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Abstract

Type 2 Diabetes Mellitus (T2DM) is an epidemic metabolic disease that promotes multiple

vascular complications and potentially alters human neurophysiology, with growing evidence of

an association with the increased risk for brain function loss, long-term cognitive impairment

and dementia. Pathophysiological vascular changes can influence the blood flow regulation in

cerebral microvasculature, possibly impairing the neurovascular coupling. As non-invasively

studied with functional magnetic resonance imaging, decreases in the Blood Oxygenation Level-

Dependent (BOLD) signal may reflect low neuronal activity or inefficient neurovascular coupling,

thus underlying brain function impairments might be undistinguishable. Therefore, it becomes

crucial to understand the neurobiological correlates of early brain dysfunction in this pathology.

In this project, it was questioned whether the Hemodynamic Response Function (HRF)

would be compromised in individuals with T2DM, whether it would depend on the brain region

or would instead represent a general cortical phenomenon and/or whether it would rely on the

displayed type of stimulus by measuring the BOLD response to performance-matched visual

motion stimuli. Anatomical and functional magnetic resonance data from 141 subjects (64

patients with T2DM and 77 healthy controls) in response to the aforementioned psychophysical

stimulation task, which was separately implemented in two classes of paradigms - block and

event-related paradigms, were processed. The analysis of the processed data concerning the

block stimulation task allowed to localize activated brain regions, in which, by a deconvolution,

we extracted the HRF during the event-related stimulation task. Ultimately, the differences

between the HRFs of the two populations were assessed.

Overall, and as expected, diabetic participants revealed significantly different HRFs. No-

tably, this outcome extended to all brain regions, regardless of the type of stimulus, suggesting

that this is a general phenomenon. Diabetic participants displayed HRFs with higher variability,

more sluggish, and with lower peak amplitude. The HRFs in these participants also included

an initial dip, which was larger than the controls’, and when it was witnessed, a less prominent,

but a later and longer undershoot. Most HRF parameters were significantly different between

the two populations, with diabetic participants presenting a higher dispersion and variability.

Furthermore, they also displayed a higher peak latency and lower relative slope to peak, area

under the curve, positive curve section area, and negative curve section area.

In short, the results unveiled an impaired HRF in the early stages of T2DM, which may be

due to a neurovascular uncoupling without neurosensory deficits, as demonstrated by preserved
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Abstract

perceptual thresholds. Therefore, the HRF is proven to be a relevant tool in functional studies

about the mentioned pathology, and it should be considered as a biomarker in the development

and testing of therapeutic strategies in patients with T2DM. However, further research regarding

neurovascular coupling and its mechanisms is required to better understand and potentially halt

the deterioration of the brain function in T2DM.

Keywords: BOLD signal, Brain Imaging, Cerebral Hemodynamics, Hemodynamic Re-

sponse Function, Magnetic Ressonance Imaging, Neurovascular Coupling, Type 2 Diabetes Mel-

litus
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Resumo

A Diabetes Mellitus Tipo 2 (T2DM) é uma doença metabólica de caráter epidémico que

promove várias complicações vasculares e potencialmente altera a neurofisiologia humana, tendo

evidências crescentes de uma associação com o risco acrescido de desenvolvimento de perda

de função cerebral, danos cognitivos a longo prazo e demência. Alterações vasculares patofi-

siológicas podem influenciar a regulação do fluxo sangúıneo na microvasculatura cerebral, pos-

sivelmente danificando o acoplamento neurovascular. Como estudado de forma não invasiva

pela imagem por ressonância magnética funcional, decréscimos do sinal Dependente do Nı́vel de

Oxigenação Sangúınea (BOLD) podem refletir baixa atividade neuronal ou acoplamento neu-

rovascular pouco eficiente, pelo que as deficiências subjacentes da função cerebral podem ser

indistingúıveis. Deste modo, torna-se fulcral a compreensão das correlações neurobiológicas da

disfunção cerebral precoce nesta patologia.

Neste projeto questionou-se se a Função de Resposta Hemodinâmica (HRF) estaria com-

prometida em indiv́ıduos com T2DM, se dependeria da região cerebral ou se representaria um

fenómeno cortical geral e/ou se seria influenciada pelo tipo de est́ımulo exibido ao medir a re-

sposta BOLD a est́ımulos performance-matched de movimento visual. Foram processados os

dados anatómicos e funcionais de ressonância magnética pertencentes a 141 sujeitos (64 par-

ticipantes com T2DM e 77 controlos saudáveis), relativos à tarefa de estimulação psicof́ısica

anteriormente mencionada, que foi implementada distintamente em duas classes de paradigmas

- paradigmas de blocos e event-related. A análise dos dados processados referentes à tarefa de

estimulação de blocos permitiu localizar as regiões do cérebro por esta ativadas, nas quais, por

meio de uma desconvolução, se extraiu a HRF durante a tarefa de estimulação de eventos. Por

fim, foram avaliadas as diferenças entre as HRFs das duas populações.

De forma geral, e como esperado, os participantes diabéticos apresentavam HRFs significa-

tivamente diferentes. Notavelmente, este resultado estendeu-se a todas as regiões do cérebro,

independentemente do tipo de est́ımulo, sugerindo tratar-se de um fenómeno geral. Os partici-

pantes diabéticos exibiam HRFs com maior variabilidade, mais lentas e com menor amplitude de

pico. As HRFs destes participantes também inclúıam um initial dip, maior que o dos controlos,

e, quando observado, um undershoot menos evidente, porém mais tardio e longo. A maioria dos

parâmetros da HRF era significativamente diferente entre as duas populações, sendo a dispersão

e a variabilidade maiores nos participantes diabéticos. Para além disso, também evidenciavam

uma maior latência de pico e menores declive relativo até ao pico, área abaixo da curva, área da
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Resumo

secção positiva da curva e área da secção negativa da curva.

Em suma, os resultados revelaram uma HRF comprometida nos estádios iniciais da T2DM,

que se poderá dever a um desacoplamento neurovascular sem défices neurossensoriais, como

demonstrado pelos limiares percetuais preservados. Deste modo, a HRF mostra ser uma ferra-

menta importante em estudos funcionais sobre a patologia mencionada, e deve ser considerada

como um biomarcador no desenvolvimento e teste de estratégias de terapêutica nestes pacientes.

No entanto, deve ser feita mais investigação relativamente ao acoplamento neurovascular e aos

seus mecanismos para melhor entender e potencialmente prevenir a deterioração da função cere-

bral na T2DM.

Keywords: Sinal BOLD, Imagiologia Cerebral, Hemodinâmica Cerebral, Função de Re-

sposta Hemodinâmica, Imagem por Ressonância Magnética, Acoplamento Neurovascular, Dia-

betes Mellitus Tipo 2
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1

Introduction

Type 2 Diabetes Mellitus (T2DM) is a multifactorial metabolic disorder and it has become

an increasingly serious health problem, being the sixth leading cause of disability in 2015 [1, 2].

T2DM is the world’s most common type of diabetes, representing about 90% of all Diabetes

Mellitus cases [3]. This disease currently affects 422 million people worldwide and is tightly

correlated with 1.6 million deaths per year [4]. Furthermore, an estimated 193 million people

have undiagnosed diabetes, and an additional 318 million people are at a preclinical state of

impaired glucose regulation, although, through lifestyle adjustments, pharmacotherapy, or both,

the flourishing of T2DM may be reversed or delayed [2].

Both the incidence and prevalence of T2DM have raised drastically and are tied to rising

rates of multiple risk factors such as obesity, sedentary lifestyles, increased energy intake and

reduced energy expenditure, and aging [2, 5]. It is projected an increase to 642 million people

worldwide affected by T2DM by 2040 [2].

In order to mitigate the expected projections for this pathology and to improve the accuracy

of early treatment with the aim of reducing the damage induced to its patients, and thus,

contribute to the decrease of the death rates associated with this disease per year, new diagnostic

and/or prognostic methods for T2DM have been developed and adopted. The vast majority of

them are structural methods. However, there are still several functional methods to be explored.

This thesis aims to validate the feasibility of a medical imaging functional biomarker for T2DM

by enabling the detection of the induced neurovascular damage as well as its location, resorting

to the analysis of processed Functional Magnetic Resonance Imaging (fMRI) data.

1.1 Contextualization

In T2DM, also known as ”non-insulin-dependent diabetes” [6], insulin resistance rises,

that is, the peripheral tissues increasingly fail to recognize insulin [7] - which is produced in

the pancreatic β-cells - as efficiently as they used to. As a result, the secreted insulin is no

longer enough to suppress the increased levels of plasmatic glucose, causing hyperglycemia.

Consequently, at an initial stage, the β-cells increase insulin production in order to balance its

inefficient action, resulting in the onset of hyperinsulinemia [6]. In the short term, this response

manages to work, however, in the long term, it becomes an unsustainable solution, as the β-cells

become overloaded due to excessive insulin production - which is still unable to suppress the
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induced hyperglycemia condition - and its function becomes compromised [6, 5]. Ultimately,

they may collapse and stop producing insulin.

Although its specific driving forces are yet unknown, T2DM has several risk factors [6]

associated with genetics and lifestyle [8], which affect its prevalence and incidence [9]. Some of

them include overweight, high-calorie diet, reduced physical activity, race/ethnicity, perinatal

factors (e.g. nutrition in the womb), family history of diabetes, or other co-morbidities (e.g.

hypertension) [9]. Nevertheless, the mechanisms underlying the individual differences in the

predisposition to T2DM remain unexplained [5].

T2DM produces macro and microvascular disorders [5], which can cause long-term dam-

age, dysfunction, and deterioration in several tissues and organs such as the pancreas, liver,

kidneys, brain, eyes, small intestine, adipose tissue, heart, and blood vessels [2, 7], thus in-

creasing morbidity and mortality [5]. Macrovascular disorders include hypertension, stroke,

and cardiovascular, peripheral arterial, or cerebrovascular disease [6], and can change cerebral

hemodynamics, chronic cerebral ischemia, hypoxia, and energy metabolism [1]. On the other

hand, microvascular disorders comprise retinopathy with prospective vision loss, nephropathy

leading to renal failure, peripheral neuropathy with increased risk of limb ulcers or amputations

[7], endothelial dysfunction, micro-vessel formation, and basement membrane thickening at a

microvascular level [1]. However, these disorders have a tremendously difficult early detection.

So far, there is still no cure for diabetes. However, it can be treated and controlled. In

order to try to delay or prevent the development of diabetes-related health problems [10], insulin

resistance may improve with lifestyle changes (healthy eating and regular exercise) [8], weight

reduction, and/or pharmacological treatment of hyperglycemia, but is seldom restored to normal

[6]. Also, since the autoimmune destruction of β-cells does not happen, at least initially and

often throughout their lifetime, T2DM patients may not need insulin treatment to survive [6].

Due to its association with increased risk for brain function loss, long-term cognitive im-

pairment and dementia [11, 12], in order to develop preventive interventions, it becomes crucial

to understand the neurobiological correlates of early brain dysfunction in T2DM, which can be

studied and evaluated by fMRI [12].

1.2 Objectives

The main goal of this project is to characterize and evaluate the Hemodynamic Response

Function (HRF) in the brain of patients with T2DM, associating the response to neurosensory

stimuli with visual motion perception paradigms, in order to allow its application in the prognosis

and monitoring of neurovascular complications of this pathology.

Through an fMRI data analysis from a sample including healthy controls and patients with

T2DM, the HRF of all participants in the several regions activated by a task performance will be

estimated. Then, in each of these regions, the HRF parameters will be extracted and analyzed

per group (diabetic subjects/controls) and region, to ascertain if significant differences prevail

and in which region they take place, and thus, according to its location, understand what sort
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of physiological changes arise with T2DM and what consequences they can cause.

In order to accomplish this goal, several sub-tasks were established:

1. Data collection: Functional and structural MRI data from control and Type 2 diabetic

subjects were collected at ICNAS regarding the performance of a psychophysical task

according to two paradigm classes: block and event-related paradigms.

2. Data processing: After its collection, the data were preprocessed, underwent structural-

functional co-registration, and were normalized.

3. Obtainment of the regions involved in the task performed by the participants: The func-

tional block paradigm data, after its processing, underwent a standard General Linear

Model (GLM) analysis in order to get a map of the activations/deactivations provided

in response to the task executed in this paradigm (further details about this step will be

given in section 4.3.1.1).

4. HRF estimate for each participant: After the previously mentioned regions were obtained,

the functional event-related processed data underwent a GLM deconvolution analysis (fur-

ther details about this step will be given in section 4.3.1.2).

5. Evaluation of each group’s data: After estimating the HRF for each participant, the

average HRF and its parameters (peak amplitude, peak latency, relative slope to peak,

area under the curve, positive section curve area, and negative section curve area) were

determined in each region and group of participants, using MATLAB. Then, these were

compared to correlate the obtained values with its underlying physiology, and consequently,

to infer conclusions about its meaning.

1.3 Document Structure

This document is organized as it follows:

• Chapter 2 - Background Knowledge: The fundamental principles to understand this work

are explained;

• Chapter 3 - State of Art: The literature review regarding the currently used paradigms in

the fMRI, and the role of the HRF as a functional imaging biomarker, including in T2DM

is pointed out;

• Chapter 4 - Material and Methods: The experimental procedure of the task and the

methods applied in this work in order to achieve its intended purpose are described;

• Chapter 5 - Results: The achieved results in this work are presented and described;

• Chapter 6 - Discussion: The reasons underlying the obtained results are explained;

• Chapter 7 - Conclusion and Future Work: The conclusions of this work and its future

directions are summarized;

• Appendices: Further results are presented.
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2

Background Knowledge

2.1 Magnetic Resonance Imaging Principles

Magnetic Resonance Imaging (MRI) is a very comprehensive imaging technique with count-

less measurement methods that, by manipulating both static and dynamic magnetic fields and

by using radio frequency pulses, collects and localizes proton signals which derive from their

spin angular momentum and that are found all over the body. The resulting signals are then

converted into digital images, representing the signal from each image voxel [13].

Given this, MRI produces high-contrast and high-resolution images with the aid of the

natural magnetic properties of the body, without employing any kind of ionizing radiation [14,

15, 16]. It is also possible to further improve the Signal-to-Noise Ratio (SNR) and the resolution

by enhancing the magnetic field strength, in order to obtain a clinically and diagnostically useful

image [14, 13]. However, high field strength can cause artifacts, other sorts of technical issues

and also physiological effects such as visual abnormalities [14].

This technique puts to good use the hydrogen protons existing in the human body due to

its properties, since hydrogen is one of the most abundant nuclei in the human body, existing

in organic molecules such as proteins or fatty acids, and in water, which composes about 70%

of the human body [13]. The hydrogen nuclei consist of a single proton that carries a positive

electrical charge and is constantly spinning around its axes. These spinning charged particles,

therefore, produce their own magnetic field, which is called the magnetic moment [17]. Without

any external magnetic field, these magnetic moments become randomly orientated, canceling

each other out. Therefore, the summation of all the magnetic moments, the net magnetization

vector (M), becomes null [18]. Nevertheless, when a strong and constant external magnetic

field (B0) is applied, they align either with (parallel) or against (antiparallel) the external field.

There is no state in between [17]. What sets the alignment orientation is the amount of energy

associated with each proton, as a consequence of the strength of B0 as well as the temperature

of the sample. Protons with a little extra energy, possibly from some local increased heat, will

line up against the main magnetic field, and therefore, are in the high-energy state. That being

said, protons lining up with the main magnetic field, require less energy and are in the low-

energy state. Bearing this in mind, since less energy is required, most protons tend to align with

B0 than against it [17].
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Furthermore, when protons are exposed to an external static magnetic field, they also move

around the long axis of B0. This motion is named precession and it is similar to movement of a

spinning top. When spun, the top wobbles but does not fall over and the handle of the spinning

top follows a circular path [17].

The precession rate, known as the Larmor frequency, is the number of times the protons

precess per second, setting the value of a short burst of electromagnetic energy - known as the

radio frequency (RF) pulse - transmitted to induce proton resonance or excitation [19, 17]. It is

proportional to the intensity of B0, as shown by the following expression, the Larmor equation:

[19]

ω = γB (2.1)

in which ω is the Larmor frequency (MHz), γ is the gyromagnetic ratio (MHz/T) and B is

the intensity of B0 (T) [19].

This precession movement produces both longitudinal and transverse components in the

magnetic moments of the protons, resulting in a not null net magnetization vector. Since most

protons align parallel with the z component of B0 and they are not spinning in phase with each

other, canceling each other out, the magnetization vector is mainly in the longitudinal direction

(Mz), and consequently, the transverse component (Mxy) does not contribute considerably to

M. Notwithstanding, it is worth noticing that even though the main net magnetization in the

z-direction is precessing, the MRI receiver coil, which detects signals, perceives it as a stationary

vector. Hence, only by performing a resonance phenomenon, in which an RF pulse is applied in

the vicinity of the protons with the same frequency value as the precessional frequency of the

protons, the Larmor frequency, the receiver coil can detect signals from the protons [19].

Therefore, when the RF pulses set at the Larmor frequency are applied, protons absorb

energy and fall out of alignment with B0, that is, they flip into the high energy state, aligning

antiparallel to B0 [17]. Thus, this state’s spin population increases and protons move in phase

with each other, that is, synchronized in the same direction and at the same rate, rather than

moving randomly, a phenomenon known as phase coherence [19, 17]. Consequently, the net

magnetization vector tips from its longitudinal axis into its transverse plane while still rotating

about the z-axis at the Larmor frequency [19]. As a result, protons once again cancel each

other out, which leads to a decrease in longitudinal magnetization and an increase in the net

magnetization vector component that is perpendicular to the main magnetic field B0 located in

the x-y or transverse plane, known as the transverse magnetization vector, which moves in line

with the precessing protons at the Larmor frequency [17].

However, the existing number of spins and the RF pulse amplitude and time length influence

this process [19]. For instance, if the absorbed energy is high enough to push about 50% of the

proton population into the high energy state, longitudinal magnetization becomes null as the

opposing magnetic forces counterweight each other out [17].
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Subsequently, if a conductive receiver coil is placed in the surroundings, the rotation of the

transverse magnetization at the resonant frequency of the local protons will induce an alternating

voltage across the coil, which in turn generates an electrical current. The latter can be collected

with a coil or an antenna, producing a radio signal with the same frequency. Once the RF pulse

is removed, the protons dephase, that is, they phase out with each other and precess separately,

thus returning to their equilibrium state. Consequently, the relaxation processes - longitudinal

and transverse relaxation - begin [17].

2.1.1 Relaxation processes

Longitudinal relaxation is a process in which the resonating protons return to their equi-

librium energy state, dissipating its previously absorbed energy with their surroundings, the

lattice, as heat. During this process, as molecules tumble, a fluctuating magnetic field is pro-

duced, to which protons in nearby molecules are exposed to. When this fluctuating magnetic

field is closer to the Larmor frequency, the energy transfer, and thus, the longitudinal relaxation,

becomes more favorable [17]. As a result, protons realign parallel to the external magnetic field,

resetting the energetic spin populations to their initial state and causing a net increase in the

longitudinal magnetization [19, 17, 14].

Since not all protons return to their original energy state at the same time, longitudinal

relaxation is a continuous process, thus it is difficult to determine when it ends. Therefore, T1

is a relaxation constant which describes the longitudinal relaxation rate, in particular, the time

needed for the longitudinal magnetization to recover from 0 to (1 - e -1), or to approximately

63% of its final value. This value depends on the molecular motion frequency - the tumbling

rate - of the molecule in which the proton resides, and is affected by tissue composition and

structure [17].

However, different molecules have different tumbling rates, and thus, longitudinal relaxation

can own different efficiencies. For instance, free water has a small molecular size and tumbles

very rapidly, and hydrogen protons bound to large macromolecules which tumble very slowly.

Hence, both have ineffective longitudinal relaxation, and subsequently, approximately long T1.

Therefore, when water is partially bound, its tumbling rate can be slowed down to a rate closer

to the Larmor frequency, resulting in a T1 value smaller than that in free water. On the other

hand, fat has a short T1 value due to similarities between the frequencies of the carbon bonds

located at the fatty acid endings and the Larmor frequency, which allow an efficient energy

exchange [17].

Transverse relaxation is a process in which the magnetic spin of protons is affected by

internal magnetic field inhomogeneities, that is, small magnetic field variations within the local

tissue, from neighboring proton spins, which have a higher impact than the external magnetic

field applied. Protons thus repel each other and move apart, phasing out progressively in the x-y

plane, due to microscopic interactions between nearby protons, which cause random variations

of the Larmor frequency of individual protons and, subsequently, an energy transfer between

proton spins [19, 17]. As a result, transverse magnetization decreases and disappears [17].
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T2 is the relaxation constant that describes the transverse relaxation rate, in particular, the

time needed for the transverse magnetization to decay to e -1, or approximately 37% of its initial

value. Nevertheless, different molecules in different tissues have different spin-spin interactions,

thus different transverse relaxation speeds. For instance, free water, which contains rapidly

moving small molecules that are relatively far apart, has less spin-spin interactions and thus

fewer field inhomogeneities, resulting in longer T2 values than in water-based tissues with large

macromolecular content, since they interact more with each other [17].

As longitudinal relaxation requires mandatory energy exchange from the spin system, trans-

verse relaxation may occur with or without overall energy loss. Therefore, transverse relaxation

is usually much faster than longitudinal relaxation, resulting in T2 values always less or equal

than T1 [17].

However, in fact, inhomogeneities in B0 are also possible, resulting in a phase coherence

loss process which produces slightly different Larmor frequencies in protons at different locations

within the field. This dephasing has not a random disposition since it is caused by a constant,

thus it can be potentially reversible.

Consequently, considering the effects caused by transverse relaxation and by B0 inhomo-

geneities, protons dephase at a different rate, T2* [19]. This rate is shorter than T2 because

spins dephase much quicker due to B0 inhomogeneities rather than transverse relaxation. Its

length depends on the number of inhomogeneities existing in the magnetic field, that is, the

shorter T2* is, more inhomogeneities exist in the magnetic field. Using T2* relaxation, it is

possible to determine the actual rate of decay observed when a Free Induction Decay (FID)

signal is measured [17].

2.2 Functional Magnetic Resonance Imaging

fMRI is a non-invasive technique based on MRI, with excellent temporal and good spatial

resolution, which allows to study brain function, linking neuronal activity and hemodynamics

[20, 21] by mapping the patterns of brain activation and connectivity. The most widely used

method is based on the Blood Oxygenation Level-Dependent (BOLD) signal change, which is

due to small changes in blood flow and oxygen metabolism associated with neuronal activity,

either in response to a specific task or when at rest [22, 23].

2.2.1 The Blood Oxygenation Level-Dependent signal

The BOLD signal takes advantage of the hemoglobin oxygenation state differences caused

by neural metabolism, that result in magnetic field changes surrounding the red blood cells

[24, 25], and therefore affect the magnetic resonance (MR) signal intensity. This intrinsic contrast

mechanism based on the oxygenated/deoxygenated hemoglobin ratio in the blood does not

directly measure neuronal activity itself and its underlying physiology, but instead measures

the neuronal metabolic demands. BOLD contrast allows to indirectly study the hemodynamic

responses to neural firing [26], by reflecting the dynamic interaction between neural activity,
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the Cerebral Metabolic Rate of Oxygen (CMRO2), the Cerebral Blood Flow (CBF), and the

Cerebral Blood Volume (CBV) [27]. Besides, it also eases the recognition of brain areas or

networks where neuronal activity is modulated during a certain task or function since it is

co-localized with the neuronal activation site [28].

BOLD contrast uses several T2*-weighted MRI sequences, in which each voxel represents a

certain spatial location with an associated specific intensity depending on the T2* signal differ-

ences, since this signal’s sensitivity to local magnetic inhomogeneities is caused by neurovascular

changes that accompany psychological and behavioral functions [27, 29]. Hence, by cracking the

voxel value in each of the subsequent images, a time series of intensity values in that spatial

location across time can be obtained. Therefore, the BOLD signal is used as a biomarker for

neural activity [29], highlighting magnetic uniformity effects to create high contrast images [24].

Besides its relatively high sensitivity and simplicity of measurement, due to the Gradient

Echo (GE) acquirement, BOLD contrast adds a further feature to MRI, by providing a dynamic

time window of the hemodynamic response, due to the fMRI’s high temporal resolution [26, 30].

However, BOLD contrast has its disadvantages. First, its spatial resolution may be good but it is

limited, since the BOLD signal includes contributions from veins that irrigate nearby activated

regions, especially in large surface vessels, when they receive more oxygenated venous blood

from the aforementioned areas [23]. As a result, signaling alterations between the brain and the

vasculature might seriously confound BOLD interpretation [28]. Given that, this contrast only

recognizes a certain share of neural activity changes caused by a specific task or physiological

state. Therefore, if the net metabolic demand of some regions is not modified, changes in neural

activity may be displayed, even when the latter is missed [31]. Secondly, the BOLD signal has

a complex interpretation [26, 30] and cannot provide information on blood flow changes before

applying any stimulus [24]. And lastly, it has a slow response time, which, on one hand, easily

allows to measure and to track slow neural events, but, on the other hand, can induce an overlap

of fMRI signals in neural events shorter than the fMRI response time, making it harder to resolve

individual events [23].

2.2.1.1 The physiological basis of the BOLD signal

When a brain region becomes more active, neural firing and other signaling processes - such

as the production and propagation of action potentials, the release of neurotransmitters across

the synaptic gap or their reception and regeneration of action potentials in the postsynaptic

structures - increase. As a result, energy requirement locally increases, which, in turn, raises

CMRO2 in the affected brain region. While the oxygen consumption caused by glycolysis in tis-

sues surrounding the capillaries rises, accumulating its corresponding metabolites, a few seconds

later, several chemical signals (e.g. carbon dioxide (CO2), nitric oxide (NO), protons (H+))

induce the vasodilation of the capillary bed, which overcompensates the blood flow [31, 25],

increasing both CBV and CBF. The net effect will depend on the interaction between CMRO2,

CBV, and CBF. However, CBF prevails upon CBV [27], and therefore, local oxygen (O2) levels

increase in order to overcome the transient deficit caused by the CMRO2 raise [31, 25]. Nev-
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ertheless, the CBF increase is disproportional to the CMRO2 raise, meaning that the oxygen

supply is greater that the required to balance its consumption - which is known as the CBF and

CMRO2 uncoupling [27, 25].

Consequently, the hemodynamic response takes place. The local O2 concentration raise

increases the oxygen extraction from oxygenated hemoglobin in the blood, known as oxyhe-

moglobin (HbO2), thus becoming deoxygenated and increasing its concentration [28]. This

hemoglobin variety, known as deoxyhemoglobin (dHb), which is paramagnetic and owns a strong

magnetic moment, increases both in intravascular and extravascular spaces [25]. As the param-

agnetic state further exposes iron atoms to the surrounding water [32, 27], tissue oxygenation

decreases and the local magnetic susceptibility changes in the red blood cells, inducing magnetic

susceptibility differences between the blood and the surrounding tissue [23]. Subsequently, these

differences create an interaction between the bulk magnetization of the deoxygenated blood and

the external magnetic field, producing small and local magnetic field gradients within and around

the blood vessels [32]. The strength of these induced gradients relies on the magnetic suscep-

tibility differences caused by hemoglobin oxygenated state changes and the external magnetic

field strength [27], which in turn depend on hemoglobin concentration [25] since higher deoxyhe-

moglobin levels prompt stronger magnetic susceptibility differences [27]. Then, these gradients

are detected by water protons, altering the signal decay, which is described by T2* time constant

[23]. Therefore, T2* decreases, causing a faster signal decay and a local depletion in the BOLD

signal regarding the surrounding tissues, thus producing a darker image of the veins [28, 26].

But, shortly after, the vasodilatory response reverts the aforementioned state, increasing the

levels of oxyhemoglobin - which is diamagnetic, so it does not disturb the surrounding field and

it is magnetically indistinguishable from brain tissue - and decreasing deoxyhemoglobin concen-

tration, both in intravascular and extravascular spaces [25]. As a result, a more homogeneous

magnetic field is produced, in which the T2* time constant is higher [28, 26], implying a reduced

signal loss and an increased BOLD signal in the activated region [28], thus generating a lighter

image of the veins [26]. Therefore, when the deoxyhemoglobin level varies, the relaxation of the

water protons changes, and those variations become noticeable in fMRI [23]. As a conclusion,

the BOLD signal stems from venous and capillary blood instead of arterial blood [31], and its

variation depends on the balance between CBF, CMRO2 and CBV changes of blood compart-

ments that contain deoxyhemoglobin and on volume exchange effects which grow with the field

strength [31, 33].

The susceptibility effects caused by deoxyhemoglobin modulate the T2 and T2* relaxation

times of intravascular and extravascular blood signal, thus influencing BOLD signal change

[25]. Although it may be smaller than the extravascular signal, the intravascular signal owns

higher sensitivity to blood oxygenation since it is closer to deoxyhemoglobin. Consequently,

the intravascular contribution likely accounts for half or more of the witnessed BOLD signal

changes [33]. The modulation of the intravascular and extravascular signals is produced by,

correspondingly, diffusion and intravoxel dephasing [25], and it depends on the selected field

strength, pulse sequence, and time to echo [24]. Furthermore, the acquisition becomes more

sensitive to T2* and T2 using a Gradient Refocused Echo (GRE) MRI pulse sequence. Below 3 T,
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T2* contrast becomes predominant and largest in venules, whereas above the designated value,

the diffusion-weighted T2 contrast gains further importance, providing deeper spatial specificity

since signals generated in capillaries and tissue with spin-echo acquisitions are preferred [25].

2.3 The Hemodynamic Response Function

After a brief period of neural activity, the BOLD signal changes over time [34, 30]. This

relationship is described in the HRF - the mathematical transfer function between neural activity

and its corresponding BOLD fMRI signal [35]. The HRF is slow, enduring several seconds even

with a very brief stimulus [34, 30, 36], and it is intrinsically delayed regarding neural activity,

due to an hemodynamic lag induced by the increase in oxygen demands [37]. By convolving

the HRF with a stimulus, it is possible to model the BOLD response and to gain more insights

about it [31], such as to describe the set of local changes linked to neuronal activity that took

place in CBV, CBF, and CMRO2 [38], and to identify active brain regions [31].

The canonical HRF has a consistent shape [39], depicted by a gradual rise at 1 to 2 seconds

after the onset of neural activity [31], peaking approximately 5 to 8 seconds after the neural

activity reached its maximum. Then, a return to the baseline takes place roughly 12 seconds

after the stimulus, and it is followed by a subsequent small post-stimulus undershoot [26] - a

BOLD signal decrease which may persist tens of seconds before the signal returns to the baseline

[40]. Ensuingly, the HRF stabilizes again, between 20 to 30 seconds after the mentioned onset,

depending on the length of the stimulus [26]. On occasions, as illustrated in figure 2.1, it can

be seen a small initial decrease below the baseline at the beginning of the HRF and before its

peak, known as the initial dip [26, 33].

Figure 2.1: Example of an HRF with an initial dip. Adapted from Worsley et al. (2001) [41].
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Given its higher spatial specificity for activations, the initial dip is more localized to neu-

ronal activity areas than the HRF peak [31]. However, it is inconsistent, variable, and more

frequently noticed in higher magnetic fields [42]. Therefore, this HRF segment so far has not

been reliably observed, and thus, its existence remains controversial [31]. Furthermore, its phys-

iological origin remains an open question since two different hypotheses have been presented to

explain it [22, 42, 26, 33]. The first one postulates that, between the neural activity increase

and the oxygenated blood inflow, there is an early increase in oxygen consumption (CMRO2)

[31]. As a consequence, blood oxygenation diminishes, and the deoxyhemoglobin concentration

relatively increases, thus decreasing the BOLD signal [43]. Following this premise, the initial

dip may be better localized to increased metabolism areas than the primary BOLD effect, since

the CBF rise may include a broader area, and it may represent a transient uncoupling of CBF

and oxygen metabolism [26]. The other hypothesis suggests that the initial dip may reflect an

arterial CBV increase caused by volume exchange effects associated with magnetic field strength

changes [42, 33].

In turn, the HRF peak is due to a local CBF rise, in which the oxygen supply increases

disproportionately instead of just reaching a level that meets the area’s metabolic needs [42].

Therefore, the oxygen becomes more supplied than consumed [31], causing an oversupply in

oxygenated blood, and thus, the deoxyhemoglobin concentration decreases [43]. As a result, a

transient increment in the oxyhemoglobin to deoxyhemoglobin ratio emerges, and the MR signal

increases [42].

The post-stimulus undershoot is a variable segment of the HRF, and it is frequently seen

in long-stimulus experiments [42]. However, there is still no consensus on its physiological origin

since several possibilities have been presented to explain it. These include a neural activity

undershoot, with CBF and CMRO2 following along; a slow recovery of CMRO2 after CBF and

CBV returned to the baseline; a slow recovery of venous CBV after CBF and CMRO2 returned to

baseline; or a transient undershoot of CBF after CMRO2 returned to baseline [33]. Therefore, in

brief, there is an unclear connection between these parameters, which increases deoxyhemoglobin

in previously active brain regions [31] as a result of reduced hemoglobin saturation in venous

blood or increased venous/capillary blood volume [33]. Hence, the oxyhemoglobin to deoxyhe-

moglobin ratio decreases, so as the MR signal [42]. As a result, the HRF diminishes below the

baseline level, and it is sustained at the end of the stimulus for approximately 10 seconds [31].

2.3.1 The non-linearity of the Hemodynamic Response Function

The HRF delay depends on the stimuli length. In brief sensory events, the HRF is wider

and delayed for about 2 seconds after neuronal activity. However, in long neural events (events

that last a second or more), the HRF presents a delay which lasts from 10 to 12 seconds after

neuronal activity, causing longer recovery periods for certain and more subtle function segments.

This does not mean that neuronal events must be well separated in time so that they can be

determined [44], but that, overall and at first sight, the HRF summates roughly linearly, over

trials and over time, implying that multiple consecutive HRFs from neural sequential events
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tend to overlap [34, 44, 21]. Therefore, when a long set of repeated stimuli is applied, as long as

the time between multiple stimuli surpasses 4 to 5 seconds, they can be added together almost

linearly [42]. Thus, the individual HRFs produced by each stimulus are convolved with the

stimuli, producing a resulting HRF which portrays the moving average of the individual HRFs.

As a consequence, the HRF shape becomes wider, the peak turns into a sustained plateau,

proportional to the stimuli length, and it returns to baseline only once the latter has ended [39].

Sometimes in these cases, considerable variations as a small initial undershoot, a slow ramp or

an overshoot can be seen [42, 33].

However, when stimulus events are extremely rapid, the HRF has subtle but clear depar-

tures from linearity. This non-linearity is mainly temporal, affecting the HRF amplitude and

response timing (such as latency or response width), and causes an over-prediction of the true

response to extended stimuli by using a shifted and further response to a brief stimulus. This

effect becomes even more pronounced when brief stimuli are shorter than 4 seconds and extended

stimuli longer than 6 seconds. Nonetheless, this temporal non-linearity becomes reduced when

short and long duration stimuli longer than approximately 4 seconds are compared [26].

The reason underlying these departures is yet to be completely understood, since the non-

linearities may reflect an intrinsic non-linear property of the hemodynamic response or of the

summation of the underlying neuronal activity itself [21]. However, a large contribution comes

from converting the CBF response into BOLD signal changes, because when a shorter stimulus

is narrower than the CBF response width, it is introduced a non-linear response [26]. There-

fore, a hypothesis suggests that, although the basic coupling between net neuronal activity and

hemodynamic response is roughly linear, the relationship between neuronal response and stim-

ulus/task parameters is often non-linear. If linearity prevails, separate sensory and higher-level

cognitive events can be rapidly and consecutively generated, and their response separated and

analyzed [44].

2.3.2 Variability sources of the Hemodynamic Response Function

The timing, magnitude and shape of the HRF present noticeable variability [45, 46, 44] in

parameters such as time-to-peak, widths, delays, and/or post-undershoot shapes [36]. This vari-

ability can be structured into three main categories, which cause the most significant variations:

intra-subject, intra-group inter-subject, and inter-group variability. Intra-subject variability re-

gards the HRF differences found across distinct brain regions of interest (ROIs) in the same

individual; on the other hand, intra-group inter-subject variability concerns the HRF differences

found across different individuals from the same group, in a certain brain region; at last, inter-

group variability relates to the HRF differences found between different groups for a given brain

region [35]. However, HRF variabilities across voxels, experimental tasks (either sensory, motor

and/or cognitive), time (hours or days), and/or scans can also be found, even though they cause

smaller differences [45, 46, 36, 30].

The HRF variabilities hinder an accurate quantification of an individual’s BOLD signal

using a canonical HRF [44] since the covariates produced when a standard model is used will
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not be perfectly valid. Hence, a large variation of this error and of its degree between experi-

mental designs can expected, potentially resulting in an inability to fully model experimentally

introduced variance [34]. As a consequence, statistical methods which identify signal change

regions will have to consider the hemodynamic response timing and/or shape variance to be

sensitive to all sorts of signal change [44].

HRF variability depends on several neural and non-neural factors, which will affect the

HRF even with consistent changes in neural activity and possibly lead to misclassifications, for

instance, in brain connectivities [35, 36]. Some of them include diseases, age, blood vessel struc-

ture, hematocrit concentration, vasculature density and diameter within each voxel [36], lipid,

alcohol or caffeine ingestion [35], inhaled CO2 and O2 concentration changes, intravenous saline

administration [36], neural activity timing, and neurovascular coupling differences [45, 46], which

include, for instance, baseline CBF [47]. Other encompass slice timing, global magnetic suscep-

tibilities, venal partial volume imaging [35], thermal noise, breathing and heart rate changes,

hardware instabilities, cognitive state changes, and task approach strategy [36].

2.4 Neurovascular Coupling

Despite being a highly metabolic organ [48], consuming about 20% of the body’s total

energy when at rest [49], the brain has a limited intracellular energy storage capacity [50],

making it harder to obtain when it is needed. Therefore, this organ requires relatively constant

blood flow in order to regulate the numerous local and dynamic supplies and demands imposed

by its activity [51, 52], at rates close to those of the metabolic and neuronal processes [53].

In order for such regulation not to be compromised [50], blood circulation needs to reach the

brain at the exact place in the right timing and amount, because if, for instance, there is an

inadequate flow supply for a given brain region, as a consequence, the carried glucose and oxygen

might not correspond to its energetic demands [52]. As a result, brain changes can appear [54],

which can potentially damage neurons and/or the glia, eventually leading to their death [49]

and, consequently, to brain damage [54].

Therefore, to guarantee that the blood flow ensures the metabolic demands of a specific

brain region [48, 50], thus maintaining cerebral homeostasis [55, 49, 56], not only the brain is

highly vascularized [48], but it also has developed Neurovascular Coupling (NVC) [49]. These

biophysical properties of the neural systems [57] reflect the close temporal and spatial link

between neuronal activity and CBF [50], allowing to change the vascular tone to sophisticatedly

regulate local cerebral perfusion according to the brain activity by diverse cell signaling pathways

[51]. NVC is performed in the cortex and in deep brain structures, regardless of any structural

and functional differences depending on its location [51, 45, 52].

So that the NVC can take place, it is required to have an essential structure, the Neurovas-

cular Unit (NVU) [51], whose concept has been developed in recent years [52]. The NVU, as

depicted in figure 2.2, represents the interface between neuronal, vascular and glial structures

[51], comprising vascular (endothelial cells, smooth muscle cells (SMCs), and pericytes), neuronal
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(neurons, interneurons, pyramidal cells) and glial cells (astrocytes, microglia, oligodendrocytes)

[51, 48, 50]. These components are differently distributed across multiple cerebrovascular net-

work levels [48] and intercommunicate with each other in order to produce a brain function as

efficient as possible [55], highlighting the symbiosis as well as the developmental, structural and

functional interdependence between each one of them, both in health and in disease [52].

Figure 2.2: Representation of the morphological structure of the NVU. Retrieved from
Kowiański et al. (2013) [58].

Although there is some mechanistic knowledge about this process, the current understand-

ing of the NVC in humans is limited and incomplete due to the use of inappropriate and con-

sistent analysis strategies and stimulation paradigms [51].
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2.4.1 Neurovascular Coupling Mechanisms

There is no single mechanism accountable for NVC [59], so, in order to better understand

the overall neural function, pathology-related, or even age-related changes, it becomes crucial to

distinguish the multiple mechanisms underlying this phenomenon. As mentioned, although the

knowledge associated with it still remains limited and incomplete, progress has been made to

better enlighten how each component of the neurovascular unit interacts and intercommunicates

with each other, and what consequences it entails [53]. Next, I will briefly discuss some regulating

mechanisms of the NVC, in the different segments that comprise it.

2.4.1.1 Neuronal cells

Currently, it is considered that metabolism-dependent (feedback) and independent (feed-

forward) blood flow regulation mechanisms can coexist in the neurons [52, 49]. As for the

former, they assume that an increase in tissue metabolic and clearance demands deriving from

neural activity leads to a rise in blood flow distribution [52]. In the latter, which make up the

majority of the existing processes, neurotransmitters are produced, which, directly or indirectly

(for instance, via astrocytes), act on blood vessels, creating the vascular response [52, 49]. The

engagement degree of each of these mechanisms in the mentioned regulation will depend on the

timing, intensity, and duration of the activation, as well as the brain’s regions and state of de-

velopment [52]. Next, the mechanisms which regulate the CBF via CO2, adenosine triphosphate

(ATP) (adenosine), glutamate, and O2 in neurons will be elucidated.

In order to enable CO2 clearance at high intracellular levels, this gas is diffused through the

neuronal membrane, reaching the extracellular space. Consequently, in this milieu, the potential

of hydrogen (pH) increases, causing an efflux of potassium ions (K+) into the extracellular space

by voltage-gated K+ channels. As a result, endothelial cells undergo a hyperpolarization and

relax, subsequently causing vasodilation [60]. On the other hand, increased ATP concentration,

and thus, adenosine levels, promotes its binding to purinergic receptors in SMCs and endothelial

cells, easing vasodilation [53].

As for glutamate, it is released by presynaptic neurons during synapses, activating α-amino-

3-hydroxy-5-methyl-4-isoxazole epropionic acid (AMPA) and N-methyl-D-aspartate (NMDA)

post-synaptic neuronal receptors. Subsequently, the calcium ion (Ca2+) gets into the post-

synaptic neurons, and its intracellular concentration increases. As a result, as illustrated in

figure 2.3, two vasodilators are produced, prostaglandins - arising from araquidonic acid (AA) -

and NO [52].

However, the blood O2 concentration, does not have a linear influence as the above-

mentioned molecules. A O2 concentration decrease causes a Ca2+ release in the astrocytes,

and if the concentration of this cation becomes higher than the existing under physiological

conditions, vasoconstriction happens. Otherwise, vasodilation takes place. This effect is due to

a blood modulation mechanism between O2 and NO [49].
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Figure 2.3: Representation of the glutamate CBF regulation pathways. Retrieved from Attwell
et al. (2010) [49].

2.4.1.2 Glial cells

The role of glial cells in the NVC is way less understood than that performed by the neuronal

and vascular components of the NVU. However, there is increasing evidence that these cells [61],

by conferring the greatest bridge between neurons and blood vessels, own a privileged position

mediating the NVC, representing important intermediate roles in complex processes [53]. Next,

I will explain the glutamate regulation mechanism in astrocytes and the neuron-astrocyte lactate

shuttle.

As in neurons, during neuronal activation, astrocytes also respond to the glutamate release

at synapses, capturing it through metabotropic glutamate receptors (mGluRs), in order to

regulate CBF by directly and indirectly transmitting vasomodulatory signals to the SMCs [50,

49]. However, these are not only vasodilators since there are also vasoconstrictors. With the

astrocytic glutamate uptake, the Ca2+ concentration increases [53, 49], stimulating, in this

cell, the activation of two different pathways, as illustrated in figure 2.3: one based on the

K+ ion and other based on AA metabolites. In the former, the Ca2+ increase triggers the

opening of large-conductance calcium ion (Ca2+)-activated K+ (BK) channels in the astrocytic

terminations, releasing K+ into the SMCs, thus causing vasodilation. In the latter, the Ca2+

increase produces AA. From this molecule, it can be generated one of two vasodilators or a

vasoconstrictor: prostaglandin, epoxyeicosatrienoic acid (EET), or 20-hydroxyeicosatetraenoic
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acid (20-HETE), respectively [49]. The obtained outcome (vasodilation or vasoconstriction) will

vary according to the frequency, kinetics, and spatial propagation of the released vasomodeling

substances, which depend on the total Ca2+ concentration in the processes and somatic body of

the astrocytes [51], and on the interaction with other factors such as O2 concentration [52, 49],

pre-existing vessel tone [52, 49] or other cellular messengers [51, 52].

The astrocyte-neuron lactate shuttle, in turn, is a mechanism originated in astrocytes, in

which the direct metabolic support of neurons is carried out. Glucose in the blood vessels is

absorbed through its astrocytic membrane receptors and is then converted into pyruvate via

glycolysis. As pyruvate is prevented from undergoing oxidative metabolism in astrocytes, it is

converted into lactate, and then transported to neuronal axons. Once it arrives in the axon,

lactate is converted to pyruvate and enters the Krebs cycle, where it is converted to water and

ATP in order to restore the membrane’s resting potential so that the neuron may fire again [53].

2.4.1.3 Vascular cells

At the vascular level, the NVC reflects a coordinated action of several mediators from

different cells [48, 49] that operate at different cerebrovascular network levels by specific mech-

anisms for each segment in order to regulate the CBF [52]. Then, I will explain a retrograde

vasodilation mechanism, which is illustrated in figure 2.4.

Due to synaptic activity, the O2 concentration decreases, and extracellular K+ is released.

In turn, this cation stimulates the potassium inward-rectifier (Kir) channels found in capillary

endothelial cells and pericytes, hyperpolarizing the former. This hyperpolarization propagates

backward in these two types of cells through gap junctions between pericytes and endothelial

cells, and between adjacent endothelial cells, reaching the intraparenchymal arterioles [52, 49].

At the same time, the decrease in O2 concentration increases the deformability of red blood

cells, reducing blood viscosity, which increases capillary flow regardless of its diameter [52].

As the endothelial hyperpolarization from the capillaries reaches the intraparenchymal ar-

terioles, the endothelium of these vessels is put through shear stress. Consequently, endothelial

vasodilating factors are released, and it takes place the retrograde transfer of SMC hyperpolar-

ization by myoendothelial junctions and gap junctions between SMCs and between endothelial

cells. In addition, the vasoactive factors previously released by active neurons and astrocytes

during neuronal activity are also delivered, and due to the decreased intravascular pressure and

increased flow speed caused by downstream vasodilation, the local myogenic response arises. As

a result, the SMCs relax, thus contributing to the preservation of vasodilation and subsequent

retrograde propagation towards the pial arterioles. In the latter, which are remote from the ac-

tivation site, vasodilation can come from two sources: the hyperpolarization from downstream

arterioles and the local myogenic response [52].

The potential that each cerebrovascular segment will physically and pathologically own

in CBF regulation [52] by controlling the capillary diameter via pericytes will depend on the

hemodynamic resistance fraction of the vascular network to which the capillaries contribute [49].

Therefore, inside the brain, pial arterioles are the vessels which regulate the less CBF. In the
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opposite direction, the capillaries, penetrating arterioles, and venules are the ones which control

it the most [52].

Figure 2.4: Representation of an NVC mechanism at the vascular level: retrograde vasodila-
tion. Adapted from Iadecola et al. (2017) [52].

2.4.2 Neurovascular Coupling and the Hemodynamic Response Function

The BOLD response, as well as its properties, reflect the joint action of vasoactive molecules

released by neuronal activity-triggered mechanisms [52, 49], and NVU’s cells (neurons, interneu-

rons, astrocytes, endothelial cells, and pericytes) [52]. This is due to the fact that the interaction

between the two counterparts, known as NVC, allows the vasodilation and the vasoconstriction

of local blood vessels, directly and indirectly modulating CBF, and consequently, blood oxy-

genation, in order to provide the required energy resources that best fit the metabolic demands

of the neurons [53]. The components of the NVC will vary from region to region, and from con-

dition to condition, governing how the coupling takes place [59], and consequently, the temporal

properties of the hemodynamic response which are correlated with each element [51, 52].

Notwithstanding, the physiological mechanisms underlying this coupling, which is related to

CBF and CBV variations, remain to be fully understood [62], complicating the comprehension of

the relationship between the BOLD signal, CBF and CMRO2, as well as the interpretation of the

HRF [63]. Consequently, the HRF’s own modulation has been hampered [63] since the multiple

models developed, which attempt to elucidate it, have so far been only partially successful,
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as they have failed to explain the whole mechanism underlying the BOLD response. Thus, it

becomes difficult to determine which is the best dynamic model that captures a specific NVC

mechanism, with the choice depending on the implemented experimental paradigm, the nature

and resolution of measured data, and/or the context and goal of the study [64].
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State of Art

3.1 Functional Magnetic Resonance Imaging Paradigms

fMRI allows to observe the modulation of the BOLD effect in the brain based on neuronal

activation. In order to induce it, it becomes crucial to develop paradigms - temporal orga-

nization structures of fMRI data acquisition, during which an individual performs (or not) a

series of cognitive tasks at certain timepoints of interest [65]. Cognitive tasks can be explicit

or implicit, corresponding to task-based or resting-state paradigms, respectively [22]. Most

approaches employ the resting-state paradigm due to its straightforward implementation. How-

ever, in this project, task paradigms were used, so, next, I will address the three types of

task-based paradigms currently most used: block, event-related, and mixed paradigms [42], and

its characteristics.

3.1.1 Block Paradigms

The first dynamic fMRI experiments implemented pioneering functional imaging methods

that were based on hemodynamics, which enabled to map brain activity patterns based on brain

hemodynamic changes. However, the experimental paradigms initially employed were task-based

paradigms derived from designs related to the aforementioned techniques [21] - block paradigms

- in which only prolonged-state brain activity volumes were obtained [66].

Block designs have their greatest use in trial averaging, in order to achieve considerable SNR

ratios while producing functional activation volumes [67]. Therefore, block designs are suitable

in locating functional areas and studying steady-state processes, such as attention [68]. In these

designs, different condition periods alternate with each other [42], that is, consecutive stimuli

associated with a given condition are presented during an extended period (block) to maintain

cognitive engagement, followed by blocks concerning other condition or the rest/baseline [22, 69]

- as exemplified in figure 3.1. The most frequently used block paradigm encompasses a period

during which a task is performed, followed by a rest period of the same length [42].
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Figure 3.1: Example of a block fMRI paradigm.

This design has a simpler implementation [42], not demanding to randomize and space

various sorts of stimuli [70], and a more direct analysis, not depending on an accurate HRF

model [71]. As this paradigm presents trials in sequential blocks, data acquisition periods usually

are extended, and thus, several images can be acquired during the block [72]. As a result,

time efficiency becomes maximum and the design more robust concerning time uncertainty

[69]. Besides, the statistical power, as well as the SNR, become higher [42], given that the

statistical quality of individual images is relatively poor regarding changes in the signal of

interest [72]. However, the order and length of the conditions can be anticipated [71], which

introduces confounding variables. Furthermore, as blocks are relatively long (between 10 to 20

seconds) [42], not only the estimation power is weak [68], that is, it is difficult to accurately

define the time-courses of the response to individual trials [22, 73], and consequently, distinguish

their separation within the blocks [71], but also the participant can quickly get acquainted with

the task [22], making it difficult to obtain information regarding the HRF and the timing of the

fMRI signal [42].

The block design can be alternating or controlled. In the first case, different conditions

are interchanged in different blocks, to determine which voxels display differential activity as a

function of the variables. In the latter, different conditions are separated by null blocks, that

is, by a control condition, allowing each block to identify which voxels were activated by each

condition, separately and in both conditions [68].

3.1.2 Event-related Paradigms

When experiments which aimed to explore the signal responses to very short stimuli were

carried out, it was found that within seconds after their onset, robust hemodynamic changes

could be detected [37]. Consequently, the block design, although useful to investigate blood flow

fluctuations that require a physiological quasi-equilibrium state during periods longer than 1

minute, it became unsuitable for the previously mentioned experimental protocols. As a result,

the scientific community gradually began to drift from block designs [21], and it has developed

a new class of experimental paradigms in order to detect and characterize the transient and

regional alterations of the HRF [66] in response to brief stimuli or tasks [71], as well as to

measure and to monitor its temporal evolution [37] - the event-related/trial-based paradigm.

One topic that often applies this paradigm in its experimental procedure is decision making
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studies, in which two options are presented in each event, and the participant has to choose one

of them by pressing a button [74].

In this design, stimuli are presented for short periods, termed events, whose duration

randomly varies between 0.5 to 8 seconds [22], at discrete time points [74] (see figure 3.2). The

events are temporally separated by inter-stimulus intervals (ISIs), whose temporal range scopes

between 0.5 to 20 seconds [22]. Moreover, the events can be randomly ordered, that is, the

response to an event may not be mistaken by a subject’s cognitive set nor consistently affected

by previous events [66].

Figure 3.2: Example of a event-related fMRI paradigm.

This paradigm can be distinguished in slow or fast event-related designs, according to

the ranges of the ISIs [22]. Slow event-related designs own ISIs slightly longer than the HRF,

producing well-spaced events, and, consequently, preventing the overlapping of successive HRF

stimuli. In fast event-related designs, the ISIs are shorter than the HRF, so the time spacing

between events is shorter, potentially overlapping the HRF [22]. Additionally, event-related

paradigms can also be classified into periodic or jittered, according to the type of ISIs they own:

constant or random, correspondingly [69].

The event-related design contains high temporal resolution, and the random order of events

is unpredictable [42], reducing the participant’s boredom, anticipation, and habituation to the

task, which in turn increases its flexibility in experiments [68]. Considering these advantages,

the estimation power of the HRF’s time course increases [75], allowing an independent analysis

of cognitive processes, and consequently, its associated brain responses, linked to each event [74].

In contrast, as in this paradigm imaging times are shorter and there are few events per subject

[22], data analysis becomes more complex and dependent on a more accurate HRF model [73]

and SNR decreases, which consequently decreases both statistical power and efficiency [22]. This

situation tries to be offset by extending the experiment time [71].

There are several approaches to optimize event-related designs in order to maximize its

power to detect and estimate changes in the BOLD signal [74]. One way to overcome some of the

aforementioned weaknesses is to use rapid event-related designs. They enable higher frequency

stimulation, resulting in an increased statistical power [65]. However, random ISIs (stochastic

design) - which minimize the habituation and expectation effects - must be implemented in order

to produce a differential overlap of the HRF, reducing multicollinearity problems and better
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characterizing each response condition [22, 75]. There are also alternative methods compatible

with this type of paradigms, such as m-sequences and genetic algorithms, which allow flexible

compromises between estimation efficiency and detection power to be reached [22].

3.1.3 Mixed Paradigms

The neuroimaging field has been in constant development [76]. Even though the advent of

event-related designs did not solve problems regarding the block designs itself [74], it enabled

event-based experiments [66], which allowed to increase the complexity of experiments and

experimental paradigms, as well as to model more dynamic analysis methods. As a result, the

research’s scope has been extended, allowing to explore several topics that have never been

considered before, such as brain connectivity or causality [74]. One of these directions included

the investigation of interactions between existing processes at different time scales [68], seeking,

in particular, the differences between distinct classes of cognitive functions [76], which had

lead to a new variety of task paradigms, the mixed design. In this paradigm, block tasks

take place simultaneously with semi-random events, with the latter possessing resting periods

between them [42], resulting in a combination of the measurement of repetitive sets of stimuli

regarding the block design with the transient responses detected by event-related designs [65]

(see figure 3.3). The mentioned paradigm assumes that the activity concerning the block tasks

must remain constant during them, even during intervals between events. On the other hand,

the activity regarding the events must decrease during those same intervals. Therefore, this

paradigm enables to separate both transient and continuous HRF segments, and consequently,

to acquire information related to each one of them as the task is performed [65].

Figure 3.3: Example of a mixed fMRI paradigm.

This paradigm’s features allowed to test a greater variety of psychological theories, and

a more flexible interpretation of the functional behavior of the brain areas activated during a

cognitive task, discerning them according to the functional role that each one owns, by separating

them based on the time-courses of their activity, and not just by identifying which area is

activated [76]. On the other hand, this paradigm presumes more assumptions than others and

contains problems related to poor HRF estimates, since non-hemodynamic responses may be

interpreted as transient neuronal responses and it is impossible to model the latter on GLM

with presumed HRF shapes [65, 77, 78]. Furthermore, the ability to extract continuous activity

relies on the consistent induction of the psychological state. Therefore, if the experimental
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design fails to induce a consistent cognitive state, the neuronal correlations of that state cannot

be extracted or interpreted [77]. Finally, since the statistical power of the continuous signal is

weaker, this paradigm requires more subjects in order to measure continuous and statistically

significant effects [78].

3.1.4 Future Directions

In the near future, as event-related designs have become strongly intertwined with fMRI,

it is clear that this concept itself will represent a standard. That is, since it is so significant

for the fMRI, instead of being a paradigm class itself, it will become the base paradigm used in

fMRI studies, from which all the remaining, both the existing and the forthcoming ones, will be

derived. In contrast, it may not happen the same with the block design, a special experimental

paradigm that will remain relevant in experiments where maximum detection power is required

[74].

It should also be noted that some technical developments in neuroimaging did not inevitably

benefit the current design of the experiments [79]. For instance, with the increasing complexity

of experimental designs, fMRI analyzes have become increasingly distant from the original data,

which, on the one hand, allows a greater use of model-based fMRI, but, on the other hand, less

often articles plot the activation time [74]. Thus, interest in more sophisticated analysis - such

as Multi-Voxel Pattern Analysis (MVPA) or Dynamic Causal Modelling (DCM) - and search

methods - such as the genetic algorithm - has increased. However, so that these approaches

can be more widely used, it is required not only to have a robust and easy-to-use software

implementation, but also to create designs that optimize the estimates obtained with these

methods. It is thought that this will be the course to follow in order to develop a new class of

optimal fMRI designs [79].

3.2 The HRF and its use as biomarker

The HRF has a complex interpretation as it reflects a fine-tuned interaction between the

cellular structures that comprise the NVC. That is, any functional alterations may come from

changes in vascular, neuronal, and/or glial components [55, 80], and not just from direct changes

in neuronal activity and tasks [81]. For instance, consistent neuronal activity-independent age-

related changes in vascular reactivity, blood flow, and tortuosity can generate age-related dif-

ferences in the HRF [55, 82, 29]. Moreover, Turner et al. (2019) found that changes in glial

cell intermediates were associated with NVC deficits and, consequently, decreases in neuronal

processing function and speed [80]. In addition, several studies have shown that the NVC is

affected by several pathologies, thus altering the HRF. For example, Roc et al. (2006) noticed

in anterior circulation high-grade stenosis patients that, although the CBF value remained at

the baseline, the blood flow responses which counterbalanced the metabolic demands were com-

promised. Thus, a more prolonged hemodynamic response was perceived, in which there was

a larger response or an anticipated BOLD dip, followed by a delayed hyperemic response [83].

Since alterations in the HRF may reflect changes in the NVC and, consequently, pathophysiolog-
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ical brain changes even at early stages, in specific brain regions, in order to assess neurovascular

function in certain diseases, the use of the HRF as a imaging functional biomarker has been

widely investigated [45], by comparing conditions, studies and populations of patients through

the analysis of the relative changes of the HRF [84], enabling to monitor the recovery of indi-

viduals, either naturally or by medical intervention [45].

3.2.1 Hemodynamic Response Function Parameters: A Biomarker?

One way to use the HRF to collect information regarding neuronal or vascular pathologies

[45] arising from alterations in the NVC - consequently causing changes at the metabolic level and

in physiological parameters (such as synaptic activity and/or blood flow) [81] - is to distinguish

the differences between HRF parameters such as peak amplitude or peak latency in different

subjects and/or regions [45, 81]. To estimate and characterize these parameters, it becomes

necessary to extract the shape of the HRF in different types of cognitive events [85]. Nevertheless,

the interpretation of the parameters becomes complex. Firstly, they do not always maintain an

unequivocal relationship with the underlying neuronal/glial activity changes [81], since they

may highly correlate with extracellular postsynaptic activity measures [86], as well as with glial

components. Secondly, spatial bias befalls, that is, the different brain regions exhibit biologically

derived differences which do not relate to the overlying neuronal function. Finally, biophysical

factors such as alterations in the NVC per brain regions can produce different changes in multiple

features of the HRF parameters [85]. In other words, there is a cross-talk potential between the

estimated parameters, in which one owns a biased value due to unrelated changes in another

parameter [85].

Of the multiple studies carried out to date, in which the HRF has been used as a biomarker

for certain pathologies by analyzing its parameters [87], most have focused on the assessment

of the HRF magnitude, which is given by its peak. However, an interest in the evaluation of

other parameters - such as the activation duration, and the time lag to the maximum activation

amplitude, given respectively by full width at half maximum (FWHM) and peak latency - has

increased [85, 84]. Peck et al. (2004), based on the analysis of the peak latency, suggested

that the BOLD signal could be used as a biomarker to monitor and, consequently, improve the

aphasia recovery [87]. By analyzing that same parameter, Bonakdarpour et al. (2007) inferred

that the delay witnessed in stroke patients would not be explained by processing delays [88], but

by an extended CBF delivery time from upstream pial vasculature, which induces local neuronal

activity, suggesting that the pathology and its nature can modify the temporal behavior of the

NVC (and thus, the HRF), and that in a population of patients, the protocol can discriminate

these changes [45].

3.2.2 Type 2 Diabetes Mellitus and the Hemodynamic Response Function

The hyperglycemia condition inherent to T2DM causes an uncontrolled increase in the

cellular respiration rate [89] which, after a certain point, causes an imbalance between reactive

oxygen species (ROS) and antioxidants [53], thus promoting stress oxidative [90], which causes

damage and dysfunction to any of the three components of NVU [53].
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In neurons, oxidative stress causes mitochondrial dysfunction [90], disrupting Ca2+ regu-

lation, which in turn increases its intracellular concentration, as well as that of ROS. Hence,

the membrane potential increases and the neuronal excitability and metabolism change [53],

possibly inhibiting neurovasodilatory signaling pathways dependent on that ion [53, 49], as well

as generating axial regression and demyelination, which cause reactive astrogliosis [53]. An-

other outcome due to the oxidative stress in these cells is the insulin signaling decline and the

subsequent decrease in the cellular response to insulin [89]. Consequently, the acetylcholine,

serotonin, and dopamine levels decrease, the norepinephrine concentration increases, and the

modulations of the expression of NMDA receptors and brain glucose metabolism become unfea-

sible, damaging neurons [89]. In addition, together with glial dysfunction, neural dysfunction

hinders the mechanisms that deliver oxygen to neurons in a fast and regulated manner [53],

promoting cellular anaerobic activity [89]. Finally, the cumulative effect of the oxidative stress

and the subsequent cerebral autoregulation loss [48] prompt neuroinflammation and consequent

neurodegeneration, culminating in the neuronal brain apoptosis (neuronal death) [89].

In astrocytes, this condition increases oxidative astrocytic metabolism, which amplifies the

mitochondrial ROS production and modifies the astrocyte-neuron lactate shuttle, and hence,

pyruvate is metabolized by the astrocytes, instead of being shuttled to the neurons as lactate.

As a result, more oxidative stress and cell damage are produced. As an example, the microglia

becomes toxic to the neurons, and the astrocytic glucose and glutamate uptakes, which take place

at the perivascular astrocytic terminations and synapses, respectively, become compromised.

Regarding the reactive astrogliosis, earlier mentioned as another consequence of the oxidative

stress, it causes astrocytic hypertrophy and proliferation, increased astrocytic NO production,

and overlapping of different astrocytic domains. The latter impairs Ca2+ signaling between

nearby astrocyte endfeet, which is even further deteriorated by damaging Ca2+ sequestration in

the endoplasmic reticulum [53].

The endothelial cells, due to the oxidative stress, become unable to down-regulate the ex-

pression of glucose transporters [91]. Therefore, as it happens in the two other units of the NVU,

ROS are also produced in the mitochondria, causing inflammation and endothelial damage. As

a result, vasodilatory functions of the endothelium become compromised [53], decreasing the

bioavailability of NO and prostacyclins (vasodilators) within the vasculature [91, 92], affecting

K+ channels (responsible for the endothelial retrograde vasodilation) [52, 92] and increasing

the levels of vasoconstrictors [53]. Due to the oxidative stress, pericytes are also lost [89], and

tight junctions are degraded [53]. By changing the endothelial signal transduction and redox-

regulated transcription factors, vascular endothelial permeability increases, promoting blood ves-

sel leakages [53], leukocyte adhesion, and abnormal proliferation of endothelial cells [91], which

precludes the autoregulatory efficiency of brain vessels [92]. As an example, the blood–brain

barrier (BBB) is disrupted due to the oxidative stress, releasing toxic compounds, and causing

even more damage to nerve structures [89]. On the other hand, endothelial dysfunction caused

by hyperglycemia produces several vascular morphological changes. For instance, the lumen di-

ameter reduces, and the cross-sectional areas, branching density [48] and stiffness of the vessels

[61], tortuosity of the pial arteries, and the thickness of capillary walls increase [48], compromis-
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ing the vessels’ ability to dilate and constrict in response to blood pressure (myogenic response)

or to changes in vasoactive substances [53, 61]. Consequently, blood perfusion decreases [91].

Furthermore, although no consensus has yet been reached, it is believed that T2DM induces

a decrease in CBF [92], increasing neuronal activity but decreasing oxygen availability and neural

efficiency [53]. It is therefore based on the aforementioned damages that T2DM promotes

neurovascular decoupling, even in apparently normal intact brains [12], impairing the regulatory

mechanisms that ensure the match between perfusion and neuronal demands, contributing to

the macro and microvascular disorders later seen in this pathology [92]. Such consequences entail

repercussions for the HRF [93], with Duarte et al. (2015) reporting that, in the early stages

of T2DM, different physiological response curves were generated, with less overall amplitude,

peak, initial dip and undershoot, and that the source of this difference may be possibly driven

by the disruption of the NVC [12].
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Material and Methods

4.1 Experimental Procedure

The experimental procedure employed in this project is succinctly displayed in figure 4.1.

In each of the following sections, I will address each of its steps in further detail.

Figure 4.1: Experimental procedure pipeline implemented in this project.

*: Represents the final number of controls, already ruling out the subject excluded during co-registration.
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4.1.1 Participants

The first step was the collection of MRI data from each participant at ICNAS. These

arose from an existing dataset assembled from previous studies concerned with the topic, which

implemented the same experimental protocol, so there was no need to acquire data. This dataset

contained 190 subjects, who were separated into two distinct groups: 101 patients with Type 2

Diabetes (T2DM) and 89 healthy controls (CNT). Each subject was associated with its name and

ID. These parameters were subsequently hidden by the used software to maintain the anonymity

of the individuals.

Of these participants, 48 were excluded due to poor image quality, stemming from artifacts

such as motion during the acquisition or even metallic splinters that existed in the head, which

could compromise the statistical analysis resulting from their processing. Thus, 142 individuals

remained, 75 of whom were male and 67 female. From this sample, there were 64 T2DM

individuals (average age = 58,8 ± 8,9 years; age range: 40 - 76 years) and 78 CNT individuals

(average age = 51,4 ± 8,7 years; age range: 45 - 72 years). However, a male subject was

later removed during co-registration, since it was not possible to overlap the structural volume

with the functional data, both when this step was performed through the workflow as well as

individually. Below, more descriptive information about the participants can be found.

Figure 4.2: Descriptive information regarding the age and individual speed discrimination
threshold of the participants.

Table 4.1: Descriptive information regarding the dominant eye and hand of the participants.

Dominant Eye Dominant Hand

Left Right Left Right

54 87 3 138

The Helsinki Declaration of 1975 (and as revised in 1983) guidelines were followed through-

out the study, and all participants consented to all experimental procedures, which were approved

by the Ethics Committee of the Faculty of Medicine of the University of Coimbra.

30



4. Material and Methods

4.1.2 Imaging Acquisition

Using a 3 T MRI scanner, it was acquired a 3D anatomical Magnetization-Prepared Rapid

Gradient Echo (MPRAGE) scan, which applied a T1-Weighted (T1-w) GE pulse sequence, as

well as a functional imaging series employing Echo-Planar Imaging (EPI) in block and event-

related paradigms. The image characteristics of each acquisition type are shown in table 4.2.

Table 4.2: Descriptive information regarding the image acquisition.

MPRAGE EPI

TR = 2530 ms TR = 2500 ms

TE = 3,42 ms TE = 30 ms

TI = 1100 ms Flip angle = 90◦

Flip angle = 7◦

176 slices
2 runs of 145/174 GE scans

(Block design paradigm)
1 run of 116 GE scans

(Event-related design paradigm)

Voxel size = 1 x 1 x 1 mm Voxel size = 3 x 3 x 3 mm

FOV = 256 mm FOV = 256 mm

Key: TR - Repetition Time; TE - Echo Time; TI - Inversion Time; FOV - Field of View

4.1.3 Stimuli and Experimental Design

The methods were as described in Duarte et al. (2015). All individuals underwent a

psychophysical task in which the speeds of two white dots (a reference and a target dot) were

compared. The dots were randomly presented to them on a gray background, one in each visual

hemi-field side by side so that they were asked to select with a button the hemi-field which

displayed the fastest dot while fixating a central white cross [12]. Before performing this task,

which was measured by the BOLD signal, the stimulus was individually tuned so that there

were no significant differences in its performance. In other words, the difficulty level between

groups was roughly the same in the selected sample.

Each participant performed three experimental fMRI runs: two block paradigm runs and

one event-related paradigm run. All participants were presented with the same randomized

sequences, with the stimuli’s characteristics only differing in the implemented paradigm type

and in its duration in each task, as illustrated in figure 4.3.

Figure 4.3: Information regarding the stimuli and each experimental protocols (block and
event-related paradigms). Adapted from Duarte et al. (2015) [12].
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The block paradigm was used in this experimental procedure bearing in mind its high

statistical power [42], which increases the ability to locate functional areas activated by task

performance [68]. In these paradigm’s runs, the reference dot constantly moved at 5◦/s, whereas

the target dot moved at one of these four different velocities: the reference speed (Reference

condition), the reference speed added to the individual discrimination threshold (Threshold

condition), the reference speed added to the triple of the individual discrimination threshold

(Submaximum condition), and a speed of 20◦/s (Maximum condition). The reference condition

was exhibited twice, in other words, both visual hemi-fields contained the dot moving with the

reference speed, and each of the three remaining conditions was repeated four times with the

fastest dot emerging twice in each visual hemi-field. A 12.5-second block was assigned to each

condition, during which it was displayed. For all conditions, except the reference condition, the

blocks were differentiated according to the visual hemi-field side where the fastest dot (left or

right) appeared. Thus, there were 14 blocks of visual stimulation, each interposed by two blocks

of baseline fixation, which accounts for a total of 29 blocks, all of them lasting 12.5 seconds. In

this paradigm, two different protocols were applied in each of the two runs, according to the

version of the stimulation program used (BrainEyeMRI). In the first protocol, which corresponds

to the 1.0 and 1.1 versions of the program, each block contained five volumes, whereas, in the

second protocol, which corresponds to the 1.2 and 2.0 versions of the program, each block

contained six volumes. As a consequence, 145 and 174 volumes were generated, respectively, for

the first and second protocols, as illustrated in figure 4.4. From the current sample, 44 and 98

individuals carried out the task according to the first and second protocols, successively.

Figure 4.4: Block paradigm protocols implemented in each run.
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On the other hand, the event-related paradigm was also implemented in this experimental

procedure since the power to estimate responses to brief stimuli is greater [21], which allows to

more accurately estimate the HRF [75]. In the runs of this paradigm, the interchange between

stimulation and baseline fixation, as well as lateralized conditions, were preserved, yet only the

Threshold and Submaximum conditions were presented. Event-related paradigms own way less

statistical power than block paradigms [42], therefore requiring more trials per event. Thus,

due to efficiency reasons, each of these two conditions, which represent intermediate and repre-

sentative difficulty levels, was presented 20 times, 10 per hemi-field, as portrayed in figure 4.5.

Each visual stimulation period endured 400 milliseconds, whereas each baseline fixation period

randomly lasted one of the following values: 4600, 7100, or 9600 milliseconds. In this paradigm,

unlike what happens in the block paradigm, only a single protocol was applied to each run, so

there was no difference in the number of volumes analyzed.

Figure 4.5: Event-related paradigm protocol implemented in a run.

After all experimental procedure runs were processed, a standard GLM analysis was per-

formed in the block paradigm’s runs, in which the contrast stimulation conditions vs. baseline

was applied, thus obtaining a statistical map of the positive/negative signal changes, in order to

find regions with overall participation in the task. Then, each region engaged in the block task

underwent a deconvolution GLM analysis of the measured signal in the event-related paradigm’s

runs, in which the HRF of each participant from the study sample was estimated. Finally, in

each region, the HRF parameters were deducted to investigate if they were significantly different

between T2DM participants and controls.

4.2 Processing

Next, structural and functional data from each individual were processed using Brainvoy-

ager 21.4 (Maastricht, The Netherlands) software running in Windows 10 Pro environment.

A processing pipeline, illustrated in figure 4.6, was elaborated. It contains, in the first place,

a preprocessing carried out at the functional and structural levels, a functional-structural co-

registration and, finally, a structural and functional normalization. Note that functional pro-

cessing was performed in both block and event-related paradigm volumes. In the following

sections, I will address each of these steps, in particular, what they consist of, their advantages

and disadvantages, as well as the options selected for them and the reasons underlying those

choices.
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Figure 4.6: Processing pipeline implemented in this project’s data.

Key: VMR - Volumetric Magnetic Resonance; FMR - Functional Magnetic Resonance; MNI -
Montreal Neurological Institute space

4.2.1 Preprocessing

This stage aims to minimize the influence of data acquisition and physiological artifacts,

to validate statistical assumptions and to standardize brain locations across individuals in order

to reach greater validity and sensitivity in the group-level analysis [31].

4.2.1.1 FMR Preprocessing

4.2.1.1.1 Slice Timing Correction

EPI acquisition mode prevents a simultaneous visualization of the whole brain [94], yet, on

the other hand, it enables a swift acquisition of single or multiple 2D slices, one at a time, and

its stacking to create a 3D volume [95]. Although short and fixed TRs are used, an intrinsic

delay between the actual and the expected acquisition times takes place, which may considerably

decrease the ability to distinguish a certain effect [22], resulting in different slice scanning timings.
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As a result, if time is imprecisely specified, a suboptimal statistical analysis may be produced,

mainly in event-related paradigms [96].

In order to perform an accurate time series analysis on fMRI data, it is required to correct

the time offsets between slices that come from the acquisition of individual slices [95]. Thus,

Slice Timing Correction was applied, in which the time-course of the voxel data in each slice

is adjusted through a time shift of each slice’s time series to match the same point when the

reference slice was scanned [96, 22]. Consequently, the data are changed as if the entire volume

has been measured at the same time [96]. The time shift, in turn, depends on the order in

which each volume slice was scanned, which could be ascending, descending, or interleaved, i.e.,

the slices were not acquired consecutively. However, this approach requires interpolation, which

acts as a slice time-course resampling, in which the data from time points located halfway to

the measured ones are resampled, estimating values from non-measured time points through

measured datapoints located in the immediate vicinity [96].

With this step, the same predictors can be used all over the volume and can also be

applied after transforming the slice-based representation of the functional data to a 3D data

representation in an arbitrary space such as, for instance, MNI [96]. As a result, it is possible

to correctly compare and integrate event-related responses from different brain regions at a

common standardized time point [96, 31], concerning time parameters such as the onset latency,

thus improving the statistical power of fMRI analysis [96].

In this preprocessing phase, the default settings presented by the software were maintained,

i.e., cubic spline interpolation and interleaved slice scanning order determined from the header.

Although it is not as fast, cubic spline interpolation was employed because it does not smooth

the data as it uses more points in the neighborhood, resulting in a more accurate resampling.

On the other hand, the applied slice scanning order accorded with the acquisition type produced

by the MR (interleaved) and agreed with the overall assumption that the header information is

usually the most accurate [96].

4.2.1.1.2 3D Motion Correction

Although participants are instructed to remain still during an MRI scan, that becomes

practically impossible given the long duration of the examination, which makes head motion

inevitable [97], especially in elderly and children [98]. Such a circumstance becomes a major

source of error [31], creating severe problems at the most diverse levels. Firstly, in an MRI, the

magnetic field is shimmed, i.e., fine-tuned for a certain head position before the functional scans

are carried out, and with head motion, its homogeneity becomes diminished [96]. Secondly,

an accurate spatial correspondence between voxels and anatomical areas over time becomes

compromised [22], as the time-course of a single voxel would represent a signal derived from

different brain parts, that is, local brain displacements mean that a voxel would have more than

one location in the brain [97].

Even though head motion can be adjusted in the image space, if it is considerable, it can

cause non-optimal shimming and motion artifacts which are not efficiently removed even after
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a perfect realignment of successive functional volumes in the image space [96]. As a result, false

but structured noise is generated, producing distance-dependent alterations in signal correlations

[22]. In other words, the signal of neighboring voxels contaminates the intensity of a given voxel

[31], therefore debilitating fMRI data quality and any sort of subsequent statistical analysis [96].

Given these reasons, it becomes imperative to realign each image in order to compensate

motion [31]. This only becomes possible by applying 3D Motion Correction. First, the head

is considered as a rigid body, whose motion is described by six parameters (three rotation and

three translation parameters, on the X-, Y-, and Z-axis, respectively). However, this assumption

is not entirely legitimate in fMRI data since the individual slices of a functional volume are not

scanned in parallel, and these parameters are not enough to correctly capture within-the-volume

motion and any abrupt head movements, which can arise at any time. Yet, as volume-to-volume

head movements are typically small, the assumption of a moving rigid body becomes widely

valid. Therefore, all functional volumes are aligned in space with a chosen reference volume,

which consists of a functional volume from one run or another run of the same scanning session,

by applying a rigid body transformation based on the previously mentioned parameters [96].

An iterative minimization algorithm based on a non-linear least-squares method predicts

these parameters by analyzing how the source volume should be translated and rotated to better

align with the reference volume [96], minimizing the sums of squared differences between the two

volumes. When there are no further improvements, that is, when the best alignment is found,

the algorithm stops [31]. After the final motion parameters have been detected, they can be

implemented to the source volume, producing a new and corrected volume by replacing the orig-

inal one in the motion-corrected dataset. This process therefore requires spatial interpolation,

i.e., signal values need to be calculated at positions between measured datapoints [96].

The interpolation method employed as the default in head motion detection and correction

was the Trilinear / Sinc Interpolation, i.e., a combination of Trilinear Interpolation for head

motion detection and Sinc Interpolation for head motion correction. This approach turns out to

have more quality, even though it is slower than just employing Trilinear Interpolation in both

steps, since Sinc Interpolation results in corrected functional volumes that reflect the original

data as close as possible, that is, without introducing spatial smoothing [96], while preserving a

reasonable computation time [97].

Considering the presented software options, the chosen reference volume for motion cor-

rection was the first functional volume, and the align to run option was turned off. Regarding

the first option, it aimed to align volumes within each session, that is, for each subject in each

run, all the functional volumes were aligned to a reference one, in this case, the first that was

acquired. As for the second option, motion correction itself corrects movements within each

run to the reference volume. However, in extremis, there can be motion from one run to an-

other, even if within a run it was vestigial, and this will affect the alignment since all runs

will align with a different one. Therefore, this inter-run alignment was not carried out, and

instead, in a further ahead step, both functional and anatomical volumes were aligned through

co-registration. Hence, this approach ends up changing the data less and avoids errors arising
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from the aforementioned circumstance. Thus, during motion correction, the volumes were only

aligned to the first volume of each subject, for each run [96].

Note that, although there is no overall rule regarding the motion threshold to be used,

datasets with head motion greater than the dimensions of one or two voxels or five or more

millimeters are usually discarded from further analysis [96, 22].

Figure 4.7: Representation of the results from the detection and correction of small head
movements during a real-time 3D motion correction process.

Each of these six lines incrementally illustrated in this image is assigned to one of the six
previously mentioned estimated parameters, which are indicated in the legend. The X, Y, and
Z-axis respectively correspond to the left-to-right, top-to-bottom, and first-to-last (through the
slices) directions [96].

4.2.1.1.3 3D Spatial Smoothing

During MR acquisition, images with random noise can be generated [99]. To reduce this

effect and enhance the acquired signal, Spatial Smoothing was implemented, suppressing high-

frequency signals while improving low-frequency ones, thus softening sharp edges. To this pur-

pose, the fMRI signal is convolved with a Gaussian probability density function (kernel) [22],

averaging part of the intensities from neighboring voxels together [100]. In other words, a voxel

intensity is allocated to any of those voxels that fall within the smoothing kernel, thus changing

their time series [95].

This process increases the SNR, both at single-subject and group levels. At the single-

subject level, Gaussian noise, which is random and independent from voxel to voxel, and whose

values approach zero, will have a zero-value average. On the other hand, the fMRI signal will

tend to some non-zero value [101], thus eliminating intra-subject differences [31]. At the group

level, anatomical and functional clusters existing in the same anatomy considerably vary between

37



4. Material and Methods

subjects. Therefore, this process maximizes between-subject overlaps in a certain cluster, en-

hancing signal sensitivity, and consequently improving across-subject comparisons, by increasing

the probability of detecting clusters at the group level [101]. As a result, the validity of future

statistical tests also rises by providing a better fit to the expected assumptions while reducing

anatomical and functional differences. However, Spatial Smoothing reduces the effective spatial

resolution of each image, it can attenuate small yet significant local activations that depend on

the filter parameters chosen [22], and it shifts activation peaks, or merges them, when they are

less than twice the FWHM apart [100].

The function size, defined by the FWHM and usually expressed in millimeters, establishes

the extent to which the smoothing will be implemented, depending on certain features regard-

ing the performed study, such as type of paradigm and inference expected, or primary image

resolution [22]. Acknowledging the advantages and disadvantages of this process, a compro-

mise between the SNR and the functional volume’s resolution must be reached [99]. Thus, the

smoothing amount should always be the minimum required to accomplish the desired results,

because the wider the kernel, the harder will be to detect small activation patterns [22], since

both the signal and the noise will decrease [99], and if the width is set too small, the SNR

becomes impaired while reducing spatial resolution [101]. There is no overall answer as to what

is the best width to analyze the dataset. According to the Matched Filter Theorem, the SNR

will be maximum when the size of the kernel corresponds to the size of the sought region, which

in turn will depend on the experimental design and on the analyzed regions [101], although it is

not known how large it will be a priori [100].

Considering the presented software options, the 3D Gaussian Spatial Smoothing option was

selected. As the resolution of the functional volume voxels was 3 x 3 x 3 mm, by applying the

Matched Filter Theorem, the best SNR is given to a kernel with the same size as the voxel, i.e.,

in this case, 3 mm. Therefore, a FWHM of 3 mm was employed.

4.2.1.1.4 High-Pass Temporal Filtering

The detection of MRI brain activation resulting from stimuli presentation causes small

variations in signal intensity over time [102]. The signal contains both the pure signal itself and

the noise. The latter is not white, comes from several sources (physical or physiological noise) and

mostly exists at low frequencies [103] commonly as linear drifts in the time-course of fMRI data

voxels. If they are not considered, they might reduce the power of the statistical analysis data

[96]. Therefore, it becomes crucial to filter the signal over time in order to improve the ability

to detect true and reject false activations, by separating the noise from the stimuli-associated

signal. Hence the signal remains preserved, and the SNR increases, which consequently improves

the outcome of subsequent statistical analyzes [102] by using cleaner data [96].

To this purpose, High-Pass Temporal Filtering was performed, a process in which frequen-

cies below a certain cut-off value were removed, and frequencies higher than the mentioned

cut-off passed [96, 103]. One of the easiest ways of doing so is to remove separately linear drifts

in the same course of each voxel, as they have a low frequency [96, 102].
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This method is particularly important in brain regions that weakly activate, as it moder-

ately increases the percentage of activated voxels [102]. However, it is one of the most dangerous

methods for several reasons [103]. Firstly, neighboring voxels can exhibit several different drifts

[96], so it becomes difficult to predict the amount and direction of a drift [102]. Then, the exact

choice of the period of interest turns out to be ambiguous because if there is a signal regarding

the activation of a certain region with a frequency lower than the cut-off, the filter will remove

it along with the noise, which ends up worsening the result. Therefore, the choice of the cut-off

frequency becomes extremely important, and its value should be the double or the triple of the

fundamental frequency of the experiment, i.e., the time between the beginning of one trial and

its ending, so that it does not filter anything close to the fundamental frequency [103].

During data preprocessing, High-Pass Temporal Filtering was implemented by using Fourier

analysis. The cut-off frequency was also specified, from which all frequencies below this value

were removed. This frequency was expressed in cycles, with each cycle corresponding to a sine

wave (from 0 to 2π) that spreads over the number of time points in the fMRI data [96].

However, as this method does not work well for purely linear trends, the software intrin-

sically applies a linear trend removal before the Fourier analysis, estimating a linear trend by

fitting a line through the data, computing its slope and interception. Then, by applying a Fast

Fourier Transform (FFT), the time-course of a voxel is transformed into the frequency domain,

and it becomes represented by a sine and cosine curves. The Fourier analysis is then applied,

estimating a frequency which can contribute to a drift. That frequency has two values: one for

the sine curve and another for the cosine curve, and it can be used to determine the frequency

intensity of the data. Consequently, the low frequencies are removed by setting their values to

zero, and the data are then transformed back into the time domain, which will no longer owns

the data corresponding to the removed low frequencies [96]. As a result, in the time domain,

the time-course is straightened out when gradual bends or drifts occur and are flattened away

after filtering. In the spatial domain, on the other hand, the edges of the image are shown [103].

This step was carried out on the functional volumes of both paradigms, considering the total

length of the basic stimulation units of each run, which, according to the protocols implemented

in this study, were two: stimulation and fixation. By adding these two units, doubling the result,

and estimating the inverse of this value, the cut-off frequency was obtained.

Based on the implemented protocol [12], in the block paradigm, there were 29 alternating

blocks: 14 visual stimulation and 15 basal fixation blocks, each one lasting 12.5 s. Therefore, the

set of the two conditions was equivalent to 25 s, that doubled, made up the value of 50 s, which

consequently corresponded to a 0.02 Hz cut-off frequency. However, the filtering was executed

in cycles, so, in this paradigm, by converting this value into cycles, that frequency equaled to 6

cycles in the time-course from which temporal filtering was applied.

In the event-related paradigm, the two conditions were presented 20 times, with visual

stimulation lasting 0.4 seconds and basal fixation randomly varying between 4.6, 7.1 or 9.6

seconds. Given these circumstances, the highest value was considered as the length of the fixation

condition, as it results in a lower frequency, and because smaller time ranges (consequently,
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higher frequencies) resist larger time range (lower frequency) high-pass. Therefore, the set of

these two conditions was equivalent to 10 seconds, that doubled, made up the value of 20 seconds,

which consequently corresponded to a 0.05 Hz cut-off frequency. This value equaled to 15 cycles

in the time-course from which a temporal filtering was implemented.

However, although signal variations with stimulation frequencies above 0.05 Hz can pass

through a 15-cycle filter, due to safety reasons, so that frequencies with the mentioned value

could also pass through it, the number of cycles was reduced to a random value within an

acceptable range. Thus, given that in the block paradigm, a 6 cycles filter was applied, for the

event-related design, it was chosen a 12-cycle filter.

4.2.1.2 VMR Preprocessing

The structural volumes underwent the steps indicated in figure 4.6, which represents the

processing pipeline. It should be noted that as these contained a spatial resolution of 1 mm x 1

mm x 1 mm, considered ideal, it was not required to interpolate the data set in order to rescale

the resolution [96].

4.2.1.2.1 Skull Stripping

During an MRI scan, structural brain volumes contain more non-brain tissues (scalp, skull,

dura-mater, eye sockets, or other peripheral tissues) than functional volumes [104, 105]. These

tissues end up becoming major obstacles for cerebral tissue classification (cerebral segmentation),

image co-registration, or volumetric analysis [106]. Therefore, it becomes essential to extract

them in order to achieve more accurate results [104], despite the extremely complicated brain

anatomy. To this purpose, Skull Stripping was implemented, a process in which the brain tissue

(cortex and cerebellum) was isolated from the aforementioned tissues [107].

Given the imprecise nature of brain images, which are acquired on different machines

and may have different contrast and quality, and since brain structures are heterogeneous and

vary among individuals, Skull Stripping becomes a sophisticated and challenging method [104].

However, it does end up containing some dangers, as any accidental tissue removal cannot be

reversed in later processing stages [106]. Thus, in this process, it becomes crucial to find the

cerebral and cranial borders [107]. To do so, the brain is extracted using a binary representation

of the data and morphological operations. First, the binary image is eroded so that it can

split intensity connections between brain and non-brain tissues. Then, the largest connected

component retained - which is usually the brain - is determined, while all the others are set to

zero, and then a reduced version of the brain is extracted [96]. Finally, in order to re-add the

tissue removed at the brain borders by the previously mentioned erosion, the latter is reversed,

by performing a dilation restricted to voxels in the brain neighborhood [96, 108].
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4.2.1.2.2 Intensity Inhomogeneity Correction

During MRI image acquisition, smooth shading artifacts have been frequently found, in

which voxel spatial intensity values significantly vary within the same tissue and prominently

overlap in different tissues [109]. In other words, white matter voxels located in one place may

have the same intensity as gray matter voxels located elsewhere in the same image [96]. This

effect is known as intensity inhomogeneity or bias field, and it is due to the instrumentation

(non-uniformity of the RF coil, static field inhomogeneity, among others), or to the participant’s

motion [109]. As a result, it significantly deteriorates and compromises both the performance

and the accuracy of any image processing algorithm that uses intensities as its main features - in

particular, segmentation and image registration, as these profoundly rely on image quality [110]

- and it also reduces the reliability of subsequent quantitative and qualitative measures [109].

Therefore, it becomes crucial to reduce the aforementioned inhomogeneities on structural

volumes [96], improving their processing as well as their output. To this purpose, during the

image preprocessing, it was performed the Intensity Inhomogeneity Correction (IIHC).

The method that the software implemented in this process allowed, by using the least-

squares algorithm, to fit low-grade polynomials to a subset of voxels labeled as white matter

voxels and to analyze low-frequency intensity variations, in order to estimate a bias field. The

latter was estimated twice and after that, in order to increase the process efficiency, it was

removed from the dataset. As a result, an image with much more homogeneous intensities that

improve the visualization and are also better starting points for following segmentation tools

was obtained [96].

It should be noted that before carrying out the process itself, it was required to clean

the image background, extract the brain, and detect the white matter. To clean the image

background, the intensity values of the background voxels are set to zero. However, as the

intensities of the background voxels vary, the image becomes binarized, i.e., the intensity values

greater than zero are set to the same integral value to optimize this cleaning and to avoid

salt and pepper noise. Therefore, an intensity histogram is performed, allowing to detect the

largest connected component (the head-brain complex), as well as the lower intensity voxels.

The latter, which correspond to the background, are set to zero intensity and then removed.

As for the brain extraction, mentioned earlier in section 4.2.1.2.1, it produces a more accurate

estimate for the bias field, as it is only focused on brain tissue. Finally, concerning the white

matter detection, due to the existing spatial inhomogeneities, it is not possible to select only the

high-intensity value voxels that, theoretically, would reflect the white matter voxels, since gray

matter voxels in bright image locations (high SNR) may have higher intensity values than white

matter voxels in dark image locations (low SNR). Therefore, the image is analyzed from blocks

with 125 voxels (5 x 5 x 5), selecting the highest intensity values and heuristically verifying if

the intensity distribution within one block comes from one or two tissue types. Although this

authentication does not guarantee a correct separation of white and gray matter voxels, there

is a very high chance to include a large sub-part of white matter voxels in the remaining set of

voxels. This step is repeated once more, which in turn improves the white matter classification

41



4. Material and Methods

validity and, consequently, the resulting homogeneity, with the separation between white and

gray matter displayed when the intensity histogram is plotted at each iteration. As a result,

a segmented and homogeneous brain was determined, with a gain in gray and white matter

separation and within-tissue homogeneity [96].

4.2.2 Co-registration

To more accurately detect and locate brain activation sites after exposing an individual

to a stimulus [111], one must consider the head motion effects during image acquisition [112].

Therefore, it is important not only to correct the motion between slices from the same func-

tional run (as mentioned in 4.2.1.1.2) but also to correct the movement between structural and

functional scans [113].

Regarding the latter case, co-registration was implemented, aligning functional and struc-

tural volumes of the same subject [114], acquired at different times [112] in the same geometric

space [115], by its overlap [114]. Co-registration can be intramodal, in which it is applied to

the same imaging modality (for instance, fMRI-MRI), or intermodal, in which it is applied to

different imaging modalities (for instance, PET-MRI) [115].

Therefore, co-registration enables one to correlate structural and functional data of the

same participant, ensuring their correspondence [114] without changing the coordinated system

of the structural volumes [96], as well as reducing partial volume effects in voxels that contain

multiple tissue types with different signal features when the image is segmented, such as, for

instance, gray and white matter [112].

First, the co-registration itself took place, in which a set of parameters describing the

transformation that best matches the volumes was estimated [111]. As a rule, the first or the

mean functional volume (usually connoted as source) is co-registered to a simple structural

volume (usually connoted as target) [96, 31]. Then, the transformation took place, where one

of the volumes was iteratively transformed according to the estimated parameters [111], in

order to optimize them, minimizing the disparity degree between structural and functional data

after each iteration [116], and consequently, improving transformation [111]. Based on the

implemented transformation, co-registration can have two algorithm types: linear and non-linear

co-registration. Linear co-registration is the most commonly used method and, to model the

local deformation [114], it assumes that the image geometric proportions remain constant [117].

Therefore, it usually involves a rigid transformation of six parameters (rotation and translation

in the three axes) or a affine of twelve parameters (rotation, translation, scaling and shearing

in the three axes). Non-linear co-registration is a more precise and elastic [114, 111] but more

complex method, in which a computed warp from a more detailed structural volume is applied

to the functional volumes. As a rule, linear transformation methods are used, however, when

fMRI images are usually distorted, it is preferable to use a non-linear method [111].

However, as each set of structural and functional datasets was acquired in the same session

and came from the same individual, in this processing step, a linear intramodal co-registration

was systematically applied to the sample of study participants, in each run of each paradigm. In
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this process, two steps were implemented: Initial Alignment (IA) and Fine-Tuning Alignment

(FA). IA was predefined by the used software as the minimum step required to carry out the co-

registration, and it aims to bring the functional and structural datasets closer from a potentially

disparate starting point. As the two datasets were acquired in the same session, and as the file

format used to import the data - Digital Imaging and Communications in Medicine (DICOM)

- contained the required positioning information in its header, a header-based mathematical

coordinate alignment was carried out in this step. In this method, first it was checked if the

header information associated with the slice positioning was available for both datasets and, if

so, the software saved it in new FMR and VMR files. Afterward, the alignment was computed,

but any transformation applied to the datasets after the project has been created was always

considered in order to compute the correct mathematical spatial transformations [96].

On the other hand, FA assumes that the two datasets are already very close to each other,

and it requires them to be sagittally oriented to improve co-registration by correcting small head

movements that occurred between structural and functional acquisitions. Among the multiple

options available on the software, Gradient-based Registration was chosen over Boundary-Based

Registration (BBR). Although both appear to yield similar results, the latter is much more

time consuming and takes up more computer memory since a segmentation of each structural

VMR file is performed to obtain a white/gray matter cortex mesh [96]. The gradient-based

registration method implemented was the Normalized Gradient Fields (NGF) registration, and

it is based on the idea that intensity changes in an image [118] - which strongly rely on data

inhomogeneities [96] - can define its structure, and consequently, characterize similarities, given

that two images are considered similar if intensity changes occur in corresponding locations [118].

NGF assumes that image intensity change gradients, which represent tissue boundaries, may

not have the same magnitude in different images. Therefore, the greater the similarity degree

between intensity changes in corresponding positions in different images, the more similar the

values of the corresponding gradients and the smaller the inner angle between them will be [119].

Thus, this method implements co-registration by minimizing the stated angle in the mentioned

positions, to turn the alignment between gradients and, consequently, between images, as parallel

or antiparallel as possible [120]. When this method was selected, the Anatomical Magnetic

Resonance (AMR) file used to visualize the FMR data was specified as the functional source of

the co-registration, since it allows to obtain results with greater resolution than using the first

volume of the selected functional data itself [96].

Although NGF requires a gradient-dependent cost function [121], it does not depend of

absolute intensity differences between corresponding areas in different image types [122], since

gradient information assesses signal intensity changes concerning neighboring voxels [96], which

turns out to be useful to co-register images acquired during different breathing phases [122].

Secondly, co-registration was assessed after its implementation. In this small step, the

results from the reports the software created after the stated step took place were analyzed to

identify subjects with weak or mediocre co-registration. For them, an extra step was then made:

a manual co-registration for each subject at an individual level, to improve the results.
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For each of these subjects, after the preprocessed AMR file was loaded, the corresponding

preprocessed FMR file was paired to perform the manual co-registration. However, when the

AMR file was not available or not able to be used in this step, it was replaced by the first volume

of the functional data series. Both IA and FA were employed using the same methods as those

referred in the systematic analysis, i.e., header-based mathematical coordinate alignment and

gradient-based alignment, correspondingly. In FA, it should be noted that a full affine transfor-

mation of 12 parameters (rotation, translation, scaling, and shearing in the three axes) of the

functional volumes was carried out, enabling real-time monitoring, and the parameter estimates

were iteratively updated. After this process had reached its end, the co-registration results were

shown in a window, overlapping edges resulting from overlaying the functional volume of ref-

erence with structural volumes to better assess its quality, and the estimated parameters were

displayed in a menu [96]. Then, as the results were not yet ideal, to improve them even further,

small adjustments were made by manually optimizing transformation (translations and rota-

tions in X, Y and Z) values, so that the edges of the functional volume could better match the

structural volume. Finally, the changes created in this new co-registration matrix were saved,

replacing the old one resulting from the systematic analysis.

Figure 4.8: Representative scheme of the manual co-registration stages.

It should be noted that, as mentioned in 4.1.1, one participant was discarded from the

database, which from now on included 141 participants, given that good results were not achieved

even when the estimated parameters were manually adjusted after performing the manual co-

registration at an individual level.
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4.2.3 Normalization

In MRI there is a vast inter-subject variability since each individual’s brain differs in shape

and features [31], the positioning of individuals between locations may vary, and images from

different scanners or different acquisition parameters can widely vary in intensity. Consequently,

MRI processing performance and statistical group analysis become compromised, increasing the

rate of false negatives and decreasing sensitivity. Thus, in order to correct such variations and

to optimize processing [123] and the performance of group analyzes, improving the results, it

becomes crucial to align homologous brain regions between individuals [22]. In other words, it

is required that each voxel is in the same spatial location for all subjects [31].

To this purpose, it was implemented Normalization, a process in which spatial transfor-

mations such as translations, rotations, or scaling, were applied in several axes [22], minimizing

differences between brain images of a subject [124] and a common reference space [116], by

placing them in a similar position in similar sizes, thus allowing their alignment and subsequent

comparison [125]. The commonly used reference space is a standard anatomical stereotaxic

atlas [126], defined by a brain template in a specific coordinate system, which allows to locate

certain anatomical features in the coordinated space, as well as to associate functional results

with anatomical regions [22]. Therefore, when this operation is made for several subjects, the

brain images of all subjects spatially correspond to the same reference and, consequently, to each

other, in such a way that a point in the common space identified by its x, y and z coordinates is

assumed to be in a similar region in any brain normalized according to the same procedure [96].

Thus, the processing of acquired MRI data included a normalization, in which, in the first

place, a transformation matrix was computed from a structural volume, and later applied to

both files (VMR and FMR Normalization) since they had previously been co-registered.

4.2.3.1 VMR Normalization

The structural volume normalization took place first. A transformation matrix was com-

puted from the anatomical data to the MNI space, which is based on a T1-Weighted MRI scan

average [22], and then applied to the structural volumes.

4.2.3.2 FMR Normalization

Then, functional volume normalization took place. The transformation matrix, computed

from the spatial normalization of anatomical data to MNI space, was applied to each functional

volume, which was previously co-registered with the corresponding anatomical data in the native

space. Functional volumes over time were then compiled into Volume Time Course (VTC) data

in the MNI space, and the spatial resolution of this 3D functional series was adjusted according

to the structural data resolution. Since the functional volume resolution was 3 x 3 x 3 mm,

and the structural volume resolution was 1 x 1 x 1 mm (as seen in table 4.2), it was set that 1

VTC voxel corresponded to 3x3x3 VMR voxels. In order to perform this data resampling, it was

required a spatial interpolation, and therefore, a Sinc Interpolation was employed. Finally, after

creating the VTC data, the latter and the anatomical data were used for a statistical analysis.

45



4. Material and Methods

4.3 Data Analysis

4.3.1 The General Linear Model

After processing all the experimental data to correct potential artifacts introduced in its

acquisition, a statistical analysis was performed on the fMRI time series using the GLM. Before

explaining how it was performed, I will give a brief introduction to this statistical model.

The GLM allows to model the perceived signal in one or more explanatory variables, the

regressors, by a linear combination [127], to better explain or estimate, and to what extent,

how each regressor contributes to the variability of the data [128]. The matrix equation for this

model is given by the following formula [127]:

Y = Xβ + ε (4.1)

where, in the current situation, Y is the column vector that contains the dependent vari-

ables, representing the BOLD signal time-courses associated with each voxel [128]. On the other

hand, X is the design model or matrix, whose rows correspond to the number of observations

(in this case, volumes) [129], and whose columns are the independent variables, also known as

predictors, regressors, or covariates [127]. Predictors of interest, which are determined according

to the task taking place during data acquisition, aim to explain the signal variation across time.

As it is expected that the BOLD signal will fluctuate per ROIs at least according to neuronal

activation due to the performed task, predictors associated with one or more periods of interest

are built from a convolution of a box-car time-course condition (representing active neuronal

populations at a specific time point) with an HRF [128]. These predictors represent the effects

expected to be found in the measured signal [127] due to the coupling of the hemodynamic

response with neuronal activation.

From Y and X, the model estimates a set of weights for each predictor, which mark the

magnitude and direction of the univocal correspondence between each predictor and Y, thus

describing the voxels’ preference for one or more experimental conditions [128], to better explain

or allow data prediction. Therefore, one has the column vector β, which contains these values,

known as beta weights, individual effect or scaling parameters [96]. As a rule, a high positive

(negative) beta weight implies that the voxel exhibits a significant positive (negative) signal

change during a certain experimental condition modeled against the baseline, where no activation

(deactivation) is expected to take place [128].

Furthermore, the multiplication between β and X allows to get the time-course values of

the fMRI responses predicted by the model in different conditions of the experimental paradigm.

The closer these values are to those existing in Y, the better the model fit, and consequently,

the smaller the difference between them is [96], with this value being represented in the column

vector ε, which is called noise, residual error or residues [127].
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As brain scans are represented by thousands of voxels, in each one there is a BOLD signal

time series. Therefore, GLM is performed voxelwise, i.e., separately on each voxel, and in each

separate analysis, the dependent variable is a set of data values for each voxel - in which each

estimated β will differ - with the best fit depending on the set of the existing data values [127].

As mentioned in section 4.1.3, two types of GLM analyzes were performed. Next, I will

further explain how each one of them was implemented.

4.3.1.1 Standard GLM Analysis

This analysis was performed in two levels. First, the beta weights from each experimental

condition were individually estimated for each subject. In a second step, the beta weights of all

subjects were provided as an input for a second-level group analysis, in which group effects were

estimated, considering the beta weights themselves and their inter-subject variability. Hereupon,

after obtaining the VTC files for each subject through functional normalization, the first and

the second-level statistical analysis were simultaneously performed, using a Multi-Study Multi-

subject GLM, in which brain regions with greater positive (and negative) signal change for the

experimental conditions were detected for the study sample.

Firstly, it was required to create an individual predictor matrix according to the acquisition

protocol. To this purpose, given their greater statistical power, only block paradigm protocols

were considered in this analysis. As they were four different protocols in this paradigm (as

described in 4.1.3), four different predictor matrices were created.

It should be noted that when all experimental conditions are modeled as predictors in

the design matrix, including the baseline condition (fixation/control), we find ourselves in a

situation known as of statistical multicollinearity, in which the design matrix predictors are

highly correlated. Multicollinearity can be avoided by not including the baseline condition in

the GLM, and thus, beta weights can be more easily interpreted, as they will correspond to

an increase or a decrease in the relative activity regarding the baseline signal level modeled

by the constant term [96]. Therefore, as the first condition of each protocol concerned the

baseline or resting condition, known here as Fixation, to avoid this problem when creating the

predictors’ individual matrix, it was determined that the first condition would be excluded from

the individual design matrix.

Then, the VTC files for each run of each subject, in all subjects, were paired with the

respective single design matrix. Also, as there is a large number of study subjects [129], which are

considered as a representative population sample, a random-effects analysis (RFX) was combined

with the GLM, using percent signal change transforms, as these reflect the size differences of the

effects better than z-transforms [96]. This analysis verifies whether the magnitude of a group

effect is significant concerning inter-subject variability [128]. If so, the results from a subject

sample can be generalized to the population from which they have been selected [96].

During GLM, autocorrelation may occur in fMRI data, that is, high values are more likely

to be followed by high than by low values, and vice versa. Autocorrelation analysis, however, is
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carried out in the residue time-course since this effect is expected to a certain extent from slow

fluctuations regarding the task. Although the β values estimated by the GLM are unbiased even

with this phenomenon, their standard errors are not, causing an inflation of the test statistics,

i.e., the t- or F-values are higher than expected. Thus, it becomes crucial to correct these

correlations, which was done when the RFX-GLM analysis was performed, using the software’s

default approach. The latter allowed to estimate and remove the data and model autocorrelation,

and to refit the GLM, assuming that the errors followed a second-order autoregression process

(AR(2)) [96], instead of a first-order autoregression process (AR(1)), optimizing the results [130].

The GLM allows one to ask questions of interest regarding the analyzed conditions, which

can only be done by using contrasts. These are mathematical inequalities formed by a linear

combination of the different effects and their size [127]. In this case, it was intended to locate

the ROIs with overall engagement in the stimulation task implemented in the block paradigm.

Thus, a stimulation conditions vs. baseline contrast was studied, which, even though a bit rough,

allowed to obtain a block task group map. This map aimed to understand which brain regions

contained significantly activated (deactivated) voxels that responded to any of the stimulation

conditions against the baseline, to then be further investigated with a subsequent GLM analysis.

However, when a statistical test is performed, a statistical threshold is used to control the

probability of false positives [131]. In this case, in a voxel, assuming the standard critical value

of 0.05 as a probability threshold, and a null hypothesis which is always true [96], when the

p-value is less than the mentioned value [132], there is at most a 5% likelihood of rejecting

it even if it is actually true [96]. As a result, due to chance [132], a voxel could be labeled

as significant, when it is not. Nevertheless, when the number of voxels (samples) to which a

statistical test is simultaneously carried out is increased, as in this case, which is statistically

equivalent to executing several statistical tests in a single voxel, a multiple comparisons problem

arises [96]. That is, and considering the previous threshold, if the null hypothesis is always true

[132], about 5% of all analyzed voxels would be labeled as significant, even though they were not,

which would, therefore, result in about 5% false-positives [96]. Hence, the greater the number

of voxels tested, the greater the number of false-positive voxels [131]. To balance this problem,

methods which adjust the probability thresholds are used [96]. Regarding that, in this case, the

probability threshold must be more rigorous to reduce the number of voxels (and hence, brain

regions) wrongly considered as significant (false-positives) [131] and thus globally achieve the

original level of significance [133], a Bonferroni correction method was applied for a 0.05 p-value.

Bearing in mind the equation 4.2, the original p-value was diminished 141 times [131], resulting

in a quite robust block task group map (figure 4.9), considering the high number of participants.

Bonferroni adjusted p− value =
a

N
(4.2)

With:

a: original threshold (0.05)

N: number of independent tests / group samples (141)
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Figure 4.9: Block task group map with positive and negative signal change clusters resulting
from the GLM.

Based on the previous map, in which the Bonferroni correction was applied, as mentioned

in 4.3.1, from the most significant positive (in red) and negative (in blue) signal change clusters,

as shown in figure 4.9, as well as the MNI coordinates of each cluster, using two atlases [134, 135],

the following ROIs and consequent Brodmann areas (BA) were defined for further analysis:

Table 4.3: Descriptive information regarding each of the positive signal change clusters selected
from the block task group map.

Positive signal change clusters

MNI coordinates at the cluster’s peak
Anatomical Brain Region Cluster Code

X Y Z

Left Inferior Parietal Lobule, Brodmann area 40 L IPL BA40 -30 -46 40

Left Insula, Brodmann area 13 L Insula BA13 -30 23 4

Left Precuneus, Brodmann area 7 L Precuneus BA7 -24 -52 44

Right Inferior Frontal Gyrus, Brodmann area 9 R IFG BA9 45 11 25

Right Middle Frontal Gyrus, Brodmann area 8 R MFG BA8 6 17 46

Right Middle Frontal Gyrus, Brodmann area 46 R MFG BA46 48 26 25

Right Superior Frontal Gyrus, Brodmann area 6 R SFG BA6 6 8 53

Right Superior Parietal Lobule, Brodmann area 7 R SPL BA7 30 -57 46

Right V2 area, Brodmann area 18 R V2 BA18 29 -73 22

Right V5/MT area, Brodmann area 19 R MT BA19 46 -64 9
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Table 4.4: Descriptive information regarding each of the negative signal change clusters selected
from the block task group map.

Negative signal change clusters

MNI coordinates at the cluster’s peak
Anatomical Brain Region Cluster Code

X Y Z

Left Anterior Cingulate, Brodmann area 32 L AC BA32 0 44 1

Left Cingulate Gyrus, Brodmann area 31 L CG BA31 -3 -46 32

Right Cingulate Gyrus, Brodmann area 24 R CG BA24 -3 -10 43

Right Insula, Brodmann area 13 R Insula BA13 37 -19 4

Left Posterior Cingulate, Brodmann area 30 L PC BA30 -6 -55 13

Right Posterior Cingulate, Brodmann area 23 R PC BA23 -3 -45 28

Left Paracentral Lobule, Brodmann area 5 L PrcL BA5 -12 -37 49

Left Parahippocampal Gyrus, Brodmann area 36 L PrhG BA36 -30 -31 -17

Right Precentral Gyrus, Brodmann area 4 R PrecG BA4 36 -19 40

Right Precentral Gyrus, Brodmann area 43 R PrecG BA43 54 -7 11

Right Primary Sensorial area, Brodmann area 1 R PrimSens BA1 39 -16 19

Right Superior Temporal Gyrus, Brodmann area 39 R STG BA39 52 -55 19

4.3.1.2 GLM Deconvolution Analysis

Since the fMRI signal consists of a stimuli function convolved with the HRF, it is possible

to estimate the latter by reversing the convolution process, i.e., by performing a deconvolution

[136]. Therefore, in each of the ROIs identified by responding to the block paradigm stimulation

task, a GLM deconvolution was implemented to estimate the HRF through the response to

the presented stimuli. To this purpose, event-related runs were used in this analysis, since,

contrarily to block paradigms, they own an increased sensitivity for estimating responses to

short stimulation events, which allow them to separate contributions from different stimuli [137].

Deconvolution GLM is an alternative GLM analysis, in which each protocol condition

encodes a set of stick predictors, each of them separately estimating the HRF amplitude at a

datapoint regarding the onset of that condition. In the end, the series of amplitude estimates

describes the current HRF shape in each condition. To enable this, it is assumed that the

HRF, which is not fixed, is linear and has a finite number of datapoints. As a consequence,

the model has a more flexible fitting, allowing one to compare conditions on a single point data

basis. However, by providing a higher number of degrees of freedom, this analysis has a larger

sensitivity to noise and a possible specificity loss when it is performed voxel-by-voxel [138].

In order to perform this analysis, carried out similarly as in 4.3.1, it was also required,

first, to define an individual predictor matrix. Therefore, as this is a deconvolution analysis,

an individual deconvolution matrix was defined, but instead it used the event-related paradigm

protocol due to aforementioned reasons.

As in the individual predictor matrix in the standard GLM (4.3.1), the first condition of the

protocol, which concerns the baseline (Fixation), was excluded from the individual deconvolution

matrix to avoid multicollinearity problems. Furthermore, it was also considered that, given a

2.5-second acquisition TR, as only the first 20 seconds of the HRF curve were intended, then,

as each datapoint in the design matrix corresponds to a TR, it was considered that, only eight

datapoints (8 x 2.5 s = 20 s) would be needed for this same matrix. Then, the multi-study

deconvolution matrix was produced, and, just as before, the event-related paradigm VTC files
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of each subject, resulting from functional normalization, were associated with the produced

single design matrix, for all subjects.

Finally, the GLM deconvolution analysis was estimated for each pre-defined ROI. In order

to perform this step, all the defined ROIs were loaded, and the group deconvolution matrix

created was linked. Next, in all subjects, for each ROI, and in each condition, the beta weights

and statistics were calculated, and corrections of series correlations were made, assuming that

they followed a first-order autoregression model.

4.3.2 HRF Analysis

Figure 4.10: The HRF analysis pipeline implemented in this project.

From all the data stemming from the GLM deconvolution analysis, the series of beta weights

which describe the estimated HRF in the corresponding lateralized stimulation conditions for

each subject and in each ROI were selected in order to carry out the subsequent analyzes that

I will address further on.

4.3.2.1 Estimation of the Average and Median HRF curves

From the aforementioned beta weights, whose conditions were differenced according to the

sides (Left and Right), the mean beta value in each condition (Threshold and Submaximum)

was first calculated for each datapoint, in each subject, and for each ROI, according to the

following equation:

β =
βLeft Threshold/Submaximum + βRight Threshold/Submaximum

2
(4.3)
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After all these values had been allocated and organized according to the condition and

to the group (CNT or T2DM) to which they belonged, in each subject and for each ROI, the

average and the standard deviation of all beta weights regarding the CNT and T2DM populations

were calculated in each datapoint of each condition for each ROI. Furthermore, in those same

circumstances, the median and its interquartile range were also estimated, as it is a more robust

measure and it gives an enhanced sense of a typical value, with less influence from outliers.

Finally, based on the calculated parameters, the HRF average and median curves were

plotted in each condition and subject group, for each ROI.

4.3.2.2 Estimation of the Coefficient of Variation

Then, the peak amplitude and latency of the average HRF curves were determined per

condition and per group, for each ROI. In order to ascertain how reliable and/or robust these two

parameters were, their coefficient of variation (CV) was calculated in the same circumstances.

This measure displays the variability of each of these parameters concerning the population’s

average, and it is given by the ratio between the standard deviation of the HRF parameter (peak

amplitude or latency) and its corresponding absolute value in the average curve (Equation 4.4).

Coefficient of V ariation (CV ) =
σHRF peak amplitude

µHRF peak amplitude
or

σHRF peak latency

µHRF peak latency
(4.4)

4.3.2.3 Estimation of the HRF Parameters

Figure 4.11: The HRF parameters of interest in this project.
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Ensuingly, several HRF shape features were compared per ROI between the T2DM and

CNT populations to assess whether there were any differences, and, if so, if they revealed any

information regarding underlying neurovascular damage. Furthermore, the greater the amount

of information regarding the HRF, that is, the larger the number of parameters, the more details

about neuronal substrates of cognitive tasks can be obtained [139]. Thus, using the average beta

weights in all datapoints, according to the condition and to the group, in each subject for each

ROI, the following HRF parameters, which are portrayed in figure 4.11, were calculated: peak

amplitude, peak latency, relative slope to peak, area under the curve (AUC), positive curve

section area (PCSA) and negative curve section area (NCSA).

The HRF peak amplitude was estimated by determining the HRF curve maximum for the

range of datapoints that corresponds to the period between 5 to 17.5 seconds, which is the

time interval in which the HRF peak usually takes place [140]. In this estimation, it was also

determined the datapoint where the peak looms, which, when multiplied by the TR (in seconds),

according to equation 4.5, allowed the estimation of the HRF peak latency.

HRF peak latency (s) = HRF peak datapoint × TR (4.5)

The HRF relative slope to peak, in turn, was given by the ratio between the HRF amplitude

variation between its peak onset and the initial instant (t = 0 s) and the time interval to the

peak onset (HRF peak latency), as evidenced in the following expression:

HRF relative slope to peak =
HRF peak amplitude−HRF initial amplitude

HRF peak latency
(4.6)

The HRF AUC was determined by applying the trapezoidal rule between the onset and

the end of each HRF, as this is a numerical method which more accurately approximates this

measure [141]. However, before implementing this procedure, the values of each HRF were

rewrought in order to set its minimum value as the zero of the function.

Regarding the HRF PCSA, the trapezoidal rule was implemented between the positive

HRF values and the values where the function was equal to zero. Likewise, for the HRF NCSA,

the same happened, but with the negative HRF values.

4.3.2.4 Univariate Scatterplots and Boxplots

In order to find patterns in the values of each parameter from each subject, in each condition

and group, for each ROI, thus showing relationships between them from the analysis of their

distribution and dispersion [142], categorical univariate scatterplots were made [143]. In these,

there is only one variable, which was divided into discrete groups (categories). Hence, all the

points which belonged to a specific category were along with its corresponding axis, and its

position would vary based on the values they owned [144].
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Then, boxplots were plotted for each parameter in each condition and group, for each ROI,

in order to more easily understand how the values of each parameter in these circumstances

were dispersed and if and how they were skewed, to consequently compare the distributions of

their values.

4.3.2.5 Statistical Analyses of the HRF Parameters

Assuming that the test samples were randomly selected from the two populations and that,

for each parameter, the values of the same parameter in the same condition but in different

groups per ROI were independent, it was intended to ascertain whether there were differences

between the two groups (CNT and T2DM) in each condition for each ROI, and how statistically

significant they were [145]. To do so, first, it was required to carry out a decision-maker test in

order to understand whether the sets of values of each HRF parameter in the two study groups

were normally distributed or not, and hence choose to implement a two-sample parametric or

non-parametric test, respectively. Thus, a Shapiro-Wilk test was performed in each set of values

from each parameter regarding each condition and group, for each ROI [146]. One opted to

implement this test instead of the Kolmogorov-Smirnov test because it owns greater statistical

power for the size of the analyzed samples (n = 64 and n = 77) [147].

In each condition, if the null hypothesis of the Shapiro-Wilk test was not rejected in a set

of values regarding the same parameter in both groups within a 95% confidence range, then

their normality assumption was validated, and a two-sample t-test would be later performed.

If the null hypothesis was rejected, which implied that the data did not verify the mentioned

assumption, then a Wilcoxon rank-sum test would be performed.

Bearing in mind that, in these analyzes, several statistical tests were simultaneously carried

out on parameters which were not entirely independent, such as HRF peak latency and HRF

relative slope to peak (see Equation 4.6), the multiple comparisons problem was again faced.

This problem was corrected in all parameters but not at a ROIs’ level, as it was expected that the

results would reflect effect replications. The same assumption was considered for the two studied

stimulation conditions (Threshold and Submaximum). However, as a less restrictive correction

was desired, the p-value was corrected by implementing the Benjamini-Hochberg approach with

a 0.1 false discovery rate (FDR) (equation 4.7) instead of the Bonferroni correction method, as

seen in the subsection 4.3.1.

Benjamini-Hochberg adjusted p-value = p-valueraw × m

i
(4.7)

With:

m: total number of tested hypothesis (6)

i: rank of the p-value (from 1 to 6)
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4.3.2.6 Average and Median values of the HRF Parameters

In order to better understand the dispersion of the parameters and to ease their inter-

pretation and comparison, the average and respective standard deviation or the median and

respective interquartile range of each parameter, in each condition and group per ROI, were

calculated according to the results obtained in the Shapiro-Wilk test. When the null hypothesis

was rejected by a set of values of a parameter, and therefore they were not normally distributed,

their median and corresponding interquartile range were calculated. On the other hand, when

the null hypothesis was not rejected, that is, when the values of a parameter were normally

distributed, their average and corresponding standard deviation were calculated.

4.3.2.7 Grand Average and Grand Median analysis

Finally, as a supplementary analysis, in each set of signal change ROIs (positive or negative),

the average of all the average HRF curves, as well as the average and standard deviation of

the HRF parameters extracted from each average HRF curve in each ROI for each group and

condition were calculated. Likewise, the same calculations were made with the median and,

consequently, the interquartile range.
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Results

5.1 Coefficient of Variation

5.1.1 HRF peak amplitude

Figure 5.1: CV of the HRF peak amplitude per group and condition, in each ROI.

In figure 5.1, given the values in which the CV scoped (0 to 0.18), it was noticed that the

HRF peak amplitudes presented a reduced variability in both groups and conditions. However,

in both positive and negative signal change ROIs, it was found that the CV’s absolute values

were commonly higher in T2DM participants, which indicated a higher inconsistency in the

HRF peak amplitude. Exceptions included R MFG BA8 - in both conditions; R MFG BA46, L

PrcL BA5, R CG BA24 - Threshold condition; L Insula BA13, R MT BA19, R SPL BA7, R V2
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BA18, L PrhG BA36 e R PC BA23 - Submaximum condition.

Furthermore, in both conditions of the positive signal change ROIs, it was seen that L IPL

BA40 owned the highest CV amplitude differences between groups, as well as the highest and

most dispersed absolute values of the CV - which indicated a higher peak amplitude variability

in this ROI. Besides, in the negative signal change ROIs, it was found that the highest amplitude

differences between groups took place in L PC BA30 (Threshold condition) and L AC BA32

(Submaximum condition).

5.1.2 HRF peak latency

Figure 5.2: CV of the HRF peak latency per group and condition, in each ROI.

In figure 5.2, it was found that the distribution of the values was a bit less uniform than that

seen in the peak amplitude (figure 5.1). Additionally, considering again the values in which the

CV ranged (0 to 0.4), it was noticed that the HRF peak latencies presented a reduced variability

in both groups and conditions. However, similarly to what was previously mentioned, overall, in

both conditions of both signal change ROIs, the absolute values of the CV were higher in T2DM

participants, also demonstrating a higher inconsistency of the peak latency in these subjects.

Nevertheless, some exceptions were observed in MT BA19 and L PC BA30 - in both conditions;

in L IPL BA40, L Insula BA13, R MFG BA8, R SPL BA7, L PrcL BA5, and L PrhG BA36

- Threshold condition; and in R V2 BA18, L PC BA30, and R PrimSens BA1 - Submaximum

condition.
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In the positive signal change ROIs, the highest amplitude differences between groups in

the CV were discernible in R V2 BA18 (Threshold condition) and L IPL BA40 (Submaximum

condition). In the negative signal change ROIs, these arose in L AC BA32, L CG BA31, R

PC BA23, and R PrecG BA4 - Threshold condition; and in L AC BA32 and L CG BA31 -

Submaximum condition.

Moreover, when comparing positive and negative signal change ROIs, the latter owned a

less trivial interpretation since large CV variations, nor large absolute value dispersions were

noticed, excluding two cases (L AC BA32 and L CG BA31).

5.2 Average HRFs

Figure 5.3: Average HRFs: positive signal change ROIs.

From figure 5.3, it was seen that, overall, in both conditions, the HRF shapes were relatively

similar in each group in all ROIs, except for two of them - R MT BA19 and R V2 BA18. It was

also found that the HRF shape in the controls was usually more resembling the canon, unlike the

HRF of the T2DM participants. The latter was more sluggish and depicted a more substantial

standard deviation, which denoted a higher variability. Additionally, the amplitude variation of

the HRF was roughly the same in all ROIs, mainly in the controls.

Besides, in both conditions of the HRFs of the controls and T2DM participants, a peak

was mostly noticed at 5 s and 7.5 s, respectively, except in three ROIs - L IPL BA40, R MFG

BA8, and R V2 BA18. It should also be noted that when the HRF peak was compared between

the two groups, there was a biphasic variation effect seen in the controls. First, a quick rise took

place, then followed by a slower rise or fall, which was later succeeded by a rapid drop towards

the baseline. Furthermore, in all ROIs, in both conditions, the PCSA was higher in the controls.
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Overall, the same trend was seen in the peak amplitude and in the NCSA, whose exception was

found in R MFG BA46, as well as in the relative slope to peak, whose exception was in the R

V2 BA18. Most ROIs also confirmed the same premise regarding the AUC, although with a

larger exception number (R MFG BA46, R MT BA19, and R SFG BA6 – both conditions; L

Insula BA13 - Threshold condition).

Moreover, an initial dip was always noticeable on the HRFs of the patients with T2DM (in

both conditions) and controls (in the Submaximum condition). Yet, there were some occasions

where it was also seen in controls in the Threshold condition, as in L IPL BA40, L Insula

BA13, R MFG BA8, and R SFG BA6. The initial dip was often more intense in the HRF

of T2DM participants, and it commonly took place at 2.5 s, except in R MFG BA8 (T2DM

participants in the Threshold condition), where it lasted 5 s. Besides, an undershoot in the HRFs

of both groups and conditions was generally noticed, except in R V2 BA18 (T2DM participants).

Comparing the HRF of both groups, the undershoot of the controls’ HRF was more intense, in

both conditions, with an onset of around 10 to 12.5 s and length roughly between 4 and 8 s. In

the HRF of T2DM participants, the undershoot had its onset between 10 and 15 s. Bearing in

mind the examined time window, in some ROIs, it was not possible to quantify the length of the

undershoot in these subjects. Nevertheless, it could be stated that the return of the HRF to the

baseline was, in some cases (R IFG BA9, R MFG BA8, R SPL BA7), slower than in controls,

lasting between 5 to more than 8.5 s. Usually, the length was longer when there was a bigger

delay between the peaks of the HRFs of controls and T2DM participants.

By analyzing figure A.1 and comparing it with figure 5.3, it was noticed that there was an

attenuation of the HRF amplitude in both conditions and groups. It was found that only some

ROIs, and not in all groups and/or conditions, exhibited an HRF with a relatively similar shape

to those contemplated in figure 5.3: L PC BA30, L PrcL BA5, R CG BA24, R PrecG BA4, R

PrecG BA43, R PrimSens BA1, and R STG BA39. It was also observed, as in figure 5.3, a more

significant standard deviation in the HRFs of the T2DM participants, again demonstrating a

higher variability of these curves.

Overall, given the inconsistency and randomness of the HRFs per ROIs, it was difficult to

grasp a global trend in the HRF peak amplitude, peak latency, relative slope to peak and PCSA,

and in the HRF’s amplitude variation, undershoot, and initial dip. However, it was possible to

refine a broad trend regarding AUC and NCSA, which were higher in the HRFs of the T2DM

participants and controls, respectively. In the ROIs which exhibited HRFs more similar to those

seen in figure 5.3, a peak latency between 7.5 and 10 s was observed in both conditions of the

HRFs of controls and T2DM participants, respectively. In these ROIs, the peak amplitude,

relative slope to peak, and PCSA were also considerably higher in the controls’ HRFs.

In this restricted set of ROIs, the initial dip was observed between 5 and 7.5 s in the HRF

of the T2DM participants. The undershoot on the controls’ HRF was more intense, with an

onset between 10 and 12.5 s and a length between 6 to 8.5 s. On the other hand, when it was

witnessed in the HRF of the T2DM participants, its onset was between 12.5 and 15 s. For the

same aforementioned reason, it could only be said that the undershoot lasted between 7.5 and
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more than 10 s. However, it was not possible to understand in which group the HRF’s return

to the baseline was longer.

Furthermore, in figure 5.3, it was found that several HRFs of both conditions and groups

started slightly deviated from zero. However, some exceptions were detected in both groups in

ROI R V2 BA18 (in both conditions), and in the HRFs of T2DM participants in L IPL BA40

and L Precuneus BA7 (Threshold condition); R SFG BA6 (Submaximum condition); R IFG

BA9, and R MFG BA46 (both conditions). In figure A.1, the same remark was made, except in

the controls’ HRFs in L PC BA30, L PrcL BA5, L PrhG BA36, R CG BA24, R PC BA23, R

PrecG BA4, R PrimSens BA1, and R STG BA9 (in both conditions); and in the HRFs of the

T2DM participants in L PrhG BA36, R PC BA23 and R STG BA39 (Submaximum condition).

Additionally, in figure A.1, in some HRFs of patients with T2DM and controls in the Threshold

condition (ROIs L AC BA32, R PrecG BA4, R PrimSens BA1, R PC BA23; L CG BA31,

correspondingly), relative or absolute maximum values transpired at the first instant.

It is important to emphasize that some inconsistencies were found when the results gathered

in figures 5.3 and A.1, in particular regarding the peak amplitude and relative slope to peak, were

compared with those in the tables 5.2 and A.2. A possible explanation for these inconsistencies

is addressed later on in chapter 6. Concerning the HRF peak amplitude, only in L PrhG BA36,

R Insula BA13, and R STG BA39 (both conditions); R IFG BA9, R MFG BA46, R SFG BA6,

R CG BA24, and R PrecG BA4 (Threshold condition); and R PrimSens BA1 (Submaximum

condition) did not confirm this feature. In the HRF relative slope to peak, this result was seen

in L Precuneus BA7, R IFG BA9, R MFG BA8, R SPL BA7, L AC BA32, R Insula BA13, R

PrecG BA43, and R PrimSens BA1 (both conditions); L CG BA31, L PrhG BA36 and R STG

BA39 (Submaximum condition).

5.3 Median HRFs

In figure 5.4, several trends similar to those described in figure 5.3 were found, although

there were some exceptions, which I will explain. In the first place, each HRF curve had its

interquartile range, which was higher on the HRFs of the T2DM participants. Then, even though

several initial dips were also noticeable, its regularity was smaller. They generally appeared on

the HRFs of the T2DM participants in both conditions, except in R IFG BA9, R SFG BA6, R

SPL BA7, and R V2 BA18. On the other hand, sometimes they were also found on the controls’

HRFs, except in L Insula BA13, R IFG BA9, R MT BA19, and R SPL BA7, with a higher

prevalence in the Submaximum condition. Finally, another difference concerning figure 5.3 was

related with the onset and length of the undershoots witnessed on the HRFs of both groups. In

the controls, the undershoot lasted between 3.5 and 7 s and had its onset between 10 and 12.5 s;

in T2DM participants, the undershoot transpired between 12.5 and 15 s. However, as in figure

A.1, in some ROIs (R IFG BA9, R MFG BA8, R SFG BA9), the undershoot’s length of the

T2DM participants’ HRFs in the Threshold condition was not able to be quantified. Therefore,

it could only be stated that, again, due to the same aforementioned reason, the HRF’s return

to baseline in these cases was slower than in controls, lasting between 3 to more than 8.5 s.
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Figure 5.4: Median HRFs: positive signal change ROIs.

Likewise, similarities with figure A.1 were found in figure 5.4. However, there were again

some differences, which I will now explain. First, given that this figure contained a set of

median HRF curves as in figure A.2, it was detected the interquartile range of the HRF, which

was higher on the HRFs of T2DM participants. Then, it was also harder to develop an overall

trend for the same HRF parameters and segments mentioned during the analysis of figure A.1,

due to the same reason. Although NCSA was also included in this set, the initial dip and PCSA

were excluded, with PCSA increasing in the controls. On the other hand, the initial dip was

commonly found on the HRFs of the T2DM participants, although it was observed once at 2.5 s

in L PrhG BA36, on the controls’ HRF in the Submaximum condition. Its onset was perceived

between 2.5 and 7.5 s, although it also transpired at 7.5 s. Furthermore, in the same set of ROIs

whose HRF shape was similar to those seen in figure 5.3, overall, and in both conditions, the

peak latency transpired roughly between 5 and 7.5 s and between 2.5 and 10 s, on the HRFs

of the controls and T2DM participants, correspondingly. Finally, in these ROIs, the onset and

length of the HRF undershoot in each group varied. The onset was equal in both groups, taking

place between 7.5 and 12.5 s. However, its length was roughly 6.5 to more than 10 s and 5

to more than 6.5 s in controls and T2DM participants, respectively. Once again, due to the

same reason already manifested, it was not possible to quantify the complete length of these

undershoots nor to understand in which group the HRF’s return to the baseline was larger.

Again, the same observation regarding deviations from zero in the first instants of the HRFs

in figures 5.4 and A.2 was made, but in different ROIs. In figure 5.4, this feature was not found

in R MFG BA8 and R MT BA19 (both conditions), and R MFG BA46 (Threshold condition),

on the HRFs of the T2DM participants; and in R MFG BA8 (Submaximum condition) and R

V2 BA18 (Threshold condition), on the HRFs of the controls. In figure A.2, this feature was not
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detected in L PrhG BA36, R Insula BA13, and R PrimSens BA1 (Submaximum condition); R

PrecG BA43 (Threshold condition) on the HRFs of the controls. Moreover, it was also seen in

CG BA24, R Insula BA13, R PrecG BA43 and R PrimSens BA1 (both conditions); L CG BA31,

L AC BA32, L PrhG BA36, R PrecG BA4 and R STG BA9 (Threshold condition); and in L PC

BA30 and R PC BA23 (Submaximum condition), on the HRFs of T2DM participants. Figure

A.2 also showed the same note regarding relative or absolute maximums at the first instant.

However, it only happened on the HRFs of T2DM participants in the Threshold condition in

the following ROIs: L AC BA32, R PrecG BA4, and R PrecG BA43.

Furthermore, as in figures 5.3 and A.1, some inconsistencies were found when the results

displayed in figures 5.4 and A.2, in particular regarding the HRF peak amplitude and relative

slope to peak, were compared with those in the tables 5.2 and A.2. In the HRF peak amplitude,

only L CG BA31, L PrhG BA36, and R STG BA39 (both conditions); R IFG BA9, R MFG

BA46, R SFG BA6, R PC BA23, and R PrecG BA4 (Threshold condition); and R CG BA24

(Submaximum condition) did not exhibit this feature. In the HRF relative slope to peak, this

feature was seen in L Precuneus BA7, R IFG BA9, R MFG BA8, R SPL BA7, L AC BA32,

L PC BA30, L PrcL BA5, R CG BA24, and R PrecG BA43 (both conditions); R PC BA23

and R STG BA39 (Threshold condition); and in L IPL BA40 and L PrhG BA36 (Submaximum

condition).

5.4 Grand Analysis

(a) Grand average HRFs. (b) Grand median HRFs.

Figure 5.5: Grand average and grand median HRFs: positive signal change ROIs.
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Table 5.1: Grand Analysis’ statistical component - positive signal change ROIs.

CNT T2DM
Average± Standard Deviation Median± Interquartile Range Average± Standard Deviation Median± Interquartile Range

Threshold 0,130 ± 0,035 0,116 ± 0,032 0,100 ± 0,051 0,107 ± 0,059
HRF peak amplitude (beta weights)

Submaximum 0,113 ± 0,029 0,113 ± 0,028 0,072 ± 0,039 0,077 ± 0,043
Threshold 8,000 ± 1,054 7,5 ± 0 10,750 ± 2,372 10,0 ± 2,5

HRF peak latency (s)
Submaximum 8,000 ± 1,054 7,5 ± 2,5 11,000 ± 2,108 10,0 ± 2,5
Threshold 0,021 ± 0,020 0,007 ± 0,005 0,010 ± 0,006 0,012 ± 0,005

HRF relative slope to peak (beta weights/s)
Submaximum 0,017 ± 0,005 0,017 ± 0,007 0,008 ± 0,004 0,011 ± 0,004
Threshold 1,413 ± 0,253 1,366 ± 0,278 1,297 ± 0,450 1,040 ± 0,655

HRF AUC (a.u.)
Submaximum 1,340 ± 0,218 1,306 ± 0,426 1,007 ± 0,354 0,761 ± 0,387
Threshold 0,492 ± 0,127 0,437 ± 0,162 0,324 ± 0,155 0,378 ± 0,198

HRF PCSA (a.u.)
Submaximum 0,413 ± 0,090 0,391 ± 0,112 0,254 ± 0,127 0,237 ± 0,210
Threshold 0,454 ± 0,130 0,401 ± 0,210 0,364 ± 0,156 0,293 ± 0,249

HRF NCSA (a.u.)
Submaximum 0,394 ± 0,088 0,370 ± 0,156 0,223 ± 0,101 0,225 ± 0,153

5.4.1 Grand Average

Based on figure 5.5a, and similarly to the results depicted in figures 5.3 and 5.4, an evident

difference on the HRF shape of the two sets of curves was visible. Comparing the two sets of

HRFs, the HRFs of the controls, again, were more resembling with the HRF canon shape and

showed a peak latency around 5 s, as well as an undershoot with onset at 10 or 12.5 s, in the

Submaximum or Threshold condition, respectively, lasting approximately 4 s. In addition, the

HRFs of the T2DM participants were more sluggish and, overall, when they were compared with

the controls’ curves, depicted relatively less amplitude variation and a peak latency delayed 2.5

s. The peak latency in these curves occurred around 7.5 s, and the undershoot had an onset

around 15 s. However, due to the same reason mentioned in figures 5.3 and 5.4, once again the

duration of the undershoot was not able to be quantified, and it could only be said that the

HRF’s return to the baseline was slower in T2DM participants, lasting between 5 to more than

6.5 s. Finally, an initial dip at 2.5 s was also verified in all HRF curves, except for the controls in

the Threshold condition. Moreover, the initial dip was more pronounced in T2DM participants.

Furthermore, there were no inconsistencies between the statistical and graphical compo-

nents of this analysis. Thus, in both conditions, it was found that the HRF peak amplitude,

the relative slope to peak, AUC, PCSA, and NCSA were higher in controls, while the HRF

peak latency was higher in T2DM participants. By analyzing figure 5.5a, it was found that

the standard deviation was relatively similar between groups and higher at the HRF’s begin-

ning (including in the initial dip), peak, and minimum (in the undershoot). In the statistical

component, AUC, PCSA, and NCSA were the only HRF parameters to have a higher standard

deviation in controls.

Based on figure A.3a, and similarly to the results obtained in figures A.1 and A.2, there

were quite marked differences between the HRFs of each group and condition when they were

compared with its corresponding ones in figure 5.5a. On the other hand, similarities were seen in

some aspects. The HRF shape of the two sets of curves corresponding to each group also depicted

a noticeable difference. Moreover, although not so evident, due to the reduced amplitude of the

beta weights, when the two sets of HRFs were compared, the HRFs of the controls were fairly

more similar to the HRF canon shape. The HRF of the controls showed a peak latency at 5 s

or 7.5 s (Threshold or Submaximum condition, respectively), as well as an undershoot with an

onset around 12.5 s, lasting approximately 8 or more than 9.5 s (Threshold or Submaximum

64



5. Results

condition, respectively). As in figure 5.5a, a small initial dip was also perceived at 2.5 s, but

only in the controls’ HRFs in the Submaximum condition. Moreover, in both conditions, the

HRFs of the T2DM participants were also more sluggish, even more than in figure 5.5a. Besides,

they generally had a higher amplitude variation and exhibited an initial dip at around 5 s in

both conditions. Additionally, on the HRFs of T2DM participants, the peak latency took place

at 12.5 s and 10 s, in the Threshold and Submaximum conditions, respectively. The undershoot

is non-existent in the Threshold condition since, after the peak onset, the HRF reaches the

baseline without crossing it even once. However, in the Submaximum condition, even though

it was barely noticeable, the undershoot loomed at 12.5 s, with a length of 5.5 s. Finally, it

was found that the HRF peak amplitude was higher in controls and T2DM participants in the

Threshold and Submaximum conditions, correspondingly.

Nevertheless, comparing the two components of this analysis, inconsistent results could be

observed. Due to the singularity of the HRFs, it could only be stated that, in both conditions,

the HRF peak amplitude, peak latency, AUC, and NCSA were higher in T2DM participants,

whereas the PCSA was higher in controls. In the Submaximum condition, the relative slope to

peak was higher in T2DM participants. However, in the Threshold condition, the opposite takes

place due to the initial maximum on the HRF of T2DM participants. In the statistical component

(table 5.1), it was found that all the previously mentioned parameters, as well as the PCSA,

were higher in T2DM participants. Contrarily, it was found that, in the Submaximum condition,

the peak latency was higher in T2DM participants. However, in the Threshold condition, the

absolute value of this parameter was equal. Additionally, in the Threshold condition, the relative

slope to peak was higher in controls, and, in the Submaximum condition, the opposite happened.

Besides, the standard deviation of the HRFs was slightly higher in the negative signal change

ROIs and somewhat similar between groups, increasing at the same segments stated in figure

5.5a, as well as in the peak rise. Statistically, in both conditions, only PCSA and NCSA

exhibited a higher standard deviation in controls and T2DM participants, respectively. In the

Submaximum condition, the HRF peak amplitude, relative slope to peak, and AUC were higher

in T2DM participants, transpiring the opposite in the Threshold condition. However, the peak

latency manifested a higher standard deviation in controls in the Submaximum condition and

was, therefore, higher in T2DM participants in the Threshold condition.

Again, in figures 5.5a and A.3a, the same note regarding the deviations from zero at the

first instants of the HRFs was made. In figure 5.5a, this feature was observed on the controls’

HRF. In figure A.3a, it was discerned on the controls’ HRF in the Submaximum condition and

on the T2DM participants’ HRF in the Threshold condition. Figure A.3a also shows the same

note regarding the relative or absolute maximums at the first instant, but only on the T2DM

participants’ HRF in the Threshold condition.

5.4.2 Grand Median

In figure 5.5b, numerous similarities with figure 5.5a were detected, so I will only mention

the differences between them. Although the initial dip was located on the same HRFs and at

the same time (2.5 s) as in figure 5.5a, it was more intense in controls in the Submaximum
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condition. On the other hand, small differences concerning the undershoot perceived in figure

5.5a were also observed. On the controls’ HRFs, the undershoot had an onset at 10 s, lasting 4

and 4.5 s in the Submaximum and Threshold conditions, respectively. On the opposite, on the

T2DM participants’ HRFs, the undershoot was only seen in the Threshold condition, with an

onset of 12 s and a length of 4 s.

There were also no inconsistencies between the statistical and graphical components of

this analysis. In figure 5.5b, the interquartile range was higher in the same segments discerned

in figure 5.5a. However, in the statistical component, in both conditions, only the peak am-

plitude and PCSA exhibited a higher interquartile range in patients with T2DM. The HRF

relative slope to peak, the AUC, and NCSA presented higher values in T2DM participants in

the Threshold condition and in controls in the Submaximum condition. On the other hand, the

HRF peak latency was higher in the Threshold condition in T2DM participants. However, in

the Submaximum condition, it had the same absolute value in both groups.

In figure A.3b, some similarities with what was seen in figure A.3a were also contemplated.

Therefore, I am only going to highlight the differences. The initial dip was only noticed on

the controls’ HRFs. As for peak latencies, in the Submaximum condition, these occurred at the

same time as its corresponding curves in figure A.3a; in the Threshold condition, the HRF peaks

of T2DM participants and controls transpired at 7.5 s. It is important to stress that the HRF

beginning in T2DM participants in the Submaximum condition transpired at a local minimum,

after which there was a slight rise at 2.5 s, followed by the initial dip (at 5 s). On the other

hand, the undershoot was unexistent in both conditions in T2DM participants since the HRFs

returned to the baseline just after the peak onset. On the controls’ HRFs, it was found that

the onset of the undershoot took place at the same time point as in figure A.3a (12.5 s), and its

length was approximately 6 s in both conditions.

Just as in the grand average analysis, inconsistent results between the two components

of this analysis were also found. In figure A.3b, it was found that, in both conditions, the

HRF peak amplitude peak, AUC, and NCSA were higher in T2DM participants, and that the

relative slope to peak was higher in controls. On the other hand, PCSA was bigger in T2DM

participants in the Threshold condition and smaller in the Submaximum condition. In the

HRF peak latency, it was noted the opposite, also due to an initial maximum on the HRFs

of the T2DM participants. Statistically, it was found that, in both conditions, the HRF peak

amplitude and NCSA were higher in controls and T2DM participants, respectively. However,

in the Threshold condition, both the AUC and PCSA were higher in T2DM participants, and

the relative slope to peak was higher in controls. The opposite pattern was noticed in the

Submaximum condition. Statistically, in both conditions, the HRF peak latency, AUC, and

NCSA showed a higher interquartile range in T2DM participants, with the opposite taking

place in the relative slope to peak and PCSA. Yet, the peak amplitude was higher in controls

in the Threshold condition and higher in T2DM participants in the Submaximum condition.

Again, in figures 5.5b and A.3b, the same observation regarding the deviations from zero in

the first moments of the HRFs was made. In figure 5.5b, all HRFs of both conditions witnessed
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deviations from zero at the first instants. In figure A.3b, the same feature was always seen

except on the controls’ HRF in the Threshold condition. Also, in figure A.3b, on the T2DM

participants’ HRF in the Threshold condition, relative or absolute maximums at the first instant

were seen.

5.5 Group Statistics

In each ROI, after all the parameters of each condition and group underwent the Shapiro-

Wilk test, it was found that, of the 528 parameters tested, only 10 did not reject the null

hypothesis, and therefore had a normal distribution. Of these ten, only two belonged to negative

signal change ROIs, and they both concerned PCSA, in the same condition, but in different

groups and ROIs (R PrecG BA43 PCSA CNT Threshold and R PrimSens BA1 PCSA T2DM

Threshold). The remaining eight, from the positive signal change ROIs, concerned the HRF

parameters in controls such as peak amplitude and NCSA in both conditions (R IFG BA9 peak

amplitude CNT Threshold / Submaximum, R SPL BA7 peak amplitude CNT Threshold /

Submaximum and R SPL BA7 NCSA CNT Threshold / Submaximum) and AUC in different

conditions (L IPL BA40 AUC CNT Submaximum and R SPL BA7 AUC CNT Threshold).

It was never seen that, in an ROI, the same parameter owned a normal distribution in

both groups simultaneously. Thus, one of the t-Student test’s assumptions was revoked, and

therefore, this test was never implemented. Consequently, the Wilcoxon rank-sum test was

always implemented, and a p-value adjustment according to the approach mentioned in 4.3.2.5

was made. According to the results of this test, in the positive signal change ROIs, overall,

it was found that the relative slope to peak and peak latency in the Threshold condition had

slight differences between the two groups. In the negative signal change ROIs, the same results

were overall found in the peak amplitude in the Threshold condition, in the NCSA in the

Submaximum condition, and in the peak latency and relative slope to peak in both conditions.

Table 5.2: Shapiro-Wilk test’s p-values (α = 0.05) and the median and interquartile range of
each HRF parameter of each condition per ROI - Positive signal change ROIs.

HRF peak amplitude (beta weights) HRF peak latency (s)
Threshold Submaximum Threshold Submaximum

CNT T2DM CNT T2DM CNT T2DM CNT T2DM
p-value 2,260E-06 2,569E-05 7,447E-04 3,612E-07 2,182E-08 3,731E-06 4,668E-07 1,072E-04

L IPL BA40
Median± Interquartile Range 0,183 ± 0,094 0,218 ± 0,187 0,167 ± 0,155 0,236 ± 0,211 5 ± 10 6,25 ± 10 5,0 ± 7,5 7,5 ± 5
p-value 1,346E-07 8,280E-09 6,605E-08 1,167E-05 2,544E-08 6,271E-05 4,906E-09 1,076E-04

L Insula BA13
Median± Interquartile Range 0,178 ± 0,167 0,195 ± 0,187 0,169 ± 0,131 0,198 ± 0,201 5,0 ± 7,5 10,0 ± 7,5 5,0 ± 7,5 7,5 ± 7,5
p-value 0,002 0,001 0,001 1,079E-04 4,630E-08 1,519E-05 2,015E-07 2,123E-06

L Precuneus BA7
Median± Interquartile Range 0,172 ± 0,162 0,266 ± 0,274 0,193 ± 0,152 0,241 ± 0,233 5 ± 10 7,5 ± 7,5 5,0 ± 7,5 5 ± 5
p-value 0,107 5,656E-06 0,060 2,778E-08 4,770E-09 2,932E-05 2,121E-09 1,364E-04

R IFG BA9
Median± Interquartile Range 0,161 ± 0,074∗ 0,227 ± 0,194 0,149 ± 0,065∗ 0,222 ± 0,218 5,000 ± 8,125 7,50 ± 6,25 5 ± 10 7,5 ± 7,5
p-value 6,413E-09 5,728E-07 4,230E-08 9,998E-09 2,167E-09 6,357E-06 1,387E-08 9,947E-05

R MFG BA8
Median± Interquartile Range 0,198 ± 0,136 0,192 ± 0,226 0,179 ± 0,142 0,180 ± 0,222 5 ± 10 5,0 ± 7,5 5,000 ± 5,625 7,5 ± 5
p-value 3,178E-08 1,947E-04 3,429E-06 1,297E-08 2,777E-08 2,794E-05 5,131E-08 7,848E-05

R MFG BA46
Median± Interquartile Range 0,174 ± 0,130 0,232 ± 0,240 0,179 ± 0,135 0,227 ± 0,221 5,0 ± 7,5 7,5 ± 7,5 5,0 ± 7,5 7,5 ± 7,5
p-value 3,224E-08 1,664E-06 2,336E-07 2,678E-08 1,732E-08 1,791E-05 1,075E-08 2,652E-05

R MT BA9
Median± Interquartile Range 0,181 ± 0,138 0,203 ± 0,223 0,207 ± 0,115 0,222 ± 0,246 5 ± 10 7,5 ± 7,5 5 ± 10 7,5 ± 7,5
p-value 2,274E-08 4,481E-04 4,523E-06 2,864E-08 2,478E-07 7,703E-05 1,310E-07 2,168E-05

R SFG BA6
Median± Interquartile Range 0,207 ± 0,196 0,243 ± 0,169 0,222 ± 0,171 0,204 ± 0,182 5,0 ± 7,5 7,50 ± 6,25 5 ± 10 7,5 ± 5
p-value 0,057 2,246E-11 0,445 4,785E-11 1,089E-04 3,724E-05 1,976E-05 3,058E-04

R SPL BA7
Median± Interquartile Range 0,173 ± 0,076∗ 0,243 ± 0,233 0,171 ± 0,077∗ 0,236 ± 0,231 7,5 ± 7,5 7,5 ± 7,5 7,5 ± 7,5 7,5 ± 5
p-value 7,928E-09 4,553E-08 4,364E-05 8,409E-10 3,186E-09 2,270E-04 1,312E-09 4,732E-04

R V2 BA18
Median± Interquartile Range 0,160 ± 0,126 0,177 ± 0,184 0,173 ± 0,178 0,206 ± 0,198 5,000 ± 5,625 10,0 ± 7,5 5 ± 5 7,5 ± 7,5
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HRF relative slope to peak (beta weights/s) HRF AUC (a.u.)
Threshold Submaximum Threshold Submaximum

CNT T2DM CNT T2DM CNT T2DM CNT T2DM

p-value 1,788E-09 5,558E-05 7,076E-10 0,003 3,035E-05 2,333E-08 0,501 1,187E-06
L IPL BA40

Median± Interquartile Range 0,032 ± 0,072 0,030 ± 0,069 0,023 ± 0,048 0,039 ± 0,072 2,872 ± 1,698 4,590 ± 4,740 3,034 ± 1,169∗ 4,532 ± 4,525
p-value 2,544E-08 6,271E-05 4,906E-09 1,076E-04 7,839E-07 1,319E-07 2,775E-07 6,008E-06

L Insula BA13
Median± Interquartile Range 0,026 ± 0,090 0,016 ± 0,038 0,032 ± 0,054 0,021 ± 0,057 2,646 ± 2,060 3,708 ± 3,475 2,376 ± 2,233 3,801 ± 2,874
p-value 1,236E-09 8,815E-05 1,133E-09 0,015 1,428E-06 9,667E-05 2,333E-04 2,528E-07

L Precuneus BA7
Median± Interquartile Range 0,029 ± 0,049 0,038 ± 0,095 0,026 ± 0,043 0,050 ± 0,094 2,921 ± 2,896 4,233 ± 3,939 3,338 ± 3,737 4,335 ± 6,175
p-value 2,331E-04 5,018E-06 9,685E-06 2,841E-07 1,166E-05 2,846E-10 2,603E-05 9,762E-10

R IFG BA9
Median± Interquartile Range 0,028 ± 0,048 0,034 ± 0,059 0,021 ± 0,050 0,029 ± 0,051 2,460 ± 1,209 3,912 ± 3,385 2,462 ± 1,425 3,994 ± 2,715
p-value 1,384E-06 2,234E-03 1,919E-03 4,035E-06 1,148E-06 2,940E-07 2,059E-08 2,804E-09

R MFG BA8
Median± Interquartile Range 0,035 ± 0,084 0,038 ± 0,061 0,057 ± 0,077 0,024 ± 0,045 3,162 ± 2,516 3,889 ± 4,061 3,427 ± 2,120 3,475 ± 3,665
p-value 6,898E-09 4,998E-07 1,072E-07 2,041E-12 5,907E-07 1,107E-10 3,751E-05 3,071E-09

R MFG BA46
Median± Interquartile Range 0,036 ± 0,068 0,031 ± 0,065 0,036 ± 0,068 0,022 ± 0,056 3,168 ± 1,814 3,888 ± 3,296 3,219 ± 2,394 4,430 ± 3,746
p-value 1,515E-05 4,577E-08 2,567E-06 2,652E-07 1,736E-07 2,109E-08 4,409E-06 1,331E-06

R MT BA9
Median± Interquartile Range 0,043 ± 0,094 0,030 ± 0,058 0,044 ± 0,086 0,025 ± 0,065 3,114 ± 2,187 3,697 ± 3,191 3,370 ± 2,277 3,887 ± 3,708
p-value 1,791E-04 5,679E-13 5,175E-06 2,182E-09 1,231E-06 1,121E-08 3,564E-11 9,205E-07

R SFG BA6
Median± Interquartile Range 0,047 ± 0,074 0,034 ± 0,060 0,032 ± 0,053 0,032 ± 0,051 4,183 ± 2,826 4,149 ± 3,339 3,866 ± 3,371 4,348 ± 3,784
p-value 4,495E-08 4,776E-06 2,004E-07 2,776E-15 0,062 9,936E-14 4,142E-05 1,768E-12

R SPL BA7
Median± Interquartile Range 0,025 ± 0,034 0,032 ± 0,058 0,022 ± 0,031 0,042 ± 0,060 3,124 ± 1,185∗ 4,097 ± 3,951 2,809 ± 2,639 4,247 ± 3,290
p-value 1,899E-10 4,436E-05 1,310E-09 5,139E-11 4,466E-09 5,107E-10 3,377E-07 4,798E-10

R V2 BA18
Median± Interquartile Range 0,033 ± 0,061 0,026 ± 0,061 0,046 ± 0,066 0,034 ± 0,048 3,096 ± 2,069 3,620 ± 3,085 3,709 ± 2,697 3,687 ± 2,716

HRF PCSA (a.u.) HRF NCSA (a.u.)
Threshold Submaximum Threshold Submaximum

CNT T2DM CNT T2DM CNT T2DM CNT T2DM
p-value 7,878E-07 3,341E-07 0,024 9,016E-06 3,055E-05 2,636E-06 0,001 1,542E-10

L IPL BA40
Median± Interquartile Range 0,756 ± 0,646 1,050 ± 0,929 0,642 ± 0,530 1,200 ± 0,851 0,705 ± 0,525 0,898 ± 0,976 0,753 ± 0,516 1,011 ± 0,763
p-value 1,527E-06 1,086E-07 1,569E-05 1,029E-06 1,247E-08 1,104E-08 7,493E-09 1,222E-09

L Insula BA13
Median± Interquartile Range 0,668 ± 0,573 0,845 ± 0,784 0,668 ± 0,563 0,936 ± 0,913 0,656 ± 0,615 1,020 ± 0,838 0,574 ± 0,484 0,875 ± 0,910
p-value 1,323E-04 1,065E-03 1,069E-03 2,031E-05 5,576E-05 8,432E-05 1,498E-05 2,327E-06

L Precuneus BA7
Median± Interquartile Range 0,742 ± 0,626 1,226 ± 1,257 0,788 ± 0,772 1,081 ± 1,144 0,799 ± 0,699 1,052 ± 1,135 0,883 ± 0,981 0,958 ± 0,849
p-value 0,020 5,890E-07 0,014 5,685E-07 7,608E-04 1,352E-08 8,437E-03 1,411E-09

R IFG BA9
Median± Interquartile Range 0,659 ± 0,425 0,951 ± 0,804 0,650 ± 0,452 1,031 ± 0,828 0,632 ± 0,463 0,975 ± 1,213 0,620 ± 0,312 0,999 ± 0,919
p-value 3,232E-08 4,097E-07 1,371E-09 1,635E-08 1,004E-05 4,724E-07 8,913E-09 9,083E-09

R MFG BA8
Median± Interquartile Range 0,860 ± 0,556 0,968 ± 0,990 0,784 ± 0,573 0,919 ± 1,089 0,739 ± 0,496 0,827 ± 0,873 0,765 ± 0,441 0,803 ± 0,672
p-value 1,479E-06 4,128E-08 1,989E-04 1,416E-07 5,620E-08 1,506E-09 0,002 1,426E-09

R MFG BA46
Median± Interquartile Range 0,782 ± 0,577 0,916 ± 0,693 0,836 ± 0,607 1,040 ± 0,989 0,744 ± 0,552 0,988 ± 0,944 0,805 ± 0,494 1,028 ± 0,967
p-value 2,959E-06 1,518E-06 2,254E-08 3,715E-08 8,653E-08 6,683E-07 2,352E-07 1,314E-06

R MT BA9
Median± Interquartile Range 0,804 ± 0,674 1,014 ± 0,936 0,912 ± 0,512 0,983 ± 0,913 0,799 ± 0,612 0,834 ± 1,006 0,906 ± 0,458 0,904 ± 0,982
p-value 7,378E-05 2,900E-05 2,457E-07 2,696E-05 1,308E-06 2,931E-07 1,307E-07 1,179E-07

R SFG BA6
Median± Interquartile Range 0,896 ± 0,864 1,026 ± 0,829 0,895 ± 0,792 1,008 ± 0,864 0,961 ± 0,677 1,028 ± 0,890 0,872 ± 0,768 0,930 ± 0,926
p-value 0,027 1,191E-12 4,819E-04 2,493E-12 0,056 5,681E-12 0,334 4,029E-12

R SPL BA7
Median± Interquartile Range 0,723 ± 0,403 1,058 ± 1,299 0,710 ± 0,552 1,040 ± 0,865 0,739 ± 0,362∗ 0,992 ± 0,854 0,813 ± 0,374∗ 0,998 ± 0,926
p-value 2,325E-06 3,324E-09 1,537E-05 1,383E-09 1,715E-07 2,395E-09 1,578E-10 8,612E-10

R V2 BA18
Median± Interquartile Range 0,792 ± 0,646 0,883 ± 0,639 0,803 ± 0,861 0,893 ± 0,909 0,777 ± 0,689 0,938 ± 0,803 0,861 ± 0,724 0,935 ± 0,612

Key: * - represents the average and standard-deviation of the HRF parameters which did not
reject the null hypothesis of the Shapiro-Wilk test, and therefore owned a normal distribution.

Table 5.3: Wilcoxon rank-sum test’s adjusted p-values (FDR = 0.10) in each HRF parameter
of each condition per ROI - Positive signal change ROIs.

HRF peak amplitude (beta weights) HRF peak latency (s)
Threshold Submaximum Threshold Submaximum

L IPL BA40 Adjusted p-value (FDR = 0,10) 0,068 0,001 0,833 0,631
L Insula BA13 Adjusted p-value (FDR = 0,10) 0,180 0,096 0,001 0,018
L Precuneus BA7 Adjusted p-value (FDR = 0,10) 0,001 0,033 0,509 0,665
R IFG BA9 Adjusted p-value (FDR = 0,10) 0,001 3,673E-05 0,421 0,025
R MFG BA8 Adjusted p-value (FDR = 0,10) 0,532 0,827 0,472 0,022
R MFG BA46 Adjusted p-value (FDR = 0,10) 0,038 0,086 0,042 0,003
R MT BA19 Adjusted p-value (FDR = 0,10) 0,485 0,827 0,188 0,494
R SFG BA6 Adjusted p-value (FDR = 0,10) 0,666 2,005 0,340 1,107
R SPL BA7 Adjusted p-value (FDR = 0,10) 4,327E-04 0,001 0,995 0,218
R V2 BA18 Adjusted p-value (FDR = 0,10) 0,225 0,241 1,863E-04 2,559E-04
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HRF relative slope to peak (beta weights/s) HRF AUC (a.u.)
Threshold Submaximum Threshold Submaximum

L IPL BA40 Adjusted p-value (FDR = 0,10) 0,854 0,025 0,001 3,712E-05
L Insula BA13 Adjusted p-value (FDR = 0,10) 0,020 0,190 0,005 1,508E-04
L Precuneus BA7 Adjusted p-value (FDR = 0,10) 0,455 0,064 0,002 0,011
R IFG BA9 Adjusted p-value (FDR = 0,10) 0,408 0,447 7,670E-07 8,208E-07
R MFG BA8 Adjusted p-value (FDR = 0,10) 0,424 0,033 0,557 0,837
R MFG BA46 Adjusted p-value (FDR = 0,10) 0,472 0,062 0,017 0,009
R MT BA19 Adjusted p-value (FDR = 0,10) 0,861 0,720 0,230 0,799
R SFG BA6 Adjusted p-value (FDR = 0,10) 0,103 3,298 0,692 1,434
R SPL BA7 Adjusted p-value (FDR = 0,10) 0,313 0,006 0,007 0,002
R V2 BA18 Adjusted p-value (FDR = 0,10) 0,755 0,646 0,190 0,624

HRF PCSA (a.u.) HRF NCSA (a.u.)
Threshold Submaximum Threshold Submaximum

L IPL BA40 Adjusted p-value (FDR = 0,10) 0,001 7,167E-07 0,076 0,001
L Insula BA13 Adjusted p-value (FDR = 0,10) 0,095 0,008 0,004 2,126E-04
L Precuneus BA7 Adjusted p-value (FDR = 0,10) 0,001 0,034 0,012 0,086
R IFG BA9 Adjusted p-value (FDR = 0,10) 0,001 3,315E-05 1,606E-04 2,169E-05
R MFG BA8 Adjusted p-value (FDR = 0,10) 0,846 0,576 0,558 0,793
R MFG BA46 Adjusted p-value (FDR = 0,10) 0,046 0,042 0,018 0,005
R MT BA19 Adjusted p-value (FDR = 0,10) 0,508 1,265 0,773 0,953
R SFG BA6 Adjusted p-value (FDR = 0,10) 0,693 0,917 0,910 0,809
R SPL BA7 Adjusted p-value (FDR = 0,10) 0,008 0,001 0,005 0,012
R V2 BA18 Adjusted p-value (FDR = 0,10) 0,617 0,971 0,149 0,751

5.6 Boxplots

In the positive signal change ROIs, it was found that, overall, in both conditions, the median

(average*) relative slope to peak was higher in controls. On the opposite, the remaining HRF

parameters (peak amplitude, peak latency, AUC, PCSA, and NCSA) were higher in T2DM

participants. Besides, it was found that, mainly in both conditions, the interquartile ranges

(standard deviation*) of the HRF peak amplitude, AUC, PCSA, and NCSA were higher in

T2DM participants. On the other hand, the interquartile range of the peak latency was higher

in controls. Furthermore, although the interquartile range of the relative slope to peak in the

Threshold condition was overall higher in controls, in the Submaximum condition, this parameter

did not exhibit an overall trend. That is, the relative slope to peak was higher in controls the

same amount of times as in T2DM participants.

It was also seen that the dispersion of absolute values was always higher in the peak latency

and shorter in the peak amplitude and relative slope to peak, in all conditions and groups. It

was found that, generally, the parameters per group and condition followed an asymmetric

distribution and were positively skewed, that is, their average was bigger than their median. It

should also be noted that some of the HRF parameters with a normal distribution according to

the Shapiro-Wilk test as R SPL BA7 AUC CNT Threshold and R IFG BA9 peak amplitude

CNT Submaximum showed a slight asymmetry on the boxplot.

In the negative signal change ROIs, the same overall trend concerning the median values in

the positive signal change ROIs was observed. Furthermore, the notes regarding the interquartile

range in the peak amplitude, relative slope to peak, AUC, PCSA, and NCSA in both conditions,

and the peak latency in the Threshold condition were overall in agreement with its corresponding

ones in the positive signal change ROIs. However, it was found that the interquartile range in
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the peak latency in the Submaximum condition was the same between the two groups.

The same trends regarding the dispersion of values and the distribution symmetry seen

in the positive signal change ROIs were noticed. Also, in the positive signal change ROIs,

some HRF parameters with a normal distribution according to the Shapiro-Wilk test, such as

R PrimSens BA1 PCSA T2DM Threshold and R PrecG BA43 PCSA CNT Threshold showed

a slight asymmetry on the boxplot.

Figure 5.6: Average and median HRFs and HRF parameters: L IPL BA40.
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Figure 5.7: Average and median HRFs and HRF parameters: L Insula BA13.

Figure 5.8: Average and median HRFs and HRF parameters: L Precuneus BA7.
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Figure 5.9: Average and median HRFs and HRF parameters: R IFG BA9.

Figure 5.10: Average and median HRFs and HRF parameters: R MFG BA8.
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Figure 5.11: Average and median HRFs and HRF parameters: R MFG BA46.

Figure 5.12: Average and median HRFs and HRF parameters: R MT BA19.
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Figure 5.13: Average and median HRFs and HRF parameters: R SFG BA6.

Figure 5.14: Average and median HRFs and HRF parameters: R SPL BA7.
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Figure 5.15: Average and median HRFs and HRF parameters: R V2 BA18.

5.7 Univariate Scatterplots

In the positive signal change ROIs (figures A.16 to A.37), it was found that almost all

HRF parameters depicted higher absolute values and dispersion in T2DM participants, except

for the HRF peak latency and relative slope to peak. The absolute values of the former did

not exhibit any widespread trend between groups, although they manifested higher dispersion

in controls. On the other hand, the absolute values of the latter, even though they presented

higher dispersion in T2DM participants, they were higher in controls.

In reverse, in the negative signal change ROIs, the same trend was perceived even in

parameters that did not validate this premise in the positive signal change ROIs. However,

in this case, although the dispersion of the HRF peak latency data was higher in controls, its

absolute values were higher in T2DM participants. Furthermore, although the absolute values

of the HRF relative slope to peak were also higher in controls, its data dispersion did not show

an overall trend.
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This study found that the HRF and, consequently, its parameters and morphology differed

between groups and were profoundly altered in T2DM. Overall, in all ROIs, T2DM participants

presented a more sluggish (time delayed) HRF - diverging from the canonical HRF - with a

higher peak latency and an absent or a less intense, but lengthier undershoot (final deactivation),

with a higher onset. Besides, their HRFs exhibited smaller peak amplitude and relative slope

to peak. Although AUC, PCSA, and NCSA appear to be relatively similar between the two

populations, they tended to be smaller in T2DM participants. Furthermore, the inter-HRF and

inter-parameter variabilities were, on average, also higher in T2DM participants. Lastly, the

HRFs of T2DM participants often included an initial dip (the classic initial reduction due to the

mismatch between oxygen consumption and blood supply) - unlike what happens in controls -

whose intensity did not have a general trend.

It is suggested that the underlying reason for the witnessed changes in the HRFs of T2DM

participants may be compromised neurovascular coupling. Possible explanations for this outcome

could include vascular damage (such as endothelial dysfunction), impairment of the vasodilation

regulatory mechanisms, or limited O2 transport. It is not likely that intrinsic neuronal activity

alterations could have a significant effect on these curves because, as mentioned, during the

task, the stimuli were individually-fitted so that the task difficulty was similar for all subjects.

Furthermore, the task performance was identical between groups, revealing parallel perceptual

discrimination ability. That is, regardless of the potential cell damage in T2DM participants, the

neurons in the stimuli-activated regions theoretically will have the same integrity types between

the two groups.

In T2DM participants, there is an imbalance between the relative O2 consumption and

blood supply. In fact, even if there were the same O2 use under stimulation and neuronal activa-

tion conditions in both groups, due to the NVC changes, the oxygenated blood supply becomes

smaller and thus, the O2 decrease induced by neuronal activity will not be so swiftly offset -

which justifies the overall HRF delay found. Consequently, the deoxyhemoglobin concentration

will increase, hence decreasing the BOLD signal, which explains the initial dip seen in its av-

erage and median HRFs, and most often absent or less perceptible in the controls. When the

blood supply finally starts to balance the O2 consumption, the BOLD signal increases, but more

gradually and slower than usual until the peak is reached - which elucidates, in turn, the higher

peak latency and smaller amplitude peak and relative slope to peak overall seen in the average
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and median HRFs of T2DM participants. On the opposite, the controls, with a more efficient

NVC, will own a higher and faster BOLD signal increase, producing a higher peak amplitude,

relative slope to peak, AUC, PCSA, and NCSA, but a lower peak latency, which matches with

the overall results. It should also be noted that the biphasic variation effect witnessed at the

HRF peak of the controls may be justified, on the other hand, by a mere curve artifact, con-

sidering its temporal resolution (2.5 s), and not as a physiological effect of the hemodynamic

response. In T2DM participants, after reaching the peak, the return to the baseline, due to the

aforementioned reasons, will have delays and will be slower than in controls, which is mainly

in line with the achieved results. On the other hand, the undershoot may not be discerned,

which may be due to a masking effect prompted by the lower efficiency of the first phase of the

hemodynamic response.

Moreover, the components of the NVC own intraindividual, inter-region, and inter-condition

variability [57], which it is required to be characterized in order to understand how the hemody-

namic response is governed. In particular, T2DM does not affect each individual equivalently.

The hemodynamic response, in fact, displayed a large inter-subject variability in T2DM, which

is consistent with the damage differences in NVC, and will overall increase the HRF variability

in T2DM participants. Conversely, the controls, as they overall own a more efficient NVC, and

considering that the studied sample of individuals belongs to a specific age group (40-76 years

old), then, the hemodynamic response will be more similar between them and will show less

variability.

Furthermore, the results also demonstrate a predominant HRF replication effect between

ROIs and between the type of stimuli. In other words, the HRFs are not significantly different

between ROIs and between the type of stimuli. This consistency effect between ROIs and

conditions suggest an overall effect of T2DM on the HRF which is similar between regions and

conditions.

However, there were some limitations to this study. First, the HRFs of the negative signal

change ROIs displayed less amplitude variation than the analogs in the positive signal change

ROIs. Besides, they presented atypical responses, with distinct randomness and variability,

so they did not always resemble the HRFs shown in the aforementioned ROIs, which made it

difficult to obtain an overall trend for the several HRF parameters in all ROIs. Their values

differed significantly between themselves and, in many cases, deviated from the values and trends

previously described in the positive signal change ROIs, which is why a less thorough analysis

of the remaining results was not performed as in the positive signal change ROIs. It should also

be noted that only a few ROIs owned vague similarities to the positive signal change ROIs, but

not in all conditions or groups (L PC BA30, L PrcL BA5, R CG BA24, R PrecG BA4, R PrecG

BA43, R PrimSens BA1, and R STG BA39). It is based on these and on other results that

it becomes crucial to justify the reason underlying the designation of these ROIs as negative

signal change ROIs instead of deactivation regions. Furthermore, the HRFs of these ROIs were

distinct from the classic deactivation, which was similar to those existing in the positive signal

change ROIs, yet inverted. That is, there would be a large signal decrease against the baseline,
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a peak (which would correspond to the minimum of the function) around 4-6 seconds, and

a return to the baseline at 16-20 seconds. Similarly to the canonical HRF, there could also

be an initial dip (positive) before the peak [148]. Overall, the HRF baseline of the T2DM

participants in the Threshold condition was slightly greater than zero (no higher than 0.07),

and the signal lowered (no lower than -0.07). Although it seems a small value at all, it turns

out to be a high drop against the baseline, and it can be captured as a deactivation by the

statistical model. However, by carefully observing these curves, it turns out that it may well

not be it, given that the remaining HRFs in the same ROIs did not follow the same pattern.

Therefore, what was witnessed in the HRFs of the T2DM participants in the Threshold condition

can also be explained by a noise effect in the baseline or by a relatively normal activation with

an initial dip, followed by a weakened rise, resulting in a relatively reduced slope to peak and

peak amplitude - potentially a consequence of compromised NVC. As the term deactivation is

commonly associated with a physiological meaning - a region which decreases its activity during

a condition - and as the meaning of the HRFs of these ROIs is not understood, which is another

reason why a more detailed analysis was not performed, it was considered wiser to designate

them as negative signal change ROIs. In order to maintain the coherence, the remaining ROIs,

in which the discussion was focused, were designated as positive signal change ROIs even though

they resemble the typical activation ROIs.

Secondly, in each ROI, there were some discrepancies when the trends between the aver-

age/median parameters of the average/median HRFs from all subjects and the average/median

of the individual HRF parameters were compared, possibly from higher outlier probability on

T2DM due to higher variability. These were due to an average of all subjects vs. average of the

individual values effect, which reveals a lesser value consistency over time in T2DM participants,

with this effect being more sensitive to outliers. For instance, the results in figures 5.3 and 5.4

were obtained by estimating, correspondingly, the average and the median of the individual beta

weights of a given group and condition at each data point for each positive signal change ROI.

Analogously, the same estimate was implemented in each negative signal change ROIs in figures

A.1 and A.2. However, in tables 5.2 and A.2, the average and the median of the individual

HRF parameters were displayed in each group and condition for each positive and negative

signal change ROIs, respectively. In order to simplify the explanation and to expand it to the

remaining parameters, I will only regard the peak amplitude. When the average (median) of the

peak amplitude of the individual HRFs is calculated, regardless of its occurrence, we will obtain

a greater average (median) peak amplitude, since individually it is less likely to suppress the

variability effect when outliers exist. However, in the average (median) HRFs, as the average

(median) of each data point is calculated, the peak can be attenuated, given its variability per

subject. Yet, if the peak befalls in more participants at a given datapoint, the value of the peak

amplitude at that datapoint will resemble more the amplitude of the average (median) peak.

Thus, it is believed that T2DM participants own a higher variability concerning the datapoint

where the peak looms, prompting a lower peak amplitude in the average and median HRFs,

which is far from the average (median) peak amplitude, increasing the disparity between the

two parameters when group and individual averages were compared. The same effect happens
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again and becomes clearer when the visual interpretation of the grand average (median) and the

statistical results of the global average (median) parameters were compared. In each condition

and group, the grand average (median) HRF was estimated by calculating the averages (medi-

ans) of all the average (median) HRFs in each type of signal change ROIs (positive/negative).

On the other hand, the parameters displayed in tables 5.1 and A.1 were estimated by calculating

the average (median) of all parameters of the mean (median) HRFs in each type of signal change

ROIs.

Besides, in figures 5.3 and 5.4, it was found that R MT BA19 and R V2 BA18 owned

average and median HRFs that diverged from the canonical HRF shape in T2DM participants,

which may be due to an inability effect to produce robust activation.

Moreover, according to the GLM model, HRFs should start presumably at zero, which

cannot happen when, for instance, there is noise in the signal. This would be the suggested

cause for the deviations from zero seen in the first instant of several HRFs, and, although in a

more amplified way, for the relative or absolute maximums existing in those same instants, in

many of the HRFs of the negative signal change ROIs.

Additionally, the slight boxplot asymmetry found in some of the HRF parameters with

a normal distribution according to the Shapiro-Wilk test may be due to its p-values slightly

lower than the FDR (0.10). Thus, the null hypothesis ends up not being rejected, and these

parameters turn out to own a barely normal distribution.

Nevertheless, it should be also stressed a very curious remark: the existence of two sub-

regions of the same brain region (L Insula BA13 and R Insula BA13) with very distinct HRFs.

It would be thought that it could indicate slightly different behaviors. However, as long as the

negative signal change ROIs cannot be understood, it will be a too hasty statement to utter.

Thus, as there are no typical deactivations, the most likely cause should be the SNR effect,

since the negative signal changes can be caused by noise in the baseline. In other words, deep

down, both regions would exhibit positive signal changes, but the GLM in one of the sub-regions

captured the variation against the baseline as negative.

Finally, despite the strong statistical power of these results, besides T2DM, there are several

other sources of NVC changes, which in turn can introduce variability. For instance, the BOLD

signal, which measures indirectly and qualitatively the NVC, is also sensitive to other hemody-

namic processes even from non-pathological sources (e.g. atypical brain physiology) [57, 149].

Thus, when the NVC is investigated, its interpretation and comparison between groups become

more complicated [150], requiring a more sensible result evaluation in participants with altered

hemodynamics. Therefore, one way to decrease variability and, consequently, improve the re-

sults, would be diminishing variance within populations. Although in this study the age effect

on NVC was considered, given that all the subjects belonged to the same age group (40-76

years), it would be a good suggestion to perform an individual preliminary analysis, assess-

ing, for instance, the neurovascular system state or the clinical history of each subject (other

co-morbidities, medications, among others).
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This project proved that patients with T2DM have a compromised hemodynamic response

function in all brain regions, regardless of the displayed type of stimulus. These damages were

evidenced by the distinctive HRF shape and by the differences overall noticed in its parameters,

in both conditions and in all ROIs: a more sluggish (time delayed) and smaller HRF, with

an initial dip and a delayed or even absent undershoot, higher peak latency, and lower peak

amplitude, relative slope to peak, AUC, PCSA, and NCSA.

It is suggested that the changes discerned between groups in the HRF and its parameters

are due to early neurovascular uncoupling caused by T2DM. However, since the NVC is a rather

complex system, whose components change between regions and conditions, conditioning how

the coupling takes place [59], it is not possible to state precisely which mechanism or component

has been affected and how or to what extent. Further research should be done on this topic

to understand and, in the future, potentially halt the brain functional damage progression in

T2DM. A suggestion would be the implementation of other imaging techniques such as Arterial

Spin Labeling (ASL) and/or Positron Emission Tomography (PET) - even though the latter

owns reduced spatial resolution - in order to estimate more direct and independent measures on

vascular perfusion and/or metabolism, correspondingly. However, first and foremost, it should

be expanded more knowledge about the NVC, its mechanisms, and how they regulate it.

This project also validated the fMRI as a tool to evaluate the HRF in T2DM. On the

one hand, by implementing a stimulation task in a neurosensory event-related paradigm and

then extracting the hemodynamic response to it by a deconvolution, as suggested in Duarte et

al. (2015), it was possible to evaluate the BOLD signal differences in diabetic participants and

thus identify the NVC disruption which they underwent. Thus, the relevance of this approach

becomes strengthened, placing it at the forefront of further functional studies in T2DM. On the

other hand, the evaluated HRF parameters not only optimize and expand the neurovascular

function assessment - which may prompt further studies that may involve classification and/or

its use as a biomarker - but also establish themselves as local determinants of altered HRF shape,

and might reveal the clinical evolution of a patient, and consequently, play a preponderant role

in the T2DM therapeutics - which complements the results from Duarte et al. (2015) [12].

Bearing in mind some of the BOLD signal limitations and its repercussions when the NVC

is investigated, further research is required to enlighten the physiology underlying the BOLD
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signal, eventually in animal models, as well as to develop or improve hemodynamic methods

that describe it and take into consideration the multiple factors which affect it [57], in order to

foster its use as a method to measure neuronal activity and map brain function in T2DM.

Although the reason underlying the between-group differences regarding the undershoot

and the initial dip has already been conjectured, its physiological meaning and what defines

their length and/or onset are still unclear, suggesting a need for further studies concerning the

pathophysiology and NVC changes in T2DM.
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Figure A.1: Average HRFs: negative signal change ROIs.
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Figure A.2: Median HRFs: negative signal change ROIs.

(a) Grand average HRFs. (b) Grand median HRFs.

Figure A.3: Grand average and grand median HRFs: negative signal change ROIs.
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Table A.1: Grand Analysis’ statistical component - negative signal change ROIs.

CNT T2DM
Average± Standard Deviation Median± Interquartile Range Average± Standard Deviation Median± Interquartile Range

Threshold 0,053 ± 0,031 0,057 ± 0,046 0,055 ± 0,024 0,040 ± 0,036
HRF peak amplitude (beta weights)

Submaximum 0,050 ± 0,027 0,043 ± 0,036 0,062 ± 0,031 0,040 ± 0,039
Threshold 9,375 ± 3,392 10,0 ± 2,5 9,375 ± 5,851 10,00 ± 11,25

HRF peak latency (s)
Submaximum 9,167 ± 3,589 10,0 ± 2,5 11,875 ± 2,845 12,5 ± 5
Threshold 0,007 ± 0,005 0,007 ± 0,006 0,001 ± 0,003 0,001 ± 0,003

HRF relative slope to peak (beta weights/s)
Submaximum 0,004 ± 0,004 0,004 ± 0,006 0,006 ± 0,004 0,004 ± 0,003
Threshold 0,757 ± 0,389 0,745 ± 0,342 0,968 ± 0,345 0,975 ± 0,598

HRF AUC (a.u.)
Submaximum 0,818 ± 0,345 0,749 ± 0,547 1,002 ± 0,462 0,644 ± 0,653
Threshold 0,217 ± 0,126 0,218 ± 0,186 0,219 ± 0,085 0,227 ± 0,177

HRF PCSA (a.u.)
Submaximum 0,197 ± 0,109 0,191 ± 0,166 0,231 ± 0,087 0,182 ± 0,126
Threshold 0,207 ± 0,116 0,150 ± 0,129 0,242 ± 0,122 0,174 ± 0,190

HRF NCSA (a.u.)
Submaximum 0,187 ± 0,091 0,149 ± 0,087 0,249 ± 0,094 0,174 ± 0,141

Table A.2: Shapiro-Wilk test’s p-values (α = 0.05) and the median and interquartile range of
each HRF parameter of each condition per ROI - Negative signal change ROIs.

HRF peak amplitude (beta weights) HRF peak latency (s)
Threshold Submaximum Threshold Submaximum

CNT T2DM CNT T2DM CNT T2DM CNT T2DM
p-value 1,208E-03 7,662E-07 6,286E-04 2,448E-05 7,004E-07 3,301E-06 3,641E-06 5,547E-05

L AC BA32
Median± Interquartile Range 0,188 ± 0,111 0,198 ± 0,148 0,154 ± 0,122 0,218 ± 0,226 7,5 ± 7,5 6,25 ± 7,5 7,5 ± 7,5 7,5 ± 7,5
p-value 0,001 2,439E-05 1,050E-04 4,809E-09 8,181E-10 5,029E-06 3,296E-08 5,827E-05

L CG BA31
Median± Interquartile Range 0,175 ± 0,172 0,202 ± 0,198 0,155 ± 0,141 0,201 ± 0,149 5,000 ± 8,125 7,5 ± 10 5 ± 10 7,50 ± 6,25
p-value 2,254E-09 4,477E-07 3,189E-09 1,114E-09 6,039E-09 2,566E-05 1,018E-08 1,621E-05

L PC BA30
Median± Interquartile Range 0,156 ± 0,142 0,202 ± 0,181 0,134 ± 0,122 0,187 ± 0,215 5,0 ± 7,5 7,5 ± 7,5 5,0 ± 7,5 7,50 ± 6,25
p-value 2,237E-05 1,577E-08 0,001 1,031E-09 2,182E-07 2,838E-05 7,906E-07 1,970E-04

L PrcL BA5
Median± Interquartile Range 0,184 ± 0,158 0,182 ± 0,211 0,207 ± 0,173 0,178 ± 0,197 5 ± 10 7,5 ± 7,5 7,5 ± 7,5 10 ± 7,5
p-value 2,496E-05 3,031E-09 2,711E-06 7,025E-09 1,208E-08 3,253E-05 1,958E-09 1,600E-04

L PrhG BA36
Median± Interquartile Range 0,121 ± 0,130 0,233 ± 0,190 0,116 ± 0,103 0,230 ± 0,223 5 ± 10 7,5 ± 7,5 5,0 ± 7,5 7,5 ± 7,5
p-value 0,001 1,260E-06 1,572E-07 5,703E-08 1,338E-08 1,849E-04 7,918E-09 1,581E-04

R CG BA24
Median± Interquartile Range 0,219 ± 0,125 0,218 ± 0,201 0,168 ± 0,133 0,190 ± 0,184 5,000 ± 8,125 7,5 ± 5 5 ± 10 7,5 ± 5
p-value 4,293E-09 6,824E-05 3,672E-07 0,001 8,719E-08 2,177E-05 1,044E-07 2,103E-05

R Insula BA13
Median± Interquartile Range 0,160 ± 0,151 0,210 ± 0,257 0,185 ± 0,160 0,250 ± 0,238 5,000 ± 8,125 7,5 ± 7,5 5,0 ± 7,5 7,5 ± 5
p-value 1,580E-05 0,007 4,789E-06 5,533E-06 2,398E-08 2,641E-05 6,456E-09 7,406E-05

R PC BA23
Median± Interquartile Range 0,185 ± 0,145 0,214 ± 0,147 0,197 ± 0,153 0,204 ± 0,162 5 ± 7,5 7,50 ± 6,25 5 ± 10 7,5 ± 5
p-value 5,913E-04 5,940E-05 9,167E-05 3,022E-06 3,446E-06 7,859E-06 3,083E-07 6,568E-05

R PrecG BA4
Median± Interquartile Range 0,242 ± 0,221 0,226 ± 0,220 0,207 ± 0,220 0,229 ± 0,266 7,5 ± 7,5 5 ± 7,5 7,5 ± 7,5 7,5 ± 7,5
p-value 0,001 3,145E-06 0,023 4,607E-07 9,388E-06 1,951E-05 1,974E-05 3,145E-04

R PrecG BA43
Median± Interquartile Range 0,149 ± 0,120 0,207 ± 0,223 0,141 ± 0,091 0,181 ± 0,194 10,0 ± 7,5 10,0 ± 7,5 10,0 ± 7,5 7,5 ± 7,5
p-value 1,833E-06 0,011 2,885E-04 5,048E-04 7,470E-10 1,207E-04 4,811E-10 1,635E-04

R PrimSens BA1
Median± Interquartile Range 0,183 ± 0,179 0,226 ± 0,231 0,184 ± 0,177 0,236 ± 0,270 5 ± 5 7,50 ± 6,25 5,000 ± 3,125 7,5 ± 5
p-value 7,810E-05 1,285E-04 3,738E-07 1,707E-10 6,538E-07 3,322E-05 1,479E-05 2,156E-05

R STG BA39
Median± Interquartile Range 0,199 ± 0,161 0,211 ± 0,146 0,183 ± 0,148 0,217 ± 0,140 5 ± 10 7,5 ± 7,5 7,5 ± 7,5 7,5 ± 7,5
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HRF relative slope to peak (beta weights/s) HRF AUC (a.u.)
Threshold Submaximum Threshold Submaximum

CNT T2DM CNT T2DM CNT T2DM CNT T2DM
p-value 9,326E-03 3,076E-05 3,949E-04 6,715E-05 1,018E-07 3,567E-07 1,021E-05 9,865E-06

L AC BA32
Median± Interquartile Range 0,031 ± 0,052 0,037 ± 0,078 0,015 ± 0,026 0,027 ± 0,077 3,052 ± 2,143 3,503 ± 4,061 3,244 ± 2,338 3,603 ± 3,885
p-value 4,954E-07 1,780E-07 1,496E-07 1,145E-08 0,002 2,257E-10 0,001 3,475E-12

L CG BA31
Median± Interquartile Range 0,041 ± 0,075 0,016 ± 0,041 0,035 ± 0,051 0,035 ± 0,040 2,874 ± 1,323 3,624 ± 3,330 2,989 ± 1,546 3,823 ± 2,582
p-value 3,060E-08 1,849E-09 2,356E-07 6,106E-08 3,354E-09 5,195E-07 1,059E-05 2,314E-06

L PC BA30
Median± Interquartile Range 0,047 ± 0,083 0,025 ± 0,052 0,031 ± 0,080 0,030 ± 0,056 2,782 ± 1,824 3,899 ± 3,499 2,752 ± 1,997 3,490 ± 5,256
p-value 1,198E-09 2,463E-12 1,058E-11 2,498E-14 2,106E-06 6,797E-12 5,053E-06 8,524E-11

L PrcL BA5
Median± Interquartile Range 0,033 ± 0,074 0,020 ± 0,053 0,026 ± 0,031 0,023 ± 0,039 3,503 ± 3,079 3,817 ± 3,250 3,254 ± 2,583 4,166 ± 3,807
p-value 3,619E-09 5,030E-09 1,472E-08 5,350E-07 1,296E-05 3,213E-07 7,052E-09 4,254E-07

L PrhG BA36
Median± Interquartile Range 0,017 ± 0,052 0,027 ± 0,055 0,030 ± 0,054 0,038 ± 0,044 2,591 ± 1,777 4,267 ± 4,343 2,434 ± 1,725 3,709 ± 3,534
p-value 9,198E-06 5,500E-05 4,250E-06 1,566E-06 8,897E-05 2,277E-08 1,107E-05 2,002E-09

R CG BA24
Median± Interquartile Range 0,049 ± 0,091 0,031 ± 0,048 0,048 ± 0,065 0,022 ± 0,049 3,079 ± 2,755 4,323 ± 3,910 3,203 ± 2,715 3,410 ± 3,556
p-value 2,940E-11 1,225E-06 9,070E-08 2,871E-05 1,369E-08 4,462E-10 4,151E-04 1,453E-10

R Insula BA13
Median± Interquartile Range 0,035 ± 0,065 0,022 ± 0,051 0,040 ± 0,064 0,036 ± 0,056 2,776 ± 2,276 3,724 ± 4,275 3,224 ± 2,485 4,495 ± 4,041
p-value 3,038E-05 9,607E-06 3,629E-07 1,116E-04 2,559E-06 5,735E-06 3,473E-03 3,117E-09

R PC BA23
Median± Interquartile Range 0,042 ± 0,080 0,024 ± 0,050 0,046 ± 0,102 0,028 ± 0,052 3,237 ± 1,636 4,023 ± 2,925 3,633 ± 2,050 3,950 ± 2,622
p-value 1,998E-06 1,336E-08 7,723E-05 2,791E-07 0,001 1,525E-04 1,050E-04 1,685E-07

R PrecG BA4
Median± Interquartile Range 0,043 ± 0,076 0,024 ± 0,059 0,031 ± 0,051 0,022 ± 0,058 4,252 ± 3,930 3,851 ± 3,650 4,029 ± 3,737 3,875 ± 3,617
p-value 2,257E-09 5,740E-09 1,168E-10 9,984E-08 0,004 5,132E-08 3,852E-04 5,369E-07

R PrecG BA43
Median± Interquartile Range 0,018 ± 0,035 0,021 ± 0,046 0,017 ± 0,036 0,021 ± 0,031 2,996 ± 1,239 4,246 ± 3,675 2,635 ± 1,623 4,522 ± 3,850
p-value 9,102E-10 5,855E-07 2,727E-06 2,268E-04 9,945E-06 3,341E-04 4,198E-02 5,104E-05

R PrimSens BA1
Median± Interquartile Range 0,041 ± 0,052 0,027 ± 0,080 0,050 ± 0,074 0,045 ± 0,087 3,055 ± 2,342 3,966 ± 3,623 3,450 ± 2,785 4,206 ± 4,372
p-value 2,129E-05 2,697E-05 1,754E-09 4,969E-07 3,998E-12 1,365E-08 1,492E-08 2,334E-09

R STG BA39
Median± Interquartile Range 0,033 ± 0,070 0,029 ± 0,049 0,019 ± 0,036 0,032 ± 0,048 3,577 ± 2,453 4,168 ± 3,355 3,573 ± 2,435 3,748 ± 3,011

HRF PCSA (a.u.) HRF NCSA (a.u.)
Threshold Submaximum Threshold Submaximum

CNT T2DM CNT T2DM CNT T2DM CNT T2DM
p-value 1,381E-07 1,050E-05 3,412E-07 2,530E-07 1,113E-07 1,114E-06 1,762E-08 1,373E-05

L AC BA32
Median± Interquartile Range 0,890 ± 0,467 0,970 ± 0,776 0,711 ± 0,516 0,912 ± 0,816 0,821 ± 0,550 0,894 ± 0,695 0,702 ± 0,585 0,837 ± 0,745
p-value 0,008 4,977E-08 0,003 7,775E-07 0,003 3,131E-08 0,004 6,082E-10

L CG BA31
Median± Interquartile Range 0,814 ± 0,631 0,948 ± 0,732 0,687 ± 0,536 0,885 ± 0,581 0,764 ± 0,458 0,948 ± 0,886 0,826 ± 0,392 0,862 ± 0,820
p-value 4,924E-09 4,959E-07 4,683E-08 1,374E-09 1,711E-09 8,606E-06 1,085E-07 8,903E-07

L PC BA30
Median± Interquartile Range 0,739 ± 0,620 0,988 ± 0,728 0,622 ± 0,489 0,810 ± 0,986 0,661 ± 0,650 0,755 ± 0,976 0,569 ± 0,512 0,799 ± 1,043
p-value 9,054E-07 5,470E-09 2,377E-05 4,188E-10 1,720E-06 5,003E-11 2,595E-06 6,564E-11

L PrcL BA5
Median± Interquartile Range 0,815 ± 0,555 0,887 ± 0,764 0,776 ± 0,673 0,873 ± 0,841 0,837 ± 0,782 0,986 ± 0,794 0,792 ± 0,748 0,900 ± 0,782
p-value 4,593E-06 1,689E-06 2,370E-08 7,351E-08 4,077E-06 5,797E-06 2,260E-09 1,602E-06

L PrhG BA36
Median± Interquartile Range 0,623 ± 0,536 1,070 ± 1,006 0,550 ± 0,473 0,941 ± 0,870 0,675 ± 0,495 0,901 ± 1,025 0,537 ± 0,394 0,868 ± 0,965
p-value 1,315E-05 1,262E-07 4,817E-08 8,795E-07 4,785E-06 2,750E-09 7,386E-08 3,710E-09

R CG BA24
Median± Interquartile Range 0,873 ± 0,631 0,851 ± 0,899 0,773 ± 0,667 0,885 ± 0,894 0,743 ± 0,470 0,934 ± 0,859 0,727 ± 0,504 0,883 ± 0,781
p-value 1,231E-08 3,617E-05 2,687E-07 2,305E-08 5,113E-09 1,225E-07 1,180E-05 3,946E-06

R Insula BA13
Median± Interquartile Range 0,757 ± 0,537 1,123 ± 1,025 0,770 ± 0,628 1,061 ± 1,025 0,694 ± 0,654 0,998 ± 0,977 0,739 ± 0,598 0,963 ± 0,886
p-value 3,098E-05 3,614E-06 4,519E-04 8,930E-04 3,416E-05 6,173E-05 3,063E-05 1,675E-06

R PC BA23
Median± Interquartile Range 0,902 ± 0,639 0,974 ± 0,590 0,910 ± 0,704 0,967 ± 0,789 0,811 ± 0,656 0,964 ± 0,814 0,792 ± 0,687 0,959 ± 0,652
p-value 3,529E-02 5,877E-06 3,798E-04 6,674E-07 0,019 1,842E-05 8,574E-07 2,211E-06

R PrecG BA4
Median± Interquartile Range 1,098 ± 1,048 0,897 ± 1,302 0,986 ± 0,966 0,937 ± 0,918 1,149 ± 0,821 0,842 ± 1,104 0,931 ± 0,880 0,820 ± 0,935
p-value 0,054 7,574E-08 0,024 5,114E-05 0,011 2,378E-07 0,049 5,292E-07

R PrecG BA43
Median± Interquartile Range 0,786 ± 0,353∗ 0,904 ± 0,769 0,654 ± 0,282 1,018 ± 1,006 0,678 ± 0,469 1,076 ± 0,705 0,655 ± 0,511 0,931 ± 1,011
p-value 3,56E-06 0,072 0,003 0,009 0,001 9,259E-05 0,013 0,004

R PrimSens BA1
Median± Interquartile Range 0,715 ± 0,653 1,124 ± 0,637∗ 0,871 ± 0,736 1,096 ± 0,989 0,850 ± 0,749 0,861 ± 0,886 0,863 ± 0,718 1,031 ± 1,075
p-value 3,143E-12 5,176E-06 2,107E-08 1,359E-06 7,676E-11 2,395E-08 1,709E-08 4,758E-10

R STG BA39
Median± Interquartile Range 0,853 ± 0,671 1,007 ± 0,543 0,805 ± 0,521 1,018 ± 0,707 0,858 ± 0,717 0,931 ± 0,991 0,788 ± 0,533 0,863 ± 0,733

*: represents the average and standard-deviation of the HRF parameters which did not reject
the null hypothesis of the Shapiro-Wilk test, and therefore owned a normal distribution.

Table A.3: Wilcoxon rank-sum test’s adjusted p-values (FDR = 0.10) in each HRF parameter
of each condition per ROI - Negative signal change ROIs.

HRF peak amplitude (beta weights) HRF peak latency (s)
Threshold Submaximum Threshold Submaximum

L AC BA32 Adjusted p-value (FDR = 0,10) 0,570 0,021 0,893 0,963
L CG BA31 Adjusted p-value (FDR = 0,10) 0,303 0,196 4,410E-04 0,461
L PC BA30 Adjusted p-value (FDR = 0,10) 0,101 0,024 0,071 0,008
L PrcL BA5 Adjusted p-value (FDR = 0,10) 0,818 0,913 0,324 0,734
L PrhG BA36 Adjusted p-value (FDR = 0,10) 2,179E-06 9,446E-06 0,180 0,004
R CG BA24 Adjusted p-value (FDR = 0,10) 0,457 0,113 0,056 0,098
R Insula BA13 Adjusted p-value (FDR = 0,10) 0,143 0,078 0,106 0,091
R PC BA23 Adjusted p-value (FDR = 0,10) 0,498 0,699 0,099 0,588
R PrecG BA4 Adjusted p-value (FDR = 0,10) 0,841 1,478 0,954 2,077
R PrecG BA43 Adjusted p-value (FDR = 0,10) 0,005 0,004 0,942 0,453
R PrimSens BA1 Adjusted p-value (FDR = 0,10) 0,101 0,051 0,006 0,017
R STG BA39 Adjusted p-value (FDR = 0,10) 0,473 0,076 0,330 0,755
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HRF relative slope to peak (beta weights/s) HRF AUC (a.u.)
Threshold Submaximum Threshold Submaximum

L AC BA32 Adjusted p-value (FDR = 0,10) 0,474 0,010 0,346 0,145
L CG BA31 Adjusted p-value (FDR = 0,10) 0,001 0,540 0,004 0,029
L PC BA30 Adjusted p-value (FDR = 0,10) 0,094 0,780 0,052 0,009
L PrcL BA5 Adjusted p-value (FDR = 0,10) 0,158 0,608 0,277 0,416
L PrhG BA36 Adjusted p-value (FDR = 0,10) 0,153 0,179 6,697E-06 9,743E-05
R CG BA24 Adjusted p-value (FDR = 0,10) 0,042 0,052 0,034 0,101
R Insula BA13 Adjusted p-value (FDR = 0,10) 0,114 0,366 0,021 0,065
R PC BA23 Adjusted p-value (FDR = 0,10) 0,091 0,479 0,086 0,561
R PrecG BA4 Adjusted p-value (FDR = 0,10) 1,182 3,585 0,902 1,118
R PrecG BA43 Adjusted p-value (FDR = 0,10) 0,860 0,536 2,240E-04 3,784E-05
R PrimSens BA1 Adjusted p-value (FDR = 0,10) 0,525 0,952 0,072 0,041
R STG BA39 Adjusted p-value (FDR = 0,10) 0,473 0,066 0,376 0,269

HRF PCSA (a.u.) HRF NCSA (a.u.)
Threshold Submaximum Threshold Submaximum

L AC BA32 Adjusted p-value (FDR = 0,10) 0,532 0,016 0,519 0,042
L CG BA31 Adjusted p-value (FDR = 0,10) 0,096 0,018 0,006 0,153
L PC BA30 Adjusted p-value (FDR = 0,10) 0,093 0,030 0,087 0,007
L PrcL BA5 Adjusted p-value (FDR = 0,10) 0,317 0,639 0,269 0,526
L PrhG BA36 Adjusted p-value (FDR = 0,10) 1,562E-05 5,121E-05 2,404E-04 2,436E-05
R CG BA24 Adjusted p-value (FDR = 0,10) 0,256 0,072 0,038 0,112
R Insula BA13 Adjusted p-value (FDR = 0,10) 0,027 0,078 0,021 0,047
R PC BA23 Adjusted p-value (FDR = 0,10) 0,546 0,671 0,108 0,604
R PrecG BA4 Adjusted p-value (FDR = 0,10) 0,962 0,922 1,013 1,028
R PrecG BA43 Adjusted p-value (FDR = 0,10) 0,017 2,240E-04 3,639E-05 0,004
R PrimSens BA1 Adjusted p-value (FDR = 0,10) 0,099 0,041 0,533 0,092
R STG BA39 Adjusted p-value (FDR = 0,10) 0,421 0,063 0,361 0,195

Figure A.4: Average and median HRFs and HRF parameters: L AC BA32.
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Figure A.5: Average and median HRFs and HRF parameters: L CG BA31.

Figure A.6: Average and median HRFs and HRF parameters: L PC BA30.
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Figure A.7: Average and median HRFs and HRF parameters: L PrcL BA5.

Figure A.8: Average and median HRFs and HRF parameters: L PrhG BA36.
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Figure A.9: Average and median HRFs and HRF parameters: R CG BA24.

Figure A.10: Average and median HRFs and HRF parameters: R Insula BA13.
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Figure A.11: Average and median HRFs and HRF parameters: R PC BA23.

Figure A.12: Average and median HRFs and HRF parameters: R PrecG BA4.
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Figure A.13: Average and median HRFs and HRF parameters: R PrecG BA43.

Figure A.14: Average and median HRFs and HRF parameters: R PrimSens BA1.
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Figure A.15: Average and median HRFs and HRF parameters: R STG BA39.

Figure A.16: Univariate scatterplots of the HRF parameters in L IPL BA40.
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Figure A.17: Univariate scatterplots of the HRF parameters in L Insula BA13.

Figure A.18: Univariate scatterplots of the HRF parameters in L Precuneus BA7.
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Figure A.19: Univariate scatterplots of the HRF parameters in R IFG BA9.

Figure A.20: Univariate scatterplots of the HRF parameters in R MFG BA8.
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Figure A.21: Univariate scatterplots of the HRF parameters in R MFG BA46.

Figure A.22: Univariate scatterplots of the HRF parameters in R MT BA19.
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Figure A.23: Univariate scatterplots of the HRF parameters in R SFG BA6.

Figure A.24: Univariate scatterplots of the HRF parameters in R SPL BA7.
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Figure A.25: Univariate scatterplots of the HRF parameters in R V2 BA18.

Figure A.26: Univariate scatterplots of the HRF parameters in L AC BA32.
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Figure A.27: Univariate scatterplots of the HRF parameters in L CG BA31.

Figure A.28: Univariate scatterplots of the HRF parameters in L PC BA30.
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Figure A.29: Univariate scatterplots of the HRF parameters in L PrcL BA5.

Figure A.30: Univariate scatterplots of the HRF parameters in L PrhG BA36.
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Figure A.31: Univariate scatterplots of the HRF parameters in R CG BA24.

Figure A.32: Univariate scatterplots of the HRF parameters in R Insula BA13.
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Figure A.33: Univariate scatterplots of the HRF parameters in R PC BA23.

Figure A.34: Univariate scatterplots of the HRF parameters in R PrecG BA4.
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Figure A.35: Univariate scatterplots of the HRF parameters in R PrecG BA43.

Figure A.36: Univariate scatterplots of the HRF parameters in R PrimSens BA1.
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Figure A.37: Univariate scatterplots of the HRF parameters in R STG BA39.
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