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Abstract 

Sheet metal forming is an indispensable manufacturing technology in the 

automotive industry. The production of metallic components using this technology involves 

the planning of the process that requires complex and expensive tooling. The development 

of these tools has to consider the formability limits of the metal sheets. Finite element 

analysis codes, such as AutoForm®, are used throughout the industry to support the 

development of the tools, since they enable the prediction of defects, such as wrinkling and 

thinning. Unfortunately, in some cases defects arise in the metallic components, either in the 

tools try-out or in the production, which were not predicted by the finite element model. The 

main objective of this work is to understand the factors that can contribute to improving the 

prediction of forming defects for deep drawn automotive components.  

Three case studies were considered in this work, a fender and two inner liftgates. 

Two galvanized steels of the same class, DX54D and DX56D, are used to produce the fender 

and the inner liftgates, respectively. For the fender and one of the inner liftgates, the study 

focused on the analysis of the influence of the equibiaxial stress value in the prediction of 

the formability, considering the Hill’48 and the BBC 2005 yield criteria. For the other inner 

liftgate, a thorough analysis of the kinematics of the forming process was performed to 

understand the factors that contribute for the occurrence of sporadic problems in production. 

In this context, the control options for the tools were explored as well as the material 

generator of AutoForm® R8, which required performing some experimental tests to 

characterize the mechanical behavior of the material. This enabled the use of the Vegter 2017 

yield criterion, for this case study.  

For all case studies, the formability analysis was performed with the linear and 

the non-linear forming limit curve. For this material class, it is known that the Hill’48 yield 

criteria overestimates the equibiaxial stress value. The results show that the equibiaxial stress 

value has impact on the formability predictions and it can even change the critical locations 

of defects. In this context, the use of the non-linear forming limit curve is very important, 

since strain paths close to plane strain followed by equibiaxial state or vice versa show higher 

exhaustion in formability. Based on the formability predictions, the equibiaxial stress value 

is estimated to be around 0.9 times the value predicted by the Hill’48 criterion, corroborating 
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previous studies. In this context, the Vegter 2017 yield criterion can be considered an 

interesting approach to describe the plastic behavior of the material, since its parameters 

identification only requires performing three uniaxial tensile tests. Finally, besides an 

accurate description of the plastic behavior of the material, the prediction of defects requires 

the proper definition of the kinematics of the process. 

 

Keywords Sheet metal forming, Finite element method, Yield 
criterion, Formability, Non-linear strain paths, AutoForm® 
R8. 
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Resumo 

A conformação de chapas metálicas é uma tecnologia de produção indispensável 

na indústria automóvel. A produção de componentes metálicos com esta tecnologia envolve 

o planeamento do processo, que requer ferramentas complexas e dispendiosas. A conceção 

dessas ferramentas deve considerar os limites de conformabilidade das chapas metálicas. Os 

códigos de análise por elementos finitos, como o AutoForm®, são utilizados na indústria para 

apoiar a conceção das ferramentas, já que permitem prever defeitos, como rugas e a 

localização da deformação. Infelizmente, em alguns casos surgem defeitos nos componentes 

metálicos, seja no try-out das ferramentas ou na produção, que não são previstos pelos 

modelos de elementos finitos. O objetivo principal deste trabalho é compreender os fatores 

que podem contribuir para melhorar a previsão de defeitos de conformação em componentes 

automóveis estampados. 

Neste trabalho foram considerados três casos de estudo, um guarda-lamas e dois 

portões traseiros interiores. São utilizados dois aços galvanizados da mesma classe, DX54D 

e DX56D, para produzir o guarda-lamas e os portões interiores, respetivamente. Para o 

guarda-lamas e um dos portões interiores, o estudo focou-se na análise da influência do valor 

da tensão equibiaxial na previsão da conformabilidade, com base nos critérios de 

plasticidade de Hill'48 e BBC 2005. Para o outro portão interior, foi realizada uma análise 

minuciosa da cinemática do processo de conformação, para analisar os fatores que 

contribuem para a ocorrência de problemas esporádicos na produção. Neste contexto, foram 

exploradas as opções de controle das ferramentas, assim como o gerador de materiais do 

AutoForm® R8, o que exigiu a realização de alguns ensaios experimentais para caracterizar 

o comportamento mecânico do material. Assim, foi possível utilizar o critério de plasticidade 

de Vegter 2017, para este caso de estudo. 

Para todos os casos de estudo, a análise de conformabilidade foi realizada com 

a curva limite de estampagem linear e não-linear. Com base em resultados anteriores, sabe-

se que o critério de plasticidade de Hill'48 sobrestima o valor da tensão equibiaxial, para esta 

classe de material. Os resultados mostram que o valor da tensão equibiaxial tem impacto nas 

previsões de conformabilidade e pode até mesmo alterar as regiões críticas para a ocorrência 

de defeitos. Nesse contexto, o uso da curva limite de estampagem não-linear é muito 
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importante, uma vez que trajetórias de deformação próximas da deformação plana seguidas 

de estado equibiaxial, ou vice-versa, apresentam maior exaustão de conformabilidade. Com 

base nas previsões de conformabilidade, é possível estimar um valor para a tensão 

equibiaxial de 0.9 vezes o valor previsto pelo critério de Hill'48, o que corrobora estudos 

anteriores. Nesse contexto, o critério de plasticidade de Vegter 2017 pode ser considerado 

uma abordagem interessante para descrever o comportamento plástico do material, uma vez 

que a identificação dos seus parâmetros requer apenas a realização de três ensaios de tração 

uniaxial. Finalmente, além de uma descrição precisa do comportamento plástico do material, 

a previsão de defeitos requer a definição adequada da cinemática do processo. 

 

 

Palavras-chave: Conformação de chapas metálicas, Método dos 
elementos finitos, Critério de plasticidade, 
Formabilidade, Trajetórias de deformação não-
lineares, AutoForm® R8. 
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𝑓𝑧 – Static distributed load in the 𝑧 direction 

𝑓Dirac – Dirac function 

𝐅 – Deformation gradient 

𝐹 – Normalized stress 
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𝐹⃗ – Normalized stress vector 

𝐹N – Normal force 

𝐹R – Shear force due to friction 

𝐹c – Cylinder force 

ℎ – Element thickness 

𝑯𝐛 – Bending constitutive matrix 

𝑯𝐬 – Shear constitutive matrix 

𝐈 – Identity matrix 

𝐊 – Stiffness matrix 

𝑲𝐛 – Bending component of the stiffness matrix 

𝑲𝒔 – Shear component of the stiffness matrix 

𝑲𝐏 – Plate stiffness matrix 

𝑙 – Strain path length 

𝐋 – Velocity gradient tensor 

𝐿𝑘 – Length of the segment of index 𝑘 

𝑴 – Bending moment per unit length tensor 

M – Yield criterion exponent 

𝑵 – Shape functions 

𝑝 – Pressure 

p – Permissible penetration 

𝑝ref – Reference pressure 

𝑝charge – Cylinder charge pressure 

𝑝cyl – Cylinder pressure 

𝐏 – External forces 

𝑃𝑘 – Higher order shape functions 

r – Radius 

𝑟𝜃 – Anisotropy coefficient with respect to the angle 𝜃 

𝑟𝑏 – Equibiaxial anisotropy coefficient 

𝑟𝑚 – Average anisotropy coefficient 

𝐑 – Internal forces 

𝑅𝑚 – Tensile strength 
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𝑅p0.2 – Proof strength at 0.2% of the extensometer gauge length 

𝑡 – Time 

𝑻 – Shear force per unit length tensor 

𝒖 – Vector of nodal degrees of freedom 

𝒖̂ – Vector of nodal displacements 

𝑼𝒏 – Plate element´s vector of nodal degrees of freedom 

𝑤 – Weight factor 

𝑊 – Plastic work 

𝐗 – Reference position vector 

𝑌 – Yield stress 

𝑌𝜃 – Yield stress with respect to the angle 𝜃 

𝑌b – Equibiaxial yield stress 

 

Acronyms 

2D – Two dimensional 

3D – Three dimensional 

CAD – Computer Aided Design 

CAE – Computer Aided Engineering 

EPS – Elastic-Plastic Shell 

FE – Finite Element 

FEA – Finite Element Analysis 

FEM – Finite Element Method 

FLC – Forming limit curve 

FLD – Forming limit diagram 

GFLC – Generalized forming limit concept 

ND – Normal direction 

RD – Rolling direction 

TD – Transverse direction 

TDEM – Time Dependent Evaluation Method 

UNCC – Unidade de Negócios de Cunhos e Cortantes 
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1. INTRODUCTION 

The present work was performed in an industrial context in collaboration with 

Volkswagen Autoeuropa®, more specifically, in the Computer Aided Design (CAD) 

department of the Tools and Die Business Unit (UNCC). The purpose of this unit is the 

development and production of sheet metal forming tools for the automotive industry. In this 

context, one of the commercial codes used to perform the tools’ virtual try-out is AutoForm®. 

In the following section a brief description of sheet metal forming process is given, including 

the tools and machinery needed. Afterwards, the motivation and objectives of the work are 

laid out.  

1.1. Sheet Metal forming 

Sheet metal forming is a process in which a blank (flat, thin metallic sheet) is 

peripherally restrained while being forced to deform by a punch into a die, resulting in a 

geometry that cannot be defined using flat patterns. The ratio between the area and the depth 

of the part is normally used to distinguish stamping from deep drawing processes, with the 

latest being used for deeper components. However, it can also be used to distinguish between 

the processes driven by radial tension-tangential compression (deep drawing) and by stretch-

and-bending (stamping). In either case, the tools used in sheet metal forming processes have 

different purposes. The geometry of the die is commonly imposed by the one of the aimed 

component and by the addendum required to support the initial blank. This means that the 

geometry of the punch can be generated by applying an offset to the die cavity geometry, 

which establishes the gap between the punch and the die. The blankholder or binder is 

typically obtained by applying an offset to the addendum region of the die, meaning that it 

is an outer tool that applies the restraining force to the blank. Deep drawing processes aimed 

at producing automotive parts, generally require the reduction of the material flow to the die 

cavity, to increase the stretching of the metallic material and, consequently, promote 

increased rigidity and reduce the springback effect. Sometimes, in order to reduce the 

material flow it is necessary to introduce drawbeads in the blankholder, which are, in 



 

 

Influence of the yield criterion in the formability prediction on parts with complex geometry  

 

 

2  2020 

 

 

essence, grooves or steps. They can be positioned all around the part and/or in specific 

sections, depending on the required control. 

 

 

Figure 1.1 Schematic representations of a single-action press (left) and triple-action press (right). 

 

The tools are mounted on presses, the main equipment needed to perform deep 

drawing processes. They provide the necessary linear force to the tools that interact with the 

metal sheets. There are different kinds of presses, including mechanical and hydraulic. 

Generally, mechanical presses are preferred in a mass production environment, since they 

enable faster operations. Presses can also be classified according to their operation type. The 

ones of interest for the current work are the single-action and triple-action presses. Action 

refers to the number of slides or rams that operate on the same axis and that are mounted 

within the same frame. A single-action press has one slide, corresponding to the die that 

displaces against a fixed bed, comprised by the punch and blankholder. However, in recent 

presses the blankholder is usually supported by a cushion system, which provides a constant 

force and a stroke relative to the punch, referred as cushion stroke. This enables the 

blankholder to apply pressure to the metal sheet before the drawing occurs. Although this 

requires the existence of another slide in the bed of the press, the nomenclature is not altered, 

i.e. they are referred as single-action presses, as schematically shown in Figure 1.1 (left). 

Double-action presses possess two slides and, in essence, work like an inverted single-action 

press, with a fixed die on the press bed and the punch and an upper blankholder on the 

displacing ram. On the other hand, triple-action presses, have three slides: two that work in 

a similar fashion to the single-action press; and a third that resides in the ram and applies 
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force in the opposite direction, typically using an outer blankholder, like double-action 

presses. This means that there are two different cushion strokes, one relative to the punch 

and another to the die, as schematically shown in Figure 1.1 (right). The main advantage of 

the triple-action press is that it can draw parts with a more complex geometry, since it enables 

drawing in both directions. Nevertheless, they operate slower than single-action presses, 

since the third action takes additional time (Wick, Benedict and Veilleux, 1984; Smith, 

1990).  

1.2. Motivation 

Sheet metal forming is a reference manufacturing process in the automotive 

industry, for the production of various components, such as inner or outer body panels and 

structural elements. Several different processes are commonly required to obtain the final 

desired part from the initial sheet (coil). These include blanking, stamping or deep drawing, 

trimming, hemming and flanging. Each of them requires specific tools, tailored for the 

process. Nowadays, the design of such tools resorts to the virtual try-out, using the Finite 

Element Method (FEM). Computer Aided Engineering (CAE) relies heavily on Finite 

Element Analysis (FEA) since it significantly reduces product development costs and time. 

This has become rather important with the ever more complex geometries of automotive 

parts, the implementation of lightweight materials and the desire to continuously improve 

the quality, safety and reliability of the vehicles. Stamping and deep drawing are the first 

engineering challenge of sheet metal forming processes. The sheet must be plastically 

deformed to the desired geometry without showing any defect, the most notorious of which 

are wrinkles and splits. Engineers seek to improve FEM numerical solutions, in order to 

reproduce as much as possible, the experimental try-out condition and, consequentially, the 

production.  

1.3. Objectives 

The main objective of this work is to understand why certain defects appear in 

deep drawn parts, even though they are not detected in the Finite Element (FE) simulations 

performed with AutoForm®. In this context, representative cases studies were selected, 

which dictated the adoption of two different approaches. The first focused on the influence 
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of the model used to describe the material mechanical properties on formability predictions, 

where special emphasis was given to the yield criterion. The possibility of creating a material 

file, with the aid of AutoForm®’s material generator was also studied. The second approach 

involved a thorough understanding of the control options provided for the tools, by the 

commercial FE code used in this work, AutoForm®, in order to best reproduce the process 

conditions. 

1.4. Layout of the thesis 

This section presents a summary of the contents covered in this work. The thesis 

comprises of two main parts, organized into six chapters. The first part is dedicated to the 

state-of-the-art of sheet metal forming, highlighting the aspects related to the AutoForm® FE 

commercial solver, and is constituted by chapter 2 through 4. The second part corresponds 

to the analysis of three case studies (chapter 5) and the main conclusions of the work (chapter 

6). 

Chapter 2 presents the main characteristics of AutoForm® ‘s forming solver, 

including some details regarding the shell element’s bending formulation and the strategies 

used for the automatic mesh refinement. The different options available for the control of 

the tools are also explored. The knowledge pertaining to the material generator is exposed, 

namely the main assumptions concerning the yield criterion, the different hardening laws 

available and the principles behind the linear forming limit curve. 

Chapter 3 is dedicated to the anisotropic yield criteria implemented in 

AutoForm® and used within the context of this work. The general assumptions are laid out, 

leading to the chronologically description of the yield criteria, starting with Hill’48 and 

ending with Vegter 2017. Emphasis is given to the mathematical formulation of each yield 

criterion. 

Chapter 4 introduces the generalized forming limit concept, a phenomenological 

approach that is heavily based on knowledge acquired from experimental tests, which 

extends the use of the linear forming limit curve to the analysis of non-linear strain paths. 

The strategy adopted in AutoForm® to explore the concept is also explained. 

Chapter 5 presents the three case studies, which were selected with two different 

goals. The first two components, a fender and an inner liftgate, are used to study the 
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formability sensitivity to the mechanical properties of the material, specifically to the 

equibiaxial stress value. The third case study, also an inner liftgate, is a component in 

production that occasionally shows defects, such as wrinkles, that do not appear in the FE 

simulation. The reason behind this is discussed and a solution to minimize the problem is 

proposed. 

Chapter 6 is devoted to the conclusion taken from this work, summarizing the 

main difficulties and presenting some recommendations for future work.  
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2. AUTOFORM® FORMING SOLVER 

The Volkswagen® group utilizes the commercial software AutoForm® for the 

tools method planning. This software uses the Finite Element Method to simulate processes 

such as stamping, deep drawing, hemming, trimming and flanging. These processes involve 

non-linear analysis, where material, geometrical and boundary conditions non-linearities 

occur. This processes also involve finite or large deformations of the thin sheets. Therefore, 

the software uses triangular, bidimensional elements with a Lagrangian formulation, 

meaning that only the middle plane of the sheet is subjected to loadings, assuming a plane 

stress condition. Plane stress is a simplification that considers that the components of stress 

and shear perpendicular to the mid plane are null. The information pertaining to this chapter 

was taken from the AutoForm® R8 user’s manual (AutoForm® R8 software manual, 2018), 

provided by Volkswagen Autoeuropa® during the time period of the curricular internship.  

2.1. Implicit Solution 

The software´s integration scheme is based on an implicit time integration 

method. In other words, it considers the analyzed problems as quasi-static, disregarding any 

dynamic forces. In each iteration, the following equilibrium equation is solved for the time 

𝑡 + ∆𝑡:  

 𝐑 
𝒕+∆𝒕 − 𝐏 

𝒕+∆𝒕 = 𝟎, (2.1) 

where 𝐑 and 𝐏 represent the internal and external forces, respectively. For implicit methods 

the time steps are in essence increments of displacement, since time does not play a direct 

role in the formulation. The equilibrium equation is solved with a Taylor series, with: 

 𝐊(𝒖̂)∆𝒖̂ − 𝐏(𝒖̂) = 𝟎, (2.2) 

where 𝐊 is the stiffness matrix, 𝒖̂ the vector of nodal displacements and ∆𝒖̂ the unknown 

displacement increment. 

The main advantage of this formulation when compared to the other most 

commonly adopted, the dynamic explicit method, is that it is unconditionally stable. Thus, 

the chosen time steps can be significantly larger without the occurrence of instabilities. The 
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explicit method is conditionally stable, meaning that for time steps larger than the critical 

one it is not possible to assure the accuracy of the solution. This translates into the need to 

use very small time steps. However, the higher stability of the implicit method comes with 

a disadvantage. A set of non-linear algebraic equations must be linearized and solved for 

each increment, using an iterative process, which requires additional CPU time and memory. 

In addition, very large increments can cause convergence problems due to, for example, 

strong changes in contact constraints. Nevertheless, this solution imposes no restriction on 

the spatial discretization, which is an important aspect for its preferred choice in many 

applications. This will be further addressed in the following subchapters (Zienkiewicz, 

Taylor and Zhu, 2013; Belytschko et al., 2014). 

2.2. Finite Elements 

Triangular elements are widely used due to their simple formulation. They are 

ideal for generating non-structured meshes and are very flexible, enabling local refinement. 

In other words, a clear distinction can be made between coarse and finer regions on the mesh. 

Zones with high gradients of deformation and/or stress, like regions with small curvature for 

example, should necessarily be discretized with elements with a smaller size. The coupled 

use of finer with coarser mesh regions, optimizes computational time and memory spent 

without significant loss in accuracy (Teixeira-Dias et al., 2018).  

 

Figure 2.1. Generic triangular element. 
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Consider the generic triangle element shown in Figure 2.1, with nodal degrees of freedom, 

𝑢𝑖
e, 𝑣𝑖

e, with 𝑖 = 1, 2, 3. The displacement field can be defined by the shape functions, 𝑁𝑖
e, 

and the nodal degrees of freedom as follows:  

 𝒖 = {
𝑢(𝑥, 𝑦)
𝑣(𝑥, 𝑦)

} = [
𝑁1
e

0

0
𝑁1
e

𝑁2
e

0

0
𝑁2
e

𝑁3
e

0

0
𝑁3
e]

{
  
 

  
 
𝑢1
e

𝑣1
e

𝑢2
e

𝑣2
e

𝑢3
e

𝑣3
e}
  
 

  
 

, (2.3) 

where, considering linear interpolation, the shape functions are:  

 𝑁𝑖
e =

1

2𝐴e
(𝛼𝑖 + 𝛽𝑖𝑥 + 𝛾𝑖𝑦), (2.4) 

with 𝛼𝑖 = (𝑥𝑗𝑦𝑘 − 𝑥𝑘𝑦𝑗), 𝛽𝑖 = (𝑦𝑗 − 𝑦𝑘) and 𝛾𝑖 = (𝑥𝑘 − 𝑥𝑗), where 𝑥𝑖 and 𝑦𝑖 are the 

spatial coordinates of the nodes (𝑖 = 1, 2, 3). The area of the finite element can be obtained 

based on the following determinant: 

 𝐴e =
1

2
det [

1
1
1

𝑥1
𝑥2
𝑥3

𝑦1
𝑦2
𝑦3
] =

(𝑥2 − 𝑥1)(𝑦3 − 𝑦1) + (𝑥1 − 𝑥3)(𝑦2 − 𝑦1)

2
. (2.5) 

From continuum mechanics, the infinitesimal deformation tensor is given by:  

 𝜺 = {

𝜀𝑥𝑥
𝜀𝑦𝑦
𝜀𝑥𝑦

} =

{
  
 

  
 

𝜕𝑢

𝜕𝑥
𝜕𝑣

𝜕𝑦
𝜕𝑢

𝜕𝑦
+
𝜕𝑣

𝜕𝑥}
  
 

  
 

, (2.6) 

so, the strain field can be obtained by:  

 𝜺 =

[
 
 
 
 
 
 
𝜕𝑁1

e

𝜕𝑥
0

𝜕𝑁2
e

𝜕𝑥

0
𝜕𝑁1

e

𝜕𝑦
0

𝜕𝑁1
e

𝜕𝑦

𝜕𝑁1
e

𝜕𝑥

𝜕𝑁2
e

𝜕𝑦

0
𝜕𝑁3

e

𝜕𝑥
0

𝜕𝑁2
e

𝜕𝑦
0

𝜕𝑁3
e

𝜕𝑦

𝜕𝑁2
e

𝜕𝑥

𝜕𝑁3
e

𝜕𝑦

𝜕𝑁3
e

𝜕𝑥 ]
 
 
 
 
 
 

{
  
 

  
 
𝑢1
e

𝑣1
e

𝑢2
e

𝑣2
e

𝑢3
e

𝑣3
e}
  
 

  
 

. (2.7) 

Defining the matrixes of the partial derivatives of the shape functions as:  
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 𝑩𝑖 =

[
 
 
 
 
 
 
𝜕𝑁𝑖

e

𝜕𝑥
0

0
𝜕𝑁𝑖

e

𝜕𝑦

𝜕𝑁𝑖
e

𝜕𝑦

𝜕𝑁𝑖
e

𝜕𝑥 ]
 
 
 
 
 
 

=
1

2𝐴e
[
𝛽𝑖
0
𝛾𝑖

0
𝛾𝑖
𝛽𝑖

]. (2.8) 

The compact form of the deformation matrix is 𝜺 = 𝑩𝒖e, with:  

 𝑩 =
1

2𝐴e
[
𝛽1
0
𝛾1

0
𝛾1
𝛽1

𝛽2
0
𝛾2

0
𝛾2
𝛽2

𝛽3
0
𝛾3

0
𝛾3
𝛽3

]. (2.9) 

AutoForm® R8 version comes with different FE formulations for membrane and 

shell elements. For the first type, only one is available: Bending Enhanced Membrane. For 

the second, three formulations are considered: Elasto-Plastic Shell, Composite Shell 

(specific to deal with composite materials) and Thick Shell (recommended for coining and 

ironing processes). Since the studied blanks are of small thickness and only metallic 

materials are analyzed, the option is between membrane and shell formulations. The 

membrane element has three translational degrees of freedom per node, whereas the shell 

element has five: three translations and two rotations. Membrane elements can be used to 

analyze forming processes and lead to faster simulation times. However, complex parts show 

regions that go through bending and unbending processes as they deform. This coupled with 

the existence of geometric details with considerably small radii compromises accuracy, 

when using membrane elements. Therefore, the shell element is the preferred choice between 

the two, since the rotational degrees of freedom grant it the ability to include the bending 

effects. More details are given in the next subchapter. 

2.2.1. Elasto-Plastic Shell Element 

A shell element is the combination of a membrane and a plate element. Many 

different shell formulations have been proposed, each one presenting specific pros and cons. 

They can be considered the most complete 2D formulations, having up to six degrees of 

freedom per node. The shell element implemented in AutoForm® seems to be a combination 

of a membrane element that has a specific formulation (confidential details)(Kubli, 1995) 

with a plate element, proposed by Katili (1993). The text presented in ANNEX A focuses 
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on the plate formulation adopted in the Elasto-Plastic Shell (EPS) element implemented in 

AutoForm®. 

2.2.1.1. Integration points 

The evaluation of the stiffness matrix is performed using a trapezoidal Lobatto 

integration scheme, which can be applied considering a different number of integration 

points through the blank thickness, to evaluate the stress and strain. The software always 

considers a single point in the mid plane. Regarding the through-thickness direction, 

AutoForm® R8 has two predefined choices, those being either 5 or 11 integration points. 

Banabic (2010) showed in a springback prediction study of a U-rail (benchmark from 

Numisheet’93) that when using 5 or more integration points the results were already stable. 

Interestingly, after 9 points there were no significant improvements and with 13 points the 

computational time started to increase significantly. Therefore, in order to guarantee a 

reasonable compromise between accuracy and computational cost, AutoForm® recommends 

the use of 11 points, since it allows capturing the stress gradients resulting from bending 

effects which, ultimately, are the main cause for springback. This also increases the accuracy 

of the results of stress and strain in the upper and bottom layers of the sheet.  

2.2.2. Adaptive mesh 

There are various mesh adaptation strategies but, globally falling in two main 

categories: h- and p-refinement. In a general sense, h-refinement changes the size of the 

elements as needed, decreasing it for higher accuracy or increasing otherwise. On the other 

hand, p-refinement maintains the size but raises the order of the interpolation polynomial for 

specific elements. For h-refinement there are three typical methods that can be applied, 

namely element subdivision, mesh regeneration or node reallocation (also known as r-

refinement). The first uses the existing elements and boundaries and simply enriches the 

mesh by division. The second generates an entirely new, finer mesh for the following 

iteration. Both of these methods enable refinement and de-refinement unlike the r-refinement 

method, which doesn’t alter the number of elements and instead changes the nodes position 

(Zienkiewicz, Taylor and Zhu, 2013). 

AutoForm® uses the element subdivision h-method, dividing or joining 

triangular elements, using an algorithm developed to take into account a set of criteria to 
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support the decision. This algorithm associates a refinement level of 0 to the initial element 

size and increases it as the element is divided. A representation of this procedure is shown 

in Figure 2.2. Going from a specific level to the next divides the element in four. This can 

happen successively until the maximum refinement level defined by the user is reached, 

raising the local density of the mesh. When the refinement level is no longer needed, the 

opposite happens by combining four elements into one. This can be repeated until the level 

0 is recovered. The strategy employed by the software guarantees that the refinement starts 

before any contact is made with any geometrical features.  

 

Figure 2.2. Schematic representation of the refinement level used in AutoForm® (AutoForm® R8 software 
manual, 2018). 

2.2.2.1. Refinement criteria 

The software gives the user the freedom to control four main refinement 

parameters, the initial max element size, the aforementioned max refinement level, the radius 

penetration and the max element angle. The initial max element size selected defines the size 

associated with the refinement level 0. In practice, the selection of a smaller element size 

makes the whole mesh finer from the start of the simulation. The radius penetration defines 

the permissible penetration, p, between the sheet and the tools in curvature zones. The max 

element angle is the limit angle, , that the element can present in relation to a 90º radius. It 

restricts the minimum number of elements that are permissible to form that radius. These 

parameters are represented in Figure 2.3. Note that they are not independent, with the stricter 

dominating over the other.  

Another parameter that is worth mentioning is the tangential refinement. Unlike 

the others it is an on or off option that extends the refinement range by a factor of 2.5 times 

the thickness of the blank. It helps to better capture the stress gradient that exists close to 

zones with strong curvature.  
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Figure 2.3. Schematic representation of the radius of penetration (left) and the maximum element angle 
(right) used in AutoForm® (AutoForm® R8 software manual, 2018). 

2.2.3. Adaptive Time Step 

The time step defines the displacement made in each increment. It is controlled 

by the max material displacement parameter, which is the maximum possible tangential 

displacement of the nodes relatively to the contacting tool. There are other parameters to 

limit the time step or define an interval of possible values (min and max tool displacement). 

When close to bottoming, the software can be set to have smaller displacements. This helps 

capture the final moments of drawing, where the last geometrical details are made. The user 

can define both the end tool displacement step and the total number of steps.  

2.3. Tools and Support Types 

AutoForm® R8 gives the user different control options, or support types, for the 

process tools. They can be rigid, force controlled, spring controlled or gap controlled. Rigid 

tools are considered attached to the ram or bed of the press, having a very high rigidity and 

a negligible theoretical deformation. This option is typically used to simulate the punch or 

the die. Force controlled tools are specific for blankholders or pads. The specified force is 

applied and lift up of the tool is not allowed. If the initial force is not enough to counter the 

sheet’s reaction force, then the force applied to the tool is automatically raised to avoid the 

lift up. Throughout the simulation the force can also rise if necessary. This kind of control is 

very useful. It can be used to determine the minimum blankholder force needed to keep the 

tools closed during the forming process. Spring controlled tools have similar applications to 

force controlled tools. However, lift up is possible for spring controlled tools. In other words, 
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they are controlled by displacement and maintain the user-prescribed force. These two types 

of support can have elastic deformation, providing a more realistic pressure distribution in 

the contact area. This is defined with the tool’s stiffness. Gap controlled tools, like the name 

implies, maintain a desired gap between the selected tools. This happens, for example, when 

spacing blocks are used in the process. It should be noted that no binder pressure is applied 

when this support is used. When using EPS, the gap controlled tool is considered rigid.  

The definition of force, spring and gap controlled tools involves the selection of 

an opposing tool and of the cushion stroke. This corresponds to the distance the specific tool 

is from its fully closed position at the end of the process. This distance does not include the 

blankholder closing stage.  

2.3.1. Drawbeads 

The drawbeads should be the first feature to deform the blank, right as the 

blankholder closes. Two different models exist to simulate their effect, the physical model 

and the equivalent drawbead model. The physical model uses the drawbead geometry 

directly in the simulation by creating or importing it in the surface of the blankholder. This 

way, the software considers the bending and unbending of the sheet caused by the drawbead. 

On the other hand, the equivalent drawbead model calculates the additional restraining forces 

caused by the intended drawbead’s geometry and applies them to the blank. The simulation 

runs without the geometrical complexity of the drawbead, saving computational time and 

memory. For a better understanding, Figure 2.4 shows an example comparing the two 

models. 

 

 

Figure 2.4. Representation of a drawbead equivalent model (Tang and Pan, 2007). 
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The equivalent drawbead model is recommended when the material that flows 

through this geometrical detail does not remain on the final part, since it will not affect 

springback or change significantly the forming results. Otherwise the physical model shows 

superior accuracy and should be the preferred choice (Tang and Pan, 2007; Banabic, 2010). 

AutoForm® R8 has both approaches and can even use a combination of them, using the 

physical model during the blankholder closing and the equivalent drawbead model after.  

2.3.2. Binder Model 

The binder model describes how the forces are transferred to the blank. In other 

words, it represents the behavior of the components that apply force to the tools, such as gas 

cylinders, cushion pins, hydraulic columns, etc. Three methods are available in the software: 

uniform loading, columns, and cushion pins, each with its own peculiarities. Uniform 

loading guarantees that a uniform binder pressure is applied. According to the AutoForm® 

R8 user manual, this simplifies the analysis greatly since the point of application of the 

binder force can be unknown. Columns are meant to model the binder pressure distribution 

caused by individual punctual forces, such as the ones applied by cylinders. The local areas 

of the binder where these punctual forces are defined, are considered rigid. Furthermore, the 

opposite tool must be rigid also or else this model cannot be selected. For cushion pins, 

similar to columns, a point of application must be specified to locate each pin. However, this 

model applies the total force for the whole tool and maintains it independently of the number 

of selected pins. Since the opposite tool can be either force or spring controlled, this model 

simulates the local elastic behavior of the binder due to localized pressure. 

 

 

Figure 2.5. Rectangular cup with applied forces of type columns (left) and cushion pins (right) (AutoForm® 
R8 software manual, 2018). 
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An example showing the application of columns and cushion pins on a simple 

rectangular cup is shown in Figure 2.5. The forces considered for the columns types are C1 =

C2 and C3 = C4, with C4 > C1. The effect of these models as well as the uniform loading 

are shown in Figure 2.6. The pressure rises from green to red color. The blue area has no 

applied pressure. Note that if the forces C1 to C4 were all equal, then the columns pressure 

distribution would be the same as the uniform loading. Also, for non-uniform loadings, tool 

tilting may occur. This is apparent from the previous columns scenario where the pressure 

is clearly going to create a tilting moment. This is a disadvantage of using a uniform loading, 

since the software cannot predict this phenomenon. Although its magnitude is effectively 

small it can influence material flow by altering the pressure distribution. 

 

Figure 2.6. Rectangular cup with uniform pressure (left), columns (middle) and with cushion pins (right) 
(AutoForm® R8 software manual, 2018). 

In some cases, in order to better reproduce the forming conditions, it is also 

necessary to add spacers to the model. They help control the pressure application and its 

distribution, representing balancing or equalizer blocks used in real tooling. They work 

between the binder and its opposite tool, taking some binder force in the process. To define 

them, their location, thickness increment relative to the blank and stiffness are needed. The 

thickness increment establishes the initial gap created by the spacers. It can be set so that the 

gap has the sheet’s thickness, a higher or lower value. The stiffness defines how this gap 

decreases along the process, with the binder force increase. If the stiffness is too high, 

AutoForm® recommends an approximation with an elastic beam, although it warns that the 

spacer stiffness is not only influenced by the spacer itself but also by any mounting parts and 

the tools themselves. 

2.3.2.1. Force Evolution 

For force and spring controlled tools there are two ways to define how the binder 

force evolves during the process. These definitions are valid for all models and whether a 
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punctual or a global value is defined. The simplest procedure is to prescribe a constant force 

throughout the cushion stroke. The other is to define a variable force with a linear increase. 

For force controlled tools this requires only the initial and final values. Spring controlled 

tools also have two parameters, the preload force and the spring stiffness. Note that if only 

the preload force is defined, the tools will act with a constant force. The spring stiffness gives 

the linear slope of the spring force behavior. When defining all these force values the user 

must take into account the drawbead’s uplift force. For force controlled tools an alternative 

exists, which involves the selection of an initial pressure. The software automatically 

calculates the corresponding constant force value considering the blank area beneath the 

binder.  

2.3.3. Contact and Friction 

Contact is controlled via a search algorithm that detects if there is any node of 

the sheet penetrating the tools, in order to correct the nodes’ position. The contact constraints 

are determined with the penalty method. The algorithm is controlled by two non-user defined 

parameters. The max penetration tolerance gives the maximum allowed nodal penetration 

that can be accepted. The distance error defines the minimum distance for which contact is 

assumed to occur. Furthermore, the user must define for each tool which side of the sheet it 

will contact, upper or lower. The contact search will not work for the non-selected side. For 

EPS the software uses the current sheet thickness, detecting small gaps that may exist from, 

for example, material thinning.  

Friction is calculated based on the well-known Coulomb’s dry friction law.  

 𝑐𝑜𝑓 =  
𝐹R
𝐹N
. (2.10) 

where 𝑐𝑜𝑓 is the coefficient of friction, 𝐹N the normal force and 𝐹R the shear force due to 

friction. The friction shear stress can be obtained with the normal stress or pressure, 𝑝, 

applied on the same contact area as:  

 𝜏R = 𝑐𝑜𝑓 𝑝. (2.11) 

The 𝑐𝑜𝑓 is dependent on the combination of materials of the sheet and tools, as 

well as the lubricant used in the process. However, it is a typical simplification to consider 

the 𝑐𝑜𝑓 as constant. In reality, various factors such as sliding velocity, contact pressure and 
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even the direction in which the friction force is applied can influence this value. One of the 

strategies used in the software is to consider the influence of the contact pressure. The 

effective coefficient of friction is given by:  

 𝑐𝑜𝑓eff = 𝑐𝑜𝑓 (
𝑝

𝑝ref
)
𝑒−1

. (2.12) 

2.4. Material Generator and Editor 

AutoForm® R8 has a dedicated material generator that allows the user to create 

a material file from scratch or edit an existing one. General information about the material 

needs to be provided, such as its material class, specific weight, Young’s modulus, Poisson’s 

ratio, volumetric heat capacity and conductivity. Then, information gathered from 

experimental tests should be used to define the constitutive model, namely the yield criterion, 

the hardening law and the forming limit curve.  

2.4.1. Yield Criterion 

The yield criterion is the condition that must be satisfied in order for plastic 

deformation to occur. It is a function that expresses, for all stress states, the yielding 

condition. In a general sense it can be defined by: 

 Φ(𝜎𝑖𝑗, 𝑌) ≡ 𝜎̅(𝜎𝑖𝑗) − 𝑌 = 0. (2.13) 

where 𝜎̅(𝜎𝑖𝑗) is the equivalent stress and 𝑌 is the yield stress, given by the hardening law. 

This function is represented in the principal stress three-dimensional space by a surface, 

inside of which the material exhibits an elastic state and a plastic state if located on the 

surface. Typically, for sheet metal forming only the components of stress acting on the blank 

surface are considered relevant, i.e. plane stress conditions are considered, with 𝜎𝑧𝑧 = 𝜎𝑥𝑧 =

𝜎𝑦𝑧 = 0. This reduces the representation to a yield curve in the plane of the principal stresses. 

An associate flow rule is adopted to define the increment of the plastic strain 

rate, 𝑑𝜀𝑖𝑗
p

. Following Drucker’s normality principle, where 𝑑𝜆 ≥ 0 acts as a scalar multiplier, 

it can be written: 

 𝑑𝜀𝑖𝑗
p
= 𝑑𝜆

𝜕Φ

𝜕𝜎𝑖𝑗
. (2.14) 
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The yield stress 𝑌 is independent of the stress tensor. Knowing this and according to equation 

(2.13), the partial derivatives of the stress function Φ with respect to the planar components 

of stress can be given by the respective partial derivatives of the equivalent stress 𝜎̅. 

 𝑑𝜀𝑖𝑗
p
= 𝑑𝜆

𝜕𝜎̅

𝜕𝜎𝑖𝑗
. (2.15) 

Due to its additional complexity and importance in forming operations, the yield criteria will 

be given more detail in the next chapter. 

2.4.2. Hardening Law 

The hardening law describes the strain hardening behavior of the material during 

plastic deformation. Phenomenological models are typically used to approximate the 

observed hardening or flow curves for each material. These can be defined with the 

information gathered from tensile tests. They capture the non-linear increase of stress with 

plastic deformation that occurs for the majority of metals, including steel. AutoForm® 

defines the flow curve with three different methods, either by using the phenomenological 

equations, by a table of true stress-strain data points or by approximation, all in respect to 

the rolling direction. 

The available equations to define the yield stress in function of the equivalent 

plastic strain evolution 𝜀p are the following: 

Ludwick 𝑌 = 𝐾𝜀𝑛 , (2.16) 

Swift 𝑌 = 𝐶(𝜀0 + 𝜀
p)𝑚 , (2.17) 

Ghosh 𝑌 = 𝐶(𝜀0 + 𝜀
p)𝑚 − 𝐷, (2.18) 

Hockett-Sherby 𝑌 = 𝜎sat − (𝜎sat − 𝜎𝑖)𝑒
−𝑎(𝜀p)𝑝 , (2.19) 

Swift / Hockett-Sherby 
𝑌 = (1 − 𝛼)[𝐶(𝜀0 + 𝜀

p)𝑚]

+ 𝛼[𝜎sat − (𝜎sat − 𝜎𝑖)𝑒
−𝑎(𝜀p)𝑝], 

(2.20) 

Yoshida-Uemori 
𝑌 = (1 − 𝛼)[𝑌 + 𝑅sat(1 − 𝑒

−𝑚𝜀p)]

+ 𝛼[𝐶(𝜀0 + 𝜀
p)𝑛], 

(2.21) 

ThyssenKrupp 

Extrapolation Method 

𝑌 = 𝛼[𝐶(𝜀0 + 𝜀
p)𝑚]

+ (1 − 𝛼)[𝜎sat − (𝜎sat − 𝜎𝑖)𝑒
−𝑎𝜀p], 

(2.22) 

where all other variables correspond to material parameters.  
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The table and approximation methods have similar procedures since both need 

the data points provided by tensile tests. The table needs the information of up to 50 pairs of 

these points in an ASCII file, previously selected by the user, interpolating the points 

directly, whereas the approximation can take up to 100000 pairs in a .dat file format. It then 

determines, automatically, the parameters for the Swift/Hockett-Sherby approximation. The 

user can tweak the fit of the curve by altering the weight factor 𝛼 or by providing more 

information, like the yield stress. 

The software considers an isotropic hardening rule by default. This means that, 

after yielding, the yield curve will expand proportionally in all directions in the principal 

stress plane. 

2.4.3. Forming Limit Curve 

The Forming Limit Curve (FLC) is the most well-known tool to perform the 

analysis of sheet metal forming processes. The FLC can be experimentally obtained, 

following the international standard ISO 12004-2, and it represents the failure limits for 

different monotonic loadings in the principal in-plane strain’s domain. The experimental 

tests recommended for its determination are the Marciniak and the Nakajima, which main 

difference is the geometry of the punch, as shown in Figure 2.7. The Marciniak test uses a 

cylindrical punch that comes in contact with a carrier blank. This blank possesses a central 

circular hole and its main goal is to avoid contact with friction between the punch and the 

specimen. The Nakajima test uses a hemispherical punch, which comes into direct contact 

with the metal sheet. Both of these tests use a binder and die firmly clamped together to 

promote deformation and avoid slippage. By variating the sheet width, it is possible to attain 

the various strain states necessary to describe the FLC. 

Although practical and useful, this approach comes with its own flaws. The main 

one results from the fact that the strain paths represented by these tests are almost-linear and 

involve no elastic recovery. Therefore, this type of Forming Limit Diagram (FLD) can be 

referred to as static. Its application in the analysis of complex forming processes, such as 

deep drawing, can lead to erroneous results. In practical terms, it is known that the change 

in the strain path corresponds to a shift in the position of the FLC in its domain, i.e. the FLC 

is strain path dependent. Therefore, whenever a strain state is attained resultant of non-linear 
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strain paths the FLD prediction can be wrong, either by underestimating or overestimating 

the limit (Ofenheimer et al., 2008). 

 

 

Figure 2.7. Schematic representation of Marciniak and Nakajima tests (Volk et al., 2019). 

 

Several authors proposed the use of stress-based criteria as an alternative to the 

strain based FLC. These formability criteria are the basis for the Forming Limit Stress Curve 

(FLSC). Its main advantage is the fact that the stress required to attain strain localization or 

fracture is not strain path dependent. However, since strain is the only physical measurable 

quantity, this approach becomes overly dependent on the stress-strain relationship adopted 

to define the formability criterion. Furthermore, its dependence on the hardening model 

constitutes another problem. Points with high strain rate and slow rising stress, due to the 

material hardening behavior, will necessarily be susceptible to error due to the poor 

resolution in the stress domain. This type of behavior is characteristic of necking, which may 

be one of the reasons why the FLSC concept as not overcome the FLC one. 

Several options exist in AutoForm® R8 to define the FLC. Similar to the 

hardening law, a table with 50 principal strain pairs can be provided. Other methods include 

models like Keeler, Arcelor V9 and one developed by Tata Steel®. 
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3. ANISOTROPIC YIELD CRITERIA 

Stamping and deep drawing are processes in which a flat sheet is deformed to 

create a myriad of complex parts. These blanks are cut from coils of sheet metal, obtained 

through a rolling process that promotes their anisotropic mechanical behavior. More 

specifically, the mechanical properties show symmetry in three orthogonal planes, which are 

characterized by three intersecting axes. One corresponds to the rolling direction (RD), 

where the crystallographic grains are aligned and stretched. Perpendicular to the RD, along 

the width of the sheet, is the transverse direction (TD). Finally, the third corresponds to the 

thickness or normal direction (ND), where the grains are compacted. Usually, a Oxyz 

coordinate system is used as reference (material axis), where x corresponds to RD, y to TD 

and z to ND. 

The more traditional way to assess the different properties along the in-plane 

directions corresponds to performing tensile tests, with specimens cut at different 

orientations to the RD. Therefore, in this introductory section special attention will be given 

to the information extracted from this type of tests. 

Let 𝑌𝜃 be the analytical uniaxial yield stress along the direction which forms an 

angle of 𝜃 with respect to the RD. The components of the stress tensor in the material axis 

can be written as: 

 𝜎𝑥𝑥 = 𝑌𝜃 cos
2 𝜃 , 𝜎𝑦𝑦 = 𝑌𝜃 sin

2 𝜃 , 𝜎𝑥𝑦 = 𝜎𝑦𝑥 = 𝑌𝜃 sin 𝜃 cos 𝜃. (3.1) 

Accordingly, the equivalent stress with respect to 𝜃 can take the form: 

 𝜎̅|𝜃 = 𝑌𝜃𝐹𝜃, (3.2) 

where 𝐹𝜃 is a function that depends on the angle 𝜃 and is specific to the yield criterion 

considered. It follows that the planar yield stress can be given for whichever yield stress 

using the following relation: 

 𝑌𝜃 =
𝜎̅|𝜃
𝐹𝜃

=
𝑌

𝐹𝜃
, (3.3) 

The uniaxial tensile tests also allow to evaluate the Lankford value or anisotropy 

coefficient, 𝑟𝜃, which is also used to study the plastic behavior of the material. It defines the 
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tangent to the yield curve for the corresponding loading direction. Its instantaneous value is 

defined by: 

 𝑟𝜃 =
𝑑𝜀𝜃+90

p

𝑑𝜀𝑧𝑧
p , (3.4) 

where 𝑑𝜀𝜃+90
p

 and 𝑑𝜀𝑧𝑧
p

 represent the increment of plastic strain along the width and the 

thickness directions of the specimen, respectively. To relate this important parameter to the 

chosen yield criterion, the strain rate in its incremental form should be given in respect to 

the material axis: 

 𝑑𝜀𝜃
p
= 𝑑𝜀𝑥𝑥

p
cos2 𝜃 + 𝑑𝜀𝑦𝑦

p
sin2 𝜃 + 𝑑𝜀𝑥𝑦

p
sin 𝜃 cos 𝜃. (3.5) 

Since the plastic deformation is considered to be an isochoric phenomenon, it is possible to 

define: 

 𝑑𝜀𝑧𝑧
p
= −(𝑑𝜀𝑥𝑥

p
+ 𝑑𝜀𝑦𝑦

p ). (3.6) 

Replacing equations (3.5) and (3.6) in equation (3.4): 

 𝑟𝜃 =
𝑑𝜀𝑥𝑥

p
cos2 𝜃 + 𝑑𝜀𝑦𝑦

p
sin2 𝜃 + 𝑑𝜀𝑥𝑦

p
sin 𝜃 cos 𝜃

𝑑𝜀𝑥𝑥
p
+ 𝑑𝜀𝑦𝑦

p − 1. (3.7) 

Since the equivalent stress 𝜎̅ is a first-degree homogeneous function of the 

components of the Cauchy stress tensor 𝜎𝑖𝑗, Euler’s identity gives: 

 𝜎̅(𝜎𝑖𝑗) = 𝜎𝑖𝑗
𝜕𝜎̅

𝜕𝜎𝑖𝑗
. (3.8) 

Taking the associated flow rule, defined in equation (2.15), into account, as well as equations 

(3.2) and (3.3): 

 𝑟𝜃 =
1

𝑌𝜃

(𝜎𝑖𝑗
𝜕𝜎̅
𝜕𝜎𝑖𝑗

)|
𝜃

(
𝜕𝜎̅
𝜕𝜎𝑥𝑥

+
𝜕𝜎̅
𝜕𝜎𝑦𝑦

)|
𝜃

− 1 =
𝐹𝜃

(
𝜕𝜎̅
𝜕𝜎𝑥𝑥

+
𝜕𝜎̅
𝜕𝜎𝑦𝑦

)|
𝜃

− 1. (3.9) 

It is also common to define the average anisotropy coefficient or the coefficient 

of normal anisotropy as:  

 𝑟m =
𝑟0 + 2𝑟45 + 𝑟90

4
, (3.10) 

where 𝑟0, 𝑟45 and 𝑟90 correspond to the Lankford values evaluated with specimens oriented 

along RD, at 45º with RD and along TD, respectively. 
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Another loading condition that has become consensual to be important to access 

in order to properly describe the orthotropic behavior of metallic sheets is the in-plane 

equibiaxial one. For equibiaxial loading, where 𝜎𝑥𝑥 = 𝜎𝑦𝑦 = 𝜎b and 𝜎𝑥𝑦 = 0, the anisotropy 

coefficient is defined by: 

 𝑟b =
𝑑𝜀𝑦𝑦

p

𝑑𝜀𝑥𝑥
p =

𝑑𝜀𝑥𝑥
p
+ 𝑑𝜀𝑦𝑦

p

𝑑𝜀𝑥𝑥
p − 1. (3.11) 

In a similar fashion to the approach adopted for uniaxial loading, the equivalent 

yield stress for the equibiaxial loading, as well as the yield stress are defined to be: 

 𝜎̅|b = 𝑌b𝐹b, (3.12) 

 𝑌b =
𝑌

𝐹b
, (3.13) 

where 𝐹b is a function specific for the equibiaxial point. Based on the same assumptions 

mentioned previously, the anisotropy coefficient becomes: 

 𝑟b =
1

𝑌b

(𝜎𝑖𝑗
𝜕𝜎̅
𝜕𝜎𝑖𝑗

)|
b

(
𝜕𝜎̅
𝜕𝜎𝑥𝑥

)|
b

− 1 =
𝐹b

(
𝜕𝜎̅
𝜕𝜎𝑥𝑥

)|
b

− 1. (3.14) 

In the following subsections, some of the yield criterion available in AutoForm® 

and used in the context of this work will be described. It should be mentioned that all yield 

criteria are implemented in AutoForm® assuming plane stress conditions, even if their 

original formulation is 3D. 

3.1. Hill 1948 

Hill (1948) proposed a yield criterion that is still widely used thanks to the simple 

approach proposed to determine the parameters. In its original 3D formulation, it is 

expressed by the following quadratic function: 

 
𝐹(𝜎𝑦𝑦 − 𝜎𝑧𝑧)

2
+ 𝐺(𝜎𝑧𝑧 − 𝜎𝑥𝑥)

2 + 𝐻(𝜎𝑥𝑥 − 𝜎𝑦𝑦)
2
+ 2𝐿𝜎𝑦𝑧

2 + 2𝑀𝜎𝑥𝑧
2

+ 2𝑁𝜎𝑥𝑦
2 = 𝑌2, 

(3.15) 

where 𝐹, 𝐺, 𝐻, 𝐿, 𝑀 and 𝑁 are material parameters. Assuming the plane stress condition, 

equation (3.15) takes the form: 

 (𝐺 + 𝐻)𝜎𝑥𝑥
2 − 2𝐻𝜎𝑥𝑥𝜎𝑦𝑦 + (𝐻 + 𝐹)𝜎𝑦𝑦

2 + 2𝑁𝜎𝑥𝑦
2 = 𝑌2. (3.16) 
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Taking equations (2.15) and (3.6) into account, the strain rate components can be expressed 

as: 

 

𝑑𝜀𝑥𝑥
p
= 2𝑑𝜆[(𝐺 + 𝐻)𝜎𝑥𝑥 − 𝐻𝜎𝑦𝑦], 

𝑑𝜀𝑦𝑦
p
= 2𝑑𝜆[(𝐻 + 𝐹)𝜎𝑦𝑦 −𝐻𝜎𝑥𝑥], 

𝑑𝜀𝑧𝑧
p
= −2𝑑𝜆[𝐺𝜎𝑥𝑥 + 𝐹𝜎𝑦𝑦],  

𝑑𝜀𝑥𝑦
p
= 4𝑑𝜆𝑁𝜎𝑥𝑦. 

(3.17) 

By applying this knowledge in equation (3.7) and (3.11) it is possible to define: 

 
𝑟𝜃 =

𝐻 + (2𝑁 − 𝐹 − 𝐺 − 4𝐻) cos2 𝜃 sin2 𝜃

𝐹 sin2 𝜃 + 𝐺 cos2 𝜃
, 

𝑟b =
𝐹

𝐺
. 

(3.18) 

Then, following relations for the anisotropy coefficients can be promptly written: 

 𝑟0 =
𝐻

𝐺
, 𝑟90 =

𝐻

𝐹
, 𝑟45 =

𝑁

𝐹 + 𝐺
−
1

2
, 𝑟b =

𝑟0
𝑟90
. (3.19) 

If the orthotropic axes coincide with the stress tensor’s principal axes, then 

equation (3.16) changes to: 

 (𝐺 + 𝐻)𝜎11
2 − 2𝐻𝜎11𝜎22 + (𝐻 + 𝐹)𝜎22

2 = 𝑌2. (3.20) 

Considering, as reference, that the moment of yielding during a tensile test performed in RD, 

makes 𝑌 = 𝜎0, then (𝐺 + 𝐻) = 1. This means that the parameter 𝐻 becomes 𝐻 =

𝑟0 (1 + 𝑟0)⁄  and the following equation can be deduced for the yield locus: 

 𝜎0
2 =

𝑟0𝑟90(𝜎11 − 𝜎22)
2 + 𝑟90𝜎11

2 + 𝑟0𝜎22
2

𝑟90(𝑟0 + 1)
. (3.21) 

This expression shows that only three inputs (𝜎0, 𝑟0 and 𝑟90) are needed to define the yield 

locus in the principal stress domain. It should be noted that the same principle can be applied 

for the TD. This gives a similar expression where the yield stress in the TD is used instead, 

with 𝑌 = 𝜎90. In this case 𝐻 = 𝑟90 (1 + 𝑟90)⁄  and (𝐻 + 𝐹) = 1, giving: 

 𝜎90
2 =

𝑟0𝑟90(𝜎11 − 𝜎22)
2 + 𝑟90𝜎11

2 + 𝑟0𝜎22
2

𝑟0(𝑟90 + 1)
. (3.22) 

It is important to mention that the yield surfaces defined by equation (3.21) and (3.22) will 

most likely be different, because this criterion is not flexible enough to describe both the 

Lankford values and the yield stress.  
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In order to perform the finite element analysis, the yield criterion must be defined 

in the orthotropic axis, as shown in equation (3.16). Therefore, in order to fully define the 

yield surface, the Lankford value in the 45º direction must also be known. In total, only four 

experimental values are needed, making it an easy criterion to implement in commercial 

software. 

Nevertheless, if more experimental values are known, it is important to 

understand how well they are being approximated. This justifies the importance of 

evaluating also the values of the normalized yield stress in plane strain, pure shear and 

equibiaxial stress. The normalization is performed considering the yield stress for uniaxial 

tension along the RD, since the condition (𝐺 + 𝐻) = 1 is commonly adopted. 

For the equibiaxial point, where 𝜎11 = 𝜎22 = 𝜎b, the criterion gives: 

 𝜎b
𝜎0
= √

𝑟90(𝑟0 + 1)

(𝑟0 + 𝑟90)
. (3.23) 

For plane strain, the strain ratio defined as 𝜌 = (𝑑𝜀1
p
𝑑𝜀2

p⁄ ) = 0. This leads to the relation: 

 𝜎11 = (1 +
1

𝑟90
) 𝜎22. (3.24) 

Thus, using equation (3.21) and (3.22), the normalized plane strain points relative to RD and 

TD, are respectively: 

 
𝜎ps0
𝜎0

= (1 +
1

𝑟90
)
√

𝑟90(𝑟0 + 1)

𝑟0
𝑟90

+ 𝑟0 + 𝑟90 (1 +
1
𝑟90
)
2, (3.25) 

 
𝜎ps90
𝜎0

= (1 +
1

𝑟90
)√

𝑟0(𝑟90 + 1)

𝑟90(𝑟0 + 1)√

𝑟0(𝑟90 + 1)

𝑟0
𝑟90

+ 𝑟0 + 𝑟90 (1 +
1
𝑟90
)
2. (3.26) 

Finally, for pure shear 𝜎11 = −𝜎22 and: 

 𝜎shear
𝜎0

= √
𝑟90(𝑟0 + 1)

4𝑟0𝑟90 + 𝑟0 + 𝑟90
. (3.27) 

Note that, in this specific case, symmetry exists for the shear performed with the specimen 

oriented along RD and TD. 

This classic yield criterion shows various advantages, some of which were 

already mentioned. In particular, the direct physical meaning of its parameters facilitates its 



 

 

Influence of the yield criterion in the formability prediction on parts with complex geometry  

 

 

28  2020 

 

 

understanding. The main drawback is related to its quadratic formulation. This reduces its 

flexibility, disabling the simultaneous correct definition of the plane strain, shear and 

equibiaxial points, particularly for highly anisotropic materials or materials that show what 

is called the anomalous behavior. In fact, when using this criterion, if 𝑟m < 1, the yield locus 

is located inside the one given by von Mises; while if 𝑟m > 1 it will be outside the von Mises 

yield locus. Some materials (in particular aluminum alloys) have the yield locus outside the 

von Mises surface, though their 𝑟m-coefficient is lower than one. To counter this problem, 

AutoForm® introduces a biaxial stress factor, Biax, to expand or contract the Hill yield locus 

at the equibiaxial stress point by a desired magnitude. The Biax value can be interpreted as 

a factor to increase the impact of the equibiaxial yield stress on the yield surface. However, 

in order to enable the change of this point the anisotropy parameters must be calculated 

taking 𝜎b into account and not using only the Lankford values. To manage this 

transformation an approximation to the Hill’90 criterion is made. Although the AutoForm® 

manual does not give an explanation to the strategy adopted, according to Banabic (2010), 

since this yield criterion is no longer quadratic the exponent 𝑚 can be determined as follows: 

 𝑚 =
ln[2(𝑟45 + 1)]

ln[2𝜎b 𝜎45⁄ ]
. (3.28) 

Naturally this also changes the position of the plane strain and shear points.  

3.2. BBC 2005 

Banabic, Balan and Comsa proposed in 2005 an advanced anisotropic yield 

criterion whose main objective was to provide a more accurate representation of the 

anisotropic behavior of several materials used by the automotive and aeronautical industry, 

like Dual Phase, Complex Phase and TRIP steels, aluminum and magnesium alloys, to name 

a few (Banabic, 2010). This criterion defines the equivalent stress by: 

 𝜎̅ = [𝑎(Λ + Γ)2𝑘 + 𝑎(Λ − Γ)2𝑘 + 𝑏(Λ +Ψ)2𝑘 + 𝑏(Λ − Ψ)2𝑘]
1
2𝑘 , 

(3.29) 

where 𝑘 ∈ ℕ ≥ 1 and 𝑎, 𝑏 > 0 are material parameters. These conditions ensure the convexity 

of the yield surface. Λ, Γ and Ψ are functions of further material parameters, 𝐿, 𝑀, 𝑁, 𝑃, 𝑄 

and 𝑅, as well as the components of the Cauchy stress tensor. 

 Λ = √(𝑁𝜎𝑥𝑥 − 𝑃𝜎𝑦𝑦)
2
+ 𝜎𝑥𝑦𝜎𝑦𝑥 , 

(3.30) 
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Γ = 𝐿𝜎𝑥𝑥 +𝑀𝜎𝑦𝑦 , 

Ψ = √(𝑄𝜎𝑥𝑥 − 𝑅𝜎𝑦𝑦)
2
+ 𝜎𝑥𝑦𝜎𝑦𝑥 . 

So, nine material parameters are needed to define this criterion. However, only eight need to 

be determined through experiments, since the exponent 𝑘 depends on the crystallographic 

structure of the studied material. The authors recommend the standard values of 𝑘 = 3 and 

𝑘 = 4 for BCC and FCC materials, respectively. Likewise, these structures correspond to 

steels and aluminum alloys. Nevertheless, the authors also mention that this exponent can be 

altered to best fit the material behavior. This stems from the fact that the standard values 

agree with initial studies performed for isotropic materials and not anisotropic. For example, 

An et al., (2011) found that for the high strength steels HC220YD and HC340LAD, the 

exponent should be approximately 2𝑘 = 5.35 and 2𝑘 = 5.58 respectively. 

The majority of the experimental data needed comes from uniaxial tensile tests, 

namely the uniaxial yield stresses in the 0º, 45º and 90º directions, relative to RD, as well as 

the respective anisotropic coefficients. The equibiaxial yield stress and anisotropy 

coefficient are also needed. These can be obtained, for example, from compression or bulge 

tests. This criterion enables the reproduction of these experimental points, since the material 

parameters can be determined to fit them (number of parameters is equal to the number of 

experimental points). 

The partial derivatives of the stress function Φ with respect to the planar 

components of stress are needed to define the flow rule. Note that in this case: 

 
𝜕Φ

𝜕𝜎𝑖𝑗
=
𝜕𝜎̅

𝜕𝜎𝑖𝑗
=
𝜕𝜎̅

𝜕Λ

𝜕Λ

𝜕𝜎𝑖𝑗
+
𝜕𝜎̅

𝜕Γ

𝜕Γ

𝜕𝜎𝑖𝑗
+
𝜕𝜎̅

𝜕Ψ

𝜕Ψ

𝜕𝜎𝑖𝑗
. (3.31) 

The explicit expressions of the derivatives are given in ANNEX B.1. These equations enable 

the definition of the flow rule (equation (2.15)) as a function of the stress components. Now, 

a relationship between the various experimental parameters and the stress components must 

be achieved. For dealing with the results from the uniaxial tensile tests, a transformation of 

Λ, Γ and Ψ is necessary. 

 Λ = 𝑌𝜃Λ𝜃 , Γ = 𝑌𝜃Γ𝜃, Ψ = 𝑌𝜃Ψ𝜃 , (3.32) 

with 

 Λ𝜃 = √(𝑁 cos2 𝜃 − 𝑃 sin2 𝜃)2 + sin2 𝜃 cos2 𝜃, (3.33) 
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Γ𝜃 = 𝐿 cos
2 𝜃 + 𝑀 sin2 𝜃, 

Ψ𝜃 = √(𝑄 cos2 𝜃 − 𝑅 sin2 𝜃)2 + sin2 𝜃 cos2 𝜃. 

To obtain the equivalent stress defined in equation (3.2), the function 𝐹𝜃 takes the form: 

 𝐹𝜃 = [𝑎(Λ𝜃 + Γ𝜃)
2𝑘 + 𝑎(Λ𝜃 − Γ𝜃)

2𝑘 + 𝑏(Λ𝜃 +Ψ𝜃)
2𝑘 + 𝑏(Λ𝜃 − Ψ𝜃)

2𝑘]
1
2𝑘 . 

(3.34) 

Starting the correlation with the anisotropy coefficients, from equation (3.9): 

(
𝜕𝜎̅

𝜕𝜎𝑥𝑥
+

𝜕𝜎̅

𝜕𝜎𝑦𝑦
)|
𝜃

=
𝜕𝜎̅

𝜕Λ
|
𝜃
(
𝜕Λ

𝜕𝜎𝑥𝑥
+

𝜕Λ

𝜕𝜎𝑦𝑦
)|
𝜃

 

+
𝜕𝜎̅

𝜕Γ
|
𝜃
(
𝜕Γ

𝜕𝜎𝑥𝑥
+

𝜕Γ

𝜕𝜎𝑦𝑦
)|
𝜃

+
𝜕𝜎̅

𝜕Ψ
|
𝜃
(
𝜕Ψ

𝜕𝜎𝑥𝑥
+
𝜕Ψ

𝜕𝜎𝑦𝑦
)|
𝜃

. 

(3.35) 

The explicit expressions for the derivatives are given in ANNEX B.1, enabling the definition 

of 𝐺𝜃 , such that: 

 (
𝜕𝜎̅

𝜕𝜎𝑥𝑥
+

𝜕𝜎̅

𝜕𝜎𝑦𝑦
)|
𝜃

=
𝐺𝜃

𝐹𝜃
2𝑘−1, 

(3.36) 

resulting in a formula for the anisotropy coefficients with respect to the angle 𝜃: 

 𝑟𝜃 =
𝐹𝜃

2𝑘

𝐺𝜃
− 1. (3.37) 

For the equibiaxial anisotropy coefficient, the components of the stress tensor 

are 𝜎𝑥𝑥 = 𝜎𝑦𝑦 = 𝑌b and 𝜎𝑥𝑦 = 𝜎𝑦𝑥 = 0. Therefore, the functions Λ, Γ and Ψ become: 

 Λ = 𝑌bΛb , Γ = 𝑌bΓb, Ψ = 𝑌bΨb, (3.38) 

with 

 

Λb = √(𝑁 − 𝑃)
2 = |𝑁 − 𝑃|, 

Γb = 𝐿 + 𝑀, 

Ψb = √(𝑄 − 𝑅)2 = |𝑄 − 𝑅|, 

(3.39) 

and 

 𝐹b = [𝑎(Λb + Γb)
2𝑘 + 𝑎(Λb − Γb)

2𝑘 + 𝑏(Λb + Ψb)
2𝑘 + 𝑏(Λb −Ψb)

2𝑘]
1
2𝑘 . 

(3.40) 

From equation (3.14): 

 (
𝜕𝜎̅

𝜕𝜎𝑥𝑥
)|
b

=
𝜕𝜎̅

𝜕Λ
|
b
(
𝜕Λ

𝜕𝜎𝑥𝑥
)|
b

+
𝜕𝜎̅

𝜕Γ
|
b
(
𝜕Γ

𝜕𝜎𝑥𝑥
)|
b

+
𝜕𝜎̅

𝜕Ψ
|
b
(
𝜕Ψ

𝜕𝜎𝑥𝑥
)|
b

. (3.41) 
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The partial derivatives of the equivalent stress with respect to Λb, Γb and Ψb are identical to 

the ones presented in ANNEX B.1, with 𝜃 being substituted for b. The remaining are given 

also in ANNEX B.1, enabling the definition of 𝐺b such that: 

 𝑟b =
𝐹b

2𝑘

𝐺b
− 1. (3.42) 

The conditions related to the yield stresses are defined with the help of the 

normalized values of the experimental yield stresses: 

 𝑦𝜃 =
𝑌

𝑌𝜃
, 𝑦b =

𝑌

𝑌b
, (3.43) 

with 

 𝐹𝜃
2𝑘 = 𝑦𝜃

2𝑘 , 𝐹b
2𝑘 = 𝑦b

2𝑘 . (3.44) 

Equations (3.37) and (3.42) can also be written in the form: 

 𝐺𝜃 =
1

𝑟𝜃 + 1
𝑦𝜃

2𝑘 , 𝐺b =
1

𝑟b + 1
𝑦b

2𝑘 . (3.45) 

Equations (3.44) and (3.45) define eight non-linear functions that can be presented. 

 

𝑎(𝑁 + 𝐿)2𝑘 + 𝑎(𝑁 − 𝐿)2𝑘 + 𝑏(𝑁 + 𝑄)2𝑘 + 𝑏(𝑁 − 𝑄)2𝑘 = 𝑦0
2𝑘 , 

𝑎 [√(𝑁 − 𝑃)2 + 1 + 𝐿 +𝑀]
2𝑘

+ 𝑎 [√(𝑁 − 𝑃)2 + 1 − 𝐿 − 𝑀]
2𝑘

+ 𝑏 [√(𝑁 − 𝑃)2 + 1 + √(𝑄 − 𝑅)2 + 1]
2𝑘

+ 𝑏 [√(𝑁 − 𝑃)2 + 1 − √(𝑄 − 𝑅)2 + 1]
2𝑘

= 𝑦45
2𝑘 , 

𝑎(𝑃 +𝑀)2𝑘 + 𝑎(𝑃 − 𝑀)2𝑘 + 𝑏(𝑃 + 𝑅)2𝑘 + 𝑏(𝑃 − 𝑅)2𝑘 = 𝑦90
2𝑘 , 

𝑎(𝑁 − 𝑃 + 𝐿 +𝑀)2𝑘 + 𝑎(𝑁 − 𝑃 − 𝐿 −𝑀)2𝑘 + 𝑏(𝑁 − 𝑃 + 𝑄 − 𝑅)2𝑘

+ 𝑏(𝑁 − 𝑃 − 𝑄 + 𝑅)2𝑘 = 𝑦b
2𝑘 , 

𝑎(𝑃 −𝑀)(𝑁 + 𝐿)2𝑘−1 + 𝑎(𝑃 + 𝑀)(𝑁 − 𝐿)2𝑘−1 + 𝑏(𝑃 + 𝑅)(𝑁 + 𝑄)2𝑘−1

+ 𝑏(𝑃 − 𝑅)(𝑁 − 𝑄)2𝑘−1 =
𝑟0

𝑟0 + 1
𝑦0

2𝑘 , 

(3.46) 
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𝑎√(𝑄 − 𝑅)2 + 1 {[√(𝑁 − 𝑃)2 + 1+ 𝐿 +𝑀]
2𝑘−1

+ [√(𝑁 − 𝑃)2 + 1 − 𝐿 −𝑀]
2𝑘−1

}

+ 𝑏 {[√(𝑁 − 𝑃)2 + 1 + √(𝑄 − 𝑅)2 + 1]
2𝑘

+ [√(𝑁 − 𝑃)2 + 1 −√(𝑄 − 𝑅)2 + 1]
2𝑘

}

= √(𝑁 − 𝑃)2 + 1√(𝑄 − 𝑅)2 + 1
𝑟45 + 0.5

𝑟45 + 1
(2𝑦45)

2𝑘, 

𝑎(𝑁 − 𝐿)(𝑃 + 𝑀)2𝑘−1 + 𝑎(𝑁 + 𝐿)(𝑃 −𝑀)2𝑘−1 + 𝑏(𝑁 + 𝑄)(𝑃 + 𝑅)2𝑘−1

+ 𝑏(𝑁 − 𝑄)(𝑃 − 𝑅)2𝑘−1 =
𝑟90

𝑟90 + 1
𝑦90

2𝑘 , 

𝑎(𝑁 + 𝐿)(𝑁 − 𝑃 + 𝐿 +𝑀)2𝑘−1 + 𝑎(𝑁 − 𝐿)(𝑁 − 𝑃 − 𝐿 − 𝑀)2𝑘−1

+ 𝑏(𝑁 + 𝑄)(𝑁 − 𝑃 + 𝑄 − 𝑅)2𝑘−1

+ 𝑏(𝑁 − 𝑄)(𝑁 − 𝑃 − 𝑄 + 𝑅)2𝑘−1 =
1

𝑟𝑏 + 1
𝑦b

2𝑘 . 

Since these functions are non-linear, the Newton’s Method is applied to determine the 

unknown anisotropy parameters, 𝑎, 𝑏, 𝐿, 𝑀, 𝑁, 𝑃, 𝑄 and 𝑅. This method demands for the 

user to define an initial solution for the anisotropy parameters and since it is a non-linear 

system of equations, it can lead to different solutions. In this context, the authors recommend 

that the parameters should be bigger than zero. It is important to mention that if parameter 𝑘 

is included in the set of unknowns, then there will be 9 parameters to determine with only 8 

equations. In that case, it is necessary to define a minimization problem, which will try to 

find the set of anisotropy parameters that minimize the error between the yield criterion and 

the experimental values.  

The possibility of using the Biax parameter is also enabled for this criterion. It 

is easy to implement since it multiplies 𝑦b directly in the fourth and last of the equations 

(3.46). A new set of parameters is determined to define the transformed yield locus. 

3.3. Vegter Model 

Vegter and Van Den Boogaard (2006) proposed an adaptable advanced 

anisotropic yield criterion using second-order Bézier functions. The 2D yield curve is 
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divided into several segments. The two extremity points of each segment correspond to 

different stress conditions imposed by the experimental tests. These two serve as reference 

points 𝜎⃗𝑖 and 𝜎⃗𝑗 that, together with a hinge point 𝜎⃗ℎ, define the yield curve locally, with: 

 𝜎⃗𝑙𝑜𝑐𝑢𝑠 = (1 − 𝜇)
2𝜎⃗𝑖 + 2𝜇(1 − 𝜇)𝜎⃗ℎ + 𝜇

2𝜎⃗𝑗, (3.47) 

where 𝜇 is the Bézier interpolation factor defined such that 0 ≤ 𝜇 ≤ 1, as shown in Figure 

3.1. 

 

Figure 3.1. Bézier curve defined with two reference points and one hinge point (Vegter and Van Den 
Boogaard, 2006). 

 

Note that differentiating with respect to 𝜇 shows that, at 𝜇 = 0 and 𝜇 = 1, the 

Bézier curve has a tangent defined by the vectors (𝜎⃗ℎ − 𝜎⃗𝑖) at 𝜎⃗𝑖 and (𝜎⃗𝑗 − 𝜎⃗ℎ) at 𝜎⃗𝑗, 

respectively. Therefore, the yield function is continuously differentiable and assembling all 

the segments forms a smooth, convex, yield locus characteristic of polycrystalline metallic 

materials, as schematically shown in Figure 3.2. The associated flow rule dictates that the 

strain rate direction must be coaxial with the normal of the yield curve, so it also defines its 

tangent. 
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Figure 3.2. Bézier curve defined with two reference points and one hinge point (altered) (Vegter and Van 
Den Boogaard, 2006). 

The normalized interpolation function can be written as: 

 𝐹⃗ = (1 − 𝜇)2𝐴 + 2𝜇(1 − 𝜇)𝐵⃗⃗ + 𝜇2𝐶, (3.48) 

with 𝐴 and 𝐶 being the normalized reference stress points, depending on the segment, and 𝐵⃗⃗ 

the corresponding hinge point. This enables defining the principal stress vector 𝜎⃗ as: 

 𝜎⃗ = 𝜎̅𝐹⃗. (3.49) 

The reference points and their respective normal depend on the angle formed 

between the RD and the first principal stress direction, 𝛾. Considering the symmetries that 

exist for orthotropic materials, a Fourier series can be used to interpolate the normalized 

yield curve considering 𝛾. First, rotating a specimen by 180º gives the same stress state, so 

𝐹⃗⃗(𝛾) = 𝐹⃗(𝛾 + 𝜋). Symmetry also exists for 𝛾 = 0 and 𝛾 = 𝜋 2⁄ , giving 𝐹⃗(𝛾) = 𝐹⃗(−𝛾) and 

𝐹⃗(𝛾 + 𝜋 2⁄ ) = 𝐹⃗(−𝛾 + 𝜋 2⁄ ). To fulfill these conditions, only the even terms of a cosine 

function can be used. Both the values of stress and the gradients associated with them are 

needed, so the same formulation applies to the strain ratios. The following Fourier series is 

adopted: 

 𝐹⃗k(𝛾) = ∑ 𝜑⃗⃗k𝑚

𝑛

𝑚=0

cos2𝑚𝛾, (3.50) 

 𝜌un(𝛾) = ∑ 𝜚𝑚

𝑛

𝑚=0

cos 2𝑚𝛾. (3.51) 
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𝜑⃗⃗k𝑚 and 𝜚𝑚 are Fourier parameters and 𝑛 is the total number of tests minus 1; i.e. it is the 

number of cosine terms used for the expansion of the reference points and/or strain vectors. 

Note that index k is associated with the type of test performed and un in equation (3.51) 

corresponds to the uniaxial tensile test. The yield locus is fully defined with these Fourier 

series which approximate the various Bézier curves. 

Let the Vegter yield function be defined in the principal stress space by 𝑿 =

{𝜎11, 𝜎22, cos 2𝛾}. In order to find the strain rate direction, a relation between the stress state 

components and 𝑿 must be obtained from:  

 

𝜎11 =
1

2
(𝜎𝑥𝑥 + 𝜎𝑦𝑦 +√(𝜎𝑥𝑥 − 𝜎𝑦𝑦)

2
+ 4𝜎𝑥𝑦2 ), 

𝜎22 =
1

2
(𝜎𝑥𝑥 + 𝜎𝑦𝑦 − √(𝜎𝑥𝑥 − 𝜎𝑦𝑦)

2
+ 4𝜎𝑥𝑦

2 ), 

cos2𝛾 =
𝜎𝑥𝑥 − 𝜎𝑦𝑦

√(𝜎𝑥𝑥 − 𝜎𝑦𝑦)
2
+ 4𝜎𝑥𝑦2

=
𝜎𝑥𝑥 − 𝜎𝑦𝑦
𝜎11 − 𝜎22

, 

sin 2𝛾 =
2𝜎𝑥𝑦

√(𝜎𝑥𝑥 − 𝜎𝑦𝑦)
2
+ 4𝜎𝑥𝑦2

=
2𝜎𝑥𝑦

𝜎11 − 𝜎22
. 

(3.52) 

Making 𝑐 ≡ cos2𝛾 and 𝑠 ≡ sin 2𝛾 as a simplification, from these equations:  

 
𝜕𝑿

𝜕𝝈
=

[
 
 
 
 
 
 
𝜕𝜎11
𝜕𝜎𝑥𝑥

𝜕𝜎11
𝜕𝜎𝑦𝑦

𝜕𝜎11
𝜕𝜎𝑥𝑦

𝜕𝜎22
𝜕𝜎𝑥𝑥

𝜕𝜎22
𝜕𝜎𝑦𝑦

𝜕𝜎22
𝜕𝜎𝑥𝑦

𝜕𝑐

𝜕𝜎𝑥𝑥

𝜕𝑐

𝜕𝜎𝑦𝑦

𝜕𝑐

𝜕𝜎𝑥𝑦]
 
 
 
 
 
 

=

[
 
 
 
 
 
 
1

2
(1 + 𝑐)

1

2
(1 − 𝑐) 𝑠

1

2
(1 − 𝑐)

1

2
(1 + 𝑐) −𝑠

𝑠2

𝜎11 − 𝜎22
−

𝑠2

𝜎11 − 𝜎22
−

2𝑠𝑐

𝜎11 − 𝜎22]
 
 
 
 
 
 

. (3.53) 

Now the yield function can be defined by: 

 𝜕Φ

𝜕𝝈
= (

𝜕𝑿

𝜕𝝈
)
T 𝜕Φ

𝜕𝑿
, (3.54) 

or 
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{
  
 

  
 
𝜕Φ

𝜕𝜎𝑥𝑥
𝜕Φ

𝜕𝜎𝑦𝑦
𝜕Φ

𝜕𝜎𝑥𝑦}
  
 

  
 

=

[
 
 
 
 
 
 
1

2
(1 + 𝑐)

1

2
(1 − 𝑐)

𝑠2

𝜎11 − 𝜎22
1

2
(1 − 𝑐)

1

2
(1 + 𝑐) −

𝑠2

𝜎11 − 𝜎22

𝑠 −𝑠 −
2𝑠𝑐

𝜎11 − 𝜎22]
 
 
 
 
 
 

{
  
 

  
 
𝜕Φ

𝜕𝜎11
𝜕Φ

𝜕𝜎22
𝜕Φ

𝜕𝑐 }
  
 

  
 

. (3.55) 

Knowing that the interpolation function 𝐹(𝜇, 𝑐) is given by equation (3.49) it is possible to 

demonstrate (see ANNEX B.2) that:  

{
  
 

  
 
𝜕Φ

𝜕𝜎𝑥𝑥
𝜕Φ

𝜕𝜎𝑦𝑦
𝜕Φ

𝜕𝜎𝑥𝑦}
  
 

  
 

=
1

𝐹1
𝜕𝐹2
𝜕𝜇

−𝐹2
𝜕𝐹1
𝜕𝜇 [

 
 
 
 
1

2
(1 + 𝑐)

1

2
(1 − 𝑐) 𝑠2

1

2
(1 − 𝑐)

1

2
(1 + 𝑐) −𝑠2

𝑠 −𝑠 −2𝑠𝑐]
 
 
 
 

{
  
 

  
 

𝜕𝐹2
𝜕𝜇

−
𝜕𝐹1
𝜕𝜇

𝜎̅

𝜎11 − 𝜎22
(
𝜕𝐹2
𝜕𝑐

𝜕𝐹1
𝜕𝜇

−
𝜕𝐹1
𝜕𝑐

𝜕𝐹2
𝜕𝜇
)
}
  
 

  
 

. (3.56) 

A singularity can be observed for 𝜕Φ 𝜕𝜎𝑥𝑦⁄  at the equibiaxial point, since the 

direction of the principal stresses is undetermined, as highlighted on the third row of equation 

(3.56). To solve this, the principal components of equation (3.48) are defined as follows: 

 𝐹𝑖(𝜇, 𝑐) = (1 − 𝜇)
2𝐴𝑖(𝑐) + 2𝜇(1 − 𝜇)𝐵𝑖(𝑐) + 𝜇

2𝐶𝑖(𝑐), (3.57) 

whose derivatives are: 

 

𝜕𝐹𝑖
𝜕𝜇

= 2[−(1 − 𝜇)𝐴𝑖(𝑐) + (1 − 2𝜇)𝐵𝑖(𝑐) + 𝜇𝐶𝑖(𝑐)], 

𝜕𝐹𝑖
𝜕𝑐

= (1 − 𝜇)2
𝑑𝐴𝑖
𝑑𝑐

+ 2𝜇(1 − 𝜇)
𝑑𝐵𝑖
𝑑𝑐

+ 𝜇2
𝑑𝐶𝑖
𝑑𝑐
. 

(3.58) 

This enables to state that: 

 

𝜕𝐹2
𝜕𝑐

𝜕𝐹1
𝜕𝜇

−
𝜕𝐹1
𝜕𝑐

𝜕𝐹2
𝜕𝜇

= [(1 − 𝜇)2
𝑑𝐴2
𝑑𝑐

+ 2𝜇(1 − 𝜇)
𝑑𝐵2
𝑑𝑐

+ 𝜇2
𝑑𝐶2
𝑑𝑐
]
𝜕𝐹1
𝜕𝜇

− [(1 − 𝜇)2
𝑑𝐴1
𝑑𝑐

+ 2𝜇(1 − 𝜇)
𝑑𝐵1
𝑑𝑐

+ 𝜇2
𝑑𝐶1
𝑑𝑐
]
𝜕𝐹2
𝜕𝜇
. 

(3.59) 

Therefore, applying equation (3.49), one can write: 

 𝜎11 − 𝜎22 = 𝜎̅[(1 − 𝜇)
2(𝐴1 − 𝐴2) + 2𝜇(1 − 𝜇)(𝐵1 − 𝐵2) + 𝜇

2(𝐶1 − 𝐶2)]. (3.60) 

Considering that 𝐴 is the equibiaxial point, then 𝐴1 = 𝐴2 = 𝐹bi. This point is independent 

of 𝛾 and so 𝑑𝐴1 𝑑𝑐⁄ = 𝑑𝐴2 𝑑𝑐⁄ = 0. With this, a new equation can be written 
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𝜎̅

𝜎11 − 𝜎22
(
𝜕𝐹2
𝜕𝑐

𝜕𝐹1
𝜕𝜇

−
𝜕𝐹1
𝜕𝑐

𝜕𝐹2
𝜕𝜇
)

=
[2𝜇(1 − 𝜇)

𝑑𝐵2
𝑑𝑐 + 𝜇

2 𝑑𝐶2
𝑑𝑐
]
𝜕𝐹1
𝜕𝜇 −

[2𝜇(1 − 𝜇)
𝑑𝐵1
𝑑𝑐 + 𝜇

2 𝑑𝐶1
𝑑𝑐
]
𝜕𝐹2
𝜕𝜇

2𝜇(1 − 𝜇)(𝐵1 − 𝐵2) + 𝜇2(𝐶1 − 𝐶2)
. 

(3.61) 

Notice that for a number of directions equal to the number of Fourier terms, the 

Fourier coefficients are obtained by solving a linear system of equations, for the stress values 

and the strain rate, separately. For instance, if the results are known for 3 directions (𝑛=2), 

there are 3 Fourier terms related to stresses and other 3 with the strain ratios. The calculation 

of the hinge point is shown in ANNEX B.2. 

Considering as reference Figure 3.2, one can consider that to fully define the 

yield locus one needs to perform 3 uniaxial tensile tests, 3 plane strain tests, two shear tests 

and an equibiaxial test, leading to a total of 17 parameters (Fourier terms). This 

experimentally heavy and rather complex formulation is unpractical from an industry 

standpoint. Further research led to more applicable versions of this model, namely the Vegter 

lite and the Vegter 2017 versions (Vegter, ten Horn and Abspoel, 2009)(Abspoel et al., 

2017). The latter is a new addition to the AutoForm® software, being implemented in the R8 

version. 

3.4. Vegter 2017 

Tata Steel® developed a new approach in an attempt to diminish the experimental 

burden that the Vegter model brings with its formulation, without losing the accuracy in the 

description of the material orthotropic behavior (Abspoel et al., 2017). This approach 

correlates all the experimental results needed as inputs for the original model to the 

information gathered exclusively from tensile tests. This was done for different classes of 

materials to assess its validity. The correlation begins with the definition of the equivalent 

strain using the plastic work principle:  

 𝑌𝑑𝜀eq = 𝜎11𝑑𝜀11 + 𝜎22𝑑𝜀22 + 𝜎33𝑑𝜀33. (3.62) 

For a uniaxial tensile test, this equation reduces to the form:  

 𝑌𝑑𝜀eq = 𝜎11𝑑𝜀11. (3.63) 

For the bulge test, considering incompressibility:  
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 𝑌𝑑𝜀eq = 𝜎b𝑑𝜀11 + 𝜎b𝑑𝜀22 = −𝜎b𝑑𝜀33 = 𝜎b|𝑑𝜀33|. (3.64) 

Considering isotropic hardening means that the ratio between the first principal stress and 

the plastic flow stress, 𝐹un, as well as the ratio between the biaxial stress and the plastic flow 

stress, 𝐹b, are constant.  

 𝐹un =
𝜎11
𝑌
, 𝐹b =

𝜎𝑏
𝑌
. (3.65) 

Rewriting:  

 𝑑𝜀eq = 𝐹un𝑑𝜀11, 𝑑𝜀eq = 𝐹b|𝑑𝜀33|. (3.66) 

Assuming that the yield stress for the uniaxial tensile test along RD is the reference 

establishes that 𝐹un = 1. This means that for the uniaxial tensile test, the equivalent strain is 

equal to the axial strain, as expected. For the bulge test, by integration:  

 𝜀eq = 𝐹b|𝜀33|. (3.67) 

The procedure compares the equivalent plastic work of the reference uniaxial test in the RD 

with the other different loading tests, as follows:  

 𝜎test𝜀test = 𝜎ref𝜀ref. (3.68) 

The uniaxial stress factors, 𝐹un0, 𝐹un45 and 𝐹un90should be determined using as 

reference the mechanical properties obtained in the uniaxial tensile test. Abspoel et al. (2017) 

noted that the yield strength is not a good choice for an input parameter to the model. This 

comes from the fact that some materials exhibit the Yield Point Elongation phenomenon, 

where at low strain values the stress-strain curve is unstable. Therefore, the authors suggest 

to calculate the uniaxial stress factors based on the tensile strength, 𝑅m, and the uniform 

elongation, 𝐴g, instead. These parameters were chosen based on experiments that registered 

a variation of more or less 1% for the uniaxial factors, with various materials evaluated. 

However, since the 𝑅m and 𝐴g points do not coincide at equal plastic work for the different 

directions, a correction must be done. Rewriting the equivalent plastic work expression:  

 𝜀ref =
𝜎un,𝜃𝜀un,𝜃
𝜎ref

= 𝐹un,𝜃𝜀un,𝜃 . (3.69) 

Once again, noting that the reference is the uniaxial tensile test in the RD, at equal plastic 

work:  

 𝐹un,𝜃 =
𝜀ref
𝜀un,𝜃

=
𝜀un,0
𝜀epw,𝜃

. (3.70) 
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where the subscript epw corresponds to equal plastic work. 

To find an equivalent point for each orientation 𝜃, Nadai’s (or Ludwick’s) 

hardening law is used.  

 𝜎un,𝜃 = 𝐶un,𝜃(𝜀un,𝜃)
𝑛un,𝜃

. (3.71) 

Considère’s criterion states that at the necking point 𝜎 = (𝑑𝜎 𝑑𝜀⁄ ), meaning that:  

 

𝑛un,𝜃 = 𝜀𝐴g,𝜃 = ln (1 +
𝐴g,𝜃

100
), 

𝜎un,𝜃 = 𝜎𝐴g,𝜃 = 𝑅m,𝜃 (1 +
𝐴g,𝜃

100
). 

(3.72) 

The plastic work is obtained by:  

 𝑊𝜃 = ∫ 𝜎un,𝜃𝑑𝜀
𝜀

0

=
𝐶un,𝜃

𝑛un,𝜃 + 1
(𝜀un,𝜃)

𝑛un,𝜃+1
. (3.73) 

This allows determining that at the onset of necking, for the RD:  

 𝑊0 =
𝐶𝐴g,0

𝜀𝐴g,0 + 1
(𝜀𝐴g,0)

𝜀𝐴g,0+1

. (3.74) 

Since the same work must be achieved for the other directions, the strain at equal plastic 

work is defined as:  

 
𝜀epw,𝜃 = [(𝜀𝐴g,𝜃 + 1)

𝑊0

𝐶𝐴g,𝜃
]

(
1

𝜀𝐴g,𝜃+1
)

. 
(3.75) 

The uniaxial factors can now be obtained using equation (3.70). To determine the remaining 

stress factors, namely for the biaxial, plane strain and shear points, the anisotropy 

coefficients and the uniaxial factors are used.  

Starting with the biaxial point, the authors observed that its value rises with the 

increase of the 𝑟-values (for all directions) and the uniaxial stress factors. Qualitatively, this 

corresponds to the behavior predicted by the Hill’48 yield criterion. To further analyze the 

correlations, the authors introduce the average of the uniaxial stress factors:  

 𝐹un,av =
𝐹un,0 + 2𝐹un,45 + 𝐹un,90

4
. (3.76) 

The authors analyzed the change of the normalized biaxial factor 𝐹bi 𝐹un,av⁄  depending on 

𝑟m, for different strain percentages. The results collected are shown in Figure 3.3. Note that 

higher values of 𝑟m tend to increase the dispersion of the results. Inversely, lower values of 

𝑟m show practically no change in the biaxial factor. An average of the evolution was chosen 
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to represent the trend. The biaxial factor at 5% strain was selected and validated using FE 

simulation. This level of strain avoids the initial transitory effects of the stress factor for 

some materials. 

 

Figure 3.3. Normalized biaxial factor depending on the average r-value for different levels of strain (Abspoel 
et al., 2017). 

A Dirac function is used to fit the measured points:  

 
𝐹bi = 𝐹un,av(

𝐹bi,min
1 + 𝑓Dirac

+
𝐹bi,max

1 +
1

𝑓Dirac

), 

𝑓Dirac = 𝑒
[𝑎Dirac(𝑟m−𝐹b,trans)], 

(3.77) 

with 𝐹bi,min = 0.97, 𝐹bi,max = 1.14, 𝐹bi,trans = 1.22 and 𝑎Dirac = 3.4. The anisotropy 

coefficient for the biaxial point is considered equal to the one defined by the Hill’48 criterion. 

The experiments done reveal that for most materials this is valid. In a scenario where 

(𝑟0/𝑟90) > 1 it is recommended to measure this parameter experimentally. 

The plane strain point rises with the increase of the 𝑟-value and the uniaxial 

stress factor, both for the respective test direction. A similar approach to the one adopted for 

the biaxial point is followed, where the first stress component of the plane strain factor is 

taken at 5% strain. The Dirac function in this case is:  
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𝐹ps,𝜃 = 𝐹un,𝜃(

𝐹ps,min

1 + 𝑓Dirac
+

𝐹ps,max

1 +
1

𝑓Dirac

), 

𝑓Dirac = 𝑒[𝑎Dirac(𝑟𝜃−𝐹ps,trans)], 

(3.78) 

with 𝐹ps,min = 0.827, 𝐹ps,max = 1.315, 𝐹ps,trans = 0.5 and 𝑎Dirac = 1.2. 

The shear point rises with the increase of the uniaxial stress factor for the 90º 

direction. Although it is influenced by the uniaxial factor for the RD, this always has the 

value of one, as stated earlier in the text. The authors make a distinction between the 0º-90º 

and 45º-135º stress spaces. For the former, the following averages are considered:  

 
𝐹un,av0−90 =

𝐹un,0 + 𝐹un,90
2

, 

𝑟m0−90
=
𝑟0 + 𝑟90
2

. 

(3.79) 

The Dirac function becomes:  

 
𝐹sh,0 = 𝐹sh,90 = 𝐹un,av0−90 (

𝐹sh,min
1 + 𝑓Dirac

+
𝐹sh,max

1 +
1

𝑓Dirac

), 

𝑓Dirac = 𝑒
[𝑎Dirac(𝑟m0−90−𝐹sh,trans)]. 

(3.80) 

For the latter, symmetry in that plane enables to consider that 𝐹un,av45−135 = 𝐹un,45 and 

𝑟m45−135
= 𝑟45. Therefore, the stress factor is defined:  

 
𝐹sh,45 = 𝐹un,av45−135 (

𝐹sh,min
1 + 𝑓Dirac

+
𝐹sh,max

1 +
1

𝑓Dirac

), 

𝑓Dirac = 𝑒[𝑎Dirac(𝑟m45−135−𝐹sh,trans)]. 

(3.81) 

For both cases, 𝐹sh,min = 0.757, 𝐹sh,max = 0.525, 𝐹sh,trans = 0 and 𝑎Dirac = 1.6. 

The final point to be determined is the second stress component of the plane 

strain condition. In this case, the Vegter lite yield criterion is used, since regular experimental 

tests cannot determine this point. The difference between the original criterion and the lite 

version is that a weight factor 𝑤 is introduced. This was an initial attempt to reduce the 

number of experiments needed to define the yield criterion, where the shear and plane strain 

points are not considered in the Bézier interpolation and an approximation is made instead. 

The Vegter lite equation for plane strain is:  
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[
𝐹ps1,𝜃
𝐹ps2,𝜃

] =

(1 − 𝜇)2 [
𝐹un1,𝜃
𝐹un2,𝜃

] + 2𝜇𝑤(1 − 𝜇) [
𝐹h1,𝜃
VL

𝐹h2,𝜃
VL
] + 𝜇2 [

𝐹bi1
𝐹bi2

]

(1 − 𝜇)2 + 2𝜇𝑤(1 − 𝜇) + 𝜇2
, 

(3.82) 

where similarities with the original can be seen by recalling equation (3.48). The first and 

second principal stress components of the Vegter lite hinge points are given by:  

 
𝐹h2,𝜃
VL =

𝐹bi1 + 𝜌bi,𝜃𝐹bi2 − 𝐹un1,𝜃 − 𝜌un,𝜃𝐹un2,𝜃
𝜌bi,𝜃 − 𝜌un,𝜃

, 

𝐹h1,𝜃
VL = 𝐹bi1 − 𝜌bi,𝜃(𝐹h2,𝜃

VL − 𝐹bi2), 

(3.83) 

with 𝜌un,𝜃 = −[𝑟𝜃 (1 + 𝑟𝜃)⁄ ], 𝜌bi,0 = (𝑟0/𝑟90), 𝜌bi,45 = 1 and 𝜌bi,90 = (𝑟90/𝑟0). Taking 

into account the associated flow rule and the equations (B.12) and (B.13), the next definition 

can be written:  

 𝜌ps =
𝑑𝜀22
𝑑𝜀11

=

𝜕Φ
𝜕𝜎22
𝜕Φ
𝜕𝜎11

=
−
𝜕𝐹1
𝜕𝜇
𝜕𝐹2
𝜕𝜇

. (3.84) 

To find the appropriate 𝜇 and 𝑤 to define the second stress component of the plane strain 

point, recall that the corresponding strain rate is zero. This means that the denominator of 

the previous equation must be zero also. After differentiating:  

 
𝜇2[(𝑤 − 1)(𝐹bi1 − 𝐹un1,𝜃)] + 𝜇[𝐹bi1 − 𝐹un1,𝜃 − 2𝑤(𝐹h1,𝜃

VL − 𝐹un1,𝜃)]

+ 𝑤(𝐹h1,𝜃
VL − 𝐹un1,𝜃) = 0. 

(3.85) 

This equation corresponds to a second order polynomial where 𝑎 = [(𝑤 − 1)(𝐹bi1 −

𝐹un1,𝜃)], 𝑏 = [𝐹bi1 − 𝐹un1,𝜃 − 2𝑤(𝐹h1,𝜃
VL − 𝐹un1,𝜃)] and 𝑐 = 𝑤(𝐹h1,𝜃

VL − 𝐹un1,𝜃). 𝜇 can be 

easily obtained with the quadratic formula. Then, the weight factor can be determined from 

equation (3.82):  

 𝑤 =
(1 − 𝜇)2(𝐹un1,𝜃 − 𝐹ps1,𝜃) + 𝜇

2(𝐹bi1 − 𝐹ps1,𝜃)

2𝜇(1 − 𝜇)(𝐹ps1,𝜃 − 𝐹h1,𝜃
VL )

. (3.86) 

with 𝑤 > 0. An iterative process is done to determine 𝜇 and 𝑤, to assure that 𝐹ps1,𝜃  and 

𝐹ps2,𝜃  obey to equation (3.78). The Bézier curves located between the second components 

of the uniaxial and plane strain points, as well as between plane strain and the biaxial point, 

need to be defined. The factor 𝛼𝑝𝑠,𝜃 is introduced in the formulation: 

 𝛼ps,𝜃 =
𝐹ps2,𝜃 − 𝐹h2,𝜃_unps

𝐹h2,𝜃_bips − 𝐹h2,𝜃_unps
. (3.87) 
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The two new hinge points can be calculated with: 

 

𝐹h2,𝜃_unps =
𝐹ps1,𝜃 + 𝜌ps,𝜃𝐹ps2,𝜃 − 𝐹un1,𝜃 − 𝜌un,𝜃𝐹un2,𝜃

𝜌ps,𝜃 − 𝜌un,𝜃
, 

𝐹h2,𝜃_bips =
𝐹bi1 + 𝜌bi𝐹bi2 − 𝐹ps1,𝜃 − 𝜌ps,𝜃𝐹ps2,𝜃

𝜌bi − 𝜌ps,𝜃
, 

(3.88) 

where, in this case, 𝜌ps,𝜃 = 0. Figure 3.4 illustrates all these stress factors and the 

corresponding hinge points. Having all the factors determined, all that is left is to apply the 

original Vegter formulation to obtain the yield curve.  

 

Figure 3.4. Representation of the stress factors, F, and hinge points, Fh, for the Vegter and Vegter lite 
models (Abspoel et al., 2017). 

3.4.1. Convexity check 

One detail that cannot be overlooked with the Vegter models is the convexity 

check. For some highly anisotropic materials, the yield locus might become non-convex, 

since it is purely interpolated with stress values and strain ratios. Tata Steel® developed an 

algorithm for this purpose, considering the curvature of the 3D surface generated by the three 

planar stress components, 𝜎𝑥𝑥, 𝜎𝑦𝑦  and 𝜎𝑥𝑦. This surface is discretized into several cross-

sections, either parallel or nearly perpendicular to the equibiaxial line. The curvature is 

calculated for each cross-section. A warning will appear if convexity is not met and it is 

advised to change the input parameters. 
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3.5. Summary 

Table 3.1 shows all the criteria present in AutoForm® R8 and the corresponding 

input values required. Note that Vegter (Full) is the original formulation, as described in 

section 3.3. At the moment, it can only be used with information provided in an ASCII 

material file, unlike the 2017 version. Barlat 1989 yield criterion was not used in this work, 

although it is one possible option. It is typically used to study aluminum alloys and its main 

advantage over Hill’48 is the varying exponent, which BBC 2005 also provides. In the 

software, the exponent appears as M for all the criteria that possess it. In the case of BBC 

2005, it is equivalent to 2𝑘 and for Hill’48 it is equal to 2. The software also gives the option 

to use BBC 2005 with the biaxial information of either Hill’48 or Barlat’89, which is 

represented by the arrows in the table.  

 

Table 3.1. Inputs needed for the yield criterion used in AutoForm® (AutoForm® R8 software manual, 2018). 

 

 

 

 

 

 

 



 

 

  NON-LINEAR STRAIN PATHS 

 

 

José António Assunção Marzia  45 

 

 

4. NON-LINEAR STRAIN PATHS 

As stated previously, the FLC alone is not enough to characterize the formability 

of materials subjected to non-linear strain paths. A phenomenological approach to study 

multi-step forming operations using the FLC concept was proposed by Volk et al., (2012) 

and was implemented in AutoForm®. The concept is explained in the following section. 

4.1. Time Dependent Evaluation Method  

Volk and Hora (2011) start by discussing the importance of accurately evaluating 

experimentally the beginning of the strain instability, to ensure a proper definition of the 

FLC. Later named Time Dependent Evaluation Method (TDEM), its premise is the notion 

that the remaining plastic strain localizes in small bands or regions, leading to high thinning 

rates. Their studies remark that the thinning rate is a suitable physical quantity to identify 

the beginning of the instability. 

The TDEM is divided into several steps, starting with the creation of a grid in 

the specimen whose cross points serve as references for a global coordinate system. These 

can be treated as the global coordinates of a finite element mesh and studied accordingly. 

The experimental test should then be recorded with sufficient pictures per unit time, with 

focus on the elements located at the instability zone. For every picture 𝑘, 𝑖 elements are 

selected, each with its respective thinning rate, 𝜀𝑖̇
𝑘. By sorting them, from the smallest to 

biggest, Γ𝑘 is obtained, such as: 

 Γ𝑘 = {𝜀1̇
𝑘, 𝜀2̇

𝑘 , … , 𝜀𝑛̇
𝑘}, with 𝜀𝑖̇−1

𝑘 ≤ 𝜀𝑖̇
𝑘 for 𝑖 = 2,… , 𝑔 and 𝑘 = 1,… , 𝑏, (4.1) 

where 𝑔 is the total number of elements and 𝑏 the total number of pictures. To determine the 

thinning rate, or the strain rate in the thickness direction, the deformation gradient 𝐅 and its 

derivative are needed. Defining 𝐮 as the displacement vector and 𝐗 as the reference position 

vector (initial coordinates), 𝐅 and its time derivative 𝐅̇ can be defined, in index notation, as 

follows: 

 𝐹𝑖𝑗 = 𝐼𝑖𝑗 +
𝜕𝑢𝑖
𝜕𝑋𝑗

. (4.2) 
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 𝐹̇𝑖𝑗 =
𝜕𝐹𝑖𝑗
𝜕𝑡
. (4.3) 

The velocity gradient tensor 𝐋 can be obtained from equations (4.2) and (4.3) as follows: 

 𝐿𝑖𝑗 = 𝐹̇𝑖𝑗𝐹𝑖𝑗
−1. (4.4) 

The deformation rate tensor 𝐃 is defined as: 

 𝐷𝑖𝑗 =
1

2
(𝐿𝑖𝑗 + 𝐿𝑖𝑗

T). (4.5) 

This tensor is deviatoric, which means that its in-plane eigenvalues 𝐷1 and 𝐷2, allow to 

determine the thinning rate as follows: 

 𝜀̇ = |𝐷3| = −(𝐷1 + 𝐷2). (4.6) 

The maximum thinning rate 𝜀̅ṁax  is defined by the arithmetic mean value of the five highest 

thinning rates in the second last picture: 

 𝜀̅ṁax =
1

5
∑ 𝜀𝑖̇

𝑏−1

𝑔

𝑖=𝑔−4

. (4.7) 

The following step requires the definition of the thinning rate limit, 𝛼𝜀̅ṁax, which 

corresponds to the value after which it is assumed that an element achieves necking. This 

allows defining the set 𝑁, constituted by all the elements that surpass 𝛼𝜀̅ṁax , and 𝑁𝑘 by the 

thinning rates present in 𝑁, for every picture 𝑘: 

 𝑁 = ∀ 𝐸𝑙𝑒𝑚𝑒𝑛𝑡 𝑤𝑖𝑡ℎ 𝜀𝑖̇
𝑏−1 ≥ 𝛼𝜀̅ṁax, and (4.8) 

 𝑁𝑘 = { 𝜀1̇
𝑘

 
𝑁 , 𝜀2̇

𝑘
 
𝑁 , … , 𝜀𝑛̇

𝑘
 
𝑁 }. (4.9) 

The factor 𝛼 is chosen so that the set 𝑁𝑘 has the desired proportion of number of elements 

per grid size. Finally, this enables to calculate 𝜀̅ṙep
𝑘  as the arithmetic mean value of all 

elements (𝑛) present in each set 𝑁𝑘, such as: 

 𝜀̅ṙep
𝑘 =

1

𝑛
∑ 𝜀𝑖̇

𝑘
 
𝑁

𝑛

𝑖=1

. (4.10) 

Figure 4.1 represents the characteristic diagram obtained by plotting the representative 

thinning rate 𝜀̅ṙep
𝑘  for every picture. Two different trends can be observed. One is the stable 

and nearly homogeneous beginning of deformation. The other is the unstable deformation 

until fracture occurs, originated by the necking. The beginning of the instability is 
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determined by fitting linear trend lines, using the least square method, to each trend. It will 

correspond to the closest value relative to the cross point of the two regression lines (marked 

in green in Figure 4.1). Then, the limit in-plane strains are calculated as the mean value of 

the points in the localized area. 

 

Figure 4.1. Detection of the beginning of the strain instability based of the linear curve fitting using the least 
square method (Volk and Hora, 2011). 

4.2. Generalized Forming Limit Concept 

In order to systematize the influence of strain path changes on the FLC, Volk et 

al., (2012) performed an extensive experimental study focused on bi-linear strain paths. 

Figure 4.2 shows the results corresponding to the formability evaluation using the TDEM 

for a dual phase steel, HC300X, with a thickness of 1 mm.  The pre-strain is performed using 

either oversized tensile test specimens (points 1 and 2) or oversized Marciniak test specimens 

(points 3 to 6). These oversized specimens enable the post forming with standard Nakajima 

tests, following four post-strain directions. The results are shown in the curves identified 

with the same numbers. Each post-strain point shown corresponds to the analysis of three 

samples, for a total of 72 experiments. The monotonic FLC is also plotted for reference. It 

should be noted that for some loading sequences the formability of the material increases, as 

is the case of uniaxial pre-strain followed by biaxial post-strain. However, the opposite can 

also be observed, for instance for biaxial pre-strain followed by plane strain. 
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Figure 4.2. Experimental forming limit diagram for bilinear strain paths using time dependent evaluation 
method for six different pre-strains (Volk et al., 2012). 

Every strain path can be defined by its strain ratio 𝛽: 

 𝛽 = 𝜀2 𝜀1⁄ , (4.11) 

where 𝜀1 and 𝜀2 are the major and minor in-plane strains, respectively. If a straight line is 

drawn from the origin until it intersects the linear FLC and is measured, the total strain path 

length 𝑙FLC can be obtained. Similarly, any random point in that line creates a linear strain 

path length 𝑙 with the origin. This means that, for a fixed 𝛽 value, there is a unique strain 

path length 𝑙(𝛽) given by: 

 𝑙(𝛽) = √(1 + 𝛽2)𝜀1
2. (4.12) 

Therefore, this strain path length can be compared with the corresponding total strain path 

length 𝑙FLC(𝛽). This is done by introducing the strain path length ratio 𝜆(𝛽) as follows: 

 𝜆(𝛽) = 𝑙(𝛽) 𝑙FLC(𝛽)⁄ . (4.13) 

When considering bi-linear strain paths, Volk et al., (2012) suggest that the pre 

and post forming strain path length ratios, 𝜆pre and 𝜆post respectively, can also be calculated 

separately for each specific bilinear strain history. According to the authors, this enables a 

way to analyze the forming limit for bilinear strain paths. In this context, the total strain path 

length ratio 𝜆 is introduced to serve as a predictor for the beginning of the instability, as 

follows: 

 𝜆 = 𝜆pre + 𝜆post =
𝑙(𝛽pre)

𝑙FLC(𝛽pre)
+

𝑙(𝛽post)

𝑙FLC(𝛽post)
 (4.14) 
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This enables to parameterize the forming limit strain as a function of the strain ratio and the 

strain path length. However, it should be noted that in order to evaluate the post forming 

strain path length 𝑙(𝛽post), it is necessary to know the post-forming FLC for that specific 

bilinear path. Only then can the post forming strain path length be determined and compared 

to the total strain path length of the linear FLC for the same post-strain ratio, 𝑙FLC(𝛽post). 

Figure 4.3 shows the interpolation of four post-strains of the previously mentioned 

experiments, forming a non-linear FLC. These points were initially plotted together with the 

linear FLC for reference. The pre-strain was performed considering a biaxial strain path 

(𝛽 = 1.0), leading to point 5, with a total strain path length indicated in blue. The post-strain 

was performed close to uniaxial tensile conditions for point 51 (𝛽 ≈ −0.5), close to plane 

strain for points 52 and 53 (𝛽 ≈ 0.0) and close to biaxial strain for point 54 (𝛽 ≈ 1.0). Note 

that these post-strain points are plotted at the beginning of the strain instability, as 

determined using the TDEM. The diagram on the right represents the value of total strain 

path length ratio in respect to necking, for each of the bilinear strain paths. It clearly shows 

that, for points 51, 52 and 53, when 𝛽pre ≠ 𝛽post , the total strain path length ratio is inferior 

to 1. This is to be expected considering that a biaxial expansion followed by any different 

monotonic loading typically leads to a loss in formability. This loss is translated into a 

decrease of the total strain path length ratio. It should be clear that considering the non-linear 

FLC as the post forming reference would lead to the post forming strain path length ratio to 

be equal to 1.0 for all points and, consequentially, for the total strain path length ratio to be 

higher than 1.0 for every path where 𝛽pre ≠ 𝛽post. Therefore, the total strain path length 

ratio would lose its meaning, highlighting the importance of using the linear FLC as the 

reference for both total pre- and post-strain path length. Logically, since the post-strain is 

performed until necking occurrence, if there was no change between 𝛽pre and 𝛽post then 𝜆 =

1.0 and the linear FLC would be reached for the four strain paths. Therefore, Volk and Suh 

(2014) recognized that the total strain path length ratio can be seen as a measure of exhausted 

formability. 

Figure 4.4 expresses the parameterization focusing only on point 51, in order to 

better explain the procedure. The biaxial pre-forming (𝛽pre = 0.97) was performed until 

𝜀1 = 0.180 and 𝜀2 = 0.167. The uniaxial post-forming (𝛽pre = −0.36) corresponds to 𝜀1 =

0.120 and 𝜀2 = −0.040. Note that to evaluate 𝜆post it is necessary to reposition the strain 
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path on the origin to establish the linear FLC as the reference. Furthermore, the necking point 

after post-forming happens to nearly coincide with the linear FLC, but for a value of 𝜆 =

0.63, substantially inferior to 1.0. 

 

 

Figure 4.3. Parameterization of the four experimentally evaluated necking points, for a pre-strain under 
biaxial loading conditions (point 5) and linear interpolation between the necking points, in the plane 

defined by the strain ratio and the total strain path length ratio (Volk et al., 2012). 

 

Figure 4.4. Parameterization of the bilinear strain path with biaxial pre-forming and uniaxial post-forming  
(Volk et al., 2012). 

Volk et al., (2012) suggest the use of the space defined by the pre-strain ratio 

(𝛽pre) and the pre-strain path length ratio (𝜆pre) to build a metamodel that enables the 

estimate of the post-strain path length for any strain ratio. They suggest to mark specific 

points in this space such that it is possible to divide it in four-node elements. Figure 4.5 

shows an example of this procedure, such that points 1 to 6 are equivalent to the ones in 

Figure 4.2, i.e. they correspond to points on the safe side of the FLC. Points 7 to 9 present 
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𝜆pre = 0, which means that no deformation has occurred and, consequently, they are free to 

post-form until reaching the limit of the linear FLC. Points 10 to 12 come directly from the 

FLC and show 𝜆post = 0, i.e. there is no formability left for post-strain. The definition of 

these points enables the construction of a mesh of 12 base points (or nodes) that form several 

domains (8 finite elements). The authors proposed the use of four-node Lagrange elements, 

meaning that an isoparametric approximation is adopted to define the pre-strain ratio (𝛽pre) 

and the pre-strain path length ratio (𝜆pre), for any strain path, as follows: 

 

Figure 4.5. Metamodel to enable the estimate of the post-strain path length for any strain ratio, based on 
the linear interpolation (four-node Lagrange element) of reference points (altered) (Volk et al., 2012). 

 𝛽pre =∑𝛽𝑖𝜓𝑖(𝜉, 𝜂)

4

𝑖=1

 (4.15) 

 𝜆pre =∑𝜆𝑖𝜓𝑖(𝜉, 𝜂)

4

𝑖=1

 (4.16) 

where 𝜓𝑖 represents the isoparametric shape functions and 𝜉 and 𝜂 the natural coordinates. 

Figure 4.5 shows the example of the location of a new point presenting 𝛽pre = 0.70 and 

𝜆pre = 0.25. Moreover, for each one of the 12 base points, the metamodel also stores the 

experimental values available for 𝛽post and 𝜆post (non-linear post-forming FLC), as 

schematically shown in Figure 4.6, for the point selected in Figure 4.5. This enables to 

predict the post-strain length ratio for whichever pre-strain state desired or, in other words, 

for arbitrary 𝛽pre, 𝜆pre and 𝛽post. The estimation is based on the necking points for the 

corresponding domain, with a scalar product approximation between the calculated path 
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length ratio and the interpolation functions. This is also schematically represented in Figure 

4.6, assuming that 𝛽post = −0.3 for the point in analysis. Note that, since for each pre-strain 

point the non-linear post-forming FLC is stored, the strain state can also be calculated 

inversely, i.e. by using equations (4.11) and (4.12) after relocating the point to its equivalent 

position in the linear FLC. 

 

Figure 4.6. Prediction using isoparametric approximation of the post forming strain path length ratio (Volk 
et al., 2012). 

It should be mentioned that the total strain path length ratios can be stored in a 

database for software implementation (Jocham et al., 2015), in order to avoid its evaluation 

during the numerical simulation. A good way to look at this is by constructing the response 

surfaces of the total strain path length ratio as function of 𝛽pre and 𝛽post for a specific 𝜆pre, 

as shown in Figure 4.7. 

 

 

Figure 4.7. Response surfaces of total strain path length ratio for different pre-forming strain path length 
ratio (Volk et al., 2012). 

With the logic exposed for bi-linear strain paths, Volk and Suh (2014) proposed 

a phenomenological approach which became the basis for evaluating non-linear strain paths 
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in AutoForm®, i.e. the Generalized Forming Limit Concept (GFLC). It extends the approach 

from bilinear strain-paths to arbitrary non-linear ones, consisting of an unlimited number of 

individual strain increments. This is possible since the established metamodel takes a given 

pre-strain state and predicts the remaining formability. But it can also be used the other way 

around. Given a post-strain it can calculate the equivalent pre-strain for each direction. In 

other words, it searches for the pre-strain states that have the same exhausted formability 

(𝜆post). This is defined by the authors has the principle of equivalent pre-forming, as shown 

in Figure 4.8, for 𝜆post = 0.5 and three different post-forming directions. One important 

thing to note is that the points that have equivalent pre forming do not necessarily have the 

same equivalent plastic strain. This is the reason why the equivalent plastic strain is not a 

good measure for determining non-linear strain paths.  

 

 

Figure 4.8. Distribution of equivalent pre-strains of HC300X with the same exhausted formability  for three 
post forming directions: (a) uniaxial, (b) plane strain and (c) biaxial direction (Volk and Suh, 2014). 

 

To expand the concept to multilinear strain paths a new parameter is introduced, 

the corrected strain path length ratio: 

 𝜆cor = 𝜆pre + [1 − (𝜆pre + 𝜆post)] = 1 − 𝜆post. (4.17) 

This parameter enables the transformation of a bilinear strain path into a linear equivalent 

with the same remaining formability. In other words, it serves as the correction of the pre-

strain path length ratio 𝜆pre, of a previous strain ratio 𝛽pre, to an equivalent one with the 

current strain ratio 𝛽post, hence the name. 
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Figure 4.9. Application of the principle of equivalent pre-forming and modified parameterization with the 

fixed =: (a) equivalent pre and post-strain in plane strain direction, (b) parameterization of the bilinear 

deformation history, (c) its linearization with corrected strain path length ratio cor (Volk and Suh, 2014). 

 

Figure 4.9 (a) shows a non-linear strain path in blue that presents 𝛽pre =

0.97; 𝜆pre = 0.27 and 𝛽post = 0.0; 𝜆post = 0.40. The linear corrected one, in orange, 

highlights that point 2 was obtained by exhausting all of the remaining formability in plane 

strain (𝜆post), or in other words, it represents necking. Point 1 is translated to its new position 

by changing its original 𝜆pre to 𝜆cor, as shown in Figure 4.9 (b) and (c). Note that 

repositioning point 1 in the plane strain direction, via 𝜆cor, and adding the same exact post-

forming length leads to the intersection of point 2 with the linear FLC, as expected. 

Therefore, any arbitrary point between 1 and 2 would still have some formability remaining. 

Thus, for any bilinear strain history that does not end with necking, either by not reaching or 

even surpassing it, it is possible to define the relative position of the end point of a linear 

equivalent history, in relation to the linear FLC. Since multilinear strain paths can be 

subdivided in diverse bilinear strain segments, the previous analysis can be applied as many 

times as needed. 

Volk et al. (2013) used the example in Figure 4.10 to illustrate the application of 

this concept, for the multilinear strain path shown in blue. The values presented in Table 4.1 

are used to help understanding the procedure. First, all the linear paths (P) are considered 

isolated from one another and their respective parameters determined, namely 𝛽pre and 𝜆pre. 

This is done so that the nomenclature can be maintained without the need to introduce more 

variables. Then, each bilinear segment (S) is sequentially analysed with the metamodel. By 

accessing the total strain path length ratio database, the post-forming for the specific bilinear 

segment in study can be calculated with equation (4.14). If needed, the value can be obtained 
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based on the interpolation between the known four post-forming points. Starting with the 

first segment (S0→2), after 𝜆post is calculated, 𝜆cor is determined with equation (4.17) and 

the first path (P0→1) changes its orientation to match the second path (P1→2). With equal 

𝛽 the general forming effect of both paths can be added. A new linear path is created, 

corresponding to the red line in Figure 4.10. At this time, the second segment (S1→3) is 

constituted by the newly created linear path and the next one. The process is simply repeated 

until only one final linear segment exists. This example highlights the importance of this 

evaluation method. What appeared to be a failed forming attempt that could easily lead to 

failure, turned out to have remaining formability. 

 

Figure 4.10. FLD of an application of the GFLC to an arbitrary stretch condition with four individual strain 
segments and calculation of beginning instability in the final equibiaxial direction (altered) (Volk et al., 

2013). 

Posterior studies pointed out to the high accuracy of this phenomenological 

approach and metamodel, which always enables the prediction of the failure strains with an 

accuracy higher than 90%. This also validated the authors’ hypothesis that the number of 

studied nodes is enough for the desired prediction quality (Jocham et al., 2017). Moreover, 

high accuracy in the prediction of the local necking for the steel HC450X with the 

metamodel based on the data collected for the HC300X was also observed (Volk et al., 

2012). The same occurred when the metamodel for the aluminum AA6016-T4 was applied 

to predict the behavior of the AW-5754 (Jocham et al., 2015). Therefore, the 

phenomenological approach can be extended not only to the same material grade but also to 

the material class, since they seem to share the same formability behavior. Nowadays, it is 

considered a reliable tool for evaluating non-linear strain paths and it was even applied as a 
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calibration method for experiments, such as the Nakajima and Marciniak tests (Volk and 

Gaber, 2017). 

 

Table 4.1. Values of the different parameters for the application of the GFLC to an arbitrary stretch 
condition with four individual strain segments and calculation of beginning instability in the final equibiaxial 

direction (Volk et al., 2013). 

 𝛽pre 𝜆pre 𝛽post 𝜆post 𝜆cor 

P0→1 0.5 0.2 

Evaluation of 

bilinear model 

 ↓ 

P1→2 0 0.3 

P2→3 -0.5 0.36 

P3→4 1  

S0→2 0.5 0.2 0 0.73 0.27 

S1→3 0 0.27+0.3 -0.5 0.47 0.53 

S2→4 -0.5 0.53+0.36 1 0.18 0.82 

S3→4 1 0.82 1 0.18  
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5. CASE STUDIES 

Three case studies, consisting of different automotive body panels, were 

considered in this work and are presented in this chapter. The first (case study A) corresponds 

to a fender and the second (case study B) to an inner liftgate (see Figure 5.1). The analysis 

of these cases is focused on the impact of small changes in the description of the orthotropic 

behavior of the material on the prediction of defects, by either the linear or the non-linear 

FLC. The third component (case study C) is another inner liftgate (Figure 5.1), which is 

currently in the production line. In this case, the analysis focused on trying to understand 

why defects such as wrinkles occur for specific coils, which involved a thorough description 

of the process and material properties. Based on the analysis, some changes to the originally 

proposed method plan are also discussed. 

 

 
  

Case study A Case study B Case study C 

Figure 5.1. Case studies: fender and inner liftgates. 

5.1. Common Features 

In this section, the common features considered for the three case studies are 

summarized. These are considered in all the simulations made, except when stated otherwise. 

The values used for the numerical parameters described in chapter 2, are those recommended 

by AutoForm® for a final validation of the tool’s design. This translates in fine meshes and 

large CPU times, but the performance was not considered has a relevant issue. The blanks 

were discretized with EPS elements, with 11 points of integration through the thickness. The 

mesh refinement control parameters are listed in Table 5.1, which also resumes the control 
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parameters for the tools. The drawbeads are modelled using their geometry, since at the final 

validation of the tool’s design all CAD models are already created. A pressure dependent 

friction model is used, with a 𝑐𝑜𝑓 = 0.15, 𝑝ref = 2 MPa and 𝑒 = 0.9 (see equation (2.12)). 

Considering the size of the components, AutoForm® recommends a tool stiffness of 10 

MPa/mm, which was used for all non-rigid tools. 

 

Table 5.1. Numerical parameters defined according with AutoForm®. 

 Parameter Value 

Mesh refinement 

radius penetration 0.22 [mm] 

max element angle 22.5º 

initial max element size 10.0 [mm] 

max refinement level 5 [-] 

tangential refinement on 

Tools control 

max material displacement 2.2 [mm] 

min tool displacement 1.87 [mm] 

max tool displacement 5.5 [mm] 

end tool displacement step 0.25 [mm], in the 5 final steps 

 

All the components in this study are cold drawn, so the temperature effects can 

be neglected. It is assumed that the forming process is isothermal and no thermal expansion 

occurs. It should be noted that some material parameters, like the volumetric heat capacity 

and conductivity, are defined but not used in the simulations. 

5.2. Materials 

The Volkswagen® group has a standard material library that is used by the sheet 

metal method planning engineering team. It consists of a collection of .mat (or .mtb) files, 

to use directly in AutoForm®, that define the elastic and thermal material properties, the 

hardening law, the yield surface and the FLC. 

Two galvanized steels (code Z) were used in this study: a DX54D and a DX56D, 

according to the EN10346 standard. These are equivalent to CR3 and CR4 (code GI), 

respectively, according to the VDA 239/100 standard. The material chosen for component 

A is the DX54D steel, while components B and C both use DX56D. The DX54D blank has 

an initial thickness of 0.6 mm while the DX56D blanks have 0.7 mm. The standard material 

library defines the isotropic hardening of both materials with the Swift-Hockett/Sherby law 
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(see equation (2.19)). Table 5.2 shows the corresponding material parameters and Figure 5.2 

(left) compares the two hardening curves. In order to consider the biaxial strain, which is 

significantly larger than the uniaxial one, the software extrapolates the stress values until 

𝜀p = 1. The FLC is defined, in both cases, with a table of up to 50 pairs of strain values, 

which are represented in Figure 5.2 (right). 

 

Table 5.2. Swift-Hockett/Sherby material parameter defined in the material library. 

Material 𝛼 𝐶 [MPa] 𝜀0 𝑚 𝜎sat [MPa] 𝜎𝑖 [MPa] 𝑎 𝑝 

DX54D 0.2 605 0.01 0.275 430 160 6.25 0.835 

DX56D 0.15 585 0.01 0.28 415 155 6.75 0.85 

 

  

Figure 5.2. Stress vs. equivalent plastic strain curves (left) and FLCs (right) for DX54D and DX56D. 

 

The standard material library considers the Hill’48 criterion for both materials. 

The input parameters used in the definition of the Hill’48 yield locus are presented in Table 

5.3. The parameters shown in Table 5.4 are calculated using the equations presented in 

subchapter 3.1, enabling the user to observe possible discrepancies with the experimental 

behavior of the material. Figure 5.3 represents the two yield curves (left) and their 

normalized version (right), with the horizontal axis corresponding to the first principal stress 

and the vertical axis the second principal stress. The comparison between the two materials 

is made to highlight their similarities.  
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Table 5.3. Input parameter values of the Hill’48 criterion defined in the material library. 

Material 𝜎0 [MPa] 𝑟0 𝑟45 𝑟90 

DX54D 168.4 1.5 1.2 1.9 

DX56D 160.2 1.7 1.4 2.1 

 

Table 5.4. Output parameter values of the Hill’48 criterion defined in the material library. 

Material 𝜎45 𝜎0⁄  𝜎90 𝜎0⁄  𝜎ps0 𝜎0⁄  𝜎ps90 𝜎0⁄  𝜎b 𝜎0⁄  𝜎shear 𝜎0⁄  𝑟b 

DX54D 1.127 1.045 1.284 1.341 1.182 0.567 0.789 

DX56D 1.1151 1.0373 1.321 1.370 1.2215 0.560 0.81 

 

 

Figure 5.3. Hill’48 yield curves (left) and their normalized version (right) for DX54D (fine line) and DX56D 
(thick line), as they appear in AutoForm®. 

5.2.1. Influence of the Equibiaxial Stress Value 

Previous studies pointed out that the DX54D and the DX56D steels show an 

equibiaxial yield stress lower than the one given by the Hill’48 criterion (ten Horn, Vegter 

and Mouatassim, 2005; Wessel et al., 2020). The change of this point in the yield locus can 

influence not only the equibiaxial stress but also the plane strain and shear stress states. The 

importance of these variations in the yield locus and, consequentially, on the prediction of 

forming defects on automotive parts is analyzed in this study. 

Since there was no experimental information about the try-out material, the 

analysis of the influence of the equibiaxial stress value was made considering both the 

Hill’48 and the BBC 2005 criterion, since the last is known to be more flexible (see Table 

3.1). The original material file was modified to consider the BBC 2005 criterion, considering 

the same uniaxial and equibiaxial stresses and coefficient of anisotropy has the ones 
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estimated by Hill’48. The exponent M = 6 (M = 2𝑘 in equation (3.29)) was chosen, has 

recommended for BCC materials. Figure 5.4 and Figure 5.5 show the comparison between 

the normalized yield curves of the two criterion, for the DX54D and DX56D, respectively. 

The comparison between the two yield curves shows a slight difference in the shear stress 

point and a more noticeable one for the plane strain. The following approach was to use the 

Biax parameter to alter the shape of the yield locus, for both Hill’48 and BBC 2005. The 

values of Biax = 0.9 and Biax = 1.1 were considered to try and capture a 10% variation in 

this parameter, taking as reference the defined material in the library. The analysis of Figure 

5.4 and Figure 5.5 shows that the change of the Biax parameter alters all the characteristic 

points of the locus, except the uniaxial stress states. Table 5.5 and Table 5.6 show the 

variation of the output normalized stresses, for the Hill’48 and BBC 2005 criteria, with 

respect to Biax, for the DX54D and DX56D steels, respectively. 

 

 

Figure 5.4. Comparison between the Hill’48 (fine line) and BBC 2005 (thick line) normalized yield curves for 
DX54D, as they appear in AutoForm®. 

 

Table 5.5. Output parameter values of the yield criteria defined in the material library for DX54D. 

Biax Yield Criterion 𝜎ps0 𝜎0⁄  𝜎ps90 𝜎0⁄  𝜎b 𝜎0⁄  𝜎shear 𝜎0⁄  

0.9 
Hill’48 1.213 1.277 1.0638 0.559 

BBC 2005 1.168 1.218 1.0638 0.550 

1 
Hill’48 1.284 1.341 1.182 0.567 

BBC 2005 1.247 1.285 1.182 0.556 

1.1 
Hill’48 1.366 1.412 1.3002 0.573 

BBC 2005 1.346 1.375 1.3002 0.560 
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Figure 5.5. Comparison between the Hill’48 (fine line) and BBC 2005 (thick line) normalized yield curves for 
DX56D, as they appear in AutoForm®. 

 

Table 5.6. Output parameter values of the criteria defined in the material library for DX56D. 

Biax Yield Criterion 𝜎ps0 𝜎0⁄  𝜎ps90 𝜎0⁄  𝜎b 𝜎0⁄  𝜎shear 𝜎0⁄  

0.9 
Hill’48 1.244 1.299 1.0994 0.554 

BBC 2005 1.196 1.237 1.0994 0.546 

1 
Hill’48 1.321 1.370 1.2215 0.560 

BBC 2005 1.283 1.314 1.2215 0.551 

1.1 
Hill’48 1.408 1.447 1.3437 0.566 

BBC 2005 1.387 1.411 1.3437 0.555 

5.3. Case Study A 

The fender will be produced in a single-action press. The die constitutes the ram 

of the press, while the punch and binder form the bed. The punch and die are considered 

rigid since they are fixed to the bed and ram of the press. The binder force is applied with 

cushion pins. The binder is considered to be spring controlled with a cushion stroke of 200 

mm. However, a uniform preload of 940 kN was defined instead of using the cushion pin 

locations. This procedure is valid since a partial bearing was established in the finite element 

model, i.e. a noncontact area between the binder and the blank was predefined. Note that the 

partial bearing is directly connected with a try-out strategy, where the technicians rectify the 

surfaces of the tools so that only a specific region is used to apply the binder pressure to the 

metal sheet. Figure 5.6 shows the pressure distribution predicted by the model where a partial 

bearing was defined, using the drawbead line. It is clear that there is a pressure ring 
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associated to the drawbead geometry, but the surface immediately after the innermost 

drawbead shows no pressure. Moreover, considering that the cushion pins are positioned 

significantly far from the pressure ring, it is not justifiable to implement them in the 

numerical model, unlike in the example given in Figure 2.6. The same applies to the other 

two case studies. Note that in AutoForm®, the partial bearing can be defined with the line of 

the drawbead or manually by the user. 

 

Figure 5.6. Pressure ring in the final step of the fender’s forming process, taken from AutoForm®. 

The analysis of formability was performed using both yield criteria, combined 

with the linear and non-linear FLC. As shown in Figure 5.8, the strain space associated with 

the linear FLC is divided in six zones: thickening, compression, insufficient stretch, safe, 

risk of splits and splits. The non-linear FLC is divided only in three zones: safe, risk of splits 

and splits. The risk of splits zone was user defined with a 20 % margin regarding the FLC. 

Figure 5.8 shows the results obtained with the Hill’48 yield criterion, while Figure 5.9 shows 

the ones obtained with the BBC 2005. Globally, the results allow identifying three critical 

regions: one in the front-end region, located close to the plane strain state; another on the 

small details in the top right end region, located close to the uniaxial stress state; and, the 

last in the small detail, highlighted with the red transparent circle in Figure 5.7. The strain 

path for the last critical region was selected for further analysis, since it clearly shows a non-

linear trend. The closest point, relative to the non-linear FLC, is chosen to represent the 

strain-path. Note that its respective position is plotted also in the linear FLC, in Figure 5.8 
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and Figure 5.9. The strain path is identical in all non-linear FLC representations; starts with 

a combination of plane strain and equibiaxial strain, changes to an almost equibiaxial path 

and ends in plane strain. The selected point exhausts more formability than the one predicted 

by the linear FLC, due to these strain path changes, whatever the yield criterion considered 

and the value for the Biax parameter. In this context, this example highlights the importance 

of the non-linear FLC. 

 

Figure 5.7. Critical regions of case study A for the BBC 2005 criterion using Biax = 0.9. For the color code, 
refer to the caption of Figure 5.8. 

 

Regarding the influence of the Biax parameter, this example shows that it can 

even change the number and location of the critical regions, whatever the yield criterion 

adopted. Moreover, it is interesting to note that although the yield curves of both criteria 

seem quite identical (see Figure 5.4), the predictions with the Hill’48 are more conservative, 

whatever the value selected for the Biax parameter. This is certainly related to the changes 

induced by the yield locus shape in the strains distributions in the part. The previous 

experience with similar parts indicates that splits tend to occur in the more critical region 

determined with Biax =  0.9. This corresponds to the red and yellow regions in Figure 5.7. 

Since the strain path for these material points is linear throughout the drawing process, close 

to plane strain, this indicates that the yield locus for this material should be better represented 

by the one obtained with this value of Biax. This goes in line with the previous research on 

this material class, which indicates that the equibiaxial stress is lower than the one predicted 

by the Hill’48 criterion. 
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Figure 5.8. Case study A FLCs (above) and non-linear FLCs (below) with Hill’48, taken from AutoForm®. Color 
code of the linear FLCs (above) and of the non-linear FLCs (below), taken from AutoForm®. 

 



 

 

Influence of the yield criterion in the formability prediction on parts with complex geometry  

 

 

66  2020 

 

 

 

Figure 5.9. Case study A FLCs (above) and non-linear FLCs (below) with BBC 2005, taken from AutoForm®. 
For the color code, refer to the caption of Figure 5.8. 

5.4. Case Study B 

A triple-action press is normally necessary for producing inner liftgates, due to 

their greater geometrical complexity. When defining the process, the ram must include the 

die and the upper blankholder, which pair with the bed’s punch and lower blankholder. 

Special attention must be given to the tools’ kinematic. The blankholder forces must be 

defined considering the order by which the tools will close. Two ideal scenarios can happen: 

the lower blankholder has enough force to withstand the upper blankholder force, 

maintaining its position during the upper stroke; or the upper blankholder has more force 

than the lower one, forcing it down immediately after they close. This establishes which of 

the cushion strokes is done first. The way the sheet interacts with the punch and die is 

completely different in each case, altering the strain paths in the part. In fact, these 

interactions create deformation in the blank during the cushion stroke that result in additional 

reaction forces that counter the binder force. These should always be considered, 

independently of the kinematic scenario. 
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As in case study A, a cushion system is used to apply the binder force. The 

difference between the previous case and this one is the existence of an upper set of cushion 

pins, transferring a force of 900 kN into the upper blankholder. The lower blankholder is 

prescribed with a force of 1500 kN, resulting in the first kinematic scenario. This means that, 

after the blankholders close, the lower blankholder sustains the upper one. An initial binder 

force of 900 kN is applied to the sheet. While the die lowers to the prescribed cushion stroke 

of 100 mm, the force applied by the lower blankholder rises to compensate the blank’s 

deformation. Ideally, the defined lower blankholder force should not be reached at the end 

of the die cushion stroke. This means that there must be a difference between the upper and 

lower blankholder forces, big enough to account for the resultant force from the sheet 

deformation. Once the die cushion stroke is reached, the upper blankholder contacts with the 

ram and, from this point on, the transferred force is no longer constant, being free to increase 

as needed. This rise in force displaces the lower blankholder, which will maintain its 

prescribed 1500 kN of force throughout the lower cushion stroke of 80 mm. 

In this case, the support type chosen for both blankholders was force controlled. 

The preliminary numerical simulations showed that the force of 900 kN imposed to the upper 

blankholder was not enough to keep the blankholders closed. Therefore, some virtual try-

outs were performed that lead to a value of force for the upper blankholder close to 1100 kN. 

This value was used to perform numerical simulations with both yield criteria, considering 

the different values for the Biax parameter (see Figure 5.5). Figure 5.10 and Figure 5.11 

show the formability predictions, using the linear and non-linear FLC, considering the 

Hill’48 and BBC 2005 criteria, respectively. 

In this case, the analysis of the closest point, relative to the non-linear FLC, 

always leads to an identical region in the part, whose location is highlighted with the red 

transparent circle in Figure 5.12. This point was chosen to represent the strain-path, in both 

the linear and the non-linear FLC. The particular point selected goes through the curvature 

region (close to plane strain path) and is then expanded in the almost vertical wall (close to 

equibiaxial path). Note that the linear FLC would not predict this location of a potential split, 

unlike the non-linear FLC, for Biax values of 0.9 and 1.0, for both yield criteria. In fact, the 

region that is in the risk zone for the non-linear FLC has remaining formability in the linear 

FLC. This is certainly related to the lower formability predicted for combined biaxial and 
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strain paths (see Figure 4.2). These results highlight the importance of taking into account 

the strain paths changes in the formability analysis, whatever the yield criteria adopted. As 

for case A, globally, the formability predictions with Hill’48 are more conservative. 

Nevertheless, the only numerical simulation for which the selected point is not the closest to 

the non-linear FLC is the one performed with the BBC 2005 criterion and Biax =  1.1. The 

higher equibiaxial resistance leads to a lower increase in the principal strains, but this is 

certainly related to the change induced to the plane strain values (see Figure 5.5). 

 

 

Figure 5.10. Case study B FLCs (above) and non-linear FLCs (below) with Hill’48, taken from AutoForm®. For 
the color code, refer to the caption of Figure 5.8. 
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Figure 5.11. Case study B FLCs (above) and non-linear FLCs (below) with BBC 2005, taken from AutoForm®. 
For the color code, refer to the caption of Figure 5.8. 

 

 

Figure 5.12. Case study B: Formability analysis of the final step using BBC 2005 and Biax = 0.9, taken from 
AutoForm®. For the color code, refer to the caption of Figure 5.8 
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5.5. Case Study C 

The method plan implemented for the inner liftgate selected as case study C uses 

the same kinematic behavior for the tools as the case study B. Figure 5.13 shows the tools 

used in the simulation. A uniform force was chosen for the upper blankholder, within a range 

between 1000 kN and 1100 kN. This interval is supposed to capture the spring behavior of 

the set of nitrogen gas cylinders selected to apply the force. The upper cushion stroke of 120 

mm is the first to occur. The lower blankholder has a uniform force of 1400 kN, provided 

by cushion pins, and a cushion stroke of 50 mm. Both blankholders were modelled with 

force control and neither lacked force, throughout the simulation. 

As previously mentioned, the material selected for this component is the 

DX56D. The numerical simulation of the forming process previously described, which will 

be designated by initial method plan, was performed considering the information available 

in the Volkswagen® group standard material library (see Figure 5.3). The formability results 

based on the linear and non-linear FLCs are represented on Figure 5.14. The figure shows 

some points within the risk of presenting splits, but only if a safety margin of 20% is 

considered. Also, the points within the risk of presenting wrinkles are located in the regions 

that will be trimmed. Therefore, this method plan was validated for production. 

 

 

Figure 5.13. Case study C: Mesh representation of the tools for the initial method plan. 
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Figure 5.14. Case study C: Final step forming results of the initial method plan (left) and linear and non-
linear FLCs (right). For the color code, refer to the caption of Figure 5.8. 

 

However, the analysis of the process implemented in the production revealed 

that a different kinematic was being used for the tools. The lower blankholder initially 

withstands the upper blankholder force but, eventually, goes down in the middle of the upper 

cushion stroke. This means that, at some point in the upper cushion stroke, the sum of the 

forces of the upper blankholder and of the die exceed the cushion force. From there on, two 

scenarios can happen: the lower cushion stroke is completed and then the remaining upper 

cushion one; or an unpredictable process can unfold. It should be mentioned that, this 

alternative method plan was implemented in the production, due to the occurrence of a defect 

that was not predicted by the numerical simulations of the initial method plan, as will be 

discussed in the following subchapter. This alternative method plan enables the production 

of good quality inner liftgates. Unfortunately, for a few material coils it leads to the 

occurrence of wrinkles, because different mechanical properties alter the force required to 

deform the sheet and, consequentially, the tool kinematic. This means that time and money 

are consumed in try-out, to achieve a defect free part and, in the end, some of these coils can 

still be rejected.  
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5.5.1. Analysis of the Initial Process conditions 

Some alterations were made to the initial method plan in order to improve the 

control and reduce the occurrence of defects. One of them was the change of the drawbeads 

geometry to help retain the sheet during the forming process. Therefore, the changes made 

to the drawbeads were measured, in order to alter the CAD files and enable their inclusion 

in the numerical models that will be used in the following analysis. Another was the 

separation of the set of cylinders into independent sets, to enable a better pressure control of 

the upper blankholder. The impact of these changes to the initial method plan is discussed 

in this section. 

5.5.1.1. Cylinders force 

The upper blankholder force is imposed by twelve standard FIBRO® nitrogen 

gas cylinders, each showing a minimum and maximum charging pressure of 25 and 150 bar, 

respectively. Figure 5.15 (left) shows the increase of the initial force with the charge 

pressure. At 150 bar the cylinder applies a force of 100 kN, meaning that the effective area 

of the cylinder is 𝐴 = 6.667 × 10−3 m2. Figure 5.15 (right) shows the increase of the 

pressure rise factor with the displacement. Since each cylinder has a maximum nominal 

stroke of 160 mm, that was the curve selected to determine the pressure rise factor. 

 

 

Figure 5.15. Force diagrams of the FIBRO® standard nitrogen gas cylinder, order nº 2480.12.10000.160 
(FIBRO® Standard Parts Catalog, 2014). 

Considering that at 160 mm the pressure rise factor is 1.58, the slope in Figure 

5.15 (right) is 𝑚 = [(1.58 − 1) 160⁄ ] = 3.625 × 10−3 /mm. The pressure of the cylinder 

𝑝cyl is related to its charge value, 𝑝charge, by: 
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 𝑝cyl = 𝑝charge +𝑚𝑑𝑝charge, (5.1) 

where 𝑑 is the displacement in mm. This means that the force of the cylinder, 𝐹c, can be 

given as a function of its displacement and initial charge pressure, as follows: 

 𝐹c = 𝐴(1 +𝑚𝑑)𝑝charge × 10
2. (5.2) 

Note that, since 𝑝charge is in bar, the factor 102 is introduced to calculate the force in kN.  

In the initial setup, all the twelve cylinders shared the same charge pressure. 

Thus, the total force applied to the upper blankholder was twelve times the value given in 

equation (5.2). According to the process conditions for the initial method plan, the maximum 

stroke of each cylinder was 120 mm. This means that it is impossible to attain the range of 

force between 1000 and 1100 kN. Note that to achieve a final force of 1100 kN after the 

upper cushion stroke, each cylinder would have around 95.8 bar of charge pressure and the 

total initial force would be approximately 766.55 kN. This is probably the main reason why 

problems started to occur in the try-out, leading to the alteration of the process in the 

production. 

5.5.1.2. Experimental and Virtual Try-out 

Experimental try-outs were made considering the initial method plan, but with 

three different conditions for the cylinders and the cushion force. Figure 5.16 shows the 

positions of the cylinders relative to the blankholder and the punch. The color code indicates 

the set of cylinders that work with equal charge pressure. Table 5.7 shows the cushion force 

and the cylinders initial pressure, used in the experimental try-outs. Try-out number one 

serves as the reference, with a cushion force of 1400 kN has defined in the initial method 

plan. In the try-out number two, the upper blankholder force is changed. In both cases, the 

pressures for the cylinders were taken directly from two production conditions. In the try-

out number three, the cushion force was reduced to around 1100 kN, while the upper 

blankholder force is equal to the one used in try-out number one. 

Regarding the virtual try-out, some challenges arise when trying to replicate the 

process kinematics. Note that the range of force considered for the upper blankholder may 

lead to the tools opening during the process. This means that spring controlled is the most 

accurate way to model both blankholders. As shown previously in Figure 5.6, cushions pins 

can be modelled with a uniform loading, when trying to capture the pressure ring effect. 
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Nevertheless, since the cylinders show different forces, the columns model seems more 

appropriated. However, columns can only be defined with an opposite rigid tool, which 

cannot move. This is not ideal, considering that the lower blankholder needs to move once 

the upper cushion stroke ends. 

 

 

Figure 5.16. Position of the cylinders in the upper blankholder and corresponding sets defined by color. 

 

Table 5.7. Experimental try-out forces used. 

Try-out 

Number 

Cylinder Charge Pressure [bar] 
Cushion Force [kN] 

Green Yellow Blue Red 

1 60 100 100 125 1400 

2 90 80 110 120 1400 

3 60 100 100 125 1100 

 

To work around the previously mentioned difficulties, a model was built 

considering two drawing processes, defined in succession, without springback in between. 

The first process contemplates the upper cushion stroke with a rigid lower blankholder and 

a spring controlled upper one, enabling the use of the columns model. In the second process, 

the lower cushion stroke is made with both blankholders defined with spring control. It 

should be noted that for the cushion strokes to be maintained in the simulation, the initial 

position of the punch in the first drawing had to be moved 50 mm down. This numerical 

model will be designated by two drawing processes, in the subsequent analysis. The 

numerical simulations were also performed considering the same kinematic conditions as 

for the initial method plan, by altering the total force of the upper blankholder and the 
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cushion force, according to the information presented in Table 5.7. This numerical model 

will be designated by single drawing process, in the subsequent analysis. 

 

 

Figure 5.17. Forming results for the two drawing processes (left) and for the single drawing (right). For the 
color code, refer to the caption of Figure 5.8 

 

The numerical simulations were performed with both models, considering the 

BBC 2005 criterion with Biax =  0.9 (see Figure 5.5), based on the analysis made in the 

two previous case studies, which indicate that it can lead to a more accurate representation 

of the yield surface. The results obtained for the conditions of try-out number one, with the 

single and the two consecutive drawing processes, are compared in Figure 5.17. The 

differences in formability are minor, with the risk of splits being predicted for the same 

location as seen in Figure 5.14. The minor differences in formability result from the different 

pressure distribution during the upper cushion stroke, which is compared in Figure 5.18. Due 

to the assumptions considered in the single process, the pressure ring presents a uniform 

pressure, which does not reflect the uneven distribution of pressure imposed to the cylinders, 

captured by the two drawing processes model.  

In the production, a high pressure value is prescribed to the cylinders located in 

the lower region of the part (see Figure 5.16 and Table 5.7) to impose more stretch and 

prevent the occurrence of wrinkles. The formability analysis indicates a zone in compression 

stress state, which can be associated with wrinkles (see the rectangle in Figure 5.17). To 

further analyze this type of defects, a criterion based on the lack of contact with the tools 

and the curvature between consecutive elements can be used, which indicates that the 
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wrinkles are generated at an instant corresponding to the middle of the simulation. The 

wrinkles appear in two almost symmetrical zones as can be seen in red in Figure 5.19, which 

presents the distribution of the wrinkle criterion in the part. The wrinkles are smashed by the 

radius of the die when it contacts the sheet, creating defects.  

 

 

Figure 5.18. Pressure distribution of the two drawing processes (left) and of the single drawing (right). 

 

 

Figure 5.19. Wrinkling criterion distribution: wrinkles occur at an instant corresponding to the middle of the 
simulation (above) and the defect created by the contact of the die radius (below). 

 

Although the wrinkling shown in Figure 5.19 corresponds to the results using 

the single drawing process model, the two drawing processes model also predicts the 
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occurrence of wrinkles in the region marked with a black rectangle in Figure 5.17. However, 

for the initial method plan, this type of defect is not visible in the part. The resulting tool 

forces are shown in Figure 5.20, for both the single and the two drawing processes. This 

figure shows that the initial upper blankholder force was not the predefined 1000 kN, of the 

initial method plan. This explains the occurrence of wrinkles, since there is not enough 

binder force to promote the stretching of the sheet. Moreover, Figure 5.20 highlights that the 

two drawing processes model has one inconvenience: the repositioning of the tools between 

the different drawings. Even though the surfaces are exactly the same, the software considers 

them as being different. This translates into a small alteration of the tools’ forces. 

Nevertheless, this alteration is almost unnoticeable and it allows describing the differences 

in the pressure distribution (see Figure 5.18) and the resulting tilt of the tools during the 

process. For these reasons, the two drawing processes model is used in the following 

analysis, except if stated otherwise. 

 

Figure 5.20. Tool forces comparison between the two drawing processes and the single drawing. 

5.5.1.3. Draw-In Results 

The deep drawn parts from the three experimental try-outs were 3D scanned to 

obtain their geometry in .stl files. These were converted into .igs files to extract the 

coordinates of the points that define the resultant surfaces in CATIA V5®. The coordinates 

of the points from the FE mesh of the final step of the simulations were also extracted. A 

Matlab® code was written to determine the points that constitute the boundaries of the parts. 

The Matlab® boundary function (MathWorks®, 2014) was used to determine the external 
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boundaries. To define the holes a convex hull gift wrapping algorithm, also known as 

Jarvis’s march algorithm, (Cormen et al., 2009) was used, but with the inverse purpose. 

Figure 5.21 and Figure 5.22 present the experimental and the numerical draw-in 

results, respectively. Note that the theoretical blank format is used in the simulations. 

However, in production the trimming tools do not achieve the perfectly collinear borders of 

the blank, so in the corner regions some differences are naturally present. Also, in the 

experimental process there is a region where the binder applies pressure to the sheet outside 

the partial bearing. This is reflected in the formation of two ears in the top part of the 

component and the reduction in material flow (Figure 5.21) and also in a slightly higher 

positioning of the holes compared to the simulation. Despite these differences, the results 

show that the draw-in is sensible to the force conditions, particularly to the decrease of the 

cushion force, with the experimental and numerical results showing a similar trend. The 

expansion of the holes is also identical. Therefore, the defined material file seems to 

approximate the material behavior satisfactorily, at least for the coil used in the experimental 

try-out. 

 

 

Figure 5.21. Draw-in comparison between the experimental results. The initial position of the blank is 
shown in red. 
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Figure 5.22. Draw-in comparison between the numerical results. The initial position of the blank is shown in 
red. 

5.5.2. Analysis of the Alternative Kinematic 

When defining the tools’ kinematics for a triple-action press, AutoForm® 

automatically imposes the restriction that one of the blankholders’ force must always be 

higher than the other one. If a force variation is defined, the maximum value cannot exceed 

the other’s minimum. In practice, this automatic correction fixes the process conditions, 

guaranteeing its stability. Furthermore, this means that AutoForm® cannot simulate the 

tools’ kinematic used in the alternative method plan. The division of the process into several 

different drawings is not feasible, since it requires the knowledge of the forces’ evolution, 

which are unpredictable. 

In order to improve the knowledge about the defects that appear with the 

alternative method plan, an experimental try-out was performed considering the inverse 

kinematics for the process, i.e. the lower cushion stroke is performed followed by the upper. 

The experimental part shows defects in two regions that are marked with the light blue 

rectangles in Figure 5.17, in the simulation corresponding to the two drawing processes. It 

is important to mention that these defects are not present in the parts being produced, since 

the forming conditions are fine-tuned in order to avoid them. 
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The two drawing processes model was used to simulate the previously described 

conditions, assuming a lower blankholder force with an arbitrary value of 400 kN. The 

material behavior was described by the BBC 2005 criterion with Biax =  0.9 (see Figure 

5.5). Note that the single drawing process was found to be unable to completely close the 

blankholders at the end of the lower cushion stroke and that is why it is not shown. Figure 

5.23 and Figure 5.24 show the results obtained for the regions showing defects, with the 

experimental result on the left side, the one predicted with the two drawing processes model 

in the middle, and the initial method plan on the right. The two drawing processes model is 

able to capture both types of defects, with wrinkles appearing at an instant corresponding to 

5 mm before the end of the process, which ultimately lead to the final defects. Moreover, 

these types of defects are avoided in the initial method plan, which indicates that they are a 

consequence of the process kinematics.  

 

 

Figure 5.23. First defect that appears on the try-out with low cushion force (left), its detection at 5 mm 
before the end of the simulation (middle) and the equivalent with the initial method plan at approximately 

the same time step (right). 
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Figure 5.24. Second defect that appears on the try-out with low cushion force (left), its detection at 5 mm 
before the end of the simulation (middle) and the equivalent with the initial method plan at approximately 

the same time step (right). 

5.5.3. Proposal of a New Method Plan 

As discussed in the previous sections, the numerical simulation of the tools’ 

kinematic adopted in the alternative method plan is unfeasible. Although this process can 

lead to some problems, a procedure is already established to try to minimize them, which 

enables the production of good quality parts. In this sense, any proposal to change the method 

plan needs to present clear advantages, while minimizing the required alterations. Taking 

into account these constraints, the kinematic proposed in the initial method plan is 

considered as reference. Nevertheless, as discussed in the previous sections, the opening of 

the tools during the upper cushion stroke is inevitable. The solution would be to increase the 

upper blankholder force and, in this sense, approximate the solution to what was originally 

envisioned. However, this would only be possible if the set of cylinders was completely 

changed for ones that have a lower variation of force per stroke. The ideal solution would be 

substituting the cylinders for cushion pins, but this is impossible since the press is not 

prepared to use an upper cushion system. On the other hand, it should be noted that the 

cushion strokes cannot be altered, since they are defined such that the blankholders close 

without the sheet establishing contact with any other tool. In other words, they are defined 

considering the depth of the geometrical details of the punch and the die. With the premise 

that no changes to the process conditions can be made, the only possible solution that seems 
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feasible to tackle the problem is to alter the tools in such a way that the wrinkling defects 

(see Figure 5.19) are corrected. The solution that will be discussed in this section involves 

the definition of two drawbeads, one in the region where the wrinkles appear and another in 

the opposite side. This last one had to be introduced to avoid the appearance of wrinkles also 

on that region of the part. 

The results presented in the previous sections indicate that the BBC 2005 

criterion with Biax =  0.9 (see Figure 5.5) can describe the material behavior accurately. 

Nevertheless, it was decided to use this example also to analyse the possibility of defining 

the material behavior using the material generator in AutoForm®. The following section 

describes the procedure adopted to create the new material file. 

5.5.3.1. Material Characterization 

Volkswagen Autoeuropa® has at its disposal a Zwick/Roell® tensile testing 

machine. Therefore, it was decided to perform tensile tests at 0º, 45º and 90º with respect to 

the RD. The mean value of the results extracted from the three tests performed for each 

direction are shown in Table 5.8, where 𝑅p0.2 is the proof strength at 0.2% of the 

extensometer gauge length; 𝑅m is the tensile strenght; 𝐴g is the percentage of total elongation 

at maximum force; and 𝐴t is the percentage of total elongation at fracture.  

 

Table 5.8. Results from the tensile tests. 

Angle 𝑅p0.2 [MPa] 𝑅𝒎 [MPa] 𝐴t [%] 𝐴g[%] 𝑟𝜃 

0º 150,98 297,65 43,97 24,55 1,89 

45º 157,85 304,41 41,41 23,96 1,7 

90º 156,56 296,27 43,28 23,86 2,23 

 

The true stress-strain information from the tensile test performed with the 

specimen oriented along RD, was provided in a .bat file, as well as the 𝑅m value, to define 

the hardening curve. These results were fitted by the Swift-Hockett/Sherby law and the 

resulting parameters are given in Table 5.9, which also shows the parameters available in 

the Volkswagen® group standard material library. The software automatically calculates an 

initial yield stress of 𝜎0 = 152.6 MPa from the experimental data. Using the 160.2 MPa 

from the library as the reference, it represents a variation of around 4.74 %, well below the 

±20 MPa that is known to exist (Banabic, 2010). Figure 5.25 shows the two hardening 
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curves, highlighting that the difference between the curves increases for higher equivalent 

plastic strain values. Moreover, the observed difference for the strain corresponding to the 

onset of necking (𝐴g = 24.55 %) propagates to the extrapolation for higher strain values. 

Based on previous results, the part attains maximum equivalent plastic strain values of 

around 45 %. Therefore, based on Figure 5.25 it is expected to observe some differences in 

the predicted forming forces attained with the two material characterizations, with the 

parameters available in the Volkswagen® group standard material library leading to slightly 

higher values. This point is mentioned here to highlight, once again, the difficulties in 

reproducing accurately the alternative method plan. 

 

Table 5.9. Swift-Hockett/Sherby material parameter obtained from the AutoForm® approximation. 

Data 𝛼 
𝐶 

[MPa] 
𝜀0 𝑚 

𝜎sat 
[MPa] 

𝜎𝑖 
[MPa] 

𝑎 𝑝 

Experimental 0.25 514.7 0.00479 0.224 483.9 159 3.49 0.716 

Library 0.15 585 0.01 0.28 415 155 6.75 0.85 

 

   

Figure 5.25. Comparison between the DX56D stress vs. equivalent plastic strain curves for the material 
library parameters (red) and the ones generates with tensile test results (blue). 

The coefficients of anisotropy are compared in Table 5.10. Using the values from 

the standard material library as reference, the maximum variation is of approximately 21.43 

% for 𝑟45. This value slightly exceeds the 20 % which is the typical maximum deviation in 

literature (Banabic, 2010). The difference in the normalized yield curves for the Hill’48 yield 
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criterion are shown in Figure 5.26, highlighting the minor differences in the normalized 

principal stress space. 

 

Table 5.10. Comparison between the values of the coefficients of anisotropy. 

Data 𝑟0 𝑟45 𝑟90 

Experimental 1.89 1.7 2.23 

Library 1.7 1.4 2.1 

 

 

Figure 5.26. Left: Normalized Hill’48 yield curves for the material properties from the library (fine line) and 
from the tensile tests data (thick line). Right: Normalized yield curves obtained from tensile test data for 

Hill’48 (fine line) and Vegter 2017 (thick line). 

 

The differences registered between the predicted values for other reference stress 

states using the experimental data and the one from the library (refer to Table 5.11 and Table 

5.4, respectively) are significant. The anisotropy coefficients are known to affect the yield 

locus, but the Hill’48 criterion may not be flexible enough. In this context, it is possible to 

observe that the equibiaxial point is actually higher for the experimental material than for 

the one given in the standard material library (Figure 5.26 (left)). This gives reasoning for 

using a more advanced anisotropic yield criterion. From the summary presented in Table 

3.1, the Vegter 2017 is chosen, because it can be defined using only the data provided by the 

uniaxial tensile tests. The output parameters obtained with the Vegter 2017 yield criterion 

are compared with the ones obtained by the Hill’48 yield criterion, identified with the same 
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experimental data, in Table 5.11. Moreover, the normalized yield curves are shown in Figure 

5.26 (right). The comparison highlights the difference in the normalized equibiaxial stress 

value attained with both criteria. The value given by Vegter 2017 is equivalent to using a 

Biax =  0.9083 in the identification performed with Hill’48. 

 

Table 5.11. Output parameter values of the Hill’48 and Vegter 2017 criteria based on the tensile test data. 

Yield Criterion 𝜎45 𝜎0⁄  𝜎90 𝜎0⁄  𝜎ps0 𝜎0⁄  𝜎ps90 𝜎0⁄  𝜎b 𝜎0⁄  𝜎shear 𝜎0⁄  𝑟b 

Hill’48 1.0764 1.0275 1.350 1.387 1.2507 0.554 0.848 

Vegter 2017 1.0219 0.9999 1.238 1.260 1.136 0.533 0.848 

 

 

Figure 5.27. Normalized yield curves obtained from the material library data for BBC 2005 with Biax = 0.9 
(fine line) and from the tensile tests for Vegter 2017 (thick line). 

 

The draw-in results presented in previous sections indicate that the BBC 2005 

criterion with Biax =  0.9 (see Figure 5.5) can describe the material behavior accurately. In 

this context, Figure 5.27 presents the normalized yield locus obtained with that yield 

criterion and with Vegter 2017. Although, some differences can be highlighted, especially 

in the equibiaxial and plane strain points, globally they are much smaller than the ones 

obtained when comparing with the Hill’48, either using the information of the standard 

material library, or based on the experimental results. The clear advantage is that the Vegter 

2017 captures the behavior using the information from simple uniaxial tensile tests results. 
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The selection of the Biax for the BBC 2005 criterion requires performing a biaxial stress test 

or some inverse analysis procedure. Finally, the draw-in for the experimental try-out number 

two was compared with the results obtained using the Hill’48 from the standard material 

library and the Vegter 2017, as shown in Figure 5.28. Globally, the results show that the 

yield criteria have a minor influence in the draw-in results. 

 

 

Figure 5.28. Draw-in comparison between the experimental try-out (blue) and the simulation results for 
Vegter 2017 (black) and Hill’48 based on the library data (green), in relation to the start of the drawing 

process (red), for try-out number two conditions. 

5.5.3.2. Introduction of Two Supplementary Drawbeads 

As previously mentioned, two supplementary drawbeads were introduced, one 

in the lower part and another in the upper, as can be seen in Figure 5.29. The definition of 

the drawbeads’ geometry involved several virtual try-outs, but in this section, only the results 

corresponding to the final one will be discussed. The drawbeads’ 3D profiles were created 

in AutoForm® in order to include their physical model (see section 2.3.1) in the tool’s 

geometry. The supplementary lower drawbead creates an uplift force of 42 kN and a 

restraining force of 56 N/mm. The one introduced in the top region has an uplift force of 85 

kN and a restraining force of 83 N/mm. Spring controlled tools are used to model the 

blankholders, with a cushion force of 1200 kN and all the cylinders’ pressure set to 80 bar. 
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This translates to a total initial force of 640 kN and a final one of around 920 kN, which is 

similar to the one observed in the alternative kinematic method (see Figure 5.20), which lead 

to the wrinkling defect. 

 

 

Figure 5.29. Additional drawbeads, in the lower and upper part of the upper blankholder. 

The numerical simulations were performed considering three different 

approaches to model the material behavior: (i) Hill’48 yield criterion from the standard 

material library; (ii) Hill’48 and (iii) Vegter 2017, both with parameters identified using 

uniaxial tensile test results. For all three cases, the table of strain values of the FLC available 

in the standard material library (see Figure 5.2) was used to complete the .mat file  

Figure 5.30 presents the formability results obtained with the Hill’48 yield 

criterion, defined with the material library information, showing that the part has good 

quality, comparable to the original method plan (see Figure 5.14). Figure 5.31 shows the 

formability results obtained with the Hill’48 yield criterion, identified using the uniaxial 

tensile tests results. Although the differences between the two identifications for the Hill’48 

are marginal in the stress space (see Figure 5.26 (left)), there is some impact in the 

formability. For the Hill’48 identified using the uniaxial tensile tests results, the points on 

the right side of the FLC rise and are closer to the 20% safety margin of the non-linear FLC. 

Moreover, several regions of the part present insufficient stretch, which can also be related 

with the change made to the hardening law (see Figure 5.25). In fact, there is a difference in 

the maximum forces attained at the end of the forming process, showing a lower value for 
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the Hill’48 yield criterion, identified using the uniaxial tensile tests results. These results 

indicate that some problems can be prevented by investing in the experimental characterizing 

of the material, using simple tests.  

 

 

Figure 5.30. Forming results for the proposed solution using Hill’48 with the material library data. For the 
color code, refer to the caption of Figure 5.8. 

The results obtained with the Vegter 2017 yield criterion are shown in Figure 

5.32. In this case, there is a clear aggravation of zones for which the risk of splits is predicted, 

when compared to both the Hill’48 criterion results. Interestingly the zone for which 

insufficient stretch is predicted is reduced, when compared with the Hill’48 identified based 

on the uniaxial tensile test results. Interestingly, the maximum forces attained at the end of 

the forming process show the lowest value for the Vegter 2017, which indicates that the 

lower hardening behavior is compensated by the change in shape of the yield locus. 

Therefore, one can assume that the shape of the yield locus between the equibiaxial and the 

plane strain state (see Figure 5.26) also impacts this prediction. In any case, it should be 

mentioned that the wrinkling defect (see zone submitted to compression stress state in Figure 

5.17) is always avoided. The previous results shown that the Vegter 2017 yield criterion 

seems to lead to a better description of the material orthotropic behavior. In this particular 
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case, the new method plan can be considered valid, if a safety margin of 10 % is chosen for 

the non-linear FLC, as shown in Figure 5.32.  

 

Figure 5.31. Forming results for the proposed solution using Hill’48 with parameters identified using 
uniaxial tensile test results. For the color code, refer to the caption of Figure 5.8. 

 

Figure 5.32. Forming results for the proposed solution using Vegter 2017 with parameters identified using 
uniaxial tensile test results. For the color code, refer to the caption of Figure 5.8. 
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Note that the formability results presented in this section were obtained with the 

single drawing process model. Although the two drawing processes can capture the pressure 

distribution and tilt of the tools (see Figure 5.18), the required repositioning alters the 

wrinkling prediction considerably. Figure 5.33 compares the distribution predicted for the 

wrinkling criterion in the critical wrinkling zone, obtained with the single (right) and the two 

drawing processes (left), at two instants, corresponding to the end of the upper cushion stroke 

(top) and the immediate step afterwards (bottom). As previously mentioned, the change of 

tools between the two drawing processes induces a drop in the force (see Figure 5.20), which 

generates an instability that will remain in the component. This aspect was detected in these 

final simulations by comparing the two models, as illustrated in Figure 5.33. Only for the 

two drawing processes model there is a clear and abrupt change in the wrinkling parameter 

at the time step, immediately after the end of the upper cushion stroke.  

 

 

Figure 5.33. Distribution of the wrinkling criterion for the proposed solution using Vegter 2017 for the two 
drawing processes model (left) and the single one (right), at the end of the upper cushion stroke (above) 

and at the time step immediately after (below). 

 

 



 

 

  CONCLUSIONS AND FUTURE WORK 

 

 

José António Assunção Marzia  91 

 

 

6. CONCLUSIONS AND FUTURE WORK 

Sheet metal forming is a complex process with several process parameters that 

influence the different boundary conditions imposed to the blank sheet. Therefore, in order 

to assure accurate numerical simulation results, it is fundamental that the inputs and premises 

considered in the model approximate well the physical model. Otherwise, it will translate to 

the unviable detection of possible defects. Besides process parameters, the influence of the 

description of the plastic behavior of the material was studied and its impact on the results 

of drawing processes analyzed. The main conclusions and recommendations for future work 

are summarized in this chapter. 

6.1. Conclusions 

The formability analysis performed for case studies A and B showed the impact 

of the equibiaxial stress value in the prediction of potential splits. The study considered a 10 

% variation of the Biax parameter, also highlighting its impact on the plane strain and shear 

stress states. Globally, the formability prediction is more conservative when using the 

Hill’48 yield criterion, when compared with the BBC 2005. For the case study A, the 

variation induced in the plane strain state, caused by a Biax =  0.9, leads to the change of 

the location of the critical region to the one that is more prone to be observed in experimental 

tests.  

The advantage of the non-linear FLC was attested as a mean to validate designs 

which involve complex strain paths. For case study B, the non-linear FLC points out the 

critical zone, typically observed for inner liftgates, which the linear FLC does not capture. 

Also, it reveals that the region in the linear FLC that surpasses the safety margin has in fact 

remaining formability. It is clear from case studies A and B that non-linear strain paths that 

occur on the right side of the FLC need to be given special attention. There is a high 

probability that the points situated in this region show a higher exhausted formability than 

the one presented in the linear FLC. 

For case study C, the usage of the columns model enabled the detection of tilt 

for the tools, which compromises the desired uniform pressure distribution on the pressure 
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ring and, consequentially, on the part. This tilt can only be solved by altering the working 

surfaces’ orientation, which at the production phase would entail the manufacture of 

completely new tools. It seems that the process was designed with a single-action press in 

mind, since it becomes a perfect solution when cylinders apply force to a blankholder that 

acts directly against a rigid die. An alternative to work around this problem was proposed: 

the two drawing processes model, which enabled the use of columns to control the force. 

Although this model captures the pressure distribution correctly, the adjustment of the tools 

between the two fictitious processes induces wrinkles. Therefore, the application of the two 

drawing processes model is considered to be a good strategy for possible adjustments in the 

design phase, but not to perform the validation. Furthermore, the columns model works 

against a rigid tool, which means that the pressure values that it presents are not as reliable 

as the ones with a defined tool stiffness. Albeit the tool forces do not vary significantly, it is 

not an ideal solution to the problem. The spring controlled tool seems to be a better 

approximation to the physical model, since it is the only option that captures the possible 

opening of the tools. Force controlled tools albeit useful should only be used in an initial 

estimate of the necessary binder force. 

The spacers model was also tested but proved to be difficult to apply. The 

spacer’s stiffness value is very unpredictable and it is very time consuming to uncover with 

precision, even when considering no thickness increment, which is the other control 

parameter. 

6.2. Future Work 

The AutoForm® forming solver is optimized to work under ideal kinematic 

conditions. This limited the analysis of case study C since the production kinematic 

conditions could not be simulated.  

Ideally, the software should be able to predict, during the drawing process, which 

of the two blankholders should displace. A drastic reduction of the time step when the 

blankholder forces become close to each other would probably be needed. Also, the columns 

model should be implemented in such a way that it could work against non-rigid tools, even 

if their stiffness is high. This would allow its use when modeling triple-action presses in a 

single drawing process.  
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The characterization of the mechanical behavior with tensile tests in the 0º, 45º 

and 90º with respect to RD is recommended, since it provides valuable information 

concerning the standard material model available. The material generator is a practical and 

easy tool to be used, enabling the creation of new material file contributing to a more 

accurate library. The Vegter 2017 yield criterion is also recommended as long as convexity 

is guaranteed. If that is not the case, an approximation with the BBC 2005 is also an option, 

which requires the knowledge of the equibiaxial stress value. Finally, it would be interesting 

to have a proper comparison of the yield surfaces in a space corresponding to the plane stress 

components.  
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ANNEX A: PLATE ELEMENT 

Katili (1993) developed a C0 continuous plate bending element whose 

formulation, based on the Reissner-Mindlin theory, introduces a generalization of the 

discrete Kirchhoff technique to include the effects of shear deformation through-the-

thickness (transverse shear). The Reissner-Mindlin theory considers that the normal to the 

mid plane remains straight after deformation, but does not necessarily remain normal to that 

mid plane. The rotation of the normal is also considered independent of the deflection that 

happens to the mid plane. The in-plane displacements 𝑢, 𝑣 and out of plane, 𝑤, are defined 

as:  

 𝑢 = 𝑧𝜗𝑥(𝑥, 𝑦), 𝑣 = 𝑧𝜗𝑦(𝑥, 𝑦),𝑤 = 𝑤(𝑥, 𝑦), (A.1) 

where 𝜗 corresponds to the rotation degree of freedom, considering the coordinate system 

shown in Figure A.1. The coordinate 𝑧 is −0.5ℎ ≤ 𝑧 ≤ 0.5ℎ, with ℎ being the element 

thickness. 

 

Figure A.1. Degrees of freedom and coordinate system of the plate bending element (altered) (Katili, 1993). 

 

The equilibrium equations for a static distributed load 𝑓𝑧 are as follows:  

 

𝑇𝑥,𝑥 + 𝑇𝑦,𝑦 + 𝑓𝑧 = 0, 

𝑀𝑥,𝑥 +𝑀𝑥𝑦,𝑦 − 𝑇𝑥 = 0, 

𝑀𝑥𝑦,𝑥 +𝑀𝑦,𝑦 − 𝑇𝑦 = 0, 

(A.2) 
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where the comma in the subscript is used to represent the derivative. 𝑇𝑥, 𝑇𝑦, 𝑀𝑥, 𝑀𝑦 and 𝑀𝑥𝑦 

are the shear forces and the bending moments per unit length, as shown in Figure A.2. These 

can be related with the stress components by:  

 

𝑇𝑥 = ∫ 𝜎𝑥𝑧𝑑𝑧

1
2
ℎ

−
1
2
ℎ

, 𝑇𝑦 = ∫ 𝜎𝑦𝑧𝑑𝑧

1
2
ℎ

−
1
2
ℎ

, 

𝑀𝑥 = ∫ 𝜎𝑥𝑥𝑧𝑑𝑧

1
2
ℎ

−
1
2
ℎ

, 𝑀𝑦 = ∫ 𝜎𝑦𝑦𝑧𝑑𝑧

1
2
ℎ

−
1
2
ℎ

, 𝑀𝑥𝑦 = ∫ 𝜎𝑥𝑦𝑧𝑑𝑧

1
2
ℎ

−
1
2
ℎ

 . 

(A.3) 

 

Figure A.2. Bending moments and shear forces (Katili, 1993). 

 

Assuming the sign convention of Figure A.2, the kinematic relationships are:  

 

𝝌 = {

𝜗𝑥,𝑥
𝜗𝑦,𝑦

𝜗𝑥,𝑦 + 𝜗𝑦,𝑥

}, 

𝜰 = {
𝛶𝑥𝑧
𝛶𝑦𝑧
} = {

𝑤,𝑥 + 𝜗𝑥
𝑤,𝑦 + 𝜗𝑦

}, 

(A.4) 

where 𝝌 is the curvature vector and 𝜰 the transverse shear strains. They are related to the 

bending moments and shear forces by the constitutive relations 𝑯𝐛 and 𝑯𝐬, respectively. 

These relations depend on the behavior of the material, whether isotropic or anisotropic, and 

its current state, whether elastic or plastic.  

 

{

𝑀𝑥

𝑀𝑦

𝑀𝑥𝑦

} = 𝑯𝐛 {

𝜗𝑥,𝑥
𝜗𝑦,𝑦

𝜗𝑥,𝑦 + 𝜗𝑦,𝑥

}, 

{
𝑇𝑥
𝑇𝑦
} = 𝑯𝐬 {

𝛶̅𝑥𝑧
𝛶̅𝑦𝑧
}. 

(A.5) 
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𝛶̅ refers to an assumed value of transverse shear strain. For illustration purposes consider a 

linearly elastic, isotropic, homogeneous plate, where 𝑯𝐛 and 𝑯𝐬 are given by:  

 

𝑯𝐛 =
𝐸ℎ3

12(1 − 𝜐2)
[

1 𝜐 0
𝜐 1 0

0 0
1

2
(1 − 𝜐)

], 

𝑯𝐬 = 
𝜅𝐸ℎ

2(1 + 𝜐)
[
1 0
0 1

], 

(A.6) 

with 𝜐 being the Poisson ratio, 𝐸 the Young modulus and 𝜅 the shear correction factor. The 

strain field presented in equation (2.9) is not enough to reproduce the kinematic behavior of 

the element completely, namely the rotations. Thus, the rotations are interpolated by a 

complete rigid body and constant-curvature field expansion, using 𝑁𝑖 with 𝑖 = 1, 2, 3, and a 

set of higher order functions 𝑃𝑘 with 𝑘 = 4, 5, 6, defined for the mid-points of the element’s 

segments (see Figure A.3). This results in the following rotation fields:  

 

𝜗𝑥 =∑𝑁𝑖

3

𝑖=1

𝜗𝑥𝑖 +∑𝑃𝑘

6

𝑘=4

𝐶𝑘Δ𝜗𝑠𝑘 , 

𝜗𝑦 =∑𝑁𝑖

3

𝑖=1

𝜗𝑦𝑖 +∑𝑃𝑘

6

𝑘=4

𝑆𝑘Δ𝜗𝑠𝑘 , 

(A.7) 

where 𝐶𝑘 ≡ cos(𝜃𝑘) and 𝑆𝑘 ≡ sin(𝜃𝑘). Assuming, 𝑁1 = 𝜆, 𝑁2 = 𝜉 and 𝑁3 = 𝜂, and the 

higher order functions defined as: 

 𝑃4 = 4𝜆𝜉, 𝑃5 = 4𝜉𝜂, 𝑃6 = 4𝜆𝜂, (A.8) 

the curvature vector can be given by:  

 𝝌 = 𝑩𝐛𝝑𝑼𝒏 + 𝑩𝐛∆𝝑∆𝝑𝒏, (A.9) 

with 𝑩𝐛𝝑 originating from equation (2.9), where zero columns are introduced for adjustment:  

 𝑩𝐛𝝑 =
1

2𝐴e
[
0
0
0

𝛽1
0
𝛾1

0
𝛾1
𝛽1

0
0
0

𝛽2
0
𝛾2

0
𝛾2
𝛽2

0
0
0

𝛽3
0
𝛾3

0
𝛾3
𝛽3

]. (A.10) 

A similar procedure to obtain the matrix 𝑩𝐛∆𝝑 should be applied, differentiating the functions 

𝑃𝑘, leading to:  
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 𝑩𝐛∆𝝑 =
1

2𝐴e
[

(𝑃𝑘,𝜉 𝛽2 + 𝑃𝑘,𝜂 𝛽3)𝐶𝑘

(𝑃𝑘,𝜉 𝛾2 + 𝑃𝑘,𝜂 𝛾3)𝑆𝑘

(𝑃𝑘,𝜉 𝛾2 + 𝑃𝑘,𝜂 𝛾3)𝐶𝑘 + (𝑃𝑘,𝜉 𝛽2 + 𝑃𝑘,𝜂 𝛽3)𝑆𝑘

]. (A.11) 

Note that the vector of nodal degrees of freedom is 𝑼𝒏 =

{𝑤1 𝜗𝑥1 𝜗𝑦1 𝑤2 𝜗𝑥2 𝜗𝑦2 𝑤3 𝜗𝑥3 𝜗𝑦3} and the difference between the 

quadratic and linear rotation at the segments mid-point is ∆𝝑𝒏 =  {∆𝜗𝑠4 ∆𝜗𝑠5 ∆𝜗𝑠6}. 

To define the shear strain fields, the relation between the bending and shear 

rotations must be found. Consider a local s, n coordinate system at the element boundary, 

where s and n denote the tangential and outward normal directions respectively, like 

represented in Figure A.3.  

 

Figure A.3. Representation of the tangential and outward normal coordinate system (Katili, 1993). 

 

The length of the segments is 𝐿𝑘, with 𝑘 = 4, 5, 6. The assumed tangential shear strain can 

be given by: 

 𝛶̅𝑠𝑧 =
𝑇𝑠
𝐷𝑠
, (A.12) 

with 𝑇𝑠 being the tangential shear force along the side 𝑘, such that:  

 𝑇𝑠 = 𝑀𝑠,𝑠 +𝑀𝑛𝑠,𝑛 . (A.13) 

Considering the constitutive equations for the bending moments, 𝐷s = (𝜅𝐸ℎ 2(1+ 𝜐)⁄ ) and 

𝐷b = (𝐸ℎ
3 12(1− 𝜐2)⁄ ). This allows defining: 

 𝑀𝑠 = 𝐷b(𝜗𝑠,𝑠 + 𝜐𝜗𝑛,𝑛), (A.14) 
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𝑀𝑛𝑠 = 𝐷b
(1 − 𝜐)

2
(𝜗𝑠,𝑛 + 𝜗𝑛,𝑠), 

which give:  

 𝛶̅𝑠𝑧 =
𝐷b
𝐷s
[𝜗𝑠,𝑠𝑠 + 𝜐𝜗𝑛,𝑛𝑠 +

(1 − 𝜐)

2
(𝜗𝑠,𝑛𝑛 + 𝜗𝑛,𝑛𝑠)]. (A.15) 

By imposing, along the sides of the element, a linear and quadratic variation of the rotations 

𝜗𝑛 and 𝜗𝑠, respectively, such that: 

 

𝜗𝑛 = (1 −
𝑠

𝐿𝑘
) 𝜗𝑛𝑖 +

𝑠

𝐿𝑘
𝜗𝑛𝑗 , 

𝜗𝑠 = (1 −
𝑠

𝐿𝑘
) 𝜗𝑠𝑖 +

𝑠

𝐿𝑘
𝜗𝑠𝑗 + 4

𝑠

𝐿𝑘
(1 −

𝑠

𝐿𝑘
) ∆𝜗𝑠𝑘 , 

(A.16)) 

makes 𝜗𝑛,𝑛𝑠 = 𝜗𝑠,𝑛𝑛 = 0, and so: 

 𝛶̅𝑠𝑧 =
𝐷b
𝐷s
𝜗𝑠,𝑠𝑠 = −

2

3
𝜙𝑘∆𝜗𝑠𝑘 . (A.17) 

This gives the shear influence factor 𝜙𝑘  as:  

 𝜙𝑘 =
12

𝐿𝑘
2

𝐷b
𝐷s
. (A.18) 

The assumed shear angle components of the nodes can be determined based on the assumed 

tangential shear angles of the sides, such that  

 

{
  
 

  
 
𝛶̅𝑥𝑧1
𝛶̅𝑦𝑧1

𝛶̅𝑥𝑧2
𝛶̅𝑦𝑧2

𝛶̅𝑥𝑧3
𝛶̅𝑦𝑧3}

  
 

  
 

=

[
 
 
 
 
 
𝑆6 𝐴1⁄

−𝐶6 𝐴1⁄

−𝑆5 𝐴2⁄

𝐶5 𝐴2⁄
0
0

0
0

𝑆4 𝐴2⁄

−𝐶4 𝐴2⁄

−𝑆6 𝐴3⁄

𝐶6 𝐴3⁄

−𝑆4 𝐴1⁄

𝐶4 𝐴1⁄
0
0

𝑆5 𝐴3⁄

−𝐶5 𝐴3⁄ ]
 
 
 
 
 

{

𝛶̅𝑠𝑧4
𝛶̅𝑠𝑧5
𝛶̅𝑠𝑧6

}, (A.19) 

where 𝐴1 = 𝐶4𝑆6 − 𝐶6𝑆4, 𝐴2 = 𝐶5𝑆4 − 𝐶4𝑆5 and 𝐴3 = 𝐶6𝑆5 − 𝐶5𝑆6. This means that the 

assumed transverse shear can be interpolated with:  

 {
𝛶̅𝑥𝑧
𝛶̅𝑦𝑧
} =∑𝑵𝒊

3

𝑖=1

{
𝛶̅𝑥𝑧𝑖
𝛶̅𝑦𝑧𝑖

} = 𝑵𝜰 {

𝛶̅𝑠𝑧4
𝛶̅𝑠𝑧5
𝛶̅𝑠𝑧6

}, (A.20) 

where 
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 𝑵𝜰 =

[
 
 
 (
𝑆6
𝐴1
𝜆 −

𝑆5
𝐴2
𝜉) (

𝑆4
𝐴2
𝜉 −

𝑆6
𝐴3
𝜂) (

𝑆5
𝐴3
𝜂 −

𝑆4
𝐴1
𝜆)

(
𝐶5
𝐴2
𝜉 −

𝐶6
𝐴1
𝜆) (

𝐶6
𝐴3
𝜂 −

𝐶4
𝐴2
𝜉) (

𝐶4
𝐴1
𝜆 −

𝐶5
𝐴3
𝜂)
]
 
 
 

. (A.21) 

From equation (A.17) the following relation is obtained:  

 {
𝛶̅𝑥𝑧
𝛶̅𝑦𝑧
} = 𝑩𝐬∆𝝑∆𝝑𝒏, (A.22) 

where 𝑩𝐬∆𝝑 = −(2 3⁄ )𝑵𝜰𝝓𝒌, which translates to:  

 𝑩𝐬∆𝝑 =
2

3

[
 
 
 (
𝑆5
𝐴2
𝜉 −

𝑆6
𝐴1
𝜆)𝜙4 (

𝑆6
𝐴3
𝜂 −

𝑆4
𝐴2
𝜉)𝜙5 (

𝑆4
𝐴1
𝜆 −

𝑆5
𝐴3
𝜂)𝜙6

(
𝐶6
𝐴1
𝜆 −

𝐶5
𝐴2
𝜉)𝜙4 (

𝐶4
𝐴2
𝜉 −

𝐶6
𝐴3
𝜂) 𝜙5 (

𝐶5
𝐴3
𝜂 −

𝐶4
𝐴1
𝜆)𝜙6]

 
 
 

. (A.23) 

Using the variational functional of the modified Hu-Washizu principal, which 

gives the total strain energy as:  

 Π = Πb +Πs − ∫ 𝑓𝑧𝑤
 

𝐴e
𝑑𝐴 + Πext, (A.24) 

with 

 Πb =
1

2
∫ 𝝌T𝑯𝐛𝝌
 

𝐴e
𝑑𝐴, (A.25) 

 Πs =
1

2
∫ 𝜰̅T𝑯𝐬𝜰̅𝑑𝐴
 

𝐴e
+∫ 𝑻(𝜰 − 𝜰̅)𝑑𝐴

 

𝐴e
, (A.26) 

where Πb, Πs and Πext are the strain energies corresponding to bending, shear and the 

external forces respectively. 𝑓𝑧 is the distributed load in the z direction. Considering the 

variation of the strain energy associated with the transverse shear vector, 𝑻, equal to zero, 

the following constraint equation can be written:  

 ∫ 𝛿𝑇𝑠(𝛶𝑠𝑧 − 𝛶̅𝑠𝑧)
𝐿𝑘

0

ds = 0, (A.27) 

with 𝑇𝑠 constant per side:  

 ∫ (𝛶𝑠𝑧 − 𝛶̅𝑠𝑧)
𝐿𝑘

0

ds = 0, (A.28) 

recalling equation (A.16)) and knowing that 𝛶𝑠𝑧 = 𝑤,𝑠 + 𝜗𝑠  gives, after integration:  
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 𝑤𝑗 −𝑤𝑖 +
𝐿𝑘
2
𝜗𝑠𝑖 +

𝐿𝑘
2
𝜗𝑠𝑗 +

2

3
𝐿𝑘Δ𝜗𝑠𝑘 − 𝐿𝑘𝛶̅𝑠𝑧 = 0. (A.29) 

Thus, the rotations for the distinct coordinate axis can be obtained from one another:  

 {
𝜗𝑠
𝜗𝑛
}
𝑖,𝑗

= [
𝐶𝑘 𝑆𝑘
−𝑆𝑘 𝐶𝑘

] {
𝜗𝑥
𝜗𝑦
}
𝑖,𝑗

, (A.30) 

which leads to 

 
2

3
𝐿𝑘(1 + 𝝓𝒌)Δ𝜗𝑠𝑘 = 𝑤𝑖 − 𝑤𝑗 −

𝐿𝑘
2
(𝐶𝑘𝜗𝑥𝑖 + 𝑆𝑘𝜗𝑦𝑖) −

𝐿𝑘
2
(𝐶𝑘𝜗𝑥𝑗 + 𝑆𝑘𝜗𝑦𝑗), (A.31) 

which can be written in the form:  

 𝑨𝚫𝝑𝚫𝝑𝒔𝒌 = 𝑨𝐰𝑼𝒏, (A.32) 

where  

 𝑨𝚫𝝑 =

[
 
 
 
 
 
2

3
𝐿4(1 + 𝜙4) 0 0

0
2

3
𝐿5(1 + 𝜙5) 0

0 0
2

3
𝐿6(1 + 𝜙6)]

 
 
 
 
 

, (A.33) 

and, noting that 𝐿𝑘𝐶𝑘 = (𝑥𝑗 − 𝑥𝑖) and 𝐿𝑘𝑆𝑘 = (𝑦𝑗 − 𝑦𝑖): 

 𝑨𝐰 =

[
 
 
 
 1

−𝛾3
2

𝛽3
2

0 0 0

−1
−𝛾2
2

𝛽2
2

−1
−𝛾3
2

𝛽3
2

1
−𝛾1
2

𝛽1
2

0 0 0

0 0 0

−1
−𝛾1
2

𝛽1
2

1
−𝛾2
2

𝛽2
2 ]
 
 
 
 

. (A.34) 

Making 𝑨𝐧 = 𝑨𝚫𝝑
−𝟏𝑨𝐰 changes equation (A.32) into 𝚫𝝑𝒔𝒌 = 𝑨𝐧𝑼𝒏. Now, both the curvature 

and the transverse strain can be defined from the nodal displacements and rotations, with 

𝑩𝐛 = 𝑩𝐛𝝑 +𝑩𝐛∆𝝑𝑨𝐧 and 𝑩𝐬 = 𝑩𝐬∆𝝑𝑨𝐧 giving:  

 
𝝌 = 𝑩𝐛𝑼𝐧 , 

𝜰 = 𝑩𝐬𝑼𝐧 . 
(A.35) 

The plate stiffness matrix, 𝑲𝐏, is then constituted by a bending and a shear component:  

 𝑲𝐛 = ∫ 𝑩𝐛
T𝑯𝐛𝑩𝐛𝑑𝐴

 

𝐴e
, (A.36) 

 𝑲𝐬 = ∫ 𝑩𝐬
T𝑯𝐬𝑩𝐬𝑑𝐴

 

𝐴e
, (A.37) 
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 𝑲𝐏  = 𝑲𝐛 +𝑲𝐬. (A.38) 

In general terms, the complete stiffness matrix for a shell element is defined with both the 

membrane and the plate stiffness matrixes (Zienkiewicz and Taylor, 2000). 
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ANNEX B: AUXILIARY CALCULUS 

 

B.1 BBC 2005 

The partial derivatives of the stress function Φ with respect to the planar required 

by equation (3.31) are the following: 

 

𝜕𝜎̅

𝜕Λ
=

1

𝜎̅2𝑘−1
{𝑎[(Λ + Γ)2𝑘−1 + (Λ − Γ)2𝑘−1]

+ 𝑏[(Λ + Ψ)2𝑘−1 + (Λ − Ψ)2𝑘−1]}, 

𝜕𝜎̅

𝜕Γ
=

𝑎

𝜎̅2𝑘−1
[(Λ + Γ)2𝑘−1 − (Λ − Γ)2𝑘−1], 

𝜕𝜎̅

𝜕Ψ
=

𝑏

𝜎̅2𝑘−1
[(Λ + Ψ)2𝑘−1 − (Λ −Ψ)2𝑘−1], 

(B.1) 

and 

 

𝜕Λ

𝜕𝜎𝑥𝑥
=
𝑁(𝑁𝜎𝑥𝑥 − 𝑃𝜎𝑦𝑦)

Λ
,
𝜕Λ

𝜕𝜎𝑦𝑦
= −

𝑃(𝑁𝜎𝑥𝑥 − 𝑃𝜎𝑦𝑦)

Λ
,
𝜕Λ

𝜕𝜎𝑥𝑦
=
𝜎𝑦𝑥
2Λ

,
𝜕Λ

𝜕𝜎𝑦𝑥

=
𝜎𝑥𝑦
2Λ
, 

𝜕Γ

𝜕𝜎𝑥𝑥
= 𝐿,

𝜕Γ

𝜕𝜎𝑦𝑦
= 𝑀,

𝜕Γ

𝜕𝜎𝑥𝑦
= 0,

𝜕Γ

𝜕𝜎𝑦𝑥
= 0, 

𝜕Ψ

𝜕𝜎𝑥𝑥
=
𝑄(𝑄𝜎𝑥𝑥 − 𝑅𝜎𝑦𝑦)

Ψ
,
𝜕Ψ

𝜕𝜎𝑦𝑦
= −

𝑅(𝑄𝜎𝑥𝑥 − 𝑅𝜎𝑦𝑦)

Ψ
,
𝜕Ψ

𝜕𝜎𝑥𝑦
=
𝜎𝑦𝑥
2Ψ

,
𝜕Ψ

𝜕𝜎𝑦𝑥

=
𝜎𝑥𝑦
2Ψ

. 

(B.2) 

The partial derivatives of the stress function Φ with respect to the planar required 

by equation (3.35) are the following: 

 

𝜕𝜎̅

𝜕Λ
|
𝜃
=

1

𝐹𝜃
2𝑘−1

{𝑎[(Λ𝜃 + Γ𝜃)
2𝑘−1 + (Λ𝜃 − Γ𝜃)

2𝑘−1]

+ 𝑏[(Λ𝜃 +Ψ𝜃)
2𝑘−1 + (Λ𝜃 − Ψ𝜃)

2𝑘−1]}, 

𝜕𝜎̅

𝜕Γ
|
𝜃
=

𝑎

𝐹𝜃
2𝑘−1

[(Λ𝜃 + Γ𝜃)
2𝑘−1 − (Λ𝜃 − Γ𝜃)

2𝑘−1], 

(B.3) 
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𝜕𝜎̅

𝜕Ψ
|
𝜃
=

𝑏

𝐹𝜃
2𝑘−1

[(Λ𝜃 +Ψ𝜃)
2𝑘−1 − (Λ𝜃 −Ψ𝜃)

2𝑘−1], 

and 

 

(
𝜕Λ

𝜕𝜎𝑥𝑥
+

𝜕Λ

𝜕𝜎𝑦𝑦
)|
𝜃

=
(𝑁 − 𝑃)(𝑁 cos2 𝜃 − 𝑃 sin2 𝜃)

Λ𝜃
, 

(
𝜕Γ

𝜕𝜎𝑥𝑥
+

𝜕Γ

𝜕𝜎𝑦𝑦
)|
𝜃

= 𝐿 +𝑀, 

(
𝜕Ψ

𝜕𝜎𝑥𝑥
+
𝜕Ψ

𝜕𝜎𝑦𝑦
)|
𝜃

=
(𝑄 − 𝑅)(𝑄 cos2 𝜃 − 𝑅 sin2 𝜃)

Ψ𝜃
. 

(B.4) 

Leading to: 

 

𝐺𝜃 = 𝑎 [
(𝑁 − 𝑃)(𝑁 cos2 𝜃 − 𝑃 sin2 𝜃)

Λ𝜃
+ 𝐿 + 𝑀] (Λ𝜃 + Γ𝜃)

2𝑘−1

+ 𝑎 [
(𝑁 − 𝑃)(𝑁 cos2 𝜃 − 𝑃 sin2 𝜃)

Λ𝜃
− 𝐿 − 𝑀] (Λ𝜃 − Γ𝜃)

2𝑘−1

+ 𝑏 [
(𝑁 − 𝑃)(𝑁 cos2 𝜃 − 𝑃 sin2 𝜃)

Λ𝜃

+
(𝑄 − 𝑅)(𝑄 cos2 𝜃 − 𝑅 sin2 𝜃)

Ψ𝜃
] (Λ𝜃 +Ψ𝜃)

2𝑘−1

+ 𝑏 [
(𝑁 − 𝑃)(𝑁 cos2 𝜃 − 𝑃 sin2 𝜃)

Λ𝜃

−
(𝑄 − 𝑅)(𝑄 cos2 𝜃 − 𝑅 sin2 𝜃)

Ψ𝜃
] (Λ𝜃 −Ψ𝜃)

2𝑘−1, 

(B.5) 

The partial derivatives of the stress function Φ with respect to the planar required 

by equation (3.41) are the following: 

 (
𝜕Λ

𝜕𝜎𝑥𝑥
)|
b

=
𝑁(𝑁 − 𝑃)

Λb
, (
𝜕Γ

𝜕𝜎𝑥𝑥
)|
b

= 𝐿, (
𝜕Ψ

𝜕𝜎𝑥𝑥
)|
b

=
𝑄(𝑄 − 𝑅)

Ψb
. (B.6) 

Leading to: 
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𝐺b = 𝑎 [
𝑁(𝑁 − 𝑃)

Λb
+ 𝐿] (Λb + Γb)

2𝑘−1 + 𝑎 [
𝑁(𝑁 − 𝑃)

Λb
− 𝐿] (Λb − Γb)

2𝑘−1

+ 𝑏 [
𝑁(𝑁 − 𝑃)

Λb
+
𝑄(𝑄 − 𝑅)

Ψb
] (Λb +Ψb)

2𝑘−1

+ 𝑏 [
𝑁(𝑁 − 𝑃)

Λb
−
𝑄(𝑄 − 𝑅)

Ψb
] (Λb −Ψb)

2𝑘−1. 

(B.7) 

 

B.2 Vegter Model 

Knowing that the interpolation function 𝐹(𝜇, 𝑐) is given by equation (3.49), it 

stands to reason that the principal stresses are given by:  

 
𝜎11 = 𝜎̅𝐹1(𝜇, 𝑐), 

𝜎22 = 𝜎̅𝐹2(𝜇, 𝑐). 
(B.8) 

Differentiating 𝜎11 and 𝜎22 with respect to 𝜎11 and denoting the mutual independence 

between the planar stress components yields:  

 

𝜕𝜎11
𝜕𝜎11

=
𝜕𝐹1(𝜇, 𝑐)

𝜕𝜎11
𝜎̅ +

𝜕𝜎̅

𝜕𝜎11
𝐹1(𝜇, 𝑐) = 1, 

𝜕𝜎22
𝜕𝜎11

=
𝜕𝐹2(𝜇, 𝑐)

𝜕𝜎11
𝜎̅ +

𝜕𝜎̅

𝜕𝜎11
𝐹2(𝜇, 𝑐) = 0. 

(B.9) 

Since this independence also applies to 𝑐: 

 

𝜕𝐹1(𝜇, 𝑐)

𝜕𝜎11
=
𝜕𝐹1(𝜇, 𝑐)

𝜕𝜇

𝜕𝜇

𝜕𝜎11
+
𝜕𝐹1(𝜇, 𝑐)

𝜕𝑐

𝜕𝑐

𝜕𝜎11
=
𝜕𝐹1(𝜇, 𝑐)

𝜕𝜇

𝜕𝜇

𝜕𝜎11
, 

𝜕𝐹2(𝜇, 𝑐)

𝜕𝜎11
=
𝜕𝐹2(𝜇, 𝑐)

𝜕𝜇

𝜕𝜇

𝜕𝜎11
+
𝜕𝐹2(𝜇, 𝑐)

𝜕𝑐

𝜕𝑐

𝜕𝜎11
=
𝜕𝐹2(𝜇, 𝑐)

𝜕𝜇

𝜕𝜇

𝜕𝜎11
. 

(B.10) 

Recalling that 𝜕Φ 𝜕𝜎𝑖𝑗⁄ = 𝜕𝜎̅ 𝜕𝜎𝑖𝑗⁄  and replacing in equation (B.9):  

 

𝜕𝐹1(𝜇, 𝑐)

𝜕𝜇

𝜕𝜇

𝜕𝜎11
𝜎̅ +

𝜕Φ

𝜕𝜎11
𝐹1(𝜇, 𝑐) = 1, 

𝜕𝐹2(𝜇, 𝑐)

𝜕𝜇

𝜕𝜇

𝜕𝜎11
𝜎̅ +

𝜕Φ

𝜕𝜎11
𝐹2(𝜇, 𝑐) = 0. 

(B.11) 

With these, solving for (𝜕Φ 𝜕𝜎11⁄ ), after eliminating (𝜕𝜇 𝜕𝜎11⁄ ):  

 
𝜕Φ

𝜕𝜎11
=

𝜕𝐹2
𝜕𝜇

𝐹1
𝜕𝐹2
𝜕𝜇

− 𝐹2
𝜕𝐹1
𝜕𝜇

. (B.12) 
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Similarly, differentiating 𝜎11 and 𝜎22 with respect to 𝜎22 and following the same procedure:  

 
𝜕Φ

𝜕𝜎22
=

−
𝜕𝐹1
𝜕𝜇

𝐹1
𝜕𝐹2
𝜕𝜇

− 𝐹2
𝜕𝐹1
𝜕𝜇

. (B.13) 

To find the relation with respect to 𝑐, the parameter 𝜇 is considered constant:  

 

𝜕𝜎11
𝜕𝑐

=
𝜕𝐹1(𝜇, 𝑐)

𝜕𝑐
𝜎̅ +

𝜕Φ

𝜕𝑐
𝐹1(𝜇, 𝑐) = 0, 

𝜕𝜎22
𝜕𝑐

=
𝜕𝐹2(𝜇, 𝑐)

𝜕𝜎11
𝜎̅ +

𝜕Φ

𝜕𝑐
𝐹2(𝜇, 𝑐) = 0. 

(B.14) 

Similarly: 

 

𝜕𝐹1(𝜇, 𝑐)

𝜕𝑐
=
𝜕𝐹1(𝜇, 𝑐)

𝜕𝑐
+
𝜕𝐹1(𝜇, 𝑐)

𝜕𝜇

𝜕𝜇

𝜕𝑐
, 

𝜕𝐹2(𝜇, 𝑐)

𝜕𝑐
=
𝜕𝐹2(𝜇, 𝑐)

𝜕𝑐
+
𝜕𝐹2(𝜇, 𝑐)

𝜕𝜇

𝜕𝜇

𝜕𝑐
. 

(B.15) 

giving:  

 

(
𝜕𝐹1(𝜇, 𝑐)

𝜕𝑐
+
𝜕𝐹1(𝜇, 𝑐)

𝜕𝜇

𝜕𝜇

𝜕𝑐
) 𝜎̅ +

𝜕Φ

𝜕𝑐
𝐹1(𝜇, 𝑐) = 0, 

(
𝜕𝐹2(𝜇, 𝑐)

𝜕𝑐
+
𝜕𝐹2(𝜇, 𝑐)

𝜕𝜇

𝜕𝜇

𝜕𝑐
) 𝜎̅ +

𝜕Φ

𝜕𝑐
𝐹2(𝜇, 𝑐) = 0. 

(B.16) 

Solving for (𝜕Φ 𝜕𝑐⁄ ), after eliminating (𝜕𝜇 𝜕𝑐⁄ ):  

 
𝜕Φ

𝜕𝑐
= 𝜎̅

𝜕𝐹2
𝜕𝑐

𝜕𝐹1
𝜕𝜇 −

𝜕𝐹1
𝜕𝑐

𝜕𝐹2
𝜕𝜇

𝐹1
𝜕𝐹2
𝜕𝜇

− 𝐹2
𝜕𝐹1
𝜕𝜇

. (B.17) 

This allows to define:  

 

{
  
 

  
 
𝜕Φ

𝜕𝜎11
𝜕Φ

𝜕𝜎22
𝜕Φ

𝜕𝑐 }
  
 

  
 

=
1

𝐹1
𝜕𝐹2
𝜕𝜇

− 𝐹2
𝜕𝐹1
𝜕𝜇

{
  
 

  
 

𝜕𝐹2
𝜕𝜇

−
𝜕𝐹1
𝜕𝜇

𝜎̅ (
𝜕𝐹2
𝜕𝑐

𝜕𝐹1
𝜕𝜇

−
𝜕𝐹1
𝜕𝑐

𝜕𝐹2
𝜕𝜇
)
}
  
 

  
 

. (B.18) 
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B.2.1 Hinge point calculation 

Using the notation presented in equation (3.48), the hinge point can be 

determined by knowing the normal to the yield curve, denoted here by 𝑛⃗⃗ and 𝑚⃗⃗⃗, in the points 

𝐴 and 𝐶 respectively. This means that: 

 (𝐵⃗⃗ − 𝐴) ∙ 𝑛⃗⃗ = 0 , (𝐵⃗⃗ − 𝐶) ∙ 𝑚⃗⃗⃗ = 0. (B.19) 

Solving these equations for the coordinates of the hinge point, one obtains: 

 

𝐵1 =
𝑚2(𝑛1𝐴1 + 𝑛2𝐴2) − 𝑛2(𝑚1𝐶1 +𝑚2𝐶2)

𝑛1𝑚2 − 𝑛2𝑚1
, 

𝐵2 =
𝑛1(𝑚1𝐶1 +𝑚2𝐶2) − 𝑚1(𝑛1𝐴1 + 𝑛2𝐴2)

𝑛1𝑚2 − 𝑛2𝑚1
. 

(B.20) 

The derivative of the hinge point with respect to 𝑐 is defined as: 

 
𝑑

𝑑𝑐
[
𝑛1 𝑛2
𝑚1 𝑚2

] {
𝐵1
𝐵2
} + [

𝑛1 𝑛2
𝑚1 𝑚2

]
𝑑

𝑑𝑐
{
𝐵1
𝐵2
} =

𝑑

𝑑𝑐
{
𝑛1𝐴1 + 𝑛2𝐴2
𝑚1𝐶1 +𝑚2𝐶2

}, (B.21) 

such that: 

{
𝑃1
𝑃2
} = [

𝑛1 𝑛2
𝑚1 𝑚2

] {

𝑑𝐵1
𝑑𝑐
𝑑𝐵2
𝑑𝑐

}

= {
𝑛1
𝑑𝐴1
𝑑𝑐

+
𝑑𝑛1
𝑑𝑐

(𝐴1 − 𝐵1) + 𝑛2
𝑑𝐴2
𝑑𝑐

+
𝑑𝑛2
𝑑𝑐

(𝐴2 − 𝐵2)

𝑚1

𝑑𝐶1
𝑑𝑐

+
𝑑𝑚1

𝑑𝑐
(𝐶1 − 𝐵1) + 𝑚2

𝑑𝐶2
𝑑𝑐

+
𝑑𝑚2

𝑑𝑐
(𝐶2 − 𝐵2)

}, 

(B.22) 

leading to: 

 {

𝑑𝐵1
𝑑𝑐
𝑑𝐵2
𝑑𝑐

} =
1

𝑛1𝑚2 −𝑚1𝑛2
{
𝑃1𝑚2 − 𝑃2𝑛2
𝑃2𝑛1 − 𝑃1𝑚1

}. (B.23) 

Considering that that the normal vectors are constituted from the strain ratios, such that 𝑛1 =

1 and 𝑛2 = 𝜌: 

 
𝑑𝑛⃗⃗

𝑑𝑐
= {

𝑑𝑛1
𝑑𝑐
𝑑𝑛2
𝑑𝑐

} = {
0
𝑑𝜌

𝑑𝑐

}. (B.24) 

where the derivative of the strain ratio can be derived from the Fourier series. 

 



 

 

Influence of the yield criterion in the formability prediction on parts with complex geometry  

 

 

112  2020 

 

 

 


