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Abstract – In this work we present a probabilistic approach 

to find motion patterns in manipulative tasks by looking for 

similarities among the relevant features along of the actions 

phases of a trajectories dataset. From multiples observations of 

human movements we can align all signals temporally to 

perform a learning process based on selection of relevant 

features by analyzing their probability distribution and finding 

correspondent features with high probability in each phase of 

the trajectories of a dataset. Using the spatio-temporal 

information of the learned features we can generate a 

generalized trajectory of the dataset using a polynomial 

regression to fit the features data by successive approximations. 

The smoothed trajectory can be used as a prototype/template 

for matching (1:1) or for classification (1:N) using Bayesian 

techniques to know if a new observation is similar to a specific 

task or to recognize a task. The intention here is to have an 

approach that is able to learn and generalize a specific 

movement by their patterns to be applied in the future for 

different contexts. We are not going through the imitation 

learning part, but we are focusing on the ability of learning to 

reach some intelligence to approximate a movement 

generalization, tasks that humans do in a natural and easy way. 

I. INTRODUCTION 

OTION pattern is an important issue for modeling and 

recognition of human actions and behaviors in 

different daily tasks. This topic has gained much attention in 

different fields where the motion assumes an important key 

point to describe actions and behaviors. The variety of 

human activity in everyday environment is very diverse; the 

same way that repeated performances of the same activity by 

the same subject can vary similar activities performed by 

different individuals are also slightly different. These points 

are some aspects that influence the development of models 

of activities and matching of observations to these models. 

The basic idea behind this is if a particular motion pattern 

appears many times in long-term observation, this pattern 

must be meaningful to a user or to a task. So these patterns 

can be used to learn personal habits, to predict a user’s next 

action, etc. 

In this work we are focused on manipulative tasks at 

trajectory level to find significant patterns and similarities 

given by multiple observations. The intention here is to 
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achieve an approach that is able to learn and generalize a 

specific movement to be applied to other tasks or to different 

objects. We are not going through the imitation part, but we 

are focusing on the ability of learning to reach some 

intelligence to perform such generalization as human do. 

This is not a trivial task, usually humans can do it in an easy 

way, but to reach this goal artificially in an approximated 

way different steps need to be done. 

The main idea of our proposal is to find patterns on the 

different phases of the manipulative tasks (Fig.1) by 

analyzing the relevant features that can differ along the 

phases. From multiple observations by humans performing 

the same task many times, the patterns and similarities 

among the same motion performed many times can be learnt 

to be possible generate a generalization of a movement to be 

applied to other contexts.  

The trajectories of a dataset correspondent to a specific 

task are then aligned temporally due to the temporal 

variation of the signals. The temporal alignment of the 

signals can be performed by a pattern-based approach used 

as a pre-processing step. It allows temporal distortion 

between different examples and provides a simple and 

unique description of the sequential information contained in 

the data. For that, Dynamic Time Warping (DTW) is 

adopted.  

Inside the neuroscience field we can find in the literature 

[1] a decomposition of a typical human manipulation 

movement on different stages such as reach, load, lift, hold, 

replace and unload. In our case, after the temporal alignment 

we propose an action phase-based segmentation as shown in 

Fig.1 taking into account the neuroscience terms for each 

stage of a manipulative task adapted for our tasks. Actions 

phases are defined as manipulative activities involving series 

of primitives and events. These terms are defined in a 

dictionary where is followed a hierarchy of actions, 

primitives and events that can happen along the task obeying 

some grammar rules. The dictionary provides a hierarchical 

structuring for grasping and object handling tasks in order to 

describe and annotate some manipulative task. This 

dictionary consists of the definition of the hierarchy itself, 

and the systematic account of a lexicon and a generative 

grammar (formal relationships and conjugations – e.g. 

temporal sequencing – of such entities, as a body of rules) 

inspired on human models for these tasks. In this work we 

intend to define just the actions phases to find motion 

patterns in each one to learn these patterns. In Fig.1 is 
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possible to identify the actions phases in each box following 

a temporal sequence and the events that happens among 

them. Note that in each segment defined as action it is 

possible to detect primitives to describe better an action. 

The next stage is to find similarities on each action phase 

of all trajectories of a dataset. The common features among 

all trajectories in each phase with a high probability 

distribution are known as similarities or motion patterns. 

With the relevant features (similarities among the 

trajectories) we build a generalized/smoothed trajectory by 

applying a polynomial regression on the relevant features 

obtaining this way a reconstructed and smoothed trajectory. 

Using the relevant features we can also use an interpolation 

method. 

The application of the proposed approach after learning 

the patterns from a dataset of trajectories that allows to 

provide a movement generalization is: given a new 

observation (trajectory) a framework can recognize if this 

new observation matches to the generalized trajectory 

enabling recognize and classify this new movement to 

previous learned tasks or if it is not recognized the system 

can learn the detected patterns as a new task. 

Our Approach follows a probabilistic framework where 

the features distributions along the manipulative tasks are 

learned for future trajectory matching/classification. 
 

 

Fig.1 – Different phases of a manipulative task where our approach can be 

applied. 

II. RELATED WORK 

The work presented by [2] is a programing by 

demonstration framework where relevant features of a given 

task are learned an then generalized for different contexts. 

Human demonstrator teaches manipulative tasks for a 

humanoid robot. The motion data and joint angles are 

projected to a latent space by using PCA. Through 

GMM/BMM the signals are encoded.to provided a spatio-

temporal correlation. The trajectories are then generalized by 

using GMR. A metric to analyze the performance of the 

generalization was developed. The authors in [3] presented 

an approach to find repeated motion patterns in long motion 

sequences. They state that if a point at a given instant of 

time, belongs to a set of repeated patterns, and then many 

similar shaped segments exist around that data point. The 

proposed algorithm uses a hyper-sphere centered in the 

point, and the intersection of the trajectory with the 

circumference of that sphere will help to define the 

segments. They define the density of nearby segments as the 

sum of the lengths of all segments inside the sphere. Then 

they encode the characteristic point with partly locality 

sensitive hashing and find the repeated patterns using 

dynamic programming. The authors in [4] developed a 

framework for learning behaviors from multiple 

demonstrations. Given the directed acyclic graph (DAG)-like 

structure of the behavior network representation of the robot 

tasks, topological representation of such a network to be a 

linked list of behaviors was considered, obtaining by 

applying a topological sort on the behavior network graph. 

By using the topological form of the networks as training 

examples, the problem of generalization from multiple 

demonstrations of the same task is equivalent to inferring a 

regular expression (Finite State Automaton (FSA) 

representation from a set of given sample words. In [5] is 

proposed a general approach to learn motor skills form 

human demonstrations. The authors have developed a library 

of movements by labeling each recorded movement 

according to task and context. By using Non-Linear 

differential equations they could learn the movements and 

generalizing by adapting a start and goal parameters in the 

equation to the desired position values of a movement. The 

robot learned a pick-and-place operation and a water-serving 

task and could generalize these tasks to novel situations. 

III. PROPOSED APPROACH 

A. Scenario and Data Acquisition 

The chosen task for our experiments is a pick-up and 

place task. The object in this task is a Rubik cube. We have 

asked for three subjects to perform the task where the final 

goal is to displace the object in a different pose. 
 

 
Fig.2 – Experimental setup 

 

For the data acquisition we have the following sensors: 

Polhemus Liberty magnetic motion tacking system [6]; 

TekScan grip [7] a tactile sensor for force feedback and 

CyberGlove II [8] for fingers flexure measurement. Each 

Polhemus magnetic sensor has 6DoF (3D position and Euler 

angles). The magnetic sensors were attached to the fingertips 

to track the hand and fingers movements. The tactile sensing 

device is a system specifically designed to acquire the 

pressures applied by the different regions of the human hand 

(fingers, thumb, and palm) during the execution of tasks 
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which require grasp movements. The CyberGlove II is a 

wireless version of the previous device. It is equipped with 

22 piezo resistive bend sensors. The glove also has sensors 

to measure the thumb crossover, palm arch, wrist flexure and 

abduction/adduction. The 22-sensor model has one 

additional sensor in each finger (index, middle, ring, little) to 

measure the distal interphalangeal joint flexure. 

The setup (Fig.2) for the experiments is composed of a 

wooden table, without any metallic parts, since the magnetic 

tracker is sensitive to nearby ferromagnetic materials. The 

experiments are executed by a subject seated in front of the 

table for executing the task. The tabletop is 50cm by75cm 

and is placed at a height of 100cm. The object is placed in 

specific initial position on the tabletop in a marked region for 

all experiments having the object in the same position. The 

magnetic tracker emitter unit that determines the frame of 

reference for the motion tracking system is placed on the 

same table more or less 50cm of the object initial position. 

There is no a specific area for the hand of the subjects starts 

the trajectory to the target but there is a final position to pose 

the object at the end of the task. 

For our data acquisition we are using a distributed 

architecture where two computers are used for the three 

sensors. The data acquisition is synchronized by Network 

Time Protocol (NTP) to synchronize the clocks of the clients 

to the server. This way, the timestamps of the data of all 

sensors will be synchronized so that it is possible to find the 

frame rate correspondence among the different data. The 

communication between the server and clients was 

implemented using sockets so this way is possible to 

initialize and finish all sensors acquisition at same time by 

sending a message from the server to the clients. 

As long as we are just working at trajectory level in this 

work to find motions patterns for trajectory smoothing, the 

important sensor here is the motion tracker device. By now, 

the others sensors serve to assist in segmentation level to 

identify the action phases. 

B. Temporal Alignment of the Signals 

We explore the temporal alignment of the signals by using 

a pattern-based method as a pre-processing step. It allows 

temporal distortion between different examples and provides 

a description of the sequential information contained in the 

data. Dynamic Time Warping (DTW) is used as a template 

matching pre-processing step to temporally align the signals, 

see e.g. [9]. It does have the advantage of being simple and 

robust finding a non-linear alignment which minimizes the 

error between the signals and reference signal. This step is 

very important to help in the segmentation phase to detect 

similarities between the features of the trajectories of a 

dataset. 

C. Segmentation based on Actions Phases 

The segmentation step is to divide the trajectories per 

actions phases of a manipulative tasks in order to have sub-

trajectories representing each phase (Fig.1) to detect the 

motion patterns through the similarities among the features 

of all segments of the trajectories of a dataset.  

Following a hierarchical structure of actions, primitives, 

events (in the same level of primitives under the actions 

level) we intend to detect these action phases by analyzing 

the sensors signals respecting the following Assumptions: 

 Reaching: it is the phase when the hand 

approaches the object involving hand 

configuration (preshape, aperture). By observing 

the sensors data we can define this phase when 

the motion tracker device is active acquiring 

hand motion data, the tactile sensor is not active 

(no force measurements due to not touch or hold 

any object), the fingers flexure measurements has 

small variation that is detected due to the hand 

configuration along this phase, i.e. the aperture 

(opening and closing of the hands) when it is 

close to the object, and the object sensor (motion 

tracker sensor to track the object position) has no 

variation due to the object being static along this 

phase. 

 Load: Increment of load force, it happens when 

the object is held, for instance, when an object is 

lifted. This phase is detected when the force 

measurement is detected and there is an increase 

of this measure. The active sensors are the 

motion tracker device attached to the hand, the 

tactile sensor, when there are variance on the 

object sensor (motion), and when the fingers 

flexure are more or less stable, with very small 

variance due to the hand is in hold position 

(grasping the object). 

 Lift: This phase is detected when the motion 

tracker sensor of the object starts its variance 

(object in movement mainly in height, z 

coordinate), the tactile sensor is active generating 

force feedback and the hand motion sensor is 

active with small variation on the fingers flexure 

due to be in a grasping position holding the 

object. 

 Hold / Transport: This phase is detected after 

some seconds later the lift phase obeying the 

same assumptions concerning the sensors 

measurement but in this case sometimes the 

fingers flexure can vary more due to the in-hand 

manipulation movement. In case of transport of 

the object without in-hand manipulation this 

variation is small. 

 Release: This phase is detected when the object is 

in contact to the surface of table for example, but 

we have no measurements to detect that, then we 

assume that this phase starts when the object has 

no variation, that is he was reposed/replaced on 

the table. The active sensors of this phase are 
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similar to the reaching phase, but it is detected 

temporally after the transport phase. 

D. Motion Patterns: Similarities between Trajectories 

An example of the problem of interest is presented in 

Fig.3. Given a dataset of hand trajectories concerning a 

manipulative task, we want to find the similarities among all 

trajectories, repeated motion patterns that are the relevant 

features to generate an optimal trajectory, a generalized one.  
 

 
Fig.3 – Motion Patterns: Similarities detection in the action phases of the 

trajectories of a dataset of a manipulative task. 

 

The classes of features that we are using to describe a 

trajectory are curvatures and hand orientation that vary 

during the task performance. In previous work [10] we 

developed a probabilistic framework for hand trajectory 

classification where curvatures and hand orientation where 

detected in 3D space. Here we are following the same idea 

for feature extraction, but considering spatio-temporal 

information 

In 3D space, it is better compute the curvature in 

cylindrical (r, θ, h) or spherical coordinate system (r, θ, φ) 

than adopting a Cartesian space. Using two points of the 

trajectory we have the vectors representation and the angle 

formed between these two vectors by the projection on (x, y) 

plane we achieve the θ angle which give us the pan 

information, if the angle is increasing, we have the curvature 

left, or if it is decreasing we reach the curvature right. The 

same 2 vectors and their formed angles by the projection on 

(z, y) plane, we can achieve φ angle for tilt information. In a 

3D space we can make some combinations of the possible 

directions, for example, we have up and down reached by h, 

left and right reached by θ and further and closer reached by 

r, so that we can have several combinations of features. We 

can reach the height information (h) in a simpler way using 

the cylindrical coordinate system, calculating the difference 

between the z axis values from both points. In spherical 

coordinate system just the φ angle cannot give us the height 

or diagonals movements, being necessary verify also the 

radius (r), if it is increasing or decreasing and φ angle did 

not change, this way, we reach this information. To know up 

or down, φ and r change and θ remains the same. In 

cylindrical coordinate system we need to combine r, θ and h 

to know features like up-right, up-left, down-right and down-

left. The curvature segmentation is performed at each two 

points of the trajectory. The detailed curvatures computation 

can be found in [10]. 

Using the information of three position sensors (fingertips) 

we can approximate the hand plane computing its orientation 

to find out if it represents top or side-grasp orientation [10]. 

We have used the three parallel fingers (index, middle and 

ring) that usually remain parallel in the most part of hand 

shape for grasping. These three 3D points form the hand 

plane and after computing the normal of the hand plane we 

compare it with the z axis of the motion tracker frame of 

reference to know the hand orientation. At each 3 points in 

each part of the trajectory we can compute the hand 

orientation.  

Taking into account that the trajectories are aligned 

temporally and after computing the classes of features in 

each trajectory we compute the probability distribution of the 

features P(C) and P(O) (occurrence of each type of 

curvatures C and hand orientation O) for each trajectory in 

each action phase. Later we take into account the features 

with high probability (high occurrence in the trajectories), 

we try to find if there are correspondences in the others 

trajectories in the respective phase. If it is found similar 

features in the majority of the trajectories we will have a high 

probability then we say that feature is relevant. The high 

probability means a specific threshold (e.g. 0.7) that can be 

adjusted so that can increase or decrease the number of 

relevant features. The step of feature selection (represented 

in Fig. 3) that takes into account the type of trajectory (the 

task goal G) is the learning process of characterization of the 

task by learning the relevant features. This process is 

repeated for each class of feature separated (curvatures and 

hand orientation). It can be described as P(C | G A) for the 

curvatures and P(O | G A) for hand orientation where A 

means the hand displacement in each action phase. This 

learning process is to be used for classification where given a 

new observation it is possible to classify it as a specific task 

inside the database of learned tasks.  

Later the spatio-temporal information in respect to the 

learned features is useful to generate the generalized 

trajectory that can be used also as a prototype in case of 

matching. 

E. Trajectory Generalization (Smoothing) using the 

Relevant Features 

After extracting the relevant features by using a 

probabilistic approach we consider their spatio-temporal 

information (their coordinates along the time) to apply a 

polynomial regression to fit the data to have a new and 

smoothed trajectory of the manipulative task. The 

polynomial regression was chosen due to the curvilinear 

response during the fit and it can be adjusted because it is a 

special case of multiple linear regressions model. We are 

adopting the quadratic form of the model, a polynomial 

regression of second order. 
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The polynomial regression is very used in statistics for 

data analysis. It is a way of applying polynomials in a linear 

regression. Although polynomial regression fits a nonlinear 

model to the data, as a statistical estimation problem, it is 

linear, in the sense that the regression function is linear in the 

unknown parameters that are estimated from the data.  

The general model of second order polynomial regression 

is given by: 

 

iiii εxβxββY +++= 2
1110  (1) 

 

where XXx ii -=  and ε  is an unobserved random error 

with mean zero conditioned on a scalar variable; ε can be 

computed as error of least square fitting; β minimizes the 

least square error. 

In our case, due the type of trajectories, to fit correctly the 

curves, the regression need to be done locally, at some parts 

of the trajectory, e.g. at each segment (action phase) or in 

each action phase divide into more segments. 

F. Matching / Classification 

We have two possibilities to recognize a new observation 

to say if it is a specific task or not, via matching (1:1) or via 

classification (1:N). 

The smoothed trajectory can be used as a prototype for a 

temporally matching (1:1) using some properties of the 

learned features (translation invariance) as explained in 

Fig.4. 

 

 
Fig.4 – Distances of the learned features from the center of gravity. 

 

Here once again we can use information of the learned 

features (subsection D) for the matching between a prototype 

(generalized trajectory) and a new observation to check if 

this new trajectory corresponds to a specific manipulative 

task. Translation invariance can be easily obtained by 

considering the positions of the learned features relative to 

one reference point defined with respect to the trajectory 

pattern. The reference point (center of gravity) is obtained 

by: 
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 feature point. 

For scale invariance, we can calculate the overall size of 

the trajectory pattern in space and then normalize the 

extracted feature values with respect to the pattern size. This 

size is given by the average positional distance of all learned 

feature points from the center of gravity, computed by: 
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where the distance of a learned feature point from the center 

of gravity is simply computed as Euclidean distance between 

them: 
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These properties extracted from the learned features are 

useful to perform the matching (1:1) between the prototype 

and the new trajectory of a specific manipulative task. The 

preprocessing is applied in the new observation and the 

features extraction as explained in subsection D is also 

applied (curvatures and hand orientation). The computation 

of the translation and scaling invariance of the learned 

features as explained above is done twice, for both classes of 

features, curvatures and hand orientation. 

We can use a probabilistic method using the computed 

scale invariance of the classes of features to be used later in 

the matching: 

 
 

)-exp()-exp(∝))(),(( avgDβavgDαNpGpP horicurvjiij  (5) 
 

 

where α  and β are positive weighting coefficients; Dcurvagv 

(invariance computed from the learned curvatures) and 

Dhoriagv (invariance computed from the learned hand 

orientation) which a Gaussian distribution to reach the 

probabilities. Pij is computed using the prototype 

(generalized) G and for the new observation (trajectory to be 

matched) N. There is the existence of a matching between 

pi(G) and pj(N) as binary value, { }1,0∈ijE , based on Pij  and 

define an active matching Eij = 1,  Pij  > ePP ijij -max>  , 

where e is a threshold value that can be adjusted. 

For the classification case we are following a Bayesian 

approach where the likelihood is given by the learned 

features of the generalized trajectory of a dataset 

representing a specific manipulative task.  

By applying continuous classification based on 

multiplicative updates of beliefs via Bayesian technique we 

can classify a new observation to say which task represents 

this trajectory taking in consideration the learned tasks 

(smoothed trajectories). The classification occurs in each 

action phase of the manipulative tasks using the probability 

of the learned features. To understand the general 
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classification model some definitions are done as follows: g 

is a known task goal from all possible G (tasks goals); c is a 

certain value of feature C (Curvature types); o is a certain 

value of feature O (hand orientation types) i is a given index 

from all possible action phases A. The probability P(c | g i) 

that a feature C has certain value c can be defined by 

learning the probability distribution P(C | G A) and P(o | g i) 

of feature O has a certain value o that can be defined by 

learning the probability distribution P(O | G A). Knowing 

P(c | G  i); P(o | G i) and the prior P(G) we are able to apply 

Bayes rule and compute the probability distribution for G 

given the action phase i of the learned trajectory. Initially, 

the prior is a uniform distribution and during the 

classification their values is updated applying Bayes rule 

shown in equation below:  

 
 

∑
j

1+k1+kj

1+k1+k
1+k1+k

i) ,o,c|P(g

i)P(G) G, | P(o i) G, | P(c
 = i) ,c | P(G  

(6) 

 

We compute the probability of all possible G (tasks goals) 

using the probability of the relevant features of the new 

observation multiplying the probability of each relevant 

feature by the correspondent feature in each action phase of 

the learned trajectory. In the normalization the variable j is 

an index that represents all possible task goals.  

IV. EXPERIMENTAL RESULTS 

In this section we will show our preliminary results to test 

the proposed methodology. The trajectories that we are using 

is concerning the scenario (task goal) described in section 

III-A as well as the sensors used to acquire the data.  

In Fig.5 is shown the raw data of the used dataset 

correspondent to the task pick-up and place (object 

displacement) with 7 trajectories. Fig. 6 shows the detect 

phases using the sensors information. The timestamps of the 

sensors data during the acquisition was synchronized and 

using the multi-sensor information it was possible to detect 

each phase as explained in section III-C. Fig.7 shows an 

example of the 3D positions of the features extracted 

(curvatures: trajectory directions) from all observations 

before finding similarities for relevant features selection.  

After verifying the similarities among the trajectories of 

the dataset (correspondent features) we keep just these 

relevant features and remove the features with low 

probability. Fig.8 shows the relevant features after verify the 

similarities among all trajectories. 

Fig.9 shows 2D view (left column: x, y; right: x, z) of the 

regression which was made locally in in sub-regions of the 

trajectory (sub-regions of each action phase) using the 

relevant features. 

Another alternative using the relevant features could be an 

interpolation (polynomial or other). Fig.10 shows an 

example of interpolation of the features points as a function 

of arc length along a space curve.  

 

 

 
Fig.5 – Raw data(in inches): trajectories dataset – object displacement. 

 

 

 

 

 

 
Fig.6 – trajectory segmentation by phase: By analyzing the sensors 

information it was possible to detect the manipulation phases. 

 

 

 

 

 
Fig7 – 3D positions of the features extracted along all trajectories (in 

rescaled space) of the dataset. 
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Fig.8 – Similar features among the trajectories of the dataset. 

 

 

 
Fig.9 – Polynomial regression made by sub-regions of each action phase. 

 

 

 
Fig.10 – Example of interpolation along a space curve. 

 

Following the same strategy of learning of the relevant 

features by similarities we have learned another dataset of 

trajectories of another task: grasping and lift an object to test 

the classification step that uses the learned features. This 

dataset follows the same rules of the first dataset (Fig.5), that 

is, the hand starts the task in a marked initial position and 

after releasing the object the hand finishes the movement in 

the initial position. As the dataset are different movements 

performed in different velocities and with different times we 

have rescaled both dataset to the size 1 keeping the shape of 

the trajectories. The actions phases for both dataset happen 

in different time. Given a new trajectory we want to 

recognize what kind of task it is. The classification variables 

updates in each action phase. Tab.1 shows the result of the 

classification of a new observation of pick-up and place. 

Fig.11 (a) shows the new observation that is used for 

classification and (b) shows the learned movement of the 

dataset of pick-up and lift (with 7 trajectories as the first 

dataset). 
 

 

TABLE I 

CLASSIFICATION RESULT 

Action Phases Pick-up and place % Pick-up and lift % 

   

Reaching 45.00 55.00 

Load 48.10 51.90 

Lift 59.32 40.68 

Transport 69.83 30.17 

Release 78.00 22.00 

   

The second and third columns show the probability of the new 

observation belonging to pick-up and place task or pick-up and lift task. 

We have detected the relevant features in each phase using their 

probabilities to classify the new observation. 

 

 

This preliminary result demonstrated that it is possible to 

use the proposed approach for classification, even the 

learning being with few trajectories. The Bayesian 

classification in this example has shown that it works fine for 

recognition as also shown in other works, e.g. [10]. 

 

 

 
 

Fig.11 – (a) New observation: trajectory to be classified (pick-up and 

place); (b) Trajectory of dataset pick-up and lift. 

 

V. CONCLUSION AND FUTURE WORK 

In this work we have presented a probabilistic approach to 

analyze multiple observations of humans’ movements 

concerning a manipulative task to find similarities between 

these movements to perform a generalization/smoothed 

trajectory of this task. By adopting a probabilistic way of 

extract features and choosing the relevant ones we are able to 

use their spatio-temporal information to apply a polynomial 

regression on the data to fit it by successive approximations. 

We also can use the relevant features for interpolation to 

generate a generalized (smoothed) movement of a specific 

task. We have presented some preliminary results of the 

proposed approach and it motivates us to continue testing the 

methodology to improve it. 

As future work we intend to perform more trials to test 

and evaluate the methodology to verify the performance of 

our approach. We also intend evaluate better the 

classification and matching phase. We want to apply this 

methodology to different datasets of manipulative tasks to 
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evaluate the consistence and efficiency of our method of 

movement generalization to be used in other contexts, e.g. 

learning a movement and applying this same movement to 

other objects of different sizes or to start the movement in 

different positions achieving the same target. 
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