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Abstract

In this thesis we solve several problems in the theory of orthogonal polynomial sequences (OPS). In
bellow we summarize the main contributions.

(i) Let u be a nonzero linear functional acting on the space of polynomials P . Let Dq,ω be a Hahn
operator acting on the dual space of polynomials P ′. Suppose that there exist polynomials φ and ψ ,
with degφ ≤ 2 and degψ ≤ 1, so that the functional equation

Dq,ω(φu) = ψu

holds, where the involved operations are defined in the distributional sense. We state necessary and
sufficient conditions, involving only the coefficients of φ and ψ , such that u is regular, that is, there
exists an OPS with respect to u. In addition, the coefficients of the three-term recurrence relation
(TTRR) satisfied by the corresponding monic OPS are given, as well as a distributional Rodrigues-type
formula, which holds without assuming that u is regular.

(ii) Let M and N be fixed non-negative integer numbers and let πN be a polynomial of degree N.
Suppose that (Pn)n≥0 and (Qn)n≥0 are two OPS such that

πN(x)P(m)
n+m(x) =

n+N

∑
j=n−M

rn, jQ
(k)
j+k(x) (n = 0,1, . . .) , (∗)

where rn, j are complex numbers independent of x. It is shown that under some natural constraints,
(Pn)n≥0 and (Qn)n≥0 are semiclassical OPS. That is, there exist nonzero polynomials φ1, φ2, ψ1 and
ψ2 such that the corresponding functionals u and v fulfill the functional equations

D(φ1u) = ψ1u, D(φ2v) = ψ2v.

Moreover we show that u and v are related by a rational modification in the distributional sense,
meaning that Pu = Qv for some nonzero polynomials P,Q ∈P . This leads us to introduce the concept
of πN−coherent pairs with index M and order (m,k).

(iii) We extend the previous concept to the one of πN-(q,ω)-coherent pairs with index M and order
(m,k), which appears in the framework of discrete OPS by replacing in (∗) the ordinary derivative by
the discrete Hahn’s operator Dq,ω . This leads to the (structure) relation

πN(x)Dm
q,ωPn+m(x) =

n+N

∑
j=n−M

rn, jDk
q,ωQ j+k(x) (n = 0,1, . . .) .

v



vi

Again, in this situation, it is shown that under some natural constraints, (Pn)n≥0 and (Qn)n≥0 are semi-
classical OPS (with respect to Dq,ω ) and the corresponding functionals are related by a (distributional)
rational modification. Some examples of application are given, recovering in a more simple way some
known results in the literature about the subject. Our results enable us to describe in a unified way all
the classical OPS with respect to Jackson’s operator, which appear as special or limiting cases of a
four parametric family of q-polynomials.

(iv) Let us consider now that u is a functional on P satisfying the more general functional
equation

Dx(φu) = Sx(ψu) ,

where Dx and Sx are operators defined on P ′ in the usual way, in the framework of the theory of OPS
on a nonuniform lattice, x(s), that includes as a special case the lattice associated with the so-called
Askey-Wilson operator, namely x(s) = 1

2 q−s + 1
2 qs. We state necessary and sufficient conditions

for the regularity of u, giving, in addition, closed formulas for the coefficients of the TTRR of the
corresponding monic OPS, as well as a Rodrigues-type formula. Some examples are given to point
out the power of our formulas in the framework of classical OPS on nonuniform lattices. In particular,
our results enable us to derive in a simple way the coefficients of the TTRR of the Racah polynomials
as well as the ones for the Askey-Wilson polynomials.

(v) Let (Pn)n≥0 be a monic OPS and π a polynomial of a degree at most two such that

π(x)DxPn(x) = (anx+bn)Pn(x)+ cnPn−1(x) (n = 0,1,2 . . .) ,

for some complex sequences coefficients an, bn and cn. M. E. H. Ismail posed the problem of
characterizing all OPS fulfilling this structure relation, for the lattice associated with the Askey-Wilson
operator. Ismail conjectured (see [26, Conjecture 24.7.8]) that the continuous q−Jacobi polynomials,
the Al-Salam-Chihara polynomials, or special or limiting cases of them, are the only OPS fulfilling
the structure relation. Using the main result obtained in (iv) we give a positive answer to Ismail’s
conjecture.



Resumo

Nesta dissertação resolvem-se vários problemas na âmbito da teoria das sucessões de polinómios
ortogonais (SPO). As contribuições principais apresentadas são descritas em seguida.

(i) Seja u uma funcional linear não nula definida sobre o espaço dos polinómios, P . Seja Dq,ω um
operador de Hahn que actua no espaço dual P ′. Suponha-se que existem polinómios φ e ψ , com φ e
ψ polinómios de graus não superiores a 2 e 1, respectivamente, tais que u satisfaz a equação funcional

Dq,ω(φu) = ψu ,

onde as operações são definidas no sentido usual da teoria das distribuições. Estabelecem-se condições
necessárias e suficientes, envolvendo apenas os coeficientes de φ e ψ , tais que u é regular, isto é, existe
uma SPO a respeito de u. Além disso, os coeficientes da relação de recorrência a três termos (RRTT)
verificada pela correspondente SPO mónica são dados de forma explícita. É também apresentada uma
fórmula de tipo Rodrigues distribucional, a qual se verifica mesmo que u não seja regular.

(ii) Sejam M e N números inteiros não negativos fixados e πN um polinómio de grau N. Sejam
(Pn)n≥0 e (Qn)n≥0 duas SPO tais que

πN(x)P(m)
n+m(x) =

n+N

∑
j=n−M

rn, jQ
(k)
j+k(x) (n = 0,1, . . .) , (∗)

onde cada rn, j é um número complexo independente de x. Prova-se que, sob certas reservas naturais,
(Pn)n≥0 e (Qn)n≥0 são SPO semiclássicas, isto é, existem polinómios não nulos φ1, φ2, ψ1 e ψ2 tais
que as correspondentes funcionais regulares u e v satisfazem as equações funcionais

D(φ1u) = ψ1u, D(φ2v) = ψ2v.

Prova-se ainda que u e v estão relacionados por uma modificação racional, no sentido distribucional,
o que significa que Pu = Qv para certos polinómios P,Q ∈ P . Estes factos conduzem ao conceito de
pares πN−coerentes de índice M e ordem (m,k).

(iii) O conceito anterior é estendido para o conceito de pares πN-(q,ω)-coerentes de índice M
e ordem (m,k), no contexto das SPO discretas, substituindo em (∗) o operador derivada usual pelo
operador de Hahn Dq,ω . Isto conduz à relação de estrutura

πN(x)Dm
q,ωPn+m(x) =

n+N

∑
j=n−M

rn, jDk
q,ωQ j+k(x) (n = 0,1, . . .) .
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De novo, nesta situação, mostra-se que, assumindo certas condições naturais, (Pn)n≥0 e (Qn)n≥0 são
SPO semiclássicas (a respeito de Dq,ω ) e que as funcionais regulares associadas estão relacionadas por
uma modificação racional (no sentido distribucional). São apresentados alguns exemplos de aplicação,
recuperando de forma simples alguns resultados conhecidos na literatura. Os resultados apresentados
permitem ainda descrever de forma unificada todas as SPO clássicas a respeito do operador de Jackson,
as quais são representadas como casos especiais ou caso limite de uma família de q-polinómios
envolvendo quatro parâmetros.

(iv) Seja agora u uma funcional linear em P que satisfaz a equação funcional mais geral

Dx(φu) = Sx(ψu) ,

onde Dx e Sx são operadores definidos em P ′ da maneira usual, no contexto da teoria das SPO em
redes não uniformes, x(s), o que inclui como caso especial a rede associada ao chamado operador de
Askey-Wilson, nomeadamente, x(s) = 1

2 q−s+ 1
2 qs. Estabelecem-se condições necessárias e suficientes

para a regularidade de u. Para além disso, dão-se fórmulas fechadas para os coeficientes da RRTT da
correspondente SPO mónica, bem como uma fórmula de tipo Rodrigues. São apresentados alguns
exemplos que evidenciam que tais fórmulas são muito poderosas no contexto das SPO clássicas
em redes não uniformes. Em particular, os resultados obtidos permitem obter de forma simples os
coeficientes da RRTT para os polinómios de Racah, bem como para os polinómios de Askey-Wilson.

(v) Sejam (Pn)n≥0 uma SPO mónica e π um polinómio de grau quando muito igual a dois que
satisfazem a relação de estrutura

π(x)DxPn(x) = (anx+bn)Pn(x)+ cnPn−1(x) (n = 0,1,2, . . .) ,

onde an, bn e cn são parâmetros reais ou complexos. M. E. H. Ismail colocou o problema de
caracterizar tais SPO para a rede associada ao operador de Askey-Wilson. Ismail conjecturou (veja-se
[26, Conjecture 24.7.8]) que os polinómios q−Jacobi contínuos, os polinómios de Al-Salam Chihara,
ou casos especiais ou limite destes, constituem as únicas SPO que satisfazem aquela relação de
estrutura. Usando o resultado principal estabelecido em (iv), damos uma resposta positiva à conjectura
de Ismail.



Table of contents

1 Introduction 1
1.1 Basic results on orthogonal polynomial sequences . . . . . . . . . . . . . . . . . . . 1
1.2 Hahn’s operator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.3 Some operators on a nonuniform lattice (NUL) . . . . . . . . . . . . . . . . . . . . 8

1.3.1 Some properties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
1.3.2 A Leibniz-type formula . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

1.4 Outline of the thesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

2 Classical orthogonal polynomials related to Hahn’s operator 19
2.1 Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

2.1.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
2.1.2 Preliminaries results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

2.2 Regularity conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
2.2.1 Main theorem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
2.2.2 Final remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

3 Another extension of coherent pairs of measures 33
3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
3.2 πN−coherent pairs with index M and order (m,k): the continuous case . . . . . . . . 35

3.2.1 Case m ≥ k+N . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
3.2.2 Case m < k+N . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
3.2.3 Case k = 0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

3.3 πN−coherent pairs with index M and order (m,k): the discrete case . . . . . . . . . 40
3.3.1 Case m ≥ k+N . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
3.3.2 Case m < k+N . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
3.3.3 Case k = 0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

3.4 Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
3.4.1 Continuous variable . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
3.4.2 Discrete variable . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

4 Classical orthogonal polynomials on nonuniform lattices 57
4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
4.2 Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58



x Table of contents

4.2.1 Properties of higher order x-derivative . . . . . . . . . . . . . . . . . . . . . 58
4.2.2 Rodrigues-type formula on NUL . . . . . . . . . . . . . . . . . . . . . . . . 61

4.3 Regularity conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
4.4 Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

4.4.1 The very classical OPS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
4.4.2 The Racah polynomials . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
4.4.3 The Askey-Wilson polynomials . . . . . . . . . . . . . . . . . . . . . . . . 71

5 On a characterization of continuous q−Jacobi and Al-Salam Chihara polynomials 73
5.1 The conjecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73
5.2 Preliminary results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75
5.3 Proof of the conjecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

5.3.1 Case degπ = 0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80
5.3.2 Case degπ = 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83
5.3.3 Case degπ = 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

6 Some future directions of research 95

Appendix A Rodrigues-type formulas 97
A.1 A Rodrigues-type formula for (q,ω)-classical OPS . . . . . . . . . . . . . . . . . . 97
A.2 A Rodrigues-type formula for x-classical OPS . . . . . . . . . . . . . . . . . . . . . 99

References 101



Chapter 1

Introduction

The aim of this chapter is to give the outline of this thesis. This requires some basic knowledge in
the theory of orthogonal polynomial sequences (OPS). So we start by giving a short introduction to
orthogonal polynomials. This includes a review of some properties of Hahn’s operator, as well as of
operators on a nonuniform lattice, including the so-called Askey-Wilson operator. Moreover, some
new properties of those operators are presented. After that, the outline of the thesis is given.

1.1 Basic results on orthogonal polynomial sequences

For the general theory of OPS (continuous and discrete) we refer the reader to the influential mono-
graphs by Szegö [60], Chihara [13], Ismail [26], Nikiforov, Suslov, and Uvarov [53], and Koekoek,
Lesky, and Swarttouw [34]. As fundamental references on the so-called algebraic theory of orthog-
onal polynomials, we mention Maroni’s works [41, 43, 46–48]. We also mention here the recent
unpublished class notes [56] (where the emphasis is on the algebraic approach developed by Maroni).

The algebraic approach to orthogonal polynomials was developed by Pascal Maroni. Along this
work, we will use this approach, and so we start this section by pointing out some basic facts on the
algebraic theory. Most of the facts that we are going to present next may be founded on the references
mentioned above.

We denote by P the vector space of all (complex) polynomials and by P∗ its algebraic dual
space. P may be endowed with the strict inductive limit topology so that

P =
⋃
n≥0

Pn ,

where Pn is the space of all (complex) polynomials of degree at most n. With this topology, the
algebraic and the topological dual spaces of P coincide, that is

P∗ = P ′ .

1



2 Introduction

Given a simple set of polynomials (Pn)n≥0 (meaning that each Pn ∈ Pn and degPn = n for each
n = 0,1, . . .), the corresponding dual basis is a sequence of linear functionals an : P → C such that

⟨an,Pm⟩ := δn,m (n,m = 0,1, . . .) ,

where δn,m denotes the Kronecker’s symbol. As usual, ⟨·, ·⟩ means the duality bracket, so that ⟨u, p⟩
is the action of the functional u over the polynomial p. In addition, any functional u ∈ P ′ can be
written in the sense of the weak topology in P ′ as

u =
∞

∑
k=0

⟨u,Pk⟩ak .

Definition 1.1 A simple set of polynomials (Pn)n≥0 is said to be an orthogonal polynomial sequence
(OPS) with respect to a functional u ∈ P∗ if there exists a sequence of nonzero complex numbers
(kn)n≥0 such that

⟨u,PnPm⟩= knδn,m (n,m = 0,1,2, . . .) .

We also said that u is regular and (Pn)n≥0 is the corresponding OPS.

A monic OPS is a sequence of orthogonal polynomials for which the leading coefficient of each
polynomial is one. If (Pn)n≥0 is a (monic) OPS with respect to u ∈ P∗, then the corresponding dual
basis is explicitly given by

an =
〈
u,P2

n
〉−1

Pnu (n = 0,1,2, . . .) .

Here the left multiplication of a functional u by a polynomial φ is defined as in the usual sense of the
theory of distributions:

⟨φu, p⟩ := ⟨u,φ p⟩ , ∀p ∈ P .

The following proposition is a useful characterization of OPS.

Theorem 1.1.1 [13]
Let u be a linear functional and let (Pn)n≥0 be a simple set in P . Then the following are equivalent:

i) (Pn)n≥0 is an OPS with respect to u;

ii) For each n ∈N0 and R ∈Pn \{0}, there exists a nonzero sequence of complex numbers (kn)n≥0

such that ⟨u,RPn⟩= knδn,m, with m = degR;

iii) For each n ∈ N0, there exists a nonzero sequence of complex numbers (kn)n≥0 such that
⟨u,xmPn⟩= knδn,m, with m = 0,1,2, . . . ,n.

A very interesting situation of orthogonality appears in the so-called positive-definite case.

Definition 1.2 [13]
A linear functional u ∈ P ′ is positive-definite if ⟨u, p⟩ > 0 for all nonzero and non negative real
polynomial p.
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In the following result, known as Favard’s theorem (or spectral theorem), we see that OPS are
characterized by a three-term recurrence relation.

Theorem 1.1.2 [13]
Let (β )n≥0 and (γn)n≥1 be two arbitrary sequence of complex numbers, and let (Pn)n≥0 be a sequence
of (monic) polynomials defined by the following three-term recurrence relation (TTRR).

P−1(x) := 0, P0(x) := 1

Pn+1(x) = (x−βn)Pn(x)− γnPn−1(x) (n = 0,1,2, . . .) . (1.1)

Then there exists a unique functional u ∈ P ′ such that

⟨u,1⟩ ̸= 0, ⟨u,PnPm⟩= 0 if n ̸= m (n,m = 0,1,2, . . .) .

Moreover, u is regular and (Pn)n≥0 is the corresponding (monic) OPS if and only if γn ̸= 0 (n= 1,2, . . .),
while u is positive-definite with (Pn)n≥0 as the corresponding (monic) OPS if and only if the coefficients
βn are all real and the γn are positive.

The coefficients βn and γn of (1.1) are given by (see [13, 46])

βn =

〈
u,xP2

n
〉

⟨u,P2
n ⟩

, γn+1 =

〈
u,P2

n+1
〉

⟨u,P2
n ⟩

(n = 0,1,2, . . .) . (1.2)

It is also known that if (Pn)n≥0 is a positive-definite OPS, then there exists a positive Borel measure
µ on R, whose support is an infinite set (supp(µ) := {x ∈ R : µ ((x− ε, x+ ε))> 0, ∀ε > 0}), and
with finite moments of all orders (i.e ⟨u,xn⟩< ∞ for n = 0,1,2, . . .), such that

⟨u, p⟩ :=
∫
R

p(x)dµ(x), ∀p ∈ P .

When an OPS (Pn)n≥0 is positive-definite, we also say that it is an OPS with respect to the measure µ

(where µ represents the linear functional u). Finally we define the derivative of a functional by the
following.

Definition 1.3 [46]
Let u be a linear functional. Then we define the derivative of u denoted Du by:

⟨Du, p⟩ :=−
〈
u, p′

〉
, ∀p ∈ P . (1.3)

It is easy to show that the functional φu obeys to the following Leibniz rule

Dn (φu) =
n

∑
k=0

(
n
k

)
φ
(k)Dn−ku (n = 0,1,2, . . .) .



4 Introduction

1.2 Hahn’s operator

Definition 1.4 [24]
Given complex numbers q and ω , the (ordinary) Hahn’s operator Dq,ω : P → P is defined by

Dq,ω f (x) :=
f (qx+ω)− f (x)
(q−1)x+ω

( f ∈ P) . (1.4)

The OPS related to this operator has been studied by Hahn [24]. Hereafter (when referring to Dq,ω )
we will assume that q and ω fulfill the conditions

|q−1|+ |ω| ̸= 0 , q ̸∈
{

0,e2i jπ/n | 1 ≤ j ≤ n−1 ; n = 2,3, . . .
}
. (1.5)

The first condition in (1.5) ensures that the right-hand side of (1.4) is well defined. The second one
is imposed in order to ensure the existence of OPS in Hahn’s sense (this will be made clear later in
the next chapter, cf. Theorem 2.2.1 therein). The (ordinary) Hahn’s operator Dq,ω on P induces a
(distributional) Hahn’s operator on P∗.

Definition 1.5 ,
The (distributional) Hahn’s operator Dq,ω : P∗ → P∗ is defined by

⟨Dq,ωu, f ⟩ :=−q−1⟨u,D∗
q,ω f ⟩ (u ∈ P∗ , f ∈ P) , (1.6)

where D∗
q,ω := D1/q,−ω/q.

This definition of Dq,ω appears in Foupouagnigni’s PhD thesis [15, Definition 3.4]. A slightly different
one was considered in Häcker’s PhD thesis [22, (1.16)] (under the supervision of P. Lesky and
reviewed for AMS by R. Askey), where the adopted definition is ⟨Dq,ωu, f ⟩=−⟨u,Dq,ω f ⟩, as it may
seem more natural a priori, taking into account the standard definition for the continuous case (cf.
(1.3)). The advantage of (1.6) is going to be pointed out in the next chapter (see Section 2.2.2 therein).
Recall that the q−bracket is defined by

[α]q :=


qα −1
q−1

, if q ̸= 1

α , if q = 1
(α,q ∈ C) .

Note that for each nonnegative integer number n, we have [0]q := 0 and [n]q → n as q → 1. Note also
that (1.5) ensures that [n]q ̸= 0 for each n = 1,2, . . ..

Definition 1.6 For a ∈ C \ {0} and b ∈ C, the dilation operator ha : P → P and the translation
operator τb : P → P are defined by

ha f (x) := f (ax) , τb f (x) := f (x−b) ( f ∈ P) . (1.7)

Note that if q = 1 in (1.4) then, setting △ω f (x) := f (x+ω)− f (x), we have

D1,ω =
△ω

ω
,
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while if q ̸= 1 then, setting Dq := Dq,0, we have

Dq,ω = τω0Dqτ−ω0 , ω0 := ω/(1−q) (1.8)

(see e.g. [9, (7.1)]). Thus, if q ̸= 1 then there is no loss of generality by assuming ω = 0, a fact
remarked by Hahn himself [24]. Despite this, it seems to us preferable to present the theory for general
(q,ω) fulfilling (1.5), in order to emphasize that there is no significant simplification by presenting it
for specific q or ω and, more interesting, there is no need to study separately the case q = 1 and q ̸= 1.
As a matter of fact, the general formulas appearing in Chapter 2 (see Theorem 2.2.1 therein) allow us
to emphasize a complete similarity with the corresponding ones proved by Marcellán and Petronilho
for the continuous case (appearing in Theorem 2.1.1 of the same chapter). Next we introduce some
basic definitions and useful notations.

Definition 1.7 Let q ∈ C\{0} and ω ∈ C.

(i) The operator Lq,ω : P → P is defined by

Lq,ω := hq ◦ τ−ω .

(ii) The operators L∗
q,ω : P → P and D∗

q,ω : P → P are defined by

L∗
q,ω := h1/q ◦ τω/q = L1/q,−ω/q , D∗

q,ω := D1/q,−ω/q .

(iii) The operator Lq,ω : P∗ → P∗ is defined by

⟨Lq,ωu, f ⟩ := q−1⟨u,L∗
q,ω f ⟩ (u ∈ P∗ , f ∈ P) .

(iv) The operators D∗
q,ω : P∗ → P∗ and L∗

q,ω : P∗ → P∗ are defined by

D∗
q,ω := D1/q,−ω/q and L∗

q,ω := L1/q,−ω/q .

Remark 1.2.1 As far as we know, the definitions appearing in (i), (ii), and (iv) were given in [22],
while the ones appearing in (iii) were proposed in [15].

The linear operators Lq,ω and L∗
q,ω are explicitly by

Lq,ω f (x) = f (qx+ω) , L∗
q,ω f (x) = f

(x−ω

q

)
( f ∈ P) .

In bellow we summarize some useful properties involving the above operators.
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Proposition 1.2.1 [15, 22, 34]
Let u ∈ P∗ and f ,g ∈ P , then we have the following properties.

L∗
q,ωLq,ω = Lq,ωL∗

q,ω = I ; L∗
q,ωLq,ω = Lq,ωL∗

q,ω = I ; (1.9)

L−1
q,ω = L∗

q,ω ; L−1
q,ω = L∗

q,ω ; (1.10)

Ln
q,ω f (x) = f

(
qnx+ω[n]q

)
(n = 0,±1,±2, . . .) ; (1.11)

D∗
q,ωDq,ω = qDq,ωD∗

q,ω ; Dq,ωL∗
q,ω = q−1L∗

q,ωDq,ω ; Dq,ωLq,ω = qLq,ωDq,ω ; (1.12)

D∗
q,ωLq,ω = qDq,ω ; D∗

q,ωLqω = qDq,ω ; (1.13)

Lq,ω( f g) = (Lq,ω f )(Lq,ωg) ; Lq,ω( f u) = Lq,ω f Lq,ωu ; (1.14)

Dq,ω( f g) = (Dq,ω f )(Lq,ωg)+ f Dq,ωg (1.15)

Dq,ω( f u) = Dq,ω f Lq,ωu+ f Dq,ωu = Dq,ω f u+Lq,ω f Dq,ωu . (1.16)

(In (1.9), I and I denote the identity operators in P and in P∗, respectively.)

We also point out the following analogue of Leibniz’s formula.

Proposition 1.2.2 Let f ,g ∈ P be two polynomials, then we have

Dn
q,ω( f g) =

n

∑
k=0

[
n
k

]
q

Lk
q,ω
(
Dn−k

q,ω f
)
·Dk

q,ωg (n = 0,1,2, . . .) , (1.17)

for each n = 0,1,2, . . . where, defining the q−factorials as [0]q! := 1 and [n]q! := [1]q[2]q · · · [n]q for
n ∈ N, the q−binomial number is given by[

n
k

]
q

:=
[n]q!

[k]q![n− k]q!
(n,k ∈ N0 ; k ≤ n) .

Note that (1.17) can be easily deduced from the well known Leibniz formula for the operator Dq (see
e.g. [26, Exercise 12.1] or [34, (1.15.6)]) and using the relation (1.8) between Dq and Dq,ω . There is
also a functional version of the Leibniz formula.

Proposition 1.2.3 Let u ∈ P∗ be a linear functional and f ∈ P be a polynomial.
Then we have

Dn
q,ω( f u) =

n

∑
j=0

[
n
j

]
q

Ln− j
q,ω

(
D j

q,ω f
)

Dn− j
q,ω u =

n

∑
j=0

[
n
j

]
q

L j
q,ω

(
Dn− j

q,ω f
)

D j
q,ωu , (1.18)

for n = 0,1,2, . . ..

Formulas (1.17)–(1.18) can be proved easily by induction on n ∈ N0. A basic property of Hahn’s
operator relies upon the fact it maps a polynomial of degree n into one of degree n−1. Indeed, since
Dq,ωxn = ∑

n−1
k=0(qx+ω)kxn−1−k, applying the binomial formula to (qx+ω)k, we obtain

Dq,ωxn =
n−1

∑
k=0

[n,k]q,ωxn−1−k = [n]qxn−1 +(lower degree terms) , (1.19)
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where the number [n,k]q,ω is defined by

[n,k]q,ω := ω
k

n−1−k

∑
j=0

(
k+ j

j

)
q j (n,k = 0,1, . . .) .

We adopt the convention that an empty sum equals zero, hence

[n,k]q,ω = 0 if n ≤ k .

We also point out the following useful representations:

[n,k]q,ω =
ωk

k!
dk

dqk

(
n−1

∑
j=k

q j

)
=

ωk

k!
dk

dqk

(
qn −qk

q−1

)
=

ωk

k!
dk

dqk

(
[n]q − [k]q

)
.

In particular, for k ∈ {0,1,2}, we compute

[n,0]q,ω = [n]q ,

[n,1]q,ω =
(
n[n−1]q − (n−1)[n]q

)
ω0 ,

[n,2]q,ω =
(
n(n−1)[n−2]q −2n(n−2)[n−1]q +(n−2)(n−1)[n]q

)
ω

2
0/2 ,

where ω0 is given by (1.8). Taking ω = 0 in (1.19) we see that Dq fulfills

Dqxn = [n]qxn−1 (n = 0,1, . . .) . (1.20)

The usefulness of this property relies upon the following fact: if u ∈ P∗, φ ∈ P2, and ψ ∈ P1,
then u satisfies the functional equation Dq(φu) = ψu if and only if the sequence of moments (un :=
⟨u,xn⟩)n≥0 satisfies the homogeneous second order linear difference equation(

ψ
′(0)qn +

φ ′′(0)
2

[n]q
)

un+1 +
(

ψ(0)qn +φ
′(0)[n]q

)
un +φ(0)[n]qun−1 = 0 (n = 0,1,2, . . .) .

(1.21)
Of course, taking into account (1.19), the analogous to property (1.20) is no longer true if Dq is replaced
by Dq,ω (ω ̸= 0). Hence, one can not expect that the moments corresponding to a functional u fulfilling
Dq,ω(φu) = ψu —being u, φ , and ψ as above— satisfy a second order difference equation like (1.21).
Häcker replaced the power basis (xn)n≥0 by a different polynomial basis, (Xn)n≥0 ≡ (Xn(·;q,ω))n≥0

defined as follows.

Proposition 1.2.4 [22]
Let define a simple set of polynomials (Xn)n≥0 by

X0(x) := 0, Xn+1(x) = q−n(x−ω[n]q
)
Xn(x) (n = 0,1,2, . . .) .

Then we have
Dq,ωXn = q1−n[n]qXn−1 (n = 0,1,2, . . .) . (1.22)
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For our purposes it is more convenient to use a basis (of P) of monic polynomials, namely
(Yn)n≥0 ≡ (Yn(·;q,ω))n≥0, where Yn := q(

n
2)Xn, so that

Y0(x) = 1 , Yn+1(x) =
(
x−ω[n]q

)
Yn(x) =

n

∏
j=0

(
x−ω[ j]q

)
(n = 0,1,2, . . .) . (1.23)

Clearly, (Yn)n≥0 fulfills the desired property:

Dq,ωYn(x) = [n]qYn−1(x) (n = 0,1,2, . . .) . (1.24)

Finally, using (1.24) it is straightforward (e.g. by using Mathematica, or by induction on n ∈ N0) to
show the following result.

Proposition 1.2.5 Let u ∈ P∗ be a linear functional. Then u satisfies the functional equation
Dq,ω(φu) = ψu, where φ ∈ P2 and ψ ∈ P1, if and only if the sequence of moments with respect to
the basis (Yn)n≥0, (yn := ⟨u,Yn⟩)n≥0 defined in (1.23), fulfills

dnyn+1 +
(
en +ω[n]qdn−1

)
yn +[n]q(φ(0)+ωen−1)yn−1 = 0 (n = 0,1,2, . . .) , (1.25)

where (dn)n≥0 and (en)n≥0 are sequences of complex numbers given by

dn = ψ
′(0)qn +

φ ′′(0)
2

[n]q , en = ψ(0)qn +
(

ωdn +φ
′(0)
)
[n]q .

1.3 Some operators on a nonuniform lattice (NUL)

A nonuniform lattice (NUL) is a mapping x(s), s ∈ C, given by

x(s) :=

 c1q−s + c2qs + c3 if q ̸= 1 ,

c4s2 + c5s+ c6 if q = 1 ,
(1.26)

where q > 0 (fixed) and c j (1 ≤ j ≤ 6) are constants in C, that may depend on q, such that (c1,c2) ̸=
(0,0) if q ̸= 1, and (c4,c5,c6) ̸= (0,0,0) if q = 1. In the case q = 1, the lattice is called quadratic if
c4 ̸= 0, and it is called linear if c4 = 0; and in the case q ̸= 1, it is called q−quadratic if c1c2 ̸= 0, and
q−linear if c1c2 = 0 (cf. [7]). Notice that

x
(
s+ 1

2

)
+ x
(
s− 1

2

)
2

= αx(s)+β ,

where α and β are given by

α :=
q1/2 +q−1/2

2
, β :=

 (1−α)c3 if q ̸= 1 ,

c4/4 if q = 1 .
(1.27)
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The lattice x(s) fulfills (cf. [7]):

x(s+n)+ x(s)
2

= αnxn(s)+βn , x(s+n)− x(s) = γn∇xn+1(s), n = 0,1,2, . . .

where xµ(s) := x
(
s+ µ

2

)
, ∇ f (s) := f (s)− f (s−1), and (αn)n≥0, (βn)n≥0, and (γn)n≥0 are sequences

of numbers given by the following system of difference equations

α0 = 1 , α1 = α , αn+1 −2ααn +αn−1 = 0 (1.28)

β0 = 0 , β1 = β , βn+1 −2βn +βn−1 = 2βαn (1.29)

γ0 = 0 , γ1 = 1 , γn+1 − γn−1 = 2αn n = 1,2,3, . . . . (1.30)

The explicit solutions of these difference equations are

αn =
qn/2 +q−n/2

2
, (1.31)

βn =


β

(
qn/4 −q−n/4

q1/4 −q−1/4

)2

if q ̸= 1

β n2 if q = 1 ,

(1.32)

γn =


qn/2 −q−n/2

q1/2 −q−1/2 if q ̸= 1

n if q = 1 .

(1.33)

These formulas may be easily checked (alternatively, see [7]). We also point out the following useful
relations:

γn+1 −2αγn + γn−1 = 0 , (1.34)

αn + γn−1 = αγn , (1.35)

(2α
2 −1)αn +(α2 −1)γn−1 = ααn+1 , (1.36)

γ2n = 2αnγn , (1.37)

α
2
n +(α2 −1)γ2

n = α2n = 2α
2
n −1 , (1.38)

αn−1 −ααn = (1−α
2)γn , (1.39)

α +αnγn = αn−1γn+1 , (1.40)

1+αn+1γn = αnγn+1 , (1.41)

valid for each n = 0,1,2, . . . (provided we define α−1 := α and γ−1 :=−1, in consistence with (1.31)
and (1.33)).

Definition 1.8 Consider the lattice x(s) given by (1.26). We define two operators Dx : P → P

(called the x−derivative operator on P) and Sx : P → P (called the x−averaging operator on P),
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so that deg(Dx f ) = deg f −1, deg(Sx f ) = deg f , and

Dx f (x(s)) =
f
(
x(s+ 1

2)
)
− f
(
x(s− 1

2)
)

x(s+ 1
2)− x(s− 1

2)
, (1.42)

and

Sx f (x(s)) =
f
(
x
(
s+ 1

2

))
+ f

(
x
(
s− 1

2

))
2

(1.43)

for each f ∈ P (see [6, 7, 17]). Further, we set Dx f = f ′ and Sx f = f , for all f ∈ P , whenever
x(s) = c6.

The operators Dx and Sx on P induce two operators on the dual space P∗:

Definition 1.9 We define Dx : P∗ → P∗ and Sx : P∗ → P∗ by

⟨Dxu, f ⟩ :=−⟨u,Dx f ⟩ , ⟨Sxu, f ⟩ := ⟨u,Sx f ⟩ ( f ∈ P, u ∈ P∗) . (1.44)

For each u ∈ P∗, the functional Dxu ∈ P∗ is called the x−derivative of u, while Sxu ∈ P∗ is called
the x−average of u (see [17]).

Hereafter, z := x(s) being the lattice (1.26), we define polynomials U1 and U2 by

U1(z) := (α2 −1)z+β (α +1) , (1.45)

U2(z) := (α2 −1)z2 +2β (α +1)z+δ , (1.46)

δ ≡ δx being a constant with respect to the lattice, given by

δ :=
(

x(0)+ x(1)−2β (α +1)
2α

)2

− x(0)x(1) . (1.47)

It is also straightforward to verify that

δ =

 (α2 −1)
(
c2

3 −4c1c2
)

if q ̸= 1 ,

1
4c

2
5 − c4c6 if q = 1 ,

(1.48)

and

U1(z) =

 (α2 −1)
(
z− c3

)
if q ̸= 1 ,

1
2c4 if q = 1 ,

(1.49)

hence, we deduce

U2(z) =

 (α2 −1)
(
(z− c3)

2 −4c1c2
)

if q ̸= 1 ,

c4(z− c6)+
1
4c

2
5 if q = 1 .

(1.50)
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By direct computations, we may check that the polynomials introduced in (1.45)–(1.46) satisfy the
following relations:

DxU1 = α
2 −1 , SxU1 = αU1 , (1.51)

DxU2 = 2αU1 , SxU2 = α
2
U2 +U

2
1 . (1.52)

1.3.1 Some properties

We start by pointing out some properties.

Lemma 1.3.1 Let f ,g ∈ P and u ∈ P∗. Then the following properties hold:

Dx
(

f g
)
=
(
Dx f

)(
Sxg
)
+
(
Sx f
)(

Dxg
)
, (1.53)

Sx
(

f g
)
=
(
Dx f

)(
Dxg

)
U2 +

(
Sx f
)(

Sxg
)
, (1.54)

SxDx f = αDxSx f −Dx
(
U1Dx f

)
, (1.55)

S2
x f = α

−1Sx
(
U1Dx f

)
+α

−1
U2D2

x f + f , (1.56)

f Sxg = Sx

((
Sx f −α

−1
U1 Dx f

)
g
)
−α

−1
U2Dx

(
gDx f

)
, (1.57)

f Dxg = Dx

((
Sx f −α

−1
U1 Dx f

)
g
)
−α

−1Sx
(
gDx f

)
, (1.58)

Dx( f u) =
(
Sx f −α

−1
U1Dx f

)
Dxu+α

−1(Dx f
)
Sxu , (1.59)

Sx( f u) =
(
Sx f −α

−1
U1Dx f

)
Sxu+α

−1(Dx f
)
Dx(U2u) , (1.60)

Sx( f u) =
(
αU2 −α

−1
U

2
1
)
(Dx f )Dxu+

(
Sx f +α

−1
U1Dx f

)
Sxu , (1.61)

D2
x
(
U2u
)
= αS2

xu+Dx
(
U1Sxu

)
−αu , (1.62)

D2
x
(
U2u
)
= (2α −α

−1)S2
xu+α

−1
U1DxSxu−αu , (1.63)

DxSxu = αSxDxu+Dx
(
U1Dxu

)
. (1.64)

Proof The reader may encounter properties (1.53)–(1.60) in [50, Propositions 5–7]. To prove (1.61),
set f = U2 in (1.59) and then use (1.52) to obtain

Dx(U2u) =
(
α

2
U2 −U

2
1
)
Dxu+2U1Sxu .

Replacing this expression in the right-hand side of (1.60) we obtain (1.61). Next, taking arbitrarily
f ∈ P , we have

⟨D2
x
(
U2u
)
, f ⟩= ⟨u,U2D2

x f ⟩= ⟨u,αS2
x f −Sx(U1Dx f )−α f ⟩

= ⟨αS2
xu+Dx

(
U1Sxu

)
−αu, f ⟩ ,

where the second equality holds by (1.56). This proves (1.62). Setting f = U1 in (1.59) and replacing
therein u by Sxu, and taking into account (1.51), we deduce

Dx
(
U1Sxu

)
= α

−1
U1DxSxu+(α −α

−1)S2
xu .
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Substituting this into the right-hand side of (1.62) we obtain (1.63). Finally, (1.64) follows easily from
(1.44) and (1.55).

Proposition 1.3.2 Let us consider the q-quadratic lattice x(s) = c1q−s+c2qs+c3. Then the following
relations hold.

Dxzn = γnzn−1 +unzn−2 + vnzn−3 + · · · , (1.65)

Sxzn = αnzn + ûnzn−1 + v̂nzn−2 + · · · , (1.66)

where αn and γn are given by (1.31) and (1.33), respectively, and

un :=
(
nγn−1 − (n−1)γn

)
c3 , (1.67)

vn :=
(
nγn−2 − (n−2)γn

)
c1c2 (1.68)

+ 1
2

(
n(n−1)γn−2 −2n(n−2)γn−1 +(n−1)(n−2)γn

)
c2

3 ,

ûn := n(αn−1 −αn)c3 , (1.69)

v̂n := n(αn−2 −αn)c1c2 +n(n−1)(α −1)αn−1c
2
3 . (1.70)

for n = 0,1,2, . . ..

Proof The proof is done by mathematical induction on n ∈ N0. For n = 0, we have Dxz0 = 0 and
Sxz0 = 1. So we have γ0 = 0, α0 = 1 and u0 = v0 = û0 = v̂0 = 0. Then (1.65)–(1.66) is true for n = 0.
Now suppose that (1.65)–(1.66) are true for all integers less than or equal to a fixed n. Then by using
this hypothesis together with (1.53)–(1.54), we have

Dxzn+1 = Dx(zzn) = Dxzn Sxz+Sxzn Dxz

= (αz+β )Dxzn +Sxzn

= (αn +αγn)zn +(αun + ûn +βγn)zn−1 +(αvn + v̂n +βun)zn−2 + · · · .

In a similar way we also have

Sxzn+1 = Sx(zzn) = U2(z)Dxz Dxzn +Sxzn Sxz

= U2(z)Dxzn +(αz+β )Sxzn

=
(
ααn +(α2 −1)γn

)
zn+1 +

[
(α2 −1)(un −2γnc3)+α ûn +βαn

]
zn

+
[
(α2 −1)

(
vn −2unc3 +(c2

3 −4c1c2)γn
)
+α v̂n +β ûn

]
zn−1 + · · · .

Using (1.34)–(1.41), we finally obtain

Dxzn+1 = γn+1zn +un+1zn−1 + vn+1zn−2 + · · · ,
Sxzn=1 = αn+1zn+1 + ûn+1zn + v̂n+1zn−1 + · · · .

Thus (1.65)–(1.66) are proved for all n ∈ N0.
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1.3.2 A Leibniz-type formula

Here we state a Leibniz-type formula, involving the x−derivative operator, for the left multiplication
of a functional by a polynomial. For this, we need the following results.

Lemma 1.3.3 Let f ∈ P . Then

Dn
xSx f = αnSxDn

x f + γnU1Dn+1
x f (n = 0,1,2, . . .) . (1.71)

Proof By mathematical induction on n. (1.71) is satisfied for n = 0. Suppose that for all positive
integers less than or equal to a fixed integer n, (1.71) is true. Then by using successively (1.71) firstly
for n and secondly for n = 1 with f replaced by Dn

x f , and (1.53) to Dx(U1Dn+1
x f ) we have

Dn+1
x Sx f = Dx (Dn

xSx f ) = Dx
(
αnSxDn

x f + γnU1Dn+1
x f

)
= αnDxSx(Dn

x f )+ γnDx
(
U1Dn+1

x f
)

= αn
(
αSxDn+1

x f +U1Dn+2
x f

)
+ γn

(
(α2 −1)SxDn+1

x f +αU1Dn+2
x f

)
=
(
ααn +(α2 −1)γn

)
SxDn+1

x f +(αn +αγn)U1Dn+2
x f .

Using (1.34)–(1.39), we see that (1.71) is true whenever n is replaced by n+1. Hence (1.71) is true
for all n.

There is a functional version of (1.71).

Lemma 1.3.4 Let u ∈ P∗. Then

αDn
xSxu = αn+1SxDn

xu+ γnU1Dn+1
x u (n = 0,1,2, . . .) . (1.72)

Proof We prove (1.72) by mathematical induction on n. Since α1 = α and γ0 = 0, then (1.72) is
trivial for n = 0. For n = 1, (1.72) is obtained multiplying both sides of (1.64) by α and taking into
account that, by (1.59) and (1.51), the equality αDx

(
U1Dxu

)
= U1D2

xu+(α2 −1)SxDxu holds, and
recalling also that α2 = 2α2 −1 and γ1 = 1. Suppose now (induction hypothesis) that property (1.72)
holds for a fixed integer n ∈ N. Then, we have

αDn+1
x Sxu = Dx

(
αDn

xSxu
)
= αn+1DxSxDn

xu+ γnDx
(
U1Dn+1

x u
)
. (1.73)

Considering (1.72) for n = 1 and replacing therein u by Dn
xu, we obtain

DxSxDn
xu = α

−1
α2SxDn+1

x u+α
−1

γnU1Dn+2
x u . (1.74)

Moreover, using again (1.59) and (1.51), we deduce

Dx
(
U1Dn+1

x u
)
= α

−1
U1Dn+2

x u+α
−1(α2 −1)SxDn+1

x u . (1.75)

Putting (1.74) and (1.75) into the right-hand side of (1.73) and taking into account (1.35) and (1.36),
we obtain (1.72) with n replaced by n+1. This proves (1.72).
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Next, we introduce the operator Tn,k : P → P (n = 0,1,2 . . . ; k = 0,1,2 . . . ,n), defined for each
f ∈ P as follows: if n = k = 0, set

T0,0 f := f ; (1.76)

and if n ≥ 1 and 0 ≤ k ≤ n, define recurrently

Tn,k f := SxTn−1,k f − γn−k

αn−k
U1DxTn−1,k f +

1
αn+1−k

DxTn−1,k−1 f , (1.77)

with the conventions Tn,k f := 0 whenever k > n or k < 0. Note that

degTn,k f ≤ deg f − k .

We are ready to state the following.

Proposition 1.3.5 (Leibniz-type formula) Let u ∈ P∗ and f ∈ P . Then

Dn
x
(

f u
)
=

n

∑
k=0

Tn,k f Dn−k
x Sk

xu (n = 0,1,2, . . .), (1.78)

where Tn,k f is a polynomial defined by (1.76)–(1.77).

Proof The proof is done by mathematical induction on n. Clearly, (1.78) is true if n = 0. Suppose
now that (1.78) holds for a fixed nonnegative integer n. Then

Dn+1
x
(

f u
)
= Dx

(
Dn

x( f u)
)
=

n

∑
k=0

Dx
(
Tn,k f Dn−k

x Sk
xu
)
. (1.79)

Notice that, by (1.72),

SxDn−k
x Sk

xu =
1

αn+1−k

(
αDn−k

x Sk+1
x u− γn−kU1Dn+1−k

x Sk
xu
)
. (1.80)

Therefore, using successively (1.59), (1.80), (1.35), and (1.77), we may write

Dx
(
Tn,k f Dn−k

x Sk
xu
)

=
(
SxTn,k f −α

−1
U1DxTn,k f

)
Dn+1−k

x Sk
xu+α

−1DxTn,k f SxDn−k
x Sk

xu

=
(

SxTn,k f − γn+1−k

αn+1−k
U1DxTn,k f

)
Dn+1−k

x Sk
xu+

DxTn,k f
αn+1−k

Dn−k
x Sk+1

x u

=
(

Tn+1,k f −
DxTn,k−1 f

αn+2−k

)
Dn+1−k

x Sk
xu+

DxTn,k f
αn+1−k

Dn−k
x Sk+1

x u .

Substituting this expression in the right-hand side of (1.79) and then applying the method of telescoping
sums, we get

Dn+1
x
(

f u
)
=

n

∑
k=0

Tn+1,k f Dn+1−k
x Sk

xu+
DxTn,n f

α1
Sn+1

x u− DxTn,−1 f
αn+2

Dn+1
x u .
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Finally, since Tn,−1 f = 0 and 1
α1

DxTn,n f = Tn+1,n+1 f (this last equality follows from (1.77) taking
therein k = n and in the resulting expression shifting n into n+1), we obtain (1.78) with n replaced
by n+1. Thus (1.78) is proved.

Corollary 1.3.6 Let x be the q−quadratic NUL x(s) := c1q−s+c2qs+c3, (s ∈C ; q > 0). Let u ∈P∗

and f ∈ P2. Set f (z) = az2 +bz+ c , with a,b,c ∈ C. Then

Dn
x( f u) =

(
aα

αnαn−1
(z− c3)

2 +
f ′(c3)

αn
(z− c3)+ f (c3)+

4a(1−α2)γnc1c2

αn−1

)
Dn

xu (1.81)

+
γn

αn

(
a(αn +ααn−1)

α2
n−1

(z− c3)+ f ′(c3)

)
Dn−1

x Sxu

+
aγnγn−1

α2
n−1

Dn−2
x S2

xu

for each n = 0,1,2, . . .. In particular,

Dn
x
(
(bz+ c)u

)
=

(
b

αn
(z−βn)+ c

)
Dn

xu+
bγn

αn
Dn−1

x Sxu (n = 0,1,2, . . .) . (1.82)

The proof of identities (1.81)–(1.82) relies upon the Leibniz formula (1.78), (1.59) and (1.72), by a
straightforward computation. Alternatively, we may apply mathematical induction on n as follows.

Proof We only prove (1.81) since (1.82) is the particular case of (1.81) where a = 0. Let’s de-
fine g(z) = f (z− c3) = a(z− c3)

2 +b(z− c3)+ c. We want to show that

(Tn,0g)(z) = g
(

z− c3

αn
+ c3

)
+

aγn

αn−1
U2

(
z− c3

αn
+ c3

)
, (1.83)

(Tn,1g)(z) =
γn

αn

(
a(αn +ααn−1)

α2
n−1

(z− c3)+b

)
, (1.84)

(Tn,2g)(z) =
aγnγn−1

α2
n−1

, (1.85)

for n = 0,1,2, . . ., where Tn,k f is defined by (1.76)–(1.77). Note that we have

(Tn,0g)(z) =
αa

αnαn−1
(z− c3)

2 +
b

αn
(z− c3)+ c+

4a(1−α2)γn

αn−1
c1c2 . (1.86)

We proceed by induction on n∈N0. For n= 0 in (1.83)–(1.85), we find T0,0g= g and T0,1g= 0= T0,2g
which agree with (1.76)–(1.77). Now suppose that (1.83)–(1.85) is true for all positive integers up to
a fixed n. Then by (1.77), we have

Tn+1,0g = Sx(Tn,0g)− γn+1

αn+1
U1Dx(Tn,0g) , (1.87)

Tn+1,1g = Sx(Tn,1g)− γn

αn
U1Dx(Tn,1g)+

1
αn+1

Dx(Tn,0g) , (1.88)

Tn+1,2g = Sx(Tn,2g)+
1

αn
Dx(Tn,1g) . (1.89)
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Using the following identities Sx
(
(z− c3)

2
)
= (2α2 −1)(z− c3)

2 +4(1−α2)c1c2, Dx
(
(z− c3)

2
)
=

2α(z− c3), and Sx ((z− c3)) = α(z− c3), we find

Sx(Tn,0g)(z) =
α(2α2 −1)a

αnαn−1
(z− c3)

2 +
αb
αn

(z− c3)+ c+
4a(1−α2)(α +αnγn)

αnαn−1
c1c2 ,

Sx(Tn,1g)(z) =
γn

αn

(
αa(αn +ααn−1)

α2
n1

(z− c3)+b
)

,

Dx(Tn,0g)(z) =
1

αn

(
2α2a
αn−1

(z− c3)+b
)

,

Dx(Tn,1g)(z) =
aγn(αn +ααn−1)

αnα2
n−1

.

Therefore from (1.87) we use (1.34)–(1.41) to obtain

(Tn+1,0g)(z) =
αa

αnαn−1

(
2α

2 −1+2α
(1−α2)γn+1

αn+1

)
(z− c3)

2 +
b(ααn+1 +(1−α2)γn+1)

αnαn+1
(z− c3)

+ c+
4a(1−α2)(α +αnγn)

αnαn−1
c1c2 ,

=
αa

αnαn+1
(z− c3)

2 +
b

αn+1
(z− c3)+ c+

4a(1−α2)γn+1

αn
c1c2 .

Hence (1.83) holds for all n. Similarly, from (1.88), we use again (1.34)–(1.41) and the identity
αn+1γn(αn +ααn−1)+2α2αn = αn−1γn+1(αn+1 +ααn) to have

(Tn+1,1g)(z) =
a

αnαn−1

(
γn(αn +ααn−1)

αn
+

2α2

αn+1

)
(z− c3)+

b
αn

(
γn +

1
αn+1

)
=

γn+1

αn+1

(
a(αn+1 +ααn)

α2
n

(z− c3)+b
)

.

Hence (1.84) holds for n = 0,1,2, . . .. Finally from (1.89) it is obvious that (1.85) holds for n replaced
by n+1 and consequently for all n. Thus (1.83)–(1.85) hold and therefore (1.81) follows.

1.4 Outline of the thesis

This thesis fits into the theory of Orthogonal Polynomials and Special Functions, in the framework
of Approximation Theory and Classical Analysis. In what follows, we describe summarily the
organization of this thesis highlighting the main contributions in each chapter.

I. Let u be a nonzero linear functional acting on the space of polynomials P . Let Dq,ω be a Hahn
operator acting on the dual space of polynomials P ′. Suppose that there exist polynomials φ and ψ ,
with degφ ≤ 2 and degψ ≤ 1, so that the functional equation

Dq,ω(φu) = ψu

holds, where the involved operations are defined in the distributional sense. We state necessary and
sufficient conditions, involving only the coefficients of φ and ψ , such that u is regular, that is, there
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exists a sequence of orthogonal polynomials with respect to u. In addition, the coefficients of the
three-term recurrence relation (TTRR) satisfied by the corresponding monic OPS are given. A key
step in the proofs of these results relies upon the fact that a distributional Rodrigues-type formula
holds without assuming that u is regular. This is achieved in Chapter 2. The results of this chapter are
published in [4].

II. Let M and N be fixed non-negative integer numbers and let πN be a polynomial of degree N.
Suppose that (Pn)n≥0 and (Qn)n≥0 are two OPS such that

πN(x)P(m)
n+m(x) =

n+N

∑
j=n−M

rn, jQ
(k)
j+k(x) (n = 0,1, . . .) , (1.90)

where rn, j are complex numbers independent of x and f (k)(x) = dk

dxk f (x) for each f ∈ P . It is shown
that under some natural constraints, (Pn)n≥0 and (Qn)n≥0 are semiclassical OPS. That is, there exist
nonzero polynomials φ1, φ2, ψ1 and ψ2 such that the corresponding functionals u and v fulfill the
functional equations

D(φ1u) = ψ1u, D(φ2v) = ψ2v.

Moreover we show that u and v are related by a rational modification in the distributional sense,
meaning that Pu = Qv for some nonzero polynomials P,Q ∈P . This leads us to introduce the concept
of πN−coherent pairs with index M and order (m,k). This is one of the achievements of Chapter 3,
published in [10].

III. Chapter 3 also extends the previous concept to the one of πN-(q,ω)-coherent pairs with
index M and order (m,k), which appears in the framework of discrete OPS by replacing in (1.90) the
ordinary derivative by the discrete Hahn’s operator Dq,ω . This leads to the (structure) relation

πN(x)Dm
q,ωPn+m(x) =

n+N

∑
j=n−M

rn, jDk
q,ωQ j+k(x) (n = 0,1, . . .) .

Again, in this situation, it is shown that under some natural constraints, (Pn)n≥0 and (Qn)n≥0 are semi-
classical OPS (with respect to Dq,ω ) and the corresponding functionals are related by a (distributional)
rational modification. Some examples of application are given, recovering in a more simple way some
known results in the literature about the subject. Our results enable us to describe in a unified way all
the classical OPS with respect to Jackson’s operator, which appear as special or limiting cases of a
four parametric family of q-polynomials. These results are available in [5].

IV. Let’s consider now that u is a functional on P satisfying the more general functional equation

Dx(φu) = Sx(ψu) ,

where Dx and Sx are the operators defined on P ′ as before. We state necessary and sufficient
conditions for the regularity of u, giving, in addition, closed formulas for the coefficients of the TTRR
of the corresponding monic OPS, as well as a Rodrigues-type formula. Some examples are given to
point out the power of our formulas in the framework of classical OPS on nonuniform lattices. In
particular, our results enable us to derive in a simple way the coefficients of the TTRR of the Racah
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polynomials as well as the ones for the Askey-Wilson polynomials. The results of this chapter are
contained in a manuscript to be submitted for publication soon [11].

V. Let (Pn)n≥0 be a monic OPS and π a polynomial of a degree at most two such that

π(x)P′
n(x) = (anx+bn)Pn(x)+ cnPn−1(x) (n = 0,1,2 . . .) ,

for some complex sequences of coefficients an, bn and cn. It is well known that the only OPS that
fulfill the above structure relation are the classical OPS (Hermite, Laguerre, Bessel and Jacobi). This
result is referred in the literature as Al-Salam and Chihara characterization of classical OPS (see [13]).
In [26] M. E. H. Ismail consider the same type of structure relation, replacing the standard derivative
by the Askey-Wilson operator, so that (even more generally), we may consider

π(x)DxPn(x) = (anx+bn)Pn(x)+ cnPn−1(x) (n = 0,1,2 . . .) .

Ismail posed the problem of characterizing all OPS fulfilling this structure relation, and he conjectured
that the solutions are the continuous q−Jacobi polynomials, the Al-Salam Chihara polynomials, or
special or limiting cases of them. The case where the polynomial π is a constant was proved by
Al-Salam [2]. In Chapter 5, using the main results of Chapter 4, we give a positive answer to Ismail’s
conjecture, for any polynomial π . The results of this chapter are contained in a manuscript to be
submitted for publication soon [12].

Finally in Chapter 6, we present some further directions of research in the framework of the
problems considered in this thesis.



Chapter 2

Classical orthogonal polynomials related
to Hahn’s operator

2.1 Preliminaries

2.1.1 Introduction

The (very) classical OPS of Hermite, Laguerre, Jacobi, and Bessel, constitute the most studied class
of OPS. In the framework of regular orthogonality, these OPS are defined as orthogonal with respect
to a moment linear functional u : P → C such that there exist two nonzero polynomials φ ∈ P2 and
ψ ∈ P1 so that u satisfies the functional equation

D(φu) = ψu , (2.1)

where the functional Du is defined as in (1.3). Hermite and Laguerre functionals (corresponding to
the Hermite and Laguerre OPS) appear in (2.1) taking φ ≡ const. ̸= 0 and degφ = 1, respectively. If
degφ = 2 we obtain a Jacobi functional whenever the zeros of φ are distinct, and a Bessel functional
if φ has a double zero. A natural question arises: if u is a nonzero linear functional defined on
P satisfying (2.1), with φ ∈ P2 and ψ ∈ P1, and if at least one among φ and ψ is not the zero
polynomial, to determine necessary and sufficient conditions, involving only the coefficients of φ and
ψ , such that u is regular (i.e., there exists an OPS with respect to u). This question has been answered
by Marcellán and Petronilho in the following

Theorem 2.1.1 [38, Lemma 2 and Theorem 2] Let u ∈ P ′ \ {0}. Suppose that (2.1) holds where
φ ∈ P2, ψ ∈ P1, and at least one of φ and ψ is not the zero polynomial. Write

φ(x) := ax2 +bx+ c , ψ(x) := dx+ e , dn := d +an , en := e+bn .

(a,b,c,d,e ∈ C; |a|+ |b|+ |c|+ |d|+ |e| ̸= 0.) Then, u is regular if and only if

dn ̸= 0 , φ

(
− en

d2n

)
̸= 0 , ∀n ∈ N0 . (2.2)

19
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Under these conditions, the monic OPS (Pn)n≥0 with respect to u satisfies the three-term recurrence
relation (1.1) with coefficients (1.2) given by

βn =
nen−1

d2n−2
− (n+1)en

d2n
, γn+1 =−(n+1)dn−1

d2n−1d2n+1
φ

(
− en

d2n

)
(n = 0,1, . . .) . (2.3)

In addition, the following (distributional) Rodrigues formula holds

Pnu = kn Dn(
φ

nu
)
, kn :=

n−1

∏
j=0

d−1
n+ j−1 (n = 0,1, . . .) . (2.4)

The aim of this chapter is to state a (q,ω)−analogue of Theorem 2.1.1, replacing in the functional
equation (2.1) the derivative operator D by the (distributional) Hahn’s operator, denoted by Dq,ω

(defined as in (1.6)).

2.1.2 Preliminaries results

Given a nonnegative integer number k and a monic polynomial Pn of degree n, we denote by P[k]
n ≡

P[k]
n (·;q,ω) the monic polynomial of degree n defined by

P[k]
n (x) :=

Dk
q,ωPn+k(x)

∏
k
j=1[n+ j]q

=
[n]q!

[n+ k]q!
Dk

q,ωPn+k(x) (k,n = 0,1, . . .) . (2.5)

If k = 0, it is understood that D0
q,ω f = f and that empty product equals one. Set

φ(x) := ax2 +bx+ c , ψ(x) := dx+ e , (2.6)

dn ≡ dn(q) := ψ
′ qn + 1

2 φ
′′
[n]q = dqn +a[n]q , en ≡ en(q,ω) := eqn +(ωdn +b)[n]q . (2.7)

Definition 2.1 (φ ,ψ) is called a (q,ω)−admissible pair if

φ ∈ P2 , ψ ∈ P1 , and dn ̸= 0, ∀n ∈ N0 , (2.8)

where dn is given by (2.7).

Definition 2.2 A linear regular functional u ∈ P∗ is a Dq,ω -semiclassical (or (q,ω)-semiclassical)
functional if it is regular and there exist φ ,ψ ∈ P , with deg ψ ≥ 1, such that the following functional
equation holds.

Dq,ω(φu) = ψu . (2.9)

The class of a Dq,ω -semiclassical functional u, denoted by s(u), is the unique non-negative integer
number defined by

s(u) := min
(φ ,ψ)∈Au

max
{

degφ −2,degψ −1
}
,
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where Au is the set of all pairs of nonzero polynomials (φ ,ψ) fulfilling the functional equation (2.9).
When s(u) = 0, u is said to be a Dq,ω -classical (or (q,ω)-classical) functional. We also say that the
corresponding OPS is Dq,ω -semiclassical of class s(u) or Dq,ω -classical, respectively.

Remark 2.1.1 Note that

Dq,ω(φu) = ψu ⇔ D1/q,−ω/q(φ̂u) = ψu ,

where φ̂(x) := q−1
[
φ(x)+

(
(q− 1)x+ω

)
ψ(x)

]
. Consequently, a regular linear functional u is

Dq,ω -semiclassical if and only if it is D1/q,−ω/q-semiclassical.

Remark 2.1.2 It is worth mentioning that Dq,0−classical OPS were extensively studied in [32] and
an introduction to the study of Dq−semiclassical OPS has been addressed in [31]. Moreover, an
extensive study of Dq,0−classical OPS was made in [1].

Let u ∈ P∗ be a linear functional satisfying the functional equation (2.9) where φ ∈ P2 and
ψ ∈ P1. We also set

u[0] := u , u[k] := Lq,ω
(
φu[k−1])= Lq,ωφ Lq,ωu[k−1] (k = 1,2, . . .) , (2.10)

where the last equality holds by (1.14). Iterating (2.10) and taking into account (1.11) yields

u[k] =
( k

∏
j=1

L j
q,ωφ

)
Lk

q,ωu = Φ(·;k)Lk
q,ωu (k = 0,1, . . .) , (2.11)

where

Φ(x;k) :=
k

∏
j=1

φ(q jx+ω[ j]q) . (2.12)

Proposition 2.1.2 [15, Theorem 3.1]
The functional u[k] defined in (2.11) fulfils the functional equation

Dq,ω
(
φu[k])= ψ

[k]u[k] (k = 0,1, . . .) , (2.13)

where ψ [k] ∈ P1 is defined by

ψ
[0] := ψ , ψ

[k] := Dq,ωφ +qLq,ωψ
[k−1] (k = 1,2,3, . . .) . (2.14)

We point out that equality (2.13) was stated in [15] under the assumption that u is a regular functional,
but inspection of the proof given therein shows that the equality remains true without such assumption.

Corollary 2.1.3 The polynomial ψ [k] defined in (2.14) is explicitly given by

ψ
[k](x) = d2kx+ ek (k = 0,1,2, . . .) , (2.15)
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where dk and ek are defined as in (2.7).

Proof Apply mathematical induction on k ∈ N0.

Formula (2.15) has not been observed in [15]. It will play a central role along this chapter.

Lemma 2.1.4 Let u ∈ P∗ \ {0}. Suppose that u satisfies (2.9), where φ ∈ P2 and ψ ∈ P1. Let
(Qn)n≥0 be any simple set of polynomials and define

Rn+1(x) := φ(x)D∗
q,ωQn(x)+qψ(x)Qn(x)

= anq1−ndnxn+1 + (lower degree terms) ,
(2.16)

where an ∈ C\{0} is the leading coefficient of Qn and dn is defined as in (2.7). Then the following
functional equation holds:

D∗
q,ω
(
Qnu[1])= Rn+1u (n = 0,1, . . .) . (2.17)

Moreover, (Rn)n≥0 is a simple set of polynomials if and only if (φ ,ψ) is a (q,ω)−admissible pair,
provided that we define R0(x) := 1.

Proof Let n ∈ N0 and take arbitrarily f ∈ P . Then〈
D∗

q,ω
(
Qnu[1]), f

〉
=−q⟨Lq,ω(φu),QnDq,ω f ⟩=−

〈
φu,
(
L∗

q,ωQn
)(

L∗
q,ωDq,ω f

)〉
=−

〈
φu,
(
L∗

q,ωQn
)(

D∗
q,ω f

)〉
.

Now, using relation (1.15) with D∗
q,ω instead of Dq,ω , we obtain〈

D∗
q,ω
(
Qnu[1]), f

〉
=−⟨φu,D∗

q,ω( f Qn)− f D∗
q,ωQn⟩

= q
〈
Dq,ω(φu),Qn f ⟩+ ⟨φD∗

q,ωQn, f ⟩
=
〈
u,
(
qψQn +φD∗

q,ωQn
)

f
〉
= ⟨Rn+1u, f ⟩ .

This proves (2.17). Moreover, taking into account (1.19), we have

D∗
q,ωQn(x) = anD1/q,−ω/q xn + (lower degree terms)

= anq1−n[n]q xn−1 + (lower degree terms) ,

where we also took into account that [n]q−1 = q1−n[n]q. Hence

Rn+1(x) =
(
aanq1−n[n]q +qand

)
xn+1 + (lower degree terms) ,

and so we obtain the expression for Rn+1 given in (2.16). Thus, degRn+1 = n+1 for each n = 0,1, . . .
if and only if dn ̸= 0 for each n = 0,1, . . ., i.e., if and only if (φ ,ψ) is a (q,ω)−admissible pair. This
concludes the proof.
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In the statement of the next lemma, which is interesting for its own sake, we emphasize that
neither the given functional u needs to be regular nor the sequence (Pn)n≥0 needs to be an OPS. Under
the assumption that u is regular and satisfies (2.9), formula (2.18) in bellow may be derived in a very
simple way (see Section 2.2.2 below).

Lemma 2.1.5 [4]
Let u ∈ P∗ \{0}. Suppose that u satisfies (2.9), where (φ ,ψ) is a (q,ω)−admissible pair. Then the
Rodrigues-type formula

Pnu = knDn
1/q,−ω/q u[n] (n = 0,1, . . .) (2.18)

holds in P∗, where u[n] is defined as in (2.11),

kn := qn(n−3)/2
n−1

∏
j=0

d−1
n+ j−1 , (2.19)

and (Pn)n≥0 is a simple set of monic polynomials given by the three-term recurrence relation (1.1)
with coefficients (1.2) given by

βn := ω[n]q +
[n]qen−1

d2n−2
−

[n+1]qen

d2n
, (2.20)

γn+1 :=−
qn[n+1]qdn−1

d2n−1d2n+1
φ

(
− en

d2n

)
(n = 0,1, . . .) , (2.21)

where en and dn defined as in (2.7).

Proof Since (φ ,ψ) is a (q,ω)−admissible pair, then dn ̸= 0 for each n = 0,1, . . .. Hence the
sequence (Pn)n≥0 given by (1.1) and with coefficients given by (2.21) is well defined. For simplicity,
we set Hq,ω := D∗

q,ω := D1/q,−ω/q, and so (2.18) reads as

Pnu = knHn
q,ω u[n] (n = 0,1, . . .) . (2.22)

Notice that the second relation in (1.13) can be rewritten as

Hq,ω Lq,ω = qDq,ω , (2.23)

while, setting Hq,ω := D∗
q,ω , the Leibniz rule (1.18) applied to D∗

q,ω gives

Hn
q,ω( f u) =

n

∑
k=0

[
n
k

]
q−1

L∗k
q,ω
(
Hn−k

q,ω f
)

Hk
q,ωu ( f ∈ P) . (2.24)

We will prove (2.22) by mathematical induction on n. For n = 0, (2.22) becomes a trivial equality. For
n = 1, we use (2.10) and (2.23) to deduce

Hq,ω u[1] = Hq,ωLq,ω
(
φu
)
= qDq,ω

(
φu
)
= qψu .

Therefore, since P1(x) = x−β0 = x− (−e0/d0) = x+ e/d = d−1ψ(x), and so qψ = qdP1 = k−1
1 P1,

we obtain (2.22) for n = 1. Assume now that (2.22) holds for given consecutive numbers n−1 and n
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(n ∈ N), i.e., suppose that (induction hypothesis)

Pn−1u = kn−1Hn−1
q,ω u[n−1] , Pnu = knHn

q,ω u[n] . (2.25)

We need to show that
Pn+1u = kn+1Hn+1

q,ω u[n+1] . (2.26)

To prove (2.26), we start by noting that

Hn+1
q,ω u[n+1] = qHn

q,ω
(
ψ

[n]u[n]) . (2.27)

Indeed, using successively (2.10) and (2.23), we have

Hn+1
q,ω u[n+1] = Hn

q,ω

(
Hq,ωLq,ω(φu[n]))= qHn

q,ω

(
Dq,ω

(
φu[n])) ,

and so (2.27) follows taking into account (2.13). Next, by (2.24) with f = ψ [n] = d2nx+ en,

Hn
q,ω
(
ψ

[n]u[n])= (L∗n
q,ω ψ

[n])Hn
q,ωu[n]+[n]q−1d2nHn−1

q,ω u[n] .

Replacing this into (2.27) and using the second identity in (2.25), we deduce

[n]q−1d2nHn−1
q,ω u[n] = q−1Hn+1

q,ω u[n+1]− k−1
n
(
L∗n

q,ω ψ
[n])Pnu . (2.28)

Taking into account both identities appearing in (2.25), we may change n into n−1 in the preceding
reasoning, to obtain

[n−1]q−1d2n−2Hn−2
q,ω u[n−1] =

(
q−1k−1

n Pn − k−1
n−1

(
L∗n−1

q,ω ψ
[n−1])Pn−1

)
u . (2.29)

Next, by the analogue of (1.16) for D∗
q,ω , we have

Hq,ω
(
ψ

[n]u[n])= (D∗
q,ωψ

[n])L∗
q,ωu[n]+ψ

[n]Hq,ωu[n]

= d2nL∗
q,ωLq,ω

(
φu[n−1])+ψ

[n]Hq,ωLq,ω
(
φu[n−1])

=
(
d2nφ +qψ

[n]
ψ

[n−1])u[n−1] , (2.30)

where in the last equality we used (1.9), (2.23), and (2.13). From (2.27) and (2.30), we obtain

Hn+1
q,ω u[n+1] = qHn−1

q,ω
(
θ2(·;n)u[n−1]) , (2.31)

where θ2(x;n) := d2nφ +qψ [n]ψ [n−1]. Since degθ2(·;n)≤ 2, applying the Leibniz formula (2.24) to
the right-hand side of (2.31), we obtain

Hn+1
q,ω u[n+1] = qL∗n−1

q,ω
(
θ2(·;n)

)
Hn−1

q,ω u[n−1]

+q[n−1]q−1L∗n−2
q,ω

(
D∗

q,ωθ2(·;n)
)
Hn−2

q,ω u[n−1] (2.32)

+
q[n−1]q−1 [n−2]q−1

[2]q−1
L∗n−3

q,ω
(
D∗2

q,ωθ2(·;n)
)
Hn−3

q,ω u[n−1] .
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Now, since φ(x) = ax2 +bx+ c, ψ [k] = d2kx+ ek, and the relations

dk+1 = a+qdk , ek+1 = b+qek +ωd2k+1 , d2k+2 +qd2k = (1+q)d2k+1 (2.33)

hold for each k = 0,1, . . ., we show that θ2(·;n) is given explicitly by

θ2(x;n) = d2nd2n−1x2 +d2n−1
(
(1+q)en −ωd2n

)
x+ cd2n +qenen−1 .

(Hence, degθ2(·;n) = 2.) From this and taking into account (1.19), we compute

D∗
q,ω
(
θ2(·;n)

)
= [2]q−1d2n−1

(
d2nx+qen −ωd2n

)
,

D∗2
q,ω
(
θ2(·;n)

)
= [2]q−1d2n−1d2n .

Moreover, by (1.11),

L∗k
q,ω1 = 1 , L∗k

q,ωx = q−k(x−ω[k]q
)
, L∗k

q,ωx2 = q−2k(x2 −2ω[k]qx+ω
2[k]2q

)
for each k = 0,1, . . ., hence we deduce

L∗n−1
q,ω

(
θ2(·;n)

)
= q2−2nd2nd2n−1x2

+q1−nd2n−1

(
(1+q)en −ωd2n

(
[n]q−1 +q−1[n−1]q−1

))
x

+ω
2q1−nd2nd2n−1[n−1]q[n]q−1

+qen
(
en−1 −ω(1+q)d2n−1q−n[n−1]q

)
+ cd2n , (2.34)

L∗n−2
q,ω

(
D∗

q,ωθ2(·;n)
)
= [2]q−1d2n−1

(
d2nq2−nx+qen −ωd2n[n−1]q−1

)
, (2.35)

L∗n−3
q,ω

(
D∗2

q,ωθ2(·;n)
)
= [2]q−1d2n−1d2n . (2.36)

Relation (2.36) allow us to rewrite (2.32) as

q[n−1]q−1 [n−2]q−1d2n−1d2nHn−3
q,ω u[n−1]

= Hn+1
q,ω u[n+1]−qL∗n−1

q,ω
(
θ2(·;n)

)
Hn−1

q,ω u[n−1] (2.37)

−q[n−1]q−1L∗n−2
q,ω

(
D∗

q,ωθ2(·;n)
)
Hn−2

q,ω u[n−1] .

On the other hand,

Hn−1
q,ω u[n] = Hn−2

q,ω
(
Hq,ωLq,ω

(
φu[n−1])= qHn−2

q,ω
(
Dq,ω

(
φu[n−1])= qHn−2

q,ω
(
ψ

[n−1]u[n−1])
= qL∗n−2

q,ω
(
ψ

[n−1])Hn−2
q,ω u[n−1]+q[n−2]q−1L∗n−3

q,ω
(
D∗

q,ωψ
[n−1])

)
Hn−3

q,ω u[n−1] ,

where in the last equality we used once again the Leibniz formula. As a consequence, since
L∗n−3

q,ω
(
D∗

q,ωψ [n−1])
)
= d2n−2, we obtain

q[n−2]q−1d2n−2Hn−3
q,ω u[n−1] = Hn−1

q,ω u[n]−qL∗n−2
q,ω

(
ψ

[n−1])Hn−2
q,ω u[n−1] . (2.38)
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Substituting in (2.37) the expression for Hn−3
q,ω u[n−1] given by (2.38), and then taking into account

(2.28) and (2.29), as well as the first equation in (2.25), we deduce(
1−

q−1[n−1]q−1

[n]q−1

d2n−1

d2n−2

)
Hn+1

q,ω u[n+1] =
(

A(·;n)Pn +B(·;n)Pn−1

)
u , (2.39)

where A(·;n) and B(·;n) are polynomials given by

A(x;n) :=
k−1

n

d2n−2

{
−

[n−1]q−1d2n−1
(
L∗n

q,ωψ [n]
)

[n]q−1

+L∗n−2
q,ω

(
D∗

q,ωθ2(·;n)
)
− d2n−1d2n

d2n−2

(
L∗n−2

q,ω ψ
[n−1])} (2.40)

and

B(x;n) :=
qk−1

n−1

d2n−2

{
d2n−2L∗n−1

q,ω
(
θ2(·;n)

)
−
(
L∗n−1

q,ω ψ
[n−1])×

×
(

L∗n−2
q,ω

(
D∗

q,ωθ2(·;n)
)
− d2n−1d2n

d2n−2

(
L∗n−2

q,ω ψ
[n−1]))} . (2.41)

Now, taking into account (2.34) and (2.35), as well as the relations

L∗n
q,ωψ

[n](x) = q−nd2nx+ en −ω[n]qq−nd2n , (2.42)

L∗n−2
q,ω ψ

[n−1](x) = q2−nd2n−2x+ en−1 −ω[n−2]qq2−nd2n−2 , (2.43)

and also making use of the identities

k−1
n =

qn−1dn−1

d2nd2n−1
k−1

n+1 , k−1
n−1 =

q2n−3dn−1dn−2

d2nd2n−1d2n−2d2n−3
k−1

n+1 , (2.44)

it is straightforward to verify that

A(x;n) = k−1
n+1

qn−1dn−1

[n]qd2n−2

(
x−βn

)
, B(x;n) =−k−1

n+1
qn−1dn−1

[n]qd2n−2
γn , (2.45)

where βn and γn are given by (2.20)–(2.21). Since computations on how to obtain (2.45) from
(2.40)–(2.41) are straightforward without any technical aspect, we refer this to the Appendix A.1.
Alternatively one can use Wolfram Mathematica.

Finally, replacing these expressions for A(·;n) and B(·;n) in the right-hand side of (2.39), and
taking into account (1.1) and the identity

1−
q−1[n−1]q−1

[n]q−1

d2n−1

d2n−2
=

qn−1dn−1

[n]qd2n−2
,

(2.26) follows.
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Lemma 2.1.6 in bellow can be easily proved (see [15, Lemma 3.1]).

Lemma 2.1.6 Let u ∈ P∗. Suppose that u is regular and fulfills (2.9), with φ ∈ P2 and ψ ∈ P1. If
at least one of the polynomials φ and ψ is not the zero polynomial, then none of these polynomials
can be the zero polynomial and, moreover, degψ = 1.

The statement of the next lemma is given in [15, Lemma 3.5]. However the proof of the
(q,ω)−admissibility condition given therein is incorrect. Indeed, in [15, Lemma 3.5–(i)], it is stated
that λn+1,0 ̸= 0 for all n = 0,1,2, . . ., where λn+1,0 := q−1a[n]q−1 +d, and so, since λn+1,0 = q−ndn,
[15, Lemma 3.5–(i)] is equivalent to say that (φ ,ψ) is a (q,ω)-admissibility pair. The argument used
in the proof of [15, Lemma 3.5–(i)] is based on relations (3.79) given therein, which can be written
(in out notation) as

Dq,ω(φu) = ψu ⇔− λn+1,0

[n+1]q
Mn+1 =

n

∑
j=0

f jM j, ∀n ∈ N0 ,

where ( f j) j≥0 is a sequence of numbers and M j :=
〈
u,x j

〉
for each j = 0,1,2, . . .. After stating this in

[15, p.56], the author says that "Since u is regular, to have all its moments given in the unique way
by the previous ones, it is necessary to have λn+1,0 ̸= 0 for all n = 0,1,2, . . .". Clearly, this sentence
would be correct if "necessary" is replaced by "sufficient". But in that case the argument is not valid
to deduce the (q,ω)-admissibility condition. For sake of completeness, we present a proof following
the ideas presented in [38].

Lemma 2.1.7 Let u ∈P∗. Suppose that u is regular and satisfies (2.9), where φ ∈P2, ψ ∈P1, and
at least one of the polynomials φ and ψ is not the zero polynomial. Then (φ ,ψ) is a (q,ω)−admissible
pair and u[k] is regular for each k ∈ N. Moreover, if (Pn)n≥0 is the monic OPS with respect to u, then(
P[k]

n
)

n≥0 is the monic OPS with respect to u[k].

Proof We start by considering the case k = 1. Set Qn := P[1]
n = Dq,ωPn+1/[n+1]q and let Rn+1

be the corresponding polynomial defined by (2.16). Let m and n be arbitrary integers, with m ≤ n.
Then, by Lemma 2.1.4,

[m+1]q
〈
u[1],QnQm

〉
=−

〈
D∗

q,ω
(
Qnu[1]),Pm+1

〉
=−q−1⟨Rn+1u,Pm+1⟩

=−q−ndn⟨u,P2
n+1⟩δm,n ,

hence we obtain

〈
u[1],P[1]

n P[1]
m
〉
=− q−ndn

[n+1]q
⟨u,P2

n+1⟩δm,n (m,n = 0,1, . . .) . (2.46)

Next, let s := degφ ∈ {0,1,2}. Then

0 ̸=
〈
u,φ
(
L∗

q,ωP[1]
n
)
Pn+s

〉
=
〈
φu,L∗

q,ω
(
P[1]

n Lq,ωPn+s
)〉

= q
〈
u[1],P[1]

n Lq,ωPn+s⟩ . (2.47)
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Since Lq,ωPn+s(x) = ∑
n+s
m=0 cn,mP[1]

m (x) for some coefficients cn,m ≡ cn,m(s;q,ω) ∈ C, from (2.46) and
(2.47) we deduce

0 ̸=
n+s

∑
m=0

cn,m
〈
u[1],P[1]

n P[1]
m
〉
=−q−ndncn,n

[n+1]q
⟨u,P2

n+1⟩ (n = 0,1, . . .) . (2.48)

This implies dn ̸= 0 (and also cn,n ̸= 0) for each n= 0,1, . . ., which means that (φ ,ψ) is a (q,ω)−admissible
pair. Thus, it follows from (2.46) that

(
P[1]

n
)

n≥0 is a monic OPS with respect to u[1]. This proves the
last statement in the theorem for k = 1. Now, by (2.13), u[1] fulfills Dq,ω

(
φu[1]

)
= ψ [1]u[1], hence,

since P[2]
n = Dq,ωP[1]

n+1/[n+1]q and, by (2.15), ψ [1](x) = d2x+ e1, from (2.46) with u, ψ , and (Pn)n≥0

replaced (respectively) by u[1], ψ [1], and (P[1]
n )n≥0, we deduce, for every n,m ∈ N0,

⟨u[2],P[2]
n P[2]

m ⟩=− q−nd[1]
n

[n+1]q
⟨u[1],

(
P[1]

n+1

)2⟩δnm

where d[1]
n is defined as in (2.7) corresponding to the pair (φ ,ψ [1]), so that

d[1]
n :=

(
ψ

[1])′ qn + 1
2 φ

′′
[n]q = d2qn +a[n]q = dn+2 .

Therefore, and taking into account once again (2.46), we obtain

⟨u[2],P[2]
n P[2]

m ⟩= q−(2n+1) dn+1dn+2

[n+1]q[n+2]q
⟨u,P2

n+2⟩δnm (n,m ∈ N0) ,

and so (P[2]
n )n≥0 is a monic OPS with respect to u[2]. Arguing by induction, we prove

⟨u[k],P[k]
n P[k]

m ⟩= (−1)kq−k(2n+k−1)/2
( k

∏
j=1

dn+k+ j−2

[n+ j]q

)
⟨u,P2

n+k⟩δnm (k,n,m ∈ N0) , (2.49)

hence (P[k]
n )n≥0 is a monic OPS with respect to u[k], for each k ∈ N0. This completes the proof.

We have shown that if a nonzero linear functional u ∈ P ′ satisfies (2.9), where (φ ,ψ) given by
(2.6)–(2.7) is a (q,ω)-admissible pair, then the Rodrigues-type formula (2.18) holds, where (Pn)n≥0 is
a simple set of monic polynomials defined by the three-term recurrence relation (1.1) with coefficients
βn and γn given by (2.20)–(2.21). In the next section, we give necessary and sufficient conditions for
the regularity of such functional u. We also show that under those regularity conditions, the above
mentioned polynomial sequence (Pn)n≥0 is the monic OPS with respect to u.
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2.2 Regularity conditions

2.2.1 Main theorem

Theorem 2.2.1 Let q,ω ∈ C fulfilling (1.5). Let u ∈ P ′ \{0}. Suppose that the functional equation
(2.9) holds; with φ ∈ P2, ψ ∈ P1, and at least one of φ and ψ is not the zero polynomial.

Then, u is regular if and only if

dn ̸= 0 , φ

(
− en

d2n

)
̸= 0 , ∀n ∈ N0 , (2.50)

where φ , dn and en are given by relations (2.6)–(2.7). Under these conditions, the monic OPS
(Pn)n≥0 ≡ (Pn(·;q,ω))n≥0 with respect to u satisfies the three-term recurrence relation (1.1) with
coefficients βn and γn given by (2.20)–(2.21).

In addition, the Rodrigues-type formula

Pnu = kn Dn
1/q,−ω/q

(
Φ(·;n)Ln

q,ωu
)

(n = 0,1, . . .) (2.51)

holds in P∗, where kn and Φ(·;n) are defined in (2.19) and (2.12), respectively.

Proof Suppose that u is regular. Let n ∈ N0. Since u satisfies (2.9), Lemma 2.1.7 ensures that
(φ ,ψ) is a (q,ω)−admissible pair, and so dn ̸= 0. Moreover, u[n] is regular and

(
P[n]

j

)
j≥0 is the

corresponding monic OPS, which fulfills a three-term recurrence relation:

P[n]
j+1(x) = (x−β

[n]
j )P[n]

j (x)− γ
[n]
j P[n]

j−1(x) ( j = 0,1, . . .) , (2.52)

where P[n]
−1(x) = 0, being β

[n]
j ∈ C and γ

[n]
j ∈ C\{0} for each j. Let us compute γ

[n]
1 . We first show

that (for n = 0) the coefficient γ1 ≡ γ
[0]
1 , appearing in the three-term recurrence relation for (Pj) j≥0, is

given by

γ1 =− 1
dq+a

φ

(
− e

d

)
. (2.53)

This may be proved taking n = 0 and n = 1 in the relation ⟨Dq,ω(φu),xn⟩= ⟨ψu,xn⟩. Indeed, setting
un := ⟨u,xn⟩, for n = 0 we obtain 0 = du1 + eu0, and for n = 1 we find −q−1(au2 + bu1 + cu0) =

du2 + eu1. Therefore,

u1 =− e
d

u0 , u2 =− 1
dq+a

[
−(qe+b)

e
d
+ c
]

u0 . (2.54)

On the other hand, since P1(x) = x−β0 = x−u1/u0, we also have

γ1 =
⟨u,P2

1 ⟩
u0

=
u2u0 −u2

1

u2
0

=
u2

u0
−
(

u1

u0

)2

. (2.55)

Substituting u1 and u2 given by (2.54) into (2.55) yields (2.53). Now, since equation (2.13) is of
the same type as (2.9), with the same polynomial φ and being ψ replaced by ψ [n], we see that γ

[n]
1

may be obtained replacing in (2.53) the coefficients d and e of ψ(x) = dx+ e by the corresponding
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coefficients of ψ [n](x) = d2nx+ en. Hence,

γ
[n]
1 =− 1

d2nq+a
φ

(
− en

d2n

)
=− 1

d2n+1
φ

(
− en

d2n

)
. (2.56)

Since u[n] is regular, then γ
[n]
1 ̸= 0, hence φ

(
− en

d2n

)
̸= 0. Thus, (2.50) holds.

Conversely, suppose that (2.50) holds. Then, by Favard’s theorem, the sequence (Pn)n≥0 defined
by the three-term recurrence relation (1.1) with coefficients given in (2.20)− (2.21) is a monic OPS.
We claim that (Pn)n≥0 is an OPS with respect to u. To prove this sentence we only need to show that
(see e.g. [13, Chapter I, Exercise 4.14] or [56, Corollary 6.2])

⟨u,1⟩ ̸= 0 , ⟨u,Pn⟩= 0 (n = 1,2, . . .) . (2.57)

Suppose that ⟨u,1⟩= 0. Since the functional equation (2.9) is equivalent to the second order difference
equation (1.25) fulfilled by the moments yn := ⟨u,Yn⟩ (with dn and en defined as in relations (2.6)–
(2.7)), and noting that for n = 0, (1.25) yields dy1 + ey0 = 0, we get y1 = 0 (because y0 = ⟨u,1⟩= 0
and d = d0 ̸= 0); hence y0 = y1 = 0 and so it follows recurrently from (1.25) that yn = 0 for each
n ∈ N0. Therefore u = 0, in contradiction with the hypothesis. Thus, ⟨u,1⟩ ≠ 0. On the other hand,
by Lemma 2.1.5, for each n ≥ 1 we may write

⟨u,Pn⟩= ⟨Pnu,1⟩=−qkn
〈
Dn−1

1/q,−ω/qu[n],Dq,ω1
〉
= 0 .

Thus (2.57) is proved, hence u is regular and (Pn)n≥0 is the corresponding monic OPS. Finally,
the Rodrigues-type formula (2.51) follows from Lemma 2.1.5 and (2.11), concluding the proof of
Theorem 2.2.1.

2.2.2 Final remarks

1. Under the assumption that u is regular, the Rodrigues-type formula (2.51) appears in Médem
et al. [52] for ω = 0 and q ̸= 1, and in Salto [59] for q = 1 and ω ̸= 0. However, we proved a
more general result (cf. Lemma 2.1.5), showing that (2.51) holds without assuming the regularity of
u, provided that (Pn)n≥0 is a simple set of polynomials defined by (1.1) with coefficients given by
(2.20)–(2.21), which we see is well defined requiring only (the admissibility condition) dn ̸= 0 for
each n = 0,1, . . .. It is worth mentioning that this (non trivial) fact is known for the continuous case
[38, Lemma 2], but for the (q,ω)−case we did not found a reference in the available literature.

2. As expected, taking ω = 0 and letting q → 1 in Theorem 2.2.1 yields Theorem 2.1.1.

3. We highlight that Häcker [22, Theorem 1.4 (p. 26)] gave regularity conditions different from
(2.50), considering a definition of Dq,ω in the sense discussed in the previous chapter. Häcker’s
approach is different from ours, since his results are derived from the analysis of a discrete Sturm-
Liouville problem, while our proof of Theorem 2.2.1 uses appropriate modifications of some ideas
appearing in [38], based in the McS thesis [57] and obtained independently of Häcker’s results.
Indeed, as we said at the beginning of this thesis, our approach is supported on the algebraic theory of
orthogonal polynomials developed by Maroni [46].
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4. As we mentioned before, there are some advantages in defining Dq,ω as in (1.6). For instance,
in the regularity condition (2.50) as well as in the expression for γn given by (2.21), the polynomial
appearing therein is precisely φ . The same does not hold in the formulas given in Häcker thesis (cf.
[22, Section 2.4]).

5. Since −en/d2n is the unique zero of ψ [n](x) = d2nx+ en, the regularity conditions (2.50)
for u given in Theorem 2.2.1 may be restated as follows: u is regular if and only if (φ ,ψ) is a
(q,ω)−admissibe pair and ψ [n] - φ for each n = 0,1, . . .. Thus, comparing with [22, Theorem 1.4],
we see once again that it is advantageous to define Dq,ω as in (1.6).

6. It may seems somehow intricate the way how formulas (2.20) and (2.21) appear on the course
of the proof of Theorem 2.2.1. In fact, they were given in the proof of the sufficiency of the condition,
hence without assuming a priori the regularity of u (as a matter of fact, they were used to prove
the regularity of u). Assuming the regularity of u, there is a more transparent way to obtain those
formulas. Indeed, going back to the end of the proof of the necessity of the condition on Theorem
2.2.1, we may deduce (2.20) and (2.21) as follows. First, from (2.49), we may write

γ
[n]
j =

〈
u[n],

(
P[n]

j

)2〉〈
u[n],

(
P[n]

j−1

)2〉 = q−n[ j]qd j+2n−2

[ j+n]qd j+n−2

⟨u,P2
j+n⟩

⟨u,P2
j+n−1⟩

=
q−n[ j]qd j+2n−2

[ j+n]qd j+n−2
γ j+n

for every j = 1,2, . . . and n = 0,1, . . .. Taking j = 1 and using (2.56), we obtain

γn+1 =
qn[n+1]qdn−1

d2n−1
γ
[n]
1 =−

qn[n+1]qdn−1

d2n−1d2n+1
φ

(
− en

d2n

)
.

This proves (2.21). To prove (2.20), set P[k]
n (x) = xn + t [k]n xn−1 + (lower degree terms), for each

k = 0,1, . . .. It is well known (see e.g. [13, Theorem 4.2-(d)]) that

t [k]n =−
n−1

∑
j=0

β
[k]
j (k = 0,1, . . . ; n = 1,2, . . .) .

Using (1.19), and recalling that P[0]
n = Pn, we deduce

Dq,ωPn+1(x) = Dq,ω(xn+1)+ t [0]n+1Dq,ω(xn)+(lower degree terms)

= [n+1]qxn +
{(

(n+1)[n]q −n[n+1]q
)
ω0 + t [0]n+1[n]q

}
xn−1 +(lower degree terms) ,

hence, since P[1]
n (x) := Dq,ωPn+1(x)/[n+1]q, we obtain

t [1]n =
((n+1)[n]q

[n+1]q
−n
)

ω0 + t [0]n+1
[n]q

[n+1]q
(n = 1,2, . . .) .

Rewrite this equality as

t [0]n+1 +(n+1)ω0

[n+1]q
=

t [1]n +nω0

[n]q
(n = 1,2, . . .) .
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Applying successively this relation, yields

t [0]n+1 +(n+1)ω0

[n+1]q
=

t [n]1 +1 ·ω0

[1]q
=−β

[n]
0 +ω0 (n = 1,2, . . .) ,

hence
t [0]n+1 =

(
[n+1]q − (n+1)

)
ω0 − [n+1]qβ

[n]
0 (n = 0,1, . . .) .

(Note that this equality is trivial if n = 0.) Therefore,

βn = β
[0]
n = t [0]n − t [0]n+1 =

(
[n]q − [n+1]q +1

)
ω0 +[n]qβ

[n−1]
0 − [n+1]qβ

[n]
0 .

This proves (2.20), since β0 = u1/u0 = −e/d, hence β
[n]
0 = −en/d2n, and taking into account that

([n]q − [n+1]q +1)ω0 = [n]qω .
Now, suppose that u ∈ P∗ is regular and satisfies the functional equation (2.9). Then the Rodrigues-
type formula (2.51) is a simple consequence of the relation between the dual basis (an)n≥0 and(
a[k]n
)

n≥0 associated to the monic OPS (Pn)n≥0 and (P[k]
n )n≥0 (k = 0,1, . . .), respectively. To see why

this holds, we may write (in the sense of the weak dual topology in P ′):

Dk
1/q,−ω/q

(
a[k]n
)
=

∞

∑
j=0

⟨Dk
1/q,−ω/q

(
a[k]n
)
,Pj⟩a j (n = 0,1, . . .) .

Since ⟨Dk
1/q,−ω/q

(
a[k]n
)
,Pj⟩= 0 if j < k and, if j ≥ k,

⟨Dk
1/q,−ω/q

(
a[k]n
)
,Pj⟩= (−q)k⟨a[k]n ,Dk

q,ωPj⟩= (−q)k [ j]q!
[ j− k]q!

⟨a[k]n ,P[k]
j−k⟩ ,

we deduce

Dk
1/q,−ω/q

(
a[k]n
)
= (−q)k [n+ k]q!

[n]q!
an+k (n,k = 0,1, . . .) . (2.58)

Taking n = 0 and then replacing k by n, we obtain

Dn
1/q,−ω/q

(
a[n]0

)
= (−q)n[n]q!an (n = 0,1, . . .) .

Therefore, since a[n]0 = ⟨u[n],1⟩−1u[n] and an = ⟨u,P2
n ⟩−1Pnu (see [46, 48]), we deduce

Dn
1/q,−ω/q

(
u[n])= (−q)n[n]q!

⟨u[n],1⟩
⟨u,P2

n ⟩
Pnu (n = 0,1, . . .) .

Finally, taking into account (2.11) and (2.49), (2.51) follows.



Chapter 3

Another extension of coherent pairs of
measures

3.1 Introduction

In the framework of the theory of orthogonal polynomials, the concept of coherent pair of measures
as well as its multiple generalizations have been a subject of increasing research interest along
the last decades. This concept was introduced by Iserles et al. [25] motivated by the theory of
polynomial approximation with respect to certain Sobolev inner products. In [27, 29], the notion
of (M,N)−coherent pair of order (m,k) were introduced as extensions of most of the concepts of
coherence up to that time. More precisely, given two monic OPS, (Pn)n≥0 and (Qn)n≥0, we say
that

(
(Pn)n≥0,(Qn)n≥0

)
is an (M,N)−coherent pair of order (m,k) if there exist two non-negative

integer numbers M and N, and sequences of complex numbers (an, j)n≥0 ( j = 0,1, . . . ,M) and (bn, j)n≥0

( j = 0,1,2, . . . ,N) such that, under natural assumptions on the coefficients an, j and bn, j, the structure
relation

M

∑
j=0

an, jP
[m]
n− j(x) =

N

∑
j=0

bn, jQ
[k]
n− j(x) (n = 0,1, . . .)

holds. We use the notation
P[m]

n (x) :=
1

(n+1)m

dm

dxm Pn+m(x)

(Q[k]
n is defined in the same way), where for any positive real number α , (α)n denotes the Pochhammer

symbol defined by

(α)0 := 1 , (α)n := α(α +1) · · ·(α +n−1) if n ∈ N .

Note that P[m]
n is a normalization of the derivative of order m of Pn+m defined so that it becomes a

monic polynomial of degree n. Let u and v be the moment regular functionals with respect to which
(Pn)n≥0 and (Qn)n≥0 are orthogonal. It follows from the results in [27–29, 58] that if m = k then u
and v are connected by a rational transformation (in the distributional sense), i.e., there exist nonzero
polynomials Φ and Ψ such that Φu = Ψv. Otherwise if m ̸= k then u and v are still connected by a
rational transformation and, in addition, they are semiclassical functionals, i.e., there exist nonzero

33
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polynomials Φ1, Ψ1, Φ2, and Ψ2 such that

D(Φ1u) = Ψ1u , D(Φ2v) = Ψ2v .

In this chapter we modify the left-hand side of the above structure relation, and consider the
following one:

πN(x)P
[m]
n (x) =

n+N

∑
j=n−M

cn, jQ
[k]
j (x) (n = 0,1,2, . . .) , (3.1)

where M and N are fixed non-negative integer numbers, πN is a monic polynomial of degree N (hence
cn,n+N = 1 for each n), and we consider the convention Q j ≡ 0 if j < 0. Further, we will assume that
the following condition holds:

cn,n−M ̸= 0 if n ≥ M . (3.2)

Maroni and Sfaxi [45] considered the case (m,k) = (0,1) and called the pair
(
(Pn)n≥0,(Qn)n≥0

)
fulfilling the structure relation (3.1) whenever (m,k) = (0,1) a πN−coherent pair with index M. This
motivates the following.

Definition 3.1 Let M and N be non-negative integer numbers and let πN be a monic polynomial of
degree N. If (Pn)n≥0 and (Qn)n≥0 are two monic OPS such that their normalized derivatives of orders
m and k (respectively) satisfy (3.1)–(3.2), we call

(
(Pn)n≥0,(Qn)n≥0

)
, as well as the corresponding

pair (u,v) of regular functionals, a πN−coherent pair with index M and order (m,k).

Besides [45], many other instances of the structure relation (3.1) were considered previously by
several authors. For instance, the case N = 0 (i.e., πN ≡ 1 and M, m, and k being arbitrary) fits into
the theory of (M,0)−coherent pairs of order (m,k), described at the begin of this introduction. Also,
whenever (m,k) = (1,0) and (Pn)n≥0 ≡ (Qn)n≥0, (3.1) becomes a characterization of semiclassical
OPS due to Maroni [44, 46]. Note that for N ≤ 2 and M = 0, this reduces to the well known Al-
Salam-Chihara characterization of the classical OPS [3]. The case k = 0 (M, N and m being arbitrary)
was considered by Bonan et al. [8] in the framework of orthogonality in the positive-definite sense,
i.e., whenever the orthogonality of each of the involved OPS is considered with respect to positive
Borel measures. In the special case m = 1, a complementary approach to the case considered in [8]
was presented in [39], in the framework of the so-called regular (or formal) orthogonality. A relevant
reference concerning finite-type relations between OPS is Maroni’s article [40].

It is a remarkable fact that in all the previous works the involved OPS and their corresponding
regular moment linear functionals are semiclassical. Thus, a major question is to analyze whether
the OPS involved in a πN−coherent pair with index M and order (m,k) are semiclassical, and in such
case to determine the relations between the corresponding regular moment linear functionals. This
will be treated in the next section. In Section 3.3 we analyze the case of a discrete variable obtained
from (3.1) by replacing the derivative operator by the discrete Hahn operator defined by (1.4). The
last section is devoted to applications where we present alternative approaches to some results due to
Griffin (see [21]), Datta and Griffin (see [14]) which fit into this notion of coherence pair of measures.
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3.2 πN−coherent pairs with index M and order (m,k): the continuous
case

In this section we establish the semiclassical character of the OPS and their associated regular
functionals involved in a πN−coherent pair with index M and order (m,k). As in the previous chapter,
our approach is based upon the algebraic theory of orthogonal polynomials developed by Maroni
[43, 46].

Lemma 3.2.1 Let
(
(Pn)n≥0,(Qn)n≥0

)
be a πN−coherent pair with index M and order (m,k), so that

(3.1)–(3.2) hold. Set

ψ(x;n) :=
n+M

∑
j=n−N

(−1)m( j+1)m c j,n

⟨u,P2
m+ j⟩

Pm+ j(x) , (3.3)

φ(x;n, j) :=
(−1)k(n+1)k

⟨v,Q2
n+k⟩

N− j

∑
ℓ=0

(
k+N
ℓ

)(
N − ℓ

N − j− ℓ

)
π
(ℓ)
N (x)Q(N− j−ℓ)

n+k (x) , (3.4)

for all n = 0,1, . . ., and j = 0,1,2, . . . ,N, so that

degψ(·;n) = m+n+M , degφ(·;n, j) = k+n+ j .

Let u and v be the regular functionals with respect to which (Pn)n≥0 and (Qn)n≥0 are orthogonal.
Then the following functional equations hold:

ψ(·;n)u = Dm−k−N

(
N

∑
j=0

φ(·;n, j)D jv

)
if m ≥ k+N , (3.5)

Dk+N−m(
ψ(·;n)u

)
=

N

∑
j=0

φ(·;n, j)D jv if m < k+N , (3.6)

for all n = 0,1, . . ..

Proof Let (an)n≥0, (bn)n≥0, (a[m]
n )n≥0, and (b[k]

n )n≥0 be the dual basis corresponding to the simple
sets of polynomials (Pn)n≥0, (Qn)n≥0, (P[m]

n )n≥0 and (Q[k]
n )n≥0, respectively. Then

πNb[k]
n =

+∞

∑
j=0

〈
πNb[k]

n ,P[m]
j

〉
a[m]

j (n = 0,1,2, . . .)

(in the sense of the weak dual topology in P ′). From (3.1), we have

〈
πNb[k]

n ,P[m]
j

〉
=
〈
b[k]n ,πNP[m]

j

〉
=

j+N

∑
ℓ= j−M

c j,ℓ
〈
b[k]n ,Q[k]

ℓ

〉
=

c j,n if n−N ≤ j ≤ n+M

0 otherwise .



36 Another extension of coherent pairs of measures

Hence

πNb[k]
n =

n+M

∑
j=n−N

c j,na[m]
j (n = 0,1,2, . . .) . (3.7)

Considering the m-th derivative on both sides of this equation and taking into account that Dm
(
a[m]

j

)
=

(−1)m( j+1)ma j+m, we obtain

Dm(
πNb[k]

n
)
= ψ(·;n)u (n = 0,1,2, . . .) , (3.8)

where ψ(·;n) is defined by (3.3). Notice that the condition (3.2) ensures that degψ(·,n) = M+m+n
for each n = 0,1,2, . . .. Using the Leibniz rule for the derivative of the left product of a functional by
a polynomial, and taking into account that π

( j)
N = 0 if j > N, as well as

Dk(b[k]
n
)
= (−1)k(n+1)kbn+k = (−1)k(n+1)k⟨v,Q2

n+k⟩−1Qn+kv ,

we deduce

Dk+N(
πNb[k]

n
)
=

(−1)k(n+1)k

⟨v,Q2
n+k⟩

N

∑
j=0

(
k+N

j

)
π
( j)
N DN− j(Qn+kv)

=
(−1)k(n+1)k

⟨v,Q2
n+k⟩

N

∑
j=0

N− j

∑
ℓ=0

(
k+N

j

)(
N − j
ℓ

)
π
( j)
N Q(ℓ)

n+kDN− j−ℓv

=
(−1)k(n+1)k

⟨v,Q2
n+k⟩

N

∑
j=0

N

∑
ℓ= j

(
k+N

j

)(
N − j
ℓ− j

)
π
( j)
N Q(ℓ− j)

n+k DN−ℓv

=
(−1)k(n+1)k

⟨v,Q2
n+k⟩

N

∑
ℓ=0

ℓ

∑
j=0

(
k+N

j

)(
N − j
ℓ− j

)
π
( j)
N Q(ℓ− j)

n+k DN−ℓv

=
N

∑
ν=0

(
(−1)k(n+1)k

⟨v,Q2
n+k⟩

N−ν

∑
j=0

(
k+N

j

)(
N − j

N −ν − j

)
π
( j)
N Q(N−ν− j)

n+k

)
Dνv .

Hence, by (3.4), we obtain

Dk+N(
πNb[k]

n
)
=

N

∑
j=0

φ(·;n, j)D jv . (3.9)

If m ≥ k+N, we rewrite (3.8) as

ψ(·;n)u = Dm−k−NDk+N(
πNb[k]

n
)

(n = 0,1,2 . . .) , (3.10)

and (3.5) follows from (3.9) and (3.10). If m < k+N, writing

Dk+N(
πNb[k]

n
)
= Dk−m+NDm(

πNb[k]
n
)

(n = 0,1,2 . . .) ,

we see that (3.6) follows from (3.8) and (3.9). This ends the proof.

Our problem will be separated into three cases depending on m, k and N.
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3.2.1 Case m ≥ k+N

Theorem 3.2.2 Let
(
(Pn)n≥0,(Qn)n≥0

)
be a πN−coherent pair with index M and order (m,k), so

that (3.1)–(3.2) holds. Let u and v be the regular functionals with respect to which (Pn)n≥0 and
(Qn)n≥0 are orthogonal. Suppose m ≥ k+N. Assume further that m > k whenever N = 0. For each
i = 0, . . . ,m− k and n = 0,1,2, . . ., let

ϕ(x;n, i) := ∑
j+ℓ=i

0≤ j≤N
0≤ℓ≤M

(
m− k−N

ℓ

)(
φ(x;n, j)

)(m−k−N−ℓ)
, (3.11)

φ(·;n, j) being the polynomial introduced in (3.4). Let A (x) be the polynomial matrix of order
m− k+1 defined by

A (x) :=
[
ϕ(x;n, j)

]m−k
n, j=0 .

Let A1(x) (resp., A2(x)) be the matrix obtained by replacing the first (resp., the second) column of
A (x) by

[
ψ(x;0),ψ(x;1), · · · ,ψ(x;m− k)]t , and set

A(x) := detA (x) , A1(x) := detA1(x) , A2(x) := detA2(x) .

Assume that the polynomial A(x) does not vanishes identically. Then

Av = A1u , ADv = A2u , (3.12)

hence u and v are semiclassical functionals related by a rational transformation. Moreover, u and v
fulfill the following equations:

D(AA1u) =
(
(AA1)

′+AA2
)
u , D(AA1v) =

(
2A′A1 +AA2

)
v . (3.13)

Proof By (3.5) and the Leibniz rule, we have

ψ(·;n)u =
N

∑
j=0

m−k−N

∑
ℓ=0

(
m− k−N

ℓ

)(
φ(·;n, j)

)(m−k−N−ℓ)D j+ℓv .

This may be rewritten as

ψ(·;n)u =
m−k

∑
i=0

ϕ(·;n, i)Div (n = 0,1,2 · · ·) , (3.14)

where ϕ(·;n, i) is the polynomial introduced in (3.11). Taking n = 0,1,2 . . . ,m−k in (3.14) we obtain
a system with m− k+1 equations that can be written as

ψ(x;0)u
ψ(x;1)u

...
ψ(x;m− k)u

= A (x)


v

Dv
...

Dm−kv

 .
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Solving for v and Dv we obtain (3.12). Finally, (3.13) follows from (3.12).

Remark 3.2.1 If m = k and N = 0, then u and v are still related by a rational transformation, but we
cannot ensure that they are semiclassical (see [27, 28]).

Now, we consider the second case.

3.2.2 Case m < k+N

Theorem 3.2.3 Let
(
(Pn)n≥0,(Qn)n≥0

)
be a πN−coherent pair with index M and order (m,k), so that

(3.1)–(3.2) holds. Let u and v be the regular functionals with respect to which (Pn)n≥0 and (Qn)n≥0

are orthogonal. Assume further that m < k+N. For each j = 0, . . . ,k−m+N and n = 0,1, . . ., set

ξ (x;n, j) :=
(

k−m+N
j

)(
ψ(x;n)

)(k−m+N− j)
, (3.15)

ψ(·;n) being the polynomial introduced in (3.3). Let B(x) :=
[
bi, j(x)

]k−m+2N
i, j=0 be the polynomial

matrix of order k−m+2N +1 defined by

bi, j(x) :=

 φ(x; i, j) if 0 ≤ j ≤ N ,

−ξ (x; i, j−N) if N +1 ≤ j ≤ k−m+2N ,

φ(·; i, j) being the polynomial given by (3.4). Let B1(x) (resp., B2(x) and BN+2(x)) be the ma-
trix obtained by replacing the first (resp., the second and the (N + 2)-th) column of B(x) by[
ξ (x;0,0),ξ (x;1,0), · · · ,ξ (x;m− k+2N,0)]t , and set

B(x) := detB(x) , B j(x) := detB j(x) , j ∈ {1,2,N +2} .

Assume that the polynomial B(x) does not vanishes identically. Then

Bv = B1u , BDv = B2u , BDu = BN+2u , (3.16)

hence u and v are semiclassical functionals related by a rational transformation. Moreover, u and v
fulfill the following equations:

D(Bu) =
(
B′+BN+2

)
u , D(BB1v) =

(
(BB1)

′+BB2
)
v . (3.17)

Proof By the Leibniz rule, we can rewrite (3.5) as

k−m+N

∑
j=0

ξ (·;n, j)D ju =
N

∑
j=0

φ(·;n, j)D jv (n = 0,1, . . .) .
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Taking n = 0,1,2 . . . ,k−m+2N, we obtain the following system of k−m+2N +1 equations:

ξ (x;0,0)u
ξ (x;1,0)u

...
ξ (x;k−m+N,0)u

ξ (x;k−m+N +1,0)u
...

ξ (x;k−m+2N,0)u


= B(x)



v
Dv
...

DNv
Du

...

Dk−m+Nu


.

The theorem follows by solving this system for v, Dv, and Du.

3.2.3 Case k = 0

In this case, we may state a finer result.

Theorem 3.2.4 Let
(
(Pn)n≥0,(Qn)n≥0

)
be a πN−coherent pair with index M and order (m,0), so that

the structure relation

πN(x)P
[m]
n (x) =

n+N

∑
j=n−M

cn, jQ j(x) (n = 0,1,2, . . .)

holds, where M and N are fixed non-negative integer numbers, πN is a monic polynomial of degree
N, and cn,n−M ̸= 0 if n ≥ M. Assume further that m ≥ 1 if N = 0. Let u and v be the regular
functionals with respect to which (Pn)n≥0 and (Qn)n≥0 are (respectively) orthogonal. Then u and v
are semiclassical functionals related by a rational transformation. More precisely, setting

Φ(x; j) :=
⟨v,Q2

j⟩ψ(x; j)−∑
j−1
ℓ=0

(m
ℓ

)
Q(ℓ)

j (x)Φ(x;ℓ)

j!
(m

j

) ( j = 0,1,2, . . . ,m) , (3.18)

ψ(·; j) being the polynomial introduced in (3.3), then degΦ(·;0) = M+m, degΦ(·; j)≤ M+m+ j
for each j = 1, . . . ,m, and the following holds:

D
(
Φ(·;1)u

)
= Φ(·;0)u (3.19)

πNv = Φ(·;m)u (3.20)

D
(
Φ(·;m)πNv

)
=
(
Φ(·;m)′+Φ(·;m−1)

)
πNv . (3.21)

Moreover, s(u)≤ M+m−1 and s(v)≤ N +M+2(m−1).

Proof Since k = 0 then b[k]
n ≡ b[0]

n = bn = ⟨v,Q2
n⟩−1Qnv for each n = 0,1,2, . . ., hence relation

(3.8) may be rewritten as

Dm(QnπNv
)
= ⟨v,Q2

n⟩ψ(·;n)u (n = 0,1,2, . . .) , (3.22)
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where ψ(·;n) is defined by (3.3). Taking n = 0, we obtain

Dm(
πNv

)
= Φ(·;0)u . (3.23)

Taking n = 1 in (3.22) and then applying the Leibniz rule, we deduce

⟨v,Q2
1⟩ψ(·;1)u = Dm(Q1πNv

)
= mDm−1(

πNv
)
+Q1Dm(

πNv
)
.

Hence, by (3.23), we have
Dm−1(

πNv
)
= Φ(·;1)u . (3.24)

Thus (3.19) follows from (3.23) and (3.24). This proves that u is semiclassical of class s(u) ≤
M +m− 1. We conclude pursuing with the described procedure, so that by taking successively
n = 0,1, . . . ,m in (3.22), we conclude that the following relations hold:

Dm− j(
πNv

)
= Φ(·; j)u ( j = 0,1,2, . . . ,m) . (3.25)

In particular, for j = m we obtain (3.20), hence u and v are related by a rational transformation. Next,
setting j = m−1 in (3.25) we obtain

D
(
πNv

)
= Φ(·;m−1)u . (3.26)

Since D
(
Φ(·;m)πNv

)
= Φ(·;m)′πNv+Φ(·;m)D

(
πNv

)
, we obtain (3.21) using (3.26) and (3.20).

Thus v is semiclassical of class s(v)≤ N +M+2m−2, and the theorem is proved.

In the case m = 1, Theorem 3.2.4 was partially proved in [39]. Note that the functional equation
(3.21) (for m = 1) was not given therein. The results stated in [28] for the continuous (M,N)−coherent
pairs of order (m,k) were extended in [27] to the setting of discrete OPS. In a similar way, the results
proved in this section may be extended to the discrete OPS, replacing the derivative operator D by the
Hahn operator Dq,ω defined in (1.4). This is the objective of the next section.

3.3 πN−coherent pairs with index M and order (m,k): the discrete case

In this section, we consider (3.1) redefining the derivatives as “discrete” derivatives,

S[m]
n :=

[n]q!
[n+m]q!

Dm
q,ωSn+m , (3.27)

where Dq,ω is the Hahn operator defined in (1.4)–(1.5). This leads to the concept of discrete πN-
(q,ω)-coherent pair with index M and order (m,k), defined as in Definition 3.1 with the obvious
modification; that is, replacing in (3.1) the standard derivatives by the discrete ones (3.27). Taking
into account the Leibniz formula (1.18), proves of our results in this section are similar to the ones on
the previous section for the continuous case and because of this, we present only the results with few
details in their proofs.
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Lemma 3.3.1 Let
(
(Pn)n≥0,(Qn)n≥0

)
be a πN-(q,ω)-coherent pair with index M and order (m,k),

so that (3.1) and (3.2) hold. Set

ψ(x;n) :=
n+M

∑
j=n−N

(−q)m[ j+m]q!
[ j]q!⟨u,P2

m+ j⟩
c j,nPm+ j(x) , (3.28)

φ(x;n, j) :=
(−q)k[n+ k]q!
[n]q!⟨v,Q2

n+k⟩

N− j

∑
ℓ=0

[
k+n
ℓ

]
q−1

[
N − ℓ

N − j− ℓ

]
q−1

(3.29)

×Lk+N−ℓ
1/q,−ω/q

(
Dℓ

1/q,−ω/qπN

)
(x)L j

1/q,−ω/q

(
Dn− j−ℓ

1/q,−ω/qQn+k

)
(x) ,

for all n = 0,1,2, . . . and j = 0,1, . . . ,N, so that

degψ(·;n) = m+n+M , degφ(·;n, j) = k+n+ j .

Let u and v be the regular functionals with respect to which (Pn)n≥0 and (Qn)n≥0 are orthogonal.
Then the following functional equations hold:

ψ(·;n)u = Dm−k−N
1/q,−ω/q

( N

∑
j=0

φ(·;n, j)D j
1/q,−ω/qv

)
if m ≥ k+N, (3.30)

Dk+N−m
1/q,−ω/q

(
ψ(·;n)u

)
=

N

∑
j=0

φ(·;n, j)D j
1/q,−ω/qv if m < k+N, (3.31)

for all n = 0,1,2, . . ..

Proof Let (an)n≥0, (bn)n≥0, (a[m]
n )n≥0, and (b[k]

n )n≥0 be the dual basis corresponding to the simple
sets of polynomials (Pn)n≥0, (Qn)n≥0, (P[m]

n )n≥0 and (Q[k]
n )n≥0, respectively. Then

πNb[k]
n =

n+M

∑
j=n−N

c j,na[m]
j , n = 0,1,2, . . . . (3.32)

From (2.58) we get
Dm

1/q,−ω/q

(
πNb[k]

n
)
= ψ(·;n)u, n = 0,1,2, . . . . (3.33)

By Leibniz’s formula (1.18), and since D j
1/q,−ω/qπN = 0 for j > N, we deduce

Dk+N
1/q,−ω/q

(
πNb[k]

n
)

=
(−q)k[n+ k]q!
[n]q!⟨v,Q2

n+k⟩

N

∑
j=0

[
k+N

j

]
q−1

Lk+N− j
1/q,−ω/q

(
D j

1/q,−ω/qπN

)
DN− j

1/q,−ω/q(Qn+kv) .

Applying once again Leibniz’s formula (1.18) to DN− j
1/q,−ω/q(Qn+kv), after some straightforward

calculations, we find

Dk+N
1/q,−ω/q

(
πNb[k]

n
)
=

N

∑
j=0

φ(·;n, j)D j
1/q,−ω/qv . (3.34)
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For m ≥ k+N, rewriting (3.33) as

ψ(·;n)u = Dm−k−N
1/q,−ω/qDk+N

1/q,−ω/q

(
πNb[k]

n
)
, n = 0,1, . . . ,

and using (3.34), (3.30) follows. For m < k+N, writing

Dk+N
1/q,−ω/q

(
πNb[k]

n
)
= Dk−m+N

1/q,−ω/qDm
q,ω
(
πNb[k]

n
)
, n = 0,1, . . . ,

and using (3.33) and (3.34), we obtain (3.31) and the proof is complete.

3.3.1 Case m ≥ k+N

Theorem 3.3.2 (Case m ≥ k+N) Let
(
(Pn)n≥0,(Qn)n≥0

)
be a πN-(q,ω)-coherent pair with index M

and order (m,k), so that (3.1) and (3.2) hold. Let u and v be the regular functionals with respect to
which (Pn)n≥0 and (Qn)n≥0 are orthogonal. Suppose m ≥ k+N. Assume further that m > k whenever
N = 0. For each i = 0, . . . ,m− k and n = 0,1, . . ., let

ϕ(x;n, i) := ∑
j+ℓ=i

0≤ j≤N
0≤ℓ≤M

[
m− k−N

j

]
q−1

L j
1/q,−ω/q

(
Dm−k−N− j

1/q,−ω/q φ(.;n, ℓ)
)
(x) , (3.35)

φ(·;n, j) being the polynomial introduced in (3.29). Let A (x) be the polynomial matrix of order
m− k+1 defined by

A (x) :=
[
ϕ(x;n, j)

]m−k
n, j=0 .

Let A1(x) (resp., A2(x)) be the matrix obtained by replacing the first (resp., the second) column of
A (x) by

[
ψ(x;0),ψ(x;1), . . . ,ψ(x;m− k)]t , and set

A(x) := detA (x) , A1(x) := detA1(x) , A2(x) := detA2(x) .

Assume that the polynomial A(x) does not vanishes identically. Then

Av = A1u , AD1/q,−ω/qv = A2u , (3.36)

hence u and v are Dq,ω -semiclassical functionals related by a rational transformation. Moreover, u
and v fulfill the following equations:

D1/q,−ω/q(A1Lq,ω(A)u) =
(
qA1Dq,ω(A)+A1D1/q,−ω/q(A)+A2L1/q,−ω/q(A)

)
u , (3.37)

D1/q,−ω/q(Lq,ω(AA1)v) =
(
qDq,ω(AA1)+AA2

)
v . (3.38)

Proof Combining (3.30) and the Leibniz formula (1.18), we get

ψ(·;n)u =
N

∑
ℓ=0

m−k−N

∑
j=0

[
m− k−N

j

]
q−1

L j
1/q,−ω/q

(
Dm−k−N− j

1/q,−ω/q φ(·;n, ℓ)
)
D j+ℓ

1/q,−ω/qv .
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This may be rewritten as

ψ(·;n)u =
m−k

∑
ℓ=0

ϕ(·;n, ℓ)Dℓ
1/q,−ω/qv, n = 0,1, . . . , (3.39)

where ϕ(·;n, i) is the polynomial introduced in (3.35). Taking n = 0,1, . . . ,m− k in (3.39) we obtain
a system with m− k+1 equations that can be written as

ψ(x;0)u
ψ(x;1)u

...
ψ(x;m− k)u

= A (x)


v

D1/q,−ω/qv
...

Dm−k
1/q,−ω/qv

 .

Solving for v and D1/q,−ω/qv we obtain (3.36). Finally, one can remark that D1/q,−ω/qLq,ω = qDq,ω .
Hence (3.37) and (3.38) follow from (3.36).

Remark 3.3.1 Remark (3.2.1) is also valid in the present context. That is, if m = k and N = 0, then u
and v are connected by a rational transformation but they are not necessary Dq,ω -semiclassical.

3.3.2 Case m < k+N

Theorem 3.3.3 (Case m < k+N) Let
(
(Pn)n≥0,(Qn)n≥0

)
be a πN-(q,ω)-coherent pair with index

M and order (m,k), so that (3.1) and (3.2) hold. Let u and v be the regular functionals with
respect to which (Pn)n≥0 and (Qn)n≥0 are orthogonal. Assume further that m < k+N. For each
j = 0, . . . ,k−m+N and n = 0,1, . . ., set

ξ (x;n, j) :=

[
k+N −m

j

]
q−1

L j
1/q,−ω/q

(
Dk+N−m− j

1/q,−ω/q ψ
)
(x;n) , (3.40)

ψ(·;n) being the polynomial introduced in (3.28). Let B(x) :=
[
bi, j(x)

]k−m+2N
i, j=0 be the polynomial

matrix of order k−m+2N +1 defined by

bi, j(x) :=

 φ(x; i, j) if 0 ≤ j ≤ N ,

−ξ (x; i, j−N) if N +1 ≤ j ≤ k−m+2N ,

φ(·; i, j) being the polynomial given by (3.29). Let B1(x) (resp., B2(x) and BN+2(x)) be the
matrix obtained by replacing the first (resp., the second and the (N + 2)-th) column of B(x) by[
ξ (x;0,0),ξ (x;1,0), . . . ,ξ (x;m− k+2N,0)]t , and set

B(x) := detB(x) , B j(x) := detB j(x) , j ∈ {1,2,N +2} .

Assume that the polynomial B(x) does not vanishes identically. Then

Bv = B1u , BD1/q,−ω/qv = B2u , BD1/q,−ω/qu = BN+2u , (3.41)
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hence u and v are Dq,ω -semiclassical functionals related by a rational transformation. Moreover, u
and v fulfill the following equations:

D1/q,−ω/q(Lq,ω(BB1)v) =
(
qDq,ω(BB1)+BB2

)
v (3.42)

D1/q,−ω/q(Lq,ωBu) =
(
qDq,ωB+BN+2

)
u . (3.43)

Proof Using the Leibniz formula (1.18) we can rewrite (3.30) as

k−m+N

∑
j=0

ξ (·;n, j)D j
1/q,−ω/qu =

N

∑
j=0

φ(·;n, j)D j
1/q,−ω/qv, n = 0,1, . . . .

Taking n = 0,1, . . . ,k−m+2N, we obtain the following system of k−m+2N +1 equations:

ξ (x;0,0)u
ξ (x;1,0)u

...
ξ (x;k−m+N,0)u

ξ (x;k−m+N +1,0)u
...

ξ (x;k−m+2N,0)u


= B(x)



v
D1/q,−ω/qv

...

DN
1/q,−ω/qv

D1/q,−ω/qu
...

Dk−m+N
1/q,−ω/qu


.

The theorem follows by solving this system for v, D1/q,−ω/qv, and D1/q,−ω/qu.

3.3.3 Case k = 0

Theorem 3.3.4 (Case k = 0) Let
(
(Pn)n≥0,(Qn)n≥0

)
be a πN- (q,ω)-coherent pair with index M and

order (m,0), so that the structure relation

πN(x)P
[m]
n (x) =

n+N

∑
j=n−M

cn, jQ j(x), (n = 0,1, . . .) ,

holds, where M and N are fixed non-negative integer numbers, πN is a monic polynomial of degree N,
and cn,n−M ̸= 0 if n ≥ M. Assume further that m ≥ 1 if N = 0. Let u and v be the regular functionals
with respect to which (Pn)n≥0 and (Qn)n≥0 are orthogonal. Then u and v are Dq,ω -semiclassical
functionals related by a rational transformation. More precisely, setting

Φ(x; j) :=

⟨v,Q2
j⟩ψ(x; j)−

j−1

∑
l=0

[
m
l

]
q−1

Lm−l
1/q,−ω/q

(
Dl

1/q,−ω/qQ j
)
(x)Φ(x; l)

[ j]q−1!

[
m
j

]
q−1

, (3.44)
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j = 0,1, . . ., ψ(·; j) being the polynomial introduced in (3.28), then degΦ(·;0) =M+m, degΦ(·; j)≤
M+m+ j for each j = 1, . . . ,m, and the following holds:

D1/q,−ω/q
(
Φ(·;1)u

)
= Φ(·;0)u , (3.45)

πNv = Φ(·;m)u , (3.46)

D1/q,−ω/q
(
Lq,ωΦ(·;m))πNv

)
= (qDq,ωΦ(·;m)+Φ(·;m−1))πNv . (3.47)

Moreover, s(u)≤ M+m−1 and s(v)≤ N +M+2(m−1).

Proof Relation (3.33) in this case may be rewritten as

Dm
1/q,−ω/q

(
QnπNv

)
= ⟨v,Q2

n⟩ψ(·;n)u, n = 0,1, . . . , (3.48)

where ψ(·;n) is defined by (3.28). Taking n = 0, we obtain

Dm
1/q,−ω/q

(
πNv

)
= Φ(·;0)u . (3.49)

Taking n = 1 in (3.48) and then applying Leibniz’s formula (1.18), we deduce

⟨v,Q2
1⟩ψ(·;1)u = Dm

1/q,−ω/q

(
Q1πNv

)
= [m]q−1Dm−1

1/q,−ω/q

(
πNv

)
+Lm

1/q,−ω/qQ1Dm
1/q,−ω/q

(
πNv

)
.

Hence, by (3.49), we have
Dm−1

1/q,−ω/q

(
πNv

)
= Φ(·;1)u . (3.50)

Thus (3.45) follows from (3.49) and (3.50). This proves that u is Dq,ω -semiclassical of class s(u)≤
M +m− 1. We conclude pursuing with the described procedure, so that by taking successively
n = 0,1, . . . ,m in (3.48), the following relation holds:

Dm− j
1/q,−ω/q

(
πNv

)
= Φ(·; j)u, j = 0,1, . . . ,m . (3.51)

In particular, for j = m we obtain (3.46), hence u and v are related by a rational transformation.
Setting j = m−1 in (3.51), we obtain

D1/q,−ω/q
(
πNv

)
= Φ(·;m−1)u . (3.52)

Since D1/q,−ω/q
(
Lq,ω(Φ(·;m))πNv

)
= qDq,ω(Φ(·;m))πNv+Φ(·;m)D1/q,−ω/q

(
πNv

)
, we obtain (3.47)

using (3.52) and (3.46). Thus v is Dq,ω -semiclassical of class s(v)≤ N+M+2m−2, and the theorem
is proved.

Remark 3.3.2 Actually, as we just did for discrete OPS, similar results can be obtained for discrete
OPS on a nonuniform lattice involving the operators Dx and Sx defined in (1.42)–(1.43).
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3.4 Applications

3.4.1 Continuous variable

Let (Pn)n≥0 be a monic OPS with respect to a positive Borel measure. Suppose that (Pn)n≥0 satisfies
the differential-difference equation

π(x)P′
n(x) = bnPn(x)+(cnx+dn)Pn−1(x) (n = 0,1,2, . . .) , (3.53)

where π(x) is a monic polynomial of degree 1 and (bn)n≥0, (cn)n≥0, and (dn)n≥0 are sequences of real
numbers, with cn ̸= 0 for each n = 1,2,3, . . .. We assume

π(x) = x .

OPS characterized by equation (3.53) have been studied recently in [21]. Here we give an alternative
approach based on the general results presented in the previous sections. (Pn)n≥0 is characterized by a
three-term recurrence relation (1.1) where (βn)n≥0 and (γn)n≥1 are sequences of real numbers such
that γn > 0 for each n ≥ 1. We set γ0 := 0. Using (1.1), we rewrite (3.53) as

xP[1]
n (x) = Pn+1(x)+ rnPn(x)+ snPn−1(x) (n = 0,1,2, . . .) , (3.54)

where

rn :=
cn+1βn +dn+1

n+1
, sn :=

cn+1γn

n+1
(n = 0,1,2, . . .) .

Notice that sn ̸= 0 for each n = 1,2,3, . . .. Comparing (3.54) with (3.1), we have

N = M = m = 1 , k = 0 , cn,n+1 = 1 , cn,n = rn , cn,n−1 = sn . (3.55)

Thus
(
(Pn)n≥0,(Pn)n≥0

)
is a π1−coherent pair with index 1 and order (1,0), where π1(x) = x. By

Theorem 3.2.4, the functional u with respect to which (Pn)n≥0 is orthogonal satisfies the relations

D
(
Φ(·;1)u

)
= Φ(·;0)u (3.56)

xu = Φ(·;1)u . (3.57)

Since u is regular, then (3.57) implies
Φ(x;1) = x . (3.58)

On the other hand, by (3.18) and using the relations (1.2), we have

Φ(x;0) :=− r0

γ1
P1(x)−

2s1

γ1γ2
P2(x) . (3.59)
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From (3.54) for n = 0,1,2, and taking into account (1.2), we deduce

r0 = β0 , r1 =
1
2 (β0 +β1) , r2 =

1
3 (β0 +β1 +β2) ,

s1 = γ1 +
1
2 β0(β0 −β1) , β0(s2 − γ2) = (β0β1 − γ1)(r2 −β2) ,

s2 =
1
3

(
β

2
0 +β

2
1 − (β0 +β1)β2 +2(γ1 + γ2)

)
.

(3.60)

Therefore, taking into account (3.58)–(3.60) and (1.2), (3.56) reduces to

D
(
xu
)
= (−2ax2 +bx+ c+1)u , (3.61)

where

a :=
s1

γ1γ2
=

2γ1 +(β0 −β1)β0

2γ1γ2
,

b :=

(
2γ1 +(β0 −β1)β0

)
(β0 +β1)−β0γ2

γ1γ2
,

c :=
β 2

0 γ2 −
(
2γ1 +(β0 −β1)β0

)
(β0β1 − γ1)

γ1γ2
−1 .

Using (3.60), and assuming s1 > 0, we deduce

β0 = r0 , β1 = 2r1 − r0 , γ1 = s1 − r0(r0 − r1) ,

γ2 =
s1(3s2 −2s1)+2r1

(
s1(2r0 − r1)− r0r1(r0 − r1)

)
2s1 + r0r1

.
(3.62)

(Notice that 2s1+ r0r1 ̸= 0; indeed, using γ1 = s1− r0(r0− r1), we have 2s1+ r0r1 = γ1+ s1+ r2
0 > 0.)

Thus a, b, and c may be written only in terms of r0, r1, s1, and s2. Hereafter we impose the
(integrability) conditions

a > 0 , c >−1 . (3.63)

(Note that the condition a > 0 is equivalent to s1 > 0 in equation (3.54), or to c2 > 0 in equation
equation (3.53).) Let w be a solution of

xw′(x) = (−2ax2 +bx+ c)w(x) , x ∈ R\{0} . (3.64)

Solving this equation imposing (without loss of generality) w to be right-continuous at x = 0, we find

w(x) =

{
K1|x|ce−ax2+bx if x < 0 ,

K2|x|ce−ax2+bx if x ≥ 0 ,
(3.65)

K1 and K2 being real constants. Requiring, in addition, K1 and K2 to be non-negative and no
simultaneously equal to zero, w becomes a weight function, i.e., a non-negative and integrable
function which does not vanishes identically and having finite moments of all orders. Now, define a
functional w by

⟨w, f ⟩ := κ

∫
R

f (x)w(x)dx ( f ∈ P) ,
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where κ is a normalization constant chosen so that ⟨w,1⟩= ⟨u,1⟩. Using (3.64) and integration by
parts, together with the rules of the distributional calculus, we show that D

(
xw
)
= (−2ax2 +bx+ c+

1)w on P ′, hence w fulfills the same functional equation (3.61) as u. This is equivalent to saying that
the sequences of moments (un)n≥0 and (wn)n≥0 of u and w (defined by un := ⟨u,xn⟩ and wn := ⟨w,xn⟩)
are solutions of the second order linear difference equation

−2avn+2 +(n+b)vn+1 +(c+1)vn = 0 (n = 0,1,2, · · ·) .

Now we show that we may choose K1 and K2 so that u = w. Indeed, since by definition of w the
condition u0 = w0 holds, we only need to show that we may choose K1 and K2 so that u1 = w1. Indeed,

κ
−1w1 =

∫
R

xw(x)dx = K1

∫ 0

−∞

x|x|ce−ax2+bx dx+K2

∫ +∞

0
xc+1e−ax2+bx dx ,

and making the change of variables x 7→ −x on the first integral, we obtain

w1 = κ

(
K2

∫ +∞

0
xc+1e−ax2+bx dx−K1

∫ +∞

0
xc+1e−ax2−bx dx

)
.

On the other hand, from P1(x) = x−β0, we have u1 = β0u0 = r0w0, i.e.,

u1 = κr0

(
K2

∫ +∞

0
xce−ax2+bx dx+K1

∫ +∞

0
xce−ax2−bx dx

)
.

Therefore, in order to have u1 = w1, we need to impose

r0 =
K2
∫ +∞

0 xc+1e−ax2+bx dx−K1
∫ +∞

0 xc+1e−ax2−bx dx
K1
∫ +∞

0 xce−ax2−bx dx+K2
∫ +∞

0 xce−ax2+bx dx
.

Assuming without loss of generality that K2 > 0, and setting M = K1/K2, this is achieved provided
that

M =

∫ +∞

0 xc+1e−ax2+bx dx− r0
∫ +∞

0 xce−ax2+bx dx∫ +∞

0 xc+1e−ax2−bx dx+ r0
∫ +∞

0 xce−ax2−bx dx
. (3.66)

Thus, up to a positive constant factor, u admits the integral representation

⟨u, f ⟩ :=
∫
R

f (x)w(x)dx ( f ∈ P) .

We remark that w is a.e. on R the unique weight function with respect to which (Pn)n≥0 is a monic OPS.
This is an immediate consequence of the fact that the moment problem associated to the distribution
function with weight w is determined, as we may see easily taking into account Riesz uniqueness
criterium (see e.g. [20, Theorem II-5.2]). Finally, set

u(M,t,c) := h√au , t := b/
√

a , (3.67)
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meaning that ⟨u(M,t,c),xn⟩ := ⟨u,
(√

ax
)n⟩ for each n = 0,1,2, . . .. Note that making the change of

variables x → x/
√

a in the integrals appearing in (3.66) we obtain

M =

∫ +∞

0
(
x−

√
ar0
)
xce−x2+tx dx∫ +∞

0
(
x+

√
ar0
)
xce−x2−tx dx

. (3.68)

Since u fulfils (3.61) then u(M,t,c) satisfies

D
(
xu(M,t,c))= (−2x2 + tx+ c+1)u(M,t,c) .

Let (P(M,t,c)
n )n≥0 be the monic OPS with respect to u(M,t,c). Then (3.67) implies

Pn(x) :=
1

(
√

a)n P(M,t,c)
n

(√
ax
)

(n = 0,1,2, . . .) . (3.69)

Moreover, up to a constant factor, u(M,t,c) admits the integral representation

⟨u(M,t,c), f ⟩ :=
∫
R

f (x)w(M,t,c)(x)dx ( f ∈ P) ,

where

w(M,t,c)(x) :=
ac/2

K2
w
( x√

a

)
=

{
M|x|ce−x2+tx if x < 0 ,

|x|ce−x2+tx if x ≥ 0 .
(3.70)

In conclusion, we have the following results.

Theorem 3.4.1 Let (Pn)n≥0 be a monic OPS with respect to a positive-definite linear functional and
fulfills (3.54), where (rn)n≥0 and (sn)n≥1 are sequences of real numbers such that sn ̸= 0 for each
n = 1,2,3, . . .. Then (Pn)n≥0 is given by (3.69) —(P(M,t,c)

n )n≥0 being the unique monic OPS with
respect to the weight function w(M,t,c) defined by the right-hand side of (3.70), provided that conditions
(3.63) hold for each choice of the (real) parameters r0, r1, s1, and s2.

Corollary 3.4.2 Under the assumption of the previous theorem, if r0 = r1 = 0, s1 = 1/2, and s2 = 1,
then up to an affine change of the variable, (Pn)n≥0 is the Hermite monic OPS.

Proof
Since r0 = r1 = 0, s1 = 1/2 and s2 = 1, we obtain a= 1, t = c= 0, and M = 1, hence w(1,0,0)(x) = e−x2

and the corollary follows.

Finally, we note that (3.70), (3.69), and (3.68) agree, respectively, with (2.27), (2.29), and (2.30) in
[21].

3.4.2 Discrete variable

The interest of the results presented in Section 3.3 will be illustrated by an exhaustive analysis of the
πN-(q,w)-coherent pairs of index M = 0 and order (m,k) = (1,0), considering N ≤ 2 and Pn = Qn
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for each n = 0,1, . . .. This means that we focus on the structure relation

πN(x)Dq,ωPn+1(x) = [n+1]q
n+N

∑
j=n

cn, jPj(x), n = 0,1, . . . , (3.71)

where πN is a monic polynomial of degree N ∈ {0,1,2}. We assume that the cn, j are complex
parameters subject to the conditions cn,n ̸= 0 for each n = 0,1,2, . . .. Our aim is to describe all the
monic OPS (Pn)n≥0 fulfilling (3.71). We prove in a rather simple way that, up to affine changes of
variable depending of the pair (q,ω), the only monic OPS satisfying (3.71) are the monic q−classical
OPS given in Table 3.1. This is a (q,ω)−analogue of the well known characterization of classical
OPS (Hermite, Laguerre, Jacobi, and Bessel) due to Al-Salam and Chihara [3]. See also [32, 40].

Table 3.1 Monic q−classical OPS

Name Notation (Pn) Restrictions Reference

Al-Salam-Carlitz U (a)
n (·|q) a ̸= 0 [34, (14.24.4)]

Big-q-Laguerre Ln(·;a,b|q) ab ̸= 0 ; a,b ̸∈ Λ [34, (14.11.4)]
Little-q-Laguerre Ln(·;a|q) a ̸= 0 ; a ̸∈ Λ [34, (14.20.4)]

—— ln(·;a|q) a ̸= 0 [51, Table 2]
Big-q-Jacobi Pn(·;a,b,c|q) ac ̸= 0 ; a,b,c,ab,abc−1 ̸∈ Λ [34, (14.5.4)]

Little-q-Jacobi Pn(·;a,b|q) a ̸= 0 ; a,b,ab ̸∈ Λ [34, (14.12.4)]
q-Bessel Bn(·;a|q) a ̸= 0 ; −a ̸∈ Λ [34, (14.22.4)]

—— jn(·;a,b|q) ab ̸= 0 ; a ̸∈ Λ [51, Table 2]

In Table 1 we have set Λ := {q−n : n = 1,2, . . .}. We will show that the possible families (Pn)n≥0

fulfilling (3.71) may be related (up to affine changes of the variable) to one of the following two OPS:

(I) The monic OPS (Ln(x;a,b,c|q))n≥0 given by (1.1), where

βn =
(
a+b− c(qn+1 +qn −1)

)
qn ,

γn+1 =−
(
a− cqn+1)(b− cqn+1)(1−qn+1)qn

for each n = 0,1,2, . . ., and a,b,c ∈ C are parameters subject to the regularity conditions

a ̸= cqn , b ̸= cqn

for each n = 1,2, . . .. Although there are three parameters in the definition of Ln(x;a,b,c|q), we note
that, without loss of generality, if c ̸= 0 then, up to an affine change of variables, we may reduce to
the case c = 1. Indeed, the relation

Ln(x;a,b,c|q) = cn Ln(x/c;a/c,b/c,1|q)

holds for each n = 0,1,2, . . .. Moreover, if c = 0 (and so ab ̸= 0, by the regularity conditions), then
up to the affine change of variable x 7→ bx, we may reduce to the case b = 1, taking into account that
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the relation
Ln(x;a,b,0|q) = bn Ln(x/b;a/b,1,0|q)

holds for each n = 0,1,2, . . ..

(II) The monic OPS (Jn(x;a,b,c,d|q))n≥0 given by (1.1), where

βn = qn [a(b+d)+ c(b+1)](1+dq2n+1)− [c(b+d)+ad(b+1)](1+q)qn

(1−dq2n)(1−dq2n+2)
,

γn+1 =−qn(1−qn+1)(1−bqn+1)(1−dqn+1)(a− cqn+1)(b−dqn+1)(c−adqn+1)

(1−dq2n+1)(1−dq2n+2)2(1−dq2n+3)

for each n = 0,1,2, . . ., where a,b,c,d ∈ C fulfil the regularity conditions

b ̸= q−n , d ̸= q−n , a ̸= cqn , b ̸= dqn , c ̸= adqn

for each n = 1,2, . . ..

Remark 3.4.1 Note that Ln(·;a,b,c|q) is a special or limiting case of Jn(·;a,b,c,d|q) for each
n = 0,1,2, . . .. Indeed,

Ln
(
x;a,b,c|q

)
=

{
Jn(x;ab/c,c/b,b,0|q) if bc ̸= 0 ,

Jn(x;ab/c,c/a,a,0|q) if ac ̸= 0 ,

Ln(x;0,0,c|q) = lim
b→0

Jn(x;0,c/b,b,0|q) if c ̸= 0 ,

Ln(x;a,1,0|q) = lim
b→0

Jn(x;a/b,b,1,0|q) .

Remark 3.4.2 The q−classical OPS (see Table 3.1), up to affine transformations of the variable, can
be obtained from the monic OPS given in (I) and (II). Indeed:

U (a)
n (x) = Ln(x;a,1,0|q)

Ln(x;a,b|q) = (abq)nLn
(
x/(abq);1/a,1/b,1|q

)
Ln(x;a|q) = Ln

(
x;0,1,a|q

)
ln(x;a|q) = Ln

(
x;0,0,−a|q

)
Pn(x;a,b,c|q) =

{
qnJn(x/q;1,a,c,ab|q) , if b ̸= 0

(acq)nLn(x/(acq);1/a,1/c,1|q) , if b = 0

Pn(x;a,b|q) =

{
Jn(x;0,a,1,ab|q) , if b ̸= 0

anLn(x/a;1/a,0,1|q) , if b = 0

Bn(x;a|q) = Jn(x;0,0,1,−a/q|q
)

jn(x;a,b|q) = qnJn
(
x/q;b,0,0,a/q|q

)
,

where in each case the parameters are subject to the restrictions given in Table 3.1.

Remark 3.4.3 The converse of the statement in Remark 3.4.2 is also true, that is, the monic OPS in
(I) and (II) can be obtained from the q−classical OPS. Indeed:
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(i) If c = 0 in the definition of Ln(·;a,b,c|q) (and so ab ̸= 0, by the regularity conditions), we
obtain (monic) Al-Salam-Carlitz polynomials:

Ln(x;a,b,0|q) = bnU (a/b)
n (x/b|q) .

Consider now c ̸= 0. If ab ̸= 0, we obtain Big q−Laguerre polynomials:

Ln(x;a,b,c|q) = (ab/(cq))n Ln
(
cqx/(ab);c/a,c/b

∣∣q) ;

if ab = 0 and |a|+ |b| ̸= 0, we obtain Little q−Laguerre polynomials:

Ln
(
x;a,b,c|q

)
=

{
bnLn(x/b;c/b|q) if a = 0 and b ̸= 0 ,

anLn(x/a;c/a|q) if a ̸= 0 and b = 0;

and if a = b = 0, we obtain one of the monic OPS given by Medem and Álvarez-Nodarse in [51, Table
2]:

Ln(x;0,0,c|q) = ln(x;−c|q) .

(ii) If d = 0 in the definition of Jn(·;a,b,c,d|q), the regularity conditions imply bc ̸= 0, and we
obtain Little q−Laguerre polynomials if a = 0 and Big q−Laguerre polynomials if a ̸= 0, according
to (i) and the relation

Jn(x;a,b,c,0|q) = Ln
(
x;ab,c,bc|q

)
.

Consider now d ̸= 0. If abc ̸= 0, we obtain Big q-Jacobi polynomials:

Jn(x;a,b,c,d|q) = (a/q)nPn(qx/a;b,d/b,c/a|q) ;

if only one among a, b, and c is zero, then we obtain Little q-Jacobi polynomials:

Jn
(
x;a,b,c,d|q

)
=


cnPn(x/c;b,d/b|q) if a = 0 and bc ̸= 0 ,

cnPn(x/c;ad/c,c/a|q) if b = 0 and ac ̸= 0 ,

(ab)nPn(x/(ab);d/b,b|q) if c = 0 and ab ̸= 0;

if a = b = 0 (and so c ̸= 0, by regularity), we obtain q-Bessel polynomials:

Jn
(
x;0,0,c,d|q

)
= cnBn(x/c;−dq|q) ;

and if b = c = 0 (and so a ̸= 0, by regularity) we obtain the other monic OPS given by Medem and
Álvarez-Nodarse in [51, Table 2]:

Jn(x;a,0,0,d|q) = q−n jn(qx;qd,a|q) .

(There are no additional cases, since the condition d ̸= 0 together with the regularity conditions for
(Jn(·;a,b,c,d|q))n≥0 imply (a,c) ̸= (0,0).)
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Remark 3.4.4 Note that the q−classical OPS are (up to affine changes of the variable) special or
limiting cases of the polynomials Jn.

Theorem 3.4.3 A monic OPS (Pn)n≥0 satisfies (3.53) if and only if, up to an affine transformation of
the variable, it is a q−classical monic OPS.

Proof In the analysis of the structure relation (3.71) we consider the three possible cases, accord-
ing to the degree of the (monic) polynomial πN , N ∈ {0,1,2}.

CASE I: N = 0. Then π0(x) = 1 and so (3.71) becomes

Dq,ωPn+1(x) = [n+1]qPn(x) , n = 0,1, . . . .

From (3.45), (3.46), and (1.1), we see that u satisfies the functional equation

D1/q,−ω/qu =− q
γ1
(x−β0)u .

Let a and b be the two roots of the quadratic equation

z2 +(ω0 −β0)z+ γ1/(q−1) = 0 .

Note that ab ̸= 0, γ1 = ab(q−1), and β0 = a+b+ω0, where

ω0 :=
ω

1−q
.

Using (2.20) and (2.21), the recurrence coefficients for the monic OPS
(
Pn
)

n≥0 are

βn = ω0 +(a+b)qn , γn+1 =−ab(1−qn+1)qn , n = 0,1, . . . .

This means that

Pn(x) = Ln (x−ω0;a,b,0|q) , n = 0,1, . . . .

(Thus, according to Remark 3.4.3, in this case, up to affine transformations of the variable, we obtain
Al-Salam-Carlitz polynomials.)

CASE II: N = 1. Writing π1(x) = x−ω0 + c, c ∈ C, (3.71) becomes

(x−ω0 + c)Dq,ωPn+1(x) = [n+1]qPn+1(x)+ [n+1]qcn,nPn(x) , n = 0,1, . . . .

Setting n = 0 gives c0,0 = c+β0 −ω0, and so condition (3.2) implies c+β0 ̸= ω0. By (3.45), (3.46),
and (1.1), we obtain the functional equation

D1/q,−ω/q

(
(x−ω0 + c)u

)
=−q(β0 −ω0 + c)

γ1
(x−β0)u .
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Setting α =−q(β0 −ω0 + c)/γ1 (hence α ̸= 0) and β = α(ω0 −β0), the above functional equation
becomes

D1/q,−ω/q

(
(x−ω0 + c)u

)
=
(
α(x−ω0)+β

)
u ,

hence, using (2.20) and (2.21), we find

βn = ω0 −
(
β (1−q)+(1+q)(1−qn)

)
qn

α(1−q)
, (3.72)

γn+1 =
qn+1(1−qn+1)

(
αc(1−q)+(q+β (1−q))qn −q2n+1

)
α2(1−q)2 (3.73)

for each n = 0,1, . . .. Let a and b be the zeros of the polynomial

θ2(z) :=−q−1z2 +
(
1−β (1−q−1)

)
z+αc(1−q) ,

so that θ2(z) = −q−1(z− a)(z− b). Then a+ b = q+ β (1− q) and ab = cαq(1− q). Therefore,
setting r := 1/(α(q−1)), we have r ̸= 0 and, from (3.72) and (3.73),

βn = ω0 + rqn(a+b+1−qn −qn+1) ,
γn+1 =−r2qn(1−qn+1)(a−qn+1)(b−qn+1)

for each n = 0,1, . . .. This means that

Pn(x) = rnLn

(
x−ω0

r
;a,b,1

∣∣∣q)= Ln

(
x−ω0;ar,br,r

∣∣∣q) .

(Therefore, in this case, up to affine transformations of the variable, we obtain Big-q-Laguerre polyno-
mials if ab ̸= 0, Little-q-Laguerre polynomials if ab = 0 and a and b do not vanish simultaneously,
and the OPS (ln)n≥0 if a = b = 0.)

CASE III: N = 2. Then we may write π2(x) = (x−ω0 − r)(x−ω0 − s), with r,s ∈ C, and (3.71)
becomes

(x−ω0 − r)(x−ω0 − s)Dq,ωPn+1(x) = [n+1]q
(

Pn+2(x)+ cn,n+1Pn+1(x)+ cn,nPn(x)
)
,

for each n = 0,1, . . .. From (3.45) and (3.46), we deduce

D1/q,−ω/q

(
(x−ω0 − r)(x−ω0 − s)u

)
=
(

α(x−ω0)+β

)
u ,

where α := −q
(
γ1 +π2(β0)

)
/γ1 and β = −α(β0 −ω0). The regularity of u implies α ̸= 0. Since

(1−q−1)dn = 1+(−1+α(1−q−1))q−n, then we will distinguish two sub-cases, depending whether
(dn)n≥0 is a constant sequence or not.

CASE III.a) If α = 1/(1− q−1), then dn = α for all n. Let c := (q− 1)β + q(r+ s). By using
(2.20)–(2.21) we find

Pn(x) = Ln
(
x−ω0;r,s,c|q−1) , n = 0,1, . . . .
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(Therefore, in this case, we obtain Al-Salam-Carlitz polynomials if c = 0, i.e., β0 = ω0 + r + s,
Big-q-Laguerre polynomials if rs ̸= 0, Little-q-Laguerre polynomials if rs = 0 and r and s do not
vanish simultaneously, and the OPS (ln)n≥0 if r = s = 0.)

CASE III.b) If α ̸= 1/(1−q−1), then (dn)n≥0 is not a constant sequence. Let

u := q(q+α(1−q)) , λ := (r+ s)q−β (1−q) .

Note that u ̸= 0 (since α ̸= 1/(1− q−1)). Note also that dn = (1− uq−n−2)/(1− q−1) for each
n = 0,1, . . . and so, since dn ̸= 0, we obtain u ̸= qn for each n = 0,1, . . .. Therefore, using (2.20)–
(2.21), we obtain

βn = ω0 +q−n (λ + r+ s)(1+uq−2n−1)− (1+q−1)(λ + ru+ su)q−n

(1−uq−2n)(1−uq−2n−2)
(3.74)

and

γn+1 =−q−n(1−q−n−1)(1−uq−n−1)ϕ(q−n−1;r,s)ϕ(q−n−1;s,r)
(1−uq−2n−1)(1−uq−2n−2)2(1−uq−2n−3)

(3.75)

for each n = 0,1, . . ., where
ϕ(z;x,y) := xuz2 −λ z+ y .

If r = λ = 0 then ϕ(z;r,s) = s and ϕ(z;s,r) = suz2. Then, from (3.74)–(3.75) we obtain s ̸= 0 and

Pn(x) = Jn
(
x−ω0;0,0,s,u|q−1) , n = 0,1, . . . .

(This means that, in this case, the Pn’s are q-Bessel polynomials.) If r = 0 and λ ̸= 0, define a = λ/u
and b = us/λ ; and if r ̸= 0 (λ being zero or not), define a = (λ +

√
∆)/(2u) and b = (λ −

√
∆)/(2r),

where ∆ := λ 2 − 4rsu alternatively, we may choose a = (λ −
√

∆)/(2u) and b = (λ +
√

∆)/(2r)).
These choices of a and b (in either cases r = 0 and λ ̸= 0, or r ̸= 0) give s = ab and λ = au+br, and
so

ϕ(z;r,s) = (rz−a)(uz−b) , ϕ(z;s,r) = (auz− r)(bz−1) .

Therefore, using (3.74)–(3.75), we obtain

Pn(x) = Jn
(
x−ω0;a,b,r,u|q−1) , n = 0,1, . . . .

(In this case, if r = 0 (and so a ̸= 0) we obtain Little-q-Jacobi polynomials if b ̸= 0 and the OPS ( jn)n≥0

if b = 0; and if r ̸= 0, we obtain Big-q-Jacobi polynomials if a,b ̸= 0, Little-q-Jacobi polynomials if
ab = 0 and a and b do not vanish simultaneously, and q-Bessel polynomials if a = b = 0.)

Remark 3.4.5 In [? ] the authors claim: “We show that the only orthogonal polynomials satisfying
a q−difference equation of the form π(x)DqPn(x) = (αnx+βn)Pn(x)+ γnPn−1(x), where π(x) is a
polynomial of degree 2, are the Al-Salam Carlitz 1, little and big q−Laguerre, the little and big
q−Jacobi, and the q−Bessel polynomials. This is a q−analog of the work carried out in [1]."
However, according to Theorem 3.4.3 for ω = 0, there are two additional families of monic OPS
(given in Table 3.1) that also satisfy the above q−difference equation. Therefore, Theorem 3.4.3 for
ω = 0 is the true q−analogue of the work by Al-Salam and Chihara [3].
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This section highlights that the concept of coherent pair of measures, besides its own theoretical
interest, is a useful tool to deal with specific algebraic problems in the theory of orthogonal polynomials.
It is worth mentioning that several problems and conjectures related with this type of structure relations
remain unsolved (see [26, Section 24.7.1]). Indeed it is in this direction that we pursue our investigation
(in the next chapters) in the framework of classical OPS with respect to the operator Dx defined in
(1.42). These remarks will be helpful to solve Conjecture [26, 24.7.8], which fits into the theory of
self coherent pairs of measures (on nonuniform lattices).



Chapter 4

Classical orthogonal polynomials on
nonuniform lattices

4.1 Introduction

In this chapter we consider a nonuniform lattice given by (1.26), i.e.,

x(s) :=

 c1q−s + c2qs + c3 if q ̸= 1 ,

c4s2 + c5s+ c6 if q = 1 ,
(1.26)

where q > 0 and c j (1 ≤ j ≤ 6) are constants in C, that may depend on q, such that (c1,c2) ̸= (0,0) if
q ̸= 1, and (c4,c5,c6) ̸= (0,0,0) if q = 1. We consider the notations given in Section 1.3 of Chapter 1.
In particular, the numbers α , β , αn, βn, γn, and δ introduced in (1.27)—(1.33) and (1.47)—(1.48), as
well as the operators Dx and Sx (on P) and Dx and Sx (on P∗) introduced in (1.42)—(1.44), together
with the polynomials U1 and U2 given by (1.45)—(1.46) (or (1.49)—(1.50)), will play a fundamental
role along this chapter. Our aim is primarily to obtain regularity results similar to the ones stated in
Chapter 2 for Hanh’s operator.

Definition 4.1 Let x(s) be the NUL given by (1.26) and let u ∈ P∗. The functional u is called
x−classical if it is regular and there exist φ ∈ P2 and ψ ∈ P1, φ and ψ not vanishing everywhere
simultaneously, such that

Dx(φu) = Sx(ψu) . (4.1)

An OPS with respect to a x−classical functional will be called a x−classical OPS (or a classical OPS
on the NUL x).

As far as we know, Definition 4.1 was introduced in [17]. It is an extension of the definition of (very)
classical functional for continuous OPS (i.e., Jacobi, Laguerre, Hermite, and Bessel functionals) deeply
studied by many authors, specially Maroni (see [42, 47, 48]). We will refer to the functional equation
(4.1) as x−Geronimus–Pearson functional equation on the NUL x, or, simply, x−GP functional
equation. The principal goal of this chapter is to state necessary and sufficient conditions, involving
only the polynomials φ and ψ (or, equivalently, their coefficients), such that a given functional u ∈P∗

57



58 Classical orthogonal polynomials on nonuniform lattices

satisfying the x−GP functional equation (4.1) becomes regular. This will extend to OPS on NUL
previous known results for continuous OPS (associated with the very classical OPS) and for OPS with
respect to Hahn’s operator (cf. Chapter 2 and [4, 38]).

The structure of the chapter is the following. In Section 4.2 we prove several preliminary results,
including a functional version on NUL of the Rodrigues-type formula. This formula holds for
functionals that are solutions of the x−GP equation, even without assuming regularity. Indeed, the
existence of such formula only requires the admissibility of the pair (φ ,ψ) appearing in the x−GP
equation, in a sense to be defined later. In Section 4.3 we state our main results, presenting the
necessary and sufficient regularity conditions mentioned above, and giving explicit formulas (in a
closed form) for the recurrence coefficients appearing in the TTRR satisfied by the monic OPS with
respect to u. Finally, in order to illustrate the power of such formulas, in Section 4.4 we revisit the
Racah and the Askey-Wilson polynomials, computing in a simple way the corresponding coefficients
of the TTRR from the functional equation fulfilled by the associated regular functional.

4.2 Preliminaries

Along this chapter, we will denote by P[k]
n the monic polynomial of degree n defined by

P[k]
n (z) :=

Dk
xPn+k(z)

∏
k
j=1 γn+ j

=
γn!

γn+k!
Dk

xPn+k(z) (k,n = 0,1,2, . . .) . (4.2)

As usual we understood that D0
x f = f , the empty product is one and γ0! := 1, γn+1! := γ1...γnγn+1.

Definition 4.2 Let φ ∈ P2 and ψ ∈ P1. (φ ,ψ) is called an x−admissible pair if

dn := 1
2 γn φ

′′+αnψ
′ ̸= 0 (n = 0,1,2, . . .) .

This is an extension of the corresponding definition for the continuous case, as well as for the case
involving the Hahn operator (see Chapter 2, see also [4]).

4.2.1 Properties of higher order x-derivative

Following [17], given u ∈ P∗, φ ∈ P2, and ψ ∈ P1, we define recursively polynomials φ [k] ∈ P2

and ψ [k] ∈ P1 (for each k = 0,1,2, . . .) by

φ
[0] := φ , ψ

[0] := ψ , (4.3)

φ
[k+1] := Sxφ

[k]+U1Sxψ
[k]+αU2Dxψ

[k] , (4.4)

ψ
[k+1] := Dxφ

[k]+αSxψ
[k]+U1Dxψ

[k] , (4.5)

and functionals u[k] ∈ P∗ by

u[0] := u , u[k+1] := Dx
(
U2ψ

[k]u[k])−Sx
(
φ
[k]u[k]) . (4.6)
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Note that u[k] may be regarded as the higher order x−derivative of u. In the next result we give explicit
expressions for the polynomials φ [k] and ψ [k] defined by (4.3)–(4.5).

Proposition 4.2.1 Consider a q−quadratic NUL, i.e., x(s) := c1q−s+c2qs+c3 (s ∈C ; q > 0; q ̸= 1).
Let φ ∈ P2 and ψ ∈ P1 , and write

φ(z) = az2 +bz+ c , ψ(z) = dz+ e ,

where a,b,c,d,e ∈ C. Then the polynomials φ [k] and ψ [k] defined by (4.3)–(4.5) are given by

ψ
[k](z) =

(
aγ2k +dα2k

)
(z− c3)+φ

′(c3)γk +ψ(c3)αk , (4.7)

φ
[k](z) =

(
d(α2 −1)γ2k +aα2k

)(
(z− c3)

2 −2c1c2
)

(4.8)

+
(
φ
′(c3)αk +ψ(c3)(α

2 −1)γk
)
(z− c3)+φ(c3)+2ac1c2 ,

for each k = 0,1,2 . . ..

Proof Set
φ
[k](z) = a[k]z2 +b[k]z+ c[k] , ψ

[k](z) = d[k]z+ e[k] (4.9)

where a[k],b[k],c[k],d[k],e[k] ∈ C. Clearly, by (4.3),

a[0] = a , b[0] = b , c[0] = c , d[0] = d , e[0] = e .

In order to determine a[k], b[k], c[k], d[k], and e[k] for each k = 1,2,3 . . ., we proceed as follows. Firstly
we replace in (4.4) and in (4.5) the expressions of φ [k], φ [k+1], ψ [k], and ψ [k+1] given by (4.9); and then,
in the two resulting identities, using (1.65)–(1.66) together with (1.45) and (1.46), after identification
of the coefficients of the polynomials appearing in both sides of each of those identities, we obtain a
system with five difference equations, given by

a[k+1] = (2α
2 −1)a[k]+2α(α2 −1)d[k] (4.10)

b[k+1] = αb[k]+(α2 −1)e[k]+2β (2α +1)a[k]+β (α +1)(4α −1)d[k] (4.11)

c[k+1] = c[k]+ v̂2a[k]+βb[k]+β (α +1)e[k]+
(
β

2(α +1)+αδ
)
d[k] (4.12)

d[k+1] = 2αa[k]+(2α
2 −1)d[k] (4.13)

e[k+1] = b[k]+αe[k]+2βa[k]+β (2α +1)d[k] (4.14)

for each k = 0,1,2, . . .. The explicit solution of this system is

a[k] = d(α2 −1)γ2k +aα2k , (4.15)

b[k] = ψ(c3)(α
2 −1)γk +φ

′(c3)αk −2c3
(
d(α2 −1)γ2k +aα2k

)
, (4.16)

c[k] = φ(c3)+2ac1c2 − c3
(
ψ(c3)(α

2 −1)γk +φ
′(c3)αk

)
(4.17)

+(c2
3 −2c1c2)

(
d(α2 −1)γ2k +aα2k

)
,

d[k] = aγ2k +dα2k , (4.18)

e[k] = φ
′(c3)γk +ψ(c3)αk − c3

(
aγ2k +dα2k

)
(4.19)
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for each k = 0,1,2, . . .. This can be easily proved by induction on k. Finally (4.7)–(4.8) is obtained by
replacing (4.15)–(4.19) in (4.9).

Lemma 4.2.2 in bellow is proved in [17]. We point out that the proof given in [17] assumes that u
is a regular functional. However, inspection of the proof given therein shows that the result remains
unchanged without such assumption.

Lemma 4.2.2 Let u ∈ P∗. Suppose that there exist φ ∈ P2 and ψ ∈ P1 such that (4.1) holds. Then
u[k] fulfills the functional equation

Dx
(
φ
[k]u[k])= Sx

(
ψ

[k]u[k]) (k = 0,1,2, . . .) . (4.20)

The next result gives some additional functional equations fulfilled by u[k].

Lemma 4.2.3 Let u ∈ P∗ be a functional satisfying (4.1) for some φ ∈ P2 and ψ ∈ P1. Then the
relations

Dx
(
u[k+1])=−αψ

[k]u[k] , (4.21)

Sx
(
u[k+1])=−α

(
αφ

[k]+U1ψ
[k])u[k] , (4.22)

2U1u[k+1] = Sx
(
U2ψ

[k]u[k])−Dx
(
U2φ

[k]u[k]) (4.23)

hold for each k = 0,1,2, . . ..

Proof Using (1.63) and (4.20), we deduce

D2
x
(
U2ψ

[k]u[k])= (2α −α
−1)S2

x
(
ψ

[k]u[k])+α
−1
U1DxSx

(
ψ

[k]u[k])−αψ
[k]u[k]

= (2α −α
−1)SxDx

(
φ
[k]u[k])+α

−1
U1D2

x
(
φ
[k]u[k])−αψ

[k]u[k]

= DxSx
(
φ
[k]u[k])−αψ

[k]u[k] ,

where the last equality follows from (1.72) for n = 1 and taking into account that α2 = 2α2 −1 and
γ1 = 1. Therefore, by the definition of u[k+1], we obtain

Dxu[k+1] = D2
x
(
U2ψ

[k]u[k])−DxSx
(
φ
[k]u[k])=−αψ

[k]u[k] .

This proves (4.21). Next by (1.59) and (1.60), we may write

Dx
(
U2φ

[k]u[k])= (SxU2 −α
−1
U1DxU2

)
Dx
(
φ
[k]u[k])+α

−1(DxU2
)
Sx
(
φ
[k]u[k]) ,

Sx
(
U2ψ

[k]u[k])= (SxU2 −α
−1
U1DxU2

)
Sx
(
ψ

[k]u[k])+α
−1(DxU2

)
Dx
(
U2ψ

[k]u[k]) .
After subtracting these two equalities and taking into account (4.20), as well as the relation α−1DxU2 =

2U1 (cf. (1.52)), we get (4.23). To prove (4.22), note first that, by the definition of u[k+1],

α2Sxu[k+1] = α2SxDx
(
U2ψ

[k]u[k])−α2S2
x
(
φ
[k]u[k]) . (4.24)

Using again (1.72) for n = 1, we have

α2SxDx
(
U2ψ

[k]u[k])= αDxSx
(
U2ψ

[k]u[k])−U1D2
x
(
U2ψ

[k]u[k])
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and by (1.63), we also have

α2S2
x
(
φ
[k]u[k])=−U1DxSx

(
φ
[k]u[k])+α

2
φ
[k]u[k]+αD2

x
(
U2φ

[k]u[k]) .
Substituting these two expressions into the right-hand side of (4.24), we get

(2α
2 −1)Sxu[k+1] = αDxSx

(
U2ψ

[k]u[k])−αD2
x
(
U2φ

[k]u[k])−U1Dxu[k+1]−α
2
φ
[k]u[k] . (4.25)

Next, by taking f = U1 and replacing u by u[k+1] in (1.59), and then using (1.51) and (4.21), we derive

Dx
(
U1u[k+1])=−U1ψ

[k]u[k]+(α −α
−1)Sxu[k+1] .

Multiplying both sides of this equality by 2α and combining the resulting equality with the one
obtained by applying the operator Dx to both sides of (4.23), we get

(2α
2 −2)Sxu[k+1] = αDxSx

(
U2ψ

[k]u[k])−αD2
x
(
U2φ

[k]u[k])+2αU1ψ
[k]u[k] . (4.26)

Finally, subtracting (4.26) to (4.25), and taking into account (4.21), (4.22) follows.

4.2.2 Rodrigues-type formula on NUL

In the proposition in bellow we establish a functional version of the Rodrigues-type formula on NUL.

Proposition 4.2.4 (Rodrigues-type formula) Let x(s) be a q−quadratic NUL, i.e.

x(s) := c1q−s + c2qs + c3 (s ∈ C ; q > 0; q ̸= 1) .

Let u ∈ P∗ and suppose that there exists an x−admissible pair (φ ,ψ) such that u fulfills the x−GP
functional equation (4.1). Set

dn := 1
2 φ

′′(c3)γn +ψ
′(c3)αn , en := φ

′(c3)γn +ψ(c3)αn , (4.27)

for each n = 0,1,2, . . .. Then

Rnu = Dn
xu[n] (4.28)

for each n = 0,1, · · · , where u[n] is the functional defined by (4.6) and (Rn)n≥0 is a simple set of
polynomials given by the TTRR

Rn+1(z) = (anz− sn)Rn(z)− tnRn−1(z) (4.29)



62 Classical orthogonal polynomials on nonuniform lattices

for each n = 0,1, . . ., with initial conditions R−1 = 0 and R0 = 1, and (an)n≥0, (sn)n≥0, and (tn)n≥1

are sequences of complex numbers defined by

an :=−α d2nd2n−1

dn−1
, (4.30)

sn := an

(
c3 +

γnen−1

d2n−2
− γn+1en

d2n

)
, (4.31)

tn := an
α γnd2n−2

d2n−1
φ
[n−1]

(
c3 −

en−1

d2n−2

)
, (4.32)

φ [n−1] being given by (4.8). (It is understood that a0 :=−αd and s0 := αe.)

Proof We apply mathematical induction on n. If n = 0, (4.28) is trivial. If n = 1, (4.28)
follows from (4.21), since R1 =−αψ . Assume now (induction hypothesis) that (4.28) holds for two
consecutive nonnegative integer numbers, i.e., the relations

Rn−1u = Dn−1
x u[n−1] , Rnu = Dn

xu[n] (4.33)

hold for some fixed n ∈ N. We need to prove that Rn+1u = Dn+1
x u[n+1]. Notice first that, by (4.7) and

(4.27), we have
ψ

[k](z) = d2k(z− c3)+ ek , (4.34)

for each k = 0,1, . . .. By (4.21) and the Leibniz formula in Proposition 1.3.5, we may write

Dn+1
x u[n+1] = Dn

xDxu[n+1] =−αDn
x(ψ

[n]u[n])

=−αTn,0ψ
[n]Dn

xu[n]−αTn,1ψ
[n]Dn−1

x Sxu[n] .

From (1.82) we have Tn,1ψ [n] = d2nγn/αn, and so, using also (4.33),

Dn−1
x Sxu[n] =− αn

αd2nγn

(
Dn+1

x u[n+1]+α
(
Tn,0ψ

[n])Rnu
)
. (4.35)

Shifting n into n−1, and using again the induction hypothesis (4.33), we obtain

Dn−2
x Sxu[n−1] =− αn−1

αd2n−2γn−1

(
Rn +α

(
Tn−1,0ψ

[n−1])Rn−1

)
u . (4.36)

Next, using (4.21), (1.59), and (4.22), we deduce

Dn+1
x u[n+1] =−αDn

x
(
ψ

[n]u[n])=−αDn−1
x
(
Dx(ψ

[n]u[n])
)

(4.37)

=−Dn−1
x

((
αSxψ

[n]−U1Dxψ
[n])Dxu[n]+Dxψ

[n]Sxu[n]
)

= Dn−1
x
(
ξ2(·;n)u[n−1]) ,

where ξ2(·;n) is a polynomial of degree 2, given by

ξ2(z;n) = α
2(

ψ
[n−1]Sxψ

[n]+φ
[n−1]Dxψ

[n])(z) . (4.38)
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The following identities may be proved by a straightforward computation:

d2n−1 −αd2n−2 = a[n−1] ,

d2n−2
(
en −2αc3d2n

)
+d2n

(
b[n−1]+αen−1

)
= 2d2n−1(αen − c3d2n)

for each n = 1,2, . . .. (The second one is achieved by using equation (4.14).) Using these relations,
together with (4.9), (4.34), (1.65), and (1.66), we deduce

ξ2(z;n) = α
2d2nd2n−1z2 +2α

2d2n−1(αen − c3d2n)z (4.39)

+α
2(d2nc[n−1]+(en−1 − c3d2n−2)(en −αc3d2n)

)
.

Since degξ2(·;n) = 2, using again Proposition 1.3.5, we may write

Dn−1
x
(
ξ2(·;n)u[n−1])= Tn−1,0ξ2(·;n)Dn−1

x u[n−1]+Tn−1,1ξ2(·;n)Dn−2
x Sxu[n−1] (4.40)

+Tn−1,2ξ2(·;n)Dn−3
x S2

xu[n−1] .

Therefore, since, by (1.82), Tn−1,2ξ2(·;n) = α2γn−1γn−2d2nd2n−1/α2
n−2, combining equations (4.40),

(4.37), (4.36), and (4.33), we obtain

Dn−3
x S2

xu[n−1] =
α2

n−2

α2γn−1γn−2d2nd2n−1

{
Dn+1

x u[n+1]−
(
Tn−1,0ξ2(·;n)

)
Rn−1u (4.41)

+
αn−1Tn−1,1ξ2(·;n)

αγn−1d2n−2

(
Rn +α

(
Tn−1,0ψ

[n−1])Rn−1

)
u
}
.

On the other hand, by (4.22),

Sxu[n] = η2(·;n)u[n−1] , η2(z;n) :=−α
(
αφ

[n−1]+U1ψ
[n−1])(z) . (4.42)

Therefore, once again by Leibniz’s formula and (4.33), and taking into account that η2(·;n) is a
polynomial of degree at most two, we may write

Dn−1
x Sxu[n] = Dn−1

x
(
η2(·;n)u[n−1]) (4.43)

=
(
Tn−1,0η2(·;n)

)
Rn−1u+Tn−1,1η2(·;n)Dn−2

x Sxu[n−1]

+Tn−1,2η2(·;n)Dn−3
x S2

xu[n−1] .

Note that η2(·;n) is given explicitly by

η2(z;n) = α(αd2n−1 −d2n)z2 −α

(
αb[n−1]+(α2 −1)(en−1 −2c3d2n−2)

)
z (4.44)

−α
(
αc[n−1]+β (α +1)(en−1 − c3d2n−2)

)
.

Hence, using (1.82), Tn−1,2η2(·;n) = αγn−1γn−2(αd2n−1 −d2n)/α2
n−2. Therefore, substituting (4.35),

(4.36), and (4.41) in (4.43), we obtain

Dn+1
x u[n+1] =

(
A(·;n)Rn +B(·;n)Rn−1

)
u , (4.45)
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where A(·;n) and B(·;n) are polynomials depending on n, given by

εnA(z;n) =
αn(Tn,0ψ [n])(z)

γnd2n
−

αn−1(Tn−1,1η2)(z;n)
αγn−1d2n−2

+
αn−1(αd2n−1 −d2n)(Tn−1,1ξ2)(z;n)

α2γn−1d2nd2n−1d2n−2
, (4.46)

and

εnB(z;n) = (Tn−1,0η2)(z;n)−
αn−1(Tn−1,0ψ [n−1])(z)(Tn−1,1η2)(z;n)

γn−1d2n−2

+
(d2n −αd2n−1)(Tn−1,0ξ2)(z;n)

αd2nd2n−1
(4.47)

+
αn−1(αd2n−1 −d2n)(Tn−1,1ξ2)(z;n)(Tn−1,0ψ [n−1])(z)

αγn−1d2nd2n−1d2n−2
,

where

εn =
d2n −αd2n−1

αd2nd2n−1
− αn

αγnd2n
=− dn−1

αγnd2nd2n−1
.

Note that γnd2n − (α +αn)d2n−1 = −dn−1 for each n = 0,1,2, . . .. By straightforward computation using
(1.81)-(1.82) we arrive at

A(z;n) =−α
d2nd2n−1

dn−1
(z− c3)+

αγnd2nd2n−1en−1

d2n−2dn−1
− αγn+1d2n−1en

dn−1
= anz− sn . (4.48)

Similarly, B(z;n) reduces to the following constant:

B(z;n) = α
2 γnd2nd2n−1

dn−1
φ
[n−1]

(
c3 −

en−1

d2n−2

)
=−tn (4.49)

for each n = 0,1,2, . . ., where an, sn, and tn are given by (4.30)–(4.32). Since their computations are rather

technical, we provide more details on the derivation of (4.48)–(4.49) in the Appendix A.2. Hence (4.45) reduces

to Dn+1
x u[n+1] = Rn+1u. This completes the proof.

The next result is virtually proved in [38, Theorem 2].

Lemma 4.2.5 Let u ∈P∗ be regular. Suppose that there is (φ ,ψ) ∈P2×P1 \{(0,0)} so that (4.1)
holds. Then neither φ nor ψ is the zero polynomial, and degψ = 1.

The statement of the next lemma is given in [17, Proposition 4]. However the proof of the
x−admissibility condition given therein is incorrect. For sake of completeness, we present a proof
following the ideas presented in [4, 38].

Lemma 4.2.6 Let u∈P∗. Suppose that u is regular and satisfies (4.1), where φ ∈P2, ψ ∈P1\P0.
Then (φ ,ψ) is a x−admissible pair and u[k] is regular for each k ∈ N. Moreover, if (Pn)n≥0 is the
monic OPS with respect to u, then

(
P[k]

n
)

n≥0 is the monic OPS with respect to u[k].

Proof Suppose that u is regular. Set φ(z) = az2 +bz+ c and ψ(z) = dz+ e, with a,b,c,d,e ∈ C.
If degφ ∈ {0,1} then dn = dαn, hence dn ̸= 0 for each n = 0,1, . . ., since d ̸= 0 (see Lemma (4.2.5)).
Assume now that degφ = 2. Then dn = aγn + dαn and a ̸= 0. To prove that dn ̸= 0, we start by
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showing that 〈
u,
(
U2ψDxP[1]

n +φSxP[1]
n
)
Pn+2

〉
=−

〈
u[1],

(
SxPn+2 +α

−1
U1DxPn+2

)
P[1]

n
〉

(4.50)

for each n = 0,1,2, . . ..

Indeed, we have〈
u,
(
U2ψDxP[1]

n +φSxP[1]
n
)
Pn+2

〉
=
〈
U2ψu,Pn+2DxP[1]

n
〉
+
〈
φu,Pn+2SxP[1]

n
〉

=
〈
U2ψu,Dx

(
(SxPn+2 −α

−1
U1DxPn+2)P

[1]
n
)
−α

−1Sx
(
P[1]

n DxPn+2
)〉

+
〈
φu,Sx

(
(SxPn+2 −α

−1
U1DxPn+2)P

[1]
n
)
−α

−1
U2Dx

(
P[1]

n DxPn+2
)〉

=−
〈
u[1],

(
SxPn+2 −α

−1
U1DxPn+2

)
P[1]

n
〉

−α
−1〈Sx(U2ψu)−Dx(U2φu),P[1]

n DxPn+2
〉
,

where the second equality holds by (1.58) and (1.57). Therefore, using (4.23) for n = 0, we obtain
(4.50). Now, on the one hand, U2ψDxP[1]

n +φSxP[1]
n is a polynomial of degree at most n+2, being the

coefficient of zn+2 equal to (α2 −1)dγn +aαn. Hence, since the relations

(α2 −1)dγn +aαn = dn+1 −αdn = αdn −dn−1 (n = 1,2, . . .)

hold, we get
U2ψDxP[1]

n +φSxP[1]
n =

(
αdn −dn−1

)
zn+2 +(lower degree terms)

for each n = 1,2, . . .. Consequently,〈
u,
(
U2ψDxP[1]

n +φSxP[1]
n
)
Pn+2

〉
= (αdn −dn−1)⟨u,P2

n+2⟩ (n = 1,2, . . .) . (4.51)

On the other hand, since SxPn+2+α−1
U1DxPn+2 =∑

n+2
j=0 cn, jP

[1]
j for some coefficients cn,0, . . . ,cn,n+2 ∈

C, and taking the particular case where k = 1 in the following equation

〈
u[k],P[k]

n P[k]
m
〉
= α

d[k−1]
n

γn+1
⟨u,(P[k−1]

n+1 )2⟩δn,m (0 ≤ m ≤ n ; ,n = 0,1, . . .) , (4.52)

(see [17, Proof of Theorem 5–step 1.1]) we obtain

〈
u[1],

(
SxPn+2 +α

−1
U1DxPn+2

)
P[1]

n
〉
=

αcn,ndn

γn+1
⟨u,P2

n+1⟩ (n = 1,2, . . .) . (4.53)

Substituting (4.51) and (4.53) into (4.50), and since Cn+2 = ⟨u,P2
n+2⟩/⟨u,P2

n+1⟩, we deduce

α

(
1+

cn,n

γn+1Cn+2

)
dn = dn−1 (n = 1,2,3, . . .) .
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This implies that
n

∏
j=1

[
α

j
(

1+
c j, j

γ j+1C j+2

)]
dn = d0 = d ̸= 0 .

Therefore dn ̸= 0 for each n = 0,1,2 . . ., and consequently, by (4.52) for k = 1, (P[1]
n )n≥0 is the

monic OPS with respect to u[1]. This proves the last statement in the lemma for k = 1. Since
d[k]

n = a[k]γn +αnd[k] for n,k = 0,1,2, . . ., it is easy to see, using (4.15)–(4.18), that d[k]
n = dn+2k, for

n,k = 0,1,2, . . .. Thus the desired result is obtained from (4.52).

4.3 Regularity conditions

In this section we state our main results: given the nonuniform lattice (1.26), we state necessary and
sufficient conditions for which a functional u ∈ P∗ satisfying (4.1) is regular and, in such a case, we
describe the associated monic OPS.

Theorem 4.3.1 Consider the NUL

x(s) = c1q−s + c2qs + c3 (s ∈ C ; q > 0; q ̸= 1) .

Let u ∈P∗ and suppose that there exist (φ ,ψ)∈P2×P1 \{(0,0)} such that the functional equation
(4.1) holds, that is:

Dx(φu) = Sx(ψu) . (4.1)

Set φ(z) := az2 + bz + c and ψ(z) := dz + e (a,b,c,d,e ∈ C). If u is regular then (φ ,ψ) is an
x−admissible pair and ψ [n] - φ [n] for each n = 0,1,2, . . ., i.e., the conditions

dn ̸= 0 , φ
[n]
(
c3 −

en

d2n

)
̸= 0 , ∀n ∈ N0 (4.54)

hold, where dn and en are given by (4.27), and φ [n] and ψ [n] are given by (4.7)–(4.8).

Proof Suppose that u is regular. Then dn ̸= 0 for n = 0,1,2, . . .. Indeed u satisfies (4.1) and
Lemma 4.2.6 ensures that (φ ,ψ) is a x−admissible pair. In addition

(
P[n]

j

)
j≥0 is the monic OPS with

respect to u[n] and so the following TTRR holds.

P[n]
j+1(z) = (z−B[n]

j )P[n]
j (z)−C[n]

j P[n]
j−1(z) ( j = 0,1,2, . . .) , (4.55)

where P[n]
−1(z) = 0, being B[n]

j ∈C and C[n]
j+1 ∈C\{0} for each j = 0,1,2, . . .. Let us compute C[n]

1 . We

first show that (for n = 0) the coefficient C1 ≡C[0]
1 , appearing in the TTRR for (Pj) j≥0, is given by

C1 =− 1
dα +a

φ

(
− e

d

)
=− 1

d1
φ

(
c3 −

e0

d0

)
. (4.56)

This may be proved taking n = 0 and n = 1 in the relation ⟨Dx(φu),zn⟩ = ⟨Sx(ψu),zn⟩. Indeed,
setting un := ⟨u,zn⟩, for n = 0 we obtain 0 = du1 + eu0, and for n = 1 we find au2 + bu1 + cu0 =
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−dαu2 − (eα +dβ )u1 − eβu0. Therefore,

u1 =− e
d

u0 , u2 =− 1
dα +a

[
−(b+ eα)

e
d
+ c
]

u0 . (4.57)

On the other hand, since P1(z) = z−B[0]
0 = z−u1/u0, we also have

C1 =
⟨u,P2

1 ⟩
u0

=
u2u0 −u2

1

u2
0

=
u2

u0
−
(

u1

u0

)2

. (4.58)

Substituting u1 and u2 given by (4.57) into (4.58) yields (4.56). Since equation (4.20) is of the same
type as (4.1), with polynomials φ and ψ replaced by φ [n] and ψ [n], respectively, we see that C[n]

1 may be
obtained replacing in (4.56) φ and ψ(z) = dz+ e by φ [n] and ψ [n](z) = d2n(z− c3)+ en, respectively.
Hence,

C[n]
1 =− 1

d2nα +a[n]
φ
[n]
(
c3 −

en

d2n

)
=− 1

d2n+1
φ
[n]
(
c3 −

en

d2n

)
. (4.59)

Since u[n] is regular, then C[n]
1 ̸= 0, hence φ [n]

(
c3 − en

d2n

)
̸= 0. Thus, (4.54) holds.

The converse of Theorem 4.3.1 is given by the following

Theorem 4.3.2 Consider the NUL

x(s) = c1q−s + c2qs + c3 (s ∈ C ; q > 0; q ̸= 1) .

Let u ∈ P∗ \{0} and suppose that there exist (φ ,ψ) ∈ P2 ×P1 \{(0,0)} such that the functional
equation (4.1) holds. Assume that conditions (4.54) hold. Then u is regular and the corresponding
monic OPS (Pn)n≥0 satisfies the TTRR

Pn+1(z) = (z−Bn)Pn(z)−CnPn−1(z) (n = 0,1,2, . . .) , (4.60)

with P−1(z) = 0, being Bn and Cn+1 given by

Bn := c3 +
γnen−1

d2n−2
− γn+1en

d2n
, (4.61)

Cn+1 :=− γn+1dn−1

d2n−1d2n+1
φ
[n]
(
c3 −

en

d2n

)
(4.62)

for each n = 0,1,2 . . .. Moreover, the Rodrigues-type formula

Pnu = knDn
xu[n] (4.63)

holds for each n = 0,1,2 . . ., where

kn := (−α)−n
n

∏
j=1

d−1
n+ j−2 , n = 0,1,2, . . . . (4.64)
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Proof Define a sequence of monic polynomials (Pn)n≥0 by setting P−1(z) := 0 and P0(z) := 1,
and satisfying the TTRR (4.60)–(4.62). By assumption, Cn+1 ̸= 0 for each n = 0,1,2, . . .. Therefore
(Pn)n≥0 is a monic OPS (by Favard’s theorem). Let’s show that it is the monic OPS with respect to
u. For this we only need to prove that u0 ̸= 0 and ⟨u,Pn⟩= 0 for every n = 1,2,3, . . . (un := ⟨u,zn⟩).
Firstly we show that u0 ̸= 0. Suppose that u0 = 0. Since (4.1) holds, then ⟨Dx(φu)−Sx(ψu),zn⟩= 0
for n = 0,1,2, . . .. This implies that

dnun+1 + snun + fnun−1 +
n−2

∑
l=0

an,lul = 0 , n = 0,1,2, . . . (4.65)

for some complex numbers sn, fn and an,l , l = 0,1,2, . . . ,n−2. For n = 0 in (4.65), we have d0u1 = 0
and since dn ̸= 0 for all n, we find u1 = 0. For n = 2, with the same arguments we also find u2 = 0
and proceeding in this way we have un = 0 for n = 0,1,2, . . ., which is impossible since u ̸= 0. This
shows that u0 ̸= 0. Secondly, note that, from Proposition 4.2.4, we may write Pn(z) = knRn(z) for each
n = 0,1,2, . . ., where k−1

n = (−α)n
∏

n
j=1 dn+ j−2. Therefore, using (4.28), we obtain

⟨u,Pn⟩= kn ⟨u,Rn⟩= kn ⟨Rnu,1⟩= kn

〈
Dn

xu[n],1
〉
= (−1)nkn

〈
u[n],Dn

x 1
〉
= 0

for each n = 1,2, . . .. Hence (Pn)n≥0 is the monic OPS with respect to u. By Proposition 4.2.4, the
proof is concluded.

The following corollary gives the asymptotic behavior of the sequence (Bn)n≥0 appearing in (4.61).
This result will be very helpful in the next chapter.

Corollary 4.3.3 Under the same assumptions of Theorem 4.3.2,

Sn :=
n−1

∑
j=0

(B j − c3) =−γnen−1

d2n−2
, n = 0,1,2, . . . . (4.66)

In addition, setting u := (q1/2 −q−1/2)−1, the following holds:

a) For 0 < q < 1 and d −2au ̸= 0, we have

lim
n→∞

(Bn − c3) = lim
n→∞

q±n/2(Bn − c3) = 0 , (4.67)

lim
n→∞

q−n(Bn − c3) =−
q−1/2

(
ψ(c3)−4αu2φ ′(c3)

)
u(d −2au)

, (4.68)

S :=
∞

∑
j=0

(B j − c3) =
ψ(c3)−2uφ ′(c3)

(q−1)(d −2au)
. (4.69)
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b) For 1 < q < ∞ and d +2au ̸= 0, we have

lim
n→∞

(Bn − c3) = lim
n→∞

q±n/2(Bn − c3) = 0 , (4.70)

lim
n→∞

qn(Bn − c3) =
q1/2

(
ψ(c3)−4αu2φ ′(c3)

)
u(d +2au)

(4.71)

S =
∞

∑
j=0

(B j − c3) =
ψ(c3)+2uφ ′(c3)

(q−1 −1)(d +2au)
. (4.72)

Proof From Theorem 4.3.2, we have

Bn − c3 =
γnen−1

d2n−2
− γn+1en

d2n
(n = 0,1,2, . . .) ,

and so (4.66) holds. If 0 < q < 1 and d −2au ̸= 0 then we see that

γn+1en

d2n
=

θ1q2n +θ2qn +θ3

(d +2au)qn +(d −2au)
, n = 0,1,2, . . . ,

where

θ1 := uq1/2
(

ψ(c3)+2uφ
′(c3)

)
, θ2 := ψ(c3)−4αu2

φ
′(c3), θ3 :=−uq−1/2

(
ψ(c3)−2uφ

′(c3)
)
.

Taking the limit as n → ∞, equations (4.67)–(4.69) hold. Similarly we deduce (4.70)–(4.72).

We finish this section by considering the quadratic lattice x(s) = c4s2 + c5s+ c6. Recall that, here
c4 = 4β . For this lattice, the system of equations (4.10)–(4.14) becomes

a[n+1] = a[n], d[n+1] = 2a[n]+d[n], b[n+1] = b[n]+6β (a[n]+d[n]) ,

e[n+1] = e[n]+b[n]+β (2a[n]+3d[n]) ,

c[n+1] = c[n]+β (b[n]+2e[n])+β
2d[n]+

(
β

2 −4β c6 +
c2

5
4

)(
a[n]+d[n]

)
.

By solving this system using the initial conditions a[0] = a, b[0] = b, c[0] = c, d[0] = d and e[0] = e, we
obtain

a[n] = a, b[n] = b+6βn(an+d), d[n] = 2an+d ,

e[n] = bn+ e+2dβn2 +βn2(2an+d) ,

c[n] = φ(βn2)+2βnψ(βn2)−n
(

4β c6 −
c2

5
4

)
(an+d) ,

for n = 0,1,2, . . .. Thus, by a limit process on the previous results, way may infer and then to prove
the following result for the quadratic lattice.

Theorem 4.3.4 Let x(s) be the (quadratic) NUL x(s) = 4β s2 + c5s+ c6. Let u ∈ P∗ \ {0} and
suppose that there exist (φ ,ψ) ∈ P2 ×P1 \{(0,0)} such that the functional equation (4.1) holds.
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Set φ(z) := az2 +bz+ c, ψ(z) := dz+ e (a,b,c,d,e ∈ C). Then u is regular if and only if

dn ̸= 0 , φ
[n]
(
−βn2 − en

d2n

)
̸= 0 , ∀n ∈ N0 , (4.73)

where dn := an+d, en := bn+ e+2dβn2 and

φ
[n](z) = az2 +(b+6βndn)z+φ(βn2)+2βnψ(βn2)− n

4
(
16β c6 − c2

5
)

dn ,

for n = 0,1,2, . . ..

Moreover the monic OPS (Pn)n≥0 with respect to u satisfies the TTRR (4.60) with

Bn =
nen−1

d2n−2
− (n+1)en

d2n
−2βn(n−1) , (4.74)

Cn+1 =−(n+1)dn−1

d2n−1d2n+1
φ
[n]
(
−βn2 − en

d2n

)
, n = 0,1,2, . . . . (4.75)

In addition, the following Rodrigues-type formula holds

Pnu = knDn
xu[n], kn := (−1)n

n

∏
j=1

d−1
n+ j−2 (n = 0,1,2, . . .) . (4.76)

Remark 4.3.1 More generally, under the regularity conditions (4.54) and (4.73), the recurrence
coefficients for the TTRR satisfied by the sequence of x-derivatives (P[k]

n )n≥0 are given by the following
relations

P[k]
n+1(z) = (z−B[k]

n )P[k]
n (z)−C[k]

n P[k]
n−1(z) (n,k = 0,1,2, . . .) ,

with P[k]
−1(z) = 0, being B[k]

n and C[k]
n+1 given by

• for NUL lattices x(s) = c1q−s + c2qs + c3 (with the notations of Theorem 4.3.2)

B[k]
n = c3 +

γnen+k−1

d2n+2k−2
− γn+1en+k

d2n+2k
,

C[k]
n+1 =− γn+1dn+2k−1

d2n+2k−1d2n+2k+1
φ
[n+k]

(
c3 −

en+k

d2n+2k

)
(n,k = 0,1,2, . . .) ;

• for NUL lattices x(s) = 4β s2 + c5s+ c6 (with the notations of Theorem 4.3.4)

B[k]
n =

nen+k−1

d2n+2k−2
− (n+1)en+k

d2n+2k
−2β

(
(n+ k)2 −n− 1

2
k2
)

,

C[k]
n+1 =− (n+1)dn+2k−1

d2n+2k−1d2n+2k+1
φ
[n+k]

(
−β (n+ k)2 − en+k

d2n+2k

)
(n,k = 0,1,2, . . .) .

These expressions are obtained using ideas presented in Chapter 2, Section 2.2.2.
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4.4 Applications

4.4.1 The very classical OPS

Consider the particular quadratic lattice x(s) = c6. Thus β = c5 = 0. From Theorem 4.3.4 we recover
[38, Lemma 2 and Theorem 2] stated in Theorem 2.1.1 for the very classical OPS.

4.4.2 The Racah polynomials

Consider the quadratic lattice x(s) = s(s+a+b+1). Let u ∈ P∗ satisfying (4.1) with

φ(z) = 2z2 +[(a+b+2c+3)d + c(a−b+3)+2(a+b+ab+2)]z

+(1+a)(1+d)(a+b+1)(b+ c+1),

ψ(z) = 2(d + c+2)z+2(1+a)(1+d)(b+ c+1) .

Here a,b,c,d ∈ C. The regularity conditions for u given by (4.73) read as

(n+a+1)(n+ c+1)(n+d +1)(n+d + c)(n+b+ c+1)(n+ c+d −a+1)(n+d −b+1) ̸= 0

for each n = 0,1,2, . . .. Let (Pn)n≥0 be the monic OPS with respect to u. Using Theorem 4.3.4, we
see that (Pn)n≥0 satisfies the TTRR (4.60). Hence applying (4.74)–(4.75), we obtain

Bn =− (n+a+1)(n+d +1)(n+b+ c+1)(n+d + c+1)
(2n+d + c+1)(2n+d + c+2)

− n(n+ c)(n+d + c−a)(n+d −b)
(2n+d + c)(2n+d + c+1)

,

Cn+1 =
(n+1)(n+a+1)(n+ c+1)(n+d +1)(n+d + c+1)(n+b+ c+1)(n+ c+d −a+1)(n+d −b+1)

(2n+d + c+1)(2n+d + c+2)2(2n+d + c+3)

for each n = 0,1,2, . . .. Therefore,

Pn(z) = Rn(z;d,c,a,b), n = 0,1,2, . . . ,

where (Rn(.;d,c,a,b))n≥0 is the monic OPS of the Racah polynomial (see [34, p.190]).

4.4.3 The Askey-Wilson polynomials

Consider the q-quadratic lattice x(s) = c1q−s + c2qs + c3 (q > 0; q ̸= 1). Let u be a linear functional
on P satisfying (4.1), where φ and ψ are given by

φ(z) = 2(1+abcd)(z− c3)
2 −2

√
c1c2(a+b+ c+d +abc+abd +acd +bcd)(z− c3)

+4(ab+ac+ad +bc+bd + cd −abcd −1)c1c2 ,

ψ(z) =
4q1/2

q−1

(
(abcd −1)(z− c3)+

√
c1c2(a+b+ c+d −abc−abd −acd −bcd)

)
,

where a,b,c,d ∈ C (with a ̸= 0). Acccording to Theorem 4.3.1, u is regular if and only if

(1−abcdqn)(1−abqn)(1−acqn)(1−adqn)(1−bcqn)(1−bdqn)(1− cdqn)c1c2 ̸= 0
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for each n = 0,1,2, . . .. Assuming that this conditions hold, by Theorem 4.3.2 the corresponding
monic OPS (Pn)n≥0 satisfies the TTRR (4.60) , where (by (4.61)–(4.62)),

Bn = c3 +2
√
c1c2

[
a+

1
a
− (1−abqn)(1−acqn)(1−adqn)(1−abcdqn−1)

a(1−abcdq2n−1)(1−abcdq2n)

−a(1−qn)(1−bcqn−1)(1−bdqn−1)(1− cdqn−1)

(1−abcdq2n−1)(1−abcdq2n−2)

]
(if a = 0, we define Bn by continuity, taking the limit as a → 0 in the preceding expression), and

Cn+1 =
c1c2(1−abqn)(1−acqn)(1−adqn)(1−bcqn)(1−bdqn)(1− cdqn)(1−qn+1)(1−abcdqn−1)

(1−abcdq2n−1)(1−abcdq2n)2(1−abcdq2n+1)
,

for n = 0,1,2, . . .. Hence

Pn(z) = 2n(c1c2)
n/2Qn

(
z− c3

2
√
c1c2

;a,b,c,d|q
)
, n = 0,1,2, . . . ,

where (Qn(.;a,b,c,d|q))n≥0 is the monic OPS of the Askey-Wilson polynomials (see [34, (14.1.5)]).



Chapter 5

On a characterization of continuous
q−Jacobi and Al-Salam Chihara
polynomials

The purpose of this chapter is to give a positive answer to a conjecture posed by M. E. H. Ismail
concerning a characterization of the continuous q−Jacobi and Al-Salam Chihara polynomials (see
[26, Conjecture 24.7.8]). The proof makes use of some results stated in the previous chapters.

5.1 The conjecture

Let π be a nonzero polynomial of degree at most 2 and consider three sequences of numbers (an)n≥0,
(bn)n≥0, and (cn)n≥0. Al-Salam and Chihara [3] proved that the only OPS, say (Pn)n≥0, that satisfy

π(x)DPn(x) = (anx+bn)Pn(x)+ cnPn−1(x) , (5.1)

are those of Hermite, Laguerre, Jacobi, and Bessel (here D denotes the standard derivative with respect
to x). Consider now (5.1) with D replaced by the Askey–Wilson operator,

(Dq f )(x) :=
f̆
(
q1/2z

)
− f̆
(
q−1/2z

)
ĕ
(
q1/2z

)
− ĕ
(
q−1/2z

) (z = eiθ ) , (5.2)

where f̆ (z) := f
(
(z+1/z)/2

)
= f (cosθ) for each polynomial f and e(x) := x. Here 0 < q < 1 and

θ is not necessarily a real number (see [26, p. 300]).

Conjecture 5.1.1 [26, Conjecture 24.7.8] Let (Pn)n≥0 be a monic OPS and π be a polynomial of
degree at most 2 which does not depend on n. If (Pn)n≥0 satisfies

π(z)DqPn(z) = (anz+bn)Pn(z)+ cnPn−1(z) , (5.3)

then (Pn)n≥0 are continuous q−Jacobi polynomials, Al-Salam-Chihara polynomials, or special or
limiting cases of them.
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74 On a characterization of continuous q−Jacobi and Al-Salam Chihara polynomials

M. E. H. Ismail himself proved that the continuous q−Jacobi polynomials indeed satisfy (5.3)
for suitable polynomial π and parameters an, bn, and cn (cf. [26, Theorem 15.5.2]). On another hand,
Al-Salam [2] proved that the conjecture is true whenever π(x) ≡ 1, by characterizing the Rogers
q−Hermite polynomials, Pn(x) := Hn(x|q), as the only OPS that fulfill DqPn = cnPn−1 for every
n = 1,2, . . ..

We recall that the monic continuous q−Jacobi polynomials, P̂(a,b)
n (x|q), depend on two complex

parameters a and b, and they are characterized by the TTRR

xP̂(a,b)
n (x|q) = P̂(a,b)

n+1 (x|q)+ 1
2

(
q(2a+1)/4 +q−(2a+1)/4 − yn(a,b)− zn(a,b)

)
P̂(a,b)

n (x|q)

+ 1
4 yn−1(a,b)zn(a,b) P̂(a,b)

n−1 (x|q)
(5.4)

(n = 0,1, . . .), being

yn(a,b) :=
(1−qn+a+1)(1−qn+a+b+1)(1+qn+(a+b+1)/2)(1+qn+(a+b+2)/2)

q(2a+1)/4(1−q2n+a+b+1)(1−q2n+a+b+2)
, (5.5)

zn(a,b) :=
q(2a+1)/4(1−qn)(1−qn+b)(1+qn+(a+b)/2)(1+qn+(a+b+1)/2)

(1−q2n+a+b)(1−q2n+a+b+1)
, (5.6)

and subject to the restrictions (1−qn+a)(1−qn+b)(1−qn+a+b) ̸= 0 for each n = 0,1,2, . . ., while the
monic Al-Salam-Chihara polynomials, Qn(x;c,d|q), which also depend on two complex parameters c
and d, are characterized by

xQn(x;c,d|q) = Qn+1(x;c,d|q)+ 1
2 (c+d)qn Qn(x;c,d|q)

+ 1
4 (1− cdqn−1)(1−qn)Qn−1(x;c,d|q)

(5.7)

(n = 0,1, . . .), provided we define P̂(a,b)
−1 (x|q) = Q−1(x;c,d|q) = 0 (see e.g. [26]). Further, up to

normalization, the Rogers q−Hermite polynomials are the special case c = d = 0 of the Al-Salam-
Chihara polynomials.

Taking eiθ = qs, Dq reads

Dq f (x(s)) =
f
(
x(s+ 1

2)
)
− f
(
x(s− 1

2)
)

x(s+ 1
2)− x(s− 1

2)
, x(s) = 1

2(q
−s +qs) . (5.8)

Recently, Kenfack-Nangho and Jordaan [33] used (5.8) to answer another conjecture posed by M. E.
H. Ismail [26, Conjecture 24.7.9] concerning a characterization of the Askey–Wilson polynomials.
We also mention the related work [30] by the same authors, where the Bochner-type equation is used.

Throughout this chapter we denote by x(s) the q-quadratic lattice defined by

x(s) = c1q−s + c2qs + c3 , (5.9)

where q ∈ (0,+∞)\{1} and c1, c2, and c3 are real constants so that (c1,c2) ̸= (0,0). We will prove
Conjecture 5.1.1 for the general operator Dx (note that Dq is obtained from Dx by taking c3 = 0 and
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c1 = c2 = 1/2). Henceforth, we assume that there exists a monic OPS (Pn)n≥0 satisfying

π(x)DxPn(z) = (anz+bn)Pn(z)+ cnPn−1(z) (n = 0,1,2, . . .) , (5.10)

where π is a nonzero polynomial of degree at most 2 and (an)n≥0, (bn)n≥0, and (cn)n≥0 are sequences
of complex numbers such that cn ̸= 0 for all n = 1,2,3, . . .. Our aim is to determine all such OPS
(Pn)n≥0. In this chapter Bn and Cn denote the coefficients of the TTRR fulfilled by (Pn)n≥0, so that

zPn(z) = Pn+1(z)+BnPn(z)+CnPn−1(z) (n = 0,1,2, . . .) , (5.11)

with P−1(z) = 0, being Bn ∈ C and Cn+1 ̸= 0 for each n = 0,1,2, . . ..

5.2 Preliminary results

We start by showing that all monic OPS satisfying (5.10) are x-classical and then we prove that the
coefficients of the associated TTRR satisfy a system of non linear equations. This system will be
solved (in the next section) considering three cases, according with the degree of the polynomial π .

Theorem 5.2.1 Let u ∈ P∗ be a regular functional such that its corresponding monic OPS (Pn)n≥0

satisfies (5.10) subject to the condition cn ̸= 0, for each n = 1,2, . . .. Then u is x-classical. Moreover
Dx(φu) = Sx(ψu), with ψ and φ the polynomials given by

ψ(z) = z−B0, φ(z) = (az−b)(z−B0)− (a+α)C1 , (5.12)

where

a :=
(a2C2 + c2)C1

(a1C1 + c1)C2
−α, b := β −B0 +(a+α)B1 −

b1 +a1B1

c1 +a1C1
C1 . (5.13)

(Here, B0, B1, C1, and C2 are coefficients of the TTRR (5.11) satisfied by (Pn)n≥0, and c1, c2, b1, a1,
and a2 are coefficients appearing in the structure relation (5.10).)

Proof Let (an)n≥0 be the dual basis associated to the monic OPS (Pn)n≥0. We claim that

Dx(πu) = R1u, R1(z) :=−a1C1 + c1

C1
(z−B0), with a1C1 + c1 ̸= 0 . (5.14)

Indeed let j ∈ N0. Using (5.10) and (5.11), we deduce〈
Dx(πa0),Pj

〉
=−

〈
a0,πDxPj

〉
=−a jδ0, j+1 − (a jB j +b j)δ0, j − (c j +a jC j)δ1, j .

Taking n= 0 in (5.10), we find a0 = b0 = 0, and since
〈
u,P2

n
〉

an = Pnu and Cn+1 =
〈
u,P2

n+1
〉
/
〈
u,P2

n
〉
,

we obtain

Dx(πa0) =
∞

∑
j=0

〈
Dx(πa0),Pj

〉
a j =−(c1 +a1C1)a1 .

If c1 + a1C1 = 0, then Dx(πu) = 0, hence 0 = ⟨Dx(πu), f ⟩ = −⟨πu,Dx f ⟩, ∀ f ∈ P . This implies
πu = 0. But this is impossible, since π ̸≡ 0 and u is regular. So c1 +a1C1 ̸= 0. Hence (5.14) holds.
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Applying Dx to both sides of (5.11), and using (1.53), yields

SxPn(z) =−(αz+β )DxPn(z)+DxPn+1(z)+BnDxPn(z)+CnDxPn−1(z) .

Multiplying both sides of this equality by π(z) and using (5.10) and (5.11), we obtain

π(z)SxPn(z) = r[1]n Pn+2(z)+ r[2]n Pn+1(z)+ r[3]n Pn(z)+ r[4]n Pn−1(z)+ r[5]n Pn−2(z) (5.15)

for each n = 0,1,2, . . ., where

r[1]n := an+1 −αan , r[2]n := gn+1 −αgn +an(Bn −αBn+1 −β ) ,

r[3]n := sn+1 −αsn +gn((1−α)Bn −β )+an−1Cn −αanCn+1 ,

r[4]n := (gn−1 −αgn)Cn + sn(Bn −β −αBn−1) , r[5]n :=Cnsn−1 −αCn−1sn ,

and gn = bn +anBn, sn = cn +anCn. For a fixed j ∈ N0, using (5.15) we obtain〈
Sx(πa0),Pj

〉
=
〈
a0,πSxPj

〉
= r[1]j δ0, j+2 + r[2]j δ0, j+1 + r[3]j δ0, j + r[4]j δ0, j−1 + r[5]j δ0, j−2 .

Therefore,

Sx(πa0) =
∞

∑
j=0

〈
Sx(πa0),Pj

〉
a j = r[3]0 a0 + r[4]1 a1 + r[5]2 a2 ,

and so

Sx(πu) = R2u, R2(z) := r[3]0 +
r[4]1
C1

P1(z)+
r[5]2

C2C1
P2(z) . (5.16)

Next, on the first hand, applying successively (5.16), (1.72) and (5.14), we obtain

Dx(R2u) = DxSx(πu) =
2α2 −1

α
SxDx(πu)+

U1

α
D2

x(πu)

=
2α2 −1

α
Sx(R1u)+

U1

α
Dx(R1u) . (5.17)

On the other hand, using (1.59) with f = U1, we obtain

Dx(U1R1u) =
(

SxU1 −
U1

α
DxU1

)
Dx(R1u)+α

−1DxU1Sx(R1u) =
U1

α
Dx(R1u)+

α2 −1
α

Sx(R1u) .

Hence the following relation holds:

U1

α
Dx(R1u) = Dx(U1R1u)− α2 −1

α
Sx(R1u) . (5.18)

Thus, combining (5.17) and (5.18), we obtain

Dx

(
(R2 −U1R1)u

)
= Sx(αR1u) .
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This leads us to define

ψ(x) := z−B0, φ(z) :=− C1

α(c1 +a1C1)

(
R2(z)−U1(z)R1(z)

)
.

Clearly, degψ = 1, degφ ≤ 2 and Dx(φu) = Sx(ψu). Finally, since a0 = 0 = b0 (this is achieved by
taking n = 0 in (5.10)), and setting (without lost of generality) c0 := 0 and C0 := 0, we have

a : =
1
2

φ
′′(0) =− C1

α(c1 +a1C1)

(
r[5]2

C1C2
+(α2 −1)

c1 +a1C1

C1

)
=

(c2 +a2C2)C1

(c1 +a1C1)C2
−α .

Similarly, we also have

φ
′(0) =−aB0 −β +B0 − (a+α)B1 +

b1 +a1B1

c1 +a1C1
C1 ,

φ(0) =−(a+α)C1 −B0

(
−β +B0 − (a+α)B1 +

b1 +a1B1

c1 +a1C1
C1

)
.

Hence the desired result is proved.

Theorem 5.2.2 Let (Pn)n≥0 be a monic OPS satisfying (5.10). Then the coefficients Bn and Cn of the
TTRR (5.11) satisfied by (Pn)n≥0 fulfill the following system of difference equations:

an+2 −2αan+1 +an = 0 , (5.19)

tn+2 −2αtn+1 + tn = 0 , tn := cn/Cn = k1qn/2 + k2q−n/2 , (5.20)

rn+3(Bn+2 − c3)− (rn+2 + rn+1)(Bn+1 − c3)+ rn(Bn − c3) = 0 , rn := tn +an −an−1 , (5.21)

(rn+1 + rn+2)(Cn+1 − c1c2)−2(1+α)rn(Cn − c1c2)+(rn−1 + rn−2)(Cn−1 − c1c2)

= rn
[
(Bn − c3)

2 −2α(Bn − c3)(Bn−1 − c3)+(Bn−1 − c3)
2
]
,

(5.22)

(
2(1−α)(anBn +bn)−4βan

)
B2

n +(tn+1 +an+1 −an+2)Bn+1Cn+1 +(tn +an−1 −an−2)Bn−1Cn

+
[
(2an −an+2 −an−1)Cn+1 +(2an −an+1 −an−2)Cn +(1−2α)(cn + cn+1)−4βbn

+(β 2 −δ )an

]
Bn +2

(
bn −αbn+1 −β (an +an+1 + tn+1)

)
Cn+1

+2
(

bn −αbn−1 −β (an−1 +an + tn)
)

Cn = bn(δ −β 2) ,

(5.23)

where β = (1−α)c3 and δ = (α2 −1)(c2
3 −4c1c2). Equation (5.19) holds for n = 0,1,2, . . .; (5.22)

holds for n = 2,3,4, . . .; and (5.20), (5.21), and (5.23) hold for n = 1,2,3, . . ..
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In addition, the following relations hold for n = 0,1,2, . . .:

cn = γn, Bn = c3 +(B0 − c3)(γn+1 − γn) , if degπ = 0 ; (5.24)

bn = γn, cn = (bn −bn−1)
n−1

∑
j=0

(B j − c3)+π(c3)bn, if degπ = 1 ; (5.25)

an = γn, bn = (an −an−1)
n−1

∑
j=0

(B j − c3)+π
′(c3/2)an, if degπ = 2 . (5.26)

Proof Applying the operator Sx to both sides of (5.11) and using (1.54), we deduce

U2(z)DxPn(z)+(αz+β )SxPn(z) = SxPn+1(z)+BnSxPn(z)+CnSxPn−1(z) .

Multiplying both sides of this equality by π(z) and then using successively (1.50), (5.10), (5.15), and
(5.11), we obtain a vanishing linear combination of the polynomials Pn+3, Pn+2,..., Pn−3. Thus, setting

tn := cn/Cn, n = 1,2,3, . . . , (5.27)
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after straightforward computations we obtain (5.19)–(5.20) together with the following equations:

(an+1 −an+2)Bn+1 +(an −an−1)Bn +bn+2 −2αbn+1 +bn

= 2β (an +an+1) ,
(5.28)

(an+1 −an+2 − tn+2)Bn+1 +(an −an−1 + tn+1 + tn)Bn

−tn−1Bn−1 +bn+1 −2αbn +bn−1 = 2β (tn+1 + tn +an+1 +an) ,
(5.29)

(an+1 −an+2)B2
n+1 +2(1−α)anB2

n +(an −an−1)BnBn+1

+(bn+1 +bn −2αbn+1 −2βan −2βan+1)Bn+1

+(bn+1 +bn −2αbn −4βan)Bn +(an −an+2)Cn+1 +(an −an−2)Cn

+cn+2 −2αcn+1 + cn = an(δ −β 2)+2β (bn +bn+1) ,

(5.30)

[2(1−α)an + tn]B2
n +(tn +an−1 −an−2)B2

n−1

+(an − tn−1 − tn+1 −an+1)BnBn−1

+(bn +bn−1 −2αbn −2β tn −4βan)Bn

+(bn−1 +bn −2αbn−1 −2βan−1 −2β tn −2βan)Bn−1

+(an −an+2 − tn+2 − tn+1)Cn+1 +[2(1+α)tn +an −an−2]Cn

−(tn−2 + tn−1)Cn−1 + cn+1 −2αcn + cn−1

= (tn +an)(δ −β 2)+2β (bn +bn−1) ,

(5.31)

2(1−α)anB3
n +[2(1−α)bn −4βan]B2

n

+[(2an −an+2 −an−1)Cn+1 +(2an −an+1 −an−2)Cn

+ cn+1 −2αcn + cn −2αcn+1 −4βbn +β 2an −δan
]

Bn

+(cn+1 +an+1Cn+1 −an+2Cn+1)Bn+1

+(cn +an−1Cn −an−2Cn)Bn−1

+2(bn −αbn+1 −βan+1 −βan)Cn+1

+2(bn −αbn−1 −βan−1 −βan)Cn = 2β (cn + cn+1)+bn(δ −β 2) .

(5.32)

(5.21) (respectively (5.22)) is obtained by shifting n to n+ 1 in (5.29) (respectively (5.31))) and
combine it with (5.28) (respectively (5.30)) and by using (5.19)–(5.20). (5.23) is obtained by using
(5.19), (5.20) and (5.28). Now suppose that degπ = 2. Using (5.11), we may write

Pn(z) = zn − zn−1
n−1

∑
j=0

B j +wnzn−2 + · · · ,

for some complex sequence (wn)n≥0. Using (1.65), we compare the two first coefficients of higher
power of n in both side of (5.10) to deduce (5.26). Equations (5.24)–(5.25) are obtained in a similar
way. This completes the proof.

Remark 5.2.1 According to Theorem 5.2.2, the coefficients Bn and Cn of the TTRR (5.11) of any
monic OPS (Pn)n≥0 fulfilling (5.10) must fulfill (5.19)–(5.23). However, for each concrete polynomial
π appearing in (5.10), we need to take into account some initial conditions which will be specified in
the proof of the conjecture in all situations according to the degree of π . Indeed, for instance, it is
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clear that
Bn = c3, Cn+1 = c1c2 (n = 0,1,2, . . .) ,

provide a solution of the system (5.19)–(5.23) if degπ = 0. The corresponding monic OPS is

Pn(x) = 2n(c1c2)
n/2Ûn

(
z− c3

2
√
c1c2

)
(n = 0,1,2, . . .) ,

where (Ûn)n≥0 is the monic Chebyschev polynomials of the second kind. However this sequence
(Pn)n≥0 does not provide a solution of (5.10) (see (5.38) below).

The system of equations (5.19)–(5.23) is non-linear and so, in general it is not easy to solve it.
Nevertheless, in view of Theorem 5.2.1, an OPS satisfying (5.10) is x-classical and so the results
presented in the previous chapter will be useful to find the explicit expressions for the coefficients of
the TTRR satisfied by the OPS under analysis (see Theorem 4.3.2 and Corollary 4.3.3). We will see
that some patterns appear associated with the system of equations (5.19)–(5.23) which will allow us
to solve the system for each possible case of the degree of the polynomial π .

Recall that from (5.20), we have

tn =
cn

Cn
= k1qn/2 + k2q−n/2 (n = 1,2,3, . . .) , (5.33)

where k1 and k2 are two complex numbers. Since cn ̸= 0, for n = 1,2,3, . . ., then k1 and k2 cannot
vanish simultaneously. Recall also that we defined c0 =C0 = 0, and so we define

t0 := k1 + k2 ,

by compatibility with (5.33).

5.3 Proof of the conjecture

In this section, we prove that the only monic OPS (Pn)n≥0 satisfying (5.10), where degπ ≤ 2 and
subject to the condition cn ̸= 0, for n = 1,2,3, . . ., are, up to an affine transformation of the variable,
the continuous q−Jacobi polynomials and some special cases of the Al-Salam-Chihara polynomials.
The proof will be done by considering separately the cases degπ = 0, degπ = 1 and degπ = 2.

5.3.1 Case degπ = 0

For this case (5.10) becomes

DxPn(z) = cnPn−1(z) (n = 0,1,2, . . .) . (5.34)

As we mentioned at the introduction of this chapter, this case was solved by Al-Salam in [2] for the
case where the lattice is given by x(s) = (q−s+qs)/2 (i.e where Dx ≡Dq). Here we present a different
proof without any specialisation on the lattice. Indeed, we are going to use the results presented in the
previous chapter. The following proposition holds.
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Proposition 5.3.1 Up to an affine transformation of the variable, the only monic OPS (Pn)n≥0 satisfy-
ing (5.34) are the monic q-Hermite polynomials of Rogers.

Proof Let (Pn)n≥0 be a monic OPS satisfying (5.34). Since (5.34) is obtained from (5.10) by
taking π(z) = 1, then an = 0 = bn, for n = 0,1,2, . . ., and so, equation (5.21) reads as

tn+3(Bn+2 − c3)− (tn+2 + tn+1)(Bn+1 − c3)+ tn(Bn − c3) = 0 (n = 0,1,2, . . .) , (5.35)

where, taking into account (5.20) and (5.24),

tn =
γn

Cn
= k1qn/2 + k2q−n/2, k1 =

(1+q)C1 −C2

q1/2(q−1)C1C2
, k2 =

(q−1 +1)C1 −C2

q−1/2(q−1 −1)C1C2
. (5.36)

Again from (5.24) we have B2 − c3 = (4α2 −2α −1)(B0 − c3) and B1 − c3 = (2α −1)(B0 − c3). This
satisfies (5.35) for n = 0 if and only if B0 = c3. This equivalence is straightforward taking into account
that tn ̸= 0 for all n, and (5.20) holds. Hence (5.24) reduces to

Bn = c3 (n = 0,1,2, . . .) . (5.37)

In addition, from (4.61) in Theorem 4.3.2 we obtain

γn+1en

d2n
=

γnen−1

d2n−2
(n = 0,1,2, . . .) .

Since en = φ ′(c3)γn+ψ(c3)αn, we find e0 = 0 (because γ0 = 0, and from (5.12), ψ(c3) = c3−B0 = 0)
and so en = 0, for n = 0,1,2, . . ., and consequently φ ′(c3) = 0. Then, from (5.12) we obtain b= ac3.
Taking n = 3 in (5.34) and using (1.65)–(1.68), we obtain

C2 = 2(2α
2 −1)(C1 − c1c2)+2c1c2 . (5.38)

Therefore, using (5.12), we have φ(z) = a(z− c3)
2 − (a+α)C1 and ψ(z) = z− c3, where

a=
2αC1

C2
−α =

2α(1−α2)(C1 − c1c2)

(2α2 −1)(C1 − c1c2)+ c1c2
. (5.39)

Taking into account (5.37), and since in this case an = bn = 0 (n = 0,1,2, . . .), (5.22) reduces to

(tn+1 + tn+2)(Cn+1 − c1c2)−2(1+α)tn(Cn − c1c2)+(tn−1 + tn−2)(Cn−1 − c1c2) = 0 . (5.40)

Next, define θn := tn + tn+1 = aqn/2 + bq−n/2, where a := k1(1+ q1/2) and b := k2(1+ q−1/2). By
setting Kc :=

(
θ2(C2 − c1c2)−θ0(C1 − c1c2)

)
/(1−q−1/2), we see that (5.40) reads as

θn+1(Cn+1 − c1c2)−θn−1(Cn − c1c2) = θn(Cn − c1c2)−θn−2(Cn−1 − c1c2) .

By applying this relation successively, we obtain

θn+1(Cn+1 − c1c2)−θn−1(Cn − c1c2) = Kc(1−q−1/2) .
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Multiplying this equation by θn and applying a telescoping process to the resulting equation, we obtain

Cn+1 = c1c2 +
1

θn+1θn

(
θ0θ1(C1 − c1c2)+Kc(1−q−1/2)

n

∑
l=1

θl

)

for each n = 0,1,2, . . .. Therefore,

Cn+1 = c1c2 +
θ0θ1(C1 − c1c2)qn/2 +Kc

(
aqn +(b−aq−1/2)qn/2 −bq−1/2

)
(aqn +b)(aqn+1 +b)

q(n+1)/2 (5.41)

for each n = 0,1,2, . . .. We claim that(
C2 − (1+q)C1

)(
C2 − (1+q−1)C1

)
= 0 . (5.42)

Indeed, suppose that (5.42) does not hold. Then, by (5.36), we would have k1k2 ̸= 0, and we may
write

Cn+1 =
γn+1

tn+1
=

u(qn+1 −1)
k1qn+1 + k2

, u−1 = q1/2 −q−1/2 (n = 0,1,2, . . .) . (5.43)

Assume without lost of generality that 0 < q < 1. Then taking successively limits as n → ∞ in the
expressions for Cn+1 and q−(n+1)/2(Cn+1 − c1c2) given by (5.41) and (5.43), we obtain u+ k2c1c2 = 0
and Kc = 0. Now, the equality between (5.41) and (5.43) implies

2(1+α)(u− k1c1c2)k2
1q2n+2 + k1

(
4(1+α)2(u− k1c1c2)k2 −θ0θ1(C1 − c1c2)

)
qn+1

+k2

(
2(1+α)(u− k1c1c2)k2 −θ0θ1(C1 − c1c2)

)
= 0 ,

for each n = 0,1,2, . . .. This implies u− k1c1c2 = 0 and θ0θ1(C1 − c1c2) = 0. (For the case where
1 < q < ∞ we proceed in a similar way, taking limits as n → ∞ on both expressions for Cn+1

and q(n+1)/2(Cn+1 − c1c2), and we obtain the same result.) Consequently, Cn+1 = c1c2 for each
n = 0,1,2, . . ., which contradicts (5.38). Hence (5.42) holds and so k1k2 = 0.

Suppose that k1 = 0, i.e., C2 = (1+ q)C1. Then, from (5.38), we find C1 = (1− q)c1c2 and so,
from (5.39), we obtain a=−1/(2u). Since b= ac3 and B0 = c3, using (4.62) in Theorem 4.3.2 we
obtain

Cn+1 = (1−qn+1)c1c2 (n = 0,1,2, . . .) . (5.44)

Since an = bn = 0 for all n, one easily see that the expressions for Bn and Cn+1 given by (5.37) and
(5.44) satisfy (5.23) and so the system of equations (5.19)–(5.23) is satisfied.

Similarly, if k2 = 0, i.e. C2 = (1+q−1)c1c2, we obtain a= 1/(2u) and

Cn+1 = (1−q−n−1)c1c2 (n = 0,1,2, . . .) , (5.45)
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which together with (5.37) also fulfill the system of equations (5.19)–(5.23). Thus

φ(z) =± 1
2u

(
(z− c3)

2 − c1c2
)

and ψ(z) = z− c3 .

Hence, taking into account the TTRR (5.7) for the Al-Salam Chihara polynomials, we conclude that

Pn(z) = 2n(c1c2)
n/2Qn

(
z− c3

2
√
c1c2

;0,0
∣∣∣q) or Pn(z) = 2n(c1c2)

n/2Qn

(
z− c3

2
√
c1c2

;0,0
∣∣∣q−1

)
,

so that (Pn)n≥0 is a special case of the monic Al-Salam Chihara polynomials. As a matter of fact,
in this case, (Pn)n≥0 is the sequence of monic q-Hermite polynomials of Rogers. Thus the proof is
complete in the case degπ = 0.

5.3.2 Case degπ = 1

In this case (5.10) can be rewritten as

(z− c3 − r)DxPn(z) = bnPn(z)+ cnPn−1(z) (n = 0,1,2, . . .) , (5.46)

where r ∈ C. We start by stating a preliminary result.

Lemma 5.3.2 Let (Pn)n≥0 be a monic OPS satisfying (5.46) and (5.11). Then(
c2C1 −q−1/2c1C2

)(
c2C1 −q1/2c1C2

)
= 0 . (5.47)

Proof Since (Pn)n≥0 satisfies (5.46), then an = 0 for each n = 0,1,2, . . ., hence (5.35) holds, and by
(5.20) and (5.25), we have

tn =
cn

Cn
= k1qn/2 + k2q−n/2, k1 =

c2C1 −q−1/2c1C2

(q−1)C1C2
, k2 =

c2C1 −q1/2c1C2

(q−1 −1)C1C2
. (5.48)

Suppose that (5.47) does not hold. This means that k1k2 ̸= 0. Taking successively n = 1 and n = 2 in
(5.46), and using (5.11), (1.65)–(1.68), we have b1 = 1, b2 = 2α and

r+ c3 = B0 − c1 ,

c2 = (2α −1)(B1 +B0 −2c3)−2αr ,

(r+ c3)(B1 +B0 −2β ) =−c2B0 +2α(B0B1 −C1) .

Hence, the first equation, and the one obtained from the last one (using the two previous ones) give

c1 = B0 − c3 − r, B1 = c3 +(2α −1)(B0 − c3)+2α
C1

c1
. (5.49)

We claim that

Bn = c3 −
t0t1ψ(c3)

tntn+1
, with ψ(c3) ̸= 0 (n = 0,1,2, . . .) . (5.50)
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Indeed, writing (5.35) as tn+3(Bn+2 − c3)− tn+1(Bn+1 − c3) = tn+2(Bn+1 − c3)− tn(Bn − c3) and
proceeding in a recurrent way, we find by setting Kb :=

(
t2(B1 − c3)− t0(B0 − c3)

)
/(1− q−1/2),

tn+3(Bn+2 − c3) = tn+1(Bn+1 − c3)+Kb(1−q−1/2). Multiplying both sides of this equation by tn+2

and proceed again in a recurrent way, we obtain

Bn = c3 +
1

tn+1tn

(
t0t1(B0 − c3)+Kb(1−q−1/2)

n

∑
j=1

t j

)
, n = 0,1,2, . . . .

Then

Bn = c3 +
t0t1(B0 − c3)qn/2 +Kb

(
k1qn +(k2 − k1q−1/2)qn/2 − k2q−1/2

)
(k1qn + k2)(k1qn+1 + k2)

q(n+1)/2 , (5.51)

for n = 0,1,2, . . .. Without loss of generality, we assume 0 < q < 1. Since k2 ̸= 0, then we obtain
limn→∞ q−n/2(Bn − c3) =−Kb/k2 and consequently we have Kb = 0 by applying (4.67). This holds
because the condition d −2au ̸= 0 in (4.67) is fulfilled in the present situation. Indeed we have for
the present case d = 1 and a = a. So d − 2au = 1− 2au = 2q−1/2k2/t1 ̸= 0. (For 1 < q < ∞, we
proceed in a similar way using the fact that d +2au = 1+2au = 2q1/2k1/t1 ̸= 0 and (4.70) to show
that Kb = 0). This implies that B1 − c3 = t0(B0 − c3)/t2. If B0 = c3, then we find B1 = c3 which is in
contradiction with the second equation in (5.49). Then (5.50) is proved.

Note that, from (5.13) and using (5.48), we obtain

a=
c2C1

c1C2
−α =

t2
t1
−α =

k1q1/2 − k2q−1/2

2ut1
, (5.52)

since an = 0, for n = 0,1,2, . . . and u−1 = q1/2 −q−1/2. Using (5.50), we obtain

Sn =
n−1

∑
j=0

(B j − c3) =
t1(B0 − c3)γn

tn
(n = 0,1,2, . . .) .

Thus using (4.66) we have

t1ψ(c3)d2n−2 = tn
(
φ
′(c3)γn−1 +ψ(c3)αn−1

)
(n = 0,1,2, . . .) .

This gives the following equations:

(2aut1 + k2q−1/2)ψ(c3) = 2uk1q1/2
φ
′(c3) ,

(2aut1 − k1q1/2)ψ(c3) = 2uk2q−1/2
φ
′(c3) .

Taking into account that k1k2 ̸= 0 and using (5.52), this implies that∣∣∣ψ(c3)+2uφ
′(c3)

∣∣∣+ ∣∣∣ψ(c3)−2uφ
′(c3)

∣∣∣= 0 ,

which is impossible because we proved in (5.50) that ψ(c3) ̸= 0. This concludes the proof.
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Proposition 5.3.3 Up to an affine transformation of the variable, the only OPS (Pn)n≥0 satisfying
(5.46) are the (special) monic Al-Salam Chihara polynomials (5.7) with parameters c and d both
nonzero and satisfying c/d = q±1/2.

Proof Note that (5.47) is equivalent to k1k2 = 0. Suppose that k1 = 0. Then by (5.48), we have
tn = k2q−n/2, for n = 0,1,2, . . ., where k2 = q1/2c1/C1. We claim that

Bn = c3 +(B0 − c3)qn = c3 +(r+ c1)qn, n = 0,1,2, . . . . (5.53)

Indeed (5.21) reduces to

q−1/2(Bn+2 − c3)+(1+q1/2)(Bn+1 − c3)+q(Bn − c3) = 0, n = 0,1,2, . . . .

Note that q and q1/2 are the solutions of the associated characteristic equation (for the discrete variable
Bn − c3), hence we find

Bn = c3 + vqn + sqn/2, n = 0,1,2, . . . , (5.54)

for some v,s ∈ C. Moreover, since k1 = 0, from (5.52) we have a=−1/(2u). Hence, by (5.12),

φ(z) =− 1
2u

(
(z+2bu)(z−B0)+2uq−1/2C1

)
and ψ(z) = z−B0 . (5.55)

Therefore, using (4.61) in Theorem 4.3.2, we obtain

Bn = c3 +q(2n−1)/2
(

2αu(b−ac3)(qn −1)+q1/2(B0 − c3)
)
, n = 0,1,2, . . . . (5.56)

Comparing both expressions for Bn given by (5.54) and (5.56), we find s = 0, b= ac3 and v = B0 − c3.
Hence using the first equation in (5.49), (5.53) follows. As consequence, taking n = 1 in (5.53) and
comparing the result with the expression for B1 given by (5.49), we obtain

C1 = (q1/2 −1)(r+ c1)c1 . (5.57)

Since Cn = cn/tn, from (5.25) and (5.53), we find

Cn+1 =
C1

(q−1)c1

(
1−qn+1)(r− r+ c1

1+q1/2 (1+q(2n+1)/2)

)
, n = 0,1,2, . . . . (5.58)

Taking into account that is a=−1/(2u) and b= ac3, using (4.62) in Theorem 4.3.2, we also have

Cn+1 =
(
1−qn+1)(c1c2(1−qn)+

C1

1−q
qn
)
, n = 0,1,2, . . . . (5.59)

If c1 = rq1/2 then (5.58) becomes Cn+1 =C1(1−qn+1)qn/(1−q) which is incompatible with (5.59),
since c1c2 ̸= 0. Then c1 ̸= rq1/2. Comparing the expressions for Cn+1 given in (5.58) and (5.59) yields

C1 = (1−q)
(1+q1/2)c1

c1 −q1/2r
c1c2 . (5.60)
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Therefore combining this expression of C1 with the one given by (5.57), we see that r+c1 is a solution
of one of the following quadratic equations

Z2 − (1+q−1/2)c1Z −2(1+α)c1c2 = 0 ; (5.61)

Z2 − (1+q1/2)rZ +2(1+α)q1/2c1c2 = 0 . (5.62)

Suppose that r+ c1 is a solution of (5.61). Let c and d be two complex numbers defined by

(c,d) or (d,c) ∈

{(
c1 −

√
∆

2
√
c1c2

,
c1 −

√
∆

2q1/2√c1c2

)
,

(
c1 +

√
∆

2
√
c1c2

,
c1 +

√
∆

2q1/2√c1c2

)}
,

where ∆ = c2
1 +4q1/2c1c2. Note that cd ̸= 0. Set Z1 :=

√
c1c2(c+d) and Z2 :=−√

c1c2(c−1 +d−1). Then
Z1 and Z2 are solutions of (5.61). (If r+ c1 is a solution of (5.62), in this case we define c and d by

(c,d) or (d,c) ∈

{(
r−

√
∆

2q−1/2√c1c2
,

r−
√

∆

2
√
c1c2

)
,

(
r+

√
∆

2q−1/2√c1c2
,

r+
√

∆

2
√
c1c2

)}
,

where ∆ = r2 −4c1c2. Then cd ̸= 0. We set Z1 :=
√
c1c2(c+d) and Z2 := q1/2√c1c2(c−1 +d−1). So Z1 and

Z2 are solutions of (5.62).) Then without loss of generality we may set r+ c1 = Z1 =
√
c1c2(c+d)

and so Z1 +Z2 = (1+q−1/2)c1 (or r+ c1 = Z1 and so Z1 +Z2 = (1+q1/2)r, if r+ c1 is a solution of
(5.62)). This implies

r = (c+d)
√
c1c2

1+ cdq−1/2

cd(1+q−1/2)
, c1 = (c+d)

√
c1c2

cd −1
cd(1+q−1/2)

.

Hence (5.60) (or (5.57)) becomes C1 = (1−q)(1− cd)c1c2. As a consequence we obtain from (5.58)
(or (5.59)) and (5.53) the following

Bn = c3 +
√
c1c2(c+d)qn, Cn+1 = c1c2(1−qn+1)(1− cdqn), n = 0,1,2, . . . , (5.63)

together with k2 = q1/2 c1
C1

= u(c+d)
cd
√
c1c2(1+q−1/2)

. So, (5.55) becomes

φ(z) =− 1
2u

(
(z− c3)

2 −
√
c1c2(c+d)(z− c3)+2(cd −1)c1c2

)
, ψ(z) = z− c3 −

√
c1c2(c+d) .

(For the choice r+c1 = Z2, when r+c1 is a solution of (5.61), we find C1 = (1−q)(1−c−1d−1)c1c2,
and we obtain Bn = c3 −

√
c1c2(c−1 + d−1)qn and Cn+1 = c1c2(1− qn+1)(1− c−1d−1qn), for each

n = 0,1,2, . . .. These coefficients Bn and Cn+1 give essentially the same OPS as (5.63), but with the
parameters c and d replaced by −1/c and −1/d, respectively. Similarly, for the choice r+ c1 = Z2,
when r+ c1 is a solution of (5.62), we find C1 = (1−q)(1− c−1d−1q)c1c2 and therefore we obtain
Bn = c3 +

√
c1c2(c−1 + d−1)qn+1/2 and Cn+1 = c1c2(1− qn+1)(1− c−1d−1qn+1), for n = 0,1,2, . . ..

Again, this gives essentially the same OPS as (5.63), but with the parameters c and d replaced by
q1/2/c and q1/2/d, respectively.) Using (5.63), equation (5.22) now reads as

q−1(1+q1/2)(Cn+1 − c1c2)−2(1+α)(Cn − c1c2)+q(1+q−1/2)(Cn−1 − c1c2)

= 2c1c2(α −1)(2α +1)(c+d)2q2n−1 , (5.64)
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for n = 2,3, . . .. Noticing that c2 +d2 = 2αcd, it is not hard to see that the obtained Bn and Cn+1 in
(5.63) satisfy (5.64). Equation (5.23) in this case (an = 0, for n = 0,1,2, . . .) reads as

2(1−α)bn(Bn − c3)
2 +(1−2α)(cn + cn+1)(Bn − c3)+ cn+1(Bn+1 − c3)+ cn(Bn−1 − c3)

+(bn −bn+2)(Cn+1 − c1c2)+(bn −bn−2)(Cn − c1c2) = 0 , (5.65)

where cn = tnCn = k2q−n/2Cn, for n = 1,2, . . .. Similarly one can check that (5.65) is also satisfied
and, therefore, the system of equations (5.19)–(5.23) is fulfilled.

In a similar way, if k2 = 0, we obtain

φ(z) =
1
2u

(
(z− c3)

2 −
√
c1c2(c+d)(z− c3)+2(cd −1)c1c2

)
, ψ(z) = z− c3 −

√
c1c2(c+d) ,

and since the condition c2 +d2 −2αcd = 0 holds, we obtain

Bn = c3 +
√
c1c2(c+d)q−n , Cn+1 = c1c2

(
1− cdq−n)(1−q−n−1) , n = 0,1,2, . . . ,

as solution of the system of difference equations (5.19)–(5.23). Hence

Pn(z) = 2n(c1c2)
n/2Qn

(
z− c3

2
√
c1c2

;c,d
∣∣∣q) or Pn(z) = 2n(c1c2)

n/2Qn

(
z− c3

2
√
c1c2

;c,d
∣∣∣q−1

)
, (5.66)

for n = 0,1,2, . . ., with c2 +d2 −2αcd = 0, i.e. c/d = q±1/2. Thus the proof is concluded.

Remark 5.3.1 From the result obtained in (5.66) we have the following particular case. Let γ

be a complex number. Taking c = q(2γ+1)/4 and d = q(2γ+3)/4 (respectively c = q(2γ+3)/4 and d =

q(2γ+1)/4), we have c/d = q−1/2 (respectively c/d = q1/2) and so we obtain the Continuous q-Laguerre
polynomials with the parameter γ (see [34, p.514]).

5.3.3 Case degπ = 2

In this case we rewrite (5.10) as

(z− c3 − r)(z− c3 − s)DxPn(z) = (anz+bn)Pn(z)+ cnPn−1(z) (n = 0,1,2, . . .) , (5.67)

where r,s ∈ C and cn ̸= 0 for n = 1,2,3, . . .. From (5.26), (5.20) and (5.21) we obtain

an = γn, bn = (γn − γn−1)
n−1

∑
k=0

(Bk − c3)− (r+ s+ c3)γn , (5.68)

tn =
cn

Cn
= k1qn/2 + k2q−n/2, where k1 =

c2C1 −q−1/2c1C2

(q−1)C1C2
, k2 =

c2C1 −q1/2c1C2

(q−1 −1)C1C2
(5.69)

rn = tn + γn − γn−1 = âqn/2 + b̂q−n/2, where â = k1 +u(1−q−1/2), b̂ = k2 −u(1−q1/2) , (5.70)

for n = 0,1,2, . . ., u−1 = q1/2 −q−1/2. Recall that t0 = k1 +k2 and so, we also define by compatibility

r0 := â+ b̂ .
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Lemma 5.3.4 Let (Pn)n≥0 be a monic OPS satisfying (5.67). Then

â b̂(1−2au)(1+2au) ̸= 0 , (5.71)

where â, b̂ are defined in (5.70) and a is given in (5.13).

Proof Assume that (5.71) does not hold. Suppose, for instance, that â = 0. Then (5.70) reduces
to rn = b̂q−n/2 for each n = 0,1,2, . . .. Then (5.21) becomes

q−3/2(Bn+2 − c3)− (q−1 +q−1/2)(Bn+1 − c3)+(Bn − c3) = 0, n = 0,1,2, . . . .

Noticing that q and q1/2 are the solutions of the associated characteristic equation (for the variable
Bn − c3), we may write

Bn = c3 + r0(1−q1/2)qn/2 + s0(1−q)qn, n = 0,1,2, . . . , (5.72)

for some complex numbers r0 and s0. From (5.13), we also have

a=
(c2 +2αC2)C1

(c1 +C1)C2
−α =

1+ r2

r1
−α =− 1

2u
+

1

b̂q−1/2
. (5.73)

From (5.72), we obtain Sn = ∑
n−1
j=0(B j − c3) = r0(1−qn/2)+ s0(1−qn), for n = 0,1,2, . . .. We then

apply (4.66) to obtain

(r0qn/2 + s0qn − r0 − s0)d2n = γn+1en (n = 1,2,3, . . .) . (5.74)

Taking into account that in the present context

2d2n = (1+2au)qn +(1−2au)q−n, 2en =
(

ψ(c3)+2uφ
′(c3)

)
qn/2 +

(
ψ(c3)−2uφ

′(c3)
)

q−n/2 ,

for n = 0,1,2, . . .. It is not hard to see that (5.74) implies r0 = 0 = s0 as well as ψ(c3) = 0 = φ ′(c3).
Hence

Bn = c3 (n = 0,1,2, . . .) .

In addition, using (5.12), we obtain b= ac3. Next we apply (4.62) in Theorem 4.3.2 (with a given in
(5.73), b= ac3 and B0 = c3) to obtain

Cn+1 =
(1−qn+1)(B−qn)

(
c1c2

(
q2n+1 +B(1−qn)

)
+((q+ b̂)C1 −qc1c2)qn

)
(B−q2n)(B−q2n+2)

, (5.75)

for n = 0,1,2, . . ., with B = q+ b̂(1−q), while (5.22) reduces to the following equation

(q−1/2 +q−1)(Cn+1 − c1c2)−2(1+α)(Cn − c1c2)+(q1/2 +q)(Cn−1 − c1c2) = 0 ,
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for n = 2,3, . . .. Again we observe that q and q1/2 are the solutions of the associated characteristic
equation (with the variable Cn − c1c2) and so we may write Cn+1 = c1c2 + r0qn/2 + s0qn, for n =

0,1,2, . . ., with r0,s0 ∈ C. This is incompatible with (5.75) and so â ̸= 0. The case b̂ = 0 can be
treated similarly.

Assume now that 1+2au = 0. Then since

a=
1+ r2

r1
−α ,

we obtain â =−uq−1/2 ̸= 0. On the other hand, we use (4.61) in Theorem 4.3.2 to obtain

Bn = c3 +
1
2

qn(1+q−1)
(
(2bu+ c3)(qn −1)+2

B0 − c3

1+q−1

)
,

for n = 0,1,2, . . .. This satisfies (5.21) if and only if b = ac3 and B0 = c3. So Bn = c3. Taking into
account this, (4.62) in Theorem 4.3.2 gives

Cn+1 = (1−qn+1)
(
(1−qn)c1c2 +

C1

1−q
qn
)

(n = 0,1,2, . . .) .

This does not satisfy (5.22) since â ̸= 0 and Bn = c3. Hence 1+2au ̸= 0. The case 1−2au = 0 can
be treated similarly. Hence the proof is concluded.

Proposition 5.3.5 Up to an affine transformation of the variable, the continuous monic Jacobi
polynomials are the only OPS satisfying (5.67).

Proof Taking successively n = 1 and n = 2 in (5.67) using (5.11) and (1.65)–(1.68) we obtain
the following:

B0 = b1 + r+ s+2c3, c1 = (B0 − c3 − r)(B0 − c3 − s) , (5.76)

b2 = (2α −1)(B0 +B1 −2c3)−2α(r+ s+ c3) , (5.77)

(r+ c3)(s+ c3)
(

2(1−α)c3 −B0 −B1

)
=−c2B0 +b2(B0B1 −C1) , (5.78)

c2 = b2(B0 +B1)−2α(B0B1 −C1)− (r+ s+2c3)
(

2(1−α)c3 −B0 −B1

)
+2α(r+ c3)(s+ c3) .

(5.79)

Solving (5.21), with the same technique used to obtain (5.51), we find

Bn = c3 +
r0r1(B0 − c3)qn/2 + K̂b

(
âqn +(b̂− âq−1/2)qn/2 − b̂q−1/2

)
(âqn + b̂)(âqn+1 + b̂)

q(n+1)/2 , (5.80)

for n = 0,1,2, . . ., where K̂b :=
(

r2(B1 − c3)− r0(B0 − c3)
)
/(1−q−1/2). Since â b̂ ̸= 0 (see (5.71)),

assume that 0 < q < 1, then limn→∞ q−n/2(Bn − c3) =−K̂b/b̂. Then using (4.67), we obtain K̂b = 0
since 1−2au ̸= 0 (also given by (5.71)). If 1 < q < ∞, then we obtain the same result using (4.70)
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and the fact that 1+2au ̸= 0 (given in (5.71)). Hence (5.80) reduces to

Bn = c3 +
r0r1(B0 − c3)

rnrn+1
(n = 0,1,2, . . .) . (5.81)

It is not hard to see that

Sn =
n−1

∑
j=0

(B j − c3) =
r1(B0 − c3)an

rn
(n = 0,1,2, . . .) .

Comparing this with (4.66), we arrive at r1ψ(c3)d2n = rn+1en, for n = 1,2,3, . . .. This implies

(2aur1 + b̂q−1/2)ψ(c3) = 2âuq1/2
φ
′(c3) , (5.82)

(2aur1 − âq1/2)ψ(c3) = 2b̂uq−1/2
φ
′(c3) . (5.83)

If φ ′(c3) = 0, then from (5.82)–(5.83) we obtain r1ψ(c3) = 0. But from (5.14) we obtain 0 ̸=
c1 +a1C1 = r1C1 , i.e. r1 ̸= 0. Then we have ψ(c3) = 0. (Conversely, if ψ(c3) = 0, then taking into
account (5.71), we obtain φ ′(c3) = 0.) So B0 = c3 and b = ac3. With these informations we use
(4.61)–(4.62) in Theorem 4.3.2 to obtain

Bn = c3 , (5.84)

Cn+1 =
(1−qn+1)

(
2au−1− (1+2au)qn−1

)[
u
(

2(a+α)C1 −4ac1c2

)
qn + c1c2

(
2au−1+(2au+1)q2n

)]
(

2au−1− (1+2au)q2n−1
)(

2au−1− (1+2au)q2n+1
) ,

(5.85)

for n = 0,1,2, . . .. Also taking into account (5.84), (5.22) reads as

(rn+1 + rn+2)(Cn+1 − c1c2)−2(1+α)rn(Cn − c1c2)+(rn−1 + rn−2)(Cn−1 − c1c2) = 0 . (5.86)

This equation is of the same type as (5.40) (with tn replaced by rn) and so from (5.41), we may write

Cn+1 = c1c2 +
θ̂0θ̂1(C1 − c1c2)qn/2 + K̂c

(
âqn +(b̂− âq−1/2)qn/2 − b̂q−1/2

)
(âqn + b̂)(âqn+1 + b̂)

q(n+1)/2 , (5.87)

for n = 0,1,2, . . ., for some complex numbers θ̂0, θ̂1 and K̂c. Taking into account (5.71) one may see
that (5.85) and (5.87) are not compatible. Thus φ ′(c3) ̸= 0. This implies that the following holds:

r1(B0 − c3)
(

âq1/2 − b̂q−1/2
)
̸= 0 . (5.88)

Hence solving (5.82)–(5.83) we obtain

a=− 1+(qâ/b̂)2

2u
(

1− (qâ/b̂)2
) , B0 = c3 +2uφ

′(c3)
1− (qâ/b̂)

1+(qâ/b̂)
. (5.89)

Indeed the expression of B0 is obtained by subtracting (5.82) to (5.83), and combining this with one
of equations (5.82)–(5.83) yields the expression of a. Considering â, b̂, B0 and C1 as free parameters,
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let us define without loss of generality two complex numbers a and b such that −qa/2 and qb/2 are
solutions of the following quadratic equation

Z2 +
r1(B0 − c3)q1/4

b̂(1+q1/2)
√
c1c2

Z +
â

b̂
= 0. (5.90)

Then we have the following

qa/2 −qb/2 =
r1(B0 − c3)q1/4

b̂(1+q1/2√c1c2)
; (5.91)

q(a+b)/2 =− â

b̂
. (5.92)

On the other hand, re-writing (5.90) as

(
Z +

r1(B0 − c3)q1/2 −
√

∆

2b̂q1/4(1+q1/2)
√
c1c2

)(
Z +

r1(B0 − c3)q1/2 +
√

∆

2b̂q1/4(1+q1/2)
√
c1c2

)
= 0 ,

where ∆ = q(B0 − c3)
2r2

1 −4âb̂q1/2(1+q1/2)2c1c2, we find

(qa/2, qb/2) ∈

{(
2â(1+q1/2)q1/4√c1c2

r1(B0 − c3)q1/2 +
√

∆
, − r1(B0 − c3)q1/2 +

√
∆

2b̂(1+q1/2)q1/4√c1c2

)
,(

2â(1+q1/2)q1/4√c1c2

r1(B0 − c3)q1/2 −
√

∆
, − r1(B0 − c3)q1/2 −

√
∆

2b̂(1+q1/2)q1/4√c1c2

)}
. (5.93)

Hence

a=− 1+qa+b+2

2u(1−qa+b+2)
,

B0 = c3 +

√
c1c2(1+q1/2)q1/4(qa/2 −qb/2)

1−q(a+b+2)/2 ,

b=− (1+qa+b+2)c3

2u(1−qa+b+2)
+

√
c1c2q3/4(qa/2 −qb/2)q(a+b+2)/2

u2(q1/2 −1)(1−qa+b+2)(1−q(a+b+2)/2)
.

Indeed, the expression of a is obtained by putting (5.92) in the first equation appearing in (5.89), the
given expression of B0 is obtained by combining (5.92) and (5.91) and the given expression of b is
obtained by using (5.12) and the second equation appearing in (5.89).

Note that (5.70) can be written using (5.92) as

rn = b̂(1−qn+(a+b)/2)q−n/2 (n = 0,1,2, . . .) , (5.94)

and also since tn = rn −an +an−1, we obtain

tn =− 1
1+q−1/2

[
1+q(2n−1)/2 − b̂(1+q−1/2)(1−qn+(a+b)/2)

]
q−n/2 (n = 0,1,2, . . .) . (5.95)
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Therefore (5.81) becomes

Bn = c3 +q1/4(1+q1/2)
√
c1c2

(1−q(a+b)/2)(qa/2 −qb/2)qn

(1−q(2n+a+b)/2)(1−q(2n+a+b+2)/2)

= c3 +
√
c1c2

(
q(2a+1)/4 +q−(2a+1)/4 − yn(a,b)− zn(a,b)

)
, (5.96)

for n = 0,1,2, . . ., where yn(·, ·) and zn(·, ·) are given in (5.4). Taking into account what is preceding,
(5.12) becomes

φ(z) =− 1+qa+b+2

2u(1−qa+b+2)
(z− c3)

2 +q1/4(1+q1/2)
√
c1c2

(qa/2 −qb/2)

2u(1+q(a+b+2)/2)
(z− c3)

+ c1c2
2(1+α)q(a+b+4)/2(qa/2 −qb/2)2

u(1−qa+b+2)(1−q(a+b+2)/2)2 −q−1/2 1−qa+b+3

1−qa+b+2C1 ,

ψ(z) = z− c3 −q1/4(1+q1/2)
√
c1c2

(qa/2 −qb/2)

1−q(a+b+2)/2 .

Let u be the regular linear functional with respect to the monic OPS (Pn)n≥0. Using Theorem 4.3.1,
the regularity conditions for u are given by

c1c2(1−qn+a+1)(1−qn+b+1)(1−qn+a+b+1)C1 ̸= 0 (n = 0,1,2, . . .) .

Also by applying (4.61)–(4.62) in Theorem 4.3.2, we obtain the same expression for Bn and

Cn+1 =− q−1/2uC1(1−q(a+b+3)/2)(1−q(a+b+2)/2)2(1−qn+1)(1−qn+a+b+1)(1−qn+a+1)(1−qn+b+1)

(1−qa+1)(1−qb+1)(1+q(a+b+1)/2)(1−q(2n+a+b+1)/2)(1−q(2n+a+b+2)/2)2(1−q(2n+a+b+3)/2)
,

for n = 0,1,2, . . .. Using a computer system (Mathematica for example) it is not hard to see that this expression
of Cn+1 together with (5.96) satisfy (5.22) if and only if

C1 = c1c2
(1−q)(1−qa+1)(1−qb+1)(1+q(a+b+1)/2)

(1−q(a+b+3)/2)(1−q(a+b+2)/2)2
.

Alternatively, the given expression of C1 is obtained by taking n = 2 in (5.22) using expressions of C2 and C3

computed from the previous expression of Cn+1; and therefore we remark that (5.22) holds for each n = 2,3, . . ..
Consequently we obtain

Cn+1 =
c1c2(1−qn+1)(1−qn+a+b+1)(1−qn+a+1)(1−qn+b+1)

(1−q(2n+a+b+1)/2)(1−q(2n+a+b+2)/2)2(1−q(2n+a+b+3)/2)
(5.97)

= 4c1c2yn(a,b)zn+1(a,b) ,
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for n = 0,1,2, . . ., where yn(·, ·) and zn(·, ·) are given in (5.4). Taking into account that cn = tnCn, we use
(5.76)–(5.79) to obtain the following system

b̂q−1/2(1−q(a+b+2)/2)C1 +(r+ s+2c3)B0 − (r+ c3)(s+ c3) = B2
0 +C1 ;

b̂q−1(1−q(a+b+4)/2)B0C2 − (r+ c3)(s+ c3)(B0 +B1 −2β )+2α(B0B1 −C1)(r+ s+2c3)

= (B0B1 −C1)
[
2αc3 +(2α −1)(B0 +B1 −2c3)

]
+(2α −1)B0C2 ;

b̂q−1(1−q(a+b+4)/2)C2 −2α(r+ c3)(s+ c3)+(r+ s+2c3 −B0 −B1)
(
(2α −1)(B0 +B1 −2c3)+2αc3

)
= 2α(C1 −B0B1)+(2α −1)C2 .

Solving firstly the above system for b̂, r+ s+2c3 and (r+ c3)(s+ c3), and secondly the obtained result for r
and s, we obtain

b̂ = uq1/2(1+q−(a+b+2)/2) ,

and

(r,s) or (s,r) ∈
{(√

c1c2(q(2a+1)/4 +q−(2a+1)/4), −
√
c1c2(q(2b+1)/4 +q−(2b+1)/4)

)}
.

So (5.94) and (5.95) become

rn = u(1+q−(a+b+2)/2)(1−qn+(a+b)/2)q(1−n)/2 ,

tn = u(1+q−(a+b+1)/2)(1−qn+(a+b+1)/2)q−n/2 ,

for each n = 0,1,2, . . .. Using (5.96), (5.68) becomes

bn =
√
c1c2(qa/2 −qb/2)γn

(1+qn+a+b+1/2)

1−qn+(a+b)/2 q−(2a+2b+1)/4 − c3γn , (5.98)

for each n = 0,1,2, . . .. Also, since cn = tnCn, we obtain

cn =−c1c2γn
(1−qn+a)(1−qn+b)(1−qn+a+b)(1+q−(a+b+1)/2)

(1−qn+(a+b−1)/2)(1−qn+(a+b)/2)2
, (5.99)

for n = 0,1,2, . . .. Finally, using Mathematica for e.g., (5.96), (5.97), (5.98) and (5.99), we see that (5.23) is
also satisfied. Thus the system of equations (5.19)–(5.23) is satisfied.

Notice that (5.89) can be also written as

a=
1+(q−1b̂/â)2

2u
(

1− (q−1b̂/â)2
) , B0 = c3 −2uφ

′(c3)
1− (q−1b̂/â)

1+(q−1b̂/â)
.

Proceeding similarly with the same parameters a and b as defined in (5.93) we obtain the same results with q
replaced by q−1. Hence

Pn(x) = 2n(c1c2)
n/2P̂(a,b)

n

( x− c3

2
√
c1c2

∣∣∣q) or Pn(x) = 2n(c1c2)
n/2P̂(a,b)

n

( x− c3

2
√
c1c2

∣∣∣q−1
)
,

where P̂(a,b)
n (·|q) is the monic continuous q-Jacobi polynomial defined in (5.4). This concludes the proof.





Chapter 6

Some future directions of research

In this short chapter we introduce some future directions of research problems.

I. Several authors have focused their interest on OPS with respect to Sobolev inner products. The
subject is interesting not only from a theoretical point of view, but also since this issue, for instance,
brings an important tool in the framework of Approximation Theory. Indeed, this was the main
motivation that lead Iserles, Koch, Norsett, and Sanz-Serna [25] to introduce the notion of coherent
pairs of measures about 30 years ago. Chapter 3 concerns to new extensions of the notion of coherence.
Nevertheless, no connections with Sobolev OPS is considered therein. The study of such connection
leads to a challenging research problem.

II. In Chapters 2 and 4 we analyzed regularity conditions for moment linear functionals solutions of
a functional equation related with the Dq,ω−classical OPS and the x− classical OPS. Such functional
equations are of the form

D(φu) = T(ψu) , (6.1)

where φ and ψ are nonzero polynomials such that degφ ≤ 2 and degψ = 1, D is an analogue of the
derivative operator, and T is another operator. The problem is to determine necessary and sufficient
conditions for the regularity of u, and to give explicit expressions for the coefficients of the TTRR
satisfied by the associated monic OPS. Under the regularity of u, it would be interesting to give the
classification of the solutions of the above functional equation, as well as of the associated OPS.
Notice that the problem deserves analysis even whenever D = Dx and T = Sx.

III. It would be interesting to consider the analogue of II in the framework of semiclassical OPS.

IV. In Chapter 5 we solved a conjecture that leads to a characterization of the continuous q−Jacobi
polynomials and of certain special cases of Al-Salam-Chihara poynomials as the only OPS that satisfy
an algebraic structure relation such as

π(x)DxPn(x) = (anx+bn)Pn(x)+ cnPn−1(x) (n = 0,1,2 . . .) ,

where π is a polynomial of degree at most 2, and x = x(s) is a q−quadratic lattice. It would be
interesting to consider the analogous problem for a quadratic lattice.
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V. To seek more applications for the developed theory, as we made in Chapter 5. It is worth
mentioning that OPS come up in very attractive problems, for instance, in Physics, Operator Theory
(Jacobi operators), Random Matrices, PDEs, and Number Theory.



Appendix A

Rodrigues-type formulas

A.1 A Rodrigues-type formula for (q,ω)-classical OPS

Here we provide details on how to obtain (2.45) from (2.40) and (2.41). For this purpose the following
identities are useful

−1+[2]q−1 −q−2 [n−1]q−1

[n]q−1
=

1
q[n]q−1

, (A.1)

q[2]q−1 −
[n−1]q−1

[n]q−1
=

[n+1]q
[n]q

, (A.2)

− [n−2]qq2−n +[2]q−1 [n−1]q−1 −q−n [n−1]q−1 [n]q
[n]q−1

= 1 , (A.3)

q[n−1]qdn−1 +d2n−1 = [n]qdn , (A.4)

for n = 0,1,2, . . .. So from (2.40), we may write

knd2n−2A(x;n) = Y1(n)x+Y2(n) , (A.5)

where, taking into account (A.1),

Y1(n) =−
[n−1]q−1q−nd2nd2n−1

[n]q−1
+[2]q−1q2−nd2nd2n−1 −q2−nd2nd2n−1

= q2−nd2nd2n−1

(
−1+[2]q−1 −q−2 [n−1]q−1

[n]q−1

)
=

q1−nd2nd2n−1

[n]q−1
,
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and by using also (A.2)–(A.3), we obtain

Y2(n) =
(

q[2]q−1 −
[n−1]q−1

[n]q−1

)
end2n−1 −

d2nd2n−1

d2n−2
en−1

−ωd2nd2n−1

(
−[n−2]qq2−n +[2]q−1 [n−1]q−1 −q−n [n−1]q−1 [n]q

[n]q−1

)
=

[n+1]qd2n−1en

[n]q
−ωd2nd2n−1 −

d2nd2n−1

d2n−2
en−1 .

Therefore, from (A.5) and using the first identity in (2.44), we arrive at

A(x;n) =
k−1

n

d2n−2

(
q1−nd2nd2n−1

[n]q−1
x+

[n+1]qd2n−1en

[n]q
−ωd2nd2n−1 −

d2nd2n−1

d2n−2
en−1

)
=

k−1
n+1dn−1

[n]q−1d2n−2

(
x+

[n+1]qen

d2n
−

[n]qen−1

d2n−2
−ω[n]q

)
.

Hence the expression of A(x;n) in (2.45) follows taking into account that [n]q = qn−1[n]q−1 . Now,
from (2.41) and using (2.34), (2.43), (2.35), and (2.42) (with n replaced by n−1), it is not hard to see
that B(x;n) reduces to the following constant polynomial

kn−1Bn(x;n)
qd−1

2n−2
=
(

cd2n +qen(en−1 −ω(1+q)q−n[n−1]qd2n−1)+ω
2q1−nd2nd2n−1[n−1]q[n]q−1

)
d2n−2

−
(
en−1 −ωq1−n[n−1]qd2n−2

)(
(1+q)end2n−1 −d2nd2n−1

en−1

d2n−2
−ω[n]qq1−nd2nd2n−1

)
.

(A.6)

Taking into account (A.4), (2.33) and the identity [n]q− [n−1]q = qn−1 (for n = 0,1,2, . . .), we obtain
successively

B(x;n) =
qk−1

n−1

d2n−2

(
cd2nd2n−2 −d2nen−1(en −ωd2n−1)+d2nd2n−1

e2
n−1

d2n−2

)

=
qk−1

n−1

d2n−2

(
cd2nd2n−2 −d2nen−1(b+qen−1)+d2nd2n−1

e2
n−1

d2n−2

)

=
qk−1

n−1

d2n−2

(
cd2nd2n−2 −bd2nen−1 +ad2n

e2
n−1

d2n−2

)

= qd2nk−1
n−1φ

(
− en−1

d2n−2

)
.

Hence using the second identity in (2.44), the expression of B(x;n) in (2.45) follows.
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A.2 A Rodrigues-type formula for x-classical OPS

Here we give some key steps on how to obtain (4.48)–(4.49) from (4.46)–(4.47) and (1.81)–(1.82).
For this purpose we remark that, from (4.15) and (4.16), the following identities hold:

a[n−1] = d2n−1 −αd2n−2 , (A.7)

b[n−1] = en −αen−1 −2c3a[n−1] , (A.8)

d2n −2αd2n−1 +d2n−2 = 0 , (A.9)

for each n = 0,1,2, . . .. From (4.39), (4.44), and (4.34), and applying (1.81)–(1.82) and (A.8), we
obtain

(Tn,0ψ
[n])(z) =

d2n

αn
(z− c3)+ en , (A.10)

(Tn−1,1ξ2)(z;n) =
γn−1

αn−1

(
α2d2nd2n−1(αn−1 +ααn−2)

α2
n−2

(z− c3)+2α
3end2n−1

)
, (A.11)

(Tn−1,1η2)(z;n) =
γn−1

αn−1

(
α(αd2n−1 −d2n)(αn−1 +ααn−2)

α2
n−2

(z− c3)+α(en−1 −αen)

)
. (A.12)

Similarly, the relation

(Tn−1,1η2)(z;n) =
α2(αd2n−1 −d2n)

αn−1αn−2
(z− c3)

2 +
α(en−1 −αen)

αn−1
(z− c3)+η2(c3;n) (A.13)

+
4α(1−α2)γn−1(αd2n−1 −d2n)

αn−2
c1c2 ,

holds, as well as

(Tn−1,1ξ2)(z;n) =
α3d2n−1d2n

αn−1αn−2
(z− c3)

2 +
2α3end2n−1

αn−1
(z− c3)+ξ2(c3;n) (A.14)

+
4α2(1−α2)γn−1d2n−1d2n

αn−2
c1c2 ,

for each n = 0,1,2, . . ..

Now, firstly, we use (A.10), (A.11), and (A.12) together with the identity αn + αγn = γn+1

(n = 0,1,2, . . .) to see that from (4.46) we have

εnA(z;n) =
1
γn
(z− c3)−

en−1

d2n−2
+

αnen

γnd2n
+αen

2αd2n−1 −d2n

d2nd2n−2

=
1
γn
(z− c3)−

en−1

d2n−2
+

γn+1en

γnd2n
,

for each n = 0,1,2, . . .. Hence (4.48) holds.
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Secondly, from (A.10)–(A.14), it is straightforward to verify that (4.47) reduces to

εnB(z;n) = η2(c3;n)+
(d2n −αd2n−1)ξ2(c3;n)

αd2nd2n−1
+

α(αen − en−1)en−1

d2n−2

+
2α2(αd2n−1 −d2n)enen−1

d2nd2n−2
.

From the definition of ξ (.;n) and η2(.;n) given in (4.38) and (4.42), it is easy to verify that

ξ (c3;n) = α
2(enen−1 +φ

[n−1](c3)d2n), η2(c3;n) =−α
2
φ
[n−1](c3), n = 0,1,2, . . . .

So, by using (A.7), we obtain

εnB(z;n) =−α
d2n−2

d2n−1
φ
[n−1](c3)+αen−1

(
en

d2n−1
− en−1

d2n−2

)
for each n = 0,1,2, . . .. Then by using successively (A.7) and (A.8), the following holds:

B(z;n) =
α2γnd2nd2n−2

dn−1

(
d2n−1

e2
n−1

d2
2n−2

− en
en−1

d2n−2
+φ

[n−1](c3)

)

=
α2γnd2nd2n−2

dn−1

(
(a[n−1]+αd2n−2)

e2
n−1

d2
2n−2

− (b[n−1]+αen−1 +2c3a[n−1])
en−1

d2n−2
+φ

[n−1](c3)

)

=
α2γnd2nd2n−2

dn−1
φ
[n−1]

(
c3 −

en−1

d2n−2

)
.

Hence, (4.49) follows.
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