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Abstract

In this thesis, we study a system of partial differential equations defined by a hyperbolic equation
- a wave equation, and two parabolic equations - a quasilinear diffusion-reaction equation and a
convection-diffusion-reaction equation. In this system, the reaction term of the first parabolic equation
depends on the solution of the wave equation, the convective velocity of the second parabolic equation
depends on the solution of the wave equation and its gradient, and the diffusion coefficient of the
convection-diffusion-reaction equation depends on the solutions of the other two equations. This
system arises in the mathematical modeling of several multiphysics processes, as for instance in
ultrasound enhanced drug delivery. In this case, the propagation of the acoustic pressure wave, which
is described by the hyperbolic equation, induces an increase in the temperature of the target tissue, an
increase of the convective drug transport, and the increase of the temperature induces an increase of
the diffusion drug transport.

Here we propose an algorithm to solve this coupled problem defined in a two-dimensional spatial
domain. Our numerical method can be seen, simultaneously, as a fully discrete in space, piecewise
linear finite element method, where special quadrature rules are considered, and as a finite difference
method defined in nonuniform rectangular grids. We provide the theoretical convergence support
where we show that the numerical approximations for the solution of the hyperbolic equation are
second order convergent with respect to a discrete H1- norm. This result allows us to conclude
that the numerical approximations for the gradient do not deteriorate the quality of the numerical
approximations for the solution of the last parabolic equation. For the numerical approximations for
the two parabolic equations, we also establish second order convergence but with respect to a discrete
L2- norm. These convergence results are proved assuming lower regularity conditions than those
usually imposed.

In the scope of the finite difference methods, our results can be seen as supraconvergence results
because the method uses nonuniform rectangular grids where the correspondent truncation errors
are only first order convergent with respect to the norm ∥ · ∥∞. As the method can be constructed
considering piecewise linear finite element method, in the language of the finite element methods our
results can be seen as superconvergence results. In fact, it is well known that piecewise linear finite
element methods for elliptic equations lead to first order convergent approximations with respect to
the usual H1- norm.

Numerical results illustrating the theoretical support are also included, highlighting the sharpness
of the smoothness assumption on the solutions of the multiphysics problem. It is reported in the
literature the use of ultrasound to increase the drug transport and its absorption within the target
tissue in different contexts, as for instance in cancer treatment. A simple version of the mathematical
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problem studied in this work is considered to illustrate the effectiveness of the use of ultrasound to
enhance the drug transport.

Keywords: hyperbolic equation, parabolic equation, piecewise linear finite element method,
finite difference method, convergence analysis, supra-superconvergence, drug transport enhanced by
ultrasound.



Resumo

Nesta tese estudamos um sistema de equações diferenciais de derivadas parciais definido por uma
equação hiperbólica – uma equação de onda, e duas equações parabólicas – uma equação de difusão-
reação quase linear e uma equação de convecção-difusão-reação. Neste sistema, o termo reativo da
primeira equação parabólica depende da solução da equação da onda, e a velocidade convectiva da
segunda equação parabólica depende da solução da primeira equação e do seu gradiente. O coeficiente
de difusão da última equação depende também das soluções das duas primeiras equações. O problema
matemático que motivou esta dissertação surge no contexto de diversos problemas físicos, como por
exemplo, no contexto da libertação controlada de fármacos estimulada por ultrassons. Neste caso,
a propagação da onda de pressão acústica descrita pela equação hiperbólica, induz um aumento da
temperatura no tecido alvo, um aumento no transporte do fármaco, e o aumento da temperatura induz
um aumento do transporte difusivo do fármaco.

Neste trabalho, propomos um método numérico para o sistema diferencial definido num domínio
espacial de duas dimensões. O nosso método pode ser visto, simultaneamente, como um método
de elementos finitos segmentado linear discreto no espaço, e como um método de diferenças finitas
definido em malhas retangulares não uniformes. Para este método provamos a segunda ordem de
convergência, relativamente a uma norma que pode ser vista como uma versão discreta da norma usual
de H1, para a discretização da equação hiperbólica. Este resultado permite concluir que a aproximação
para o gradiente não deteriora a qualidade da aproximação para a concentração. Estabelecemos
que as aproximações para a temperatura e para a concentração também são de segunda ordem, mas
relativamente a uma norma que pode ser vista como uma discretização da norma usual de L2. Os
resultados de convergência são demonstrados utilizando condições de regularidade mais fracas do que
as usadas usualmente.

No contexto dos métodos de diferenças finitas, uma vez que consideramos malhas não uniformes
onde os erros de truncatura associados são de primeira ordem relativamente à norma ∥ · ∥∞, os nossos
resultados podem ser vistos como resultados de supraconvergência. Visto que o método proposto
pode ser visto como um método de elementos finitos segmentado linear, no contexto dos métodos
de elementos finitos os nossos resultados podem ser vistos como resultados de superconvergência.
De facto, é bem conhecido que os métodos de elementos finitos segmentados lineares para equações
elípticas levam a aproximações convergentes de primeira ordem, relativamente à norma usual de H1.

Os resultados teóricos obtidos são ilustrados numericamente. A precisão das condições de
regularidade impostas às soluções do sistema diferencial contínuo é também analisada numericamente.
Podemos encontrar na literatura que o uso de ultrassons leva a um aumento do transporte do fármaco
e da sua absorção pelo tecido alvo em diferentes contextos, como por exemplo em tratamentos de
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cancro. Uma versão simples do sistema estudado neste trabalho é considerada para ilustrar a eficiência
do uso dos ultrassons como estímulo ao transporte de fármacos.

Palavras-Chave: equação hiperbólica, equação parabólica, método de elementos finitos segmen-
tado linear, método de diferenças finitas, análise de convergência, supra-superconvergência, transporte
de fármacos estimulado por ultrassons.
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Chapter 1

Introduction

In this thesis, we consider a multiphysics problem where a wave propagation phenomenon is coupled
with two diffusion processes. Our main aim is to propose an adequate numerical method for the
following system of partial differential equations

a
∂ 2 p
∂ t2 +b

∂ p
∂ t

= ∇ · (E∇p)+ f3, (1.1)

∂T
∂ t

= ∇ · (DT (T )∇T )+ kT + f2(p), (1.2)

∂c
∂ t

+∇ · (v(p,∇p)c)−∇ · (Dc(p,T )∇c) = f1, (1.3)

defined in Ω× (0,Tf ], where Ω ∈ R2 is a bounded domain with boundary ∂Ω and Tf > 0 is a time
duration. The differential system (1.1), (1.2) and (1.3) is complemented with the initial conditions

p(0) = p0,
∂ p
∂ t

(0) = pv,0 in Ω, (1.4)

T (0) = T0 in Ω, (1.5)

c(0) = c0 in Ω, (1.6)

and to simplify, we impose the following homogeneous Dirichlet boundary conditions

p(t) = 0 on ∂Ω× (0,Tf ], (1.7)

T (t) = 0 on ∂Ω× (0,Tf ], (1.8)

c(t) = 0 on ∂Ω× (0,Tf ]. (1.9)

1



2 Introduction

By simplicity, in this work, we assume that Ω = (0,1)2. The coupled initial boundary value
problem (IBVP) (1.1)-(1.9) arises, for instance, in the modeling of ultrasound enhanced drug transport.
For this reason, we will refer p, T and c as acoustic pressure, temperature and concentration, respec-
tively. Basically, from the physical point of view, ultrasound enhanced drug transport involves the
propagation of acoustic waves through a biological tissue. The propagation of these waves generates
heat that dissipates through the tissue. The drug transport is enhanced by both: temperature rise
and propagation of acoustic waves. The acoustic waves propagation can be modeled by the wave-
type equation (1.1), while bioheat transfer and drug transport can be modeled by the parabolic-type
equations (1.2) and (1.3), respectively.

To avoid drug side effects and to increase the drug available in the target tissue, nanocarriers have
been studied to transport the drug. Liposomes, micelles, dendrimers, nanotubes, gold particles, are
some examples that have been used to avoid the side effects induced by chemotherapy systemically
administered. In these cases, to control and to increase the drug released in the target tissue as well
as to increase the drug absorption, the nanocarriers are combined with activation processes. Stimuli
responsive drug delivery systems (SRDDS) are drug delivery systems where the characteristic of the
carriers and the properties of specific stimuli play a central role. They were developed as an answer to
the need to reduce drug side effects, to break the barriers to the drug transport and to increase the drug
available in the target tissue.

The enhancers used in SRDDS can be split into three main classes: physical, chemical and
biological ([28]). Some examples of each class are

(i) Physical enhancers: temperature, electric and magnetic fields, ultrasound, light;

(ii) Chemical enhancers: pH, glucose, ionic strength;

(iii) Biological enhancers: enzymes, endogenous receptors.

From here onwards, we focus on ultrasound enhanced drug delivery.
The application of ultrasound to enhance drug transport through biological tissues has been used in

different medical contexts like, for instance, transdermal drug delivery, cancer treatment, blood-brain
barrier disruption, hyperthermia triggered drug delivery. Ultrasound is particularly useful for drug
delivery into impermeable biological barriers, as cell membranes, and on the delivery of large weight
or low diffusivity molecules (see [8], [9], [18], [21], [31], [32], [33], [34], [36], [37], [39], [40], [41],
[43], [47]). In cancer treatment, reports on the use of ultrasounds to increase the drug release from
polymeric micelles, liposomes, or microbubbles are presented in the literature. In this case, ultrasound
generates pressure waves that propagate through the target tissue inducing the drug release from the
carriers as well as increasing the drug absorption ([9], [20], [46]).

The exact mechanisms induced by the propagation of acoustic waves are not completely elucidated.
However, it is known that the ultrasound propagation induces compression and expansion of the
microbubbles dispersed in the medium leading to an oscillatory behavior in the medium pressure. It is
accepted that acoustic wave propagation involves thermal and mechanical processes or a combination
of both. In the first case, acoustic waves lead to a temperature increase due to the absorption of
acoustic energy. Consequently, ultrasound has been used to control the drug delivery from temperature-
sensitive drug nanocarriers. Furthermore, due to the increase of blood flow and permeability in the
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target tissue, they have been used to increase drug transport (see, e.g. [38] and its references). The
mechanical effects can originate acoustic radiation forces ([4]) which induce the acoustic streaming
- a convective flow in the fluid phase of the medium. This convective field can also be taken into
account for increasing the drug delivery rate to specific sites ([10]). However, the main mechanical
effect induced by ultrasound propagation is the so-called cavitation. Cavitation is characterized by
the expansion and compression of endogeneous or exogeneous gas microbubbles that oscillate and
induce a fluid flow with velocity proportional to the amplitude of the oscillations. If violent changes
in the acoustic wave amplitude occur, the microbubbles collapse (inertial cavitation) generating
shock waves that can lead to pore formation in the cellular membranes (see [12] and [41] and its
references). Stable cavitation occurs when the bubbles oscillate without collapsing. The increase
of tissue permeability due to cavitation is not completely understood (see [37] and its references).
Nevertheless, it is established that the micro-scale phenomena associated with cavitation induces a
convective and diffusive transport at a macro-scale (see, for instance, [22], [26], [27], [29]).

The previous consideration on the phenomena associating the acoustic pressure propagation with
the increasing on the temperature, the increasing on the convective drug transport as well as the
increasing on the drug diffusion transport, are the basis for the functional relations between the
parameters of the differential system (1.1)-(1.3) and the correspondent unknowns p, T and c. In fact,
we assumed in this system that the temperature source f2 in (1.2) depends on the acoustic pressure p;
the convective velocity v in (1.3) depends on p and on its gradient ∇p; the drug diffusion coefficient
Dc in (1.3) depends on T and on p.

Modeling and numerical simulation of ultrasound enhanced drug transport has been subject of
research in the last years. For example, in [24] the following linear acoustic pressure wave equation

1
v2

s

∂ 2 p
∂ t2 +

ã
v2

s

∂ p
∂ t

= ρ∇ ·
(

1
ρ

∇p
)
, (1.10)

and the nonlinear Westervelt-Lighthill equation

1
v2

s

∂ 2 p
∂ t2 − δ

v4
s

∂ 3 p
∂ t3 − β

2ρv4
s

∂ 2 p
∂ t2 = ρ∇ ·

(
1
ρ

∇p
)
, (1.11)

were considered. In (1.10), ρ is the tissue density, vs is the sound speed, ã = a
√

a4v4
s

4π2 f 2 + v2
s , being a

the material attenuation coefficient, f the wave frequency. In (1.11), δ is the acoustic diffusivity in a
thermoviscous fluid and β is a nonlinear coefficient of the medium. In biomedical applications as the
ones that we would like to consider later, the acoustic wave propagation given by equation (1.10), or
(1.11), is coupled with the Pennes’s bioheat equation

ρK
∂T
∂ t

= ∇ · (K̂∇T )+ρQ+ρS−ρbcbρω(T −Tb), (1.12)

where T is the temperature, K is the specific heat capacity, K̂ is the thermal conductivity, Q is the
metabolic heat generation rate, ω is the perfusion rate, ρb,cb and Tb are the density, specific heat

capacity and temperature of the blood, and S = a
p2

ρvs
. In this paper the drug concentration equation

was not considered because the authors were only interested in the mathematical description of
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ultrasound and temperature dynamics. In [34], it is also constructed a model to simulate the influence
of the ultrasound absorption in the temperature, in the skull. The ultrasound propagation in fluids and
soft tissues is described by a hyperbolic equation similar to (1.10). However, to study the ultrasound
in the skull, it is considered the visco-elastic wave equation of solids

ρ
∂ 2u
∂ t2 =

(
µ +η

∂

∂ t

)
∆u+

(
λ +µ +ξ

∂

∂ t
+

µ

3
∂

∂ t

)
∇(∇ ·u), (1.13)

where ∆ denotes the Laplacian operator, u denotes the particle displacement, λ and µ are the first
and second Lamé coefficients and η and ξ are the first and second viscosity parameters. These two
wave equations are coupled with a partial differential equation similar to (1.12) for the temperature
behavior.

A multiphysics approach to describe ultrasound enhanced drug transport is introduced in [48]. In
this paper the authors consider the drug release from thermosensitive nanocarriers-liposomes, the drug
transport and the drug absorption by a solid tumor. Pennes’s bioheat equations, similar to equation
(1.12), are used to describe the temperature evolution in the tumor, normal tissue and in the blood
(depending on the acoustic pressure). It is also considered the drug transport in the intersticial fluid
and the drug effects on the tumor cells dynamics. It should be noticed that the diffusion coefficients
are assumed constant which means, temperature and acoustic pressure independent.

A multiphysics and multidomain approach is considered in [35] to mathematically describe the
drug release from thermosensitive liposomes loaded with doxorubicin (a drug used to treat cancer).
The Penne’s bioheat equation (1.12) is coupled with a nonlinear acoustic equation of the type (1.11).
The drug concentration in the nanocarriers is governed by a convection-diffusion-reaction equation
where the reaction term describes the drug released by the liposomes enhanced by the temperature,
and the diffusion coefficient is assumed constant. The released drug admits three states: free, bound
and internalized, being the concentration of the first type described by a convection-diffusion-reaction
equation with a constant diffusion coefficient. The convective velocity is given by Darcy’s law,
which does not depend on acoustic pressure. From the numerical results, the authors concluded that
controlled drug release by heating with ultrasound allows a significant increase in drug penetration
into the tumor.

In [44], experimental results of the effect of ultrasonic waves on solute transport in porous media
are presented. The behavior of the solute concentration c, in an one-dimensional domain, is described
by a convective-diffusion equation, where the convective velocity is given by v(p) = v+ v∗, and
the diffusion coefficient is D(p) = αLv(p)+Dd , where v denotes the steady state fluid velocity, v∗

represents the enhanced velocity due to the acoustic pressure, Dd is the molecular diffusion coefficient,
and αL is the dispersivity.

The papers introduced before, namely, [24], [35] and [48], presenting a mathematical description
of drug delivery enhanced by ultrasound, do not present any detail on the numerical methods used
to compute the numerical results presented as well as on their convergence analysis. To the best of
our knowledge, the mathematical analysis as well as the design of accurate and efficient numerical
methods for the system (1.1)-(1.3) were not yet object of research. These facts are the main motivation
for our work in what concerns the construction of numerical methods and the development of their
mathematical foundations.
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In this thesis, our aim is to propose a numerical method that can be used to accurately compute
numerical approximations for the acoustic pressure, temperature and concentration described by
(1.1)-(1.3), defined in a two-dimensional domain. To simplify we assume that the drug is initially
dispersed in the domain and the previous system is complemented with Dirichlet boundary conditions
for the three unknowns. While for the temperature and for the concentration, these type of conditions
can be realistic in certain scenarios, the boundary conditions for the acoustic pressure should be more
realistic and further studies need to be prosecuted.

The main obstacle in the design of numerical methods to approximate the solution of (1.1)-(1.3)
is the nonlinear dependence of the drug convective velocity on the gradient of the acoustic pressure,
and the nonlinear dependence of the drug diffusion coefficient on the temperature and on the acoustic
pressure. The discretization of the wave equation (1.1) should lead to an accurate approximation for
the gradient of the acoustic pressure that does not deteriorate the quality of the approximation for the
concentration. The methods proposed in this work can be seen simultaneously as fully discrete in space
piecewise linear finite element methods and finite difference methods. The theoretical support for the
convergence of the proposed methods is provided in this thesis under lower smoothness assumptions
on the solution of the initial boundary value problem for (1.1)-(1.3) than those used in the literature
for similar problems. It is shown that the numerical approximation for the acoustic pressure is second
order convergent with respect to a H1- discrete norm while the approximations for the temperature
and for the concentration are second order convergent but with respect to a L2- discrete norm. In the
scope of the finite difference methods, our results can be seen as a supraconvergence results because
the method uses nonuniform rectangular grids where the correspondent truncation errors are only
first order convergent with respect to the norm ∥ · ∥∞. As the method can be constructed considering
piecewise linear finite element method, in the language of the finite element methods our results can
be seen as superconvergence results. In fact, it is well known that piecewise linear finite element
methods for elliptic equations lead to first order convergent approximations with respect to the usual
H1- norm.

Numerical results illustrating the theoretical support are also included, highlighting the sharpness
of the smoothness assumption on the solutions of the multiphysics problem. It is reported in the
literature the use of ultrasound to increase the drug transport and its absorption within the target
tissue in different contexts, as for instance in cancer treatment. A simple version of the mathematical
problem is studied in this work to illustrate the effectiveness of the use of ultrasound to enhance the
drug transport.

The convergence analysis followed here is based on the approach introduced in [3] for one-
dimensional problems and in [14] for two-dimensional. This approach is based on the use of Bramble-
Hilbert Lemma ([5]), that allows the replacement of the spaces of continuous functions C4(Ω) by
the Sobolev space H3(Ω). The second convergence order of our scheme is established assuming that
p(t),T (t),c(t) ∈ H3(Ω). We remark that in [2] numerical methods to approximate the solution of a
differential system defined by an elliptic equation and an integro-differential equation were studied
using the same approach. Bramble-Hilbert lemma is also the basis of the convergence analysis of the
numerical methods introduced in [13] for a system of two parabolic equations.



6 Introduction

1.1 Outline of the Thesis

In what follows, we describe summarily the organization of this thesis highlighting the main contribu-
tions in each chapter.

In Chapter 2, we consider the hyperbolic initial boundary value problem, defined by the telegraph
equation (1.1) coupled with the initial condition (1.4) and homogeneous Dirichelet boundary con-
ditions. We propose a numerical scheme obtained using the Method of Lines Approach: a spatial
discretization that leads to a semi-discrete approximation (continuous in time) followed by a time
integration. The spatial discretization is defined considering a piecewise linear finite element method
combined with particular quadrature rules that lead to a fully discrete in space scheme. This fully dis-
crete scheme can also be seen as a finite difference method defined in nonuniform rectangular meshes.
The classical convergence analysis of the semi-discrete approximation using the finite difference
language is based on the concept of truncation error. As we will see, the truncation error is only of first
order with respect to the norm ∥·∥

∞
, provided p(t) ∈C3(Ω). However, using our approach we prove

that the finite difference approximation for the solution of the hyperbolic IBVP defined by (1.1) is
second order convergent with respect to a discrete H1- norm, provided p′(t), p(t) ∈C4(Ω) (Theorem
2.2). This means that the corresponding discrete gradient is second order convergent with respect to a
discrete L2- norm. First of all, we remark that the obtained convergence order is unexpected. In fact,
error estimates for the approximation of the correspondent elliptic equations have an important role in
the traditional approach followed in the convergence analysis of this kind of methods. It is known that
the piecewise linear finite element method for elliptic equations leads to a first order approximation
for the gradient provided that the solution of the correspondent weak problem is in H2(Ω). Following
the approach introduced by Wheeler in [45] for parabolic problems, only first order of convergence
is expected. The second question that we would like to address is the reduction of the smoothness
assumptions imposed before. In fact, using the Bramble-Hilbert Lemma as main tool, we prove the
second order of convergence for our numerical solution, provided p′(t), p(t) ∈ H3(Ω) (Theorem
2.3 and Corollary 2.1). In what concerns the time integration, we present two numerical schemes.
The first one only presents first order of convergence in time. However, rewriting our problem in an
equivalent way and considering a Cranck-Nicolson approach we construct a fully discrete in space
and time problem leading with second order convergence in time (Theorem 2.5 and Corollary 2.4).
The main results of this chapter are included in [15].

In Chapter 3, a simplified version of the differential problem (1.1)-(1.3) is considered: the thermal
effects induced by ultrasonic waves are discarded. Then we study the system of partial differential
equations defined by the hyperbolic equation (1.1) and the following convection-diffusion-reaction
equation, similar to (1.3),

∂c
∂ t

+∇ · (v(p,∇p)c)−∇ · (D(p)∇c) = f1. (1.14)

The main problem on the computation of numerical approximations for the solution of this hyperbolic-
parabolic IBVP defined by (1.1) and (1.14) is the dependence of the convective term v in (1.14) on the
solution of the hyperbolic equation and its gradient. Here, the results of the previous chapter have a
crucial role, since to compute a second order approximation for the concentration we need to have
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second order approximation for the gradient of the solution of the hyperbolic problem. We recall that
Corollary 2.1 establishes this result.

In this chapter, we propose a fully discrete piecewise linear finite element method for the con-
centration that allows the computation of a second order approximation for the solution c of (1.14)
with respect to a L2- norm. In Section 3.2 we present the fully discrete in space piecewise linear
finite element method for (1.1), (1.14). Section 3.3 is the main section of this chapter devoted to the
convergence analysis of the semi-discrete approximation. Theorem 3.1 and Corollary 3.1 are the main
results of the chapter that establish the second order of convergence provided p(t),c(t) ∈ H3(Ω). We
remark that these results are not expected since the studied method is constructed using the piecewise
linear finite element method that leads to a first order approximation with respect to H1- norm. Again,
as the traditional approach for the convergence analysis of this type of approximation for parabolic
equations is based on error estimates for the solution of the piecewise linear finite element method
applied to the corresponding elliptic equation, that establish first order of convergence with respect
to the H1- norm, we expect only first order convergence for the approximation of the concentration
defined before. To illustrate the applicability of the differential system (1.1), (1.14) in the mathematical
modeling of drug delivery enhanced by ultrasound, we consider a toy model where a wave equation
is coupled with a simplified version of (1.14). Numerical results illustrating the convergence results
established in this chapter are also included. The main results of this chapter are included in [16].

The study of the complete problem (1.1)-(1.9) is presented in Chapter 4. Here, we consider
the thermal effects of the ultrasound propagation, and consequently, in the drug transport. Our
main aim is to design a fully discrete in space piecewise linear finite element approximation for the
differential system (1.1)-(1.9) that leads to a second order approximation for the drug concentration
c with respect to a discrete L2- norm. As we are considering the thermal effects and the diffusion
coefficient Dc depends on the temperature T , an error estimate for temperature approximation defined
using the fully discrete in space piecewise linear approximation is needed. The heat source term
f2 depends on the acoustic pressure p, and consequently the error estimate for the approximation
for the temperature depends on the error estimates for the acoustic pressure. Such error estimates
are established in Theorem 4.1 and Corollary 4.1 that show second order of convergence provided
that p(t),T (t) ∈ H3(Ω). Finally in Theorem 4.2 and Corollary 4.3, we conclude that the numerical
approximation for the concentration remains with second convergence rate. The main results of this
chapter can be found in [17].

This thesis ends with a last chapter summarizing conclusions and open problems that will be
object of study in the near future.





Chapter 2

Acoustic Pressure Propagation

2.1 Introduction

In this chapter, we consider the hyperbolic acoustic pressure equation (1.1) coupled with (1.4), (1.7),
with Ω = (0,1)2 and p : Ω× [0,Tf ] → R. In (1.1), the coefficient functions a, b and E are space
dependent, such that a ≥ a0 > 0, b ≥ b0 > 0 in Ω, and E is a second order diagonal matrix with entries
ei, i = 1,2, such that ei ≥ e0 > 0 in Ω, for i = 1,2. Note, that the assumption b0 > 0 is considered for
simplicity, since similar results can be achieved for b0 ∈ R. In what follows, if w : Ω× [0,Tf ]→ R,
then for t ∈ [0,Tf ], w(t) : Ω → R is given by w(t)(x,y) = w(x,y, t), (x,y) ∈ Ω.

Our main goal in this chapter is the construction of an accurate numerical scheme to compute a
numerical approximation for the solution p of the IBVP (1.1), (1.4), (1.7). We start by presenting some
notations, after in Section 2.3, we define our semi-discrete numerical scheme, being its convergence
analysis developed in Section 2.4. Theorem 2.1 establishes first order estimates for the error for the
semi-discretization taking into account the expression of the correspondent truncation error. A careful
mathematical manipulation of the term involving the truncation error can be used to improve the
quality of the error estimate at least when the acoustic pressure is a smooth function. In Sections
2.4.2 and 2.4.3 we achieve improved convergence results considering p(t)∈C4(Ω) and p(t)∈ H3(Ω),
respectively. Bramble Hilbert Lemma is the main tool in the convergence analysis of the last result
when p(t) ∈ H3(Ω). Fully discrete, in time and space, methods are studied in Section 2.5. Numerical
results illustrating the theoretical results established in the previous section are presented in Section
2.6. Finally, we draw some conclusions in Section 2.7.

The existence and uniqueness of the solution of the IBVP based in the hyperbolic equation (1.1) is
not analyzed in this work. We remark that such results can be established using the results presented
in Chapter 7 of [11].

2.2 Some Notations

We start by introducing some notations and definitions. In the usual Sobolev space Hn(Ω) we consider
the usual norm

∥w∥Hn(Ω) =

(
∑

|α|≤n
∥Dαw∥2

)1/2

,w ∈ Hn(Ω),

9



10 Acoustic Pressure Propagation

where, for α = (α1,α2) ∈ N0 ×N0, Dαw =
∂ |α|w

∂xα1∂yα2
. For n = 0 we take H0(Ω) = L2(Ω) where we

consider the usual inner product (·, ·) and the correspondent induced norm ∥ · ∥. Let ((·, ·)) be the
usual inner product in [L2(Ω)]2 and ∥ · ∥ the correspondent norm. By H1

0 (Ω) we represent the usual
Sobolev space where we take the usual norm ∥ · ∥1.

Let X denote a vector space of functions equipped with the norm ∥·∥X . By Cm([0,Tf ],X) we
represent the space of functions w : [0,Tf ]→X such that w( j) : [0,Tf ]→X , j = 0, . . . ,m, are continuous
and

∥w∥Cm(X) = ∥w∥Cm([0,Tf ],X) =
m

∑
j=0

max
0≤t≤Tf

∥∥∥w( j)(t)
∥∥∥

X
<+∞.

By Hm(0,Tf ,X) we represent the space of functions w : (0,Tf ) → X with weak derivatives w( j) :
(0,Tf )→ X , j = 0, . . . ,m, such that

∥w∥Hm(X) = ∥w∥Hm(0,Tf ,X) =

(
m

∑
j=0

∫ Tf

0

∥∥∥w( j)(t)
∥∥∥2

X
dt

)1/2

<+∞.

We also consider L∞(0,Tf ,X) the space of all measurable functions w : (0,Tf )→ X with

∥w∥L∞(0,Tf ,X) = ess sup
0≤t≤Tf

∥w(t)∥X <+∞.

2.3 Semi-Discrete Numerical Scheme

In this section, we present a fully discrete in space method that allows the computation of an
approximation for the solution of the following variational problem: find p(t) ∈ H1

0 (Ω) such that
p( j)(t) ∈ L2(Ω), j = 1,2, t ∈ (0,Tf ], and

(ap′′(t),w)+(bp′(t),w) =−((E∇p(t),∇w))+( f3(t),w), t ∈ (0,Tf ], (2.1)

for w ∈ H1
0 (Ω), and (p′(0),w) = (pv,0,w), ∀w ∈ L2(Ω),

(p(0),q) = (p0,q), ∀q ∈ L2(Ω).
(2.2)

In Ω we introduce an arbitrary nonuniform rectangular mesh defined by H = (h,k) with

(i) h = (h1, . . . ,hN), N ∈ N, a vector of positive entries such that
N

∑
i=1

hi = 1;

(ii) k = (k1, . . . ,kM), M ∈ N, a vector of positive entries such that
M

∑
j=1

k j = 1.

Let xi, i = 0, . . . ,N, and y j, j = 0, . . . ,M, be the nonuniform grids induced by h and k in [0,1], respec-
tively, with hi = xi − xi−1 and k j = y j − y j−1. In Ω we define the rectangular grid

ΩH =
{
(xi,y j), i = 0, . . . ,N, j = 0, . . . ,M

}
,
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depending on H. Also, we define ΩH = Ω∩ΩH and ∂ΩH = ∂Ω∩ΩH .

Let Hmax = max
{

hi,k j; i = 1, . . . ,N; j = 1, . . . ,M
}

and let Λ be a sequence of vectors H = (h, k)
such that Hmax goes to 0. Let WH be the space of grid functions defined in ΩH and WH,0 =

{wH ∈WH : wH = 0 on ∂ΩH}. By TH we denote a triangulation of Ω using the set ΩH as ver-
tices. The notation diam∆ represents the diameter of the triangle ∆ ∈ TH . For wH ∈ WH , PHwH

denotes the continuous piecewise linear interpolant of wH with respect to TH .

In order to construct a fully discrete in space approximation we define now discrete inner products
and the corresponding norms. In WH,0 we introduce the inner product

(vH ,wH)H = ∑
(xi,y j)∈ΩH

|�i, j|vH(xi,y j)wH(xi,y j), vH ,wH ∈WH,0,

where �i, j = (xi−1/2,xi+1/2)× (y j−1/2,y j+1/2)∩ Ω, |�i, j| denotes the area of �i, j, and xi+1/2 =

xi +
hi+1

2
, xi−1/2 = xi −

hi

2
, hi+1/2 = xi+1/2 − xi−1/2 being y j±1/2 and k j+1/2 defined analogously. Let

∥ · ∥H be the corresponding norm.

For vH = (v1,H ,v2,H), wH = (w1,H ,w2,H), and vℓ,H ,wℓ,H ∈WH , for ℓ= 1,2, we use the notation

((vH ,wH))H = (v1,H ,w1,H)H,x +(v2,H ,w2,H)H,y,

where

(v1,H ,w1,H)H,x =
N

∑
i=1

M−1

∑
j=1

hik j+1/2v1,H(xi,y j)w1,H(xi,y j),

being (v2,H ,w2,H)H,y defined analogously.

Let D−x and D−y be the first order backward finite difference operators with respect to the variables
x and y, respectively,

D−xvH(xi,y j) =
vH(xi,y j)− vH(xi−1,y j)

hi

and D−y is defined analogously. Let ∇H be the discrete version of the gradient operator ∇ defined by
∇HvH = (D−xvH ,D−yvH). We use the following notations

∥∇HvH∥H =
(
(D−xvH ,D−xvH)H,x +(D−yvH ,D−yvH)H,y

)1/2

=
(
∥D−xvH∥2

H +∥D−yvH∥2
H

)1/2
,vH ∈WH .

Moreover, a straightforward calculation shows that the following Poincaré-Friedrichs inequality
holds

∥vH∥2
H ≤ 1

2
∥∇HvH∥2

H ,∀vH ∈WH,0. (2.3)

Note that ∥·∥H and ∥∇H ·∥H can be seen as discrete versions of L2- norm, and H1- seminorm,

respectively. Then ∥ · ∥1,H =
(
∥·∥2

H +∥∇H · ∥2
H

)1/2
is a discrete version of H1- norm.

We are now in position to define our numerical scheme. The piecewise linear finite element
method for the wave IBVP (1.1), (1.4), (1.7) is defined as follows: find pH(t) ∈ WH,0 such that
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PH pH(t) satisfies

(aPH p′′H(t),PHwH)+(bPH p′H(t),PHwH) =−((E∇PH pH(t),∇PHwH))+( f3(t),PHwH), (2.4)

for t ∈ (0,Tf ], wH ∈WH,0, and(PH p′H(0),PHwH) = (PHRH pv,0,PHwH), ∀wH ∈WH,0,

(PH pH(0),PHqH) = (PHRH p0,PHqH), ∀qH ∈WH,0,
(2.5)

where RH : C(Ω)→WH denotes the restriction operator and C(Ω) represents the space of continuous
functions in Ω.

(xi+1,y j)

(xi,y j−1)

(xi−1,y j)

(xi,y j+1)

(xi+1/2,y j+1/2)

(xi+1/2,y j−1/2)(xi−1/2,y j−1/2)

(xi−1/2,y j+1/2)

�2 �1

�3 �4

Fig. 2.1 Scheme of the partition used for the quadrature rules.

For i = 0, . . . ,N, j = 0, . . . ,M, we consider the following partition of �i, j, illustrated in the Figure
2.1: �i, j = ∪4

l=1 (�l ∩Ω), with

�1 = (xi,xi+1/2)× (y j,y j+1/2),

�2 = (xi−1/2,xi)× (y j,y j+1/2),

�3 = (xi−1/2,xi)× (y j−1/2,y j),

�4 = (xi,xi+1/2)× (y j−1/2,y j).

In order to construct a fully discrete in space finite element problem, we consider the following
approximation formulas:∫

�l

aPH p′′H(t)PHwHdxdy ≃ |�l|a(xi,y j)p′′H(xi,y j, t)wH(xi,y j), l = 1,2,3,4. (2.6)

Then, taking into account that our problem has homogeneous Dirichlet boundary conditions, we have

(aPH p′′H(t),PHwH) =
∫

Ω

aPH p′′H(t)PHwHdxdy ≃
(
aH p′′H(t),wH

)
H ,
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where aH = RHa. Analogously we introduce the following approximation

(bPH p′H(t),PHwH)≃ (bH p′H(t),wH)H ,

where bH = RHb. If f3,H denotes the following grid function

f3,H(t)(xi,y j) =
1

|�i, j|

∫
�i, j

f3(x,y, t)dxdy, (2.7)

then, from the same quadrature rule, we obtain

( f3(t),PHwH)≃ ( f3,H(t),wH)H .

In the initial conditions (2.5) we consider the same approximation formulas. For the integral term
associated with the second order spatial derivatives with respect to x, and (xi,y j) ∈ ΩH , we have

∫
�l

e1
∂

∂x
(PH pH(t))

∂

∂x
(PHwH)dxdy ≃ |�l|e1(xi+1/2,y j)D−x pH(xi+1,y j, t)D−xwH(xi+1,y j), l = 1,4

and∫
�l

e1
∂

∂x
(PH pH(t))

∂

∂x
(PHwH)dxdy ≃ |�l|e1(xi−1/2,y j)D−x pH(xi,y j, t)D−xwH(xi,y j), l = 2,3.

The last approximation quadrature rules allow us to introduce

((E∇PH pH(t),∇PHwH))≃ ((EH∇H pH(t),∇HwH))H ,

where EH denotes the 2× 2 diagonal matrix with the following diagonal entries: e1,H(xi,y j) =

e1(xi−1/2,y j) and e2,H(xi,y j) = e2(xi,y j−1/2).

Then, considering the previous quadrature rules to approximate the integrals, we replace (2.4),
(2.5) by the following fully discrete in space finite element problem: find pH(t) ∈WH,0 such that

(aH p′′H(t),wH)H +(bH p′H(t),wH)H =−((EH∇H pH(t),∇HwH))H +( f3,H(t),wH)H , (2.8)

for t ∈ (0,Tf ], wH ∈WH,0, and(p′H(0),wH)H = (RH pv,0,wH)H , ∀wH ∈WH,0,

(pH(0),qH)H = (RH p0,qH)H , ∀qH ∈WH,0.
(2.9)

We observe that the fully discrete in space finite element problem (2.8), (2.9) can be rewritten as a
finite difference method. In order to define such equivalent method, we introduce the finite difference
operator ∇∗

H = (D−
x ,D

−
y ) where

D−
x vH(xi,y j) =

vH(xi+1,y j)− vH(xi,y j)

hi+1/2
,
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and D−
y is defined analogously. Then, considering in (2.8) wH ∈ WH,0 equals to 1 in (xi,y j) and 0

in the remaining grid nodes, for each (xi,y j) ∈ ΩH , we obtain that (2.8), (2.9) can be seen as: find
pH ∈WH,0 such that

aH p′′H(t)+bH p′H(t) = ∇
∗
H · (EH∇H pH(t))+ f3,H(t) in ΩH , t ∈ (0,Tf ], (2.10)

coupled with the boundary condition

pH(t) = 0 on ∂ΩH × (0,Tf ], (2.11)

and the initial conditions p′H(0) = RH pv,0,

pH(0) = RH p0.
(2.12)

The existence of a smooth solution of the IBVP (2.10)-(2.12) can be easily established considering
that such problem can be rewritten as the following differential system

aH p′′H(t)+bH p′H(t) = ApH(t)+ f3,H(t), t ∈ (0,Tf ], (2.13)

coupled with the initial conditions (2.12), where the entries of the matrix A depend on the coefficient
functions ei, i = 1,2. For instance, if f3,H(t) is a continuous function, then (2.13), (2.12) has a unique
solution pH(t) ∈C2((0,Tf ])∩C1([0,Tf ]) ([7]).

2.4 Convergence Analysis - Spatial Discretization

2.4.1 Classical Convergence Analysis

The classical convergence analysis of a semi-discrete finite difference method is based on the truncation
error TH,p(t) associated with the spatial discretization, and upper bounds for the spatial discretization
error are established depending on the norm of the TH,p(t).

Let eH,p(t) = RH p(t)− pH(t) be the spatial discretization error induced by the numerical scheme
(2.10)-(2.12). Then

(aHe′′H,p(t),wH)H +(bHe′H,p(t),wH)H =−((EH∇HeH,p(t),∇HwH))H +(TH,p(t),wH)H , (2.14)

for t ∈ (0,Tf ], wH ∈WH,0, and e′H,p(0) = 0

eH,p(0) = 0,

with
TH,p(t) = RH(∇ · (E∇p(t)))−∇

∗
H · (EH∇HRH p(t))+RH f3(t)− f3,H(t).

Considering in (2.14) wH = e′H,p(t), we obtain

(aHe′′H,p(t),e
′
H,p(t))H +(bHe′H,p(t),e

′
H,p(t))H =−((EH∇HeH,p(t),∇He′H,p(t)))H +(TH,p(t),e′H,p(t))H ,
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which implies

1
2

d
dt
∥
√

aHe′H,p(t)∥2
H +b0∥e′H,p(t)∥2

H +
1
2

d
dt
∥
√

EH∇HeH,p(t)∥2
H ≤ (TH,p(t),e′H,p(t))H , (2.15)

that leads to

d
dt

(
1
2
∥
√

aHe′H,p(t)∥2
H +b0

∫ t

0
∥e′H,p(s)∥2

Hds+
1
2
∥
√

EH∇HeH,p(t)∥2
H

)
≤ ∥TH,p(t)∥H∥e′H,p(t)∥H ,

(2.16)
where

√
E denotes the diagonal matrix with diagonal entries

√
ei, i = 1,2. To establish a representation

of the spatial truncation error TH,p(t) we remark that if f3(t) ∈C2(Ω), then

f3(xi,y j, t)− f3,H(xi,y j, t) =−hi+1 −hi

4
∂ f3

∂x
(xi,y j, t)−

k j+1 − k j

4
∂ f3

∂y
(xi,y j, t)+O(H2

max), (2.17)

for i = 1, . . . ,N −1, j = 1, . . . ,M−1 and t ∈ (0,Tf ]. If p(t) ∈C4(Ω), el ∈C3(Ω), l = 1,2, then, for
i = 1, . . . ,N −1, j = 1, . . . ,M−1, t ∈ (0,Tf ], we have

D−
x (e1(xi+1/2,y j)D−xRH p(xi,y j, t))−

∂

∂x

(
e1(xi,y j)

∂ p
∂x

(xi,y j, t)
)
=

=
hi+1 −hi

4
∂ 2e1

∂x2 (xi,y j)
∂ p
∂x

(xi,y j, t)+
hi+1 −hi

2
∂e1

∂x
(xi,y j)

∂ 2 p
∂x2 (xi,y j, t)

+
hi+1 −hi

3
e1(xi,y j)

∂ 3 p
∂x3 (xi,y j, t)+O(H2

max). (2.18)

Note that, we can obtain a similar expression for the term with respect to y.

Finally, from (2.17) and (2.18), for i = 1, . . . ,N −1, j = 1, . . . ,M−1, t ∈ (0,Tf ], we obtain

TH,p(xi,y j, t) =−(hi+1 −hi)

(
1
4

∂ 2e1

∂x2 (xi,y j)
∂ p
∂x

(xi,y j, t)+
1
2

∂e1

∂x
(xi,y j)

∂ 2 p
∂x2 (xi,y j, t)

+
1
3

e1(xi,y j)
∂ 3 p
∂x3 (xi,y j, t)+

1
4

∂ f3

∂x
(xi,y j, t)

)

− (k j+1 − k j)

(
1
4

∂ 2e2

∂y2 (xi,y j)
∂ p
∂y

(xi,y j, t)+
1
2

∂e2

∂y
(xi,y j)

∂ 2 p
∂y2 (xi,y j, t)

+
1
3

e2(xi,y j)
∂ 3 p
∂y3 (xi,y j, t)+

1
4

∂ f3

∂y
(xi,y j, t)

)
+O(H2

max)

provided that p(t) ∈C4(Ω), el ∈C3(Ω), l = 1,2, f3(t) ∈C2(Ω). The term O(H2
max) represents a term

such that there exists a positive constant Ct , H, t, p and f3 independent, satisfying

|O(H2
max)| ≤CtH2

max

(
∥e1∥C3(Ω)∥p(t)∥C4(Ω)+∥e2∥C3(Ω)∥p(t)∥C4(Ω)+∥ f3(t)∥C2(Ω)

)
,
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where ∥·∥Cm(Ω) denotes the usual norm in Cm(Ω), m ∈N0. This means, there exists a positive constant
C, H, t, p and f3 independent, such that

|TH,p(xi,y j, t)| ≤C|hi+1 −hi|
(
∥e1∥C2(Ω)∥p(t)∥C3(Ω)+∥ f3(t)∥C1(Ω)

)
+C|k j+1 − k j|

(
∥e2∥C2(Ω)∥p(t)∥C3(Ω)+∥ f3(t)∥C1(Ω)

)
+
∣∣O(H2

max)
∣∣ ,

for i = 1, . . . ,N −1, j = 1, . . . ,M−1, t ∈ (0,Tf ] and then

∥TH,p(t)∥H ≤ 2CHmax

((
∥e1∥C2(Ω)+∥e2∥C2(Ω)

)
∥p(t)∥C3(Ω)+∥ f3(t)∥C1(Ω)

)
+
∣∣O(H2

max)
∣∣ . (2.19)

An inequality similar to (2.19) can be established for lower smoothness functions. In fact,

∥TH,p(t)∥H ≤CHmax

((
∥e1∥C2(Ω)+∥e2∥C2(Ω)

)
∥p(t)∥C3(Ω)+∥ f3(t)∥C1(Ω)

)
can be obtained, for some positive constant C, H, t, p and f3 independent, provided that p(t) ∈C3(Ω),
el ∈C2(Ω), l = 1,2, f3(t) ∈C1(Ω).

Inequality (2.16) leads to

d
dt

(1
2
∥
√

aHe′H,p(t)∥2
H +b0

∫ t

0
∥e′H,p(s)∥2

H ds+
1
2
∥
√

EH∇HeH,p(t)∥2
H

)
≤CHmax

((
∥e1∥C2(Ω)+∥e2∥C2(Ω)

)
∥p(t)∥C3(Ω)+∥ f3(t)∥C1(Ω)

)∥∥e′H,p(t)
∥∥

H .

As a ≥ a0, b ≥ b0, ei ≥ e0, i = 1,2, in Ω, from the last inequality we obtain, for ε ̸= 0, the following
inequality

1
2

a0∥e′H,p(t)∥2
H +

(
b0 − ε

2)∫ t

0
∥e′H,p(s)∥2

H ds+
1
2
√

e0∥∇HeH,p(t)∥2
H

≤ C
4ε2 H2

max

∫ t

0

((
∥e1∥2

C2(Ω)
+∥e2∥2

C2(Ω)

)
∥p(s)∥2

C3(Ω)
+∥ f3(s)∥2

C1(Ω)

)
ds.

+
1
2
∥
√

aHe′H,p(0)∥2
H +

1
2
∥
√

EH∇HeH,p(0)∥2
H ,

where C is a positive constant, H, t, p, and f3 independent. Fixing ε such that b0 − ε2 > 0, and taking
into account the initial conditions for eH,p(t) we easily obtain the following estimate

∥e′H,p(t)∥2
H +

∫ t

0
∥e′H,p(s)∥2

H ds+∥∇HeH,p(t)∥2
H

≤CH2
max

∫ t

0

((
∥e1∥2

C2(Ω)
+∥e2∥2

C2(Ω)

)
∥p(s)∥2

C3(Ω)
+∥ f3(s)∥2

C1(Ω)

)
ds.

for t ∈ [0,Tf ]. Taking into account now the inequality (2.3) we conclude

∥eH,p(t)∥2
1,H ≤CH2

max

((
∥e1∥2

C2(Ω)
+∥e2∥2

C2(Ω)

)
∥p∥2

C(C3)+∥ f3∥2
C(C1)

)
, (2.20)

for t ∈ [0,Tf ], where C is a positive constant, H, t, p and f3 independent. Inequality (2.20) establishes
that the discrete H1- norm of the error is at least first order convergent.
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The last result can be summarized as follows:

Theorem 2.1. If the solution p of the IBVP (1.1), (1.4), (1.7) is in C([0,Tf ],C3(Ω))∩C2([0,Tf ],C(Ω)),
ei ∈C2(Ω), i = 1,2, and f3 ∈C([0,Tf ],C1(Ω)), and the coefficient functions a ≥ a0 > 0, b ≥ b0 > 0,
ei ≥ e0 > 0, i = 1,2, then there exists a positive constant C, independent of p, f3, H, and t, such that
for H ∈ Λ, the error eH,p(t) = RH p(t)− pH(t), where pH(t) is defined by (2.8), (2.9) (or, equivalently
by (2.10)-(2.12)), satisfies the following

∥e′H,p(t)∥2
H +

∫ t

0
∥e′H,p(s)∥2

H ds+∥∇HeH,p(t)∥2
H

≤CH2
max

((
∥e1∥2

C2(Ω)
+∥e2∥2

C2(Ω)

)
∥p∥2

C(C3)+∥ f3∥2
C(C1)

)
, t ∈ [0,Tf ].

From this first attempt based on the truncation error to obtain an estimate for ∥eH,p(t)∥2
1,H , we

conclude that our discretization has at least first order of convergence. However, if we are dealing
with uniform grids, as ∥TH(t)∥∞ ≤C max{h2,k2}, we obtain in this case

∥eH,p(t)∥2
1,H ≤C max{h4,k4}.

2.4.2 Supra-Superconvergence: Smooth Case

In this section our aim is to establish an improvement to Theorem 2.1. We will show that our
method (2.8), (2.9) is in fact second order convergent. In this second attempt to get the desired
convergence order we will pay a serious price - an increase on the smoothness imposed to the solution
p (p(t) ∈C4(Ω)).

Theorem 2.2. If the solution p of the IBVP (1.1), (1.4), (1.7) is in C1([0,Tf ],C4(Ω))∩C2([0,Tf ],C(Ω))

and f3 ∈C1([0,Tf ],C2(Ω)), ei ∈C3(Ω), i = 1,2, and the coefficient functions a ≥ a0 > 0, b ≥ b0 > 0,
ei ≥ e0 > 0, i = 1,2, then there exist positive constants C1 and C2, independent of p, f3, H, and t, such
that, for H ∈ Λ, the error eH,p(t) = RH p(t)− pH(t), where pH(t) is defined by (2.8), (2.9), satisfies
the following

∥e′H,p(t)∥2
H +

∫ t

0
∥e′H,p(s)∥2

H ds+∥eH,p(t)∥2
H +∥∇HeH,p(t)∥2

H

≤C1H4
maxeC2t

((
∥e1∥2

C3(Ω)
+∥e2∥2

C3(Ω)

)
∥p∥2

C1(C4)+∥ f3∥2
C1(C2)

)
, t ∈ [0,Tf ]. (2.21)

Proof. As in the proof of Theorem 2.1, (2.15) holds. To get the desired upper bound we need to get
the right form for the error term (TH,p(t),e′H,p(t))H . We observe that

(TH,p(t),e′H,p(t))H =
d
dt
(TH,p(t),eH,p(t))H − (T ′

H,p(t),eH,p(t))H , (2.22)
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where, for i = 1, . . . ,N −1, j = 1, . . . ,M−1, t ∈ (0,Tf ],

T ′
H,p(xi,y j, t) =−(hi+1 −hi)

(
1
4

∂ 2e1

∂x2 (xi,y j)
∂ 2 p
∂ t∂x

(xi,y j, t)+
1
2

∂e1

∂x
(xi,y j)

∂ 3 p
∂ t∂x2 (xi,y j, t)

+
1
3

e1(xi,y j)
∂ 4 p

∂ t∂x3 (xi,y j, t)+
1
4

∂ 2 f3

∂ t∂x
(xi,y j, t)

)

− (k j+1 − k j)

(
1
4

∂ 2e2

∂y2 (xi,y j)
∂ 2 p
∂ t∂y

(xi,y j, t)+
1
2

∂e2

∂y
(xi,y j)

∂ 3 p
∂ t∂y2 (xi,y j, t)

+
1
3

e2(xi,y j)
∂ 4 p

∂ t∂y3 (xi,y j, t)+
1
4

∂ 2 f3

∂ t∂y
(xi,y j, t)

)
+O(H2

max),

with |O(H2
max)| ≤CtH2

max

(
∥e1∥C3(Ω)∥p′(t)∥C4(Ω)+∥e2∥C3(Ω)∥p′(t)∥C4(Ω)+∥ f ′3(t)∥C2(Ω)

)
.

From (2.15) and (2.22), taking into account the initial conditions for eH,p(t), we get

∥
√

aHe′H,p(t)∥2
H +2b0

∫ t

0
∥e′H,p(s)∥2

Hds+∥
√

EH∇HeH,p(t)∥2
H ≤ 2(TH,p(t),eH,p(t))H

−2
∫ t

0
(T ′

H,p(s),eH,p(s))Hds, t ∈ (0,Tf ]. (2.23)

To obtain upper bounds for the terms (TH,p(t),eH,p(t))H , (T ′
H,p(s),eH,p(s))H we consider the

generic term

TG,x(t) =
N−1

∑
i=1

M−1

∑
j=1

hi+1/2k j+1/2(hi+1 −hi)v1(xi,y j, t)eH,p(xi,y j, t).

We have successively

TG,x(t) =−1
2

N

∑
i=1

M−1

∑
j=1

k j+1/2h2
i

(
v1(xi,y j, t)eH,p(xi,y j, t)− v1(xi−1,y j, t)eH,p(xi−1,y j, t)

)
=−1

2

N

∑
i=1

M−1

∑
j=1

k j+1/2h2
i

∫ xi

xi−1

∂v1

∂x
(x,y j, t)dx eH,p(xi,y j, t)

− 1
2

N

∑
i=1

M−1

∑
j=1

k j+1/2h3
i v1(xi−1,y j, t)D−xeH,p(xi,y j, t)

:= T (1)
G,x (t)+T (2)

G,x (t).
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For the term T (1)
G,x (t) it can be shown the following

∣∣∣T (1)
G,x (t)

∣∣∣≤ 1
2

N

∑
i=1

M−1

∑
j=1

k j+1/2h5/2
i

(∫ xi

xi−1

(
∂v1

∂x
(x,y j, t) dx

)2
)1/2

|eH,p(xi,y j, t)|

≤ 1
2

H2
max

N

∑
i=1

M−1

∑
j=1

k j+1/2hi

∥∥∥∥∂v1

∂x
(t)
∥∥∥∥

C(Ω)

|eH,p(xi,y j, t)|

≤ H2
max∥v1(t)∥C1(Ω)

(
N−1

∑
i=1

M−1

∑
j=1

k j+1/2hi+1/2

)1/2(N−1

∑
i=1

M−1

∑
j=1

k j+1/2hi+1/2(eH,p(xi,y j, t))2

)1/2

≤ H2
max∥v1(t)∥C1(Ω)∥eH,p(t)∥H

≤ 1
4η2

1
H4

max∥v1(t)∥2
C1(Ω)

+η
2
1∥eH,p(t)∥2

H ,

while for T (2)
G,x (t) we have

∣∣∣T (2)
G,x (t)

∣∣∣≤ 1
2

(
N

∑
i=1

M−1

∑
j=1

k j+1/2h4
i hi(v1(xi−1,y j, t))2

)1/2( N

∑
i=1

M−1

∑
j=1

k j+1/2hi(D−xeH,p(xi,y j, t))2

)1/2

≤ 1
2

H2
max

(
N

∑
i=1

M−1

∑
j=1

k j+1/2hi(v1(xi−1,y j, t))2

)1/2

∥D−xeH,p(t)∥H

≤ 1
2

H2
max ∥v1(t)∥C0(Ω) ∥D−xeH,p(t)∥H

≤ 1
16η2

2
H4

max∥v1(t)∥2
C0(Ω)

+η
2
2∥D−xeH,p(t)∥2

H ,

where ηi, i = 1,2, are non-zero constants. Consequently we obtain

|TG,x(t)| ≤
1

4η2
1

H4
max∥v1(t)∥2

C1(Ω)
+η

2
1∥eH,p(t)∥2

H +
1

16η2
2

H4
max∥v1(t)∥2

C0(Ω)
+η

2
2∥D−xeH,p(t)∥2

H .

Analogously, for the correspondent term in y direction

TG,y(t) =
N−1

∑
i=1

M−1

∑
j=1

hi+1/2k j+1/2(k j+1 − k j)v2(xi,y j, t)eH,p(xi,y j, t)

it can be shown that

|TG,y(t)| ≤
1

4η2
3

H4
max∥v2(t)∥2

C1(Ω)
+η

2
3∥eH,p(t)∥2

H +
1

16η2
4

H4
max∥v2(t)∥2

C0(Ω)
+η

2
4∥D−yeH,p(t)∥2

H ,

where ηi, i = 3,4, are non-zero constants.

Let η1 = η3 and η2 = η4, then we deduce

|TG,x(t)|+ |TG,y(t)|

≤
( 1

4η2
1
+

1
16η2

2

)
H4

max

(
∥v1(t)∥2

C1(Ω)
+∥v2(t)∥2

C1(Ω)

)
+2η

2
1∥eH,p(t)∥2

H +η
2
2∥∇HeH,p(t)∥2

H .
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Considering now the term (TH,p(t),eH,p(t))H and choosing the convenient terms vi(t), i = 1,2, we
conclude

|(TH,p(t),eH,p(t))H | ≤
( 1

4ξ 2
1
+

1
16ξ 2

2

)
H4

max

(
2(∥e1∥C3(Ω)+∥e2∥C3(Ω))∥p(t)∥C4(Ω)

+
1
2
∥ f3(t)∥C2(Ω)

)2
+3ξ

2
1 ∥eH,p(t)∥2

H +ξ
2
2 ∥∇HeH,p(t)∥2

H

+
1

4ξ 2
1

C2
t H4

max

((
∥e1∥C3(Ω)+∥e2∥C3(Ω)

)
∥p(t)∥C4(Ω)+∥ f3(t)∥C2(Ω)

)2
,

(2.24)

where ξi, i = 1,2, are non-zero constants. Analogously for (T ′
H,p(s),eH,p(s)) we get the upper bound

|(T ′
H,p(s),eH,p(s))H | ≤

( 1
4ξ 2

3
+

1
16ξ 2

4

)
H4

max

(
2(∥e1∥C3(Ω)+∥e2∥C3(Ω))∥p′(s)∥C4(Ω)

+
1
2
∥ f ′3(s)∥C2(Ω)

)2
+3ξ

2
3 ∥eH,p(s)∥2

H +ξ
2
4 ∥∇HeH,p(s)∥2

H

+
1

4ξ 2
3

C2
t H4

max

((
∥e1∥C3(Ω)+∥e2∥C3(Ω)

)
∥p′(s)∥C4(Ω)+∥ f ′3(s)∥C2(Ω)

)2
,

(2.25)

where ξi, i = 3,4, are non-zero constants.

Taking (2.24) and (2.25) into (2.23), and using the discrete Poincaré inequality (2.3), we obtain

a0∥e′H,p(t)∥2
H +2b0

∫ t

0
∥e′H,p(s)∥2

Hds+
(

e0 −6ξ
2
1

)
∥eH,p(t)∥2

H +
(e0

2
−2ξ

2
2

)
∥∇HeH,p(t)∥2

H

≤
∫ t

0
2
(

ξ
2
4 ∥∇HeH,p(s)∥2

H +3ξ
2
3 ∥eH,p(s)∥2

H

)
ds+CH4

max

(
R(t)+

∫ t

0
R(s)ds

)
, t ∈ [0,Tf ],

where C depends on the previous constants ξi, i = 1,2,3,4, and Ct , and R(µ) = ∥ f3(µ)∥2
C2(Ω)

+

∥ f ′3(µ)∥2
C2(Ω)

+
(
∥e1∥2

C3(Ω)
+∥e2∥2

C3(Ω)

)(
∥p(µ)∥2

C4(Ω)
+∥p′(µ)∥2

C4(Ω)

)
. Fixing ξ1 and ξ2 such that

e0 −6ξ
2
1 > 0,

e0

2
−2ξ

2
2 > 0, it follows that there exist positive constants Ci, i = 1,2, p, f3, H and t

independent, such that

∥e′H,p(t)∥2
H +

∫ t

0
∥e′H,p(s)∥2

Hds+∥eH,p(t)∥2
H +∥∇HeH,p(t)∥2

H

≤C1H4
max

(
R(t)+

∫ t

0
R(s)ds

)
+C2

∫ t

0

(
∥∇HeH,p(s)∥2

H +∥eH,p(s)∥2
H

)
ds. (2.26)

Applying Gronwall’s Lemma ([6]) to (2.26) we arrive at

∥e′H,p(t)∥2
H +

∫ t

0
∥e′H,p(s)∥2

H ds+∥eH,p(t)∥2
H +∥∇HeH,p(t)∥2

H

≤C1H4
maxeC2t

((
∥e1∥2

C3(Ω)
+∥e2∥2

C3(Ω)

)
∥p∥2

C1(C4)+∥ f3∥2
C1(C2)

)
, t ∈ [0,Tf ],

which gives us the desired result.
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Such result enables us to conclude that ∥eH,p(t)∥1,H ≤CH2
max although ∥TH,p(t)∥∞ ≤CHmax. In

the context of finite element approach, our result cannot be obtained following the approach introduced
by Wheeler for parabolic equations in [45]. In fact, this approach is based on the split of the spatial
discretization error into two terms introducing the numerical approximation for an elliptic problem
associated with our hyperbolic equation

p(t)−PH pH(t) = p(t)−PH p̃H(t)+PH p̃H(t)−PH pH(t)

= ρH(t)+θH(t), (2.27)

where, to simplify, taking a = 1,b = 0,E = I2 (the identity matrix of order 2), p̃H(t) satisfies the
following

((∇PH p̃H(t),∇PHwH)) =−
(

p′′(t),PHwH
)
+( f3(t),PHwH),

for wH ∈WH,0 and t ∈ (0,Tf ], and PH pH(t) is the solution of (2.4), (2.5). It is known that

∥ρH(t)∥ ≤CH2
max, ∥ρH(t)∥1 ≤CHmax,

provided that p(t) ∈ H2(Ω)∩H1
0 (Ω) and assuming that the family of triangulations associated with

our rectangular grids are quasi-uniform ([19]). It can be shown that θH(t) satisfies the following
differential equation(

θ
′′
H(t),PHwH

)
+((∇θH(t),∇PHwH)) =

(
ρ
′′
H(t),PHwH

)
, t ∈ (0,Tf ].

Then ∥∥θ
′
H(t)

∥∥2
+∥∇θH(t)∥2 +

∫ t

0
et−s∥∇θH(s)∥2ds

≤ et (∥∥θ
′
H(0)

∥∥+∥∇θH(0)∥2)+∫ t

0
et−s

∥∥ρ
′′
H(s)

∥∥2 ds, t ∈ [0,Tf ].

If we assume that p′′(t) ∈ H2(Ω)∩H1
0 (Ω), and∥∥θ
′
H(0)

∥∥+∥∇θH(0)∥2 ≤CH4
max,

then
∥∇θH(t)∥2 ≤CH4

max.

However, from (2.27) we get

∥p(t)−PH pH(t)∥1 ≤ ∥ρH(t)∥1 +∥θH(t)∥1 ≤CHmax.

If we look to our method as a fully discrete piecewise linear method, then we have shown that

∥eH,p(t)∥1,H ≤CH2
max,
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which can be seen as a superconvergence result. It is clear that this upper bound was obtained under
severe smoothness assumptions. In what follows we study the accuracy of pH(t) under weaker
assumptions than those considered here.

In what concerns the geometry of the triangulations associated with the nonuniform rectangular
grids, they do not need to be quasi-uniform. In fact, we can have triangles with interior angles whose
amplitude is arbitrarily small ([19]).

2.4.3 Supra-Superconvergence: Non-Smooth Case

In this section, we establish an upper bound analogous to (2.21) but under weaker assumptions
than those used in the proof of Theorem 2.2, namely p ∈C1([0,Tf ],C4(Ω))∩C2([0,Tf ],C(Ω)) and
f3 ∈ C1([0,Tf ],C2(Ω)). The main tool used in the proof of the next result is the Bramble-Hilbert
Lemma ([5]). Let us assume that

p ∈ H3(0,Tf ,H2(Ω))∩H1(0,Tf ,H3(Ω)∩H1
0 (Ω)).

We remark that if p ∈ Hm(0,Tf ,Hr(Ω)) then p ∈Cm−1([0,Tf ],Hr(Ω)), m ∈ N, r ∈ N0 (see [1]).

Theorem 2.3. If the solution p of the IBVP (1.1), (1.4), (1.7) belongs to H1(0,Tf , H3(Ω)∩H1
0 (Ω))∩

H3(0,Tf ,H2(Ω)), the coefficient functions a,b,ei, i = 1,2 ∈ W 2,∞(Ω), and a ≥ a0 > 0, b ≥ b0 > 0,
ei ≥ e0 > 0, i = 1,2, then there exist positive constants Ci, i = 1,2, p, H, and t independent, such that,
for H ∈ Λ, the spatial discretization error eH,p(t) = RH p(t)− pH(t), where pH(t) is defined by (2.8),
(2.9), satisfies the following

∥e′H,p(t)∥2
H +

∫ t

0
∥e′H,p(s)∥2

Hds+∥∇HeH,p(t)∥2
H

≤C1eC2t
∑

∆∈TH

(diam∆)4
(
∥p∥2

H1(H3)+∥p∥2
H3(H2)

)
, t ∈ [0,Tf ].

Proof. It is easy to show that the spatial discretization error eH,p(t) is solution of the discrete varia-
tional equation

(aHe′′H,p(t),wH)H +(bHe′H,p(t),wH)H =−((EH∇HeH,p(t),∇HwH))H

+T1(p(t),wH)+T2(p(t),wH), t ∈ (0,Tf ], ∀wH ∈WH,0, (2.28)

where
T1(p(t),wH) = ((EH∇H(RH p(t)),∇HwH))H − (−(∇ · (E∇p(t)))H ,wH)H

and
T2(p(t),wH) = (RH(ap′′(t)+bp′(t))− (ap′′(t)+bp′(t))H ,wH)H .

In the definition of T1(p(t),wH) and T2(p(t),wH), (g(t))H for g(t) = ap′′(t) + bp′(t),g(t) = ∇ ·
(E∇p(t)), is given by (2.7) with f3(t) replaced by g(t).
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Lemma 5.1 of [14] allows us to conclude the following estimate

|T1(p(t),wH)| ≤
∣∣∣∣(e1,HD−x(RH p(t)),D−xwH)H,x −

(
−
(

∂

∂x

(
e1

∂

∂x
p(t)

))
H
,wH

)
H

∣∣∣∣
+

∣∣∣∣(e2,HD−y(RH p(t)),D−ywH)H,y −
(
−
(

∂

∂y

(
e2

∂

∂y
p(t)

))
H
,wH

)
H

∣∣∣∣
≤C

(
∑

∆∈TH

(diam∆)4∥p(t)∥2
H3(∆)

)1/2
∥∇HwH∥H , (2.29)

for wH ∈WH,0, where C is a positive constant p, H and t independent.

Moreover, Lemma 5.7 of [14] leads to

|T2(p(t),wH)| ≤
∣∣((ap′′(t))H −RH(ap′′(t)),wH)H

∣∣+ ∣∣((bp′(t))H −RH(bp′(t)),wH)H
∣∣

≤C
(

∑
∆∈TH

(diam∆)4
(
∥p′(t)∥2

H2(∆)+∥p′′(t)∥2
H2(∆)

))1/2
∥∇HwH∥H , (2.30)

for wH ∈WH,0, and where C denotes a positive constant p, H and t independent which is not necessarily
the one that arises in (2.29).

If we take in (2.28) wH = e′H,p(t) then we obtain

(aHe′′H,p(t),e
′
H,p(t))H +(bHe′H,p(t),e

′
H,p(t))H =−((EH∇HeH,p(t),∇He′H,p(t)))H

+T1(p(t),e′H,p(t))+T2(p(t),e′H,p(t)). (2.31)

As we have
Ti(p(t),e′H,p(t)) =

d
dt

Ti(p(t),eH,p(t))−Ti(p′(t),eH,p(t)), i = 1,2,

from (2.31), we deduce

d
dt
∥
√

aHe′H,p(t)∥2
H +2∥

√
bHe′H,p(t)∥2

H +
d
dt
∥
√

EH∇HeH,p(t)∥2
H = 2

d
dt

T1(p(t),eH,p(t))

+2
d
dt

T2(p(t),eH,p(t))−2T1(p′(t),eH,p(t))−2T2(p′(t),eH,p(t)).

That leads to

d
dt

(
∥
√

aHe′H,p(t)∥2
H +2

∫ t

0
∥
√

bHe′H,p(s)∥2
Hds+∥

√
EH∇HeH,p(t)∥2

H

−2T1(p(t),eH,p(t))−2T2(p(t),eH,p(t))+2
∫ t

0
T1(p′(s),eH,p(s))+T2(p′(s),eH,p(s))ds

)
= 0.

From the last identity we easily obtain

a0∥e′H,p(t)∥2
H +2b0

∫ t

0
∥e′H,p(s)∥2

Hds+ e0∥∇HeH,p(t)∥2
H

≤ 2T1(p(t),eH,p(t))+2T2(p(t),eH,p(t))−2
∫ t

0
T1(p′(s),eH,p(s))+T2(p′(s),eH,p(s))ds,
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because we are assuming that eH,p(0) = e′H,p(0) = 0. Taking into account the upper bounds (2.29)
and (2.30) in the last inequality, we get

a0∥e′H,p(t)∥2
H +2b0

∫ t

0
∥e′H,p(s)∥2

Hds+(e0 −4ξ
2
1 )∥∇HeH,p(t)∥2

H

≤ C
2ξ 2

1
∑

∆∈TH

(diam∆)4
(
∥p(t)∥2

H3(∆)+
2

∑
ℓ=1

∥p(ℓ)(t)∥2
H2(∆)

)
+

C
2ξ 2

2
∑

∆∈TH

(diam∆)4
∫ t

0

(
∥p′(s)∥2

H3(∆)+
3

∑
ℓ=2

∥p(ℓ)(s)∥2
H2(∆)

)
ds

+4ξ
2
2

∫ t

0
∥∇HeH,p(s)∥2

Hds,

where ξi, i = 1,2, are non-zero constants and C a positive constant, p, H and t independent. Fixing ξ1

such that e0 −4ξ 2
1 > 0, we conclude the existence of two positive constants Ci, i = 1,2, such that

∥e′H,p(t)∥2
H +

∫ t

0
∥e′H,p(s)∥2

Hds+∥∇HeH,p(t)∥2
H

≤C1 ∑
∆∈TH

(diam∆)4
(
∥p∥2

H1(H3)+∥p∥2
H3(H2)

)
+C2

∫ t

0
∥∇HeH,p(s)∥2

Hds.

Finally, applying Gronwall’s Lemma, we obtain the desired result.

We point out that Lemmas 5.1 and 5.7 of [14] were considered to obtain (2.29) and (2.30). We
remark that the Bramble-Hilbert Lemma is the main tool used in the proofs of those lemmas.

Corollary 2.1. Under the assumptions of Theorem 2.3, we conclude that there exists a positive
constant C, H, and t independent, such that

∥eH,p(t)∥2
1,H ≤CH4

max, t ∈ [0,Tf ], H ∈ Λ. (2.32)

Proof. We remark that (2.32) follows immediately from Theorem 2.3 and (2.3).

As Theorem 2.2, Theorem 2.3 and Corollary 2.1 can also be seen as supra-superconvergence
results. These last results were established under weaker smoothness assumption on p than those
considered in Theorem 2.2.

In what follows, we study the boundness of the sequences (∥pH(t)∥∞)H∈Λ and (∥∇H pH(t)∥∞)H∈Λ,
where

∥pH(t)∥∞
= max

(x,y)∈ΩH

|pH(x,y, t)| , (2.33)

∥∇H pH(t)∥∞
= max

i=1,...,N, j=1,...,M−1

∣∣D−x pH(xi,y j, t)
∣∣+ max

i=1,...,N−1, j=1,...,M

∣∣D−y pH(xi,y j, t)
∣∣ . (2.34)

As we will see later, these boundnesses have an important role in the error analysis for the numerical
approximation for the concentration c (defined by (1.3) or (1.14)) that we will introduce in the next
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chapters. To guarantee this property for pH(t) and its gradient ∇H pH(t) we need to consider a
condition on the spatial grids ΩH for H ∈ Λ. We assume that for H ∈ Λ, Hmax small enough, there
exists a positive constant Cm such that

Hmax

Hmin
≤Cm, (2.35)

where Hmin = min{hi,k j; i = 1, . . . ,N; j = 1, . . . ,M}.
To show that (2.33) and (2.34) are bounded we start by noting that

∥pH(t)∥2
∞ ≤ 2

1
H2

min
∥eH,p(t)∥2

H +2∥RH p(t)∥2
∞.

Then, from Corollary 2.1, we get

∥pH(t)∥2
∞ ≤C

H4
max

H2
min

+2∥p(t)∥2
∞,H ∈ Λ,

and we derive the boundness of (2.33) by the fact that p(t) ∈C(Ω) when p(t) ∈ H3(Ω)∩H1
0 (Ω).

To prove the boundness of (2.34), we observe that we have successively

∥∇H pH(t)∥2
∞ ≤ 2

1
H2

min
∥∇HeH,p(t)∥2

H +2∥∇HRH p(t)∥2
∞

≤C
H4

max

H2
min

+2∥∇HRH p(t)∥2
∞

≤C
H4

max

H2
min

+2∥∇p(t)∥2
∞,

where C denotes a positive constant, p, H and t independent. The boundness of (2.34) follows from
the fact that p(t) ∈C1(Ω) when p(t) ∈ H3(Ω)∩H1

0 (Ω).

Corollary 2.2. Under the assumptions of Theorem 2.3, if the sequence of step-sizes Λ satisfies (2.35)
then, there exists a positive constant C, H and t independent, such that

∥pH(t)∥∞
≤C and ∥∇H pH(t)∥∞

≤C, t ∈ [0,Tf ],

for H ∈ Λ with Hmax small enough.

2.5 Fully Discrete Approximation in Time and Space

In this section, we consider fully discrete approximations in time and space for our acoustic pressure
problem (1.1), (1.4), (1.7), considering the discretization in space presented before. For that, we
introduce in [0,Tf ] the uniforme time grid {tn = n∆t,n = 0, . . . ,Mt} with tMt = Tf and where ∆t is the
time step.

We present two different methods with different convergence orders: order one in Section 2.5.1
and order two in Section 2.5.2.
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2.5.1 First Order Scheme

Let D2,t be the second order centered finite difference operator in time and let D−t be the backward
finite difference operator in time. The fully discrete in time and space approximation for the solution
of the IBVP (1.1), (1.4), (1.7) is defined by

(aHD2,t pn
H ,wH)H +(bHD−t pn+1

H ,wH)H =−((EH∇H pn+1
H ,∇HwH))H

+( f3,H(tn+1),wH)H , n = 1, . . . ,Mt −1, (2.36)

for wH ∈WH,0, with the initial conditions(D−t p1
H ,wH)H = (RH pv,0,wH)H , ∀wH ∈WH,0,

(p0
H ,qH)H = (RH p0,qH)H , ∀qH ∈WH,0,

(2.37)

and the boundary condition
pn

H = 0 on ∂ΩH , n = 1, . . . ,Mt . (2.38)

Equivalently, equation (2.36) can be written as

aHD2,t pn
H +bHD−t pn+1

H = ∇
∗
H · (EH∇H pn+1

H )+ f3,H(tn+1) in ΩH , n = 1, . . . ,Mt −1, (2.39)

and (2.37) replaced by {
D−t p1

H = RH pv,0,

p0
H = RH p0.

(2.40)

The main theorem of this section is stated next.

Theorem 2.4. If the solution p of the IBVP (1.1), (1.4), (1.7) is in H1(0,Tf ,H3(Ω)∩H1
0 (Ω))∩

H3(0,Tf ,H2(Ω)) ∩C3([0,Tf ],C(Ω)) ∩C2([0,Tf ],C1(Ω)) ∩C1([0,Tf ],C2(Ω)), a, b, ei, i = 1,2 ∈
W 2,∞(Ω), and a ≥ a0 > 0, b ≥ b0 > 0, ei ≥ e0 > 0, i = 1,2, then, for H ∈ Λ, there exists a posi-
tive constant C, p, H and ∆t independent, such that for the error en

H,p = RH p(tn)− pn
H , where pn

H is
defined by (2.36), (2.37), (2.38), n = 1, . . . ,Mt , holds the following

∥D−ten
H,p∥2

H +∆t
n

∑
j=1

∥D−te
j
H,p∥

2
H +∥∇Hen

H,p∥2
H

≤C
(

∆t2
(
∥p∥2

C2(C)+∆t2∥p∥2
C2(C1)+∆t ∥p∥2

C3(C)+H2
max∥p∥2

C1(C2)

)
+ ∑

∆∈TH

(diam∆)4
(
∥p∥2

C(H3)+∥p∥2
C2(H2)+∥p∥2

H1(H3)+∥p∥2
H3(H2)

))
. (2.41)

Proof. It can be shown that the error en
H,p satisfies the following equation

(aHD2,ten
H,p,D−ten+1

H,p )H +(bHD−ten+1
H,p ,D−ten+1

H,p )H =−((EH∇Hen+1
H,p ,∇HD−ten+1

H,p ))H

+
3

∑
ℓ=1

Tℓ(p(tn+1),D−ten+1
H,p ), (2.42)
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where

T1(p(tn+1),wH) = ((EH∇H(RH p(tn+1)),∇HwH))H +((∇ · (E∇p(tn+1)))H ,wH)H ,

T2(p(tn+1),wH) = (RH(ap′′(tn+1)+bp′(tn+1))− ((ap′′(tn+1)+bp′(tn+1))H),wH)H ,

and

T3(p(tn+1),wH) = (aH(D2,tRH p(tn)−RH p′′(tn+1))+bH(D−tRH p(tn+1)−RH p′(tn+1)),wH)H ,

for wH ∈WH,0.

As we have successively(
e1,HD−xen+1

H,p ,D−xD−ten+1
H,p

)
H,x

=
1
∆t

(∥∥∥√e1,HD−xen+1
H,p

∥∥∥2

H
−
(√

e1,HD−xen+1
H,p ,

√
e1,HD−xen

H,p

)
H,x

)
≥ 1

∆t

(∥∥∥√e1,HD−xen+1
H,p

∥∥∥2

H
−
∥∥√e1,HD−xen

H,p

∥∥
H

∥∥∥√e1,HD−xen+1
H,p

∥∥∥
H

)
≥ 1

2∆t

(∥∥∥√e1,HD−xen+1
H,p

∥∥∥2

H
−
∥∥√e1,HD−xen

H,p

∥∥2
H

)
,

and a similar result holds for the term
(

e2,HD−yen+1
H,p ,D−yD−ten+1

H,p

)
H,y

, then we deduce

((
EH∇Hen+1

H,p ,∇HD−ten+1
H,p

))
H
≥ 1

2∆t

(∥∥∥√EH∇Hen+1
H,p

∥∥∥2

H
−
∥∥√EH∇Hen

H,p

∥∥2
H

)
. (2.43)

We also have successively

(aHD2,ten
H,p,D−ten+1

H,p )H =
1
∆t

(∥∥∥√aHD−ten+1
H,p

∥∥∥2

H
−
(√

aHD−ten
H,p,

√
aHD−ten+1

H,p

)
H

)
≥ 1

∆t

(∥∥∥√aHD−ten+1
H,p

∥∥∥2

H
−
∥∥√aHD−ten

H,p

∥∥
H

∥∥∥√aHD−ten+1
H,p

∥∥∥
H

)
≥ 1

2∆t

(∥∥∥√aHD−ten+1
H,p

∥∥∥2

H
−
∥∥√aHD−ten

H,p

∥∥2
H

)
, (2.44)

and

Tℓ(p(tn+1),D−ten+1
H,p ) = D−tTℓ(p(tn+1),en+1

H,p )−Tℓ(D−t p(tn+1),en
H,p), ℓ= 1,2. (2.45)

Taking in (2.42) the estimates (2.43), (2.44) and (2.45), we get

1
2∆t

(∥∥∥√aHD−ten+1
H,p

∥∥∥2

H
−
∥∥√aHD−ten

H,p

∥∥2
H

)
+b0

∥∥∥D−ten+1
H,p

∥∥∥2

H

≤− 1
2∆t

(∥∥∥√EH∇Hen+1
H,p

∥∥∥2

H
−
∥∥√EH∇Hen

H,p

∥∥2
H

)
+T3(p(tn+1),D−ten+1

H,p )

+
2

∑
ℓ=1

D−tTℓ(p(tn+1),en+1
H,p )−

2

∑
ℓ=1

Tℓ(D−t p(tn+1),en
H,p),
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which gives

∥
√

aHD−ten+1
H,p∥

2
H +2∆tb0∥D−ten+1

H,p∥
2
H −2

2

∑
ℓ=1

Tℓ(p(tn+1),en+1
H,p )+∥

√
EH∇Hen+1

H,p∥
2
H

≤ ∥
√

aHD−ten
H,p∥2

H +∥
√

EH∇Hen
H,p∥2

H −2
2

∑
ℓ=1

Tℓ(p(tn),en
H,p)

−2∆t
2

∑
ℓ=1

Tℓ(D−t p(tn+1),en
H,p)+2∆tT3(p(tn+1),D−ten+1

H,p ), (2.46)

for n = 1, . . . ,Mt −1. Inequality (2.46) leads to

∥
√

aHD−ten+1
H,p∥

2
H +2∆tb0

n+1

∑
j=1

∥D−te
j
H,p∥

2
H −2

2

∑
ℓ=1

Tℓ(p(tn+1),en+1
H,p )+∥

√
EH∇Hen+1

H,p∥
2
H

≤ ∥
√

aHD−te1
H,p∥2

H +2∆tb0∥D−te1
H,p∥2

H +∥
√

EH∇He1
H,p∥2

H −2
2

∑
ℓ=1

Tℓ(p(t1),e1
H,p)

−2∆t
n

∑
j=1

( 2

∑
ℓ=1

Tℓ(D−t p(t j+1),e
j
H,p)+T3(p(t j+1),D−te

j+1
H,p)

)
, (2.47)

for n = 1, . . . ,Mt −1.

The terms Tℓ(p(tn+1),en+1
H,p ), ℓ= 1,2 satisfy (2.29) and (2.30), respectively, with wH = en+1

H,p , and
for Tℓ(D−t p(tn+1),en

H,p), ℓ= 1,2, we get

|T1(D−t p(tn+1),en
H,p)| ≤C

1√
∆t

(
∑

∆∈TH

(diam∆)4∥p∥2
H1(tn,tn+1,H3(∆))

)1/2
∥∇Hen

H,p∥H (2.48)

and

|T2(D−t p(tn+1),en
H,p)| ≤C

1√
∆t

(
∑

∆∈TH

(diam∆)4∥p∥2
H3(tn,tn+1,H2(∆))

)1/2
∥∇Hen

H,p∥H . (2.49)

Since, in ΩH , we have ∣∣D2,tRH p(tn)−RH p′′(tn+1)
∣∣≤C∆t ∥p∥C3(C) ,

where C is a positive constant, p, H and ∆t independent, then for T3(p(tn+1),D−ten+1
H,p ) we get

|T3(p(tn+1),D−ten+1
H,p )| ≤C∆t∥p∥C3(C)∥D−ten+1

H,p∥H . (2.50)

Considering now in (2.47) the upper bounds (2.29), (2.30) for |Tℓ(p(tn+1),en+1
H,p )|, ℓ= 1,2, and (2.48),

(2.49) for |Tℓ(D−t p(tn+1),en
H,p)|, ℓ= 1,2, and (2.50) for |T3(p(tn+1),D−ten+1

H,p )|, we establish
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a0∥D−ten+1
H,p∥

2
H +2∆t(b0 −ξ

2
3 )

n+1

∑
j=1

∥D−te
j
H,p∥

2
H +

(
e0 −4ξ

2
1
)
∥∇Hen+1

H,p∥
2
H

≤ ∥
√

aHD−te1
H,p∥2

H +2∆tb0∥D−te1
H,p∥2

H +∥
√

EH∇He1
H,p∥2

H −2
2

∑
ℓ=1

Tℓ(p(t1),e1
H,p)

+∆t
n

∑
j=1

4ξ
2
2 ∥∇He j

H,p∥
2
H +Tn+1(p)

for n = 1, . . . ,Mt −1, and

Tn+1(p) =C
( 1

2ξ 2
1

∑
∆∈TH

(diam∆)4
(
∥p(tn+1)∥2

H3(∆)+
2

∑
ℓ=1

∥p(ℓ)(tn+1)∥2
H2(∆)

)
+

n

∑
j=1

( 1
2ξ 2

2
∑

∆∈TH

(diam∆)4
(
∥p∥2

H1(t j,t j+1,H3(∆))+∥p∥2
H3(t j,t j+1,H2(∆))

)
(2.51)

+
1

2ξ 2
3

∆t3∥p∥2
C3(C)

))
with ξi, i = 1,2,3, non-zero constants, and C, a p, H and ∆t independent positive constant. Fixing ξ1

and ξ3 such that e0 −4ξ 2
1 > 0, b0 −ξ 2

3 > 0, we conclude that there exist positive constants C1,C2, p,
H and ∆t independent, such that

∥D−ten+1
H,p∥

2
H +∆t

n+1

∑
j=1

∥D−te
j
H,p∥

2
H +∥∇Hen+1

H,p∥
2
H

≤C1

(
∥D−te1

H,p∥2
H +∥∇He1

H,p∥2
H +

2

∑
ℓ=1

|Tℓ(p(t1),e1
H,p)|+Tn+1(p)

)
+C2∆t

n

∑
j=1

∥∇He j
H,p∥

2
H .

Applying the discrete Gronwall’s Lemma (Lemma 2 of [23]) we obtain the next upper inequality

∥D−ten+1
H,p∥

2
H +∆t

n+1

∑
j=1

∥D−te
j
H,p∥

2
H +∥∇Hen+1

H,p∥
2
H

≤C
(
∥D−te1

H,p∥2
H +∥∇He1

H,p∥2
H +

2

∑
ℓ=1

|Tℓ(p(t1),e1
H,p)|+ max

j=2,...,n+1
Tj(p)

)(
1+Tf eC2n∆t

)
,

(2.52)

for n = 1, . . . ,Mt −1.

Finally, to obtain the final error estimate we need to compute upper bounds for ∥D−te1
H,p∥2

H ,
∥∇He1

H,p∥2
H and |Tℓ(p(t1),e1

H,p)|, ℓ= 1,2. From the first relation of (2.40) we easily get

D−te1
H,p = D−tRH p(t1)−RH p′(t0),

that leads to
∥D−te1

H,p∥2
H ≤ 1

4
∆t2∥p∥2

C2(C). (2.53)
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To obtain an upper bound for ∥∇He1
H,p∥2

H we start by remarking that in what concerns ∇HD−te1
H,p

we have
∇HD−te1

H,p = ∇HD−tRH p(t1)−∇HRH p′(t0),

and consequently, in ΩH ,∣∣∇HD−te1
H,p −

(
∇HD−tRH p(t1)−RH∇p′(t0)

)∣∣≤CHmax∥p∥C1(C2).

Moreover, in ΩH , we also have∣∣∇HD−tRH p(t1)−RH∇p′(t0)
∣∣≤C

(
Hmax∥p∥C1(C2)+∆t∥p∥C2(C1)

)
.

Leading to
((∇HD−te1

H,p,∇He1
H,p))H = ((Tr(p(t1)),∇He1

H,p))H ,

with
|Tr(p(t1))| ≤C

(
∆t∥p∥C2(C1)+Hmax∥p∥C1(C2)

)
.

The previous estimates allow us to write

∥∇He1
H,p∥2

H = ∆t((Tr(p(t1)),∇He1
H,p))H +((∇He0

H,p,∇He1
H,p))H

≤ 1
2
∥∇He0

H,p∥2
H +

1
2
∥∇He1

H,p∥2
H +

∆t2

4ξ 2 ∥Tr(p(t1))∥2
H +ξ

2∥∇He1
H,p∥2

H ,

where ξ ̸= 0 is an arbitrary constant. Consequently,

(
1−2ξ

2)∥∇He1
H,p∥2

H ≤ ∥∇He0
H,p∥2

H +
∆t2

2ξ 2 ∥Tr(p(t1))∥2
H ,

and as e0
H,p = 0, then, there exists a positive constant C, p, H and ∆t independent, such that

∥∇He1
H,p∥2

H ≤C∆t2
(

∆t2∥p∥2
C2(C1)+H2

max∥p∥2
C1(C2)

)
. (2.54)

Furthermore, from (2.29) and (2.30),

∣∣T1(p(t1),e1
H,p)

∣∣≤C ∑
∆∈TH

(diam∆)4 ∥p(t1)∥2
H3(∆)+

1
2

∥∥∇He1
H,p

∥∥2
H , (2.55)

and ∣∣T2(p(t1),e1
H,p)

∣∣≤C ∑
∆∈TH

(diam∆)4
(∥∥p′(t1)

∥∥2
H2(∆)

+
∥∥p′′(t1)

∥∥2
H2(∆)

)
+

1
2

∥∥∇He1
H,p

∥∥2
H . (2.56)

Combining (2.51), (2.53), (2.54), (2.55) and (2.56) with (2.52) we conclude (2.41).
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From (2.3), Theorem 2.4 allows us to conclude the following corollary that establishes that the
numerical scheme (2.36), (2.37), (2.38) or (2.39), (2.40), (2.38) has first order of convergence in time,
and second order of convergence in space.

Corollary 2.3. Under the assumptions of Theorem 2.4 we conclude that there exists a positive constant
C, H and ∆t independent, such that

∥D−ten
H,p∥2

H +∥en
H,p∥2

1,H ≤C
(
∆t2 +H4

max
)
,

for H ∈ Λ and n = 1, . . . ,Mt .

2.5.2 Second Order Scheme

The first order in time upper bound (2.41) arises due to the use of the backward operator to discretize
the first order terms in time in the wave equation, as well as, in its initial velocity. To increase the
order of the term defined by the stepsize in time in the mentioned upper bound, we need to invest in
the time discretization of the two previous first order terms. We rewrite the IBVP (1.1), (1.4) and (1.7),
in the equivalent form 

a
∂ p
∂ t

= w−bp
∂w
∂ t

= ∇ · (E∇p)+ f3, in Ω× (0,Tf ],

with the initial conditions {
w(x,y,0) = apv,0(x,y)+bp0(x,y)
p(x,y,0) = p0(x,y), (x,y) ∈ Ω,

and the boundary conditions{
w(x,y, t) = 0
p(x,y, t) = 0, (x, t) ∈ ∂Ω× (0,Tf ].

In this section, to simplify, we assume that a, b, ei, i = 1,2 are positive constant functions.

To get a second order approximation for p and w we use a standard procedure used in first
order time derivative problems: we consider the Crank-Nicolson approach. Let pn

H and wn
H be the

corresponding approximations defined by the finite difference scheme
aD−t pn+1

H =
wn+1

H +wn
H

2
−b

pn+1
H + pn

H
2

D−twn+1
H = ∇

∗
H ·
(

E∇H

( pn+1
H + pn

H
2

))
+

f3,H(tn+1)+ f3,H(tn)
2

in ΩH ,

(2.57)

for n = 0, . . . ,Mt −1, w0
H = aRH pv,0 +bRH p0

p0
H = RH p0, in ΩH ,

(2.58)
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and wn
H = 0

pn
H = 0, on ∂ΩH ×{1, . . . ,Mt}.

(2.59)

We observe that from (2.57) we easily get
(
aD−t pn+1

H ,vH
)

H =

(
wn+1

H +wn
H

2
,vH

)
H
−
(

b
pn+1

H + pn
H

2
,vH

)
H(

D−twn+1
H ,vH

)
H =−

((
E∇H

( pn+1
H + pn

H
2

)
,∇HvH

))
H
+

(
f3,H(tn+1)+ f3,H(tn)

2
,vH

)
H
,

for all vH ∈WH,0. We remark that we also have,

((
aED−t∇H pn+1

H ,∇HvH
))

H =

((
E∇H

(wn+1
H +wn

H
2

)
,∇HvH

))
H

(2.60)

−
((

bE∇H

( pn+1
H + pn

H
2

)
,∇HvH

))
H
,

for all vH ∈WH,0.

For the error en
p = RH p(tn)− pn

H and en
w = RHw(tn)−wn

H we obtain

(D−ten+1
w ,vH)H =−

((
E∇H

(
en+1

p + en
p

2

)
,∇HvH

))
H

+(T n
1,H(p),vH)H , (2.61)

for all vH ∈WH,0, where

(
T n

1,H(p),vH
)

H =−
((

1
2
(
w′(tn+1)+w′(tn)

))
H
−D−tRHw(tn+1),vH

)
H

+

((
∇ ·
(

E∇
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2

)))
H
,vH

)
H
+

((
E∇H

(
RH p(tn+1)+RH p(tn)

2

)
,∇HvH

))
H
.

To get an estimate for T n
1,H(p) we observe that we have

∣∣∣(T n
1,H(p),vH

)
H

∣∣∣≤ |T n
1,1|+ |T n

1,2|, with

T n
1,1 =

((
1
2
(
w′(tn+1)+w′(tn)

))
H
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)
H

and

T n
1,2 =

((
E∇H

(
RH p(tn+1)+RH p(tn)

2

)
,∇HvH

))
H
+

((
∇ ·
(

E∇

(
p(tn+1)+ p(tn)

2

)))
H
,vH

)
H
.

Note that, for T n
1,1, we have

T n
1,1 =

((
w′(tn+1)+w′(tn)

2

)
H
−RH

(
w′(tn+1)+w′(tn)

2

)
,vH

)
H

+

(
RH

(
w′(tn+1)+w′(tn)

2

)
−D−tRHw(tn+1),vH

)
H
.
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An estimate for the first term of T n
1,1 is obtained considering Lemma 5.7 of [14]. In fact, from this

lemma, there exists a positive constant C, p, w, H and ∆t independent, such that∣∣∣∣∣
((

w′(tn+1)+w′(tn)
2

)
H
−RH

(
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2

)
,vH

)
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∣∣∣∣∣
≤C
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(
∑

∆∈TH

(diam∆)4 ∥p∥2
C2(H2)

)1/2

∥∇HvH∥H .

For the second term of T n
1,1, we also guarantee the existence of a positive constant C, p, w, H and ∆t

independent, such that, in ΩH ,∣∣∣∣RH

(
w′(tn+1)+w′(tn)

2

)
−D−tRHw(tn+1)

∣∣∣∣≤C∆t2 ∥w∥C3(C)

≤C∆t2∥p∥C4(C).

Therefore ∣∣∣∣(RH

(
w′(tn+1)+w′(tn)

2

)
−D−tRHw(tn+1),vH

)
H

∣∣∣∣≤C∆t2 ∥p∥C4(C) ∥vH∥H .

Finally,

|T n
1,1| ≤C

( ∑
∆∈TH

(diam∆)4 ∥p∥2
C2(H2)

)1/2

∥∇HvH∥H +∆t2 ∥p∥C4(C) ∥vH∥H

 . (2.62)

An estimate for T n
1,2 is easily obtained considering (2.29). In fact, there exists a positive constant C, p,

H and ∆t independent, such that

∣∣T n
1,2
∣∣≤C

( ∑
∆∈TH

(diam∆)4 ∥p(tn+1)∥2
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H3(∆)

)1/2
∥∇HvH∥H .

(2.63)

Then, from (2.62) and (2.63), there exists a positive constant C, p, w, H and ∆t independent, such that

∣∣∣(T n
1,H(p),vH

)
H

∣∣∣≤C

[
∆t2 ∥p∥C4(C) ∥vH∥H

+

(
∑

∆∈TH

(diam∆)4
(
∥p∥2

C2(H2)+∥p∥2
C(H3)

))1/2

∥∇HvH∥H

]
. (2.64)
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Taking vH = en+1
w + en

w in (2.61), we obtain

∥en+1
w ∥2

H = ∥en
w∥2

H −∆t

((
E∇H

(
en+1

p + en
p

2

)
,∇H(en+1

w + en
w)

))
H

+∆t(T n
1,H(p),en+1

w + en
w)H .

(2.65)
From (2.60), it can be shown the next equality,((

E∇H

(
en+1

w + en
w

2

)
,∇HvH

))
H

= ((aED−t∇Hen+1
p ,∇HvH))H

+

((
bE∇H

(
en+1

p + en
p

2

)
,∇HvH

))
H

+((T n
2,H(p),∇HvH))H ,

(2.66)

for vH ∈WH,0, with

((
T n

2,H(p),∇HvH
))

H =

((
E∇H

(
RHw(tn+1)+RHw(tn)

2

)
,∇HvH

))
H

− ((aED−t∇H(RH p(tn+1)),∇HvH))H

−
((

bE∇H

(
RH p(tn+1)+RH p(tn)

2

)
,∇HvH

))
H
.

We observe that we have the following equivalent representations

((aED−t∇Hen+1
p ,∇H(en+1

p + en
p)))H =

1
∆t

∥∥∥√aE∇Hen+1
p

∥∥∥2

H
− 1

∆t

∥∥∥√aE∇Hen
p

∥∥∥2

H

and ((
bE∇H

(
RH p(tn+1)+RH p(tn)

2

)
,∇H(en+1

p + en
p)

))
H
=

1
2

∥∥∥√bE∇H(en+1
p + en

p)
∥∥∥2

H
.

Consequently, from (2.65), we have

∥en+1
w ∥2

H +∥
√

aE∇Hen+1
p ∥2

H = ∥en
w∥2

H +∥
√

aE∇Hen
p∥2

H − ∆t
2

∥∥∥√bE∇H(en+1
p + en

p)
∥∥∥2

H
(2.67)

+∆t(T n
1,H(p),en+1

w + en
w)H −∆t((T n

2,H(p),∇H(en+1
p + en

p)))H .

In order to find an upper bound to ((T n
2,H(p),∇HvH))H , observe that

((T n
2,H(p),∇HvH))H =

((
aE∇H

[
RH(p′(tn+1))+RH(p′(tn))

2
−D−tRH p(tn+1)

]
,∇HvH

))
H

and, for i = 1, . . . ,N, j = 1, . . . ,M−1, n = 0, . . . ,Mt −1,
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D−x

(1
2

(
∂ p
∂ t

(xi,y j, tn+1)+
∂ p
∂ t

(xi,y j, tn)
)
−D−t p(xi,y j, tn+1)

)
=

1
hi

∫ xi

xi−1

1
2

(
∂ 2 p
∂x∂ t

(s,y j, tn+1)+
∂ 2 p
∂x∂ t

(s,y j, tn)
)
−D−t

∂ p
∂x

(s,y j, tn+1) ds.

With,∣∣∣∣12( ∂ 2 p
∂x∂ t

(s,y j, tn+1)+
∂ 2 p
∂x∂ t

(s,y j, tn)
)
−D−t

∂ p
∂x

(s,y j, tn+1)

∣∣∣∣≤C∆t2
∥∥∥∥∂ p

∂x

∥∥∥∥
C3(C)

≤C∆t2 ∥p∥C3(C1) .

Then ∣∣∣((T n
2,H(p),∇HvH))H

∣∣∣≤C∆t2∥p∥C3(C1)

∥∥∥√aE∇HvH

∥∥∥
H
, (2.68)

where C is a positive constant, p, w, H and ∆t independent.

Using, in (2.67), (2.64) and (2.68), for ε ̸= 0,

(1−2ε
2
∆t)
(∥∥en+1

w

∥∥2
H +

∥∥∥√aE∇Hen+1
p

∥∥∥2

H

)
≤ (1+2ε

2
∆t)
(
∥en

w∥
2
H +

∥∥∥√aE∇Hen
p

∥∥∥2

H

)
+ ε

2
∆t
∥∥∇H(en+1

w + en
w)
∥∥2

H (2.69)

+
C∆t
4ε2

(
∆t4
(
∥p∥2

C4(C)+∥p∥2
C3(C1)

)
+ ∑

∆∈TH

(diam∆)4
(
∥p∥2

C2(H2)+∥p∥2
C(H3)

))
.

In order to find an upper bound for ∥∇H(en+1
w + en

w)∥H , (2.66) leads to

1
2

min{e1,e2}
∥∥∇H(en+1

w + en
w)
∥∥2

H

≤
√

max{e1,e2}(2a+b∆t)

2
√

2a∆t

(
∥
√

aE∇Hen+1
p ∥H +∥

√
aE∇Hen

p∥H

)
∥∇H(en+1

w + en
w)∥H

+C∆t2∥p∥C3(C1)∥∇H(en+1
w + en

w)∥H ,

with C a positive constant, p, w, H and ∆t independent. Therefore we have

∆t
∥∥∇H(en+1

w + en
w)
∥∥2

H ≤ 2(2a+∆tb)2 max{e1,e2}
a∆t(min{e1,e2})2

(∥∥∥√aE∇Hen+1
p

∥∥∥2

H
+
∥∥∥√aE∇Hen

p

∥∥∥2

H

)
+2C∆t5 ∥p∥2

C3(C1) .

Considering r =
(2a+∆tb)2 max{e1,e2}

a∆t(min{e1,e2})2 , from (2.69), we achieve to
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∥∥en+1
w

∥∥2
H +

∥∥∥√aE∇Hen+1
p

∥∥∥2

H
≤ 1+2ε2∆t +2ε2r

1−2ε2∆t −2ε2r

(
∥en

w∥
2
H +

∥∥∥√aE∇Hen
p

∥∥∥2

H

)
+

+
C∆t

4ε2(1−2ε2∆t −2ε2r)

(
∆t4
(
(8ε

4 +1)∥p∥2
C3(C1)+∥p∥2

C4(C)

)
+ ∑

∆∈TH

(diam∆)4
(
∥p∥2

C2(H2)+∥p∥2
C(H3)

))
≤

CTf

4ε2(1−2ε2∆t −2ε2r)
e

4ε2n(∆t+r)
1−2ε2∆t−2ε2r

(
∆t4
(
(8ε

4 +1)∥p∥2
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+∥p∥2
C4(C)

)
+ ∑

∆∈TH

(diam∆)4
(
∥p∥2

C2(H2)+∥p∥2
C(H3)

))
,

where ε ̸= 0 such that 1−2ε2∆t −2ε2r > 0, and e0
w = e0

p = 0.
Finally, using (2.3), we conclude the following result.

Theorem 2.5. If the solution of the IBVP (1.1), (1.4), (1.7) is in

C4([0,Tf ],C(Ω))∩C3([0,Tf ],C1(Ω))∩C2([0,Tf ],H2(Ω))∩C([0,Tf ],H3(Ω)∩H1
0 (Ω)),

and a, b, ei, i = 1,2 are positive constants, then, for H ∈ Λ, there exists a positive constant C,
independent of p, w, H and ∆t, such that for the errors en

p = RH p(tn)− pn
H and en

w = RHw(tn)−wn
H ,

where pn
H , wn

H are defined by (2.57), (2.58), (2.59), n = 0, . . . ,Mt −1, holds the following

∥en+1
w ∥2

H +∥∇Hen+1
p ∥2

H +∥en+1
p ∥2

H

≤C
(

∆t4
(
∥p∥2

C3(C1)+∥p∥2
C4(C)

)
+ ∑

∆∈TH

(diam∆)4
(
∥p∥2

C2(H2)+∥p∥2
C(H3)

))
.

From Theorem 2.5, we finally conclude the second order of convergence of our fully discrete
scheme (2.57), (2.58), (2.59). This result is presented in the following corollary.

Corollary 2.4. Under the assumptions of Theorem 2.5, we conclude that there exists a positive
constant C, H and ∆t independent, such that

∥en
w∥2

H +∥en
p∥2

1,H ≤C
(

∆t4 +H4
max

)
,

for H ∈ Λ and n = 1, . . . ,Mt .

We remark that to obtain the last result an increase in the smoothness of the solution p was
required. We were not able to prove the same result for lower smooth solutions.

2.6 Numerical Results

In this section we present some numerical experiments which illustrate the results of this chapter.
In the Examples 2.1 and 2.2, we consider the fully discrete in time and space numerical scheme
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given by (2.39), (2.40), (2.38), with Tf = 0.05 and ∆t = 10−5. Moreover, we consider a(x,y) = x2,
b(x,y) = 1+ x+ y, e1(x,y) = 2+ y2, e2(x,y) = 1+ x. We observe that the coefficient function a does
not satisfy the condition a(x,y) ≥ a0 > 0, for (x,y) ∈ Ω. However, our numerical results are the
expected, despite that.

Example 2.1. To illustrate the result of Theorem 2.2, we consider the problem (1.1), (1.4), (1.7) with
initial conditions and f3, such that, its exact solution is given by

p(x,y, t) = et(1− x)(1− cos(4πy))sin(xy).

Note that p ∈C1([0,Tf ],C4(Ω))∩C2([0,Tf ],C(Ω)), and f3 ∈C1([0,Tf ],C2(Ω)).

Example 2.2. In this example, we intend to illustrate the sharpness of the smoothness conditions
imposed in Theorem 2.3. We expect to lose the convergence order obtained in this result for lower
smoothness solutions. We define f3 and the initial conditions of the problem (1.1), (1.4), (1.7) such
that

p(x,y, t) = etsin(xy)(2x−2)(y−1)|2y−1|1+α ,α ∈ R,

is the exact solution of our IBVP (1.1), (1.4), (1.7). Note that, for α = 2.1, p is under the conditions
of Theorem 2.3 (but not under the conditions of Theorem 2.2). Otherwise, for α = 1.1, we have
p(t) ∈ H2(Ω), but p(t) /∈ H3(Ω).

To obtain the numerical approximations for the IBVPs defined in Examples 2.1 and 2.2, we
consider a sequence of grids Hk, k = 1, . . . ,6, of increasing size. H1 is a nonuniform mesh defined
randomly with N = 6 and M = 8. Hk, k = 2 . . . ,6, are constructed inserting grid points at the midpoints
of Hk−1. To obtain the numerical rate of convergence we define the error

EH,p = max
n=1,...,Mt

∥∥D−ten
H,p

∥∥
H +

∥∥∇Hen
H,p

∥∥
H .

The time step ∆t is fixed small enough satisfying ∆t ≤CH2
max.

Example 2.1 Example 2.2 (α = 2.1) Example 2.2 (α = 1.1)

Hmax EH,p Hmax EH,p Hmax EH,p

3.404e-1 7.128e-1 2.007e-1 2.111e-2 1.763e-1 4.676e-2
1.702e-1 1.899e-1 1.003e-1 5.658e-3 8.814e-2 2.052e-2
8.510e-2 4.451e-2 5.017e-2 1.372e-3 4.407e-2 9.533e-3
4.255e-2 1.112e-2 2.508e-2 3.594e-4 2.204e-2 4.470e-3
2.128e-2 2.775e-3 1.254e-2 8.965e-5 1.102e-2 2.091e-3
1.064e-2 6.931e-4 6.271e-3 2.232e-5 5.509e-3 9.741e-4

Table 2.1 The errors EH,p on successively refined meshes: Example 2.1 and 2.2.

Using the data from Table 2.1, we plot in Figures 2.2 and 2.3 the log(EH,p) versus log(Hmax) for
the Examples 2.1 and 2.2, respectively. Assuming that the errors EH,p are proportional to Hr

max, for
some r ∈ R, the slope of the best fitting least square line illustrates the convergence rate.

For Example 2.1 the obtained estimated value is 2.0094, which illustrates the theoretical second
order of convergence obtained in the Theorem 2.2. The obtained data for the Example 2.2, with
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α = 2.1 verifies the second order convergence rate of the smooth case, as expected by Theorem
2.3. However, considering the second example with α = 1.1 (p(t) ∈ H2(Ω)), the obtained numerical
rate of convergence is approximately one. This fact suggests that the assumption p(t) ∈ H3(Ω) in
Theorem 2.3 is optimal in Sobolev spaces. As illustration, we present in Figure 2.4 the numerical
solution and the square of the error eMt

H,p, at time Tf , for each of the considered examples. We remark
that, using the results established in [14] and following the steps of Theorem 2.3, it can be proved that
the rate of convergence is in fact one when p(t) ∈ H2(Ω).
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Fig. 2.2 Log-log plot of EH,p versus Hmax for Example 2.1. In the solid line is shown the best fitting
least square line.
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Fig. 2.3 From left to right: Log-log plot of EH,p versus Hmax for Example 2.2 with α = 2.1 and
α = 1.1. In the solid line is shown the best fitting least square line.
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Fig. 2.4 From left to right: numerical solution pMt
H (first row) and square of the error eMt

H,p (second row)
on the grid H6; for Example 2.1 and Example 2.2 with α = 2.1 and α = 1.1.

Example 2.3. In order to study the time convergence of the presented numerical schemes in the
Sections 2.5.1 and 2.5.2, consider the IBVP (1.1), (1.4), (1.7) with coefficient functions a(x,y) =
5(1+ x), b(x,y) = xy, e1(x,y) = 1+ x, and e2(x,y) = y, whose solution is given by

p(x,y, t) = et(x−1)sin(πx)(y−1)sin(πy),

with initial conditions and f3 defined properly.

To examinate the rate of convergence in time, we use Example 2.3. For that, we consider
successively smaller time stepsizes using a fixed spatial grid with Hmax = 3.913e−3, and Tf = 3.

In Table 2.2 we present the numerical results considering the error term EH,p defined before to
study the behavior of the first order scheme (2.39), (2.40), (2.38), and

EH,2 = max
n=1,...,Mt

∥en
w∥H +

∥∥∇Hen
p

∥∥
H +

∥∥en
p

∥∥
H

to study the behavior of the second order scheme (2.57), (2.58), (2.59).

In Figure 2.5 we plot the log(EH,p) and log(EH,2) versus log(∆t), for Example 2.3, considering the
first and second order schemes, respectively. The best fitting least square lines are also presented. In
this figure it is illustrated the convergence rate established in Corollary 2.3, as well as the convergence
rate equal to 2 established in Corollary 2.4 for the scheme (2.57), (2.58), (2.59).

Note that, in this example, the coefficient functions are not constants, as we assume in the proof
of Theorem 2.5. However this fact can be used to infer that this result remains true for non constant
coefficient functions. We need to revisit the proof of this result in order to extend it for non constant
coefficient functions. In the Figure 2.6 we present some illustrative images.
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Example 2.3 (2nd order scheme) Example 2.3 (1st order scheme)

∆t EH,2 ∆t EH,p

5.000e-1 3.950e-1 5.000e-1 24.89e-1
2.500e-1 9.949e-2 2.500e-1 13.78e-1
1.250e-1 2.486e-2 1.250e-1 7.285e-1
6.250e-2 6.151e-3 6.250e-2 3.754e-1
3.125e-2 1.478e-3 3.125e-2 1.907e-1

Table 2.2 The errors EH,2 and EH,p for successively smaller time stepsizes: Example 2.3.
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Fig. 2.5 From left to right: Log-log plots of EH,p and EH,2 versus ∆t for Example 2.3 with the first
order and second order schemes, respectively. In the solid line is shown the best fitting least square
line.

Fig. 2.6 From left to right: numerical solution pMt
H obtained with the second order in time scheme and

square of the error eMt
p for the second order in time scheme and the first order in time scheme; results

for Example 2.3 using ∆t = 0.0625.

2.7 Conclusions

In this chapter, we consider a hyperbolic IBVP arising in the context of acoustic pressure propagation.
Our main goal was to establish conditions that allow us to obtain second order approximations, in
space and time, with respect to a discrete H1- norm.

The main results in this chapter are Theorems 2.2 and 2.3. In these theorems convergence
proprieties of the semi-discrete solution defined by the fully discrete in space piecewise linear finite
element method (2.8), (2.9), which is equivalent to the finite difference method (2.10), (2.11), (2.12),
were analyzed, considering smooth and non-smooth assumptions for the solution of the correspondent
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continuous IBVP. For each case, two complete different techniques of analysis were followed to derive
second order approximations in respect to a discrete H1- norm. Theorem 2.2 corresponds to the smooth
case and Theorem 2.3 to the non-smooth case. The discretization in time was studied in Section 2.5.
We present two fully discrete in space and time schemes, proving first order of convergence in time of
the first scheme, and second order when we consider Crank-Nicolson approach.

Numerical experiments illustrating the obtained theoretical results were also included. In particular,
Example 2.2 with α = 1.1, illustrates that the convergence rate established in Theorem 2.3 is optimal
in the sense that if p(t) ∈ H2(Ω) then the rate of convergence is only one.





Chapter 3

Coupling: Acoustic Pressure
Propagation and Drug Transport

3.1 Introduction

In this chapter, we consider the system defined by the telegraph equation (1.1) coupled with the
convection-diffusion-reaction equation (1.14) in Ω× (0,Tf ]. This system is complemented with
homogeneous Dirichlet boundary conditions (1.7) and (1.9), and the initial conditions (1.4) and (1.6).
As previously mentioned, the system of differential equations (1.1), (1.14) can be used to describe the
drug transport enhanced by ultrasound when the heat effects are not explicitly considered. This means
that this chapter is an intermediate stage between Chapter 2 and Chapter 4. In fact, in Chapter 2 only
the telegraph equation is studied, while in Chapter 4 we analyze the differential system (1.1)-(1.3)
where ultrasound, thermal effects and drug transport are taken into account.

As well as previously, we assume Ω=(0,1)2 and p, c : Ω× [0,Tf ]→R. The assumptions imposed
over the telegraph model in the previous chapter, are also going to be considered here. In addition, in
equation (1.14), D(p) is a second order diagonal matrix with entries di :R→R, i= 1,2, with a positive
lower bound d0 in R. We assume that v : R3 → R2 that arises in the convective velocity of (1.14) is
such that its components vi : R2 → R, i = 1,2, are given by v(x,y,z) = (v1(x,y),v2(x,z)),x,y,z ∈ R.

In this chapter, we propose a fully discrete piecewise linear finite element method, that can be
seen as a finite difference method, to approximate p and c, that leads to second order approximations
with respect to a discrete H1- norm and L2- norm, respectively.

Section 3.2 is devoted to the design of the semi-discrete scheme, and the convergence analysis of
the proposed method is given in Section 3.3. The results obtained in previous chapter have a crucial
role in what follows. In the main results, Theorem 3.1 and Corollary 3.1, we establish the second
order of convergence. In Section 3.4, we present some numerical experiments illustrating the last
convergence results. In this section we also include an illustrative example in the scope of the drug
transport enhanced by ultrasound, where the efficacy of the use of ultrasound is showed. Lastly, we
present some conclusions for this chapter.

Before continuing, we present a small remark about the existence and uniqueness of solution of
the IBVP (1.1), (1.14), (1.4), (1.6), (1.7) and (1.9). Following Chapter 7 of [11], the section about
parabolic equations, it is possible to define weak solution of this problem and prove an existence and

43
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uniqueness result. However, we need to consider p ∈ L∞(0,Tf ,L∞(Ω)), ∇p ∈ L∞(0,Tf , [L∞(Ω)]2),
since the convective term of (1.14) depends on p, ∇p, and the diffusion is p dependent. To obtain such
regularity for the weak solution of the hyperbolic problem, we can adapt to our case the Theorems 2,
5 and 6 of Section 7.1.2 of [11]. It is clear that in this case, it is mandatory to increase the smoothness
of f3, p0 and pv,0.

3.2 Semi-Discrete Numerical Scheme

Our aim in this section is to construct a fully discrete in space finite element method for the presented
coupled hyperbolic-parabolic problem (1.1), (1.14), (1.4), (1.6), (1.7) and (1.9).

We start by introducing the following variational problem: find (p(t),c(t)) ∈ [H1
0 (Ω)]2 such that

(i) p( j)(t) ∈ L2(Ω), j = 1,2, t ∈ (0,Tf ], and (2.1) holds for w ∈ H1
0 (Ω), coupled with (2.2);

(ii) c′(t) ∈ L2(Ω), t ∈ (0,Tf ], and

(c′(t),w)− ((v(p(t),∇p(t))c(t),∇w))+((D(p(t))∇c(t),∇w)) = ( f1(t),w), t ∈ (0,Tf ],

for w ∈ H1
0 (Ω), and

(c(0),q) = (c0,q), ∀q ∈ L2(Ω).

For the acoustic pressure, it is considered the fully discrete FEM constructed in Section 2.3:

(i) find pH(t) ∈WH,0 such that (2.8) holds for t ∈ (0,Tf ], wH ∈WH,0, with initial conditions given
by (2.9).

Note that, as referred in Section 2.3, this fully discrete FEM can be seen as the following finite
difference problem: find pH(t) ∈WH,0 such that (2.10), (2.11), (2.12) hold.

Now, we intend to construct a fully discrete in space finite element scheme for the convection-
diffusion equation (1.14). With that goal, we start by introducing the following piecewise linear finite
element approximation for the concentration: find cH(t) ∈WH,0 such that

(PHc′H(t),PHwH)−((PHcH(t)v(PH pH(t),∇PH pH(t)),∇PHwH)) (3.1)

=−((D(PH pH(t))∇PHcH(t),∇PHwH))+( f1(t),PHwH),

for t ∈ (0,Tf ], wH ∈WH,0, and

(PHcH(0),PHqH) = (PHRHc0,PHqH), ∀qH ∈WH,0. (3.2)

Following the approach introduced in Section 2.3, for i = 0, . . . ,N, j = 0, . . . ,M, consider �i, j =

∪4
l=1 (�l ∩Ω) illustrated in Figure 2.1. In what follows, we intend to construct a fully discrete in

space piecewise linear finite element approximation for the concentration. For that, we need to use
adequate quadrature rules, which will be presented in what follows.

We consider (
PHc′H(t),PHwH

)
≃
(
c′H(t),wH

)
H ,
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( f1(t),PHwH)≃ ( f1,H(t),wH)H ,

and
(PHcH(0),PHwH)≃ (RHc0,wH)H ,

using the quadrature rule presented in (2.6), where f1,H is given by (2.7) with f3(t) replaced by f1(t).

Now, let D∗
H be the finite difference operator D∗

HwH =
(
D∗

hwH ,D∗
kwH

)
, wH ∈WH , with

D∗
hwH(xi,y j) =

hiD−xwH(xi+1,y j)+hi+1D−xwH(xi,y j)

hi +hi+1
, i = 1, . . . ,N −1,

D∗
hwH(xN ,y j) = D−xwH(xN ,y j), D∗

hwH(x0,y j) = D−xwH(x1,y j),

for j = 1, . . . ,M−1, being D∗
kwH defined analogously. MH represents the average operator given by

MH(w1,w2) = (Mhw1,Mkw2), Mh(w1(xi,y j)) =
1
2
(w1(xi−1,y j)+w1(xi,y j)),

being Mk defined analogously and (w1,w2) ∈ [WH,0]
2.

For (xi,y j) ∈ ΩH , we introduce the following quadrature rutes

∫
�l

PHcH(t)v1

(
PH pH(t),

∂

∂x
(PH pH(t))

)
∂

∂x
(PHwH)dxdy ≃

≃ |�l|Mh(cH(xi+1,y j, t)v1(pH(xi+1,y j, t),D∗
h pH(xi+1,y j, t)))D−xwH(xi+1,y j), l = 1,4,

and ∫
�l

PHcH(t)v1

(
PH pH(t),

∂

∂x
(PH pH(t))

)
∂

∂x
(PHwH)dxdy ≃

≃ |�l|Mh(cH(xi,y j, t)v1(pH(xi,y j, t),D∗
h pH(xi,y j, t)))D−xwH(xi,y j), l = 2,3,

with similar definitions for the term associated with the derivatives with respect to y. Then we obtain

((PHcH(t)v(PH pH(t),∇PH pH(t)),∇PHwH))≃ ((MH(cH(t)vH(t)),∇HwH))H ,

with vH(t) =
(
v1(pH(t),D∗

h pH(t)),v2(pH(t),D∗
k pH(t))

)
.

We also consider

((D(PH pH(t))∇PHcH(t),∇PHwH))≃ ((DH(t)∇HcH(t),∇HwH))H ,

where DH(t) is the 2×2 diagonal matrix with diagonal elements d1,H(t) = d1(Mh pH(t)) and d2,H(t) =
d2(Mk pH(t)). To obtain this approximation, for (xi,y j) ∈ ΩH , we set

∫
�l

d1(PH pH(t))
∂

∂x
(PHcH(t))

∂

∂x
(PHwH)dxdy ≃

≃ |�l|d1(Mh pH(xi+1,y j, t))D−xcH(xi+1,y j, t)D−xwH(xi+1,y j), l = 1,4,
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and ∫
�l

d1(PH pH(t))
∂

∂x
(PHcH(t))

∂

∂x
(PHwH)dxdy ≃

≃ |�l|d1(Mh pH(xi,y j, t))D−xcH(xi,y j, t)D−xwH(xi,y j), l = 2,3,

considering similar approximations for the term related to the y variable. Then, the initial value
problem (3.1), (3.2) is replaced by the following fully discrete in space finite element problem: find
cH(t) ∈WH,0 such that

(c′H(t),wH)H − ((MH(cH(t)vH(t)),∇HwH))H =−((DH(t)∇HcH(t),∇HwH))H

+( f1,H(t),wH)H , (3.3)

for t ∈ (0,Tf ], wH ∈WH,0, and

(cH(0),qH)H = (RHc0,qH)H , ∀qH ∈WH,0. (3.4)

This finite element problem can be seen as a finite difference method, given by

c′H(t)+∇c,H · (cH(t)vH(t)) = ∇
∗
H · (DH(t)∇HcH(t))+ f1,H(t) in ΩH , t ∈ (0,Tf ], (3.5)

with the initial condition
cH(0) = RHc0 in ΩH , (3.6)

and the boundary condition
cH(t) = 0 on ∂ΩH . (3.7)

Here ∇c,H denotes a finite difference operator defined by

∇c,H · (w1,w2) = Dc,xw1 +Dc,yw2, and Dc,xw1(xi,y j) =
w1(xi+1,y j)−w1(xi−1,y j)

hi +hi+1
,

where (w1,w2) ∈ [WH,0]
2, being Dc,y defined analogously.

In what concerns the existence and uniqueness of the semi-discrete approximation cH(t), we
remark that (3.5) can be written in the following equivalent form

c′H(t)+B(t)cH(t) = f1,H(t), t ∈ (0,Tf ], (3.8)

where the entries of the matrix B(t) depend on vH(t) and DH(t), this means that it also depends
on the solution pH(t) of (2.13), (2.12). As it is well known, establishing conditions to guarantee
the continuity of B(t) and f1,H(t) is enough to assure the existence and uniqueness of a solution
cH(t) ∈C1((0,Tf ])∩C([0,Tf ]) for the initial value problem (3.8), (3.6) ([7]).
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3.3 Convergence Analysis

The fully discrete in space piecewise linear FEM proposed for the coupled IBVP (1.1), (1.14), (1.4),
(1.6), (1.7), (1.9), is obtained coupling:

(i) (2.8), (2.9) to compute an approximation for the acoustic pressure;

(ii) (3.3), (3.4) to compute an approximation for the concentration.

As explained in Section 2.4, for the fully discrete in space approximation of p, it was expected

∥RH p(t)− pH(t)∥H +∥∇H (RH p(t)− pH(t))∥H ≤CHmax.

For the concentration, it is also well known that the continuous version of the IBVP (3.3), (3.4) leads

∥c(t)−PHcH(t)∥ ≤CH2
max, ∥c(t)−PHcH(t)∥1 ≤CHmax,

with c(t)∈H2(Ω)∩H1
0 (Ω) ([19], [42], [45]). As the convective velocity for the concentration depends

on ∇p, then the coupled piecewise linear FEM should lead to a first order approximation for the
concentration with respect to the L2- norm. Should be expected that this result also holds for the
fully discrete coupled method proposed. However, we have that the fully discrete acoustic pressure
approximation pH(t) is second order convergent with respect to the discrete version of the H1- norm
considered in this work (Corollary 2.1), which means that its discrete gradient is a second order
approximation to ∇p(t) with respect to a discrete version of the L2- norm. These facts allow us to
prove that cH(t) is also a second order approximation for c(t), with respect to the discrete version of
the norm L2 (∥ · ∥H), assuming p(t),c(t) ∈ H3(Ω)∩H1

0 (Ω). The uniform boundness of the numerical
approximation pH(t) for the acoustic pressure p(t), and of its discrete gradient ∇H pH(t) established
in Corollary 2.2 is a main tool in the proof of such result.

We observe that the coupled method (2.8), (2.9), (3.3), (3.4) is equivalent to the finite difference
coupling

(i) (2.10), (2.11), (2.12) for the acoustic pressure pH(t),

(ii) (3.5), (3.6), (3.7) for the concentration cH(t).

Each finite difference IBVP is defined in a nonuniform rectangular grid ΩH . If we assume that
p(t), c(t) ∈C3(Ω), then it can be shown that the truncation errors of each subproblem is only first
order, with respect to the norm ∥ ·∥∞ (for pH(t) this fact is proved in Section 2.4.1). Based on stability
and consistency we can expect that the global semi-discrete error for cH(t) will be only of first order.
Attending the equivalence between the two coupled problems described before: the fully discrete
FEM IBVPs (2.8), (2.9) and (3.3), (3.4), and the finite difference IBVPs (2.10), (2.11), (2.12) and
(3.5), (3.6), (3.7), we conclude that the finite difference approximation pH(t), cH(t) have exactly the
convergence properties of the correspondent fully discrete piecewise linear FE approximations.

In what follows, it is obtained an estimate for the spatial discretization error eH,c(t) = RHc(t)−
cH(t) induced by the spatial discretization introduced for the concentration. To obtain the desired
upper bound, we do not follow the split introduced by Wheeler in [45] and largely followed in the
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finite element and finite differences communities, and considered before for PH pH(t), solution of the
FEM given by (2.4), (2.5), in Section 2.4.2. Our approach is based on the direct analysis of the error
equation for eH,c(t).

We start by remarking that eH,c(t) ∈WH,0 and it satisfies the following

(e′H,c(t),wH)H =−((DH(t)∇HeH,c(t),∇HwH))H

+(((DH(t)−D∗
H(t))∇HRHc(t),∇HwH))H

+((MH(vH(t)eH,c(t)),∇HwH))H

− ((MH((vH(t)− v∗H(t))RHc(t)),∇HwH))H

+ τD(wH)+ τv(wH)+ τc(wH), (3.9)

for t ∈ (0,Tf ], wH ∈WH,0, where D∗
H(t) is defined as DH(t) with pH replaced by RH p, and v∗H(t) is

defined as vH(t) with pH replaced by RH p. In (3.9), τD(wH), τv(wH) and τc(wH) are defined by

τD(wH) = ((D∗
H(t)∇HRHc(t),∇HwH))H +((∇ · (D(p(t))∇c(t)))H ,wH)H , (3.10)

τv(wH) =−((MH(v∗H(t)RHc(t)),∇HwH))H − ((∇ · (v(p(t),∇p(t))c(t)))H ,wH)H , (3.11)

and
τc(wH) = (RHc′(t),wH)H − ((c′(t))H ,wH)H . (3.12)

Note that (∇ · (c(t)v(t)))H , (∇ · (D(t)∇c(t)))H and (c′(t))H are defined by (2.7) with f3(t) replaced
by ∇ · (c(t)v(t)), ∇ · (D(t)∇c(t)) and c′(t), respectively. To establish an estimate for ∥eH,c(t)∥H we
study the functionals τv(wH),τD(wH) and τc(wH) when wH ∈WH,0.

Proposition 3.1. Let us suppose that vi, i = 1,2, are Lv- Lipschitz functions and p(t) ∈ H3(Ω)∩

H1
0 (Ω), c(t) ∈ H2(Ω)∩H1

0 (Ω),
∂ 2 p

∂x∂y
(t) =

∂ 2 p
∂y∂x

(t) in Ω and v(t)c(t) ∈ [H2(Ω)]2. Then for the

functional τv :WH,0 →R, defined by (3.11), there exists a positive constant C, H, t, p and c independent,
such that

|τv(wH)| ≤C
(

∑
∆∈TH

(diam∆)4
(
∥v(t)c(t)∥2

[H2(∆)]2

+L2
v∥c(t)∥2

C(∆)∥p(t)∥2
H3(∆)

))1/2
∥∇HwH∥H , (3.13)

for wH ∈WH,0, H ∈ Λ.

Proof. We start by observing that τv(wH) admits the representation

τv(wH) = τ
(1)
v (wH)+ τ

(2)
v (wH),

where

τ
(1)
v (wH) =−((∇ · (v(t)c(t)))H ,wH)H − ((MH(RH(v(t)c(t))),∇HwH))H
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and

τ
(2)
v (wH) = ((MH(RH(v(t)c(t))),∇HwH))H − ((MH(v∗H(t)RHc(t)),∇HwH))H .

Using Lemma 5.5 of [14], we can state the following estimate for τ
(1)
v

∣∣∣τ(1)
v (wH)

∣∣∣≤C

((
∑

∆∈TH

(diam∆)4∥v1(t)c(t)∥2
H2(∆)

)1/2

+

(
∑

∆∈TH

(diam∆)4∥v2(t)c(t)∥2
H2(∆)

)1/2)
∥∇HwH∥H

≤C
(

∑
∆∈TH

(diam∆)4∥v(t)c(t)∥2
[H2(∆)]2

)1/2
∥∇HwH∥H , (3.14)

where C denotes a positive constant, H, t, p and c independent.

To get an estimate for τ
(2)
v (wH) we introduce the notation g1(xi,y j, t)=

∂ p
∂x (xi,y j, t)−D∗

h p(xi,y j, t).
We have

|k j+1/2g1(xi,y j, t)|=
∫ y j+1/2

y j−1/2

|g1(xi,y j, t)|dy

≤
∫ y j+1/2

y j−1/2

|g1(xi,y, t)|dy+
∫ y j+1/2

y j−1/2

∫ y j

y

∣∣∣∣∂g1

∂y
(xi,s, t)

∣∣∣∣dsdy

≤
∫ y j+1/2

y j−1/2

(
k j+1/2

∣∣∣∂g1

∂y
(xi,y, t)

∣∣∣+ |g1(xi,y, t)|
)

dy. (3.15)

Following [30], we consider

|g1(xi,y, t)|=
1

hi +hi+1

∣∣∣∣w′(µ1)−
(

µ2(w(1)−w(µ1))+
1
µ2

(w(µ1)−w(0))
)∣∣∣∣= 1

hi +hi+1
|λ (w)|,

for w(ξ ) = p(xi−1 +ξ (hi +hi+1),y, t), ξ ∈ [0,1], µ1 =
hi

hi +hi+1
, µ2 =

hi

hi+1
and λ : W 3,1(0,1)→ R

with

λ (g) = g′(µ1)−
(

µ2(g(1)−g(µ1))+
1
µ2

(g(µ1)−g(0))
)
, g ∈W 3,1(0,1).

Since λ (g) = 0 for g = 1,ξ ,ξ 2, and λ is bounded in W 3,1(0,1), by Bramble-Hilbert Lemma, we get

|λ (g)| ≤C
∫ 1

0
|g′′′(ξ )|dξ , g ∈W 3,1(0,1),

which, under the smoothness assumption for p, allows us to conclude the estimate

∫ y j+1/2

y j−1/2

|g1(xi,y, t)|dy ≤C(hi +hi+1)
∫ y j+1/2

y j−1/2

∫ xi+1

xi−1

∣∣∣∣∂ 3 p
∂x3 (x,y, t)

∣∣∣∣dxdy.
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Analogously, by Bramble-Hilbert Lemma, we obtain

∫ y j+1/2

y j−1/2

∣∣∣∣∂g1

∂y
(xi,y, t)

∣∣∣∣dy ≤C
∫ y j+1/2

y j−1/2

∫ xi+1

xi−1

∣∣∣∣ ∂ 3 p
∂x2∂y

(x,y, t)
∣∣∣∣dxdy,

for a positive constant C, H, t and p independent, leading to

|k j+1/2g1(xi,y j, t)| ≤C
(

k j+1/2

∫ y j+1/2

y j−1/2

∫ xi+1

xi−1

∣∣∣∣ ∂ 3 p
∂x2∂y

(x,y, t)
∣∣∣∣dxdy (3.16)

+(hi +hi+1)
∫ y j+1/2

y j−1/2

∫ xi+1

xi−1

∣∣∣∣∂ 3 p
∂x3 (x,y, t)

∣∣∣∣dxdy
)
.

For g2(xi,y j, t) =
∂ p
∂y (xi,y j, t)−D∗

k p(xi,y j, t) we can establish an estimate analogous to (3.16).

Finally, using the Lipschitz assumption for v, we have

|τ(2)
v (wH)| ≤ Lv

[
∥D−xwH∥H

(
N−1

∑
i=1

M−1

∑
j=1

hi+1/2k j+1/2|g1(xi,y j, t)|2|c(xi,y j, t)|2
)1/2

+∥D−ywH∥H

(
N−1

∑
i=1

M−1

∑
j=1

k j+1/2hi+1/2|g2(xi,y j, t)|2|c(xi,y j, t)|2
)1/2]

,

and from (3.16) we conclude

|τ(2)
v (wH)| ≤CLv

(
∑

∆∈TH

(diam∆)4∥c(t)∥2
C(∆)∥p(t)∥2

H3(∆)

)1/2
∥∇HwH∥H , (3.17)

for a positive constant C, H, t, p and c independent. Considering (3.17) and (3.14) we get (3.13).

Proposition 3.2. If di, i = 1,2, are LD- Lipschitz functions, p(t) ∈ H2(Ω), c(t) ∈ H3(Ω), di(p(t)) ∈
L∞(Ω), i = 1,2, and D(t)∇c(t) ∈ [H2(Ω)]2 then, for the functional τD : WH,0 → R defined by (3.10),
there exists a positive constant C, H, t, p and c independent, such that

|τD(wH)| ≤C
(

∑
∆∈TH

(diam∆)4(L2
D∥p(t)∥2

H2(∆)∥c(t)∥2
C1(∆)

+∥D(p(t))∥2
∞,L∞(∆)∥c(t)∥2

H3(∆)+∥D(p(t))∇c(t)∥2
[H2(∆)]2

))1/2
∥∇HwH∥H ,

for wH ∈WH,0, H ∈ Λ, where ∥D(p(t))∥∞,L∞(∆) = maxi=1,2 ∥di(p(t))∥L∞(∆).

Proof. We start observing that the functional (3.10) admits the representation

τD(wH) =
2

∑
i=1

τ
(i)
D (wH),wH ∈WH,0, (3.18)

with
τ
(1)
D (wH) = (((D∗

H(t)− D̃H(t))∇HRHc(t),∇HwH))H ,
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where the diagonal entries of D̃H(t) at (xi,y j) are given by d1(p(xi−1/2,y j, t)), d2(p(xi,y j−1/2, t)), and

τ
(2)
D (wH) = ((D̃H(t)∇HRHc(t),∇HwH))H +((∇ · (D(p(t))∇c(t)))H ,wH)H .

We start by noting that τ
(1)
D (wH) can be written in the following equivalent form

τ
(1)
D (wH) = (d1(MhRH p(t))D−xRHc(t),D−xwH)H,x − (d1(p(Mh(t)))D−xRHc(t),D−xwH)H,x

+(d2(MkRH p(t))D−yRHc(t),D−ywH)H,y − (d2(p(Mk(t)))D−yRHc(t),D−ywH)H,y

:= τx(wH)+ τy(wH).

First, we estimate τx(wH). Let us introduce

g1(xi,y j, t) =
1
2
(p(xi−1,y j, t)+ p(xi,y j, t))− p(xi−1/2,y j, t),

satisfying (as in (3.15))

k j+1/2|g1(xi,y j, t)| ≤
∫ y j+1/2

y j−1/2

|g1(xi,y, t)|dy+ k j+1/2

∫ y j+1/2

y j−1/2

∣∣∣∣∂g1

∂y
(xi,y, t)

∣∣∣∣dy.

Note that g1 can be written as follows

g1(xi,y, t) =
w(0)+w(1)

2
−w

(
1
2

)
= λ (w),

where w(ξ ) = p(xi−1 +hiξ ,y, t), ξ ∈ [0,1], and λ : W 2,1(0,1)→ R with

λ (g) =
g(0)+g(1)

2
−g
(

1
2

)
, g ∈W 2,1(0,1).

Then, an estimate for g1 is obtained estimating λ (w). The functional λ is bounded in W 2,1(0,1) and
vanishes for g = 1,ξ . By Bramble-Hilbert Lemma, there exists a positive constant C, such that

|λ (g)| ≤C
∫ 1

0
|g′′(ξ )|dξ , g ∈W 2,1(0,1).

Consequently,

|g1(xi,y, t)|= |λ (w)| ≤Chi

∫ xi

xi−1

∣∣∣∣∂ 2 p
∂x2 (x,y, t)

∣∣∣∣dx.

Analogously, we get

∣∣∣∣∂g1

∂y
(xi,y, t)

∣∣∣∣≤C
∫ xi

xi−1

∣∣∣∣ ∂ 2 p
∂x∂y

(x,y, t)
∣∣∣∣dxdy,

with C a positive constant. Then we obtain
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|k j+1/2g1(xi,y j, t)| ≤
∫ y j+1/2

y j−1/2

|g1(xi,y, t)|dy+ k j+1/2

∫ y j+1/2

y j−1/2

∣∣∣∣∂g1

∂y
(xi,y, t)

∣∣∣∣dy (3.19)

≤C
(

hi

∫ y j+1/2

y j−1/2

∫ xi+1

xi−1

∣∣∣∣∂ 2 p
∂x2 (x,y, t)

∣∣∣∣dxdy+ k j+1/2

∫ y j+1/2

y j−1/2

∫ xi

xi−1

∣∣∣∣ ∂ 2 p
∂x∂y

(x,y, t)
∣∣∣∣dxdy

)
.

Since we are assuming that di, i = 1,2, are LD-Lipschitz functions,

k j+1/2
∣∣d1 (Mh(RH p(xi,y j, t)))−d1 (p(Mh(xi,y j, t)))

∣∣
≤ LDk j+1/2|g1(xi,y j, t)|,

and taking into account the estimates (3.19), we establish

|τx(wH)| ≤ LD

N

∑
i=1

M−1

∑
j=1

(
hi

(∫ y j+1/2

y j−1/2

|g1(xi,y, t)|dy+ k j+1/2

∫ y j+1/2

y j−1/2

∣∣∣∣∂g1

∂y
(xi,y, t)

∣∣∣∣dy
)

×|D−xc(xi,y j, t)||D−xwH(xi,y j)|

)

≤CLD

(
∑

∆∈TH

(diam∆)4∥c(t)∥2
C1(∆)∥p(t)∥2

H2(∆)

)1/2

∥D−xwH∥H ,

for C a positive constant, H, t, p and c independent. Adapting the followed procedures, an estimate
for τy(wH) can be easily deduced, and we obtain

|τ(1)
D (wH)| ≤CLD

(
∑

∆∈TH

(diam∆)4∥c(t)∥2
C1(∆)∥p(t)∥2

H2(∆)

)1/2

∥∇HwH∥H . (3.20)

To estimate τ
(2)
D (wH), directly from the proof of Lemma 5.1 of [14], we get

|τ(2)
D (wH)| ≤C

(
∑

∆∈TH

(diam∆)4
(
∥D(p(t))∥2

∞,L∞(∆)∥c(t)∥2
H3(∆)

+∥D(p(t))∇c(t)∥2
[H2(∆)]2

))1/2
∥∇HwH∥H , (3.21)

where C is a positive constant, H, t, p and c independent.
To conclude the proof, it is enough to consider (3.20) and (3.21) in (3.18).

Proposition 3.3. If c′(t)∈ H2(Ω) then, for the functional τc : WH,0 →R defined by (3.12), there exists
a positive constant C, H, t, p and c independent, such that

|τc(wH)| ≤C
(

∑
∆∈TH

(diam∆)4∥c′(t)∥2
H2(∆)

)1/2
∥∇HwH∥H ,

for wH ∈WH,0, H ∈ Λ.

Proof. This result follows directly from Lemma 5.7 of [14].
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With the previous three propositions we have the conditions to state the main result of this chapter,
Theorem 3.1, where an upper bound for ∥eH,c(t)∥H is established. Here and in what follows, in what
concerns the time regularity of p and/or T we implicitly assume the needed smoothness for the results.

Theorem 3.1. Let us suppose the following:

(i) the sequence of grids ΩH , H ∈ Λ, satisfies (2.35) for Hmax small enough;

(ii) p(t) ∈ H3(Ω)∩H1
0 (Ω), where p is solution of the IBVP (1.1), (1.4), (1.7);

(iii) the solution c of the IBVP (1.14), (1.6), (1.9) belongs to L2(0,Tf ,H3(Ω) ∩ H1
0 (Ω))∩

H1(0,Tf , H2(Ω)) and RHc ∈C1((0,Tf ],WH,0);

(iv) the solution cH of the initial value problem (3.3), (3.4) belongs to C1((0,Tf ],WH,0)∩
C([0,Tf ],WH,0);

(v) vi satisfies |vi(z1,z2)| ≤Cv(|z1|+ |z2|), ∀z1,z2 ∈ R, i = 1,2;

(vi) di ≥ d0 > 0 in R, i = 1,2;

(vii) the assumptions of Propositions 3.1 and 3.2 hold.

Then, there exist a positive constant C, H, t, p and c independent, such that for the spatial error
eH,c(t) = RHc(t)− cH(t) the following holds

∥eH,c(t)∥2
H +2(d0 −6ε

2)
∫ t

0
e

∫ t

s
gH(pH(µ))dµ

∥∇HeH,c(s)∥2
Hds ≤ e

∫ t

0
gH(pH(µ))dµ

∥eH,c(0)∥2
H

+
1
ε2 L2

D

∫ t

0
e

∫ t

s
gH(pH(µ))dµ

∥eH,p(s)∥2
H∥∇HRHc(s)∥2

∞ds

+
4
ε2 L2

v

∫ t

0
e

∫ t

s
gH(pH(µ))dµ(

∥eH,p(s)∥2
H +2Cm∥∇HeH,p(s)∥2

H

)
∥RHc(s)∥2

∞ds

+
∫ t

0
e

∫ t

s
gH(pH(µ))dµ

τc,H(s)ds, (3.22)

for t ∈ [0,Tf ], H ∈ Λ and Hmax small enough. In (3.22), ε ̸= 0 is an arbitrary constant,

τc,H(t) =
C

2ε2 ∑
∆∈TH

(diam∆)4
(
∥D(t)∥2

∞,L∞(∆)∥c(t)∥2
H3(∆)+∥D(t)∇c(t)∥2

[H2(∆)]2 +∥v(t)c(t)∥2
[H2(∆)]2

+∥c(t)∥2
C1(∆)∥p(t)∥2

H3(∆)+∥c′(t)∥2
H2(∆)

)
, (3.23)

and
gH(pH(t)) =

2
ε2C2

v
(
∥pH(t)∥2

∞ +∥∇H pH(t)∥2
∞

)
.

Proof. Note that, since di, i = 1,2, are LD- Lipschitz functions, then

|(((DH(t)−D∗
H(t))∇HRHc(t),∇HwH))H |

≤
√

2LD∥eH,p(t)∥H∥∇HRHc(t)∥∞∥∇HwH∥H . (3.24)
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Also,
|D∗

h pH(xi,y j, t)| ≤ ∥D−x pH(t)∥∞

and, of course, |D∗
k pH(xi,y j, t)| ≤ ∥D−y pH(t)∥∞. Considering that v satisfies

|vi(z1,z2)| ≤Cv(|z1|+ |z2|),∀z1,z2 ∈ R, i = 1,2,

we have

|((MH(vH(t)eH,c(t)),∇HwH))H | ≤
√

2Cv||eH,c(t)||H (∥pH(t)∥∞ +∥∇H pH(t)∥∞)∥∇HwH∥H . (3.25)

To estimate |− ((MH((vH(t)− v∗H(t))RHc(t)),∇HwH))H |, we assume that the condition (2.35) holds
for the sequence of grids ΩH , H ∈ Λ. For H ∈ Λ, with Hmax small enough, for i = 1, . . . ,N − 1,
j = 1, . . . ,M−1, we have

hi+1/2
h2

i

(hi+1 +hi)2 =
h2

i hi+1

2hi+1(hi+1 +hi)
≤ Cm

2
hi+1 and hi+1/2

h2
i+1

(hi+1 +hi)2 ≤ Cm

2
hi.

Taking also into account that vi, i = 1,2, are Lv- Lipschitz functions, we obtain

|− ((MH((vH(t)− v∗H(t))RHc(t)),∇HwH))H | (3.26)

≤ 2Lv∥RHc(t)∥∞

(
∥eH,p(t)∥H +

√
2Cm∥∇HeH,p(t)∥H

)
∥∇HwH∥H ,

for wH ∈WH,0, H ∈ Λ with Hmax small enough.

Taking in (3.9), wH = eH,c(t), considering (3.24), (3.25), (3.26) we have

1
2

d
dt
∥eH,c(t)∥2

H +d0∥∇HeH,c(t)∥2
H ≤

√
2LD∥eH,p(t)∥H∥∇HRHc(t)∥∞∥∇HeH,c(t)∥H

+
√

2Cv
(
∥pH(t)∥∞ +∥∇H pH(t)∥∞

)
∥eH,c(t)∥H∥∇HeH,c(t)∥H

+2Lv

(
∥eH,p(t)∥H +

√
2Cm∥∇HeH,p(t)∥H

)
∥RHc(t)∥∞∥∇HeH,c(t)∥H (3.27)

+ |τD(eH,c(t))|+ |τv(eH,c(t))|+ |τc(eH,c(t))|.

From (3.27), considering Propositions 3.1-3.3, we obtain

d
dt
∥eH,c(t)∥2

H +2(d0 −6ε
2)∥∇HeH,c(t)∥2

H ≤ 1
ε2 L2

D∥eH,p(t)∥2
H∥∇HRHc(t)∥2

∞

+
2
ε2C2

v
(
∥pH(t)∥2

∞ +∥∇H pH(t)∥2
∞

)
∥eH,c(t)∥2

H

+
4
ε2 L2

v

(
∥eH,p(t)∥2

H +2Cm∥∇HeH,p(t)∥2
H

)
∥RHc(t)∥2

∞ + τc,H(t), (3.28)

with τc,H(t) given by (3.23) and ε ̸= 0 an arbitrary constant.
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Multiplying everything by e−
∫ t

0 gH(pH(s))ds, inequality (3.28) leads to

d
dt

(
e
−
∫ t

0
gH(pH(s))ds

∥eH,c(t)∥2
H +2(d0 −6ε

2)
∫ t

0
e
−
∫ s

0
gH(pH(µ))dµ

∥∇HeH,c(s)∥2
Hds

− 1
ε2 L2

D

∫ t

0
e
−
∫ s

0
gH(pH(µ))dµ

∥eH,p(s)∥2
H∥∇HRHc(s)∥2

∞ds

− 4
ε2 L2

v

∫ t

0
e
−
∫ s

0
gH(pH(µ))dµ (

∥eH,p(s)∥2
H +2Cm∥∇HeH,p(s)∥2

H
)
∥RHc(s)∥2

∞ds

−
∫ t

0
e
−
∫ s

0
gH(pH(µ))dµ

τc,H(s)ds

)
≤ 0, t ∈ (0,Tf ],

that allows us to obtain

e
−
∫ t

0
gH(pH(s))ds

∥eH,c(t)∥2
H +2(d0 −6ε

2)
∫ t

0
e
−
∫ s

0
gH(pH(µ))dµ

∥∇HeH,c(s)∥2
Hds

− 1
ε2 L2

D

∫ t

0
e
−
∫ s

0
gH(pH(µ))dµ

∥eH,p(s)∥2
H∥∇HRHc(s)∥2

∞ds

− 4
ε2 L2

v

∫ t

0
e
−
∫ s

0
gH(pH(µ))dµ (

∥eH,p(s)∥2
H +2Cm∥∇HeH,p(s)∥2

H
)
∥RHc(s)∥2

∞ds

−
∫ t

0
e
−
∫ s

0
gH(pH(µ))dµ

τc,H(s)ds ≤ ∥eH,c(0)∥2
H , t ∈ [0,Tf ].

Finally, from the last inequality we easily get (3.22).

In Theorem 3.1, we fix ε ̸= 0 such that d0 −6ε2 > 0. Note that Corollary 2.2 gives us the uniform
boundness of gH(pH(t)), for H ∈ Λ, for Hmax small enough. Also, from Theorem 2.3, we have an
upper bound for ∥eH,p(t)∥H , ∥∇HeH,p(t)∥H . From these observations together with Theorem 3.1 we
conclude the following result:

Corollary 3.1. Under the assumptions of Theorems 2.3 and 3.1, there exists a positive constant C, H
and t independent, such that

∥eH,c(t)∥2
H +

∫ t

0
∥∇HeH,c(s)∥2

Hds ≤CH4
max, t ∈ [0,Tf ],

for H ∈ Λ and Hmax small enough.

3.4 Numerical Results

3.4.1 An Implicit Scheme

In this section, we include some numerical experiments. We start presenting a time discretization
method for the coupled wave-concentration problem (2.10), (2.11), (2.12), (3.5), (3.6), (3.7). Remark-
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ing that in this section we are focused on the spatial discretization, the wave equation (1.1) is solved
by the implicit first-order method studied in the Section 2.5.1. For the concentration equation (1.14),
note that all the coefficient functions are independent on the concentration, so our parabolic problem
(dependent on the wave IBVP) can also be solved by a first-order implicit method. For the temporal
domain [0,Tf ], we define the uniform time grid {tn = n∆t, n = 0, . . . ,Mt}, with tMt = Tf , where ∆t
is the time step. Let us denote by pn

H and cn
H the numerical approximations for pH(tn) and cH(tn),

respectively, defined by the following implicit method

aH
pn+1

H −2pn
H + pn−1

H
∆t2 +bH

pn+1
H − pn

H
∆t

= ∇
∗
H · (EH∇H pn+1

H )+ f n+1
3,H in ΩH , (3.29)

for n = 1, . . . ,Mt −1,

cn+1
H − cn

H
∆t

+∇c,H · (cn+1
H vn+1

H ) = ∇
∗
H · (Dn+1

H ∇Hcn+1
H )+ f n+1

1,H in ΩH , (3.30)

for n = 0, . . . ,Mt −1, and with the initial conditions

p1
H − p0

H
∆t

= RH pv,0, p0
H = RH p0, c0

H = RHc0 in ΩH , (3.31)

and boundary conditions
cn

H = 0, pn
H = 0 on ∂ΩH , n = 0, . . . ,Mt .

Note that the acoustic pressure approximation in (3.30), in vH and DH , is evaluated at time level
tn+1. This strategy allows us to solve the coupled problem in a sequential way. From time level tn to
time level tn+1 we first solve equation (3.29) (or we use (3.31) if n = 0) to obtain pn+1

H and then we
solve equation (3.30) to obtain cn+1

H . Let us now define the errors

en
H,p = RH p(tn)− pn

H and en
H,c = RHc(tn)− cn

H .

In the next section we present a numerical experiment that intends to illustrate the theorical space
convergence rate established in Theorems 2.3 and 3.1, and Corollaries 2.1 and 3.1. To finish this
chapter, in the Section 3.4.3 we present a toy model for the drug transport enhanced by ultrasound ob-
tained by simplifying the system of partial differential equations studied here. Numerical experiments
illustrating the effects of the parameters of the model are also included.

3.4.2 Convergence Rate Tests

In what follows, we consider an example of the coupled problem (1.1), (1.4), (1.7), (1.14), (1.6),
(1.9). We fix the following coefficient functions for the wave equation a(x,y) = y2, b(x,y) = x+ y,
e1(x,y)= xy, and e2(x,y)= x, while for the parabolic equation we set v(p,∇p)= (1+ p+ ∂ p

∂x ,2p+ ∂ p
∂y ),

d1(p) = 5+ p, and d2(p) = 10+ p. In addition, the initial conditions of the coupled problem and the
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functions f3 and f1 are defined such that the exact solution of the coupled system is given by

p(x,y, t) = et sin(2πy)(1− cos(2πx)),

c(x,y, t) = et sin(π(2x−1))sin(π(2y−1)).

Note that the smoothness conditions imposed in Theorem 3.1 hold, however the assumption that
the coefficients functions a, b and ei, i = 1,2, have a positive lower bound in Ω is not verified.
Nevertheless, we observe numerically that the obtained convergence rate is two.

We take Tf = 0.1 and the time step ∆t =1e-05. This time step is small enough so that the influence
of the time discretization on the numerical error is negligible. To measure the numerical rate of
convergence we define the error

EH,p = max
n=1,...,Mt

∥D−ten
H,p∥H +∥∇Hen

H,p∥H ,

which is associated with the discretization of the wave equation (1.1), and the error

EH,c = max
n=1,...,Mt

∥en
H,c∥H +∥∇Hen

H,c∥H ,

which is associated with the discretization of the parabolic equation (1.14). For the simulation the
domain Ω is first divided into N ×M nonuniform intervals. Then, we subdivide each interval by
considering the midpoint of each interval to obtain two intervals.

In Table 3.1 we present the errors EH,p and EH,c for several mesh sizes, from N ×M = 12×14 to
N ×M = 192×224.

Hmax EH,p EH,c

9.921e-02 2.012e-01 1.255e-01
4.960e-02 5.061e-02 3.182e-02
2.480e-02 1.266e-02 7.983e-03
1.240e-02 3.166e-03 1.998e-03
6.201e-03 7.927e-04 4.996e-04

Table 3.1 The errors EH,p and EH,c on successively refined meshes for the coupled wave-parabolic
problem.

Using the data from Table 3.1, we plot in Figure 3.1 the log(EH,p) and log(EH,c) versus log(Hmax).
Assuming that the errors EH,p and EH,c are proportional to Hr

max, for some r ∈R, the convergence rate
can be estimated by the slope of the best fitting least square line. The obtained estimated values are
1.9974 for EH,p and 1.9938 for EH,c that confirm the theoretical convergence rates. Plots illustrating
the numerical solutions and the numerical errors are given in Figure 3.2.
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Fig. 3.1 From left to right: Log-log plots of EH,p and EH,c versus Hmax. The best fitting least square
line is shown as a solid line.

Fig. 3.2 From left to right: Numerical approximation and square error of pn
H (first row) and cn

H (second
row) at the final simulation time Tf = 0.1 and at the finer mesh.

3.4.3 Application to Ultrasound Enhanced Drug Transport

To finish this chapter we present some numerical results that intend to illustrate the use of the
mathematical problem studied within this chapter in the mathematical modeling of the drug transport
enhanced by ultrasound. To simplify we assume that we have a target tissue with constant density
where we have an initial drug distribution. If we neglect the attenuation effects, then the acoustic
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pressure p is defined by the wave equation

∂ 2 p
∂ t2 = c2

p∆p, (3.32)

considered here to model the ultrasound propagation. Our aim is to observe the drug distribution in
time and space when the transport is enhanced by the acoustic pressure. The drug concentration c is
defined by the convection-diffusion equation

∂c
∂ t

+∇ · (vc) = ∇ · (Dm∇c), (3.33)

where Dm is the diffusion coefficient, and v is the convective field generated by the ultrasound wave.
Note that both Dm and v depend on the acoustic pressure p. This dependence will be specified later.
The physical situation that we are interested in is described in Figure 3.3 (on the left), where we
represent a tumor in a healthy tissue, the initial distribution of the drug and the localization of the
ultrasound source. In the Figure 3.3 (on the right) we present the time profile of the intensity of the
acoustic pressure source with expression 100e−(1.2t−3)2

sin(10πt), with t ∈ [0,5].
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Fig. 3.3 On the left: Initial drug concentration and simulation scenario. The tumor tissue is represented
by the black circle on the right and the ultrasound source is represented by the black circle on the left.
On the right: time profile of the ultrasound source wave.

Note that the system (3.32), (3.33) can be seen a particular case of the coupled problem studied
in this chapter. To finish its description, we explain how the convective velocity and the diffusion
coefficient depend on the ultrasound wave. We consider that the convective velocity field is radial
around the wave source origin (x0,y0) and has magnitude proportional to the acoustic pressure
intensity, i.e,

v(x,y, t) =C1 p(x,y, t)2

(
(x− x0)√

(x− x0)2 +(y− y0)2
,

(y− y0)√
(x− x0)2 +(y− y0)2

)
, with C1 ≥ 0.

Moreover, to model the effects of ultrasound waves on cell membrane permeabilization, we consider
that the drug molecular diffusion in the tumor tissue, denoted by Dm,Tu (Tu represents the tumor
domain), is a scalar that depends on the pressure wave intensity trough the following relation for
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(x,y) ∈ Tu

Dm,Tu(x,y, t) =


Dm,c if max

(x,y)∈Tu

(p(x,y, t)2)≤C2

Dm,p if max
(x,y)∈Tu

(p(x,y, t)2)>C2

with C2 a positive constant (Dm,p > Dm,c). This means that the drug diffusion coefficient increases
when the acoustic pressure intensity is greater than a certain threshold. The diffusion and acoustic
parameters used in the following simulation were: cp = 2, Dm = 1e-03, Dm,p = 1e-04, Dm,c = 1e-06,
C1 = 2e-04, and C2 = 20. We remark that for simplicity units are omitted.
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Fig. 3.4 Time evolution of the average concentration of drug in the tumor tissue. On the left: Passive
diffusion (dash line) and ultrasound enhanced (solid line). On the right: Ultrasound enhanced with
maximum wave amplitude equal 100 (solid line) and equal 50 (dash line).

In Figure 3.4, we present some results of our computational experiments. On the left we consider
two simulation scenarios: drug transport under the influence of the ultrasound wave, and drug transport
only by passive diffusion, i.e., without the application of the ultrasound wave. As can be observed
when ultrasound is applied the average concentration of drug inside the tumor tissue at the final time
is considerably higher than the one obtained only with passive diffusion. We can also observe that the
higher flux of drug to the tumor tissue can be related with the ultrasound profile, once can be observed
that between time equal 2 and time equal to 3.5 the flux of drug is larger, and it coincides with the
higher intensity of the generated ultrasound wave (see Figure 3.3). The sensitivity analysis of the
model to the ultrasound wave is shown in the right plot of Figure 3.4. In particular, we consider the
same parameters as before but where the maximum wave amplitude is reduced from 100 to 50. As
expected the final average concentration of drug in the tumor tissue is lower. The lower ultrasound
amplitude also explains why the high flux of drug occurs during a shorter period of time. In Figure 3.5,
we show snapshots of drug concentration in our domain at different values of time. We present
the case of passive diffusion (right column) and passive diffusion plus ultrasound (left column), in
order to observe the influence of the ultrasound wave. The effect of the convective transport on the
concentration plume is clear on the images in the left column. We remark that in the tumor domain
it is represented the average concentration, allowing a better visualization. Lastly, in Figure 3.6 the
pressure wave and the velocity field are shown. We refer that a time step equal 1e-02 and a uniform
mesh with Hmax = 3.125e-03 were used. To minimize boundary effects the domain was enlarged.
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We remark that this is a simple illustration, since the main aim of this chapter is the analysis of the
convergence of the numerical coupled method.

Fig. 3.5 From top to bottom: Drug concentration at time equal 1, 3, and final time 5. From left to right:
Transport by diffusion and ultrasound, and transport by diffusion only.
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Fig. 3.6 Ultrasound intensity p2 (first row) and velocity components x and y (second row) at time
level equal 3.

3.5 Conclusions

In this chapter, we proposed a numerical method for a hyperbolic-parabolic IBVP that can be used,
for example, to describe drug transport enhanced by ultrasound. This model is a simplification of our
main problem. The devised numerical scheme is based on piecewise linear finite element spaces, and
it can also be seen as a finite difference method defined on nonuniform rectangular partitions of the
spatial domain.

The main results of this chapter are Theorem 3.1 and Corollary 3.1, where we proved that the
considered numerical approximation of the solution of the parabolic IBVP (1.14), (1.6), (1.9) is second-
order accurate with respect to a discrete L2- norm. The proof of this theorem depends on Theorem
2.3 where we established that the numerical approximation for the acoustic pressure is second-order
accurate with respect to a H1- norm. These results were obtained assuming that p(t), c(t) ∈ H3(Ω).
It should be highlighted that our results were obtained imposing weaker smoothness conditions on
the solution of the coupled IBVP (1.1), (1.14), (1.4), (1.6), (1.7), (1.9) than those usually considered
in the convergence analysis of finite difference schemes. It should be pointed out that the uniform
boundness of pH(t) and ∇H pH(t) established in Corollary 2.2 has an important role in the convergence
study for the semi-discrete approximation for the solution of the diffusion equation. We remark that
these quadratic orders of convergence are unexpected results, meaning that we are under super-
supraconvergence results.

Numerical experiments illustrating the established theoretical results are included. An application
illustrating the increase of drug concentration in the target tissue when ultrasound are applied is also
presented.



Chapter 4

Coupling: Acoustic Pressure
Propagation, Heat and Drug Transport

4.1 Introduction

In this chapter, we consider the system of partial differential equations (1.1)-(1.9) in Ω× (0,Tf ],
with Ω = (0,1)2 and p,T,c : Ω× [0,Tf ] → R. As mentioned before, this system can be used to
mathematically describe the drug transport enhanced by ultrasound when heat effects are taken into
account. As the differential system (1.1), (1.14), (1.4), (1.6), (1.7), (1.9), where the heat effects were
neglected, was studied in the Chapter 3, this chapter can be seen as a generalization of the last one.

Here, we have a coupling of a hyperbolic equation - a telegraph equation (1.1), with two parabolic
equations - a nonlinear diffusion-reaction equation (1.2) and a convection-diffusion-reaction equation
(1.3). In this system of partial differential equations, the reaction term of the diffusion-reaction
equation (1.2) depends on the solution of the wave equation (1.1), the convective velocity of the
second diffusion equation depends on the solution of the hyperbolic equation (1.1) and its gradient,
and the diffusion coefficient depends on the temperature T and on the acoustic pressure p.

The considered assumptions over the telegraph IBVP (1.1), (1.4), (1.7), in Chapter 2, will again
be considered. Furthermore, in equation (1.2), DT is a 2× 2 diagonal matrix with positive entries
dT,i : R→ R, i = 1,2, with a positive lower bound β0 in R, and k represents a constant. Finally, in
equation (1.3), we consider Dc(p,T ) a second order diagonal matrix with entries dc,i :R2 →R, i= 1,2,
that have positive lower bound β1 in R. As introduced in Chapter 3, the convective velocity of (1.3) is
v : R3 → R2 such that v(x,y,z) = (v1(x,y),v2(x,z)), x,y,z ∈ R, and vi : R2 → R, i = 1,2.

Our main aim in this chapter is the central objective of this thesis, the construction of an efficient
numerical method for the system (1.1)-(1.9). We propose a fully discrete in space piecewise linear
finite element method, that can also be seen as a finite difference method, to approximate p, T , and c
that leads to a second order approximation with respect to a discrete H1- norm for p, as we have seen
in Chapter 2, and a second order approximation with respect to a discrete L2- norm for T and c. These
convergence results can be seen as super-supraconvergence results. The main ideas for this chapter
are the ones presented in the previous chapter, however here we have more dependences to study, we
need to carefully study some terms.

63
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This chapter is organized as follows. In Section 4.2, we present a fully discrete piecewise linear
finite element semi-discrete approximation for the solution (p(t),T (t),c(t)) of the IBVP (1.1)-(1.9).
Note that the approximation considered for the wave equation is the one presented in Chapter 2,
and for the concentration equation, we use the idea presented in the previous chapter, considering
the adequate modification related with the temperature. Section 4.3 is focused on the convergence
analysis of the semi-discrete approximation for the solution of the coupled problem (1.1)-(1.9). In
Section 4.3.1, the convergence result for the numerical approximation for the temperature defined by
the diffusion-reaction equation (1.2) is presented. In this result, Corollary 2.1 has an important role
because the reaction term of (1.2), depends on the solution of (1.1). The main results for the numerical
approximation for the temperature are Theorem 4.1 and Corollary 4.1. Finally, in the Section 4.3.2 we
prove our main result, Corollary 4.3, where the second order of convergence is established for the
numerical approximation for the concentration defined by equation (1.3). This result is consequence of
Theorems 2.3, 4.1 and 4.2. We also include some numerical results illustrating the main conclusions
of this work in Section 4.4. We end the chapter with some conclusions.

Before starting the construction of the numerical scheme, we observe that the existence and
uniqueness of solution of (1.1)-(1.9) can be studied. For that, it is necessary to prove the existence
of solution of (1.2). Note that this parabolic equation is nonlinear, so the approach can not be the
same mentioned in the previous chapter. Some results can be found in Chapter 6 of [25]. Note that we
need to impose smoothness conditions on the data of our problem, namely on f2, T0, dT,i, i = 1,2, and
remark that the reaction term of (1.2) depends on the solution of the hyperbolic problem (1.1), (1.4),
(1.7). As we saw before, increasing the smoothness of the data of the wave problem (1.1), (1.4), (1.7)
we can improve the regularity of p, and finally prove the existence and uniqueness of T in a certain
sense. Finally to prove the existence and uniqueness of solution of (1.1)-(1.9), we can follow [11],
taking into account that in this case the diffusion term also depends on T .

4.2 Semi-Discrete Numerical Scheme

In this section, we intend to introduce a fully discrete piecewise linear finite element semi-discrete
approximation for the solution (p(t),T (t),c(t)) of the IBVP (1.1)-(1.9). For that purpose, we start
defining a weak solution of the last problem. We say (p(t),T (t),c(t)) ∈ [H1

0 (Ω)]3 is a weak solution
of the IBVP (1.1)-(1.9) if

(i) p( j)(t) ∈ L2(Ω), i = 1,2, t ∈ (0,Tf ], and (2.1) holds for w ∈ H1
0 (Ω), coupled with (2.2);

(ii) T ′(t) ∈ L2(Ω), t ∈ (0,Tf ], and

(T ′(t),w) =−((DT (T (t))∇T (t),∇w))+ k(T (t),w)+( f2(p(t)),w), t ∈ (0,Tf ], (4.1)

for w ∈ H1
0 (Ω), and

(T (0),q) = (T0,q), ∀q ∈ L2(Ω); (4.2)
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(iii) c′(t) ∈ L2(Ω), t ∈ (0,Tf ], and

(c′(t),w)− ((v(p(t),∇p(t))c(t),∇w))+((Dc(p(t),T (t))∇c(t),∇w)) = ( f1(t),w), t ∈ (0,Tf ],

(4.3)
for w ∈ H1

0 (Ω), and
(c(0),q) = (c0,q), ∀q ∈ L2(Ω). (4.4)

Now, from the previous variational problem, we construct a piecewise linear finite element
approximation for the coupling IBVP (1.1)-(1.9).

For the acoustic pressure we consider the fully discrete in space FEM constructed in Section 2.3

(i) find pH(t) ∈WH,0 such that (2.8) holds for t ∈ (0,Tf ], wH ∈WH,0, with initial conditions given
by (2.9).

Again, we remark that this fully discrete FEM can be seen as the following finite difference problem:
find pH(t) ∈WH,0 verifying (2.10), (2.11), (2.12).

For the temperature defined by (4.1), (4.2) we introduce the piecewise linear FEM: find TH(t) ∈
WH,0 such that

(PHT ′
H(t),PHwH) =−((DT (PHTH(t))∇PHTH(t),∇PHwH))+ k(PHTH(t),PHwH) (4.5)

+( f2(PH pH(t)),PHwH),

for wH ∈WH,0, t ∈ (0,Tf ], and

(PHTH(0),PHqH) = (PHRHT0,PHqH), ∀qH ∈WH,0. (4.6)

In order to consider a discrete in space finite element problem, we need to establish adequate quadrature
rules for the integral terms in (4.5), (4.6). Following the idea presented in Sections 2.3 and 3.2, we
consider:

(i) (PHT ′
H(t),PHwH)≃ (T ′

H(t),wH)H ;

(ii) (PHTH(t),PHwH)≃ (TH(t),wH)H ;

(iii) ( f2(PH pH(t)),PHwH)≃ ( f2(pH(t)),wH)H ;

(iv) (PHTH(0),PHwH)≃ (TH(0),wH)H ;

(v) (PHRHT0,PHwH)≃ (RHT0,wH)H ;

(vi) ((DT (PHTH(t))∇PHTH(t),∇PHwH))≃ ((DT,H(t)∇HTH(t),∇HwH))H ;

where DT,H(t) is a 2× 2 diagonal matrix with entries dT,1(MhTH(t)) and dT,2(MkTH(t)). Then, the
piecewise linear FEM (4.5), (4.6) is replaced by the following discrete in space FEM: find TH(t)∈WH,0

such that(
T ′

H(t),wH
)

H =−((DT,H(t)∇HTH(t),∇HwH))H + k(TH(t),wH)H +( f2(pH(t)),wH)H , (4.7)
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for wH ∈WH,0, t ∈ (0,Tf ], and

(TH(0),qH)H = (RHT0,qH)H , ∀qH ∈WH,0. (4.8)

The fully discrete in space finite element problem (4.7), (4.8) can also be rewritten as the following
finite difference problem:

T ′
H(t) = ∇

∗
H · (DT,H(t)∇HTH(t))+ kTH(t)+ f2(pH(t)) in ΩH , t ∈ (0,Tf ], (4.9)

with the initial condition
TH(0) = RHT0, (4.10)

and the boundary condition
TH(t) = 0 on ∂ΩH . (4.11)

Note that (4.9) can be written as a matrix ordinary differential equation of the form

T ′
H(t) =C(TH(t))TH(t)+ f2(pH(t)), (4.12)

where pH(t) is the solution of (2.13), (2.12). Since this system of ODEs is nonlinear, in order to
prove existence and uniqueness of the solution of (4.12), (4.10), we need to impose conditions on
C. As dT,i(t), i = 1,2, depend on TH(t), we can guarantee that C(TH(t))TH(t) is a Lipschitz function
imposing regularity on dT,i. Moreover, as pH(t) is continuous, f2(pH(t)) is also continuous provided
that f2 is a continuous function. Under such conditions, we can establish the existence and uniqueness
of the solution TH of the initial value problem (4.12), (4.10) with TH ∈C([0,Tf ])∩C1((0,Tf ]) ([7]).

To complete our fully discrete piecewise linear FEM for our coupled IBVP, we need to consider
the initial value problem (4.3), (4.4). The semi-discrete approximation for this problem is defined
following the approach used in Section 3.2 for the concentration equation (1.14). We consider the
following piecewise linear FEM: find cH(t) ∈WH,0 such that

(PHc′H(t),PHwH)−((PHcH(t)v(PH pH(t),∇PH pH(t)),∇PHwH))

=−((Dc(PH pH(t),PHTH(t))∇PHcH(t),∇PHwH))+( f1(t),PHwH),

for wH ∈WH,0, t ∈ (0,Tf ], and

(PHcH(0),PHqH) = (PHRHc0,PHqH), ∀qH ∈WH,0.

We take

((Dc(PH pH(t),PHTH(t))∇PHcH(t),∇PHwH))≃ ((Dc,H(t)∇HcH(t),∇HwH))H ,

with Dc,H(t) a 2×2 diagonal matrix with diagonal elements dc,1(Mh pH(t),MhTH(t)) and dc,2(Mk pH(t),
MkTH(t)), where pH(t) is defined by (2.8), (2.9), and TH(t) by (4.7), (4.8).
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Then, the last finite element problem for the concentration is replaced by the following fully
discrete in space FEM: find cH(t) ∈WH,0 such that

(c′H(t),wH)H − ((MH(cH(t)vH(t)),∇HwH))H =−((Dc,H(t)∇HcH(t),∇HwH))H +( f1,H(t),wH)H ,

(4.13)
for wH ∈WH,0, t ∈ (0,Tf ], and

(cH(0),qH)H = (RHc0,qH)H , ∀qH ∈WH,0. (4.14)

In (4.13), vH(t) is given by (v1(pH(t),D∗
h pH(t)),v2(pH(t),D∗

k pH(t))) where pH(t) is defined by (2.8),
(2.9).

To complete this section, we remark that the introduced fully discrete FEM for the concentration
(4.13), (4.14) can be seen as the following finite difference scheme

c′H(t)+∇c,H · (cH(t)vH(t)) = ∇
∗
H · (Dc,H(t)∇HcH(t))+ f1,H(t) in ΩH , t ∈ (0,Tf ], (4.15)

with
cH(0) = RHc0 in ΩH , (4.16)

cH(t) = 0 on ∂ΩH . (4.17)

Note that this FDM is, in fact, a system of ordinary differential equation, which can be written in
the matrix form

c′H(t)+M(t)cH(t) = f1,H(t), t ∈ (0,Tf ]. (4.18)

However, in this case, the entries of the matrix M(t) depend on Dc,H(t) and vH(t), Dc,H(t) depends on
TH and pH that are solutions of (4.12), (4.10) and (2.13), (2.12), respectively, and vH(t) depends only
on pH(t) defined as before. Assuming smoothness conditions on dc,i, i = 1,2 and vi, i = 1,2, we can
guarantee the continuity of M(t). Moreover, the continuity of f1,H(t) is a natural consequence of the
continuity of f1. Then we can establish a set of conditions on the diffusion tensor, on the convective
velocity v and on f1 that lead to the existence and uniqueness of the solution cH of the initial value
problem (4.18), (4.16) with cH ∈C([0,Tf ])∩C1((0,Tf ]) ([7]).

4.3 Convergence Analysis

From last section, we have completed the construction of our fully discrete piecewise linear FEM for
the coupled IBVP (1.1)-(1.9). Such method is obtained by the coupling of:

(i) (2.8), (2.9) to compute an approximation for the acoustic pressure;

(ii) (4.7), (4.8) to compute an approximation for the temperature;

(iii) (4.13), (4.14) to compute an approximation for the concentration.

Once again, we point out that the continuous versions of these fully discrete in space FEMs lead
to a second order approximation, with respect to the L2- norm, and to a first order approximation
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with respect to the H1- norm, since such methods are based on piecewise linear elements ([19], [42],
[45]). As the convective velocity for the concentration depends on ∇p, then the coupled continuous
piecewise linear FEM should lead to a first order approximation for the concentration with respect to
the L2- norm. Moreover, it is expected that these results are maintained for the space discrete coupled
method proposed. In Chapter 2, we have shown that the fully discrete in space acoustic pressure
approximation pH(t) is second order convergent with respect to a discrete version of the H1- norm. In
this chapter, we prove that TH(t) is a second order approximation for the temperature and, following
the approach used in Chapter 3, we prove a result that is analogous to Theorem 3.1.

The coupled method (2.8), (2.9), (4.7), (4.8), (4.13), (4.14) is equivalent to the finite difference
coupling:

(i) (2.10), (2.11), (2.12) for the acoustic pressure pH(t);

(ii) (4.9), (4.10), (4.11) for the temperature TH(t);

(iii) (4.15), (4.16), (4.17) for the concentration cH(t).

These finite difference problems are defined in a nonuniform rectangular grid ΩH . The truncation
error associated with the spatial discretizations that lead to each subproblem is only of first order
with respect to the maximum norm ∥ · ∥∞ (this analysis is presented for the hyperbolic equation in
the Section 2.4.1), provided that p(t), T (t), c(t) ∈ C3(Ω). Based on stability and consistency we
are expecting that the semi-discrete errors for pH(t), TH(t) and cH(t) are only of first order. Since
each of the FEM with quadrature is equivalent to the correspondent FDM, we conclude that the finite
difference approximations pH(t), TH(t) and cH(t) have exactly the convergence properties of the
correspondent fully discrete piecewise linear FE approximations. We believe that these convergence
properties can be improved if we assume that p(t),T (t),c(t) ∈C4(Ω) using the approach presented
in Section 2.4.2. In what follows, we obtain the same convergence results assuming lower smoothness
assumptions.

4.3.1 Heat Transport

In this section, we intend to establish an estimate for the spatial discretization error eH,T (t) =
RHT (t)−TH(t) induced by the spatial discretization for the temperature (4.7), (4.8). To obtain such
estimate, our technique, based on the direct analysis of the error equation for eH,T (t), allows us to
reduce the regularity assumptions on the solution T (t). Note that this result should depend on pH(t).

We start establishing the following identity to eH,T (t)

(e′H,T (t),wH)H =−((DT,H(t)∇HeH,T (t),∇HwH))H

+(((DT,H(t)−D∗
T,H(t))∇HRHT (t),∇HwH))H

+(RH f2(p(t))− f2(pH(t)),wH)H

+(kRHT (t)− kTH(t),wH)H

+ τDT (wH)+ τk(wH)+ τ f2(wH)+ τd(wH), (4.19)
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where t ∈ (0,Tf ], wH ∈WH,0, and D∗
T,H(t) is defined as DT,H(t) with TH(t) replaced by RHT (t), and

τDT (wH) = ((D∗
T,H(t)∇HRHT (t),∇HwH))H +((∇ · (DT (T (t))∇T (t)))H ,wH)H , (4.20)

τk(wH) = ((kT (t))H ,wH)H − (kRHT (t),wH)H , (4.21)

τ f2(wH) = (( f2(p(t)))H ,wH)H − ( f2(RH p(t)),wH)H , (4.22)

τd(wH) = (RHT ′(t)− (T ′(t))H ,wH)H , (4.23)

with (∇ · (DT (T (t))∇T (t)))H , (kT (t))H , ( f2(p(t)))H and (T ′(t))H given by (2.7) with f3(t) replaced
by ∇ · (DT (T (t))∇T (t)), kT (t), f2(p(t)) and T ′(t), respectively.

We start our convergence analysis establishing adequate estimates for the functionals τDT (wH),
τk(wH), τ f2(wH) and τd(wH), for wH ∈WH,0. The estimates presented in Propositions 4.1, 4.2, 4.3
follows directly from Lemma 5.7 of [14], being the Bramble-Hilbert Lemma the main tool used.

Proposition 4.1. If T (t) ∈ H2(Ω), for the functional τk : WH,0 → R defined by (4.21) holds the
following

|τk(wH)| ≤C

(
∑

∆∈TH

(diam∆)4 ∥T (t)∥2
H2(∆)

)1/2

∥∇HwH∥H ,

for wH ∈WH,0, H ∈ Λ, where C denotes a positive constant, T , H and t independent.

Proposition 4.2. If T ′(t) ∈ H2(Ω), for the functional τd : WH,0 → R defined by (4.23) holds the
following

|τd(wH)| ≤C

(
∑

∆∈TH

(diam∆)4∥∥T ′(t)
∥∥2

H2(∆)

)1/2

∥∇HwH∥H ,

for wH ∈WH,0, H ∈ Λ, where C denotes a positive constant, T , H and t independent.

Proposition 4.3. If f2 is such that f2(p(t)) ∈ H2(Ω) then, for the functional τ f2 : WH,0 → R defined
by (4.22), there exists a positive constant C, p, H and t independent, such that

|τ f2(wH)| ≤C

(
∑

∆∈TH

(diam∆)4∥ f2(p(t))∥2
H2(∆)

)1/2

∥∇HwH∥H ,

for wH ∈WH,0, H ∈ Λ.

Proposition 4.4. If dT,i, i = 1,2, are LDT - Lipschitz functions, T (t)∈ H3(Ω), dT,i(T (t))∈ L∞(Ω), i =
1,2, and DT (t)∇T (t) ∈ [H2(Ω)]2, then for the functional τDT : WH,0 → R defined by (4.20) we have

|τDT (wH)| ≤C

(
∑

∆∈TH

(diam∆)4
(

L2
DT
∥T (t)∥2

C1(∆)∥T (t)∥2
H2(∆)

+∥DT (T (t))∥2
∞,L∞(∆)∥T (t)∥2

H3(∆)

+∥DT (t)∇T (t)∥2
[H2(∆)]2

))1/2

∥∇HwH∥H ,

for wH ∈WH,0, H ∈ Λ, where C denotes a positive constant, T , H and t independent.
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Proof. We start by noting that τDT can be written as

τDT (wH) = (dT,1(MhRHT (t))D−xRHT (t),D−xwH)H,x +

((
∂

∂x

(
dT,1(t)

∂T
∂x

(t)
))

H
,wH

)
H

+(dT,2(MkRHT (t))D−yRHT (t),D−ywH)H,y +

((
∂

∂y

(
dT,2(t)

∂T
∂y

(t)
))

H
,wH

)
H

:= τx(wH)+ τy(wH).

We also split τx as τx(wH) = τ1(wH)+ τ2(wH) with

τ1(wH) = (dT,1(MhRHT (t))D−xRHT (t),D−xwH)H,x − (dT,1(T (Mh(t)))D−xRHT (t),D−xwH)H,x,

τ2(wH) = (dT,1(T (Mh(t)))D−xRHT (t),D−xwH)H,x +

((
∂

∂x

(
dT,1(t)

∂T
∂x

(t)
))

H
,wH

)
H
.

Following the proof of Proposition 3.2, it is now simple to prove that there exists a positive
constant C, T , H and t independent, such that

|τ1(wH)| ≤ LDT

N

∑
i=1

M−1

∑
j=1

(
hi

(∫ y j+1/2

y j−1/2

|σ(xi,y, t)| dy+ k j+1/2

∫ y j+1/2

y j−1/2

∣∣∣∣∂σ

∂y
(xi,y, t)

∣∣∣∣dy
)

×|D−xT (xi,y j, t)||D−xwH(xi,y j)|

)

≤CLDT

(
∑

∆∈TH

(diam∆)4∥T (t)∥2
C1(∆)∥T (t)∥2

H2(∆)

)1/2

∥D−xwH∥H ,

where σ(xi,y, t) =
T (xi−1,y, t)+T (xi,y, t)

2
−T (xi−1/2,y, t).

From the proof of Lemma 5.1 of [14], we easily obtain the following estimate for τ2(wH)

|τ2(wH)| ≤C
(

∑
∆∈TH

(diam∆)4
(
∥dT,1(t)∥2

L∞(∆)∥T (t)∥2
H3(∆)+

∥∥∥∥dT,1(t)
∂T
∂x

(t)
∥∥∥∥2

H2(∆)

))1/2
∥∇HwH∥H ,

and therefore

|τx(wH)| ≤C

(
∑

∆∈TH

(diam∆)4

(
L2

DT
∥T (t)∥2

C1(∆)∥T (t)∥2
H2(∆)+∥dT,1(t)∥2

L∞(∆)∥T (t)∥2
H3(∆)

+

∥∥∥∥dT,1(t)
∂T
∂x

(t)
∥∥∥∥2

H2(∆)

))1/2

∥∇HwH∥H .
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Proceeding analogously, we can obtain a similar result for τy(wH), and finally get the inequality

|τDT (wH)| ≤C

(
∑

∆∈TH

(diam∆)4
(

L2
DT
∥T (t)∥2

C1(∆)∥T (t)∥2
H2(∆)

+max
i=1,2

∥dT,i(t)∥2
L∞(∆)∥T (t)∥2

H3(∆)+∥DT (t)∇T (t)∥2
[H2(∆)]2

))1/2

∥∇HwH∥H ,

where C denotes a positive constant, T , H and t independent.

From the previous propositions, we can now derive the main result of this section, an upper bound
for ∥eH,T (t)∥H .

Theorem 4.1. Assuming the following:

(i) the solution T of the IBVP (1.2), (1.5), (1.8) satisfies RHT ∈ C1((0,Tf ],WH,0) and T ∈
L2(0,Tf ,H3(Ω)∩H1

0 (Ω)) ∩ H1(0,Tf ,H2(Ω));

(ii) the solution TH of the initial value problem (4.7), (4.8) belongs to C1((0,Tf ],WH,0)∩
C([0,Tf ],WH,0);

(iii) f2 is a L f2- Lipschitz function with f2(p(t)) ∈ H2(Ω), where p is solution of the IBVP (1.1),
(1.4), (1.7);

(iv) dT,i ≥ β0 > 0, i = 1,2, in R;

(v) the assumptions of Proposition 4.4 hold.

Then, there exists a positive constant C, p, T , H and t independent, such that, for the spatial error
eH,T (t) = RHT (t)−TH(t) holds the following

∥eH,T (t)∥2
H +2(β0 −5ε

2)
∫ t

0
e

∫ t

s
gH(T (µ))dµ

∥∇HeH,T (s)∥2
Hds

≤ e

∫ t

0
gH(T (s))ds

∥eH,T (0)∥2
H +L2

f2

∫ t

0
e

∫ t

s
gH(T (µ))dµ

∥eH,p(s)∥2
Hds

+
∫ t

0
e

∫ t

s
gH(T (µ))dµ

τ1(s)ds, (4.24)

for t ∈ [0,Tf ], H ∈ Λ, where

gH(T (t)) =
1
ε2 L2

DT
∥∇HRHT (t)∥2

∞ +1+2k,

τ1(t) =
C

2ε2 ∑
∆∈TH

(diam∆)4
((

L2
DT
∥T (t)∥2

C1(∆)+∥DT (T (t))∥2
∞,L∞(∆)+1

)
∥T (t)∥2

H3(∆)

+∥T ′(t)∥2
H2(∆)+∥DT (t)∇T (t)∥2

[H2(∆)]2 +∥ f2(p(t))∥2
H2(∆)

)
, (4.25)

and ε ̸= 0 is an arbitrary constant.
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Proof. Since dT,i, i = 1,2, are LDT - Lipschitz functions, then

|(((DT,H(t)−D∗
T,H(t))∇HRHT (t),∇HwH))H |

≤
√

2LDT ∥eH,T (t)∥H∥∇HRHT (t)∥∞∥∇HwH∥H . (4.26)

As f2 is a L f2- Lipschitz function then

|(RH f2(p(t))− f2(pH(t)),wH)H | ≤ L f2∥eH,p(t)∥H∥wH∥H . (4.27)

Taking in (4.19) wH = eH,T (t), considering (4.26) and (4.27), we have

1
2

d
dt
∥eH,T (t)∥2

H +β0∥∇HeH,T (t)∥2
H ≤

√
2LDT ∥∇HRHT (t)∥∞∥eH,T (t)∥H∥∇HeH,T (t)∥H

+L f2∥eH,p(t)∥H∥eH,T (t)∥H + k∥eH,T (t)∥2
H + |τDT (eH,T (t))|+ |τk(eH,T (t))|

+ |τ f2(eH,T (t))|+ |τd(eH,T (t))|.

For the first term of the upper bound of the last inequality we easily get

√
2LDT ∥∇HRHT (t)∥∞∥eH,T (t)∥H∥∇HeH,T (t)∥H

≤ ε
2∥∇HeH,T (t)∥2

H +
1

2ε2 L2
DT
∥∇HRHT (t)∥2

∞∥eH,T (t)∥2
H ,

where ε ̸= 0 is an arbitrary constant. Then taking into account Propositions 4.1 - 4.4, we get

d
dt
∥eH,T (t)∥2

H +2(β0 −5ε
2)∥∇HeH,T (t)∥2

H ≤ L2
f2
∥eH,p(t)∥2

H +gH(T (t))∥eH,T (t)∥2
H + τ1(t), (4.28)

where τ1(t) is given by (4.25). Multiplying everything by e−
∫ t

0 gH(T (s))ds, inequality (4.28) leads to

d
dt

(
e
−
∫ t

0
gH(T (s))ds

∥eH,T (t)∥2
H +2(β0 −5ε

2)
∫ t

0
e
−
∫ s

0
gH(T (µ))dµ

∥∇HeH,T (s)∥2
Hds

−L2
f2

∫ t

0
e
−
∫ s

0
gH(T (µ))dµ

∥eH,p(s)∥2
Hds−

∫ t

0
e
−
∫ s

0
gH(T (µ))dµ

τ1(s)ds
)
≤ 0.

Consequently,

e
−
∫ t

0
gH(T (s))ds

∥eH,T (t)∥2
H +2(β0 −5ε

2)
∫ t

0
e
−
∫ s

0
gH(T (µ))dµ

∥∇HeH,T (s)∥2
Hds

−L2
f2

∫ t

0
e
−
∫ s

0
gH(T (µ))dµ

∥eH,p(s)∥2
Hds−

∫ t

0
e
−
∫ s

0
gH(T (µ))dµ

τ1(s)ds ≤ ∥eH,T (0)∥2
H ,

that finally allows us to establish (4.24).

Note that, since we are assuming T (t) ∈ H3(Ω), then T (t) ∈C1(Ω), which gives us the uniform
boundness of gH(T (t)), for H ∈ Λ. Fixing, in Theorem 4.1, ε ̸= 0 such that β0 −5ε2 > 0, and taking
into account the Corollary 2.1, we conclude the following result:
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Corollary 4.1. Under the assumptions of Theorems 2.3 and 4.1 we conclude that there exists a
positive constant C, H and t independent, such that

∥eH,T (t)∥2
H +

∫ t

0
∥∇HeH,T (s)∥2

Hds ≤CH4
max, t ∈ [0,Tf ], H ∈ Λ.

The Corollary 4.1 gives us the second order of convergence of our fully discrete in space FEM (2.8),
(2.9), (4.7), (4.8) that defines an approximation for the solution of the system of partial differential
equations (1.1), (1.4), (1.7), (1.2), (1.5), (1.8), with respect to the discrete norm ∥ · ∥H . This is a
supraconvergence result, since from the classical analysis for the correspondent FDM we only expect
first order of convergence in relation to ∥ · ∥∞. In the language of FEM, this result can be seen as a
superconvergence result.

In what follows, we present a result that gives us the boundness of the sequences (∥TH(t)∥∞)H∈Λ

and
(∫ t

0
∥∇HTH(s)∥∞ds

)
H∈Λ

, where

∥TH(t)∥∞
= max

(x,y)∈ΩH

|TH(x,y, t)| ,

∥∇HTH(t)∥∞
= max

i=1,...,N, j=1,...,M−1

∣∣D−xTH(xi,y j, t)
∣∣+ max

i=1,...,N−1, j=1,...,M

∣∣D−yTH(xi,y j, t)
∣∣ .

Corollary 4.2. Under the conditions of Theorems 2.3 and 4.1, if the sequence of step-sizes Λ satisfies
(2.35), we conclude that there exists a positive constant C, H and t independent, such that

∥TH(t)∥∞ ≤C,
∫ t

0
∥∇HTH(s)∥∞ds ≤C, t ∈ [0,Tf ], H ∈ Λ,

Hmax small enough.

Proof. Taking into account Corollary 4.1, we have

∥TH(t)∥2
∞ ≤ 2

1
H2

min
∥eH,T (t)∥2

H +2∥RHT (t)∥2
∞ ≤C

H4
max

H2
min

+2∥T (t)∥2
∞,

for H ∈ Λ. The boundeness of ∥T (t)∥∞ results from the fact that T (t) ∈C(Ω) when T (t) ∈ H3(Ω)∩
H1

0 (Ω).

We also have,∫ t

0
∥∇HTH(s)∥2

∞ds ≤ 2
1

H2
min

∫ t

0
∥∇HeH,T (s)∥2

Hds+2
∫ t

0
∥∇HRHT (s)∥2

∞ds

≤C
H4

max

H2
min

+2
∫ Tf

0
∥∇T (s)∥2

∞ds,

for C a positive constant. The result follows from the fact that T (t) ∈C1(Ω).

4.3.2 Drug Transport

The aim of this subsection is to conclude the convergence analysis of the FE scheme: (2.8), (2.9)
for the acoustic pressure, (4.7), (4.8) for the temperature, (4.13), (4.14) for the concentration, or
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equivalently, of the FD scheme (2.10), (2.11), (2.12) for the acoustic pressure pH(t), (4.9), (4.10),
(4.11) for the temperature TH(t), (4.15), (4.16), (4.17) for the concentration cH(t). The main result
of this section, Theorem 4.2, is in fact the central theorem of this thesis. In the proof of this result,
Corollaries 2.1, 2.2 and 4.1 have a crucial role. Note that the approach in this section is similar to the
one followed in Section 3.3.

Let eH,c(t) = RHc(t)− cH(t) be the spatial discretization error induced by the coupled scheme.
From (4.13), we obtain

(e′H,c(t),wH)H =−((Dc,H(t)∇HeH,c(t),∇HwH))H

+(((Dc,H(t)−D∗
c,H(t))∇HRHc(t),∇HwH))H

+((MH(vH(t)eH,c(t)),∇HwH))H

− ((MH((vH(t)− v∗H(t))RHc(t)),∇HwH))H

+ τDc(wH)+ τv(wH)+ τc(wH), (4.29)

for t ∈ (0,Tf ], wH ∈WH,0, where D∗
c,H(t) is defined as Dc,H(t) with pH and TH replaced by RH p and

RHT , respectively, and v∗H(t) is defined as vH(t) with pH replaced by RH p. In (4.29), τDc(wH), τv(wH)

and τc(wH) are defined by

τDc(wH) = ((D∗
c,H(t)∇HRHc(t),∇HwH))H +((∇ · (Dc(p(t),T (t))∇c(t)))H ,wH)H , (4.30)

τv(wH) =−((MH(v∗H(t)RHc(t)),∇HwH))H − ((∇ · (v(p(t),∇p(t))c(t)))H ,wH)H , (4.31)

and
τc(wH) = (RHc′(t),wH)H − ((c′(t))H ,wH)H . (4.32)

We start establishing upper bounds for τDc(wH) and τc(wH), for wH ∈WH,0. Proposition 3.1 gives
us an upper bound for τv(wH), wH ∈WH,0, define by (4.31).

Proposition 4.5. If dc,i, i = 1,2, are LDc- Lipschitz functions, p(t),T (t) ∈ H2(Ω), c(t) ∈ H3(Ω),
dc,i(p(t), T (t)) ∈ L∞(Ω), i = 1,2, and Dc(t)∇c(t) ∈ [H2(∆)]2 then, for the functional τDc : WH,0 → R
defined by (4.30), there exists a positive constant C, H, t, p,T and c independent, such that

|τDc(wH)| ≤C
(

∑
∆∈TH

(diam∆)4(L2
Dc

(
∥T (t)∥2

H2(∆)+∥p(t)∥2
H2(∆)

)
∥c(t)∥2

C1(∆)

+∥Dc(p(t),T (t))∥2
∞,L∞(∆)∥c(t)∥2

H3(∆)

+∥Dc(p(t),T (t))∇c(t)∥2
[H2(∆)]2

))1/2
∥∇HwH∥H

for wH ∈WH,0, H ∈ Λ.

Proof. This proof is similar to the proof of Proposition 3.2. Note that, the functional (4.30) admits the
representation

τDc(wH) =
2

∑
i=1

τi(wH),wH ∈WH,0, (4.33)
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with
τ1(wH) = (((D∗

c,H(t)− D̃c,H(t))∇HRHc(t),∇HwH))H ,

where the diagonal entries of D̃c,H(t) at (xi,y j) are given by dc,1(p(xi−1/2,y j, t),T (xi−1/2,y j, t)) and
dc,2(p(xi,y j−1/2, t),T (xi,y j−1/2, t)), and

τ2(wH) = ((D̃c,H(t)∇HRHc(t),∇HwH))H +((∇ · (Dc(p(t),T (t))∇c(t)))H ,wH)H .

Following the steps of the proof of Proposition 3.2, it is now a simple task to prove that there
exists a positive constant C, H, t, p, T and c independent, such that

|τ1(wH)| ≤C
(

∑
∆∈TH

(diam∆)4L2
Dc

(
∥T (t)∥2

H2(∆)+∥p(t)∥2
H2(∆)

)
∥c(t)∥2

C1(∆)

)1/2
∥∇HwH∥H . (4.34)

Moreover, considering again the proof of Lemma 5.1 of [14], we get the following estimate for τ2(wH)

|τ2(wH)| ≤C
(

∑
∆∈TH

(diam∆)4(∥Dc(p(t),T (t))∥2
∞,L∞(∆)∥c(t)∥2

H3(∆) (4.35)

+∥Dc(p(t),T (t))∇c(t)∥2
[H2(∆)]2

))1/2
∥∇HwH∥H ,

where C is a positive constant, H, t, p, T and c independent, and we finish the proof using (4.34) and
(4.35) in (4.33).

The following proposition gives an estimate for τc(wH).

Proposition 4.6. If c′(t) ∈ H2(Ω), for the functional τc : WH,0 → R defined by (4.32) we have

|τc(wH)| ≤C

(
∑

∆∈TH

(diam∆)4∥c′(t)∥2
H2(∆)

)1/2

∥∇HwH∥H ,

for wH ∈WH,0, H ∈ Λ, where C is a positive constant, H, t and c independent.

Proof. The inequality follows immediately from Lemma 5.7 of [14].

Finally, we are in condition to establish an estimate for the error eH,c(t). Note that, assuming that
(2.35) holds, for H ∈ Λ, with Hmax small enough, then we establish (3.26). Also, if v satisfies

|vi(z1,z2)| ≤Cv(|z1|+ |z2|),∀z1,z2 ∈ R, i = 1,2,

we have (3.25). Moreover, considering dc,i, i = 1,2, LDc- Lipschitz functions, we obtain the following
upper bound,

|(((Dc,H(t)−D∗
c,H(t))∇HRHc(t),∇HwH))H |

≤ 2LDc

(
∥eH,p(t)∥H +∥eH,T (t)∥H

)
∥∇HRHc(t)∥∞∥∇HwH∥H . (4.36)

Now, it follows the main result of this work.



76 Coupling: Acoustic Pressure Propagation, Heat and Drug Transport

Theorem 4.2. Let us assume that:

(i) the sequence of grids ΩH ,H ∈ Λ, satisfies (2.35) for Hmax small enough;

(ii) p(t) ∈ H3(Ω)∩H1
0 (Ω), where p is solution of the IBVP (1.1), (1.4), (1.7);

(iii) T (t) ∈ H2(Ω)∩H1
0 (Ω), where T is solution of the IBVP (1.2), (1.5), (1.8);

(iv) the solution c of the IBVP (1.3), (1.6), (1.9) satisfies c ∈ L2(0,Tf ,H3(Ω) ∩ H1
0 (Ω))∩

H1(0,Tf ,H2(Ω)) and RHc ∈C1((0,Tf ],WH,0) ;

(v) the solution cH of the initial value problem (4.13), (4.14) belongs to C1((0,Tf ],WH,0) ∩
C([0,Tf ],WH,0);

(vi) vi satisfies |vi(z1,z2)| ≤Cv(|z1|+ |z2|), ∀z1 ∈ R, ∀z2 ∈ R, i = 1,2;

(vii) dc,i ≥ β1 > 0, i = 1,2, in R2;

(viii) the assumptions of Propositions 3.1 and 4.5 hold.

Then, there exists a positive constant C, H, t, p, T and c independent, such that for the spatial error
eH,c(t) = RHc(t)− cH(t) the following holds

∥eH,c(t)∥2
H +2(β1 −6ε

2)
∫ t

0
e

∫ t

s
gH(pH(µ))dµ

∥∇HeH,c(s)∥2
Hds ≤ e

∫ t

0
gH(pH(µ))dµ

∥eH,c(0)∥2
H

+
4
ε2 L2

Dc

∫ t

0
e

∫ t

s
gH(pH(µ))dµ(

∥eH,p(s)∥2
H +∥eH,T (s)∥2

H
)
∥∇HRHc(s)∥2

∞ds

+
4
ε2 L2

v

∫ t

0
e

∫ t

s
gH(pH(µ))dµ(

∥eH,p(s)∥2
H +2Cm∥∇HeH,p(s)∥2

H

)
∥RHc(s)∥2

∞ds

+
∫ t

0
e

∫ t

s
gH(pH(µ))dµ

τ
∗
c (s)ds, (4.37)

for t ∈ [0,Tf ], H ∈ Λ and Hmax small enough. In (4.37),

gH(pH(t)) =
2
ε2C2

v
(
∥pH(t)∥2

∞ +∥∇H pH(t)∥2
∞

)
,

τ
∗
c (t) =

C
2ε2 ∑

∆∈TH

(diam∆)4
(
∥T (t)∥2

H2(∆)∥c(t)∥2
C1(∆)+∥Dc(t)∥2

∞,L∞(∆)∥c(t)∥2
H3(∆)

+∥Dc(t)∇c(t)∥2
[H2(∆)]2 +∥v(t)c(t)∥2

[H2(∆)]2

+∥c(t)∥2
C1(∆)∥p(t)∥2

H3(∆)+∥c′(t)∥2
H2(∆)

)
,

where ε ̸= 0 is an arbitrary constant.
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Proof. From (4.29), with wH = eH,c(t), taking into account (3.25), (3.26) and (4.36), using dc,i ≥ β1

in R2, i = 1,2, we have

1
2

d
dt
∥eH,c(t)∥2

H +β1∥∇HeH,c(t)∥2
H ≤ 2LDc(∥eH,p(t)∥H +∥eH,T (t)∥H)∥∇HRHc(t)∥∞∥∇HeH,c(t)∥H

+
√

2Cv
(
∥pH(t)∥∞ +∥∇H pH(t)∥∞

)
∥eH,c(t)∥H∥∇HeH,c(t)∥H

+2Lv

(
∥eH,p(t)∥H +

√
2Cm∥∇HeH,p(t)∥H

)
∥RHc(t)∥∞∥∇HeH,c(t)∥H

+ |τDc(eH,c(t))|+ |τv(eH,c(t))|+ |τc(eH,c(t))|.

Considering Propositions 3.1, 4.5 and 4.6, we get

d
dt
∥eH,c(t)∥2

H +2(β1 −6ε
2)∥∇HeH,c(t)∥2

H ≤ 4
ε2 L2

Dc

(
∥eH,p(t)∥2

H +∥eH,T (t)∥2
H
)
∥∇HRHc(t)∥2

∞

+
2
ε2C2

v
(
∥pH(t)∥2

∞ +∥∇H pH(t)∥2
∞

)
∥eH,c(t)∥2

H

+
4
ε2 L2

v

(
∥eH,p(t)∥2

H +2Cm∥∇HeH,p(t)∥2
H

)
∥RHc(t)∥2

∞ + τ
∗
c (t),

with ε ̸= 0. Finally, multiplying the last inequality by e−
∫ t

0 gH(pH(s))ds, we obtain

d
dt

(
e
−
∫ t

0
gH(pH(s))ds

∥eH,c(t)∥2
H +2(β1 −6ε

2)
∫ t

0
e
−
∫ s

0
gH(pH(µ))dµ

∥∇HeH,c(s)∥2
Hds

− 4
ε2 L2

Dc

∫ t

0
e
−
∫ s

0
gH(pH(µ))dµ

(∥eH,p(s)∥2
H +∥eH,T (s)∥2

H)∥∇HRHc(s)∥2
∞ds

− 4
ε2 L2

v

∫ t

0
e
−
∫ s

0
gH(pH(µ))dµ (

∥eH,p(s)∥2
H +2Cm∥∇HeH,p(s)∥2

H
)
∥RHc(s)∥2

∞ds

−
∫ t

0
e
−
∫ s

0
gH(pH(µ))dµ

τ
∗
c (s)ds

)
≤ 0,

which gives us (4.37).

Finally, we achieve the second order of convergence of our fully discrete in space FEM to
approximate the solution of the coupled problem (1.1)-(1.9). In Theorem 4.2 we consider ε ̸= 0, such
that β1 −6ε2 > 0. Corollary 2.2 guarantees the uniform boundness of gH(pH(t)), H ∈ Λ, for Hmax

small enough, and by Corollaries 2.1, 4.1, we conclude the following result:

Corollary 4.3. Under the assumptions of Theorems 2.3, 4.1 and 4.2, there exists a positive constant
C, H and t independent, such that

∥eH,c(t)∥2
H +

∫ t

0
∥∇HeH,c(s)∥2

Hds ≤CH4
max, t ∈ [0,Tf ],

for H ∈ Λ and Hmax small enough.
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4.4 Numerical Results

In this section we illustrate the theoretical convergence rates. For the spatial discretization we consider
the FDMs introduce before:

(i) (2.10), (2.11), (2.12) for the acoustic pressure pH(t);

(ii) (4.9), (4.10), (4.11) for the temperature TH(t);

(iii) (4.15), (4.16), (4.17) for the concentration cH(t).

We start by defining the numerical strategy used for the time discretization of the previous FD methods.
We define a uniform time mesh for [0,Tf ], given by tn = n∆t, for n = 0, . . . ,Mt , with tMt = Tf and ∆t
the time step. By pn

H , T n
H , and cn

H we denote the numerical approximations for pH(tn), TH(tn), and
cH(tn), respectively. We consider an implicit approach, except in the diffusion term of the equation
for the temperature, where we consider an explicit term. To compute pn

H , T n
H , and cn

H , we use the
following numerical methods

aH
pn+1

H −2pn
H + pn−1

H
∆t2 +bH

pn+1
H − pn

H
∆t

= ∇
∗
H · (EH∇H pn+1

H )+ f n+1
3,H in ΩH ,

for n = 1, . . . ,Mt −1,

T n+1
H −T n

H
∆t

= ∇
∗
H ·
(
Dn

T,H∇HT n+1
H

)
+ kT n+1

H + f2(pn+1
H )+gn+1

2,H in ΩH ,

for n = 0, . . . ,Mt −1,

cn+1
H − cn

H
∆t

+∇c,H · (cn+1
H vn+1

H ) = ∇
∗
H · (Dn+1

c,H ∇Hcn+1
H )+ f n+1

1,H in ΩH ,

for n = 0, . . . ,Mt −1, complemented with the initial conditions

p1
H − p0

H
∆t

= RH pv,0, p0
H = RH p0, T 0

H = RHT0, and c0
H = RHc0, in ΩH ,

and the boundary conditions

pn
H = 0, T n

H = 0, and cn
H = 0, on ∂ΩH , n = 0, . . . ,Mt .

We define the numerical errors associated with this fully discrete approximation by

en
H,p = RH p(tn)− pn

H , en
H,T = RHT (tn)−T n

H , and en
H,c = RHc(tn)− cn

H .

In the following, we introduce two examples that will be used to illustrate the theoretical results
established in the previous section.

Example 4.1. Regarding the coefficient functions of system (1.1)− (1.9) we set

a(x,y) = 1+ x, b(x,y) = 2xy, e1(x,y) = x+ y, and e2(x,y) = y
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in the acoustic pressure equation (1.1),

dT,1(T ) = 1+2T, dT,2(T ) = 1+T, k = 1, and f2(p) = p

in the temperature equation (1.2), and

v(p,∇p) =
(

p+
∂ p
∂x

, p+
∂ p
∂y

)
, dc,1(p,T ) = 1+ p+T, and dc,2(p,T ) = 2+ p2 +T 2

in the concentration equation (1.3). In order to obtain a problem with known solution, the initial
conditions (1.4)− (1.6) and the functions f1, g2, and f3 are defined such that the solution of the
coupled system (1.1)− (1.9) is given by

p(x,y, t) = etxy(1− x)(1− cos(2πy)), T (x,y, t) = etxsin(2πy)(x−1)(y−1)

and c(x,y, t) = etxysin(2πx−π)(1− y),

for (x,y) ∈ [0,1]2, t ∈ [0,Tf ] with Tf = 0.1.

Note that in Example 4.1, b, e1 and e2 do not verify the assumption b ≥ b0 > 0, ei ≥ e0 > 0,
i = 1,2, in Ω. However, the numerical results presented in what follows illustrate the convergence
orders established in Corollaries 2.1, 4.1 and 4.3.

To estimate the rate of convergence we use the quantities

EH,p = max
n=1,...,Mt

∥D−ten
H,p∥H +∥∇Hen

H,p∥H ,

EH,T = max
n=1,...,Mt

∥en
H,T∥H +∥∇Hen

H,T∥H ,

EH,c = max
n=1,...,Mt

∥en
H,c∥H +∥∇Hen

H,c∥H ,

for acoustic pressure, temperature and concentration variables, respectively.

Just like in the previous chapters, for the numerical calculations, we consider an initial random
mesh H1 defined by a vector of size N ×M. The size of this mesh is successively increased (by two
in each direction) by adding to the new mesh the midpoints of the current mesh. On each mesh H j,
j ∈N, we measure the errors EH,p, j, EH,T, j, and EH,c, j.The time step is given by ∆t = H2

min, j, which is
small enough to ensure that the error of the time discretization is negligible.

N M Hmax EH,p EH,T EH,c

6 7 2.056e-01 4.083e-02 5.774e-02 6.299e-02
12 14 1.028e-01 1.384e-02 1.432e-02 1.635e-02
24 28 5.141e-02 3.641e-03 3.572e-03 4.121e-03
48 56 2.570e-02 8.999e-04 8.926e-04 1.032e-03
96 112 1.285e-02 2.253e-04 2.231e-04 2.582e-04

192 224 6.426e-03 5.664e-05 5.578e-05 6.455e-05
Table 4.1 The errors EH,p, EH,T and EH,c on successively refined meshes for the coupled problem, for
the Example 4.1.
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In Table 4.1 the data and the obtained errors for each mesh are presented. Using the information of
Table 4.1, we plot in Figure 4.1 the log(EH,p), log(EH,T ) and log(EH,c) versus log(Hmax). Assuming
EH,p, EH,T and EH,c are proportional to Hr

max, for some r ∈ R, the slope of the best fitting least square
line estimates the convergence rate. The obtained estimated values are 1.9231 for EH,p, 2.0026 for
EH,T and 1.9887 for EH,c. These values confirm the convergence rate equal to 2 proved in Corollaries
2.1, 4.1 and 4.3. Plots of the numerical solutions, considering the finest mesh with Tf = 0.1 are shown
in Figure 4.2.
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Fig. 4.1 Log-log plots of EH,p, EH,T (first row - from left to right) and EH,c (second row) versus Hmax,
for the Example 4.1. The best fitting least square line is shown as a solid line.

Fig. 4.2 From left to right: numerical approximations pMt
H , T Mt

H and cMt
H with N = 192 and M = 224,

for the Example 4.1.

Example 4.2. In this second example, we test the sharpness of the smoothness condition imposed
to p(t), T (t) and c(t) on the convergence results: Theorems 2.3, 4.1 and 4.2. Namely, we set our
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problem (1.1)-(1.9) such that the solution of the concentration equation (1.3) is given by

c(x,y, t) = 2etx2y(x−1)(y−1)|y−0.5|2.1.

This solution function belongs only to H2(Ω) and does not satisfy the conditions of Theorem 4.2, which
requires solutions with higher regularity, at least H3(Ω). Thus, a decrease in the convergence rate for
the variable c may occur. All the other parameters are the same as the ones used in Example 4.1.

N M Hmax EH,p EH,T EH,c

6 8 2.046e-01 4.185e-02 5.830e-02 2.910e-03
12 16 1.023e-01 1.454e-02 1.434e-02 1.560e-03
24 32 5.116e-02 3.864e-03 3.570e-03 8.128e-04
48 64 2.558e-02 9.484e-04 8.916e-04 3.814e-04
96 128 1.279e-02 2.370e-04 2.229e-04 1.833e-04

192 256 6.395e-03 5.914e-05 5.571e-05 8.639e-05
Table 4.2 The errors EH,p, EH,T and EH,c on successively refined meshes for the coupled problem, for
the Example 4.2.
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Fig. 4.3 Log-log plots of EH,p, EH,T (first row - from left to right) and EH,c (second row) versus Hmax,
for the Example 4.2. The best fitting least square line is shown as a solid line.

In Table 4.2, the results of EH,p, EH,T and EH,c for each mesh, considering the Example 4.2,
are given. In Figure 4.3, it is present the log-log plots of EH,p, EH,T and EH,c versus Hmax, and the
best fitting least square line for each case, where the slope illustrates the convergence rate. These
results show that the convergence rate for the concentration variable c is only one, while for the other
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variables we still get second convergence rate. These results suggest that the regularity conditions
imposed on the solutions of (1.1)-(1.9) are sharp, in the sense that if these restrictions do not hold,
then a loss in convergence rate may appear. This behavior is in line with the findings of [14].

4.5 Conclusions

In this chapter we propose a numerical method for the coupling of the wave equation with two
parabolic equations: the IBVP (1.1)-(1.9). The proposed semi-discrete method is defined by (2.8),
(2.9), (4.7), (4.8), and (4.13), (4.14), and it can be seen as a piecewise linear finite element method
with quadrature. This method can also be seen as the finite difference method (2.10), (2.11), (2.12),
(4.9), (4.10), (4.11), and (4.15), (4.16), (4.17) defined on nonuniform rectangular mesh for the spatial
domain.

The main results of this chapter give us the second order of convergence of the approximation
for the temperature and concentration related to a discrete L2- norm: Corollary 4.1, for the numerical
approximation for the temperature which is obtained from Theorem 4.1 and Corollary 2.1; Corollary
4.3 which arises from Theorem 4.2 and Corollaries 2.1, 2.2 and 4.1, where the second order of
convergence of cH(t) is stated. Corollary 4.3 is a supra-superconvergence result in the sense that it
can be seen simultaneously in the finite difference and finite element contexts, and it was established
assuming that p(t), T (t), c(t) ∈ H3(Ω).

A set of numerical experiments were included to illustrate the main results of this chapter, Corol-
laries 4.1 and 4.3, as well as the sharpness of the imposed smoothness assumptions, p(t),T (t),c(t) ∈
H3(Ω). If for instance c(t) ∈ H2(Ω), then only first convergence rate is observed.



Chapter 5

Conclusions and Future Work

In drug delivery systems, the use of enhancers like ultrasound, light, electric and magnetic fields
is becoming a common approach. Such enhancers can have three main roles: breaking biological
barriers, increasing drug transport, and controlling drug release (avoiding side effects and maintaining
a desired therapeutic level). To optimize the enhancer protocols, the study in silico of the drug
transport through the target tissue, under the effect of the enhancer, is an important part of the puzzle.
In this thesis, we consider a system of partial differential equations that can be used to mathematically
describe the drug transport through a target tissue enhanced by ultrasound. The system takes into
account all variables of interest: acoustic pressure, temperature, and concentration.

At the best of our knowledge, the differential problem has no explicit solution then, in order to
study qualitatively and quantitatively the coupled IBVP, it is crucial to have a numerical method that
allows an accurate computation of numerical approximations for the acoustic pressure, temperature,
and drug concentration. This work intends to contribute to the solution of this problem - to introduce
a numerical method and to develop the theoretical support that allows its safe use. Note that the
main challenge is the dependence of the drug concentration equation on the gradient of the acoustic
pressure, as well as on the temperature.

In Chapter 2, it is considered the wave problem (1.1), (1.4), (1.7). We construct the fully discrete
in space piecewise linear finite element method (2.8), (2.9) to approximate the continuous solution,
which can also be seen as the finite difference method in nonuniform meshes (2.10), (2.11), (2.12).
We prove Theorem 2.3 and Corollary 2.1 that state the second order of convergence of the proposed
semi-discrete method with respect to a discrete H1- norm. This is a supra-superconvergence result
because, as a FDM, the spatial discretization truncation error presents first order with respect to the
norm ∥ · ∥∞. If we consider the piecewise linear FEM correspondent to our fully discrete in space
FEM, it is known that it leads to a second order approximation with respect to the L2- norm and first
order approximation with respect to the usual H1- norm. In this chapter, we also state the uniform
boundness of the sequence of acoustic pressure approximations.

In Chapter 3, we consider the previously studied wave problem, coupled with the parabolic system
(1.14), (1.6), (1.9). This is a simplified version of the system that we study in Chapter 4. We construct
the fully discrete in space piecewise linear FEM (2.8), (2.9), (3.3), (3.4) to approximate the solution
of this coupled system, which can also be seen as the finite difference method (2.10), (2.11), (2.12),
(3.5), (3.6), (3.7). Since the convective term of (1.14) depends on ∇p, the results of Chapter 2 have
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a crucial role in the convergence analysis presented here. We prove that the approximation for the
concentration has second order of convergence with respect to a discrete L2- norm - Theorem 3.1 and
Corollary 3.1.

Finally, in Chapter 4, we consider the complete coupled problem (1.1)-(1.9). We propose the
semi-discrete method (2.8), (2.9), (4.7), (4.8), (4.13), (4.14) to compute an approximation for the
solution of this problem. In Theorem 4.1 and Corollary 4.1, it is established that the proposed method
leads to a second order approximation for the temperature with respect to a L2- norm. Lastly, Theorem
4.2 and Corollary 4.3 present the main result of this work: the coupled method leads to a second order
approximation for the concentration with respect to a discrete L2- norm. Note that this result depends
on the results for pH(t) and TH(t).

The convergence results were proved assuming that the solutions of the correspondent differential
problems belong to H3(Ω). The Bramble-Hilbert Lemma is the main tool used in the proofs of the
convergence results that allows the reduction of the smoothness usually imposed in the convergence
analysis of this kind of methods.

Finally, we would like to point out some questions related to the research developed in this work
that will be studied in the near future. The drug transport through skin enhanced by ultrasound, and the
correspondent validation, will be studied. Moreover, the acoustic pressure propagation was described
in this work by a linear wave equation. However, to study the effects of the ultrasound, for example,
in the skull, another approach should be followed. One idea is to model the particle displacement
using the viscoelastic wave equation of solids (1.13), as in [34].

The accuracy of the semi-discrete approximations for the solutions of different problems were
studied and error estimates were established. The convergence of the fully discrete in space and time
approximations for the solutions of the coupled problems was not studied. We remark that results
for the fully discrete approximations can be obtained considering the semi-discretization error and
the error of the time integration of the semi-discrete approximation. However, estimates for the last
error depend on the time derivatives of the semi-discrete approximations. To avoid such dependence,
the accuracy of the fully discrete approximation should be studied considering the correspondent
error equation. This task is particularly difficult for the fully discrete methods introduced here for the
nonlinear coupled problems. This question will be addressed in the near future.

The convergence results for the semi-discrete approximation of different coupled problems were
established analyzing carefully the error equation. However, the stability of such approximations is an
important property that needs to be studied. As we were dealing with nonlinear problems, the stability
analysis is not a simple task. In fact, it requires the uniform boundness of the semi-discrete solutions
and it will be object of analysis.

In this work, we studied systems of partial differential equations that can be used to describe
physical problems, coupling different phenomena occurring in the same spatial domain. However, in
drug delivery enhanced by ultrasound, the drug can be transported by a nanocarrier that will be in
contact with the target tissue. Then a set of phenomena that need to be considered take place in the
nanocarrier. In this case, we have a set of phenomena that occur in different domains. Mathematically,
these physical processes are described by systems of partial differential equations defined in different
spatial domains. The construction of numerical methods for this kind of differential systems as well
as their theoretical support needs to be studied.
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