

Hugo Correia Marques

3D REGISTRATION AND MAPPING OF

FOREST ENVIRONMENTS

Master’s Dissertation in MIEEC, supervised by Dr. David Bina
Siassipour Portugal and presented to Faculty of Science and

Technology of the University of Coimbra

October 2020

3D Registration and Mapping of Forest

Environments

Hugo Correia Marques

Coimbra, October 2020

3D Registration and Mapping of Forest Environments

Supervisor:

Dr. David Bina Siassipour Portugal

Jury:

Prof. Dr. António Paulo Mendes Breda Dias Coimbra

Prof. Dr. Cristiano Premebida

Dr. David Bina Siassipour Portugal

Dissertation submitted in partial fulfillment for the degree of Master of Science in

Electrical and Computer Engineering.

Coimbra, October 2020

Acknowledgements

It is common to say that big goals are not accomplished alone. When we think that

all our knowledge comes from the cluster of information that we retain in research, articles,

books and many others, and that this knowledge comes from other people, we understand

that we are not alone in that way. However, these adventures are also an open door for

great challenges, frustrations, headaches and disappointments. When everything we think

we know seems not to be enough, when all our brilliant ideas seem to be just ideas, when

all our effort is not paid off at that moment, we start giving up. Although we were looking

for answers in in the right places, we were not getting what we wanted. Then, in a simple

conversation between colleagues, in a moment of carefree with those we like, we refresh our

mind and we try again with another spirit. We start to see problems in other ways, we see

solutions where we had never thought of and we take our goals forward when we no longer

had hope. We realize that all that we needed was to socialize, debate, laugh with someone

about something that tormented us, know how to help and receive help, we just needed to

realize again that we were not alone.

I would like to acknowledge the various people who have helped me, in one way or another,

during these last years.

First of all, I thank my parents, who unconditionally supported me in all situations,

provided me with all the best conditions and always trusted in my effort and commitment.

I thank my girlfriend, Inês, whose love, care and support were essential in this journey.

Regardless of my less positive moments, she always had some way to lift my head, make me

laugh and make me happy.

I thank my supervisors, Dr. David Portugal and Dr. Gonçalo Martins, for always keeping

me on track, for constant and precious advices, for giving me the opportunity to embrace

this enriching mission and for having taught principles, both technically and in organization,

ii

that I will take with me for the rest of my life. I also thank Dr. João Ferreira who, with his

experience and knowledge, helped me in important questions that would take a lot of time

to overcome.

I also give my thanks to my colleagues and friends, namely Leonardo Esteves, Gonçalo

Monteiro, Tiago Baptista, Francisco Roque, João Santos, Rafael Carvalho and David Gomes,

with whom we made a true friendship group with remarkable moments, and with which we

formed a mutual help team that was able to overcome the challenges that came our way.

I am grateful to Duda Andrada and André Araújo for their willingness to help and for

having been my point of assistance in the most difficult moments of this work.

Special thanks to my grandparents and D. Ilídio Pinto Leandro.

iii

Resumo

À medida que aumenta o desenvolvimento de sistemas robóticos autónomos, aumenta

também o interesse em usar robôs como uma solução viável e segura para trabalhos repet-

itivos, complicados, difíceis e perigosos. Dada a uma alta densidade florestal presente na

maioria dos continentes, os incêndios florestais tendem a ser bastante devastadores e difíceis

de combater, o que coloca em risco várias vidas humanas, fauna e flora. Desenvolvimentos

recentes na área da Robótica florestal permitem aos robôs percecionar ambientes florestais

desconhecidos, mapeando-os e produzindo informação útil a fim de detetar material poten-

cialmente inflamável, podendo assim agir e prevenir a ocorrência de fogos florestais.

A Localização e Mapeamento Simultâneos (do Inglês SLAM - Simultaneous localization

and mapping) permite dotar uma plataforma robótica móvel com a capacidade de construir

uma representação do ambiente circundante e, simultaneamente, localizar-se nele.

A proliferação de novos sensores e o aumento das suas capacidades abriram uma vasta

gama de possibilidades para o mundo tecnológico. No âmbito de operações florestais com

robôs autónomos, a calibração e o registo multissensorial tornam-se fundamentais para a

obtenção de informação útil e consistente sobre o ambiente.

Este trabalho tem como foco a solução desses problemas direcionados aos ambientes

florestais, lidando com as suas adversidades e desafios. Propomos uma solução que visa

calibrar e registar com alta precisão os sensores de um kit sensorial multimodal embutido

num robô florestal de grande porte, e utilizá-los para mapear em tempo real o ambiente

circundante com dados úteis.

Esta solução foi validada por meio de experiências previamente guardadas no mundo

real, utilizando datasets, tendo demonstrado um desempenho apropriado, tanto em precisão

quanto em consistência. No final, conseguiu-se registar com precisão os sensores presentes

num sistema robótico e construir um mapa 3D denso do ambiente com o correto registo dos

iv

diferentes dados de sensores.

v

Abstract

As the development of autonomous robotic systems increases, so does the interest in

using robots as a viable and safe solution for repetitive, complicated, difficult and dangerous

works. Given the high forest density present in most continents, forest fires may be quite

devastating and difficult to fight, which puts several human lives, fauna and flora at risk.

Recent developments in the field of Forest Robotics allow robots to perceive unknown forest

environments, mapping them and producing useful information in order to detect potentially

flammable material, thus being able to act and prevent the occurrence of forest fires.

Simultaneous localization and Mapping (SLAM) addresses the problem of providing a

mobile robotic platform with the ability to build a representation of the surrounding envi-

ronment and simultaneously localize itself in it.

The proliferation of sensors and their increased capabilities have opened up a huge range

of possibilities for the technological world. In the realm of forestry operations with au-

tonomous robots, calibration and multisensory registration are essential to acquire useful

and consistent information about the environment.

This work focuses on the solution to these problems in forest environments, addressing the

challenges involved. We propose a solution that seeks to calibrate and register the sensors of

a multimodal sensory kit embedded in a large heavy-duty forestry robot with high precision

and use them to map the surrounding environment with useful information in real time.

The solution was validated through experiments with real-world pre-recorded datasets,

and it has shown appropriate performance, both in accuracy and consistency. In the end, we

were able to accurately register the sensors present in the robotic system with the developed

method, and we were able to build a dense 3D map of the environment with the correct

registration of the different sensor data.

vi

“That’s been one of my mantras - focus and simplicity. Simple can be

harder than complex: you have to work hard to get your thinking clean

to make it simple. But it’s worth it in the end because once you get

there, you can move mountains."
— Steve Jobs

viii

Contents

Acknowledgements ii

Resumo iv

Abstract vi

List of Acronyms xii

List of Figures xiv

List of Tables xvi

1 Introduction 1

2 Background and State of the Art 5

2.1 Registration . 5

2.1.1 What is Registration? . 5

2.1.2 Camera Calibration . 6

2.1.3 Multi-sensor registration . 12

2.2 Mapping . 17

2.2.1 What is Mapping? . 17

2.2.2 Classical Methods and Solutions for Mapping 18

2.3 Software and Harware . 25

2.3.1 ROS: Robot Operating System . 25

2.3.2 Ranger . 25

3 Proposed Approaches for Registration and Calibration 28

3.1 LIDAR-Camera Calibration and Registration 31

3.1.1 LIDAR-RGB-D Registration . 35

x

3.1.2 LIDAR-RGB Registration . 37

3.1.3 LIDAR and Camera Data Merging 39

4 Experimental Validation 45

4.1 Experimental Setup . 45

4.2 Experimental Scenarios . 46

4.3 The RTAB-MAP 3D Mapping Approach . 51

4.4 Results and Discussion . 52

5 Conclusion 65

5.1 Future Work . 66

6 Bibliography 69

A 3D LIDAR-LIDAR Calibration 76

xi

List of Acronyms

A-LOAM Advanced LOAM

BRIEF Binary Robust Independent Elementary Feature

EKF Extended Kalman Filter

EM Expectation Maximisation

FAST Features from Accelerated Segment Test

FOV Field Of View

GPS Global Positioning System

ICP Iterative Corresponding Point

KF Kalman Filter

LeGO-LOAM Lightweight and Ground-OptimizedHandling Odometry and

Mapping

LIDAR Light Detection And Ranging

LOAM LIDAR Odometry and Mapping

MoDSeM Modular Framework for Distributed Semantic Mapping

MSER Maximally Stable Extremal Regions

OpenCV Open Source Computer Vision Library

ORB Oriented FAST and Rotated BRIEF

PCBR Principal Curvature-Based Region

PM Perception Modules

xii

RMSE Root Mean Square Error

ROS ROS: Robot Operating System

RTAB-Map Real-Time Appearance-Based Mapping

RTK Real Time Kinematic

SIFT Scale-Invariant Feature Transform

SLAM Simultaneous localization and Mapping

STM Short Term Memory

SURF Speeded-up Robust Features

UC University of Coimbra

V-LOAM Visual LIDAR Odometry and Mapping

xiii

List of Figures

1.1 An example of a forest scenario where robots operate and a map they are

capable of producing. 2

1.2 An overview of the SEMFIRE framework data flow. 3

2.1 Types of radial distortion. 8

2.2 Example of tangential distortion. 8

2.3 Area-based registration. 14

2.4 Example of matching point clouds with ICP. 17

2.5 A comparison between metric and topological maps. 18

2.6 Overview of 2D and 3D maps . 18

2.7 A graphical representation of the constraint network used by graph-based SLAM 20

2.8 An example of a RTAB-Map representation. 22

2.9 Maps obtained from LOAM and LeGO-LOAM techniques. 23

2.10 Main sensory hub. 26

3.1 Registration and mapping data flow diagram. 34

3.2 Visualization of a 3D LIDAR point cloud with the presence of boards and

markers. 36

3.3 ArUco pattern detection. 38

3.4 Difference between colored and monochromatic maps. 40

3.5 Sparse and Dense depth map representations. 41

3.6 Colored sparse depth map overlaid on the camera image. 42

4.1 Setup used to calibrate the Intel D435 camera with 3D the LIDAR. 47

4.2 The setup from image 4.1 perceived by 3D LIDAR 48

4.3 Setup used to calibrate the multispectral (monocular) camera with 3D LIDAR. 49

4.4 Detection of ArUco markers. 49

xiv

4.5 Front view of the outdoor setup perceived by 3D LIDAR. 50

4.6 Side view of the outdoor setup perceived by 3D LIDAR. 50

4.7 Back view of the outdoor setup perceived by 3D LIDAR. 50

4.8 Example of mapping results with RTAB-Map using an Intel D435i camera. . 52

4.9 High-quality 3-D reconstruction from RTAB-Map of a farm field. 52

4.10 Setup for LIDAR-Stero camera registration validation. 53

4.11 Front view of the stereo camera’s depth cloud with the LIDAR’s point cloud. 54

4.12 Closer view of the board points in the stereo camera’s depth cloud and in he

LIDAR’s point cloud. 54

4.13 Raw image with car and dog. 55

4.14 Depth map with car and dog. 55

4.15 Raw image with a plant. 56

4.16 Depth map with plant. 56

4.17 Raw image with a car. 57

4.18 Depth map with car. 57

4.19 First raw image with a person. 58

4.20 First depth map with person. 58

4.21 Second raw image with a person. 59

4.22 Second depth map with person. 59

4.23 Example of the point extraction process in rviz. 60

4.24 Input data, parameters and output data from RTAB-Map. 60

4.25 A set of trees that stand out from the rest of the elements around. 62

4.26 A set of plants (on the left) and a post (on the right) that stand out from the

environment. 62

4.27 The different mapping phases. 63

5.1 Top view of the final map. 66

xv

List of Tables

2.1 Feature detection methods and types of features that each is able to detect . 15

2.2 An overview of above mentioned mapping methods. 24

4.1 Precision of extracting the board’s corner coordinates using the rviz tool. . . 61

xvi

1 Introduction

In recent years, one of the most reported and most relevant catastrophes in different conti-

nents such as Europe, America, Africa and most recently Australia, have to do with large-

scale fires. Although 84% of these fires are caused by humans, either by irresponsible burning

or due to arsonists, there is still a proportion of 16% where the large amount of combustible

material in forests is the main factor to start a wildfire [1]. Even in cases where these wild-

fires do not originate from combustible materials, early cleaning of forests can greatly reduce

the wildfire spread and thus favor their combat.

The forest area on all these continents is so large (around 30% of the land area) [2] that

all available human resources are not enough to prevent every outburst. Thus, specialized

robots moving in a forest environment, clearing the forest, mapping the surroundings and

locating possible flammable objects that could cause a large fire, are a focus area to prevent

deforestation and devastating fires. Robots can be the basis of the solution because they

can tackle dangerous and repetitive problems in a more effective way while safeguarding

human lives. They can help us in the detection of potential issues and solve them, allow

better monitoring of the forest environment by mapping less known locations, which can

be determinant to assist the fire fighting organizations in order to make a more direct and

effective combat. With this, many lives of professionals and civilians can be saved and fauna

and flora may be preserved.

With this in mind, accurately mapping the environment with the help of a robotic system

has been a much investigated area and several methods have been developed [3] [4] [5].

However, for the data to be coherent the entire system needs to be well registered, i.e. we

need to know the precise relationship between all the data acquired by the different sensors.

Therefore, the calibration and registration processes are extremely important for any system

that uses a multimodal sensory kit such as in autonomous driving vehicles or the smartphone

industry. At first, because it allows us to determine the unique parameters of all devices

and to know the relationship between the real world and the data produced by them. Then

1

(a) A robot operating in a forest environment. (b) 3D map of forest.

Figure 1.1: An example of a forest scenario where robots operate and a map that they are

capable of producing. Images from [6].

because it allows us to relate all the data from different sensors to the same referential

system, building a representation of the real world by useful and precise information.

For outdoor field robotics there are many challenges that indoor environments do not

have. Some of the challenges include, for example, uncertain paths, non-ideal environmental

conditions, lack of geometric features and depth information, presence of people, animals or

even plant species that need to be preserved [6]. Mapping forests is one of the cases that

regularly presents all these challenges, giving even more importance to a coherent set of data

that can be easily interpreted by the robot in order to avoid human, monetary or any kind of

damage. The Figure 1.1 shows some of the adversities present in forests such as the irregular

paths and the high density of trees. We can also see the importance of mapping, allowing us

to easily understand the morphology of the place where the robot passed and to distinguish

elements like trees, paths or roads, branches, leaves and cars.

Light Detection And Ranging (LIDAR) have been receiving a lot of attention towards

new technologies. Its usefulness and versatility are the main factors to be entering large

markets such as mobile phones and the automobile industry. The high precision point clouds,

which are not easily affected by adverse conditions, provide complement to technologies like

3D reconstruction, autonomous driving, 3D mapping, calibration and registration. It is

evident understandable that they are essential devices in any robotic system that intends

to autonomously map complex unstructured environments, just like ours. The advantages

of LIDARs stem from the provision of detailed 3D Point Clouds, which can be manipulated

and processed while also providing useful data, namely distances, intensity of light reflections

2

Figure 1.2: An overview of the SEMFIRE framework data flow.

and the geometry of the environment that often allows to distinguish types of objects. The

interest in this type of data promoted the development of many works that produce point

clouds through camera images.

SEMFIRE1 is a collaboration project between the University of Coimbra (UC), Ingeniar-

ius Ltd and Sfera Ultimate Ltd. In order to push forward the development of field robotics,

SEMFIRE focuses on providing an autonomous robot with the ability to operate in the forest

to clear flammable objects. Among others, the robot should be able to map and navigate

within the forestry environment where it operates, detect flammable material and gener-

ally support human forest maintenance teams. SEMFIRE implies cooperative perception

between a large heavy-duty UGV and a team of lightweight UAVs, where each member con-

tributes to the global knowledge of the system by sharing and cooperatively processing data

and percepts from one another, combining the sensory abilities, perspectives and processing

power of various agents to achieve better results. The Modular Framework for Distributed

Semantic Mapping (MoDSeM) proposed in [7] aggregates all this information to create a

semantic map that can be shared among all system agents. Within the existing perception

architecture developed in the context of the SEMFIRE project, that is illustrated in Figure

1.2, the work described in this dissertation tackles 3D registration and mapping issues which

are represented in the red blocks.

The main goals of this work are:
1https://semfire.ingeniarius.pt/

3

https://semfire.ingeniarius.pt/

1. Calibrate and register a set of cameras and sensors embedded in a robot sensor kit.

2. Build a 3D map in real time using data from different sensors such as 3D LIDARs, RGB-

D or monocular cameras, with useful information about the real world environment.

This Dissertation is organized in five main chapters. In Chapter 2 we cover basic knowl-

edge and fundamentals of registration, mapping, calibration, projection and ROS, which

are essential for understanding the entire document. We also do an overview of the most

popular and used approaches for both registration and mapping; in Chapter 3 we present

the methods and techniques that we used for calibration and registration of pairs of sensors,

including LIDAR with RGB-D cameras and LIDAR with monocular cameras. Following the

pairwise calibration results, we also present the method used to merge LIDAR and camera

data; then in Chapter 4 we present the apparatus used and the detailed experimental valida-

tion. We discuss the 3D mapping method used and the rationale for choosing that approach.

Then results and their validation are presented; finally, in Chapter 5 we reflect about the

advantages and handicaps of our methods, as well as on possible future work.

4

2 Background and State of the Art

2.1 Registration

2.1.1 What is Registration?

Registration is the process of finding the relation between different types of data or devices

into a single coordinate system. This process is essential for complex systems because it

enables the production of a robust and coherent result through data combination that comes

from different sensors. It is a process widely used in object recognition, object reconstruction,

mapping and localization [8].

Registration is an area of much study and development which still has several problems

and challenges to overcome [9] [10]. One of them is the high variety of devices and data

types which have completely different features and specifications, making it very hard to

find viable ways to relate and merge all of them together.

In most environments, practically all members (like trees, stones, roads, buildings) are

rigid bodies and so their shape and size remains unchanged throughout the time. This mem-

bers can be related through geometric transformations that are called affine transformations

[11]. Affine transformations preserve lines and parallelism but not necessarily distances and

angles. However, they also preserve the euclidean distance between every pair of points.

With that, we can say that two images of the same environment, taken in different scenarios

and by different cameras, have a very high possibility of having matching pairs of points

which allow us to estimate the transformation that relates both images. This factor is very

important for registration as it makes it possible to match two images through easily de-

tected images characteristics like contours, boundaries, colors and corners of the same rigid

body.

Briefly, the main goal of registration is to find the rotation and translation matrices that

minimizes the distance between corresponding data from different sources. We can consider

5

it as a spatial transformation problem, therefore it is possible to define the equations that

relate both sources by knowing, a priori, some control points from the reference source and

the same points in another source.

For registration we do not only need to know points in different sources, we also need to

understand how these sources perceive the environment around. Devices such as cameras

and LIDAR are the most common when it comes to obtaining data that allows to know,

interact and react with the scenario in which they are inserted. The challenge to be able

to perceive the surrounding environment as accurately as possible begins by first knowing

the internal characteristics of the devices we work with. These characteristics give us the

possibility to convert between types of data (for example 3D points to 2D), to get to know

the external relationship between the devices and to create new data that merge different

types into one much more complete.

LIDAR is a laser-based sensing technology that determines the distance objects are in the

environment by emitting the laser signal and calculating the time it takes to return to the

device. Due to being a sensor that captures data in a direct way, its internal characteristics

only concern its field of view and maximum range. On the other hand, although the camera

also produces data using light rays, the camera has lens that takes all the light rays bouncing

around and uses glass to redirect them to a single point creating a image. Therefore, as the

data is not obtained directly, the relationship of the image pixels with the real world points

are also not directly related. This relationship can be known through the characteristics of

the camera, commonly known by intrinsic parameters. The intrinsic parameters are essential

to be able to use images as a coherent and accurate solution to perceive the environment

and can be obtained through a process known as camera calibration.

2.1.2 Camera Calibration

Camera calibration is the process of estimating the lens and image sensor parameters, the

intrinsic parameters. Intrinsic parameters define the relation between the world 3D points

and the image plane 2D points and they can be used to correct lens distortion, measure the

size of an object in world units, determine the location of the camera in the scene and to

know how far objects are from the camera. These applications are widely used in computer

vision and robotic systems for navigation, 3D reconstruction and mapping.

6

Intrinsic calibration

Each camera has its own lens that influences the relation between the image and the world.

Intrinsic calibration gives us intrinsic parameters that allows us to make the correct relation

between the points of the world and the points of the image, surpassing the effects of the

lenses [12]. Intrinsic parameters do not depend on the scene or on the position of the camera

in the world so, once calculated, the parameters do not change as long as features such as

focus and zoom are not changed. This parameters are represented by a 3x3 matrix called

camera matrix with the following representation:

K =




fx γ cx

0 fy cy

0 0 1


 (2.1)

where:

• fx,fy are the focal lengths expressed in pixel units.

• (cx,cy) is the point of intersection of the camera optical coordinate system with the

image plane, called principal point. Ideally it is the center of the image.

• γ represents the skew coefficient between the image x and y axis. It is non-zero if the

image axes are not perpendicular but, for most cases, they are perpendicular and skew

is 0.

Camera lenses can also affect the image-world relation through the distortion effect.

The distortion is a deviation from the rectilinear projection of the light rays in the image.

Without distortion, the straight lines remain straight in the image. However, due to the

lenses, the light is spread outside the straight line which causes the image to be distorted or

blurred. Distortion and blurred effects, also called optical aberrations, depend on the type

and nature of the aberration.

There are two types of distortion: radial and tangential [13]. The radial distortion

happens when light rays bend more near the edges of a lens than they do at its optical center,

and the smaller the lenses the greater the radial distortion. There are three different types

of radial distortion: negative radial distortion, also known as “pincushion”; positive radial

distortion, known as "barrel" as well; and finally the complex distortion or "mustache",

which is a combination of the previous two.

7

Figure 2.1: Types of radial distortion [14].

Figure 2.2: Example of tangential distortion [15].

The Figure 2.1 illustrates the effects of the these types of distortion when compared to

an image with no distortion. The tangential distortion occurs when the lens is not parallel

to the image plan. This is illustrated in Figure 2.2.

The effects of radial and tangential distortion are defined through distortion coefficients.

Due to the effects of distortion, the pixel coordinates suffer variations in relation to the

coordinates obtained through rectilinear projection. These coefficients are used to make the

correct adjustment from old pixel coordinates to new corrected pixel coordinates [16]. There

are six radial coefficients (k1, k2, ..., k6) and two tangential coefficients (p1, p2).

For the radial distortion, the new coordinates are calculated as:

xcorrected = x
1 + k1r

2 + k2r
4 + k3r

6

1 + k4r2 + k5r4 + k6r6

ycorrected = y
1 + k1r

2 + k2r
4 + k3r

6

1 + k4r2 + k5r4 + k6r6

(2.2)

8

As for tangential distortion, it is calculated as follows:

xcorrected = x+ [2p1xy + p2(r
2 + 2x2)]

ycorrected = y + [p1(r
2 + 2y2) + 2p2xy]

(2.3)

where r2 = x2 + y2.

Extrinsic calibration

In a environment, any object can be represented by a coordinate system that defines its

center and how it is oriented. The combination of the position and orientation of an object

give us the object pose. Consider a scenario where two acquisition devices co-exist. The

object pose information given by each device is related to its own pose in the world. These

two poses will be provided without any information of the relationship between the two

independent devices which perceive the object. Without knowing the relative pose between

each device in our system, the perceived environment can become ambiguous, incorrect and

confusing. Extrinsic calibration is the solution to relate all devices to each other or even

to a common coordinate system (often called world origin or just world), making all data

accurate and viable as they are related to a common point in the world [17].

Extrinsic calibration is represented by its extrinsic parameters, which are formed by two

matrices: translation and rotation. The translation matrix, t, defines relative positions of

each frame and is expressed as a 1x3 matrix. The rotation matrix, R, is a 3x3 matrix that

rotates corresponding axes of each frame into each other. However, it is possible to write

both matrices as one, forming a compound transformation called homogeneous transforms

that are denoted by a 4x4 matrix as follows:

[R|t] =




r11 r12 r12 tx

r21 r22 r23 ty

r31 r32 r33 tz

0 0 0 1




=


R33 tT13

0 1


 (2.4)

This calibration is not only applicable to cameras but to any pair of devices from which

it is possible to compute the translation and rotation that differentiate their coordinate

systems. Extrinsic calibration between a pair of LIDAR is also very common and there

are techniques that calculate the spatial relationship through the point clouds that both

produce. We also take a look at them later in this document.

9

Projection

Data can be differentiated in spatial dimensions between 2D and 3D. There are many cases

in which we have data with different dimensional spaces and we want to relate them, such

as wanting to relate data from a range finder (3D) with the a camera image (2D). However,

relating data that does not have the same dimensional space can be complex and to overcome

these challenge we turn to projection.

Projection is the process of converting 3D points to 2D. A scene view by the camera is

formed by the projection of the 3D world points into the image plane. This process is also

called perspective or even projection perspective transformation [18].

The camera matrix can be extended with a further column becoming a 3x4 matrix which

is known as projection matrix:

P =




f ′x γ c′x Tx

0 f ′y c′y Ty

0 0 1 Tz


 (2.5)

Despite being an extension of the camera matrix the parameters can be slightly different.

It is known that the real optical center is somewhere inside the camera and that the 3D

coordinate system, which we use in the calculations, refers to that optical center. However,

in reality, they may not be quite the same. Due to this, the optical center may differ in a

roto-translation transformation from the coordinate system, and the parameters difference

is usually due to this transformation. The fourth column differs for monocular and stereo

cameras. For a stereo pair, this column relates the position of the second camera optical

center with the first camera’s frame. As both cameras are in the same stereo image plane

we assume Tz = 0 and we also assume that the first camera always has the initial conditions

Tx = Ty = 0. For the second camera of a horizontal stereo pair, generally the one on

the right, Ty = 0 and Tx = −f ′x · d, where d is the distance between both cameras1. For

monocular cameras, we define it as if it is just the reference camera in a stereo pair, i.e.,

Tx = Ty = Tz = 0.

In this way, we can work with homogeneous points which is the most common notation

in robotics and rigid body transforms. We use [x, y, w] for 2D points and [x, y, z, w] for 3D

points where, initially and by convention, w = 1. Thus, if any point is scaled by a factor w,

all parameters must be multiplied or divided so that w remains 1.
1https://docs.ros.org/en/melodic/api/sensor_msgs/html/msg/CameraInfo.html

10

https://docs.ros.org/en/melodic/api/sensor_msgs/html/msg/CameraInfo.html

With both intrinsic and extrinsic parameters we are able to project world points into a

image plane [19]. We will consider the situation where we use a monocular camera and so it

is sufficient to use the K matrix. The projection is done by the following equation:

s




u

v

1


 =




f ′x γ c′x

0 f ′y c′y

0 0 1







r11 r12 r12 tx

r21 r22 r23 ty

r31 r32 r33 tz







X

Y

Z

1




(2.6)

which can be written using the above-mentioned notations:

s




u

v

w


 = K[R|t]




X

Y

Z

1




(2.7)

where:

• s is an arbitrary scale factor.

• (X,Y,Z) are the coordinates of a 3D point in the world coordinate system.

• (u,v) are the coordinates of the point that was projected to the 2D image plane, in

pixels.

• K is the camera matrix.

• [R|t] is the matrix of extrinsic parameters which translates coordinates of a point

(X,Y,Z) to a fixed coordinate system in respect to the camera, typically the optical

coordinate system.

This expression is applicable to cases where the distortion effect is negligible. For cases

with distortion, the points undergo a small change in their coordinates.

First, we will look at the projection in more detail. The calculation of one 3D world

point for the desired frame is done with the extrinsic parameter matrix, as shown in the

equation 2.8. Then, as we use homogeneous coordinates, we need to divide all coordinates

by the factor w, as shown in equations 2.9. Finally, the image points (u,v) are determined

11

using the camera’s intrinsic parameters, following equations 2.10.




x

y

z

w




= R




X

Y

Z

1




+ T (2.8)

x′ = x/w

y′ = y/w

z′ = z/w

(2.9)

u = fx ∗ x′ + cx

v = fy ∗ y′ + cy

(2.10)

However, with distortion, the points of the world seen by the camera are not so directly

related into the image plane. As discussed in this chapter the pixel coordinates are adjusted,

so the equation 2.9 is extended to:

x′′ = x′
1 + k1r

2 + k2r
4 + k3r

6

1 + k4r2 + k5r4 + k6r6
+ [2p1xy + p2(r

2 + 2x2)]

y′′ = y′
1 + k1r

2 + k2r
4 + k3r

6

1 + k4r2 + k5r4 + k6r6
+ [p1(r

2 + 2y2) + 2p2xy]

(2.11)

and the correct pixel coordinates are:

u = fx ∗ x′′ + cx

v = fy ∗ y′′ + cy

(2.12)

2.1.3 Multi-sensor registration

In this subsection, we present different types and methods for multi-sensor registration, and

some of their advantages and challenges. Since registration is based on the relationship

between two different sensors and data sets, there are many methods that aim to make that

relationship as accurate as possible. The methods are practically applicable to all types of

image and point clouds. Although these relationships are relatively limited to the same type

of data (image-image or point cloud-point cloud), it is possible to transform data into other

12

types. Transforming point clouds into images by projecting 3D points onto an image plane

or transforming an image into a point cloud are a very common example of this. Therefore,

it is also possible to register a camera and a LIDAR through two point clouds or through

two images, despite initially not having the same type of data.

We can separate the methods into two groups: Manual and Automatic [20] [21]. Manual

registration is a method where the processes of identification and matching image points are

done with human help. It is common to use this type of registration to match point clouds

because there are several software that allow us to easily obtain accurate point information

from those point clouds. With these points the problem becomes a simple spatial relation-

ship between corresponding points that can be obtained through mathematical optimization

methods. Automatic registration are methods in which the detection and matching of points

is done without human help. For these methods it is essential to detect objects that are easily

related between different images, the so-called features.

We can also distinguish the methods into two major classes: Image [3] and Point cloud

registration [22] [23].

Image Registration

Image registration is an automatic or manual procedure which tries to find corresponding

points between two or more images and align them spatially to minimize a desired error.

Image registration can be divided into two types: Image to Image and Image to Map.

In Image to Image, two images are aligned so that, when fused or integrated, the pixels

correspond to the same object. In Image to Map the images are "stitched" so that they

can build a map with their information, maintaining their spatial relations. In other words,

we do not intend to find the direct relationship between the images to fuse corresponding

pixels, but we do intend to calculate the spatial transforms which align a set of images to a

common observational frame, usually the base of the robotic system [3].

Due to the diversity of images to be registered and the different types of resources, it is

not possible to define a universal method. Even so, most image registration methods have

four fundamental steps [24]:

• Feature detection: distinctive features (closed-boundary regions, edges, contours, line

intersections, corners, etc.) are manually or automatically detected. For further pro-

cessing, these features can be represented by their point representatives (like centers

of gravity and distinctive points) which are called control points.

13

Figure 2.3: Area-based registration and demonstration of windows and control points [25].

• Feature matching: the correspondence between the features detected in the sensed

image and those detected in the reference image is established.

• Transform model estimation: The type and parameters of the functions that aligns the

sensed image with the reference image are estimated. This functions are known as the

mapping functions.

• Image resampling and transformation: the mapping functions obtained in the previous

step are used to transform the sensed image.

With the evolution of automation in registration, the feature detection step gradually

stopped being made by users or experts and two main fields of feature understanding began

to stand out: Area and Feature based registration.

Area based methods are used for cases where details that can be easily detected are

not predominant, so they take advantage of features like colors or gray levels. One of the

challenges of this methods is that they cannot be applied directly to all cases due to the

differences of gray levels that can vary from sensor to sensor, causing uncertainty and serious

errors. In area based registration the identification of control points is made by comparing

small windows of points, with the same size, on the reference image and on the sensed

images. Thus, each window Wz of the sensed image is compared to a sub-image (Si, j) of

the reference image and, when the window that best matches both is found, the information

of the window’s centers and the sub-image’s center is stored as control points. With these

control points it is possible to calculate the parameters of the transformation that relates both

images, and then allows to determine the spatial transformation between the two cameras

that acquired the images [25]. The area-based registration technique is illustrated by the

figure 2.3.

14

Feature based methods are applied when there are features sufficiently strong and easy to

detect. These methods usually make use of feature extraction algorithms that prioritize more

local structural and image intensity information. Wide variations in sets of points are good

carriers of useful information, where are included edges, corners, blobs, contours, surfaces

and points of intersection [26]. Feature detection and feature matching are two fundamental

processes for both method accuracy and autonomy. Many methods that mainly aim to

detect edges, corners and blobs have been developed. The most common feature detectors

are Canny, Sobel, Harris and Laplacian of Gaussian. Approaches such as FAST (Features

from Accelerated Segment Test) [27], SIFT (Scale-Invariant Feature Transform) [28], SURF

(Speeded-up Robust Features) [29] [30], BRIEF (Binary Robust Independent Elementary

Features) [31] and ORB (Oriented FAST and Rotated BRIEF) [32] have gained a lot of

attention due to their ability to use these feature detection techniques with great precision

and with reduced processing time.

Table 2.1: Feature detection methods and types of features that each is able to detect [33]

[34].

Feature detectors Edge Corner Blob

Canny Yes No No

Sobel Yes No No

Harris and Stephens Yes Yes No

Laplacian of Gaussian No Yes Yes

Difference of Gaussians No Yes Yes

FAST No Yes Yes

SUSAN Yes Yes No

Level Curve Curvature No Yes No

Determinant of the Hessian No Yes Yes

MSER No No Yes

PCBR No No Yes

Point cloud Registration

Point cloud registration is the process of finding a spatial transformation that aligns two

point clouds. Point clouds can be 2D or 3D and are widely used in robotic systems for

mapping. There are several devices that can produce point clouds such as LIDAR and

15

RGB-D cameras, therefore the point cloud correspondence is a commonly used method to

estimate the spatial transformation of both data and devices. They are also very useful for

registration with cameras that can not produce point clouds (like monocular cameras) as it

is possible to turn a 3D point cloud into a 2D one and relate it to 2D images. With this

relationship, we are able to combine color information of the image with the depth data of a

ranger finder, making it possible to make a 3D map with different types of useful data [22].

Matching point clouds can be done through a rigid or a non-rigid transformation. A rigid

transformation is defined as a transformation that does not change the distance between any

two points, so typically it consists of translation and rotation. On the other hand, non-rigid

transformations do not guarantee that the distance between each two points is maintained

since scale and shear transformations are applied. In most cases in robotic systems, point

clouds can be related through a simple rigid transformation since, in the environment in

which they are located, the objects do not suffer deformations thus maintaining the dis-

tance between their points. Therefore, we will only refer methods that estimate this rigid

transformation.

The methods for matching points are mostly based on the iteration of finding the closest

pairs of points until all points match correctly. A well-known example that describes this

idea is the ICP (Iterative Corresponding Point) [35] [36]. In general, ICP matches the closest

point in the reference point cloud to the sensed one, estimates the rotation and translation

transformations by applying a root mean square point optimization, transforms the points

with this transformations and iterates these steps again until all the points are match cor-

rectly. In the figure 2.4 are represented two point clouds that differ by a transformation

and, through ICP, it was possible to match the points of both and estimate the rotation and

translation that relates them.

16

Figure 2.4: Example of matching point clouds with ICP [37].

2.2 Mapping

2.2.1 What is Mapping?

Mapping is the process of creating a map with the intention to act on it. A map is a

representation of an area showing physical features like buildings, roads or any other element

of the environment. There are two main categories: metric (or grid based) and topological

maps. The Figure 2.5 illustrates the difference between them.

Metric maps represent the environment through evenly-spaced tables where each grid

cell represents a location in space. Occupancy grids are one of the most popular type of

maps because they are easily built for large scale locations and the grid geometry directly

matches the environment geometry, so the position and orientation of the robot can be easily

determined. The downside of grid-based maps is that they take up huge space and have a

high computational cost because they need to capture a huge amount of points in the world

under analysis [38].

On the other hand, topological maps represent the map by a graph, based on landmarks

and their connectivity. In this method the robot’s position is determined relatively to the

model through the landmarks. Each node corresponds to a specific location and the existence

of an edge connecting them indicates the possibility of navigating. However, topological maps

have difficulty distinguishing very identical locations, so if the robot goes through two similar

locations it cannot quickly determine if it is the same or a different location than before [39].

Maps can also differ in 2D and 3D. For 2D maps, objects are represented in two dimen-

sions, length and width. 3D maps represent length, width and depth, allowing the perception

17

(a) Topological (b) Metric

Figure 2.5: A comparison between metric and topological map, images from [40] with the

author’s permission.

(a) 2D (b) 3D

Figure 2.6: Overview of 2D and 3D maps [41].

of relief. These differences can be seen in the Figure 2.6.

The process of creating maps cannot be separated from the localization process, and an

incorrect estimation of the location causes errors that are incorporated into the map. This

is a well-known problem that we call Simultaneous Localization and Mapping (SLAM) [42]

[43]. SLAM has some complexity because the localization and mapping processes may be

under unfavorable conditions, such as errors, uncertainty, ambiguity and noise, which do not

make it easy to develop a coherent solution for both tasks.

2.2.2 Classical Methods and Solutions for Mapping

Sensor and environment uncertainty have always given a challenge to the development of

robotic navigation and mapping methods. The main solutions to overcome the sensors and

environment ambiguity are probabilistic techniques due to their ability to handle modeled

uncertainties. In this section, we overview the most successful probabilistic algorithms [44],

including Kalman Filter, Expectation Maximisation and Particle Filter algorithms, LOAM

18

and RTAB-Map.

Filtering techniques

In filtering techniques data is processed, incorporated into the filter’s system and then dis-

carded. This techniques are usually additive, in the sense that they add data to the map as

the robot explores its surroundings.

Bayes Filters, in robotics, are the basis for most classical solutions to SLAM problems

and it allows robots to continuously update the most likely position within a coordinate

system based on the most recently acquired sensor data. The Bayes filter represents t as

time, st as the robot’s pose, mt the map known over time and xt = {st,mp} as the complete

state, which is normally the robot’s position in the map. Also, sensor data (images, range

measurements, etc) are denoted as z, and control signals as u, which are the signals that

determine the robot’s motion. With that, it aims to continuously estimate a probability

distribution that calculate the probability of the robot being in a certain position x at a

time t knowing the sensor’s data history [45]:

p(st,mt|zt, ut) = p(xt|zt, ut) (2.13)

Then by integrating the set of observations, that arrives over time, we can get a posterior

probability over the maps and robot poses [46]:

p(xt|zt, ut) = ηp(zt|xt)
∫
p(xt|ut, xt−1)p(xt−1|zt−1, ut−1)dxt−1 (2.14)

where η is a normalizing constant.

The specific case where the Bayes filter follows a Gaussian distribution is called Kalman

Filter (KF). Most of the time we assume that the map is static and that the maps and poses

depend on the previous ones. However, this relationship may not be linearly dependent and

to solve this problem we apply a Taylor series to the nonlinear function. This approach with

such modifications is called the Extended Kalman Filter (EKF). The downside is that, when

EKF is applied to the SLAM problem, it restricts many applications because it requires data

to be modeled as geometric shapes [47] [48].

Expectation Maximisation Methods complement the Kalman Filter approaches as they

manage to solve the correspondence problem, in complex and ambiguous environments,

by using expectation and maximisation (EM) techniques. The expectation step generates

multiple hypotheses about the robot’s path in a single map and the maximisation step uses

19

Figure 2.7: A graphical representation of the constraint network used by graph-based SLAM

[50].

the correspondences between the sensory data and features in the environment to create

the final features that will result in the most likely map. The final features will also help to

maintain a correct estimation of the robot’s path through further iterations and the incorrect

features gradually disappear. As it is a more selective method in the data to be used, the

general notion of uncertainty, used in Kalman filters, is not maintained. This means that

the algorithm can get stuck during iterative map correction processes due to a lack of data

related to previous iterations. The algorithm is also computationally expensive to guarantee

an accurate map, which can be a problem for systems that depend on real-time processing.

Particle filters have also been introduced as a solution to SLAM problems because they

can deal with non-Gaussian distributions commonly seen in noise, motion and sensory fea-

tures. In this approach, each particle of the filter carries an individual possible map solution

and it can generally be assumed that the denser parts of each group, i.e., groups of solutions

that are very close to each other in a certain space, indicate a correct estimation. Since the

best results with this method are with the largest number of particles and as each particle

has a considerable computational cost, the challenge is to determine the perfect balance

between low computational cost and high precision [49].

Graph-Based Methods

As the name implies, this method makes it possible to reformulate mapping and localization

problems into a graph-related problem, the so well-known Graph-based SLAM. The name is

often misleading as it makes it appear that it is related to the way the map is constructed

20

but is actually related to the way the data is represented and optimized. As shown in

the Figure 2.7, every node in the graph corresponds to a robot pose and nearby poses

are connected. Ωi,j represents the information matrix of the measurements and ei,j is the

error which depends on the difference between the expected observation, usually the relative

transformation between the two nodes, and the real observation. Graph-based methods

works with all the data gathered while maintaining a sense of general uncertainty in a graph

form, that represent places in the environment, and how these places are connected, keeping

a complete history of past poses [50]. This an important characteristic of these techniques as

they make good use of past poses to define local frames of reference, which makes it a good

tool for rendering range scans into a map. When these methods were initially developed, the

map generation was often done only after all data was gathered because the computational

demand is high. However, with the growth of computing power, it became possible to do

this technique in real time.

In graph-based approaches, a node represents a particular robot pose while edges encode

either odometry or loop-closure constraints. For each edge, they represent a transformation

matrix (rotation and translation) as well as a covariance matrix, with the uncertainties based

on these transformations. Then, an optimization algorithm is applied to reduce nonlinear

loop closure and odometry constraints as much as possible in order to determine the most

likely map [51]. Loop closure consists in detecting when the robot has returned to a known

past location and thus determine the drift between the real and computed position. This

allows us to drastically reduce misleading errors on the estimated trajectory. Odometry lets

us estimate the robot own position and its variations over time using information provided by

motion sensors. This method is sensitive to errors due to the integration of speed measure-

ments over time and to the environments issues because, as it is normally used on wheeled

robots, they have a high probability of wheel slippage. Optimizations that use loop closure

and odometry simultaneously are called pose-graph optimization.

RTAB-Map (Real-Time Appearance-Based Mapping) is a RGB-D Graph SLAM approach

based on a global Bayesian loop closure detector [52] [53]. It is a graph based SLAM technique

because it determines how likely a new image comes from a previous or a new location via

a loop closure process [54] [55]. When a good assumption is accepted, these new images

are added and optimized by a graph optimizer. The approach in [56] consists in four steps:

extraction of visual features from the images and then match those features with another ones

from previous images. After that, they get a set of 3D point correspondences between any
2http://introlab.github.io/rtabmap/

21

http://introlab.github.io/rtabmap/

Figure 2.8: An example of a RTAB-Map representation2.

two frames and, finally, they can estimate the relative transformation that relate the frames.

One of the biggest strengths of these technique is its compatibility with a wide variety of

devices, namely a handheld Kinect, a stereo camera or a 3D LIDAR for 6DoF mapping, or

a laser rangefinder for 3DoF mapping. The Figure 2.8 illustrates a map example with the

RTAB-Map approach.

LOAM stands for LIDAR Odometry and Mapping in Real-time. Essentially, this means

that this technique uses range measurements captured by a LIDAR to locate itself in an

environment and build a map of it. Although it gives us results with little computational

complexity and with extremely accurate measurements, these measurements are received at

different times and may cause errors in motion estimation and in the registration of the point

cloud. Laser scanning enables a wide range of applications that can be obtained with great

accuracy without the need for perfect conditions as it is not influenced by environmental

conditions. The weaknesses of laser scanning are the need of many scans in different locations

to get a dense result, it takes some time to complete a full scan, it needs a common coordinate

system and it may require additional hardware like planar and sphere targets, making the

whole system more expensive [57].

In [59], the main idea focuses on dividing SLAM complexity into two algorithms: one does

high-frequency visual odometry to estimate motion and the other uses LIDAR odometry at a

lower frequency to refine motion estimation and remove distortion in the point cloud. Thus,

they combine a monocular camera with a 3D LIDAR and named this method as V-LOAM

(Visual LIDAR Odometry and Mapping). Despite V-LOAM presenting interesting results

for environments that do not provide data overload, as it calculates the transformation be-

22

Figure 2.9: Maps obtained from LOAM and LeGO-LOAM techniques. In the LOAM map,

three arrows represent the same tree which shows uncertainty and ambiguity. The same does

not happen with LeGO-LOAM where only one tree is represented and the path is also more

accurate [58].

tween two sets of point clouds through edges and planar points, for forest environments

these results may be substandard due to the large amounts of vegetation and trees that this

environments usually have, therefore the data to be processed is high. Improved techniques

like A-LOAM (Advanced LOAM)3 and LeGO-LOAM (Lightweight and Ground-Optimized

Handling Odometry and Mapping) [60] aim to make a cleaner and simpler LOAM method,

both using identical processes to LOAM but without redundancies and complicated mathe-

matical processes. LeGO-LOAM focuses on processing data from overloaded environments

with the presence of a ground plane in its segmentation and optimization steps. The work in

[58] shows the results of LeGO-LOAM and makes a strong comparison between the classic

LOAM and the improved method, as it can be seen in figure 2.9.

3https://github.com/HKUST-Aerial-Robotics/A-LOAM

23

https://github.com/HKUST-Aerial-Robotics/A-LOAM

Table 2.2: An overview of above mentioned mapping methods.

Based on
Computational

cost
Map accuracy Notes

Particle filters

[49]
Particle density

Depends on the

number of

particles

Depends on the

number of

particles

Very good results imply high

computational cost

Can deal with non-Gaussian

distributions which are the

most frequent cases due

to noise

EKF-SLAM

[47] [48]

Gaussian

distributions of

Bayes filters

Depends on the

number of

particles

Depends on the

number of

particles

Coherent results when

the heading uncertainty

stays "small", i.e. it can not

have disproportionately

large jumps in the vehicle

pose update

Requires data to be modeled

as geometric shapes

Graph SLAM

[50]

Loop closure and

Odometry
Medium Medium

Limited computational

resources may have

an impact on mapping results

LOAM

[57]

Range measurements

given by a 6DOF

LIDAR

Low High

Very good for accurate

localization within the

centimeter-level, may

not be feasible due

to the lack of simple

geometric shapes on the

environment

A-LOAM

(footnote 3)

Ceres Solver and

Eigen library for code

structure simplification

Low High

At high speeds this method

starts to fail at ICP

for point cloud registration

LeGO-LOAM

[60] [58]

Process data from

non-structured

environments like

forests

Low Very High

Maintains good results in

high speed processing

Requires a ground plane in

the segmentation and

optimization steps

24

2.3 Software and Harware

2.3.1 ROS: Robot Operating System

In science and technology, the validation of theoretical methods must be conducted through

detailed tests and analysis. The robotic community supports this aspect, since the ap-

proaches proposed are usually compiled in code and complemented by documentation of the

functionality. This allows the developed approach to be retested and improved by other

users reducing the time it takes to prepare a solution.

Robot Operating System (ROS) is a software framework that provides just that. ROS

is mostly open source and developed work is commonly available for other users to test,

reuse and possibly improve, encouraging collaborative robotics software development. It

is a collection of tools, libraries, and conventions that aim to simplify the development of

complex and robust code for robots.

As described in [61], ROS is based on the exchange of messages between ROS nodes, which

are programs that take advantage of ROS functionalities to communicate with each other.

ROS nodes run independently but simultaneously, and do not need to be operating on the

same device. ROS nodes can have different implementations: data access and management,

mathematical functions, or any functionality possible through the languages supported by

ROS (such as Python and C++). This is a very important feature because, in robotic

systems, it is very common to have to process, manage and communicate data coming

from several devices at the same time. ROS also allows us to abstract away the hardware

complexity of many robots , therefore code is written in such a way that it is independent

of the underlying robot, sensor or any hardware used4.

ROS software is a compilation of messages, nodes, libraries, configuration files, and others.

All these components together are distributed in packages that make sharing and obtaining

software much easier. Usually, these packages are obtained through repositories and compiled

with the CMAKE toolset, which produces executable code.

2.3.2 Ranger

The Ranger (see figure 2.10) is a 4000kg autonomous robot, based on the Bobcat T190, which

is the main actor of the SEMFIRE project, being responsible for landscape maintenance in
4https://www.ros.org/about-ros/

25

https://www.ros.org/about-ros/

Figure 2.10: Main sensory hub.

the forest environment.

This platform has these characteristics:

• It is able to carry all the tools (a mechanical mulcher, sensor kit, computational array

and others) necessary to complete the mission;

• It is completely fly-by-wire, meaning that it encompasses electronic control mechanisms

to develop remote and autonomous control routines;

• It is a well-known, well-supported machine with readily-available maintenance experts.

The ranger supports a sensor kit that has:

• A 3D 16 channels LeiShen C16 LIDAR5;

• Five Intel RealSense D435 RGB-D Cameras6 with five AAEON UP Board Atom for

sensor data acquisition;

• One FLIR AX8 thermal camera7;

• One Teledyne Dalsa Genie Nano C2420 multispectral camera8;
5http://en.leishen-LIDAR.com/product/leida/MX/15d44ea1-94f5-4b89-86eb-f5a781b04078.

html
6https://store.intelrealsense.com/buy-intel-realsense-depth-camera-d415.html
7https://www.flir.com/products/ax8-automation/
8https://www.edmundoptics.eu/p/c2420-23-color-dalsa-genie-nano-poe-camera/4059/

26

http://en.leishen-LIDAR.com/product/leida/MX/15d44ea1-94f5-4b89-86eb-f5a781b04078.html
http://en.leishen-LIDAR.com/product/leida/MX/15d44ea1-94f5-4b89-86eb-f5a781b04078.html
https://store.intelrealsense.com/buy-intel-realsense-depth-camera-d415.html
https://www.flir.com/products/ax8-automation/
https://www.edmundoptics.eu/p/c2420-23-color-dalsa-genie-nano-poe-camera/4059/

• GPS and RTK devices9;

• Inertial Measurement Unit10;

• Mini-ITX computer equipped with a Geforce RTX 2060, an Intel Core i7–8700 CPU

and 16GB of DDR4 RAM

The Intel Real Sense cameras consists in a pair of depth sensors, RGB sensor and a

infrared projector. We have one in front to observe obstacles and objects in front of the

robot, and it is useful for safety.

Perception is complemented by a FLIR AX8 thermal camera and a Dalsa Genie Nano

Multispectral camera. The thermal camera combines thermal imaging with a visual camera

so that it is possible to detect temperature differences. It will be mainly used to detect

human personnel directly in front of the robot, i.e. in potential danger from collisions with

the machine or the mulcher attachment. The multispectral camera allows us to see an

object or any element of the environment at different wavelengths such as visible, infrared

and ultraviolet light. With this technology, we can distinguish elements that may be identical

in the visible light band but different in other bands. This way the robot can autonomously

analyze the scene and detect plant material in various stages of decay. This can be very

useful to detect flammable material for clearing.

9https://emlid.com/reachrs/
10https://www.pololu.com/product/2740

27

https://emlid.com/reachrs/
https://www.pololu.com/product/2740

3 Proposed Approaches for Registration

and Calibration

When sensors are assembled in a robotic system, their positions and orientations are chosen

in a strategic way to make the most of all the information obtained, both individually and

collectively. Therefore, initially spatial relationships between devices are of little importance,

but they become increasingly essential the more complex and complete the desired output

is.

It is common to apply manual registration as a quick and simple solution to understand

the geometric relationship between devices. However, it is perfectly understood that manual

measurements, i.e., with the use of physical tools and with human action, are subject to

errors and uncertainties, not only due to the human eye and skill but also to the conditions

to which the measurements are submitted. It is possible for two identical devices to be

supported by a straight base, at the same height, both perfectly parallel to each other and

yet the physical measurement having errors. This can happen due to several factors, one of

which is the fact that we do not know perfectly the optical center of each camera or even

the origin of the LIDAR coordinate system. We can see that this type of calibration and

registration is acceptable for quick and not so accurate tests, but it is extremely important to

develop very precise techniques that are able to minimize the difference between computed

and real values, through mathematical and geometric methods. For that we can also take

advantage of the devices characteristics, the surrounding environment and well-known third-

party objects.

OpenCV (Open Source Computer Vision Library)11 is an open source computer vision

and machine learning software library . The library has more than 2500 optimized algorithms

that are used extensively in software that uses cameras, images and point clouds. Among

many other features, OpenCV allows camera calibration, object detection, face recognition,
11https://opencv.org/

28

https://opencv.org/

point clouds production, recognition of scenes and markers related to augmented reality, find

identical images in a database and track camera movements. We make use of the OpenCV

tool and several of its features in this work within the software developed.

Monocular and Stereo Camera Calibration

Camera calibration is a needed step in 3D computer vision in order to extract metric infor-

mation from 2D images. There is a lot of work developed in this field [62] [63] [64], starting

with photogrammetry and more recently with computer vision. The existing techniques can

be divided into two main categories: calibration by photogrammetry and self-calibration.

• Photogrammetric or object-based calibration is performed by making use of an object

whose geometry is well known, i.e., whose dimensions and distances are well-known

and unchangeable. Usually an object whose translation with respect to our sensor is

accurately known is used, or an object from which we can obtain important information

such as the geometric shape, lines, contours, corners and others. The calibration

obtained through these objects can be done with great efficiency but they require an

elaborate setup that allows us to know the surrounding environment and relate it

accurately between spaces and entities in the scenario [65] [66].

• Self-calibration is a technique that does not use another object for calibration. In fact,

these techniques use the movement of single camera in the scene to obtain different im-

ages and then find correspondences between these images. As these images come from

the same camera, the intrinsic parameters are maintained and the information taken

by the correspondences allows to recover both the intrinsic and extrinsic parameters.

This approach is a more flexible method but still has a lot of room for improvement

and so the results are not always reliable [67] [68].

A widely used technique in calibration processes is to combine photogrammetry and self-

calibration, the former because it uses a 3D model and the latter because it uses motion from

either the camera or the object. An appropriate example of that is the approach presented

in [63]. Assuming that the object plane has the origin of the world coordinate system, Z is

29

always equal to zero:

s




u

v

1


 = K[r1 r2 r3 t]




X

Y

0

1




= K[r1 r2 t]




X

Y

1


 (3.1)

where ri represent the ith column of the rotation matrix in [R|t]. Then, the homography

matrix H is the matrix that relates the point of the object M to the point of the image m:

sm = HM with H = K[r1 r2 t] (3.2)

Finally, through geometric interpretation, it is possible to calculate the intrinsic param-

eters of the camera:

cx = γv0/α−B13α
2/γ

cy = (B12B13 −B11B23)/(B11B22 −B2
12)

fx =
√
γ/B11

fy =
√
γB11/(B11B22 −B2

12)

γ = −B12α−B13α/γ

λ = B33 − [B2
13 + v0(B12B13 −B11B23]/B11

(3.3)

where B = K−TK−1. Once the intrinsic parameters matrix K is known, we can compute

the extrinsic parameters for each image:

r1 = λK−1h1, r2 = λK−1h2, r3 = r1 × r2, t = λK−1h3 (3.4)

where λ = 1/ ‖K−1h1‖ = 1/ ‖K−1h2‖ and hi the homography matrix ith column. The

rotation matrix R = [r1, r2, r3] computed in this way sometimes does not satisfy the prop-

erties of a rotation matrix. The best way to obtain the R matrix is through the singular

value decomposition that is described later in this document. We can then recalculate the

parameters assuming that they are corrupted by an equally distributed noise. For this, a

maximum-likelihood estimation is used, which is based on minimizing the following function:

n∑

i=1

m∑

j=1

‖mij − m̃(K,Ri, ti,Mj)‖2 (3.5)

where m̃(K,Ri, ti,Mj) is the projection of the point Mj in image i.

30

In the end, we can define the calibration procedure mentioned by the following steps:

• Print a pattern and attach it to a planar surface.

• Moving the model object or the camera while taking multiple images under different

orientations and positions.

• Detect feature points in the image, usually corners of the pattern.

• Estimate the intrinsic parameters and extrinsic parameters by using the solution men-

tioned above.

• Recalculate all parameters by using Maximum-Likelihood Estimation.

The ROS Perception is an open-source repository that maintains software developed

by contributors related to perception12. This software can be reused by the community

in order to create their own software while overcoming the complexity of some well-known

mathematical, geometric and graphic processes. The calibration software13 for monocular

and stereo cameras in this repository allows a complete and optimized calibration using only

a chessboard and the OpenCV library. The calibration is done following the steps described

above and by also using pattern and feature detection to extract the image points needed for

the intrinsic parameters calculation. To calibrate our robotic system, cameras we used this

calibration software, with which we obtained the dimensions of the camera images (width,

height), the matrix of intrinsic parameters (K), the projection matrix (P) and the distortion

coefficients (ki and pi).

3.1 LIDAR-Camera Calibration and Registration

The combination of cameras and LIDAR in robotic systems has increased tremendously in

recent years. This allows a robotic system to perceive the surrounding scenario and thus be

able to perform tasks autonomously, namely driving and mapping. The latest prototypes

of cars with autonomous driving capability, using both of these devices, have brought the

community’s attention to their importance and usefulness. Due to this high interest, many

methods and techniques have been developed to provide an accurate geometric relationship

between a camera and a 3D LIDAR.
12https://github.com/ros-perception
13http://wiki.ros.org/camera_calibration

31

https://github.com/ros-perception
http://wiki.ros.org/camera_calibration

However, there are many aspects that must be taken into account when working with

these two devices:

• Intersection of field of view : as already mentioned in previous chapters, registration

is based on being able to find a relationship between well-defined features that are

present in both camera and LIDAR frames. This factor will depend not only on the

pose of the devices but also on the field of view of each one, as this will define the

possibility of having common features.

• Monocular or Stereo camera: it is common for stereo cameras to produce a point

cloud, computing depth values by stereo vision, however this is not possible with

monocular cameras. In our context, to register a 3D LIDAR with different stereo and

monocular cameras we will make use of the correspondence between 3D points and

apply projection and reprojection between 3D and 2D.

ICP is an iterative method that seeks to minimize the Euclesian distance between points

in two point clouds. In each iteration, the rotation and translation that best reduces the

distances between each pair of points is calculated. With this, after many iterations, the

result converges to the correspondence between each pair of points, and with all the rota-

tions and translations of each iteration we can determine the final transformation. Finding

the correct matches in this way can often result in unwanted results for cases with very

similar features or without any reference point. However, for cases where we know some

correspondences between point clouds with different frames, the Kabsch algorithm [69] is a

closed form solution for it.

The software developed in this dissertation for LIDAR-Camera calibration complements

Ankit Dhall et al. method [19]. This method is made available via a ROS package14 accom-

panied with a detailed explanation on how to use it. The basic idea is to be able to make

a correspondence between the LIDAR and camera 3D points, and find [R|t] between both

coordinate systems using the Kabsch algorithm.

Before we go any further, we discuss the most important steps while setting up and

running the registration software. Boards are a very important agent for the execution of

this technique because they are an easily distinguishable rigid and planar object. Also, as

they are rectangular or quadrangular, they allow us to promptly define edges and corners as
14https://github.com/ankitdhall/lidar_camera_calibration?fbclid=

IwAR1brdsTuvcRaIm6uS-IZDrRm1ip68qT1c1cP7-RuTSvRTaTbeYU1RYMUKA

32

https://github.com/ankitdhall/lidar_camera_calibration?fbclid=IwAR1brdsTuvcRaIm6uS-IZDrRm1ip68qT1c1cP7-RuTSvRTaTbeYU1RYMUKA
https://github.com/ankitdhall/lidar_camera_calibration?fbclid=IwAR1brdsTuvcRaIm6uS-IZDrRm1ip68qT1c1cP7-RuTSvRTaTbeYU1RYMUKA

some of the needed features for the calibration process. During the execution of the software,

two windows are presented to the user. Through the filtration of the original 3D point cloud,

where the limits of the filtration are given by the user in the configuration file so that it

catches the points that correspond to the boards, the points are projected and visualized

in a first window. In this window the user selects the points that are the closest to be the

corners of the board. The other window shows quadrilaterals that should correctly mark the

card’s line segments and confirm that we are defining the points that we really need.

However, the calibration software provided failed to generate the two above-mentioned

windows with our multisensorial setup, and thus we could not define the needed points.

Originally, the author used a 16-layer Velodyne LIDAR (VPL-16)15 and a ZED16 camera.

Although they are among the most used 3D LIDARs and outdoor depth cameras, we believe

that there may be an issue with the software version used to develop the registration method

with ROS and/or OpenCV and the version we are using, or a hard assumption on the

underlying hardware used by the author of the package. In order for calibration to be done

regardless of the devices used, we have developed additional software that allows the user

to obtain all the necessary points. These points are key to the whole calibration process

and can be calculated outside the original software to be later supplied back to the ICP

registration algorithm.

Hence, the approach for LIDAR-camera calibration proposed in this dissertation follows

the data flow illustrated in Figure 3.1.

15https://velodynelidar.com/products/puck/
16https://www.stereolabs.com/zed/

33

https://velodynelidar.com/products/puck/
https://www.stereolabs.com/zed/

Figure 3.1: Registration and mapping data flow diagram.

34

3.1.1 LIDAR-RGB-D Registration

RGB-D cameras are a specific type of depth sensing devices that work in association with a

RGB camera and that are able to augment the conventional image with depth information

related with the distance to the sensor. These cameras can separately produce depth maps

that give per-pixel depth information and an RGB image of the same environment. Then

they can produce not only point clouds but also colored point clouds by calculating which

color of each pixel in the image corresponds to the 3D point of the point cloud.

In ROS, there are several tools like rviz, webviz, rqt_graph and ROS-mobile that allow

us to view, edit, understand and interact with different types of data. Rviz turns out to be

the most intuitive and powerful tool that combines, into a single view, data such as images,

point clouds, coordinate systems, geometric transformations, odometry, robot models, and

also supports the visualization of techniques such as mapping, data fusion and path planning.

In addition, it also allow us to make accurate measurements, view data in 360 degrees, select

and restrict data, estimate a 2D pose, send a 2D navigation goal to a robot and obtain 3D

coordinates just by clicking on the desired point.

By using boards that stand out from the rest of the objects we create our desired features.

The boards, their edges and corners are easily detectable and recognizable by the human eye

in point clouds, as we can see in Figure 3.2, so this makes the manual process of obtaining

3D points (the user selects the desired points) very reliable and with little uncertainty.

Therefore, corners are used as feature points as they are easily and precisely determined.

Another very important property is that by knowing the coordinates of just one point on

the board and knowing the measurements of the sides of the boards a priori, we can get a

sense of the coordinates of the remaining corners.

Once we know how to obtain the 3D points, we need to apply the Kabsch algorithm [69].

We define a set of corresponding points, let A be the points of one sensor, B the points of

the other sensor and N the amount of points pairs:

A = {a1, a2, ..., aN} B = {b1, b2, ..., bN} (3.6)

Calculate the centers of mass for the corresponding points, P is a group that contains

these points:

µA =
1

N

∑

{i,j}∈P

ai µB =
1

N

∑

{i,j}∈P

bj (3.7)

35

Figure 3.2: Visualization of a 3D LIDAR point cloud with the presence of boards and

markers. The boards are easily distinguishable from the rest of the scene and we can clearly

see the corners of the cards. The colors are indicators of the amount of light reflected by the

objects [19].

Then subtract the corresponding center of mass from every point:

A′ = {ai − µA} = a′i B′ = {bj − µB} = b′j (3.8)

With that, we want to get the R and t that minimizes the distance between corresponding

points, which is the same as minimizing the sum of the squared errors:

E(R, t) =
∑

{i,j}∈P

||ai −Rbj − t||2 (3.9)

This equation can also be represented by a problem known as Orthogonal Procrustes:

E ′(R) = ‖[a′1, a′2, ..., a′N]−R[b′1, b
′
2, ..., b

′
N]‖2F (3.10)

The solution to this problem is equivalent to finding the nearest orthogonal matrix to a

given matrix M = A′B′>. This cross-covariance matrix M must be calculated for each pair

of corresponding points:

M =
∑

{i,j}∈P

A′B′> (3.11)

36

We can find the nearest orthogonal matrix using single value decomposition:

M = UDV > (3.12)

The matrices U and V are 3×3 rotation matrices and D is a diagonal matrix. The rotation

that best relates the two sets of points is:

R = UV > (3.13)

However, to be a proper 3D rotation matrix it must belong to the group of rotations of a

three-dimensional Euclidean space, SO(3). In this group all matrices are orthogonal 3x3 and

have det = ±1. For cases where det = −1, the linear transformation is not preserved, instead

it is reversed. To correct the matrix we use a correction matrix, C, which is a diagonal matrix

such that C = Diag(1, 1,−1):

R = UCV > (3.14)

Now that we know the rotation between the centers of mass, the translation is a simple

difference between the same centers of mass applying the rotation to one of them:

t = µA −RµB (3.15)

3.1.2 LIDAR-RGB Registration

Unlike RGB-D cameras, monocular cameras do not, by themselves, allow us to know the

depth of objects as they do not have access to stereo vision or range finders. Despite this,

it is necessary to find the same corresponding 3D points as in the method with RGB-D

cameras.

In order to cover the depth problem when using 2D images, markers associated with

an augmented reality library called ArUco are used [70]. These markers together with the

library allow us to determine the marker’s pose in the environment through an image just by

using the camera’s intrinsic parameters. With this, we can find the 3D points in the camera

frame and relate them to the LIDAR’s 3D points with the same algorithm.

In this case, the boards are also necessary to be able to define the corner points as features

but also to be the support for our markers. ArUcos printed on paper are glued to the boards

because it allows the marker to always be well stretched and easily moved without distortions

and ambiguity. In fact, as the paper is very thin, we can assume that the set formed by

37

Figure 3.3: The first image is an ArUco taken from an image and in the second image we see

the perspective removed. Finally, the marker is divided into a table that will be compared

with the existing markers in the dictionary [71].

the board and the marker are on the same limited plane with known measures. Thus, by

knowing only one point on the board, we can also determine the coordinates of the other

corners very accurately using these measurements.

A dictionary of ArUco markers consists of a set of well-known markers formed through

the different possible bit combinations of each square. On each cell, the mean of black and

white pixels are counted to decide the bit assigned to the cell. All the bits are set to 0 or

1 depending if the mean value is higher or lower than 128, meaning it is a white or black

square.

To detect a marker in a image the following steps should be done:

• We must find the corners of the marker;

• Correct the perspective distortion to obtain an image that looks as if the marker were

seen from above;

• Divide the resulting image into a grid;

• Compare this grid of white and black cells with the given dictionary to find out if there

is a match.

Most of the packages related to ArUcos compute these steps, some are represented in

the figure 3.3. Another important aspect is that the markers must be quadrangular so that,

by knowing the measurement of one side, it is enough to know the measurements of the

remaining ones. These measurements are the key factor in calculating the markers depth

with respect to the camera. After the respective markers are detected in the image, it is

possible to know the marker’s size in pixels. Then, by comparing the actual size and the

38

pixel size and by using the camera’s intrinsic parameters, we can compute how far from the

camera the marker is. Moreover, the aruco_ros17 and aruco_mapping18 packages accept

as a parameter the size of the marker, which should be given by the user.

Now that we have understood how ArUcos allow us to relate a 2D image to an object

in 3D space, let us use the packages to obtain the marker pose in the camera frame. The

relative pose is given by a [R|t] matrix that relates the camera frame with the marker’s

center. After configuring all parameters according to our setup, the pose is published in a

ROS topic and we can even view the camera and marker frames in the rviz in the same 3D

space.

We can apply a geometric transformation with the rotation and translation matrices in

order to have the 3D points in the camera frame:

Pcamera = cameraTboard ∗ Pboard (3.16)

where Pcamera is the 3D board point in the camera frame; cameraTboard the [R|t] between
the camera and the marker; and Pboard the 2D board point defined by manual measurements.

Although the points on the board are obtained through measurements that are normally

associated with precision errors due to human action, perfectly linear objects are used to

reduce these types of measurement errors.

3.1.3 LIDAR and Camera Data Merging

Now that we have addressed registration and calibration, we look into how to combine LIDAR

and camera data in a single representation that gives us a more complete information. As

registration allows us to know both devices data spatial relation, it becomes straightforward

to merge them. By combining RGB images with point clouds, we can create useful data,

namely colored point clouds and an image with an overlaid sparse depth map. The first one

allows us to make use of RGB-D mapping techniques and the last one allows us to verify the

accuracy of both registration and calibration.

Depth map is an image that contains information about the distance that objects in the

scene are from a certain reference viewpoint. Depth maps are often related or even analogous

to the terms depth buffer, Z-buffer, Z-buffering and Z-depth commonly used in 3D computer

graphics and computer vision [72]. The Figure 3.4 illustrates these types of maps and the

depth perception they give us.
17https://github.com/pal-robotics/aruco_ros
18http://wiki.ros.org/aruco_mapping

39

https://github.com/pal-robotics/aruco_ros
http://wiki.ros.org/aruco_mapping

Figure 3.4: On the left a monochromatic depth map and on the right the same depth map

but colored. We can see that, although they represent the same space, in the colored map

the difference in depth is more noticeable [73].

There are two main ways to represent a depth map: gray level map and colorized map.

The first represents the depth difference through luminosity variations, i.e., nearer surfaces

are lighter and further surfaces are darker. The second represents this difference through

a rainbow of colors that varies between RGB channels depending on the depth value. The

two ways can also be represented in reverse, i.e., from darker to lighter and between BGR

channels, respectively. Gray-level maps are used with monochrome images with only one

color channel ranging from 0-255, with 255 being white, 0 being black, and intermediate

values being variations between dark and light gray, hence the name. RGB depth maps have

the same process but through 3 color channels, forming the different color combinations we

know.

Although they are both widely used (even simultaneously), colorizing images helps the

human visual system pick out detail, estimate quantitative values, and notice patterns in

data in a more intuitive way. In addition, color maps can be directly related to other RGB

images. However, gray level maps are simpler and with less computational power. While

the color map is more used for visualization, the gray level map is more used for processing

in depth assignment techniques. For instance, the RTAB-MAP approach [74] uses use depth

images in gray levels to obtain the depth of each point through a normalization between the

maximum depth value obtained by the device and the gray value of the point to be processed.

Since there is only one color channel, normalization is sufficient to know the depth that the

color really represents, then becoming a very straightforward method. With color depth

maps, this process becomes more complex due to the three different color channels that

40

(a) Sparse depth map. (b) Dense depth map.

Figure 3.5: Sparse and Dense depth map representations [75].

would have to be analyzed for each point.

Depth maps can be either sparse or dense, both illustrated in the figure 3.5a and figure

3.5b respectively. Sparse depth maps require a lower computational power because they

usually have fewer points than dense maps, but are sufficient to be able to locate cameras in

the world. Current real-time 3D reconstruction systems tend to solve the sparsity problem

through SLAM, avoiding expensive dense representation. Dense maps demand greater com-

putational power while giving a complete representation of the scenario, being often used in

cases where surfaces (formed by edges, corners, blobs) are an essential factor.

Image with Sparse Depth Map

Taking advantage of LIDAR data, we can create a sparse image with the points projected

in 2D. This image gives us information about the depth assigned to each pixel, i.e., the

relationship between the 3D point and the pixel in the image. The 3D LIDAR provides

discrete points in 16 scan layers, which are not enough to cover a whole image. Despite not

generating dense data, the layers are close enough to allow to perceive entities in the scene

with some clarity.

The creation of an image that merges the LIDAR projected 3D points and the points of

the camera image, both in pixels, allows to visually evaluate the accuracy of the calibration.

This assessment is made by observing whether the sparse points of the LIDAR are positioned

in the camera image pixels that correspond correctly with the objects in the scene. For

example, we check if the LIDAR points that correspond to a tree are really projected on the

camera image pixels that also correspond to the same tree, and we do this for any object

that is easily recognizable. The figure 3.6 demonstrates the idea described using a person as

a distinguishable element. We can conclude that the LIDAR-Camera calibration is accurate

because the depth map points (the projected LIDAR points) corresponding to the person

41

Figure 3.6: Colored sparse depth map overlaid on the camera image. The colors of the

depth map are defined in RGB form, where more red means closer, blue more distant and

combinations of these two colors with green mean average distances to the camera frame.

are positioned in the pixels of the camera image that also correspond to the person.

In order to create this image we only need the matrix that relates the two devices and

the intrinsic parameters of the camera, the first one to transform the 3D points in the

LIDAR frame to the camera frame, and the second to project 3D points to the image pixels.

Let P be the projection and [R|t] the Camera-LIDAR transformation matrices; IP the 2D

Image points; k1,...,6 and p1,2 the radial and tangential coefficients. The structure of the code

developed is described in the Algorithm 1.

RGB Point Clouds

RGB point cloud are a 3D representation of the perceived world where each point has the

RGB color of an image. The combination of the 2D colored image with 3D points opens up

a range of new possibilities, such as building 3D colored maps with real-world colors. Some

stereo cameras, like the Intel Realsense included in the Ranger’s sensing kit described in

Chapter 2.10, provides utilities that build RGB point clouds using both embedded cameras

and stereo vision. The same process is not possible for monocular cameras, so the combina-

tion of LIDAR and images is again the solution for building RGB point clouds with cameras

42

Algorithm 1 Merging LIDAR and camera image. Color definition example for a black/white

depth map.
1: Read a camera image

2: for iteration = 0, 1, . . . , size(point_cloud) do

3: Read a LIDAR point (XYZ)

4: point_in_camera_frame = [R|t] * point_in_LIDAR_frame

5: image_point = (u,v,w) = K * Rec * point_in_camera_frame

6: image_point normalization

7: Distortion correction (see equations 2.2 and 2.3)

8: if point in image then

9: depth =
√
X2 + Y 2 + Z2

10: color = min(255, 255
∥∥∥depth−devicemax_depth

devicemax_depth

∥∥∥)]

11: Draw a circle on image pixel (u, v) and with the the computed color

12: end if

13: end for

that do not have depth information.

The creation of the RGB point clouds follows many of the same principles of merging

LIDAR and Image data into a single image. It is also needed to project 3D points to the

image 2D plane to find which pixel corresponds to which point on the LIDAR. The difference

turns out to be the final output, instead of overlaying points on an image, we will extract

the RGB data from the image and assign that color to the 3D point of the point cloud. This

process can then be described by the following steps:

• Transform 3D LIDAR points to the camera frame.

• The point cloud points that are not within the camera’s field of view (FOV) are ex-

cluded.

• 3D to 2D projection is performed and the corresponding pixel is found for each point.

• RGB data is extracted from the 2D image.

• RGB values are assigned to points in the point cloud.

• Back-projects to LIDAR space.

43

Taking into account the algorithm 1, the differences would be that in step 11, instead of

defining a color according to the depth value, we extract the color of the current pixel and

in step 12 we just assign those colors to all the corresponding 3D points of the LIDAR.

The software described in this section, as well as a detailed tutorial on how to deploy the

software is compiled on the SEMFIRE project repository19.

19https://gitlab.ingeniarius.pt/semfire_ing_uc/perception/lidar_camera_pkg

44

https://gitlab.ingeniarius.pt/semfire_ing_uc/perception/lidar_camera_pkg

4 Experimental Validation

In order to evaluate and validate the performance of our system, experimental tests were done

both in datasets and in real time using the robot sensing kit. As our system is interconnected,

i.e. we execute the registration and use the results to feed the 3D mapping approach, i.e.

RTAB-Map, the most correct way to validate our system is to validate the registration first

and reinforce this validation by analyzing the final result of the mapping.

Throughout the experiments, different experimental scenarios were needed and different

setups were used. In this chapter we will describe them separately as well as the reasons

that promoted them.

4.1 Experimental Setup

The Ranger forestry UGV, which is the robot used throughout this work, has a set of

sensors that are fixed so their poses, including their positions and orientations, with respect

to the robotic system do not change. Multi-sensor registration is done with pairs of sensors,

including at least one LIDAR and completed with a monocular camera or a stereo camera.

Recalling section 2.3.2, the setups for registration can be separated into:

• Intel RealSense D435 RGB-D camera with 3D LIDAR, for LIDAR-stereo camera reg-

istration.

• Dalsa multispectral camera with 3D LIDAR, for LIDAR-monocular camera registra-

tion.

Data-gathering and tests took place at Ingeniarius Ltd, the coordinator of the SEMFIRE

project, on the outdoors (on the street and sidewalk) and on a nearby rural path. For data-

gathering, the ROS functionality rosbag was used to record datasets20. Datasets in ROS are

recorded in bag files, which are used for storing ROS message data and that can be reused
20http://wiki.ros.org/rosbag/Commandline

45

http://wiki.ros.org/rosbag/Commandline

infinitely. The entire data flow is saved with the same synchronization as the one performed

in real time and is not vulnerable to any changes. Therefore, the rosbag command-line tool

provides a safe and reliable way to create, process, analyze and visualize datasets.

To run the sensor drivers and record the datasets in real time we used the Mini-ITX

computer embedded in the Ranger (see specs in Section 2.3.2). In order to develop software

and to work on datasets without using Ranger’s hardware, we used an Asus GL552VW

laptop equipped with an Intel Core i7-6700HQ CPU, 16 GB RAM and NVIDIA GeForce

GTX 960M.

Intel cameras have well-documented support and software integration in ROS. In order to

launch drivers, produce data with multiple cameras, build 3D Point Clouds through stereo

vision and among other features and information on these devices, one should follow the

installation and deployment instructions of the Intel RealSense team on github21.

before we start devising the calibration scenario we need both boards and ArUco markers.

ArUcos must be square and large enough for the two sensors to be able to detect them. The

boards can have any size as long as they can fully support the markers and also be easily

detected by the sensors. ArUco’s IDs have to be different from each other, as long as they

are from the same dictionary we should be able to detect both. To create, detect or learn

the dictionaries using OpenCV please refer to the supporting webpage22. ArUcos markers

must be printed on strong and consistent paper that does not tear or fold easily.

4.2 Experimental Scenarios

According to the method we describe in section 3.1, we need to be able to extract a set of

corresponding 3D points in the LIDAR and camera frames. As the boards will be the main

agent to achieve that, we require their poses to be unambiguous, while being as precise as

possible in the 3D point extraction step.

A setup based on the Ankit Dhall et al. approach [19] was used for both LIDAR-camera

calibrations.

Scenario for LIDAR-stereo camera registration

The apparatus for the LIDAR-stereo camera registration involves a room with enough light,

no wind and with walls or objects on the sides where you can attach and stretch a rope, or
21https://github.com/IntelRealSense/realsense-ros
22https://docs.opencv.org/master/d5/dae/tutorial_aruco_detection.html

46

https://github.com/IntelRealSense/realsense-ros
https://docs.opencv.org/master/d5/dae/tutorial_aruco_detection.html

Figure 4.1: Setup used to calibrate the Intel D435 camera with the 3D LIDAR. It was set

up inside a room where there is no wind interference so the boards remain static throughout

the calibration process.

any other similar tool, to support the boards. A suitable place that meets all requirements

is, for example, a room or a garage, as seen in figure 4.1. The same setup perceived by the

3D LIDAR can be seen in Figure 4.2.

In the RGB-D camera case, only the board itself is needed. However, as we are going to

use the same boards with ArUcos in another calibration and as they do not interfere in this

calibration, we can reuse it here.

Scenario for LIDAR-monocular camera registration

For the LIDAR-monocular camera registration, which captures image data within specific

light wavelength, including infra-red and ultra-violet. Unlike the registration mentioned

above, the garage light was not enough to be able to perceive the environment with the

camera’s filter. Thus, the scene had to be set up in a place with natural light on a sunny

day, a condition that was not relevant with a usual RGB camera. Also, as the setup is set

up in an environment more vulnerable to the weather and as we depend on the setup to

47

Figure 4.2: The setup from image 4.1 perceived by 3D LIDAR. The boards are fully distin-

guishable from the rest of the environment and it is possible to easily detect their corners

and edges.

be stable and fixed, it must be on a day without much wind so that the boards’ poses are

stable. In Figure 4.3 we can observe the setup perceived by the monocular camera and, in

the Figure 4.4, the result of the ArUcos detection in that same setup. Then, in Figures 4.5,

4.6 and 4.7 we can observe three different views of the setup perceived by the 3D LIDAR.

A very important aspect is that the paper with the printed ArUco needs to be well

stretched without air bubbles and without any relief so there will be no errors or inaccuracies

in detecting the markers.

48

Figure 4.3: Setup used to calibrate the multispectral (monocular) camera with 3D LIDAR. It

is similar to the setup used for stereo cameras but ArUcos are now a key agent for calibration.

Human intervention was required to keep the boards static because the test was done in a

moderately windy environment.

Figure 4.4: Detection of ArUco markers. It is possible to know the center of the marker,

an axis that represents the plane that includes each pair of markers with their board, the

marker ID and even an outline of the marker format.

49

Figure 4.5: Front view of the outdoor setup perceived by 3D LIDAR. The corners and edges

of the boards are well detectable. In this view, the body can make reading the points more

complicated.

Figure 4.6: Side view of the outdoor setup perceived by 3D LIDAR.

Figure 4.7: Back view of the outdoor setup perceived by 3D LIDAR.

50

4.3 The RTAB-MAP 3D Mapping Approach

In section 2.2, we discussed about several different mapping methods. Despite the variety, it

is not possible to define a single method that presents the best results for all robotic systems

and their components, for all scenarios and possible adversities, for all types of devices and

data, and for all types of processing time and computational power requirements.

RTAB-Map is a graph-based SLAM approach that has been integrated in ROS as a

package23. It is an open source library implementing loop closure detection with a memory

management approach so that, by limiting the size of the map, loop closure detections are

always processed under a fixed time limit, thus satisfying real time processing in large-scale

environment mapping [74]. The sensor’s data is received and synchronized by the RTAB-

Map node. Then, in addition to odometry and other useful data, they are stored in a short

term memory (STM) to be later reused by the next nodes for Loop Closure and Proximity

Detection. When new data is obtained and new nodes are created, graph optimization carries

the computed error to the whole graph, decreasing odometry drift.

In our work, the odometry supplied to the RTAB-Map is generated by the robot by

using a visual odometry fusion method (intel RealSense), with laser scan matching (LeiShen

C16) and with data from an IMU. However, localization is not a part of the scope of this

dissertation work.

RTAB-Map is the most suitable mapping method for our work for the following reasons:

• It is an open source and proven approach with full integrate in ROS.

• It is a RGB-D, Stereo and Lidar Graph-Based SLAM approach which matches perfectly

with the hardware used in our robotic system.

• Since our goal is to have a real-time system, this approach meets this requirement by

having memory management.

• Supports the inputs provided by our system for mapping, namely 3D depth data from

the LIDAR together with colored images from a forward-facing multispectral camera.

Benchmarking works of graph-based SLAM methods have shown that RTAB-Map is one

of the methods that simultaneously has more precision and that maps with higher quality [76]
23http://wiki.ros.org/rtabmap_ros
24https://www.youtube.com/watch?v=L8Jz4Q3KQNM&ab_channel=ActaScholaAutomataPolonica

51

http://wiki.ros.org/rtabmap_ros
https://www.youtube.com/watch?v=L8Jz4Q3KQNM&ab_channel=ActaScholaAutomataPolonica

Figure 4.8: Example of mapping results with RTAB-Map using an Intel D435i camera. The

map is visualized in rviz along with the camera depth image (on the left) and the RGB

image (on the right). Example extracted from an online video1.

Figure 4.9: High-quality 3-D reconstruction from RTAB-Map of a farm field. Image from

[78].

[77]. It is also a widely used mapping method so there are several works that demonstrate

acceptable results, as can be seen in the figure 4.8 and figure 4.9.

We will use RTAB-Map to verify that our calibration and registration method can be

used for building maps.

4.4 Results and Discussion

Registration

At a starting point in our experiments a manual measurement was made, using measuring

tape to estimate the translation between the sensors. We estimated rotation using rviz and

52

Figure 4.10: Setup for LIDAR-Stero camera registration validation.

test the rotation values until we found acceptable results in reghards other words, knowing

that the two sensors perceive some plans in common, such as floor, walls and ceiling, we

tried to align the plans as best we could.

The realsense stereo camera used in this work (more details in section 2.3.2) provides us

with a depth cloud. This depth cloud contains information about the distances of objects

to the camera, just as the LIDAR point cloud contains the same information to the LIDAR.

Thus, we should observe the points of both point clouds superimpose on the same objects in

the space that they perceive. Therefore, to validate the result of our LIDAR-Stereo camera

registration method, we compared the intersection of the depth cloud with the LIDAR by

using a setup with some easily distinguishable elements from the environment (as seen in

Figure 4.10), such as people, chairs, boards, etc. The Figures 4.11 and 4.12 illustrates

both superimposing clouds in which, we can verify that there is a reasonable of intersection,

namely in the most distinctive objects such as boards and people. LIDAR’s points (in white)

follow the shapes of the corresponding objects represented by the depth cloud, for example

the boards and the person (in red and yellow in the depth cloud, respectively), indicating

an acceptable result for our calibration.

By overlaying the LIDAR data on the camera image based on the transformation between

sensors that was manually acquired,we can create a depth map where the depth of objects

in the real world, given by the point cloud, determines the image pixel color, we can verify

whether the depth map points are accurately overlapping on the corresponding objects.

Therefore, if an element of the environment is at a very different distance to the camera from

53

Figure 4.11: Front view of the stereo camera’s depth cloud with the LIDAR’s point cloud.

The LIDAR’s points are shown in white and the depth cloud has a RGB color scale which

varies with the distance that the objects are from the camera.

Figure 4.12: Closer view of the board points in the stereo camera’s depth cloud and in he

LIDAR’s point cloud. The intersection of the points of the two sensors on the boards is

visible. In red, the boards perceived by the camera and, in white, the same boards perceived

by the LIDAR.

the rest of the elements that surround it, we should observe not only a wide variation in

color but its shape correctly defined. This provides hints that calibration has been conducted

appropriately. The Figures 4.13, 4.15, 4.17, 4.19 and 4.21 are the original camera image.

The Figures 4.14, 4.16, 4.18, 4.20 and 4.22 show and compare the results of this process with

manual calibration and calibration with the proposed method. In general, it is clear that

54

Figure 4.13: Raw image with car and dog.

(a) With manual calibration. (b) With our calibration method.

Figure 4.14: With our method the points of the car (top left) and the dog (middle below)

are correctly overlapping in the corresponding pixels. We can also see that the blue points

(top half) correspond correctly to the width of the path while intersected by the car. The

color scale is in meters.

with our method the points correspond with much more precision in the different elements,

including a dog, a car, a plant and a person. The regions marked by red highlight the

improved results compared to manual calibration.

Our method is influenced by possible camera calibration process errors and so the cam-

era’s intrinsic parameters may not be perfectly determined. Thus, some points can be

projected in such a way that they are outside or slightly out of step with the supposed pixel.

55

Figure 4.15: Raw image with a plant.

(a) With manual calibration. (b) With our calibration method.

Figure 4.16: Although at first glance it appears that the manual registration puts the points

of the plant (middle right) in the right place, they are actually not. Some points in the

manual calibration are not correctly on the plant boundaries, with our method this does not

happen. The color scale is in meters.

In order to verify that the strategy (see Figure 4.23) of extracting the points in the

calibration step manually using rviz is precise, despite being made by human action in

rviz, the same points were extracted several times with the same dataset for the same

timestamp. The results can be checked in the table 4.1. In all the iterations of this process,

the coordinates of the extracted points were very close to each other as confirmed by the

very low value of the root mean square error (RMSE). Therefore, we can validate that this

56

Figure 4.17: Raw image with a car.

(a) With manual calibration. (b) With our calibration method.

Figure 4.18: This is another case where manual calibration seems to put the points as

intended. The points superimposed on the van seem to correspond to the back side of the

van, however with our calibration we verify that they actually correspond to the front side.

Also the blue points on the left side in 4.18a correspond to very distant dots but they are on

top of the van. With our calibration we verify that all points of the car have no color that

ambiguously represents its distance from the camera. The color scale is in meters.

process is very accurate and is not affected by the number of times it is done.

57

Figure 4.19: First raw image with a person.

(a) With manual calibration. (b) With our calibration method.

Figure 4.20: In these two images the improvement of the results with our calibration is very

noticeable. The points are correctly superimposed on the person, those same points correctly

define the shape of the body and the surrounding points corresponding to the path start as

soon as the body contours finish. The color scale is in meters.

Mapping

In order to map the environment using the useful information from the multispectral camera’s

image and fulfilling the input requirements of RTAB-Map, the package pixel_cloud_fusion25

was used. This package was developed for the Autoware.AI project, which provides an open

source repository, targeting autonomous vehicles and perception software. With the soft-
25https://github.com/Autoware-AI/core_perception/tree/master/pixel_cloud_fusion

58

https://github.com/Autoware-AI/core_perception/tree/master/pixel_cloud_fusion

Figure 4.21: Second raw image with a person.

(a) With manual calibration. (b) With our calibration method.

Figure 4.22: Another clear example that shows the errors of the manual calibration and

improvements that our calibration provided. The color scale is in meters.

ware mentioned, we can form a colored point cloud with the colors of an image by using

the camera’s intrinsic parameters and the depth estimation using the 3D LIDAR via the

transform that related both sensors. Thus, the point cloud formed has both depth and mul-

tispectral data. Providing this colored point cloud to the mapping approach, together with

the camera’s intrinsic parameters, allows us to build a colored map of the environment based

on information from the multispectral camera and the 3D LIDAR.

The Figure 4.24 shows the main input data (left), parameters (top) and output data

(right).

59

Figure 4.23: Example of the point extraction process in rviz. With the publish_point tool

from rviz we can select a point in the point cloud and know its coordinates in the topic

clicked_point.

Figure 4.24: Input data, parameters and output data from RTAB-Map.

The inputs represent the data with which we need to feed the RTAB-Map. Odometry

allows us to estimate the position of the robot relative to a starting location. Camera_info,

with the camera’s intrinsic parameters, is used in nodes related to camera images, in this case

to be able to relate an image to a point cloud forming the Merged Point Cloud. Finally, the

geometric transforms are needed to be able to have the data related to a common reference

and therefore build a coherent map. The geometric transforms used are:

• base_sensing_kit → dalsa (multispectral camera).

60

Table 4.1: Precision of extracting the board’s corner coordinates using the rviz tool. In order

to check the accuracy and ease of selecting the desired points, three iterations were made

where the coordinates of the four corners of the board (Top, Right, Bottom and Left) were

extracted.

Point Position Point Coordinates Iteration 1 Iteration 2 Iteration 3 RMSE

Top

x 2.232 2.230 2.2347 0.0019

y 0.2356 0.2347 0.2339 0.0006

z 0.3530 0.3514 0.3561 0.0019

Right

x 2.4301 2.4334 2.4321 0.0013

y -0.10504 -0.1056 -0.10517 0.0002

z -0.1317 -0.1303 -0.1292 0.0010

Bottom

x 2.4713 2.4708 2.4717 0.0003

y 0.1999 0.1967 0.1978 0.0013

z -0.3070 -0.3078 -0.3057 0.0008

Left

x 2.2915 2.2910 2.2831 0.0038

y 0.5560 0.5532 0.5542 0.0011

z 0.12297 0.12297 0.12334 0.0001

• base_sensing_kit → front_lslidar (3D LIDAR).

• bobcat_base→ base_sensing_kit, so that the two sensors related to base_sensing_kit

are related to bobcat_base.

• map → cartographer_odom.

• cartographer_odom → bobcat_base.

• bobcat_base → imu.

Briefly, we have 3D point cloud, camera images, odometry and imu all related to the

same reference.

Some parameters had to be changed from the default values in order to integrate the

colored point cloud. At first, frame_id has been changed from the default base_link

to bobcat_base which is the frame attached to the base of our mobile robot system.

Then, as we are going to feed the RTAB-Map with a point cloud, we are not going to

provide either depth images or rgb images and so the parameters subscribe_depth and

61

(a) Raw image from the dataset that highlights a

set of trees (on the left).

(b) Set of trees in the map.

Figure 4.25: A set of trees that stand out from the rest of the elements around. The image

4.25b was taken in the opposite direction to get a better view. It is possible to observe the

set of points that represent the tree highlighted in the image 4.25a.

(a) Raw image from the dataset that highlights a

post and a set of plants.

(b) Set of plants and a post in the map.

Figure 4.26: A set of plants (on the left) and a post (on the right) that stand out from the

environment.

subscribe_rgbd are assigned as false. On the other hand, the subscribe_scan_cloud

parameter is assigned as true as we are going to provide the point cloud mentioned earlier.

The rtabmap_ros/point_cloud_xyzrgb node builds a point cloud with RGB through depth

images or stereo images. However, as we use a monocular camera, we are no able to take ad-

vantage of this node and it is necessary to assign the point cloud, built with the Autoware.AI’s

62

(a) Initial mapping phase. (b) Top view of the initial mapping.

(c) Half-time map. With precise odometry and

position estimation, the map starts to form co-

herently with the different point clouds.

(d) Close look to the final map. We can observe

the path followed by the robot, and elements

such as the car and people represented by the

multispectral colored information.

Figure 4.27: The different mapping phases.

63

software, in other way. For this, we use the node rtabmap_ros/point_cloud_assembler

which allows us to assign a point cloud to the output topic for rtabmap_ros/point_cloud_xyzrgb

called cloud . Thus, the cloud topic is remapped to our colored point cloud topic, points_fused,

completing the integration of our colored point cloud into RTAB-Map, making possible to

map with it.

Before building the map, we expected the map to be dominated in areas with more light

by yellowish and bluish / gray colors. In shady areas we expect a cluster of bluish / gray

colors in places with vegetation but somewhat dominated by the black color due to the

lack of light. The map at different times of the experiment can be seen in Figure 4.27. The

results are acceptable because at first the compatibility of point clouds with image colors was

fulfilled into the mapping process, the multispectral images provides useful information into

the 3D map, allowing proper perception of the environment. The map is built in real time,

being dense, consistent and detailed, enabling the distinction of elements and entities, such

as cars, people, etc. The Figure 4.25 and Figure 4.26 illustrate some distinctive elements of

the mapped environment while comparing with the captured image. The demonstration of

the mapping process and the results obtained can be seen in the video26.

26https://www.youtube.com/watch?v=3LiQAMEM-8A&t=208s

64

https://www.youtube.com/watch?v=3LiQAMEM-8A&t=208s

5 Conclusion

In this dissertation we propose to calibrate and register a set of sensors from a robotic system

consisting of a stereo camera, a monocular camera and a 3D LIDAR (goal 1 in Chapter 1).

After that, we proposed to build, in real time, a 3D map formed by different point clouds

with usable information, which are created by using the registration outputs and the sensors

mentioned, (goal 2). A manual calibration was performed between the sensors by using

measuring tapes, in order to estimate with little precision and rigor the calibrations that we

would calculate with a more accurate method.

We improved a method based on matching the same 3D points but in the different sensor

frames. For that, we implemented the Kabsch algorithm for points obtained through a well-

defined and strategic setups. During all the point extraction processes we used rviz, a ROS

tool for data visualization and manipulation.

For stereo cameras, as we can obtain 3D information through stereo vision, we used

software that forms 3D point clouds of the camera image. In this way, we are able to obtain

and give our algorithm the 3D points.

On the other hand, by using monocular cameras, we are not able to obtain depth in-

formation. ArUco, a minimal library for Augmented Reality using specific markers, fulfills

this role by allowing us to easily detect markers in a 2D image and determine its pose in

relation to the camera. Knowing the camera-ArUco relationship, it is possible to know the

coordinates of 3D points that are on the same plane as the marker.

Our calibration method got acceptable results, as we can see from 4.14 to 4.22. It is

possible to see that the LIDAR data is correctly projected on the corresponding elements in

the camera image, a fact that does not occur while using manual calibration. This results

are only possible if the calibration and registration between the both sensors are correct.

Finally, in order to map a 3D environment the RTAB-Map method was used, taking

advantage of its compatibility with point clouds. After merging data from a camera and a

LIDAR into a point cloud, we successfully mapped a forest environment from which it is

65

Figure 5.1: Top view of the final map.

possible to perceive useful multispectral information with our robotic system, as we can see

in figure 4.27 and figure 5.1.

5.1 Future Work

LIDAR-LIDAR Registration

In this work we registered almost all sensors, lacking the LIDAR-LIDAR registration. We

thought in a 3D LIDAR-LIDAR calibration method with which we do not need data intersec-

tion or to know corresponding points in both sensor frames. 3D LIDAR-LIDAR registration

methods to date are developed through ICP processes with two point clouds with identical

number of points and with a lot of intersection of common features. However, it is quite com-

mon for two LIDAR to be placed in robotic systems with opposite directions and orientations

to be able to make a all around perception, so not sharing much of the same data.

We propose a calibration method based on the geometry of the space where the two

LIDAR are inserted. Walls, ceilings and floors represent plans that can be well defined

through some of the LIDAR points. The main idea is based on the equality of a same plane

perpendicular vectors. For this idea to be true, all points must be defined in relation to the

same origin in the world. In the end, if we know the equation of a plane seen by one LIDAR

and the equation of the same plane seen by other LIDAR, we know two normal vectors of

66

the plane which must be equal to less than the point of application and vector dimension.

Even though the points do not correspond for both sensors, the perpendicular vector formed

are still equal and so it does not depend in the ability do match data. Therefore, as long as

the sensor setup is in a place surrounded by well-defined plans, such as a garage or rooms,

it is possible to relate the two sensors.

The mathematical development is described in appendix A.

MoDSeM Integration

In works like this one where cooperative perception is key, each of the members of the

robot team contribute to the global knowledge of the system by sharing and cooperatively

processing data and percepts from one another, combining the sensory abilities, perspectives

and processing power of various agents to achieve better results. The Modular Framework

for Distributed Semantic Mapping (MoDSeM) aggregates all this information to create a

semantic map that can be shared among all system agents. It also aims to be reusable and

adaptable to different sensing systems. MoDSeM consists of sensors that generate signals,

Perception Modules (PM) that process these signals and, finally, the semantic map that

represents a unique view of the world according to the information processed. Another

important and very useful feature is the fact that PMs are only dependent on both sensors

and the map, but not on other PMs. This allows the perception system to be adaptable to

the computing power and the available resources. Any modules that are removed from the

system do not affect it, so there is no need to redesign when changes are needed. PMs can

use semantic maps, from others or from previous versions of the same technique, as input and

thus be generally adaptable. However, while removing modules does not affect the overall

system, errors can occur due to inter-dependencies information and so it is a process that

needs some caution.

Integrating our entire method for an adaptable architecture such as MoDSeM is an in-

teresting work to be carried out in the future, as it addresses the flexibility of the robotic

system and promotes a better use and connection between the data of the different modules

present in our dataflow.

Automating the process of finding matching points

Throughout our process of calibrating and registering cameras with LIDAR, we used tech-

niques where corresponding points were chosen by hand, i.e. a user needs to select the desired

67

points. Although we verify that the existing tools for this type of processes are very precise,

intuitive and concise, which does not demand extraordinary capacity from the user, there are

already many edge and corner detection techniques which fits with the boards and markers

used. A possible improvement is developing techniques that can automatically detect and

obtain information about corresponding points in point clouds.

68

6 Bibliography

[1] J. Daley, “Study shows 84% of wildfires caused by

humans.” https://www.smithsonianmag.com/smart-news/

study-shows-84-wildfires-caused-humans-180962315/.

[2] “Forest area (% of land area).” https://data.worldbank.org/indicator/AG.LND.

FRST.ZS.

[3] B. Zitova and J. Flusser, “Image registration methods: a survey,” Image and vision

computing, vol. 21, no. 11, pp. 977–1000, 2003.

[4] A. Hornung, K. M. Wurm, M. Bennewitz, C. Stachniss, and W. Burgard, “Octomap:

An efficient probabilistic 3d mapping framework based on octrees,” Autonomous robots,

vol. 34, no. 3, pp. 189–206, 2013.

[5] A. Nüchter, K. Lingemann, J. Hertzberg, and H. Surmann, “6d slam—3d mapping

outdoor environments,” Journal of Field Robotics, vol. 24, no. 8-9, pp. 699–722, 2007.

[6] M. Pierzchala, “Greatest challenges for forest robots.” https://www.forest-monitor.

com/en/greatest-challenges-forest-robots/.

[7] G. S. Martins, J. F. Ferreira, D. Portugal, and M. S. Couceiro, “Modsem: modular

framework for distributed semantic mapping,” in The 2nd UK-RAS Conference for

PhD Students and Early-Career Researchers on Embedded Intelligence, 2019.

[8] L. G. Brown, “A survey of image registration techniques,” ACM computing surveys

(CSUR), vol. 24, no. 4, pp. 325–376, 1992.

[9] P. J. Besl and N. D. McKay, “Method for registration of 3-d shapes,” in Sensor fusion

IV: control paradigms and data structures, vol. 1611, pp. 586–606, International Society

for Optics and Photonics, 1992.

69

https://www.smithsonianmag.com/smart-news/study-shows-84-wildfires-caused-humans-180962315/
https://www.smithsonianmag.com/smart-news/study-shows-84-wildfires-caused-humans-180962315/
https://data.worldbank.org/indicator/AG.LND.FRST.ZS
https://data.worldbank.org/indicator/AG.LND.FRST.ZS
https://www.forest-monitor.com/en/greatest-challenges-forest-robots/
https://www.forest-monitor.com/en/greatest-challenges-forest-robots/

[10] B. D. Lucas, T. Kanade, et al., “An iterative image registration technique with an

application to stereo vision,” 1981.

[11] E. W. Weisstein, “Affine transformation,” https://mathworld. wolfram. com/, 2004.

[12] M. Pollefeys, R. Koch, and L. Van Gool, “Self-calibration and metric reconstruction

inspite of varying and unknown intrinsic camera parameters,” International Journal of

Computer Vision, vol. 32, no. 1, pp. 7–25, 1999.

[13] J. Wang, F. Shi, J. Zhang, and Y. Liu, “A new calibration model of camera lens distor-

tion,” Pattern recognition, vol. 41, no. 2, pp. 607–615, 2008.

[14] R. Hamad, S. A. Sattar, and R. Al-Azawi, “Calculating the inverse radial distortion

model based on zhang method,” Advances in Natural and Applied Sciences, vol. 11,

no. 3, pp. 86–91, 2017.

[15] “What is camera calibration?.” https://www.mathworks.com/help/vision/ug/

camera-calibration.html.

[16] “Camera calibration.” https://docs.opencv.org/master/dc/dbb/tutorial_py_

calibration.html.

[17] Q. Zhang and R. Pless, “Extrinsic calibration of a camera and laser range finder (im-

proves camera calibration),” in 2004 IEEE/RSJ International Conference on Intelligent

Robots and Systems (IROS)(IEEE Cat. No. 04CH37566), vol. 3, pp. 2301–2306, IEEE,

2004.

[18] J. Feldmar, N. Ayache, and F. Betting, “3d–2d projective registration of free-form curves

and surfaces,” Computer vision and image understanding, vol. 65, no. 3, pp. 403–424,

1997.

[19] A. Dhall, K. Chelani, V. Radhakrishnan, and K. M. Krishna, “LiDAR-Camera Calibra-

tion using 3D-3D Point correspondences,” ArXiv e-prints, May 2017.

[20] A. Sarkar, R. J. Santiago, R. Smith, and A. Kassaee, “Comparison of manual vs. auto-

mated multimodality (ct-mri) image registration for brain tumors,” Medical Dosimetry,

vol. 30, no. 1, pp. 20–24, 2005.

[21] G. Tagliabue, A. Maghini, S. Fabiano, A. Tittarelli, E. Frassoldi, E. Costa, S. No-

bile, T. Codazzi, P. Crosignani, R. Tessandori, et al., “Consistency and accuracy of

70

https://www.mathworks.com/help/vision/ug/camera-calibration.html
https://www.mathworks.com/help/vision/ug/camera-calibration.html
https://docs.opencv.org/master/dc/dbb/tutorial_py_calibration.html
https://docs.opencv.org/master/dc/dbb/tutorial_py_calibration.html

diagnostic cancer codes generated by automated registration: comparison with manual

registration,” Population Health Metrics, vol. 4, no. 1, p. 10, 2006.

[22] F. Pomerleau, F. Colas, and R. Siegwart, “A review of point cloud registration algo-

rithms for mobile robotics,” 2015.

[23] B. Bellekens, V. Spruyt, R. Berkvens, R. Penne, and M. Weyn, “A benchmark survey of

rigid 3d point cloud registration algorithms,” Int. J. Adv. Intell. Syst, vol. 8, pp. 118–

127, 2015.

[24] R. S. Phogat, H. Dhamecha, M. Pandya, B. Chaudhary, and M. Potdar, “Different

image registration methods—an overview,” Int J Sci Eng Res, vol. 5, pp. 44–9, 2014.

[25] L. M. Fonseca and B. Manjunath, “Registration techniques for multisensor remotely

sensed imagery,” PE & RS- Photogrammetric Engineering & Remote Sensing, vol. 62,

no. 9, pp. 1049–1056, 1996.

[26] X. Dai and S. Khorram, “A feature-based image registration algorithm using improved

chain-code representation combined with invariant moments,” IEEE Transactions on

Geoscience and Remote Sensing, vol. 37, no. 5, pp. 2351–2362, 1999.

[27] E. Mair, G. D. Hager, D. Burschka, M. Suppa, and G. Hirzinger, “Adaptive and generic

corner detection based on the accelerated segment test,” in European conference on

Computer vision, pp. 183–196, Springer, 2010.

[28] T. Lindeberg, “Scale invariant feature transform,” 2012.

[29] H. Bay, T. Tuytelaars, and L. Van Gool, “Surf: Speeded up robust features,” in European

conference on computer vision, pp. 404–417, Springer, 2006.

[30] H. Bay, A. Ess, T. Tuytelaars, and L. Van Gool, “Speeded-up robust features (surf),”

Computer vision and image understanding, vol. 110, no. 3, pp. 346–359, 2008.

[31] S. Mohammad and T. Morris, “Binary robust independent elementary feature features

for texture segmentation,” Advanced Science Letters, vol. 23, no. 6, pp. 5178–5182, 2017.

[32] E. Karami, S. Prasad, and M. Shehata, “Image matching using sift, surf, brief and orb:

performance comparison for distorted images,” arXiv preprint arXiv:1710.02726, 2017.

[33] D. Tyagi, “Introduction to feature detection and matching.” https://medium.com/

data-breach/introduction-to-feature-detection-and-matching-65e27179885d.

71

https://medium.com/data-breach/introduction-to-feature-detection-and-matching-65e27179885d
https://medium.com/data-breach/introduction-to-feature-detection-and-matching-65e27179885d

[34] “Feature detection (computer vision).” https://en.wikipedia.org/wiki/Feature_

detection_(computer_vision).

[35] S. Bouaziz, A. Tagliasacchi, and M. Pauly, “Sparse iterative closest point,” in Computer

graphics forum, vol. 32, pp. 113–123, Wiley Online Library, 2013.

[36] Y. He, B. Liang, J. Yang, S. Li, and J. He, “An iterative closest points algorithm for

registration of 3d laser scanner point clouds with geometric features,” Sensors, vol. 17,

no. 8, p. 1862, 2017.

[37] M. Ovsjanikov, “Rigid shape registration.” http://www.lix.polytechnique.fr/

~maks/Verona_MPAM/TD/TD1/.

[38] A. Elfes, “Using occupancy grids for mobile robot perception and navigation,” Computer,

vol. 22, no. 6, pp. 46–57, 1989.

[39] D. Kortenkamp and T. Weymouth, “Topological mapping for mobile robots using a

combination of sonar and vision sensing,” in AAAI, vol. 94, pp. 979–984, 1994.

[40] G. d. S. Martins, “A cooperative slam framework with efficient information sharing over

mobile ad hoc networks,” Master’s thesis, 2014.

[41] R. Chellali, K. Baizid, and Z. Li, “2d and 3d virtual environment for human robot

interaction: from virtual perception to real localization,” in 2009 IEEE International

Conference on Robotics and Biomimetics (ROBIO), pp. 694–699, IEEE, 2009.

[42] H. Durrant-Whyte and T. Bailey, “Simultaneous localization and mapping: part i,”

IEEE robotics & automation magazine, vol. 13, no. 2, pp. 99–110, 2006.

[43] T. Bailey and H. Durrant-Whyte, “Simultaneous localization and mapping (slam): Part

ii,” IEEE robotics & automation magazine, vol. 13, no. 3, pp. 108–117, 2006.

[44] M. J. Milford, “Robotic mapping methods,” in Robot Navigation from Nature, pp. 15–28,

Springer, 2008.

[45] V. Fox, J. Hightower, L. Liao, D. Schulz, and G. Borriello, “Bayesian filtering for location

estimation,” IEEE pervasive computing, vol. 2, no. 3, pp. 24–33, 2003.

[46] R. Sim, P. Elinas, M. Griffin, J. J. Little, et al., “Vision-based slam using the rao-

blackwellised particle filter,” in IJCAI Workshop on Reasoning with Uncertainty in

Robotics, vol. 14, pp. 9–16, 2005.

72

https://en.wikipedia.org/wiki/Feature_detection_(computer_vision)
https://en.wikipedia.org/wiki/Feature_detection_(computer_vision)
http://www.lix.polytechnique.fr/~maks/Verona_MPAM/TD/TD1/
http://www.lix.polytechnique.fr/~maks/Verona_MPAM/TD/TD1/

[47] J. Nieto, T. Bailey, and E. Nebot, “Scan-slam: Combining ekf-slam and scan correla-

tion,” in Field and service robotics, pp. 167–178, Springer, 2006.

[48] T. Bailey, J. Nieto, J. Guivant, M. Stevens, and E. Nebot, “Consistency of the ekf-

slam algorithm,” in 2006 IEEE/RSJ International Conference on Intelligent Robots

and Systems, pp. 3562–3568, IEEE, 2006.

[49] G. Grisetti, C. Stachniss, and W. Burgard, “Improving grid-based slam with rao-

blackwellized particle filters by adaptive proposals and selective resampling,” in Proceed-

ings of the 2005 IEEE international conference on robotics and automation, pp. 2432–

2437, IEEE, 2005.

[50] G. Grisetti, R. Kümmerle, C. Stachniss, and W. Burgard, “A tutorial on graph-based

slam,” IEEE Intelligent Transportation Systems Magazine, vol. 2, no. 4, pp. 31–43, 2010.

[51] R. Kümmerle, B. Steder, C. Dornhege, A. Kleiner, G. Grisetti, and W. Burgard, “Large

scale graph-based slam using aerial images as prior information,” Autonomous Robots,

vol. 30, no. 1, pp. 25–39, 2011.

[52] M. Labbé and F. Michaud, “Appearance-based loop closure detection for online large-

scale and long-term operation,” IEEE Transactions on Robotics, vol. 29, no. 3, pp. 734–

745, 2013.

[53] M. Labbé and F. Michaud, “Memory management for real-time appearance-based loop

closure detection,” in 2011 IEEE/RSJ International Conference on Intelligent Robots

and Systems, pp. 1271–1276, 2011.

[54] M. Labbé and F. Michaud, “Online global loop closure detection for large-scale multi-

session graph-based slam,” in 2014 IEEE/RSJ International Conference on Intelligent

Robots and Systems, pp. 2661–2666, 2014.

[55] M. Labbé and F. Michaud, “Long-term online multi-session graph-based splam with

memory management,” Autonomous Robots, vol. 42, no. 6, pp. 1133–1150, 2018.

[56] F. Endres, J. Hess, N. Engelhard, J. Sturm, D. Cremers, and W. Burgard, “An eval-

uation of the rgb-d slam system,” in 2012 IEEE International Conference on Robotics

and Automation, pp. 1691–1696, IEEE, 2012.

[57] J. Zhang and S. Singh, “Loam: Lidar odometry and mapping in real-time.,” in Robotics:

Science and Systems, vol. 2, 2014.

73

[58] T. Shan and B. Englot, “Lego-loam: Lightweight and ground-optimized lidar odometry

and mapping on variable terrain,” in IEEE/RSJ International Conference on Intelligent

Robots and Systems (IROS), pp. 4758–4765, IEEE, 2018.

[59] J. Zhang and S. Singh, “Visual-lidar odometry and mapping: Low-drift, robust, and

fast,” in 2015 IEEE International Conference on Robotics and Automation (ICRA),

pp. 2174–2181, IEEE, 2015.

[60] T. Shan and B. Englot, “Lego-loam: Lightweight and ground-optimized lidar odome-

try and mapping on variable terrain,” in 2018 IEEE/RSJ International Conference on

Intelligent Robots and Systems (IROS), pp. 4758–4765, IEEE, 2018.

[61] M. Quigley, K. Conley, B. Gerkey, J. Faust, T. Foote, J. Leibs, R. Wheeler, and A. Y.

Ng, “Ros: an open-source robot operating system,” in ICRA workshop on open source

software, vol. 3, p. 5, Kobe, Japan, 2009.

[62] C. B. Duane, “Close-range camera calibration,” Photogramm. Eng, vol. 37, no. 8,

pp. 855–866, 1971.

[63] Z. Zhang, “A flexible new technique for camera calibration,” IEEE Transactions on

pattern analysis and machine intelligence, vol. 22, no. 11, pp. 1330–1334, 2000.

[64] J. Weng, P. Cohen, M. Herniou, et al., “Camera calibration with distortion models and

accuracy evaluation,” IEEE Transactions on pattern analysis and machine intelligence,

vol. 14, no. 10, pp. 965–980, 1992.

[65] F. Remondino and C. Fraser, “Digital camera calibration methods: considerations and

comparisons,” International Archives of the Photogrammetry, Remote Sensing and Spa-

tial Information Sciences, vol. 36, no. 5, pp. 266–272, 2006.

[66] C. S. Fraser, “Automatic camera calibration in close range photogrammetry,” Pho-

togrammetric Engineering & Remote Sensing, vol. 79, no. 4, pp. 381–388, 2013.

[67] O. D. Faugeras, Q.-T. Luong, and S. J. Maybank, “Camera self-calibration: Theory and

experiments,” in European conference on computer vision, pp. 321–334, Springer, 1992.

[68] R. I. Hartley, “Self-calibration of stationary cameras,” International journal of computer

vision, vol. 22, no. 1, pp. 5–23, 1997.

74

[69] O. Sorkine, “Least-squares rigid motion using svd,” Technical notes, vol. 120, no. 3,

p. 52, 2009.

[70] “Aruco: a minimal library for augmented reality applications based on opencv.” https:

//www.uco.es/investiga/grupos/ava/node/26.

[71] “Detection of aruco markers.” https://docs.opencv.org/master/d5/dae/tutorial_

aruco_detection.html.

[72] D. Eigen, C. Puhrsch, and R. Fergus, “Depth map prediction from a single image using

a multi-scale deep network,” in Advances in neural information processing systems,

pp. 2366–2374, 2014.

[73] D. Anton Mikhailov, Senior Software Engineer, “Turbo, an improved rain-

bow colormap for visualization.” https://ai.googleblog.com/2019/08/

turbo-improved-rainbow-colormap-for.html.

[74] M. Labbé and F. Michaud, “Rtab-map as an open-source lidar and visual simultaneous

localization and mapping library for large-scale and long-term online operation,” Journal

of Field Robotics, vol. 36, no. 2, pp. 416–446, 2019.

[75] A. González, D. Vázquez, A. M. López, and J. Amores, “On-board object detection:

Multicue, multimodal, and multiview random forest of local experts,” IEEE transactions

on cybernetics, vol. 47, no. 11, pp. 3980–3990, 2016.

[76] I. Z. Ibragimov and I. M. Afanasyev, “Comparison of ros-based visual slam methods in

homogeneous indoor environment,” in 2017 14th Workshop on Positioning, Navigation

and Communications (WPNC), pp. 1–6, IEEE, 2017.

[77] N. Altuntaş, E. Uslu, F. Çakmak, M. F. Amasyalı, and S. Yavuz, “Comparison of 3-

dimensional slam systems: Rtab-map vs. kintinuous,” in 2017 International Conference

on Computer Science and Engineering (UBMK), pp. 99–103, IEEE, 2017.

[78] M. A. Post, A. Bianco, and X. T. Yan, “Autonomous navigation with ros for a mobile

robot in agricultural fields,” in 14th International Conference on Informatics in Control,

Automation and Robotics (ICINCO), 2017.

75

https://www.uco.es/investiga/grupos/ava/node/26
https://www.uco.es/investiga/grupos/ava/node/26
https://docs.opencv.org/master/d5/dae/tutorial_aruco_detection.html
https://docs.opencv.org/master/d5/dae/tutorial_aruco_detection.html
https://ai.googleblog.com/2019/08/turbo-improved-rainbow-colormap-for.html
https://ai.googleblog.com/2019/08/turbo-improved-rainbow-colormap-for.html

Appendix A

3D LIDAR-LIDAR Calibration

76

1 3D LIDAR-LIDAR calibration method

With three points we were able to define the equation of a plane. We managed to know

the coordinates of the points in relation to each LIDAR. Therefore, by selecting three points

that we know are part of the plane of the wall, floor or ceiling, we can define the equation

of these plans.

The main idea of our method for calibration is based on the equality of the normal vectors

of the equations that define the same plane. For this idea to be true, all points must be

defined in relation to the same origin in the world. In the end, if we know the equation

of a plane seen by one LIDAR and the equation of the same plane seen other LIDAR, we

know the two normal vectors of that plane, which must be equal to less than the point of

application and of vector dimension.

VW = VL = F (LTWPL) (1.1)

Where,

• VW is the vector perpendicular to the plane which is defined with three points in

relation to the world origin.

• VL is the perpendicular vector of the same plane but formed by the points obtained in

the LIDAR frame and later transformed into the world frame.

• TTW the transformation matrix that links the LIDAR to the world frame, i.e. it

transforms the points obtained in the LIDAR frame to the world frame.

• F is the function that calculates the perpendicular vector knowing three points.

• XL are three points of the plan in relation to the origin of LIDAR.

Through this equality we can define a transformation matrix which we do not know any

value. We know how to define VW , we know the points PL and we know the function F to

form the normal vector with these points. So to generalize our problem we will use Xn, Yn

1

Figure 1.1: Representation of a plane seen by two LIDAR, the coordinate systems and all

the vectors mentioned.

Figure 1.2: Side view of the setup to view the perpendicular vectors formed by the points of

the plane.

and Zn to represent the coordinates of the points and Tlc the indices of the rows and columns

of the transformation matrix.

2

Starting with the matrices in parentheses:

PWn =




T11 T12 T13 T14

T21 T22 T23 T24

T31 T32 T33 T34

0 0 0 1







Xn

Yn

Zn

1




(1.2)

PW are the LIDAR points in the world framework. We will represent the X, Y and Z

coordinates of the point n (n=3) by Pxn , Pyn and Pzn respectively.

T11Xn + T12Yn + T13Zn + T14 = Pxn

T21Xn + T22Yn + T23Zn + T24 = Pyn

T31Xn + T32Yn + T33Zn + T34 = Pzn

(1.3)

At the end of this process ,we have the points in the world reference. We will define it as

PW1 , PW2 and PW3 . We now apply the F function to create the normal vector. This function

encompasses two processes: creation of two vectors and vector cross product.

To create the two vectors (~v1 and ~v2) we make the difference between two points: PW2 −
PW1 and PW3 − PW1 :

~v1x̂ = (T11X2 + T12Y2 + T13Z2 + T14)− (T11X1 + T12Y1 + T13Z1 + T14)

= T11(X2 −X1) + T12(Y2 − Y1) + T13(Z2 − Z1)

~v1ŷ = T21(X2 −X1) + T22(Y2 − Y1) + T23(Z2 − Z1)

~v1ẑ = T31(X2 −X1) + T32(Y2 − Y1) + T33(Z2 − Z1)

(1.4)

And for the second vector:

~v2x̂ = (T11X3 + T12Y3 + T13Z3 + T14)− (T11X1 + T12Y1 + T13Z1 + T14)

= T11(X3 −X1) + T12(Y3 − Y1) + T13(Z3 − Z1)

~v2ŷ = T21(X3 −X1) + T22(Y3 − Y1) + T23(Z3 − Z1)

~v2ẑ = T31(X3 −X1) + T32(Y3 − Y1) + T33(Z3 − Z1)

(1.5)

3

Finally, when making the vector product of ~v1 and ~v2 we have the normal vector VL:




î ĵ k̂

T11(X2 −X1) + T12(Y2 − Y1)

+T13(Z2 − Z1)

T21(X2 −X1) + T22(Y2 − Y1)

+T23(Z2 − Z1)

T31(X2 −X1) + T32(Y2 − Y1)

+T33(Z2 − Z1)

T11(X3 −X1) + T12(Y3 − Y1)

+T13(Z3 − Z1)

T21(X3 −X1) + T22(Y3 − Y1)

+T23(Z3 − Z1)

T31(X3 −X1) + T32(Y3 − Y1)

+T33(Z3 − Z1)




(1.6)

To facilitate the visualization of the problem we do:




î ĵ k̂

A B C

D E F


 (1.7)

Getting the cross product in the form:

VL = (BF − CE)̂i− (AF − CD)ĵ + (AE −BD)k̂ (1.8)

We know all the differences between Xn, Yn and Zn, we just don’t know Tlc:

(BF − CE) =

[[
(X2 −X1)T21 + (Y2 − Y1)T22 + (Z2 − Z1)T23)

]
·
[
(X3 −X1)T31 + (Y3 − Y1)T32

+ (Z3 − Z1)T33)
]]

−
[[
(X2 −X1)T31 + (Y2 − Y1)T32 + (Z2 − Z1)T33)

]
·
[
(X3 −X1)T21

+ (Y3 − Y1)T22 + (Z3 − Z1)T23)
]]

(1.9)

(AF − CD) =

[[
(X2 −X1)T11 + (Y2 − Y1)T12 + (Z2 − Z1)T13)

]
·
[
(X3 −X1)T31 + (Y3 − Y1)T32

+ (Z3 − Z1)T33)
]]

−
[[
(X2 −X1)T31 + (Y2 − Y1)T32 + (Z2 − Z1)T33)

]
·
[
(X3 −X1)T11

+ (Y3 − Y1)T12 + (Z3 − Z1)T13)
]]

(1.10)

4

(AE −BD) =

[[
(X2 −X1)T11 + (Y2 − Y1)T12 + (Z2 − Z1)T13)

]
·
[
(X3 −X1)T21 + (Y3 − Y1)T22

+ (Z3 − Z1)T23)
]]

−
[[
(X2 −X1)T21 + (Y2 − Y1)T22 + (Z2 − Z1)T23)

]
·
[
(X3 −X1)T11

+ (Y3 − Y1)T12 + (Z3 − Z1)T13)
]]

(1.11)

As we can see from the development of the equations, the translation parameters were

cut, being able to determine the 3x3 rotation matrix only. Thus, as we have nine values to

find, we need nine equations.

The remaining equations are obtained by adding two more points, for a total of five, to

all the development shown above in order to obtain three perpendicular vectors and nine

equations. With everything prepared, we need to solve the system of non-linear equations,

obtaining the rotation matrix between each LIDAR to the world. Knowing the relationship

of the two LIDAR to the same point in the world, we consequently know the relationship

between the two sensors.

5

	Acknowledgements
	Resumo
	Abstract
	List of Acronyms
	List of Figures
	List of Tables
	1 Introduction
	2 Background and State of the Art
	2.1 Registration
	2.1.1 What is Registration?
	2.1.2 Camera Calibration
	2.1.3 Multi-sensor registration

	2.2 Mapping
	2.2.1 What is Mapping?
	2.2.2 Classical Methods and Solutions for Mapping

	2.3 Software and Harware
	2.3.1 ROS: Robot Operating System
	2.3.2 Ranger

	3 Proposed Approaches for Registration and Calibration
	3.1 LIDAR-Camera Calibration and Registration
	3.1.1 LIDAR-RGB-D Registration
	3.1.2 LIDAR-RGB Registration
	3.1.3 LIDAR and Camera Data Merging

	4 Experimental Validation
	4.1 Experimental Setup
	4.2 Experimental Scenarios
	4.3 The RTAB-MAP 3D Mapping Approach
	4.4 Results and Discussion

	5 Conclusion
	5.1 Future Work

	6 Bibliography
	A 3D LIDAR-LIDAR Calibration

