of possible tasks and automatically establish the relation

between the object’s identity and its affordances. The type of

task can be indicated through a pre-defined instruction or it

can be extracted from a human demonstration. In the latter

situation, the reach-to-grasp movement can be classified as

top-grasp or side-grasp by the Bayesian classifier developed

in a previous work [5]. This set of information is combined

in the Bayesian framework, which estimates the region of the

object which will be grasped (R) and several characteristics



of the trajectory and behaviour of the robotic hand during

the approach to the object: hand trajectory curvature (Hc),

hand orientation (Ho) and the level of fingers flexure (F ).

These expected outputs of the Bayesian framework can be

written using the Bayesian formalism as P (R|op, oo, oi, t),
P (Hc|op, oo, oi, t), P (Ho|op, oo, oi, t), P (F |op, oo, oi, t), re-

spectively. These informations are transmitted to the robot

motor control modules which are responsible by its execution.

A. Learning

The learning phase corresponds to the acquisition of knowl-

edge from human demonstrations of the required tasks per-

formed with different objects (variable identity, size and shape)

in different contexts (positions, orientation).

Six magnetic sensors of the Polhemus Liberty device [2] are

used to provide the pose (6 DoF) of the fingers and head. Five

of them are attached to a data glove [1] on the fingertips region

and the other one is attached to the head-mounted eye-tracker

device. The head-mounted eye-tracker device, such as [3], is

used to extract information about the regions of the object

which are observed during the reach-to-grasp movement. A

magnetic sensor is also attached to the grasped object, in order

to acquires its initial position and orientation.

This acquired knowledge is represented by Learned His-

tograms. For each implemented task, object orientation and

object identity, four types of learning tables are defined:

Trajectory Curvature Learned Table (CLT), Hand Orientation

Learned Table (HLT), Finger Flexure Learned Table (FLT)

and Grasped Region Learning Table (RLT). The definition

of the CLT, HLT are described in more detail in a previous

work [5]. The CLT represents the probability of a specific

curvature in each of the eight segmented parts of a normalized

hand trajectory. Similarly, the HLT and FLT represent the

probability of a specific hand orientation and level of fingers

flexure, respectively, in each of the eight trajectory segments.

The RLT represents the probability of the object being grasped

in each of three defined regions: the upper, middle or bottom

part of the object. The probability is determined based in the

principle studied in [7], which relates the observed regions

of an object during a manipulation task with the region of

the object where the grasping is performed. The mapping of

the observed regions of the object is made by an eye-tracker

device such as [3].

B. Generalization Strategy

As previously referred, for all types of learned fea-

tures we have learned tables (mean histograms calculate

from all observations): P (R|op, oo, oi, t), P (Hc|op, oo, oi, t),
P (Ho|op, oo, oi, t), P (F |op, oo, oi, t).

For a estimated object identity, orientation, position and

pre-defined task, it is possible to determine the appropriated

learned table for each of the wanted features: hand trajectory

curvature, hand orientation, finger flexure and grasped region.

The estimated distance between the robotic platform and the

object is segmented in eight parts, as the data collected during

the construction of the learned tables. For each of these

segments, it is determined the most probable value of each

of the features referred before, based in the learned tables

previously identified.

For instance, to generalize the trajectory curvatures, we get

the higher probability of the features in each hand displace-

ment, in a curvature learned table (CLT) for the top-grasp , so

that we have the curvatures: U-U-U-UR-DR-DR-D-D, and for

each curvature we have associated the (r, θ, φ) information,

that is, the angles of each curvature and the information of

forward or backward direction. The same happens for the hand

orientation, eg. for top-grasp we have the features with higher

probability in each hand displacement: T-T-S-T-T-T-T-T (T:

top orientation, S: side orientation, more details see [5]) and

the θ angles of the hand plane. The same for the finger flexure

(joint angles).

The learned information: (r, θ, φ) curvatures; θ angle of the

hand plane ( hand orientation); the fingers joint angles acquired

from P (F |op, oo, oi, t) and the region of the object to grasp

given P (R|op, oo, oi, t), is mapped to the robot referential to

the robot reproducing the same task according with its DoF.

III. CONCLUSION

In this preliminary work, we present an initial approach

to a framework to represent the human strategies to perform

reach-to-grasp tasks. The analyses that were made will support

and guide our future works. We focus our attention in the

analysis of the visual behavior (conjugation of head and eyes

movements) of the subjects, in the tracking of hand, fingers

and head pose, as well as, the flexure level of the fingers along

the reach-to-grasp movements.

ACKNOWLEDGMENT

This work is partially supported by the European project

HANDLE ICT-23-16-40. Diego Faria is supported by Por-

tuguese Foundation for Science and Technology (FCT).

REFERENCES

[1] http://www.5dt.com/products/pdataglove5u.html. Accessed in 20 April
2009.

[2] http://www.polhemus.com/. Accessed in 20 April 2009.
[3] http://www.smivision.com/en/eye-gaze-tracking-systems/products/iview-

x-hed.html. Accessed in 20 April 2009.
[4] U. Castiello. The neuroscience of grasping. Nature Reviews Neuro-

science, 6(9):726–736, 2005.
[5] D. R. Faria and J. Dias. 3d hand trajectory segmentation by curvatures

and hand orientation for classification through a probabilistic approach.
In (to appear) 2009 IEEE/RSJ International Conference on Intelligent

Robots and Systems. IROS’09.

[6] J. R. Flanagan, M. C. Bowman, and R. S. Johansson. Control strate-
gies in object manipulation tasks. Current Opinion in Neurobiology,
16(6):650–659, 2006.

[7] R. S. Johansson, G. Westling, A. Bckstrm, and J. R. Flanagan. Eye-
hand coordination in object manipulation. The Journal of Neuroscience,
21(17):6917–6932, 2001.

[8] E. Oztop, N. S. Bradley, and M. A. Arbib. Infant grasp learning:
a computational model. Experimental Brain Research, 158:480–503,
2004.

[9] M. K. Rand, M. Lemay, L. M. Squire, Y. P. Shimansky, and G. E.
Stelmach. Role of vision in aperture closure control during reach-to-
grasp movements. Experimental Brain Research, 181(3):447–460, 2007.

[10] M. K. Rand, Y. P. Shimansky, A. B. M. I. Hossain, and G. E. Stelmach.
Quantitative model of transport-aperture coordination during reach-to-
grasp movements. Experimental Brain Research, 188(2):263–274, 2008.


