I0P Publishing

@ CrossMark

OPEN ACCESS

RECEIVED
19 December 2020

REVISED
30 March 2021

ACCEPTED FOR PUBLICATION
13 April 2021

PUBLISHED
29 April 2021

Original content from
this work may be used
under the terms of the
Creative Commons
Attribution 4.0 licence.

Any further distribution
of this work must
maintain attribution to
the author(s) and the title
of the work, journal
citation and DOL

J. Neural Eng. 18 (2021) 046037 https://doi.org/10.1088/1741-2552/abf772

Journal of Neural Engineering

PAPER

Automatic classification of idiopathic Parkinson’s disease and
atypical Parkinsonian syndromes combining ['1C]raclopride PET
uptake and MRI grey matter morphometry

Ricardo Martins"* ), Francisco Oliveira™ (), Fradique Moreira"*’({, Ana Paula Moreira"**®,
Antero Abrunhosa'’ (), Cristina Janudrio"*’© and Miguel Castelo-Branco"***

! Coimbra Institute for Biomedical Imaging and Translational Research (CIBIT), University of Coimbra, Coimbra, Portugal
Institute of Nuclear Sciences Applied to Health (ICNAS), University of Coimbra, Coimbra, Portugal

Champalimaud Research, Champalimaud Centre for the Unknown, Lisbon, Portugal

Faculty of Medicine, University of Coimbra, Coimbra, Portugal

Department of Neurology, Hospital and University Centre of Coimbra, Coimbra, Portugal

2
3
4
5
* Author to whom any correspondence should be addressed.

E-mail: mcbranco@fmed.uc.pt
Keywords: Parkinsonian syndromes, computer-aided diagnosis, machine learning, multimodality imaging, [!! C]raclopride positron
emission tomography, magnetic resonance imaging

Supplementary material for this article is available online

Abstract

Objective. To explore the viability of developing a computer-aided diagnostic system for
Parkinsonian syndromes using dynamic ['!C]raclopride positron emission tomography (PET) and
T1-weighted magnetic resonance imaging (MRI) data. Approach. The biological heterogeneity of
Parkinsonian syndromes renders their statistical classification a challenge. The unique combination
of structural and molecular imaging data allowed different classifier designs to be tested. Datasets
from dynamic [!!C]raclopride PET and T1-weighted MRI scans were acquired from six groups of
participants. There were healthy controls (CTRL n = 15), patients with Parkinson’s disease (PD

n = 27), multiple system atrophy (MSA n = 8), corticobasal degeneration (CBD n = 6), and
dementia with Lewy bodies (DLB n = 5). MSA, CBD, and DLB patients were classified into one
category designated as atypical Parkinsonism (AP). The distribution volume ratio (DVR) kinetic
parameters obtained from the PET data were used to quantify the reversible tracer binding to
D2/D3 receptors in the subcortical regions of interest (ROI). The grey matter (GM) volumes
obtained from the MRI data were used to quantify GM atrophy across cortical, subcortical, and
cerebellar ROI. Results. The classifiers CTRL vs PD and CTRL vs AP achieved the highest balanced
accuracy combining DVR and GM (DVR-GM) features (96.7%, 92.1%, respectively), followed by
the classifiers designed with DVR features (93.3%, 88.8%, respectively), and GM features (69.6%,
86.1%, respectively). In contrast, the classifier PD vs AP showed the highest balanced accuracy
(78.9%) using DVR features only. The integration of DVR-GM (77.9%) and GM features (72.7%)
produced inferior performances. The classifier CTRL vs PD vs AP showed high weighted balanced
accuracy when DVR (80.5%) or DVR-GM features (79.9%) were integrated. GM features revealed
poorer performance (59.5%). Significance. This work was unique in its combination of structural
and molecular imaging features in binary and triple category classifications. We were able to
demonstrate improved binary classification of healthy/diseased status (concerning both PD and
AP) and equate performance to DVR features in multiclass classifications.

1. Introduction (tremor at rest, postural instability, bradykinesia and

rigidity) and non-motor symptoms with variable
Parkinsonian syndromes are a group of movement expression [1]. They include, among others, Par-
disorders characterised by diverse primary motor kinson’s disease (PD), dementia with Lewy bodies

© 2021 The Author(s). Published by IOP Publishing Ltd
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(DLB), multiple system atrophy (MSA) and cortico-
basal degeneration (CBD) [2]. DLB, CBD, and MSA
are categorised as atypical Parkinsonism (AP). This
designation is used to categorise disorders presenting
with symptoms of progressive Parkinsonism together
with additional symptoms atypical of idiopathic PD.
The symptomatic heterogeneity and partial overlap
of these conditions can lead to delayed diagnosis and
misdiagnosis [1].

Parkinsonian syndromes are understood to be
consequence of degeneration and dysfunctions that
lead to dopaminergic deficiency across multiple path-
ways. The nigrostriatal pathway plays a pivotal role
in this [3]. The gold standard approach to dia-
gnostic confirmation of Parkinsonian syndromes is
still post-mortem neuropathological examination.
Voxel-based morphometry (VBM), diffusion tensor
imaging (DTI), or single-photon emission computed
tomography (SPECT) and positron emission tomo-
graphy (PET) computational techniques (dynamic
PET protocols, compartmental models and multiple-
time graphical analysis) have been applied to quantify
syndrome-specific alterations in brain morphology
and physiology [4, 5].

PET and SPECT molecular imaging have been
used to investigate neurotransmitter activity in Par-
kinsonian syndromes [6]. Here, we opted to use
dynamic ['!'C]raclopride PET to quantify the availab-
ility of the postsynaptic D2/D3 dopamine receptors.
It has been suggested that PET imaging these recept-
ors is a valuable means of discriminating between
controls (CTRL), PD and AP groups. In contrast to
PET imaging of presynaptic dopaminergic pathways,
which shows a common tendency to reduced stri-
atal binding among PD, MSA, CBD and DLB [6],
PET imaging of postsynaptic pathways reveals dis-
tinct profiles for CTRL, PD (preserved or higher bind-
ing in the putamen and caudate, particularly in the
caudal putamen) [7] and AP (reduction of postsyn-
aptic D2/D3 receptor binding) patients [4, 6].

Currently, there are several software solutions for
automated voxel-wise segmentation of T1-weighted
brain scans into grey matter (GM), white matter
(WM) and cerebrospinal fluid (CSF); for instance, the
Statistical Parametric Mapping (SPM) tool [8]. The
study of local brain morphology reveals either subtle
atrophy or normal findings in PD [5, 9] and pro-
nounced but heterogeneous patterns of atrophy in AP
[10-14].

Most machine learning approaches to single-
subject classification of Parkinsonian syndromes [15]
have focused on the separate use of structural or
molecular imaging.

Distinct approaches have used structural brain
images. VBM analysis of the cerebellum has been per-
formed [16] using support vector machine (SVM) to
differentiate PD patients from CTRL group. In [17],
the volumetry of 22 subcortical regions of interest
(ROI) were integrated using a decision tree algorithm
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to identify PD, progressive supranuclear palsy (PSP)
and MSA. An analogous approach was followed in
[18], combining the volumetry of 44 atlas-based ROI
in an SVM model to distinguish CTRL and PD, PSP
and MSA. Alternative techniques, such as diffusion-
weighted MR [19] and DTI [20], have been used to
classify patients with PD and AP (MSA vs PSP), and
with PD and MSA patients, respectively.

No previous machine learning molecular imaging
approaches have used kinetic parameters obtained
from dynamic [!'Clraclopride PET data, although
the dopaminergic system has been studied in this con-
text using other tracers. Recently, Oliveira et al (2021)
applied the quantitative analysis of ['?*I]ioflupane
SPECT data to differentiate healthy CTRL from DLB
and PD [21]. Segovia et al used ['*F]DMFP PET
to quantify postsynaptic D2/D3 striatal dopamine
receptors and designed SVM classifiers to distinguish
between PD, MSA and PSP patients [22]. Other works
[23, 24] have studied regional glucose metabolism
using ['8F]FDG PET, and developed automatic classi-
fiers to discriminate between patients with PD, MSA
and PSP.

This work presents a novel approach that com-
bines magnetic resonance imaging (MRI) GM volu-
metric data and kinetic parameters obtained from
dynamic ['' C]raclopride PET data to develop differ-
ent binary and multiclass classifiers. The performance
of the proposed classifiers and the predictive value of
the features utilised were tested by integrating MRI
and PET features both independently and simultan-
eously within the same model.

2. Methods

2.1. Participants

A group of 61 participants (27 with PD, 8 with
MSA, 6 with CBD, 5 with DLB, and 15 CTRL) was
enrolled in this study from April 2013 to February
2017. The subgroup of AP, defining a classification
category, includes the MSA, CBD and DLB patients.
CTRL individuals were spouses and carers of the
patients, or volunteers for health sciences research
recruited from an institutional database (https://
voluntarios.cibit.uc.pt/). A brief interview excluded a
personal or family history of neurological and psychi-
atric disorders. Patients were recruited from Move-
ment Disorder Clinic at the Coimbra University Hos-
pital Centre. Patients qualified for recruitment after
the diagnosis was established by a movement dis-
orders specialist according to published consensus
criteria for PD [25], MSA [26], CBD [27], DLB [28].
The motor disability of patients was assessed using
the part III of the Unified Parkinson’s Disease Rat-
ing Scale (UPDRS-III) and classification of Hoehn
& Yahr stage (H&Y). Total levodopa equivalent dose
(LED) was calculated for each patient [29]. Exclusion
criteria included other forms of Parkinsonism, severe
dementia (score of Mini-Mental State Exam < 15)
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Table 1. Demographic and clinical information reproduced from [SciDraw.io]. CC BY 4.0.

CTRL PD AP
N 15 27 19
Age (years) 60.7 (58.3-66.3) 65.2 (59.1-71.8) 64.8 (60.3-74.7)
Gender distribution (female/male) 10/5 13/14 8/11
UPDRS 1II (score) n/a 28 (24-41) 44® (35-51)
H&Y stage (score) n/a 2(2-3) 4% (3-4)
Total LED (mg/day) n/a 750 (600-1000) 550% (300~750)
Disease duration (years) n/a 7 (6-12) 5% (5-7)

Median (95% confidence interval for the median)

? Missing data from one AP participant.
b Missing data from two AP participants.

or any psychiatric disorder. All participants provided
written informed consent to a study approved by the
local Ethics Committee of the Faculty of Medicine
of the University of Coimbra and in accordance with
the Declaration of Helsinki. Each participant under-
went the PET imaging and MRI data acquisition ses-
sions, described in sections 2.2 and 2.3, in a single
day. Demographic and clinical data are summarized
in table 1. The classifiers designed and tested in our
study do not use features obtained from demographic
or neurological variables described in table 1.

2.2. ["'C]raclopride PET data
2.2.1. Data acquisition
[!!C]raclopride PET data were acquired at Institute
of Nuclear Sciences Applied to Health (ICNAS), Uni-
versity of Coimbra, using a Philips Gemini GXL
PET/CT scanner (Philips Medical Systems, Best, the
Netherlands). The participants performed a dynamic
three-dimensional (3D) PET scan of the entire brain
and a low-dose brain CT scan, for attenuation
correction. The dynamic [''C]raclopride PET scan
consists of 30 frames (total duration of 90 min:
4x155+4x30s+3 x60s+2 x 120s+ 5 x 240s
+ 12 x 300s). The [!!C]raclopride PET acquisition
started immediately after the intravenous bolus injec-
tion of approximately 555 MBq of ['!C]raclopride.
To minimize head movement, the patient’s head was
restrained with a soft elastic tape. The ['! C]raclopride
PET images were reconstructed to a 128 x 128 x 90
matrix, with isotropic voxels of 2 mm width, using
the LOR RAMLA algorithm (Philips PET/CT Gemini
GXL) with attenuation and scatter correction.
Patients suspended any Parkinsonism related
medication or other that can interfere with the
[!C]raclopride uptake at least 12 h prior the PET
scan. All participants (CTRL and patients) abstained
from the consumption of alcohol, tobacco, and cof-
fee, as well as other addictive substances, also in the
12 h prior to the scan.

2.2.2. Data pre-processing and quantitative analysis

The  ROI-based  quantitative  analysis  of
[''C]raclopride images was implemented in the PET
images native space using an in-house made software
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used previously in other PET studies [30]. In this
[!!C]raclopride PET study, the reversible tracer bind-
ing to D2/D3 receptor was quantified by the distri-
bution volume ratio (DVR) model parameter [31].
DVR in a target region expresses the ratio of the
radiotracer concentration in that region (ideally with
specific binding sites) to a reference region devoid
of specific binding. For each target ROI described in
section 2.2.3, DVR was computed by applying the
Logan plot method [31] at the ROI level, selecting the
cerebellar GM as reference region due to negligible
D2/D3 expression [32].

The reference region and target ROIs described
in section 2.2.3 were delineated using an atlas in the
Montreal Neurological Institute (MNI) space. The
atlas was transformed to subject-specific PET images
native space following a two-step process. First, the
atlas was resampled from the MNI space to the
subject-specific MRI native space using a non-linear
transformation, the inverse of the transformation
estimated in section 2.3.2 during the pre-processing
of MRI data. Second, the atlas in the subject-specific
MRI native space was resampled to the subject-
specific PET native space using a rigid transforma-
tion. The rigid transformation was estimated running
the software 3D Slicer 4.8.1 (www.slicer.org) [33]
with the subject-specific T1 MRI data and a weighted
(duration) sum image of the respective dynamic
[!!C]raclopride PET.

2.2.3. ROI

For each participant, the DVR of the ['!C]raclopride
PET images was studied in eight bilateral tar-
get ROIL, which cover the regions of the brain
with known relevant expression of D2/D3 receptor
[32]. The target ROI (anterior putamen, posterior
putamen, anterior caudate, posterior caudate, core
of nucleus accumbens, shell of nucleus accum-
bens, anterior globus pallidus, posterior globus pal-
lidus) were defined using the Melbourne subcor-
tex atlas [34]. The reference ROI presented in
section 2.2.2, cerebellar GM, was extracted from
the anatomical automatic labelling (AAL) atlas [35].
Table S1 (available online at stacks.iop.org/JNE/18/
046037/mmedia) in the supplementary materials
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provides additional details about the description of
the ROIs.

2.3. MRI data

2.3.1. Data acquisition

MRI data were collected at the ICNAS, University
of Coimbra, using a Siemens Magnetom TIM Trio
3 Tesla scanner (Siemens, Munich, Germany) with
a phased array 12-channel birdcage head coil. For
all the 61 participants, the protocol comprised 3D
structural MRI scans using a T1- weighted MPRAGE
(magnetization-prepared rapid gradient echo) MRI
pulse sequence (repetition time (TR) 2530 ms; echo
time (TE) 3.42 ms; inversion time (TI) = 1100 ms;
flip angle 7°; 176 single-shot interleaved slices with
no gap with isotropic voxel size 1 x 1 x 1 mm?; field-
of-view (FOV) 256 mm).

2.3.2. Data pre-processing and volumetric analysis

All 3D imaging data were pre-processed and ana-
lysed in MATLAB version R2019a (MathWorks
Inc., Natick, MA, USA) using the SPM12 tool-
box (Wellcome Trust Centre for Neuroimaging,
London, UK; www.fil.ion.ucl.acuk/spm/software/
spm12/) and the Computational Anatomy Tool-
box (CAT12) (C. Gaser, Structural Brain Mapping
Group, Jena University Hospital, Jena, Germany;
http://dbm.neuro.uni-jena.de/cat/). In the differ-
ent processing and analysis-steps, the default para-
meters, suggested in the tutorials elaborated by the
SPM12 and CAT12 authors, were used, unless indic-
ated otherwise. T1 images were registered to a CAT12
standard DARTEL template [36] in MNI space (voxel
size: 1.5 x 1.5 x 1.5 mm?®). The normalized images
were corrected for bias-field inhomogeneities and
segmented into GM, WM, and CSF images. The seg-
mented images were modulated to preserve in the
MNI space the native total amounts of GM, WM,
and CSE. The total intracranial volume (TIV) of
each participant, corresponding to the sum of the
GM, WM, and CSF volumes, was determined using
CAT12. Prior to and after segmentation, overall image
quality was accessed by visual inspection and using
CAT12 statistical tools, checking for artefact detection
and inter-subject homogeneity.

The volumetric analysis of the GM images of each
participant consisted in the determination of a GM
percentage of TIV (PTIV) for several ROI. For each
ROI described in section 2.3.3, the GM PTIV was cal-
culated by dividing the total volume of GM of the
ROI by the TIV of the participant and multiplying this
value by 100. This approach allows the definition of
features describing regional patterns of the GM volu-
metric distribution across the brain, independently of
total brain size.

2.3.3. ROI
For each participant, the regional patterns of the GM
distribution were assessed by the volumetric analysis
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of 25 different bilateral ROIs, defined in the MNI
space, and comprising cortical, sub-cortical, and cere-
bellar regions. Nine subcortical ROI (anterior puta-
men, posterior putamen, anterior caudate, posterior
caudate, nucleus accumbens, globus pallidus, hip-
pocampus, amygdala, thalamus) were defined using
the Melbourne subcortex atlas [34]. Concerning the
cortical ROI, due to the diversity of findings repor-
ted in the literature describing regional patterns of
GM atrophy in PD, MSA, CBD, and DLB patients,
the Schaefer atlas [37] was adopted to investigate
15 cortical ROIs (SomMotA, SomMotB, DorsAttnA,
DorsAttnB, SalVentAttnA, SalVentAttnB, LimbicB,
LimbicA, ContA, ContB, ContC, DefaultA, DefaultB,
DefaultC, TempPar). These 15 cortical ROIs provide
areasonable level of detail and coverage of established
functional brain networks (somatomotor, temporal
parietal, dorsal attention, salience/ventral attention,
limbic, default, control) [38]. A single cerebellar
ROI (cerebellum) was delineated employing the AAL
atlas [35]. Table S1 in the supplementary materials
provides additional details about the description of
the ROIs.

2.4. Subject-level automatic classification
The subject-level predictive value of the volumetric
descriptors and the ['!C]raclopride DVR descriptors,
presented in sections 2.3.2 and 2.2.3 respectively, was
studied by developing a machine learning approach
to automatically assign group membership from
subject-level imaging-based features. Three differ-
ent sets of features were investigated: 25 GM volu-
metric features; 8 [!'C]raclopride DVR features; 33
multimodal features combining the GM volumetric
descriptors and the [!!C]raclopride DVR descriptors.
The different sets of features were tested in two
type of classifiers. The binary classifiers (CTRL vs
PD; CTRL vs AP; PD vs AP) were designed as SVM
with a linear kernel [39] and using a Lasso (L1) reg-
ularization approach during training [40]. The mul-
ticlass classifiers (CTRL vs PD vs AP) were designed
as an ECOC model (Error-Correcting Output Codes)
using a one-vs-one binary coding scheme [41]. This
design reduces the problem of classification with
three classes to a set of binary classification problems.
The binary learners were defined as SVM with a linear
kernel [39] and a Lasso (L1) regularization approach
during training [40]. The binary and multiclass clas-
sifiers were implemented in MATLAB R2019a using
the native Statistics and Machine Learning Toolbox.
The performance of the binary and multiclass
classifiers was evaluated by training and testing
the classifiers following a stratified ten-fold cross-
validation approach, which tries to create folds with
an approximated proportion of classes as in the full
datasets. The features of the training and testing
folds were standardized (z-score) using the mean
and standard deviation determined from the data
points of the training folds. The performance of
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the binary classifiers was described using the area
under the receiver operating characteristic curve
(AUROC), sensitivity, specificity, and balanced
accuracy. The multiclass classification performance
was characterized by the balanced accuracy of each
group, CTRL vs (PD + AP), PD vs (CTRL + AP), AP
vs (CTRL + PD), which were determined from the
multiclass confusion matrix, and summarized by the
weighted balanced accuracy. To evaluate the robust-
ness of the performance, different random partitions
of the dataset were analysed. The training and testing
procedure using a ten-fold cross-validation approach
was repeated 50 times for each classifier. The weighted
balanced accuracy of the multiclass classifier (CTRL
vs PD vs AP), and the balanced accuracy for each
type of binary classifier (CTRL vs PD, CTRL vs AP,
PD vs AP) were compared between different set of
features (DVR, GM, DVR-GM) using the independ-
ent samples Kruskal-Wallis test and post-hoc tests
with multiple-comparisons Bonferroni correction. A
significance level of 5% was defined.

The binary and multiclass classifiers were
designed using linear SVM. During the training ses-
sions of the classifiers, a weight was assigned to each
feature. For a given classifier, the absolute value of
the weights of each feature can be interpreted as the
relative relevance of that feature to the performance
of the classifier [42, 43].

3. Results

3.1. Features’ extraction

The distribution of the features’ values extracted from
the MRI GM images and from the ['!Clraclopride
PET images is represented in figure 1. Between-
group differences were assessed with the independent
samples Kruskal-Wallis test (uncorrected) and post-
hoc tests with multiple-comparisons Bonferroni cor-
rection. A significance level of 5% was defined. The
results are presented in the tables S2 and S3 of the
supplementary materials and summarized in figure 1.
Although our study follows a ROI-based approach
to extract the features, figure S1 of the supplement-
ary materials depicts, for illustrative purposes, the
mean whole-brain voxelwise DVR map and modu-
lated GM map in the healthy participants. The two
main sets of features, GM PTIV in 25 subcortical, cor-
tical, and cerebellar ROI, and [''C]raclopride DVR
in 8 subcortical ROI, revealed distinct patterns of
GM atrophy and D2/D3 receptor availability across
the brain, between the three groups of participants
(CTRL, PD, AP). The subject-level predictive value of
these features was assessed using a machine learning
approach presented in section 3.2.

3.2. Subject-level automatic classification tool

The binary and multiclass classification results are
presented in tables 2 and 3, respectively. The bin-
ary classifiers (CTRL vs PD, CTRL vs AP) achieved
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the highest balanced accuracy by integrating DVR-
GM features (96.7%, 92.1%, respectively), followed
by the classifiers designed with DVR features (93.3%,
88.8%, respectively), and GM features (69.6%, 86.1%,
respectively). In contrast, the binary classifier PD vs
AP showed the highest balanced accuracy (78.9%) by
using the DVR features only. The integration of DVR-
GM (77.9%) or GM features (72.7%) provided lower
performances for this type of classifier, for this bin-
ary distinction. For each type of binary classifier, all
the differences in performance, caused by the integ-
ration of distinct sets of features were considered stat-
istically significant, except for the balanced accuracy
of the binary classifier CTRL vs AP.

The multiclass classifier CTRL vs PD vs AP
showed the highest weighted balanced accuracy by
integrating the DVR (80.5%) or the DVR-GM fea-
tures (79.9%). The classifier designed with the DVR-
GM features produced a slightly lower performance,
but the difference was not statistically significant.
The lowest performance (statistically significant dif-
ferences) was displayed by the classifier designed with
the GM features only (59.5%).

For each classifier, the feature weighting was
embedded in the learning algorithm of the SVM clas-
sifiers (Lasso regularization). The sets of ROI (DVR,
GM, DVR-GM) used to test the different designs of
classifiers were the same for all the classification prob-
lems (CTRL vs PD, CTRL vs AP, PD vs AP, CTRL
vs PD vs AP). The ROI were defined a priori based
on previous and independent published studies and
atlas. This conservative approach avoided the infla-
tion of the performance metrics which might have
been caused by a circular analysis. The median mag-
nitude (50 runs) of the weights assigned to the fea-
tures by the learning algorithms of the binary and
multiclass classifiers is presented in tables S4, S5, and
S6 in the supplementary materials. The figures 2 and
S2 illustrate the relative median weight of each fea-
ture. For each classifier, the weights were normal-
ized to an interval between 0 and 1 (the weights were
divided by the maximum weight of each classifier).

4. Discussion

This work utilises a novel approach, combining fea-
tures of structural and molecular imaging in both
binary and ternary category classifications of Par-
kinsonian syndromes. The classification perform-
ance of this method surpasses previous approaches.
Although several studies have indicated that postsyn-
aptic molecular imaging provides a robust framework
with which to discriminate between PD and AP, few
have used [!!C]raclopride dynamic PET or alternative
radiotracers to differentiate between CTRL, PD, and
AP (MSA, CBD, DLB) groups. Most previous works
have developed machine learning approaches to dis-
criminate between Parkinsonian syndromes (PD,
MSA, CBD, DLB and PSP) using either structural
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Figure 1. Boxplots of the features extracted from the MRI GM images and from the [!! C]raclopride PET images, across
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Figure 2. Normalized magnitude of the feature weights for binary classifiers designed with DVR, GM, and GM-DVR features. For
the sake of simplicity, DVRx and GMx features were labelled as Dx and Gx, respectively.

(volumetric or microstructural) or molecular ima-
ging techniques independently with different cohorts.
In the present study, we investigated these modalities
in combination, building upon previous research. We
were able to demonstrate the robustness of our clas-
sifiers’ performance with molecular imaging features
both alone and in combination.

The SVM classifiers designed using only the GM
PTIV features showed the lowest (weighted) balanced
accuracy (CTRL vs PD: 69.6%, CTRL vs AP: 86.1%,
PD vs AP: 72.7%, CTRL vs PD vs AP: 59.5%) of
the different classification problems studied. Low per-
formance was particularly evident in those classific-
ation problems involving the PD and CTRL groups.
These results align with the poor discriminability
between CTRL and PD groups found in previous
research analysing between-groups statistical differ-
ences and in studies of binary and multiclass machine
learning model performance. Focke et al (2011) used
whole-brain GM VBM data to develop binary classifi-
ers that successfully discriminate between PD vs PSP
and PD vs MSA. However, patients with PD could not
be differentiated from CTRL group [44]. Huppertz
et al (2016) used measures of GM and WM volume
from 44 different brain regions to develop multiclass
SVM with 62.9% balanced accuracy in the discrimin-
ation of CTRL, PD, PSP, and MSA groups [18]. The
low performance was due to poor discrimination of
the PD group. When they implemented a multiclass
SVM model that included only the Parkinsonian syn-
dromes (PD, PSP, MSA), they obtained a higher bal-
anced accuracy of 81.8%. Zeng et al (2017) repor-
ted high classification accuracy (above 95%) between
CTRL and PD groups using T1-weighted MRI data.
They achieved this by applying an SVM classifier
to VBM data for the GM of the cerebellum [16].
Like [18], our work included an ROI that incorpor-
ated the GM of the cerebellum. However, we found
no significant between-group differences in that ROI
(see figure 1) and low weights were assigned to that
ROI by the binary and multiclass classifiers (figures 2
and S2). The GM PTIV features normalised the GM

volumes using TIV to minimise the impact of con-
founders.

In PD, the reduction of GM volume is very
subtle in some of the cortical RO, yielding relatively
normal findings in subcortical ROI (see figure 1), as
described in [5, 9]. As shown in figures 2 and S2, the
CTRL vs PD classifier assigned the highest weights
to cortical regions associated with salience/vent-
ral attention GM15:SalVentAttnB (lateral prefrontal
cortex, medial posterior prefrontal cortex), con-
trol GM18:ContA (intraparietal sulcus, lateral pre-
frontal cortex), control GM19:ContB (lateral vent-
ral prefrontal cortex), default mode GM22:DefaultB
(temporal, inferior parietal lobule, dorsal pre-
frontal cortex, lateral prefrontal cortex, ventral pre-
frontal cortex) and GM24:TempPar (temporopari-
etal). AP tends to manifest more pronounced GM
atrophy than PD in most of the cortical and sub-
cortical ROI. ROI related to GMOI:aPut (anterior
putamen), GMI10:SomMotA (somatomotor) and
GM24:TempPar made the greatest contributions to
the performance of the CTRL vs AP classifier. The
PD vs AP classifier showed modest performance.
The highest weighting factors resulting from the PD
vs AP classifier was subcortical region GMOI:aPut.
The wide range for disease duration among the PD
group and the heterogeneity within the AP group
may have challenged the learning algorithms of the
binary and multiclass classifiers, to a greater extent
than the classifiers that used other sets of features.
Disease duration for the PD group in this study
ranged from 2 to 36 years, with a median of seven
years. Scherfler et al (2016) have suggested that the
volumetric data of PD patients with longer dis-
ease duration tends to contribute to the perform-
ance of classifiers that discriminate PD from CTRL
[17]. GM atrophy does not become pronounced
across multiple brain regions until the later stages
of PD [45]. The AP group in this study consisted
of MSA, CBD and DLB patients. Although the ROI
covered most brain regions with relevant amounts
of GM (cerebellum, cortex and sub-cortical regions),
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previous works [10—14] have shown that MSA, CBD
and DLB are characterised by both common and
very distinct patterns of GM atrophy across brain
regions.

Molecular imaging has proven a powerful tool in
the differentiation of Parkinsonian syndromes, even
in the early stages. This is due to its ability to detect
molecular and cellular dysfunctions before to regional
volumetric abnormalities [46]. In contrast, to those of
our classifiers designed with only GM PTIV features,
the binary and multiclass SVM classifiers implemen-
ted using [ C]raclopride PET DVR features consist-
ently showed a (weighted) balanced accuracy above
79% (CTRL vs PD: 93,3%, CTRL vs AP: 88.8%, PD
vs AP: 78.9%, CTRL vs PD vs AP: 80.5%) (see tables 2
and 3).

['ZI]ioflupane SPECT has been successfully
used to discriminate PD from CTRL with balanced
accuracies as high as 98% [47, 48]. Nicastro et al
(2019) have showed that [!?*I]ioflupane SPECT data
and other radiotracers mapping presynaptic func-
tions are ineffective at discriminating PD from AP
such as MSA [49] or PSP [50] due to the similarity
between their patterns of presynaptic striatal dopam-
ine transporter availability [51]. However, a recent
study [21] with post-mortem confirmed diagnosis
shows that ['2*I]ioflupane SPECT can discriminate
PD from DLB with high accuracy.

As in the present study, Segovia et al (2016)
assessed postsynaptic striatal function in PD, MSA
and PSP patients using ['*F]DMFP PET to quantify
D2/D3 striatal dopamine receptors but with a dif-
ferent radiotracer to that used here [22]. Their best
performance was achieved with an SVM model,
which provided a classification accuracy of 90%
for PD, but a modest 50% for MSA and 58%
for PSP. Better results have been achieved using
['®F]FDG PET [23, 24] to assess patterns of regional
glucose metabolism and automatically differentiate
PD, MSA and PSP. The binary classifiers designed
in [23] and [24] showed classification balanced
accuracies ranging from 80 to 95%. Although the
approach presented herein used a different radio-
tracer to map and quantify the postsynaptic dopam-
inergic functions, [''C]raclopride, and a smaller
cohort; the performance values of the binary clas-
sifiers are within the same range. Furthermore, our
work also evaluates a multiclass classifier designed
using the DVR features, which includes a CTRL
group.

As illustrated in figure 1, the DVR features reveal
between-group differences in most of the subcortical
ROI. The weights assigned to DVR features by the
SVM dlassifiers (figures 2 and S2) confirm the contri-
bution of some of those features: DVR02:pPut (pos-
terior putamen) and DVR06:NAc-core (core of nuc-
leus accumbens), DVR06:NAc-core, and DVRO2:pPut
to discriminate CTRL vs PD, CTRL vs AP, and
PD vs AP, respectively. While there have been few

10

R Martins et al

[!!C]raclopride PET studies with MSA, CBD and
DLB, finding suggest a common tendency towards
reduced postsynaptic D2/D3 receptor binding, evid-
ent in comparison to CTRL [4, 6]. Conversely,
['!C]raclopride PET studies in PD have shown pre-
served or higher binding in the putamen and caud-
ate (particularly in posterior putamen) than in CTRL
[7]. This is due to a mechanism that increases the
availability of D2/D3 receptors to compensate for the
reduced levels of dopamine released by the presyn-
aptic terminals. These distinct profiles were replic-
ated in our work (figure 1) and explored by the learn-
ing algorithm of the classifiers. Future development of
this work using dynamic [!'C]raclopride PET should
study larger cohorts of MSA, CBD and DLB patients
to assess differences between these atypical Parkin-
sonian syndromes. However, using more than three
classes may prove challenging.

An innovation proposed in this work was the
designing and testing of classifiers by integrating fea-
tures obtained from structural and molecular ima-
ging. The combination of ['!C]raclopride PET DVR
and GM PTIV features in the design of SVM clas-
sifiers improved the weighted balanced accuracy of
some of the binary classification tests (CTRL vs PD:
96.7%, CTRL vs AP: 92.1%), and showed perform-
ance equivalent to [!!C]raclopride PET with DVR
features in multiclass classification tests (CTRL vs PD
vs AP: 79.9%). The results of the binary classifiers
CTRL vs PD and CTRL vs AP demonstrate the syner-
gistic effect of a multimodal imaging protocol (MRI
and PET) for the discrimination of PD and AP from
CTRL.

As demonstrated in figures 2 and S2, the highest
weighting factors extracted from all the classifiers
included DVR and GM features. Even the perform-
ance of the CTRL vs PD classifier, which strongly
relied on DVR features DVRO2:pPut and DVRO6:
NAc-core, seems to have benefited from the contri-
bution of GM PTIV features, namely the cortical
features GM23:DefaultC (retrosplenial, parahippo-
campal cortex) and GM24:TempPar. The weights
extracted from the PD vs AP classifier confirmed
the relevance of the subcortical features GMOI:aPut
and DVRO2:pPut suggested by the single modal-
ity classifiers. The CTRL vs AP classifier revealed
additional relevant contributions from sub-cortical
and cortical ROI not assigned with high weights
by the single modality classifiers, namely subcor-
tical features DVRO4:pCau (posterior caudate),
DVRO5:NAc-shell (shell of nucleus accumbens),
GMO2:pPut (posterior putamen), salience/ventral
attention GM1I15:SalVentAttnB and default mode
GM22:DefaultB. However, a limitation remained
concerning those classification problems likely to
have the greatest impact in clinical practice: PD
vs AP or PD vs AP vs CTRL (non-degenerative
Parkinsonism). The results did not reveal the added
value expected from implementing a protocol
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requiring distinct structural and molecular imaging
examinations.

Our findings also highlight the robustness of
['!C]raclopride PET and its potential to discriminate
between CTRL, PD, and AP using a single imaging
protocol. These findings should be consolidated in
future works with larger cohorts. Greater sample sizes
would allow the implementation of gold-standard
validation (hold-out) of the classifiers through the
application of independent datasets not used in the
training sessions. In light of the small cohort used
in this study, we followed best practices [52], imple-
menting a ten-fold cross-validation strategy to assess
the performance of the binary and multiclass classi-
fiers. The robustness of performance was evaluated
by repeating this cross-validation 50 times per clas-
sifier to train and test different dataset partitions. The
implementation of large multimodal cohorts is chal-
lenging due to the financial and operational require-
ments of data acquisition (using ['!Clraclopride
molecular imaging and structural MRI), the recruit-
ment of CTRL, PD and AP participants, and con-
sistent control of data quality (e.g.: potential misdia-
gnoses, multisite harmonisation).

Previous works [17, 23] have emphasised that
misdiagnoses of patients used in datasets, particularly
in, early-stage patients, who provide the most inter-
esting patient profiles, are relevant and transversal
obstacles to the development of reliable, generalis-
able machine learning approaches to differentiation
of Parkinsonian syndromes. In most studies using
supervised machine learning approaches, including
our own, the ground truth diagnosis used as a bench-
mark to train and test the performance of models
is not confirmed by post-mortem neuropathological
examinations, but taken from the most recent dia-
gnosis of each participant following several years of
clinical follow-up (table 1). While this is less dia-
gnostically certain, it is nevertheless a reliable source
of information. Recent reviews suggest that develop-
ments to handle label noise in supervised machine
learning have gone largely unnoticed by the medical
image analysis community [53-55]. In future works,
the association of intrinsic uncertainty to clinical dia-
gnoses of Parkinsonian syndromes used to label the
datasets at a given time point might be a fundamental
development in the implementation of reliable and
impactful support tools for use in clinical diagnoses
of Parkinsonian syndromes.

5. Conclusion

We found that the combination of [!!C]raclopride
PET DVR and GM PTIV features in the design of
SVM classifiers improved weighted balanced accur-
acy in binary classification between CTRL and either
PD or AP, and showed a performance equivalent
to [!!C]raclopride PET DVR features in multiclass
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(CTRL vs PD vs AP) classification tests. This indic-
ates an increased value of having a multimodal ima-
ging protocol (MRI and PET) to discriminate PD and
AP from CTRL, although it remains a big challenge to
discriminate between broad sets of clinical categories.
The binary and multiclass classifiers designed with
only [!!'C]raclopride PET DVR features consistently
showed high (weighted) balanced accuracy.
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