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Abstract

In this thesis we solve several problems in the theory of orthogonal polynomial sequences (OPS). In
bellow we summarize the main contributions.

(i) Let u be a nonzero linear functional acting on the space of polynomials &. Let D, ,, be a Hahn
operator acting on the dual space of polynomials &?’. Suppose that there exist polynomials ¢ and v,
with deg ¢ <2 and deg y < 1, so that the functional equation

Dyo(¢u) = yu

holds, where the involved operations are defined in the distributional sense. We state necessary and
sufficient conditions, involving only the coefficients of ¢ and y, such that u is regular, that is, there
exists an OPS with respect to u. In addition, the coefficients of the three-term recurrence relation
(TTRR) satisfied by the corresponding monic OPS are given, as well as a distributional Rodrigues-type
formula, which holds without assuming that u is regular.

(i1) Let M and N be fixed non-negative integer numbers and let 7y be a polynomial of degree N.
Suppose that (P,),>0 and (Q,),>0 are two OPS such that

n+N
k
W@RIE = Y Q) (=01, (*)
j=n—M
where r, ; are complex numbers independent of x. It is shown that under some natural constraints,
(Py)n>0 and (Q)n>0 are semiclassical OPS. That is, there exist nonzero polynomials ¢;, ¢2, ¥ and
Y, such that the corresponding functionals u and v fulfill the functional equations

D(¢1u) =yiu,  D(¢v) = yyv.

Moreover we show that u and v are related by a rational modification in the distributional sense,
meaning that Pu = Qv for some nonzero polynomials P,Q € £2. This leads us to introduce the concept
of my—coherent pairs with index M and order (m,k).

(iii) We extend the previous concept to the one of my-(g, @)-coherent pairs with index M and order
(m, k), which appears in the framework of discrete OPS by replacing in () the ordinary derivative by
the discrete Hahn’s operator D, . This leads to the (structure) relation

n+N

N (X) D) oy Pom(x) =) rn’le(;?wQHk(x) (n=0,1,...).
j=n—M
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Again, in this situation, it is shown that under some natural constraints, (P,),>0 and (Q,),>0 are semi-
classical OPS (with respect to D, o) and the corresponding functionals are related by a (distributional)
rational modification. Some examples of application are given, recovering in a more simple way some
known results in the literature about the subject. Our results enable us to describe in a unified way all
the classical OPS with respect to Jackson’s operator, which appear as special or limiting cases of a
four parametric family of g-polynomials.

(iv) Let us consider now that u is a functional on & satisfying the more general functional
equation

D (¢u) =S (yu),

where D, and S, are operators defined on &’ in the usual way, in the framework of the theory of OPS
on a nonuniform lattice, x(s), that includes as a special case the lattice associated with the so-called
Askey-Wilson operator, namely x(s) = %q*S + %qs. We state necessary and sufficient conditions
for the regularity of u, giving, in addition, closed formulas for the coefficients of the TTRR of the
corresponding monic OPS, as well as a Rodrigues-type formula. Some examples are given to point
out the power of our formulas in the framework of classical OPS on nonuniform lattices. In particular,
our results enable us to derive in a simple way the coefficients of the TTRR of the Racah polynomials
as well as the ones for the Askey-Wilson polynomials.

(v) Let (P,)n>0 be a monic OPS and 7 a polynomial of a degree at most two such that
7T (x)DyPy(x) = (anx+by)Py(x) + cnPr—1(x) (n=0,1,2...),

for some complex sequences coefficients a,, b, and c,. M. E. H. Ismail posed the problem of
characterizing all OPS fulfilling this structure relation, for the lattice associated with the Askey-Wilson
operator. Ismail conjectured (see [26, Conjecture 24.7.8]) that the continuous g—Jacobi polynomials,
the Al-Salam-Chihara polynomials, or special or limiting cases of them, are the only OPS fulfilling
the structure relation. Using the main result obtained in (iv) we give a positive answer to Ismail’s

conjecture.



Resumo

Nesta dissertagc@o resolvem-se varios problemas na dmbito da teoria das sucessdes de polindmios
ortogonais (SPO). As contribui¢des principais apresentadas sdo descritas em seguida.

(i) Seja u uma funcional linear ndo nula definida sobre o espaco dos polinémios, &2. Seja D, o um
operador de Hahn que actua no espago dual £?’. Suponha-se que existem polinémios ¢ € Y, com ¢ e
v polinémios de graus ndo superiores a 2 e 1, respectivamente, tais que u satisfaz a equacao funcional

quw(¢u) =vu,

onde as operagdes sdo definidas no sentido usual da teoria das distribuicdes. Estabelecem-se condi¢des
necessdrias e suficientes, envolvendo apenas os coeficientes de ¢ e y, tais que u é regular, isto é, existe
uma SPO a respeito de u. Além disso, os coeficientes da relagdo de recorréncia a trés termos (RRTT)
verificada pela correspondente SPO ménica sdo dados de forma explicita. E também apresentada uma
férmula de tipo Rodrigues distribucional, a qual se verifica mesmo que u nio seja regular.

(i1) Sejam M e N niimeros inteiros nao negativos fixados e 7y um polinémio de grau N. Sejam
(Py)n>0 € (Qn)n>0 duas SPO tais que

n+N
(m) _ (k) _
ﬂN(x)Pn-&-m(x)_ Z rﬂvajJrk(x) (l’l—O,l,...) ) (*)
j=n—M
onde cada r,, ; € um nimero complexo independente de x. Prova-se que, sob certas reservas naturais,
(Py)n>0 € (Qn)n>0 sdo SPO semicléssicas, isto é, existem polinémios ndo nulos @1, ¢, Y e Y, tais
que as correspondentes funcionais regulares u e v satisfazem as equagdes funcionais

D(¢1u) =yiu,  D(¢v) = yyv.

Prova-se ainda que u e v estdo relacionados por uma modificacdo racional, no sentido distribucional,
0 que significa que Pu = Qv para certos polinémios P,Q € Z. Estes factos conduzem ao conceito de
pares my—coerentes de indice M e ordem (m, k).

(iii) O conceito anterior € estendido para o conceito de pares 7y-(q, ®)-coerentes de indice M
e ordem (m, k), no contexto das SPO discretas, substituindo em (x) o operador derivada usual pelo
operador de Hahn D, . Isto conduz a relagdo de estrutura

n+N

N (X) D) o Poim(x) =) rn’le(;?wQHk(x) (n=0,1,...).
j=n—M
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De novo, nesta situa¢do, mostra-se que, assumindo certas condi¢des naturais, (B,),>0 € (Qn)n>0 30
SPO semicldssicas (a respeito de Dy ) € que as funcionais regulares associadas estdo relacionadas por
uma modifica¢do racional (no sentido distribucional). Sdo apresentados alguns exemplos de aplicagdo,
recuperando de forma simples alguns resultados conhecidos na literatura. Os resultados apresentados
permitem ainda descrever de forma unificada todas as SPO cléssicas a respeito do operador de Jackson,
as quais sdo representadas como casos especiais ou caso limite de uma familia de g-polinémios
envolvendo quatro pardmetros.
(iv) Seja agora u uma funcional linear em &7 que satisfaz a equagéo funcional mais geral

D (¢u) =S (yu),

onde D, e S, sdo operadores definidos em &2’ da maneira usual, no contexto da teoria das SPO em
redes ndo uniformes, x(s), o que inclui como caso especial a rede associada ao chamado operador de
Askey-Wilson, nomeadamente, x(s) = %q*S + %qs. Estabelecem-se condicdes necessdrias e suficientes
para a regularidade de u. Para além disso, dao-se férmulas fechadas para os coeficientes da RRTT da
correspondente SPO moénica, bem como uma férmula de tipo Rodrigues. Sao apresentados alguns
exemplos que evidenciam que tais férmulas sdo muito poderosas no contexto das SPO classicas
em redes ndo uniformes. Em particular, os resultados obtidos permitem obter de forma simples os
coeficientes da RRTT para os polinémios de Racah, bem como para os polinémios de Askey-Wilson.

(v) Sejam (P,),>0 uma SPO moénica e 7 um polindmio de grau quando muito igual a dois que
satisfazem a relacdo de estrutura

7T (x)DyPy(x) = (ayx+by)Py(x) + chPr—1(x) (n=0,1,2,...),

onde a,, b, e c, sdo parametros reais ou complexos. M. E. H. Ismail colocou o problema de
caracterizar tais SPO para a rede associada ao operador de Askey-Wilson. Ismail conjecturou (veja-se
[26, Conjecture 24.7.8]) que os polindmios g—Jacobi continuos, os polinémios de Al-Salam Chihara,
ou casos especiais ou limite destes, constituem as tnicas SPO que satisfazem aquela relacdo de
estrutura. Usando o resultado principal estabelecido em (iv), damos uma resposta positiva a conjectura
de Ismail.
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Chapter 1

Introduction

The aim of this chapter is to give the outline of this thesis. This requires some basic knowledge in
the theory of orthogonal polynomial sequences (OPS). So we start by giving a short introduction to
orthogonal polynomials. This includes a review of some properties of Hahn’s operator, as well as of
operators on a nonuniform lattice, including the so-called Askey-Wilson operator. Moreover, some

new properties of those operators are presented. After that, the outline of the thesis is given.

1.1 Basic results on orthogonal polynomial sequences

For the general theory of OPS (continuous and discrete) we refer the reader to the influential mono-
graphs by Szeg6 [60], Chihara [13], Ismail [26], Nikiforov, Suslov, and Uvarov [53], and Koekoek,
Lesky, and Swarttouw [34]. As fundamental references on the so-called algebraic theory of orthog-
onal polynomials, we mention Maroni’s works [41, 43, 46—48]. We also mention here the recent

unpublished class notes [56] (where the emphasis is on the algebraic approach developed by Maroni).

The algebraic approach to orthogonal polynomials was developed by Pascal Maroni. Along this
work, we will use this approach, and so we start this section by pointing out some basic facts on the
algebraic theory. Most of the facts that we are going to present next may be founded on the references

mentioned above.

We denote by & the vector space of all (complex) polynomials and by &2* its algebraic dual
space. & may be endowed with the strict inductive limit topology so that

2=J 2.,

n>0

where &7, is the space of all (complex) polynomials of degree at most n. With this topology, the
algebraic and the topological dual spaces of 2 coincide, that is

D=
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Given a simple set of polynomials (P,),>0 (meaning that each P, € &, and degP, = n for each
n=0,1,...), the corresponding dual basis is a sequence of linear functionals a, : & — C such that

<a"7Pm> = 6n,m (n;m:O,l,...) R

where 6, denotes the Kronecker’s symbol. As usual, (-,-) means the duality bracket, so that (u, p)
is the action of the functional u over the polynomial p. In addition, any functional u € 42’ can be

written in the sense of the weak topology in &’ as

u= i <u,Pk>ak .

k=0

Definition 1.1 A simple set of polynomials (B,),>0 is said to be an orthogonal polynomial sequence
(OPS) with respect to a functional u € &7 if there exists a sequence of nonzero complex numbers
(kn)n>0 such that

(W,P,Pp) =knOpm (n,m=0,1,2,...).
We also said that u is regular and (P,),>0 is the corresponding OPS.

A monic OPS is a sequence of orthogonal polynomials for which the leading coefficient of each
polynomial is one. If (B,;),>0 is a (monic) OPS with respect to u € &7*, then the corresponding dual
basis is explicitly given by

a,=(wP) 'Pu (n=0,1,2,.).

Here the left multiplication of a functional u by a polynomial ¢ is defined as in the usual sense of the

theory of distributions:

<¢u’p> = <u’¢p>a VPEQ
The following proposition is a useful characterization of OPS.

Theorem 1.1.1 [13]

Let u be a linear functional and let (P,),>0 be a simple set in &. Then the following are equivalent:
i) (Py)n>0 is an OPS with respect to u;

ii) Foreachn € Nyand R € 2,\ {0}, there exists a nonzero sequence of complex numbers (k,)n>0
such that (u,RP,) = k&, with m = degR;

iii) For each n € Ny, there exists a nonzero sequence of complex numbers (k,),>0 such that
(0,x"P,) = knOpm, withm=0,1,2,...,n.

A very interesting situation of orthogonality appears in the so-called positive-definite case.

Definition 1.2 [/3]
A linear functional u € &' is positive-definite if (u, p) > 0 for all nonzero and non negative real

polynomial p.
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In the following result, known as Favard’s theorem (or spectral theorem), we see that OPS are
characterized by a three-term recurrence relation.

Theorem 1.1.2 [13]
Let (B)n>0 and (Yn)n>1 be two arbitrary sequence of complex numbers, and let (P,),>0 be a sequence
of (monic) polynomials defined by the following three-term recurrence relation (TTRR).

Pfl(x) = 0, P()(x) =1
Po1(x) = (x—=B)P(x) — Py 1(x) (n=0,1,2,...). (1.1)

Then there exists a unique functional w € &' such that
(u,1) #0, (u,P,Py)=0ifn#m (n,m=0,1,2,...).

Moreover, u is regular and (B,),>0 is the corresponding (monic) OPS ifand only if v, 70 (n=1,2,...),
while  is positive-definite with (B,),>o as the corresponding (monic) OPS if and only if the coefficients

B are all real and the ¥, are positive.

The coefficients f3, and 7, of (1.1) are given by (see [13, 46])

u,xP,% u,P2
ﬁ _ % _ n+1
n <u,Pnz> s /n+1 <ll P2>

vt n

(n=0,1,2,...). (1.2)

It is also known that if (P,),>¢ is a positive-definite OPS, then there exists a positive Borel measure
u on R, whose support is an infinite set (supp(p) :={x e R: u((x—¢€, x+¢€)) >0, Ve > 0}), and
with finite moments of all orders (i.e (u,x") < e forn=0,1,2,...), such that

(w.p) = [ p)du(). vpe .

When an OPS (P,),>0 is positive-definite, we also say that it is an OPS with respect to the measure
(where u represents the linear functional u). Finally we define the derivative of a functional by the

following.

Definition 1.3 [46]
Let u be a linear functional. Then we define the derivative of u denoted Du by:

(Du,p):=—(u,p'),Vpe Z. (1.3)

It is easy to show that the functional ¢u obeys to the following Leibniz rule

D" (¢u) = Z ( " )qb(k)D"ku (n=0,1,2,...).

k=0 k
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1.2 Hahn’s operator

Definition 1.4 [24]
Given complex numbers q and o, the (ordinary) Hahn’s operator Dy o : & — & is defined by

flgx+ o) — f(x)
(g—1x+o

Dyof(x):= (feP). (1.4)
The OPS related to this operator has been studied by Hahn [24]. Hereafter (when referring to Dy o)
we will assume that g and @ fulfill the conditions

lg—1]+|o|#0, q¢{0,2™"|1<j<n—1;n=23,,.}. (1.5)

The first condition in (1.5) ensures that the right-hand side of (1.4) is well defined. The second one
is imposed in order to ensure the existence of OPS in Hahn’s sense (this will be made clear later in
the next chapter, cf. Theorem 2.2.1 therein). The (ordinary) Hahn’s operator D, ¢ on & induces a
(distributional) Hahn’s operator on &7*.

Definition 1.5 ,
The (distributional) Hahn's operator Dy o, : & — 27" is defined by

(Dgou, f) :=—q (WD ,f) (weP* feP), (1.6)

where Dy, := D\ /4 _w/q-

This definition of D, ¢ appears in Foupouagnigni’s PhD thesis [15, Definition 3.4]. A slightly different
one was considered in Hécker’s PhD thesis [22, (1.16)] (under the supervision of P. Lesky and
reviewed for AMS by R. Askey), where the adopted definition is (Dy ou, f) = —(u,Dg 0 f), as it may
seem more natural a priori, taking into account the standard definition for the continuous case (cf.
(1.3)). The advantage of (1.6) is going to be pointed out in the next chapter (see Section 2.2.2 therein).
Recall that the g—bracket is defined by
o

q*—1 .
, if 1
o]y = q-1 7 (a,q€C).

a, if g=1

Note that for each nonnegative integer number n, we have [0], := 0 and [1], — n as ¢ — 1. Note also
that (1.5) ensures that [n], # 0 foreachn=1,2,....

Definition 1.6 For a € C\ {0} and b € C, the dilation operator h, : & — & and the translation
operator T, : P2 — P are defined by

haf (x) := flax), 7Twf(x):=f(x—b) (feP). (1.7)

Note that if g = 1 in (1.4) then, setting Ay f(x) := f(x+ ®) — f(x), we have

Ng
Dig="2
1,0 ® )
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while if g # 1 then, setting D, := D, o, we have
Dyo =T DyT-ay, @ :=0/(1—q) (1.8)

(see e.g. [9, (7.1)]). Thus, if g # 1 then there is no loss of generality by assuming @ = 0, a fact
remarked by Hahn himself [24]. Despite this, it seems to us preferable to present the theory for general
(¢, o) fulfilling (1.5), in order to emphasize that there is no significant simplification by presenting it
for specific g or @ and, more interesting, there is no need to study separately the case ¢ = 1 and g # 1.
As a matter of fact, the general formulas appearing in Chapter 2 (see Theorem 2.2.1 therein) allow us
to emphasize a complete similarity with the corresponding ones proved by Marcellan and Petronilho
for the continuous case (appearing in Theorem 2.1.1 of the same chapter). Next we introduce some
basic definitions and useful notations.

Definition 1.7 Letr g € C\ {0} and o € C.

(i) The operator Ly : & — 2 is defined by

LqJD = hq oT_@ -
(ii) The operators Ly o, : & — & and Dy , : & — & are defined by
Lyo:=Mq°T/g=Lijg-0/q> DPyo=Dijg-o/g-

(iii) The operator Ly o : P — &P* is defined by

(Loow,f)i=q (WL, ,f) (weP* fePp).

(iv) The operators Dy, : &* — P* and L ,, : P — P* are defined by

D)o =Dijy_wy and Ly,:=Lijy /-

Remark 1.2.1 As far as we know, the definitions appearing in (i), (ii), and (iv) were given in [22],
while the ones appearing in (iii) were proposed in [15].

The linear operators L, o and L ,, are explicitly by

Lol ()= flax+0), Liof@)=f(*7)  (Te2).

In bellow we summarize some useful properties involving the above operators.
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Proposition 1.2.1 [15, 22, 34]
Letu € &* and f,g € P, then we have the following properties.

L;7qu7w = Lq,wLZ,w =1 L;wL%w = Lq,wLZ,w =I; (1.9)
Lio=Lios Lio=Liu: (1.10)
L} of(x)=f(d"x+oln,) (n=0+1,42,...); (1.11)
D; 4Dy = qDg.oD} o Dgoli o =0 'L} 4Dy : Dgoleo = qLqoDgo : (1.12)
D} olyo =9Dg0: Dy eoLlgo =qDge; (1.13)
Lq,w(fg) = (Lq,wf) (Lq,wg) ; Lq,w(f“) = Lq,coqu,wU ; (1.14)
Dy0(f8) = (Dg0f)(Lgn8) + fDywug (1.15)
D, o(fu) =Dy ofLyou+ fDyou=Dyofu+L;efDyou. (1.16)

(In (1.9), I and 1 denote the identity operators in & and in ¥, respectively.)
We also point out the following analogue of Leibniz’s formula.
Proposition 1.2.2 Let f,g € &2 be two polynomials, then we have

n

Dyo(fe) =}, H Lyo(Dgof) Dyos (n=0,1,2,..), (117)
q

k=0

foreachn=0,1,2,... where, defining the q—factorials as [0,! := 1 and [n],! := [1]4[2],- - - [n]q for

n € N, the g—binomial number is given by

n|l [n],! ‘
[k]q‘[k]q![nq_k]q! (n,keNg; k<n).

Note that (1.17) can be easily deduced from the well known Leibniz formula for the operator D, (see
e.g. [26, Exercise 12.1] or [34, (1.15.6)]) and using the relation (1.8) between D, and D, . There is
also a functional version of the Leibniz formula.

Proposition 1.2.3 Let u € &7* be a linear functional and f € &2 be a polynomial.
Then we have

n

D ,(fu) =Y, ” Lyd (Dhof ) Dydu=Y, H Lio (Dydf) D ou (1.18)
j=0 |/ q j=0 |/ q
forn=0,1,2,....

Formulas (1.17)—(1.18) can be proved easily by induction on n € Ny. A basic property of Hahn’s
operator relies upon the fact it maps a polynomial of degree n into one of degree n — 1. Indeed, since
Dy X" = ZZ;(l)(CIX + @)*x"~1=k applying the binomial formula to (gx + @)*, we obtain

n—1
Dyox" =Y [n,K]g.0xX" ' * = [n] "' + (lower degree terms) , (1.19)
k=0
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where the number [n,k|, o is defined by

n—1—k <k+]

n,klg 0= k Z j )qj (n,k=0,1,...).
j=0

We adopt the convention that an empty sum equals zero, hence
n,klgo=0 if n<k.

We also point out the following useful representations:

(l)k dk n—1 a)k dk qn_qk a)k dk
= — J = — = —— —
Koo = 37 347 j;ﬂ k! dgk ( g—1 > k! dgk <[”]q [k]q) '

In particular, for k € {0,1,2}, we compute

[nﬂo]q-,w = [n]q ,
[, 1g.0 = (nln—1]g— (n—1)[n]g) o,
n,2]g.0= (n(n —D[n-2];-2n(n-2)n—1];+ (n—2)(n— 1)[n]q) w§/2 ,

where @y is given by (1.8). Taking @ = 0 in (1.19) we see that D, fulfills
DX =" (n=0,1,...). (1.20)

The usefulness of this property relies upon the following fact: if uw € &%, ¢ € &, and y € &,
then u satisfies the functional equation D,(¢u) = yu if and only if the sequence of moments (u, :=
(u,x")),>0 satisfies the homogeneous second order linear difference equation

1
(O + 32t Y + (w0)g" + 0 Ol )at + 0Ol 1 =0 (n=0.1.2....).

(1.21)

Of course, taking into account (1.19), the analogous to property (1.20) is no longer true if D, is replaced

by Dy » (@ # 0). Hence, one can not expect that the moments corresponding to a functional u fulfilling

D, »(¢u) = yu —being u, ¢, and y as above— satisfy a second order difference equation like (1.21).

Hicker replaced the power basis (x"),>0 by a different polynomial basis, (X,),>0 = (Xu(+; ¢4, @))n>0

defined as follows.

Proposition 1.2.4 [22]
Let define a simple set of polynomials (X;,),>0 by

Xo(x):=0, Xpy1(x) =q "(x—[n]y)Xu(x) (n=0,1,2,...).

Then we have
DyoXn=¢q" "X (n=0,1,2,...). (1.22)
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For our purposes it is more convenient to use a basis (of ) of monic polynomials, namely
(Y)nz0 = (Yu(+3¢, ®))n>0, where Y, := q(g)Xn, so that
n

Yo(x) =1, Yu1(x) = (x—[n]y)Ya(x) = Ijo(x—a)[j]q) (n=0,1,2,...). (1.23)

Clearly, (Y;),>o fulfills the desired property:
Dy oYu(x) = [n]g¥p—1(x) (n=0,1,2,...). (1.24)

Finally, using (1.24) it is straightforward (e.g. by using Mathematica, or by induction on n € Ny) to
show the following result.

Proposition 1.2.5 Let u € &7* be a linear functional. Then u satisfies the functional equation
Dy w(9u) = yu, where ¢ € P> and y € Py, if and only if the sequence of moments with respect to
the basis (Y,)n>0, (Vn := (W, Yy))n>0 defined in (1.23), fulfills

dnyni1 + (en + w[n]qdn—l)))n =+ [n]q(¢(0) =+ wen—l)yn—l =0 (l’l =0,1,2,.. ) ) (1.25)

where (dy,),>0 and (e,)n>0 are sequences of complex numbers given by

9"(0)

e en=w(0)" + (0d,+9'(0)) [n],

1.3 Some operators on a nonuniform lattice (NUL)

A nonuniform lattice (NUL) is a mapping x(s), s € C, given by

g t+ogte if g#1,
x(s) := (1.26)
cas? +ess+cg  if g=1,

where ¢ > 0 (fixed) and ¢; (1 < j < 6) are constants in C, that may depend on ¢, such that (c;,c) #
(0,0) if ¢ # 1, and (¢4, ¢s,¢6) # (0,0,0) if ¢ = 1. In the case ¢ = 1, the lattice is called quadratic if
ca # 0, and it is called linear if ¢4 = 0; and in the case ¢ # 1, it is called g—quadratic if ¢c, # 0, and
g—linear if ¢;c; = 0 (cf. [7]). Notice that

x(s+3)+x(s—13)

where o and f3 are given by

1/2 4 ,~1/2 (I—a)e3 if g#1,
. ks i P (1.27)
2 /4 if g=1.
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The lattice x(s) fulfills (cf. [7]):

xX(s+n)+x(s) _ 0uXn(8) + B, x(s+n) —x(s) = %hVxuti(s), n=0,1,2,...

where x,,(s) :==x(s+ %), Vf(s) :== f(s) — f(s— 1), and (&t)n>0. (Bn)n>0, and (%)n>0 are sequences
of numbers given by the following system of difference equations

aw=1, og=o, o —200,+c,_1=0 (1.28)
ﬁO = Oa ﬁl = B 5 BnJrl _zﬁn‘i‘ﬁnfl = zﬁan (1.29)
W=0, n=1, Y%r1—ha1=20 n=123.... (1.30)

The explicit solutions of these difference equations are

n/2 —n/2
an:%, (131)
2
n/4 _ _—n/4
q q .
_ f 1
g -] P <q1/4_q1/4> it g7 (132)
{ B n? if g=1,
n/2 _ —n/2
q q .
T 79 i g#1
=l @ (1.33)
n if g=1.

These formulas may be easily checked (alternatively, see [7]). We also point out the following useful

relations:
Yor1 —20% + Y1 =0, (1.34)
O+ Y1 = QY (1.35)
(2a* — 1oty + (0> = 1) Yot = OOy (1.36)
Yon =200V (1.37)
(=1 =, =201, (1.38)
Oy — 00, = (1 — )y, (1.39)
oA+ Y = O—1Yn+1 (1.40)
L+ 01 = O Yot (1.41)

valid for eachn =0,1,2,... (provided we define a_; := & and y_; := —1, in consistence with (1.31)

and (1.33)).

Definition 1.8 Consider the lattice x(s) given by (1.26). We define two operators Dy : & — &
(called the x—derivative operator on &) and Sy : & — P (called the x—averaging operator on &),
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so that deg(D,f) = deg f — 1, deg(S.f) = deg f, and

)
) )

Rl—

fx(s+3)) = flals
x(s+ %) —x(s—

(1.42)

D f(x(s)) =

DN —

and

f(F(s+3)) +f (x(s=3))

> (1.43)

Sxf(x(s)) =
for each f € & (see [6, 7, 17]). Further, we set Dif = f' and S.f = f, for all f € &, whenever

x(s) = ce.

The operators D, and S, on & induce two operators on the dual space &7*:

Definition 1.9 We define D, : &#* — &* and S, : & — P* by

(Dyu, f):= —(u,Dyf), (Syu,f):=(u,S,f) (fe P, ueP). (1.44)
For eachu € &%, the functional Dyu € 7% is called the x—derivative of u, while Syu € P2* is called
the x—average of u (see [17]).
Hereafter, z := x(s) being the lattice (1.26), we define polynomials U; and U, by

Ui(z) = (> = Dz +B(a+1), (1.45)
Us(z) == (> = 1) +2B(a+ 1)z +5 , (1.46)

0 = §, being a constant with respect to the lattice, given by

(x(0)+x(1) —2B(a+1)
5:im ( -

2
> —x(0)x(1) . (1.47)
It is also straightforward to verify that

(= 1)(F—4c1c0) if g#1,

0= (1.48)
}ch—u% if g=1,
and
(@*=1)(z—c3) if g#1,
Ui(z) = (=) (1.49)
34 if g=1,

hence, we deduce
(@*=1)((z—c3)? —4deien) if g#1,
Ua(z) = s ' (1.50)
c4(z—c6) + 765 if g=1.
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By direct computations, we may check that the polynomials introduced in (1.45)—(1.46) satisfy the
following relations:

DU =a’—1, S, U; = aUy , (1.51)
D,U; =2aUy , S Uy = a’Us + U7 . (1.52)

1.3.1 Some properties

We start by pointing out some properties.

Lemma 1.3.1 Let f,g € & and u € &*. Then the following properties hold:

Dy (fg) = (Dxf) (Sxg) + (Sf) (Dg) , (1.53)
Sx(fg) = (Dxf) (Dxg) U2+ (Sxf) (Sxg) - (1.54)
S:D.f = aD,S,f —D,(UiDf) , (1.55)
Sif=a 'S (UD.f) +a 'UDIf+ f, (1.56)
£8:8 = Se((8ef — @ U1 Def)g) — @ ' 0DL(gDif) (1.57)
fDig =D, ((Sef — & 101 D.f)g) — o 'S,(gDef) (1.58)
D,(fu) = (Scf — & 'UiDsf) Du+ o~ (D, f)Ssu, (1.59)

(fu) = (Scf — @ 'UID.f) Ssu+ ! (Dyf)Dy(Uou) , (1.60)
S.(fu) = (aU, — o '0}) (Dyf)Dsu+ (Sxf + & 'UiD,f) S, (1.61)
D; (Uu) = aStu+D, (U;Su) — ou (1.62)
D:(Uou) = 2 — o HSlu+a 'UDS;u—ou, (1.63)
D.S.u = aSD,u+D,(U;Du) . (1.64)

Proof The reader may encounter properties (1.53)—(1.60) in [50, Propositions 5-7]. To prove (1.61),
set f = U, in (1.59) and then use (1.52) to obtain

Dx(Uzu) = (OCZUQ — U%)Dxll +2U;S,u.

Replacing this expression in the right-hand side of (1.60) we obtain (1.61). Next, taking arbitrarily
f e P, we have

<D)2c (Uzll),f> = <u7U2D;2c > = <ll, O‘S,%f_ Sx(Ulef) - OCf>
= <OCS)2(11+DX(U1SXU) —au, f),

where the second equality holds by (1.56). This proves (1.62). Setting f = Uy in (1.59) and replacing
therein u by S,u, and taking into account (1.51), we deduce

D, (Ulsxu) =a 'u;D,S,u+ (a— (X*I)Szu .

X
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Substituting this into the right-hand side of (1.62) we obtain (1.63). Finally, (1.64) follows easily from
(1.44) and (1.55).

Proposition 1.3.2 Let us consider the g-quadratic lattice x(s) = ¢1q~* + ¢2q¢* + ¢3. Then the following
relations hold.

DxZn = ’Ynzn_l + unzn_z + Vnzn_3 + (1 65)
Sid" = O i VT (1.66)

where , and %, are given by (1.31) and (1.33), respectively, and

Uy = (n¥1— (n—1)%)c3, (1.67)

v, = (n}/n,z —(n— 2)}/n)c1c2 (1.68)
4 (1= 12— 20— 21 + (1= D)1 —2)%) 3

Uy :=n(Q—1 —ay)c3, (1.69)

Vi i=n(0h—2— 0)c1ca+n(n—1)(a —1)a,,,1c§. (1.70)

forn=0,1,2,....

_Proof The proof is done by mathematical induction on n € Ny. For n = 0, we have Dz’ =0 and
S,z2% =1. So we have ¥ =0, ap = 1 and uy = vy = tip = vo = 0. Then (1.65)—(1.66) is true for n = 0.
Now suppose that (1.65)—(1.66) are true for all integers less than or equal to a fixed n. Then by using
this hypothesis together with (1.53)—(1.54), we have

D" = Dy (22") = D2 Sxz+ S:7" Dz
= (az+ B)Dy7" + S 7"
- (an + OC}’n)Zn + (aun +ﬁn +B’Yn)zn_1 + (avn +{/\n +ﬁun)zn_2 + ttt .

In a similar way we also have

S 2" = 8.(22") = Us(2)Dyz Dy2" + 82" Siz
=U2(2)Dx2" + (az+ B)S:"
= (@, + (& = 1)) 2+ [(0F = 1) (s — 2%03) + az?n Ban} z"
+ [(oc2 — 1) (vy = 2upc3 + (5 —4der1c2) ) + vy, + Bitn) 2"~

Using (1.34)—(1.41), we finally obtain

1 -1 -2
D)cZnJr :%+12n+urz+lzn +Vrz+lzn +eee

=1 1 ~ ~ -1
8§27 = 01 2" F 12 A V12 A

Thus (1.65)—(1.66) are proved for all n € Ny.
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1.3.2 A Leibniz-type formula

Here we state a Leibniz-type formula, involving the x—derivative operator, for the left multiplication

of a functional by a polynomial. For this, we need the following results.
Lemma 1.3.3 Let f € &2. Then
D'S.f = 0, S D" f+ D" f (n=0,1,2,...). (1.71)

Proof By mathematical induction on n. (1.71) is satisfied for n = 0. Suppose that for all positive
integers less than or equal to a fixed integer n, (1.71) is true. Then by using successively (1.71) firstly
for n and secondly for n = 1 with f replaced by D" f, and (1.53) to D,(U;D"*! f) we have

DS f = Dy (DiSef) = Dy (0uSiDf + 101D f)
= D Sc (D} f) + 1Dy (UiDF ' f)
= a, (S DI f+UDI2 )+ (0 — 1)SD £+ o D2 f)
= (o, + (a® = 1)%) S:D f+ (o + oy U D2 £

Using (1.34)—(1.39), we see that (1.71) is true whenever 7 is replaced by n+ 1. Hence (1.71) is true
for all n.

There is a functional version of (1.71).
Lemma 1.3.4 Letu € &?*. Then
aD'S,u = o, 1S, D"u+7y0,D" " (n=0,1,2,...). (1.72)

Proof We prove (1.72) by mathematical induction on n. Since o = o and % = 0, then (1.72) is
trivial for n = 0. For n = 1, (1.72) is obtained multiplying both sides of (1.64) by o and taking into
account that, by (1.59) and (1.51), the equality aD,(U;D,u) = U;DZu+ (a* — 1)S,D,u holds, and
recalling also that ap = 2a> — 1 and ; = 1. Suppose now (induction hypothesis) that property (1.72)
holds for a fixed integer n € N. Then, we have

aD! 'S u =D, (aD!Su) = ¢, 1D,SDu+ 3D, (U DI u) . (1.73)
Considering (1.72) for n = 1 and replacing therein u by D%u, we obtain
D.S.D"u= o 'S, D" lu+a "y, 0D u. (1.74)
Moreover, using again (1.59) and (1.51), we deduce
D, (U;D! ) = ¢ 'Ui D Put o (o - 1)S, D . (1.75)

Putting (1.74) and (1.75) into the right-hand side of (1.73) and taking into account (1.35) and (1.36),
we obtain (1.72) with n replaced by n+ 1. This proves (1.72).
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Next, we introduce the operator T, : & — & (n=0,1,2...;k=0,1,2...,n), defined for each
f e P asfollows: if n =k =0, set

Toof =1 (1.76)

and if n > 1 and 0 < k < n, define recurrently

nkf—STn lkf_OC UIDTn 1kf+

DiTh-14-1f, (L.77)
n—k Ot+-1—k

with the conventions T, x f := 0 whenever k > n or k < 0. Note that
degT i f <degf—k.

We are ready to state the following.
Proposition 1.3.5 (Leibniz-type formula) Leru € &% and f € &. Then

D! (fu) = ZT DS (n=0,1,2,..), (1.78)
k=0

where T, i f is a polynomial defined by (1.76)—(1.77).

Proof The proof is done by mathematical induction on n. Clearly, (1.78) is true if n = 0. Suppose
now that (1.78) holds for a fixed nonnegative integer n. Then

D" (fu) = D.(D}(fu)) ZD (T /D Sk) . (1.79)
Notice that, by (1.72),

S} *Sfu= ——

(oD skt lu—y, 0D sku) (1.80)
On+1—k

Therefore, using successively (1.59), (1.80), (1.35), and (1.77), we may write

D, (T, fD: *Stu)
= (SyTurf — 0 'UID T, f) DT 4 Sk u + ' D, T, fS.D! *Sku
x n kf

Onr1—k

= (SxTn,kf_ Tk UleTn,kf>Dg+likS];u Dn ksk+l

®nt1-k
_ (TnJrl.kf_ DxTn,k—lf)D;,Jrl—kS)/iu D, nkan kSkH
’ On+2—k 1k
Substituting this expression in the right-hand side of (1.79) and then applying the method of telescoping
sums, we get

DT iy DT iy
X X

Dn-H u T Dn+ 1- ksk
(fu) Z w1k @ T
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Finally, since T,, _1f = 0 and a%DxTn,n f = Tuy1n41f (this last equality follows from (1.77) taking
therein k = n and in the resulting expression shifting # into n + 1), we obtain (1.78) with n replaced
by n+ 1. Thus (1.78) is proved.

Corollary 1.3.6 Let x be the g—quadratic NUL x(s) ‘= c1q*+¢2¢° 4¢3, (s€ C; g >0). Letu € 2*
and f € 9. Set f(z) = az> +bz+c, with a,b,c € C. Then

n _ aq 2 f’(C3) 4a(1_a2)')/nc152 n
Dx(fu)(%%_1 (z—e3) "+ o (z—c3)+ fe3)+ - Dlu (1.81)
n Olp + 00— —
+3X/7n (W(Z_C3)+f/(C3)> D’ !S,u
+ Tt p-2gay,
n—1
foreachn=0,1,2,.... In particular,
n b n by" n—1
D} ((bz+c)u) = a—(z—ﬁn)Jrc Dxu—i—a D! 'Ssu (n=0,1,2,...). (1.82)

The proof of identities (1.81)—(1.82) relies upon the Leibniz formula (1.78), (1.59) and (1.72), by a
straightforward computation. Alternatively, we may apply mathematical induction on n as follows.

Proof We only prove (1.81) since (1.82) is the particular case of (1.81) where a = 0. Let’s de-
fine g(z) = f(z—¢3) = a(z—¢3)* +b(z— ¢3) +c. We want to show that

N e A z2—03
To@) =g (1506 ) + oy (S04 ) (153
A Oy + 00,
(Tn18)(2) = gf (a(azl) (z— c3)+b> : (1.84)
n n—1
(Tna8)(z) = LBt (1.85)
an—l

forn=0,1,2,..., where T, f is defined by (1.76)—(1.77). Note that we have

oa » b da(1—a?)y,
Tn = - - . 1'
( ,Og) (Z) A (Z C3) + o (Z C3) +c+ o (%) (1.86)

We proceed by induction on n € Ny. Forn =01n (1.83)—(1.85), we find Ty og = g and Tp, 18 = 0 =T >
which agree with (1.76)—(1.77). Now suppose that (1.83)—(1.85) is true for all positive integers up to
a fixed n. Then by (1.77), we have

Yn+1
O+1

Th41,08 = Sx(Th08) — U1Dy(Th08) » (1.87)

1
Tus118 = ScTo18) = o ViD(Tu1g) + o
n n

Dx(Tn,Og) 5 (188)

1
Tn+l,2g = Sx(Tn,2g) + ;Dx(Tn,lg) . (1.89)
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Using the following identities Sy ((z —¢3)%) = 2a* — 1)(z—3)? +4(1 — o?)cic2, Dy ((z—¢3)?) =
2a(z—¢3),and Sy ((z—¢3)) = a(z —¢3), we find

Se(Thog)(z) = W (z— )+ ZZ: (z—c¢3)+c+ da(1 = ngjf Onh) ey,
5 (Torg)(0) = % (aa(an:%ocanl)(z_%Hb) 7

D.(Tua)@) = o (e +b)

Dy(T18)() = “y”(‘);jn;’%“f‘"‘” |

Therefore from (1.87) we use (1.34)—(1.41) to obtain

aa (1—052)7n+1> 2 b(aoy 1+ (1—a?) Y1)
Thi102)(z) = 20 — 14+ 20——2" ) (z—¢3)2 + z—¢
L L) (o) o )
4a(l —a®)(a+a,
+c+ a( )( + n'}/n)clc27
0, 01
oa b 4a(1—o?
_ (Z_C3>2+ (Z—C3)+C+wclc2 .
Oy Oy 41 Oy t1 Ay

Hence (1.83) holds for all n. Similarly, from (1.88), we use again (1.34)—(1.41) and the identity
Q1Y (O + A0y 1) + 2020, = Oy 1Yy 1 (G 1 + 000G, to have

a (o toac_) 20> b !
T, = - o
(Trs118)(2) = (o — ( o t e Ot 1
(04 oq,
Op+1 (0%

Hence (1.84) holds forn =0, 1,2, .... Finally from (1.89) it is obvious that (1.85) holds for n replaced
by n+ 1 and consequently for all n. Thus (1.83)—(1.85) hold and therefore (1.81) follows.

1.4 Outline of the thesis

This thesis fits into the theory of Orthogonal Polynomials and Special Functions, in the framework
of Approximation Theory and Classical Analysis. In what follows, we describe summarily the
organization of this thesis highlighting the main contributions in each chapter.

I. Let u be a nonzero linear functional acting on the space of polynomials &2. Let D, ¢, be a Hahn
operator acting on the dual space of polynomials &?’. Suppose that there exist polynomials ¢ and v,
with deg ¢ <2 and deg y < 1, so that the functional equation

Dyw(gu) = yu

holds, where the involved operations are defined in the distributional sense. We state necessary and
sufficient conditions, involving only the coefficients of ¢ and y, such that u is regular, that is, there
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exists a sequence of orthogonal polynomials with respect to u. In addition, the coefficients of the
three-term recurrence relation (TTRR) satisfied by the corresponding monic OPS are given. A key
step in the proofs of these results relies upon the fact that a distributional Rodrigues-type formula
holds without assuming that u is regular. This is achieved in Chapter 2. The results of this chapter are
published in [4].

II. Let M and N be fixed non-negative integer numbers and let 7y be a polynomial of degree N.
Suppose that (P,),>0 and (Q,),>0 are two OPS such that

n+N
@) P, = Y r0l () (n=01,..), (1.90)

Jj=n—M

where r,, ; are complex numbers independent of x and f*) (x) = (fx—kk f(x) foreach f € 2. It is shown
that under some natural constraints, (P,),>0 and (Q,),>0 are semiclassical OPS. That is, there exist
nonzero polynomials ¢, ¢», W; and y; such that the corresponding functionals u and v fulfill the
functional equations

D(¢iu) =yiu,  D(4v) = yrv.

Moreover we show that u and v are related by a rational modification in the distributional sense,
meaning that Pu = Qv for some nonzero polynomials P,Q € &. This leads us to introduce the concept
of my—coherent pairs with index M and order (m, k). This is one of the achievements of Chapter 3,
published in [10].

III. Chapter 3 also extends the previous concept to the one of my-(g, ®)-coherent pairs with
index M and order (m, k), which appears in the framework of discrete OPS by replacing in (1.90) the
ordinary derivative by the discrete Hahn’s operator D, . This leads to the (structure) relation

n+N

7oy (x) Dzwpn+m(x) = Z rn,jD];,ij-S-k(x) (n=0,1,...).
j=n—M

Again, in this situation, it is shown that under some natural constraints, (P,),>0 and (Q,),>0 are semi-
classical OPS (with respect to D, o) and the corresponding functionals are related by a (distributional)
rational modification. Some examples of application are given, recovering in a more simple way some
known results in the literature about the subject. Our results enable us to describe in a unified way all
the classical OPS with respect to Jackson’s operator, which appear as special or limiting cases of a
four parametric family of g-polynomials. These results are available in [5].

IV. Let’s consider now that u is a functional on & satisfying the more general functional equation

D, (¢u) =S, (yu),

where D, and S, are the operators defined on &’ as before. We state necessary and sufficient
conditions for the regularity of u, giving, in addition, closed formulas for the coefficients of the TTRR
of the corresponding monic OPS, as well as a Rodrigues-type formula. Some examples are given to
point out the power of our formulas in the framework of classical OPS on nonuniform lattices. In
particular, our results enable us to derive in a simple way the coefficients of the TTRR of the Racah
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polynomials as well as the ones for the Askey-Wilson polynomials. The results of this chapter are
contained in a manuscript to be submitted for publication soon [11].

V. Let (P,)n>0 be a monic OPS and 7 a polynomial of a degree at most two such that
T(x)P(x) = (apx +by)Py(x) + cnP1(x) (n=0,1,2...),

for some complex sequences of coefficients a,, b, and c,. It is well known that the only OPS that
fulfill the above structure relation are the classical OPS (Hermite, Laguerre, Bessel and Jacobi). This
result is referred in the literature as Al-Salam and Chihara characterization of classical OPS (see [13]).
In [26] M. E. H. Ismail consider the same type of structure relation, replacing the standard derivative
by the Askey-Wilson operator, so that (even more generally), we may consider

7T (x)DyPy(x) = (anx +by)Py(x) +cnPr1(x) (n=0,1,2...).

Ismail posed the problem of characterizing all OPS fulfilling this structure relation, and he conjectured
that the solutions are the continuous g—Jacobi polynomials, the Al-Salam Chihara polynomials, or
special or limiting cases of them. The case where the polynomial 7 is a constant was proved by
Al-Salam [2]. In Chapter 5, using the main results of Chapter 4, we give a positive answer to Ismail’s
conjecture, for any polynomial 7. The results of this chapter are contained in a manuscript to be
submitted for publication soon [12].

Finally in Chapter 6, we present some further directions of research in the framework of the
problems considered in this thesis.



Chapter 2

Classical orthogonal polynomials related
to Hahn’s operator

2.1 Preliminaries

2.1.1 Introduction

The (very) classical OPS of Hermite, Laguerre, Jacobi, and Bessel, constitute the most studied class
of OPS. In the framework of regular orthogonality, these OPS are defined as orthogonal with respect
to a moment linear functional u : & — C such that there exist two nonzero polynomials ¢ € &, and
y € &) so that u satisfies the functional equation

D(¢u) = yu, 2.1

where the functional Du is defined as in (1.3). Hermite and Laguerre functionals (corresponding to
the Hermite and Laguerre OPS) appear in (2.1) taking ¢ = const. # 0 and deg ¢ = 1, respectively. If
deg ¢ = 2 we obtain a Jacobi functional whenever the zeros of ¢ are distinct, and a Bessel functional
if ¢ has a double zero. A natural question arises: if u is a nonzero linear functional defined on
& satistying (2.1), with ¢ € &7 and y € &, and if at least one among ¢ and y is not the zero
polynomial, to determine necessary and sufficient conditions, involving only the coefficients of ¢ and
v, such that u is regular (i.e., there exists an OPS with respect to u). This question has been answered
by Marcelldn and Petronilho in the following

Theorem 2.1.1 [38, Lemma 2 and Theorem 2] Let u € &'\ {0}. Suppose that (2.1) holds where
O € Py, y € P, and at least one of ¢ and ¥ is not the zero polynomial. Write

O(x) :=ax® +bx+c, y(x):=dxte, d,:=d+tan, e,:=e+bn.

(a,b,c,d,e € C;

al+ |b|+|c|+|d| + |e| #0.) Then, w is regular if and only if
€n
di#0, ¢(=3-)#0, VneN. 2.2)
d2n

19
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Under these conditions, the monic OPS (P,),>o with respect to  satisfies the three-term recurrence

relation (1.1) with coefficients (1.2) given by

— 5 n+1 — —
dry—> doy, dop—1dopi1

_nent (n+ ey (n+1)dn1 (_Ln) (n=0,1,...). (2.3)

Bn d2n

In addition, the following (distributional) Rodrigues formula holds
n—1
Pu=k,D"(9"n), ki:=[]d,};.y (n=0,1,...). (2.4)
=0

The aim of this chapter is to state a (g, ®)—analogue of Theorem 2.1.1, replacing in the functional
equation (2.1) the derivative operator D by the (distributional) Hahn’s operator, denoted by D, 4
(defined as in (1.6)).

2.1.2 Preliminaries results

]

Given a nonnegative integer number k and a monic polynomial P, of degree n, we denote by P,Ek
pX (;q,®) the monic polynomial of degree n defined by

b oPrk(x)  [n],!
PR () = Dy btk _ q
) Hlj‘:l[”l‘f‘j]q [n+Kkg!

D oPusk(x) (k,n=0,1,...). (2.5)

If £k =0, it is understood that D27 of = f and that empty product equals one. Set

O(x) :=ax* +bx+c, w(x):=dx+e, (2.6)
dy =dy(q) =¥ ¢" + %ﬁb” [nly =dq" +alnly, en=en(q,0):=eq"+(d,+Db)n], . (2.7

Definition 2.1 (¢, ) is called a (q, ®)—admissible pair if
6P, yeH, and d,#0, VYneNy, (2.8)

where d,, is given by (2.7).

Definition 2.2 A linear regular functional u € & is a Dy o-semiclassical (or (q,®)-semiclassical)
Sfunctional if it is regular and there exist ¢,y € &2, with deg W > 1, such that the following functional
equation holds.

D,.0(0u) = yu. (2.9)

The class of a D o-semiclassical functional u, denoted by s(u), is the unique non-negative integer
number defined by

s(u):= min maxqidegd —2,degy—1;,
) (¢.¥)Edh { g/ gV }
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where <, is the set of all pairs of nonzero polynomials (¢, ) fulfilling the functional equation (2.9).
When s(u) = 0, u is said to be a D, o-classical (or (q, w)-classical) functional. We also say that the

corresponding OPS is D -semiclassical of class s(w) or Dy o-classical, respectively.

Remark 2.1.1 Note that
D, »(pu) =vyu < Dl/q,fw/q(au) =vyu,

where ¢(x) =g~ [(j) (x) + ((q —)x+ a)) l//(x)]. Consequently, a regular linear functional u is

Dy w-semiclassical if and only if it is Dy, g /4-semiclassical.

Remark 2.1.2 It is worth mentioning that D, o—classical OPS were extensively studied in [32] and
an introduction to the study of D,—semiclassical OPS has been addressed in [31]. Moreover, an
extensive study of D, o—classical OPS was made in [1].

Let u € &7* be a linear functional satisfying the functional equation (2.9) where ¢ € &, and
v € ;. We also set

=u, ui=L,,(pul") =L, 0oL, ou* T (k=12,..), (2.10)

where the last equality holds by (1.14). Iterating (2.10) and taking into account (1.11) yields

ko
. (Hng)L’;mu —O(shLEu (k=0,1,...), @.11)
j=1
where
k
=[] 9(¢'x+ o] (2.12)
j=1

Proposition 2.1.2 [15, Theorem 3.1]
The functional ulKl defined in (2.11) fulfils the functional equation

D, o (pull) = yWu¥  (k=0,1,..), (2.13)
where wK € 2, is defined by
v =y, v".=D, o0 +qL,0v T (k=1,2,3,..). (2.14)

We point out that equality (2.13) was stated in [15] under the assumption that u is a regular functional,
but inspection of the proof given therein shows that the equality remains true without such assumption.

Corollary 2.1.3 The polynomial WX defined in (2.14) is explicitly given by

V() =dyx+er (k=0,1,2,...), (2.15)
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where d;. and ey, are defined as in (2.7).

Proof Apply mathematical induction on k € N.
Formula (2.15) has not been observed in [15]. It will play a central role along this chapter.

Lemma 2.1.4 Let u € 7%\ {0}. Suppose that u satisfies (2.9), where ¢ € & and y € P). Let
(Qn)n>0 be any simple set of polynomials and define

Rut1(x) = 0(x)Df On(x) +qy(x)QOn(x)

(2.16)
= a,q' "d,x""! 4 (lower degree terms) ,

where a, € C\ {0} is the leading coefficient of Q,, and d,, is defined as in (2.7). Then the following
functional equation holds:

ro(0ul) =R, u (n=0,1,..). (2.17)

Moreover, (Ry)n>0 is a simple set of polynomials if and only if (¢, ) is a (q,0)—admissible pair,
provided that we define Ry(x) := 1.

Proof Let n € Ny and take arbitrarily f € &7. Then

<D2,w (inl[l])’f> =—q(Ly0(¢u),0,Dy0f) = <¢u ( ;-‘*’Q") (LZ’qu"wf)>
= —<¢)ll, ( q7an)( q,a)f)> ’

Now, using relation (1.15) with Dy, , instead of Dy ¢, we obtain

(D} o (@), ) = — (00,0, o (fQu) ~ FD; 0Qn)
Q< ((Z)ll) Onf)+ <¢D;a)Qn,f>
< (qll/Qn + (])D; a)Qn)f> = (Rop1u, f) .

This proves (2.17). Moreover, taking into account (1.19), we have

D ,On(x) = anD 4 —e/qX" + (lower degree terms)

= a,q' "[n], X" + (lower degree terms)
where we also took into account that [n],-1 = q'"[n],. Hence
Rut1(x) = (aang' "[n]4 + ga,d)x" " + (lower degree terms) ,

and so we obtain the expression for R4 given in (2.16). Thus, degR,+; =n—+1foreachn =0,1,...
if and only if d, # 0 foreachn =0,1,..., i.e., if and only if (¢, ) is a (¢, @) —admissible pair. This

concludes the proof.
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In the statement of the next lemma, which is interesting for its own sake, we emphasize that
neither the given functional u needs to be regular nor the sequence (P,),>0 needs to be an OPS. Under
the assumption that u is regular and satisfies (2.9), formula (2.18) in bellow may be derived in a very
simple way (see Section 2.2.2 below).

Lemma 2.1.5 [4]
Let u € 7\ {0}. Suppose that u satisfies (2.9), where (¢, ) is a (q, ®)—admissible pair. Then the

Rodrigues-type formula
Pu=kD}, , u" (n=0,1,..) (2.18)

holds in 2*, where u is defined as in (2.11),
n—1
kn = qn(n73)/2 I_!)d;ﬁJfl , (219)
Jj=

and (P,)n>0 is a simple set of monic polynomials given by the three-term recurrence relation (1.1)
with coefficients (1.2) given by

[n]qen—1 _ [n+1]4en

= wln], + , (2.20)
b nlq doy—> doy,
q"[n+1]4dn—1 ( en )
= AT gl (O (=0,1,...), 221
Tat1 don—1don41 ¢ doy ( ) (221)

where e, and d,, defined as in (2.7).

Proof Since (¢, y) is a (¢, )—admissible pair, then d,, # 0 for each n =0, 1,.... Hence the
sequence (P,),>0 given by (1.1) and with coefficients given by (2.21) is well defined. For simplicity,
we set Hy o :=Dj , := D1y /4> and so (2.18) reads as

Pu=kH, ,u (n=0,1,.). (2.22)
Notice that the second relation in (1.13) can be rewritten as
HyoLgo=qDgo, (2.23)

while, setting Hy ¢ := D}, ,,, the Leibniz rule (1.18) applied to D ,, gives
< * n—
H) ,(fu) =Y H Lt (H S f)H yu (f€2). (2.24)
qfl

k=0

We will prove (2.22) by mathematical induction on n. For n = 0, (2.22) becomes a trivial equality. For
n=1, we use (2.10) and (2.23) to deduce

H,oul! =H, oL, 0(ou) = gD, 0(pu) = gyu.

Therefore, since P (x) = x — o =x— (—eo/dy) =x+e/d = d~'y(x), and so qy = qdP, =k ' Py,
we obtain (2.22) for n = 1. Assume now that (2.22) holds for given consecutive numbers n — 1 and n
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(n € N), i.e., suppose that (induction hypothesis)

Py =k, H S ul Pu=k,H ul (2.25)
We need to show that
Puiru =k HA L ul (2.26)

To prove (2.26), we start by noting that
H L al ) = gae ) (yihal) (2.27)
Indeed, using successively (2.10) and (2.23), we have
Hy Y =By, (HyoLgo(0u") ) = Hj o (Dyo(ul) )

and so (2.27) follows taking into account (2.13). Next, by (2.24) with f = /"l = d,x + e,

HG o () = (137 W B 4[] B
Replacing this into (2.27) and using the second identity in (2.25), we deduce

1], 1o HE gul = g7 HE S al Y — (L ) P (2.28)

Taking into account both identities appearing in (2.25), we may change »n into n — 1 in the preceding
reasoning, to obtain

[ —1],-1d o HE 2ul 1) = (q’lk,ijn — k(L )P, 1)u . (2.29)

Next, by the analogue of (1.16) for D} , we have

q70‘)7

Hq@(q/["]u["]) — (D;ww[n])L;wu[n] 4 II/MHq,wUM
— dan;qu,w ((Pu[n—l]) + II/[”]quLq,w ((Pu[n—l])
= (d2nf+qyly"ut (2.30)

where in the last equality we used (1.9), (2.23), and (2.13). From (2.27) and (2.30), we obtain
H L ul ] = g (6 (inyul 1) (2.31)

where 6, (x;n) := da,¢ +qw!" wl"~ 1. Since deg 6, (-;n) < 2, applying the Leibniz formula (2.24) to
the right-hand side of (2.31), we obtain
Hy u = gL (Ba(im) Hy ™™
+qln—1],1 Ly 2 (D) 02 (in) JHE Jul ] (2.32)

q[n_l] 71[’1_2] 1 kn— * n— n—
[q2]qfn L3 (D265 (om)  H Jul
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Now, since ¢ (x) = ax® 4 bx+ ¢, y¥l = dyx + ¢, and the relations
dir =a+qdy, exs1 =b+qep+0dy, dyir+qdu = (1+q)doys (2.33)
hold for each k = 0, 1,..., we show that 6,(+;n) is given explicitly by
6:(x;n) = dondan—1x* + don—1 (1 + q)en — Odan) X+ cdan + genen_1 .
(Hence, deg 6,(-;n) = 2.) From this and taking into account (1.19), we compute

D;w(GZ(-;I’l)) = [Z]q—ldgnfl (dz,,x—i—qen — wd2n) ,
D5 (62(m)) = 2y 11

Moreover, by (1.11),

L;f‘wl =1, L*x=q47* (x— a)[k}q) , L;f‘wxz =g (x2 —2w[k]x+ o’ [k]g)

q7a)
for each k =0,1,..., hence we deduce
L;" ' (62(5n)) = ¢ doudyn 15

g Mdoy ((1 +q)en— 0doy (0], +q Vn— 1]q,1))x

+ wqu‘”d2nd2n_1 [n — 1]q[l’l]q71

+qep(en—1 — 0(1+q)dou_1g "[n— 1)) +cdon (2.34)
Ly (Dg.002(5n)) = [2]g-1dan-1 (d2ng® "x+gen — Odog[n— 1] 1) | (2.35)
Ly (D% 02(5im)) = [2],-1don—1day - (2.36)

Relation (2.36) allow us to rewrite (2.32) as

q[n — l]q—l [n — 2] g-! dzn,ldanZfa?u[”fl]
=H L ul Y — gL (6, (im) ) HE ) ul (2.37)
—qg[n— l]q—lL:;na;z (D;weg(-;n))HZ;Ozu[”*” .

On the other hand,

Hy o ol = B (Hy oLy o (00 ~1) = gHG (D0 (00 ) = g ("~
= qL:;:"w*Z (W[nfleZia?u[n*ﬂ +q[n— Z]q,lL;fla)*3 (D;,w ll/[nfl} ))Hgfw.“ﬁu[nfl] :

where in the last equality we used once again the Leibniz formula. As a consequence, since
L;%S (D;,w w[nfl])) = d21172, we obtain

qln—2] - 1dan o Hi gul 1 = Hy Jult — gL 72 (yi | el (2.38)
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Substituting in (2.37) the expression for HZfafu[”*H given by (2.38), and then taking into account

(2.28) and (2.29), as well as the first equation in (2.25), we deduce

-1 11
(1 _1 [[Z] Jy EZ;) H )l = (A(-;n)P,,+B(-;n)P,,,1)u, (2.39)
q! n—

where A(-;n) and B(-;n) are polynomials given by

. kil f I Udon (L v™)
A(x;n) := -
dan—2 [n] 1
*n— * d n— d n *Nn— n—
Ly 2(Dq,w92(';”)) o 2a’z 1_22 (L%w Zw[ 1])} (240

and

gk, ! - el e
B(x;n) := ! {a’zn_qu@ 1(62(.;n)) — (L%w 11,/[ 1]) X

dop—2

Wn—2 [ s on—1don / an—a. I
x (qu;, H(D.002(m) = === (Ll Py ”)) } : (2.41)
Now, taking into account (2.34) and (2.35), as well as the relations

Ly 1//["] (x) =q "dopx+ e, — @[n]gq "doy (2.42)
L;f’ajz vl (x) = ¢*dyy ox 4 en 1 — @0ln—2),¢* "day 2, (2.43)

and also making use of the identities

_ qnildnfl 1 1 qzn73dn71dn72 —1
| S 4 . k= , (2.44)
" dondan— " U dypdyy 1donoday-3 !
it is straightforward to verify that
_ qnildn—l 1 qnildn—l
Alxn) =k 1 (x— , Bxn)=—-k —Y, 2.45
( ) n+1 [n]qd2n72 ( ﬁn) ( ) n+1 [l’l]qdzn,Z 'Yn ( )

where f, and 7, are given by (2.20)—(2.21). Since computations on how to obtain (2.45) from
(2.40)—(2.41) are straightforward without any technical aspect, we refer this to the Appendix A.1.
Alternatively one can use Wolfram Mathematica.

Finally, replacing these expressions for A(-;n) and B(+;n) in the right-hand side of (2.39), and
taking into account (1.1) and the identity

g 'n— g1 dopy _ g d,y
(], dy—s  [n]gdan—2’

(2.26) follows.
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Lemma 2.1.6 in bellow can be easily proved (see [15, Lemma 3.1]).

Lemma 2.1.6 Letu € &7, Suppose that u is regular and fulfills (2.9), with ¢ € P and y € P,. If
at least one of the polynomials ¢ and  is not the zero polynomial, then none of these polynomials

can be the zero polynomial and, moreover, degy = 1.

The statement of the next lemma is given in [15, Lemma 3.5]. However the proof of the
(¢, ®)—admissibility condition given therein is incorrect. Indeed, in [15, Lemma 3.5-(i)], it is stated
that 4,110 #0foralln=0,1,2,..., where 4,40 := C]_la[l’l]q—l +d, and so, since A, 110 =g "d,,
[15, Lemma 3.5—(i)] is equivalent to say that (¢, y) is a (¢, ®)-admissibility pair. The argument used
in the proof of [15, Lemma 3.5—(i)] is based on relations (3.79) given therein, which can be written
(in out notation) as

Ani10
Dq,m(‘l)“):‘l’“@—# ij ; VneNo,
where (f;) j>0 is a sequence of numbers and M; := (u,x’) for each j =0,1,2,.... After stating this in

[15, p.56], the author says that "Since u is regular, to have all its moments given in the unique way
by the previous ones, it is necessary to have 4,19 # 0 foralln =0,1,2,...". Clearly, this sentence
would be correct if "necessary" is replaced by "sufficient". But in that case the argument is not valid
to deduce the (g, )-admissibility condition. For sake of completeness, we present a proof following
the ideas presented in [38].

Lemma 2.1.7 Letu € &7*. Suppose that u is regular and satisfies (2.9), where ¢ € P25, y € P}, and
at least one of the polynomials ¢ and  is not the zero polynomial. Then (¢, ) is a (q, ®)—admissible
pair and uld s regular for each k € N. Moreover, if (P,),>0 is the monic OPS with respect to u, then
(P,E ]) is the monic OPS with respect to uldl,

Proof We start by considering the case k = 1. Set Q,, := Pm Dy wPit1/[n+ 1], and let R4
be the corresponding polynomial defined by (2.16). Let m and n be arbitrary integers, with m < n.
Then, by Lemma 2.1.4,

[m+1]q<u[l],Qan> = < (Q,,u ) m+1> —q " (Rur 10, Pyi1)
=—q ndn<u,Pn+1>6m,n )

hence we obtain

—ﬂ

< 1]> q

Next, let s := deg ¢ € {0,1,2}. Then

(WP2 V8 (mn=0,1,...). (2.46)

0 7é <ll, ¢ (L;a)PrE }) n+s> <¢u7 q, a)( 1]Lq an+s)> 6]< ] PI1[1]Lq.,a)Pn+s> . (247)
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Since Ly o Py ys(x) = ”mfo c,,,mP,L1 } (x) for some coefficients ¢, , = ¢y m(s;¢, @) € C, from (2.46) and
(2.47) we deduce
n+s 1] /1] qfnd c
0# Y com(uP'Py) = TP ) (n=0,1,...). (2.48)
m=0 [I’l + 1]‘]

This implies d,, # 0 (and also ¢, , # 0) foreachn =0, 1,. .., which means that (¢, y) is a (¢, ®) —admissible
pair. Thus, it follows from (2.46) that (P,Eu)po is a monic OPS with respect to ulll. This proves the
last statement in the theorem for k = 1. Nov;, by (2.13), ulll fulfills D, o (q)um) = u/[l]u[l], hence,
since P2 = Dq@Pﬂ] /[n+1], and, by (2.15), y!l(x) = dox + ey, from (2.46) with u, y, and (P,),>0
replaced (respectively) by ul'l, y!!l, and (P,Ll])nzo, we deduce, for every n,m € Ny,

2] !

—n 4l
2 q "dy 1] \2
PR = g, o (B o

where d,[f] is defined as in (2.7) corresponding to the pair (¢, l[/[l]), so that
1 n " n
dih = (W) g" + 19" [n)y = dog" +alnly = dyy2

Therefore, and taking into account once again (2.46), we obtain

(o dpi1dy
<u[2];Pr[12]Pr[nZ]> =q @ H)mma&zﬂ)&m (n,m € No) ,

and so (P,?} )n>0 is @ monic OPS with respect to ul?. Arguing by induction, we prove

k

Ao i

<u[’<1,P,E"]P,E‘]>:(—1)kq*k<2"+k*1>/2(| [ ki 2)<u,P,$+k>5nm (knmeNy),  (2.49)
j=1 [n+ jlq

hence (P,gk] )n>0 is @ monic OPS with respect to ul¥l, for each k € Ny. This completes the proof.

We have shown that if a nonzero linear functional u € &’ satisfies (2.9), where (¢, y) given by
(2.6)—(2.7) is a (g, w)-admissible pair, then the Rodrigues-type formula (2.18) holds, where (P,),>¢ is
a simple set of monic polynomials defined by the three-term recurrence relation (1.1) with coefficients
B and 7, given by (2.20)—(2.21). In the next section, we give necessary and sufficient conditions for
the regularity of such functional u. We also show that under those regularity conditions, the above
mentioned polynomial sequence (P,),>o is the monic OPS with respect to u.
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2.2 Regularity conditions

2.2.1 Main theorem

Theorem 2.2.1 Let g, ® € C fulfilling (1.5). Let u € &'\ {0}. Suppose that the functional equation
(2.9) holds; with ¢ € &), w € P}, and at least one of ¢ and Y is not the zero polynomial.

Then, u is regular if and only if
dy #0, ¢(—;—”)7A0, Vi e N, (2.50)
2n

where ¢, d,, and e, are given by relations (2.6)—(2.7). Under these conditions, the monic OPS
(P)n>0 = (Pu(+3q, @))n>0 with respect to u satisfies the three-term recurrence relation (1.1) with
coefficients B, and v, given by (2.20)—(2.21).

In addition, the Rodrigues-type formula

Pu=kDl, o, ((I)(gn)LZ’wu) (n=0,1,...) (2.51)

holds in &%, where k,, and ®(-;n) are defined in (2.19) and (2.12), respectively.

Proof Suppose that u is regular. Let n € Ny. Since u satisfies (2.9), Lemma 2.1.7 ensures that
(¢,w) is a (g, w)—admissible pair, and so d, # 0. Moreover, u” is regular and (P][‘n])jzo is the
corresponding monic OPS, which fulfills a three-term recurrence relation:

P = (= BIHPI o) 4P () (j=0,1,...), (2.52)

where PL"} (x) =0, being B ][-"] € Cand }/[.n] € C\ {0} for each j. Let us compute yl[n]. We first show

J
that (for n = 0) the coefficient y; = 1[0], appearing in the three-term recurrence relation for (P;) >0, is

given by

- _dq1+a 0 (—2) . (2.53)

This may be proved taking n = 0 and n = 1 in the relation (D, o (¢u),x") = (yu,x"). Indeed, setting
U, = (u,x"), for n = 0 we obtain 0 = du; + eup, and for n = 1 we find —q~ ' (auy + buy + cup) =
duy + eu;. Therefore,

1
u1:—§uo7 uzz—m [—(qe—i—b)s—i-c} up - (2.54)

On the other hand, since P (x) = x— o = x — u; /up, we also have

P? —up ?
v (WP _ tato —uj _ 12 _ (“1> . (2.55)
) Uy uo uo

Substituting u; and uy given by (2.54) into (2.55) yields (2.53). Now, since equation (2.13) is of
the same type as (2.9), with the same polynomial ¢ and being y replaced by 1//[”], we see that y{n]
may be obtained replacing in (2.53) the coefficients d and e of y(x) = dx+ e by the corresponding
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coefficients of y!”! (x) = daux+ e,. Hence,

] 1 €n 1 én
—_ SRLUN o) 2.
n dan+a¢ < d2n> Aot ¢ < d2n> (2:56)

Since ul”l is regular, then y{"] # 0, hence ¢ (—j—;ﬂ) = 0. Thus, (2.50) holds.
Conversely, suppose that (2.50) holds. Then, by Favard’s theorem, the sequence (B,),>o defined

by the three-term recurrence relation (1.1) with coefficients given in (2.20) — (2.21) is a monic OPS.
We claim that (B,),>0 is an OPS with respect to u. To prove this sentence we only need to show that
(see e.g. [13, Chapter I, Exercise 4.14] or [56, Corollary 6.2])

w,1)#0, (WP)=0 (n=12,..). (2.57)

Suppose that (u, 1) = 0. Since the functional equation (2.9) is equivalent to the second order difference
equation (1.25) fulfilled by the moments y, := (u,Y,) (with d, and e, defined as in relations (2.6)—
(2.7)), and noting that for n = 0, (1.25) yields dy; + eyo = 0, we get y; = 0 (because yo = (u,1) =0
and d = dy # 0); hence ygp = y; = 0 and so it follows recurrently from (1.25) that y, = 0 for each
n € Ny. Therefore u = 0, in contradiction with the hypothesis. Thus, (u, 1) # 0. On the other hand,
by Lemma 2.1.5, for each n > 1 we may write

(w,P,) = (Pu,1) = —qkn<1)7/*q{_w /qu["}’Dq7w1> =0.

Thus (2.57) is proved, hence u is regular and (B,),>o is the corresponding monic OPS. Finally,
the Rodrigues-type formula (2.51) follows from Lemma 2.1.5 and (2.11), concluding the proof of
Theorem 2.2.1.

2.2.2 Final remarks

1. Under the assumption that u is regular, the Rodrigues-type formula (2.51) appears in Médem
et al. [52] for ® =0 and ¢ # 1, and in Salto [59] for ¢ = 1 and @ # 0. However, we proved a
more general result (cf. Lemma 2.1.5), showing that (2.51) holds without assuming the regularity of
u, provided that (P,),>0 is a simple set of polynomials defined by (1.1) with coefficients given by
(2.20)—(2.21), which we see is well defined requiring only (the admissibility condition) d,, # 0 for
eachn=0,1,.... It is worth mentioning that this (non trivial) fact is known for the continuous case
[38, Lemma 2], but for the (¢, ®)—case we did not found a reference in the available literature.

2. As expected, taking @ = 0 and letting ¢ — 1 in Theorem 2.2.1 yields Theorem 2.1.1.

3. We highlight that Hécker [22, Theorem 1.4 (p. 26)] gave regularity conditions different from
(2.50), considering a definition of Dy, in the sense discussed in the previous chapter. Hécker’s
approach is different from ours, since his results are derived from the analysis of a discrete Sturm-
Liouville problem, while our proof of Theorem 2.2.1 uses appropriate modifications of some ideas
appearing in [38], based in the McS thesis [57] and obtained independently of Hicker’s results.
Indeed, as we said at the beginning of this thesis, our approach is supported on the algebraic theory of
orthogonal polynomials developed by Maroni [46].
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4. As we mentioned before, there are some advantages in defining D,  as in (1.6). For instance,
in the regularity condition (2.50) as well as in the expression for ¥, given by (2.21), the polynomial
appearing therein is precisely ¢. The same does not hold in the formulas given in Hécker thesis (cf.
[22, Section 2.4]).

5. Since —e,/ds, is the unique zero of v (x) = dapx + ey, the regularity conditions (2.50)
for u given in Theorem 2.2.1 may be restated as follows: u is regular if and only if (¢,y) is a
(g, @)—admissibe pair and w" { ¢ for each n =0, 1,.... Thus, comparing with [22, Theorem 1.4],
we see once again that it is advantageous to define D, ¢ as in (1.6).

6. It may seems somehow intricate the way how formulas (2.20) and (2.21) appear on the course
of the proof of Theorem 2.2.1. In fact, they were given in the proof of the sufficiency of the condition,
hence without assuming a priori the regularity of u (as a matter of fact, they were used to prove
the regularity of u). Assuming the regularity of u, there is a more transparent way to obtain those
formulas. Indeed, going back to the end of the proof of the necessity of the condition on Theorem
2.2.1, we may deduce (2.20) and (2.21) as follows. First, from (2.49), we may write

n n)\ 2
y[_n]: <“”7(PJU) ) q
Tl (Pl

forevery j=1,2,...andn=0,1,.... Taking j = 1 and using (2.56), we obtain

q"n+14di1 q"[n+1]ydy— en
Yopr = T byl FRT gl (O )
dry—1 don—1d2n11 doy,

] j+2n-2 )
] JjH+n—2 s

[] j+2n—2 <u7Pj+n> q [
+nlydjin—2 (u, Pj+n 1> [j+

This proves (2.21). To prove (2.20), set P,Ek] (x) =x"+ t,[lk]x"’l + (lower degree terms), for each
k=0,1,.... It is well known (see e.g. [13, Theorem 4.2-(d)]) that

= Zﬁ[" (k=0,1,...:n=1,2,...).

Using (1.19), and recalling that P,&O} = P,, we deduce
Dy owPii1(x) = Dq,w(x’”rl )+ t,[ﬂ 1 Dy.0(x") + (lower degree terms)

=[n+1]x"+ { (n+1)[n)g —nln+1],) o —|—t,[g]r] [n]q}x”’1 + (lower degree terms) ,

hence, since P}’ ]( ) :=Dg.oPyy1(x)/[n+1],4, we obtain

P CCEC T P RS

Rewrite this equality as
Doy i 4 na

PES) =T, (n=1,2,...).
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Applying successively this relation, yields

[0]

[n]
ti T+ e " +1-w ]
= =- +w (n=1,2,...),
CESI i, 0 ( )
hence
i = (n+ 1)y~ 4+ D)oo — [n+ 1" (n=0,1,...).

(Note that this equality is trivial if n = 0.) Therefore,

Bo=B =0 =1 = ([l — [n+ g+ Dy + [l = [+ 118" .
This proves (2.20), since By = u; /up = —e/d, hence B(gn] = —e,/day,, and taking into account that
([n]g = [n+1]g+ 1o = [n]40.
Now, suppose that u € &7 is regular and satisfies the functional equation (2.9). Then the Rodrigues-
type formula (2.51) is a simple consequence of the relation between the dual basis (a,),>o and
(a,[f])po associated to the monic OPS (P,),>0 and (P,Lk])nzo (k=0,1,...), respectively. To see why
this holds, we may write (in the sense of the weak dual topology in 2?'):

oo

D’f/qﬁw/q(agc]) =Y (D’lc/q,iw/q(a'[lk}),P»aj (n=0,1,...).

. K o e
Since <D'1‘/q77w/q(a,[1]),Pj> =0if j <kand,if j >k,

5 k [q! Kk
(D g (an). Py} = (—q) () DE ,Py) = <—q>’<[j_—‘;€]q,<akhpﬂk> ,
we deduce
n+kl,!
D} —wsq(ar) = ()" Wan+k (nk=0,1,...). (2.58)
!

Taking n = 0 and then replacing k by n, we obtain
Vaora(30) = ()" It (n=0,1,..).
Therefore, since a([f] = (ul, 1)l and a, = (u, P2)~'P,u (see [46, 48]), we deduce

[n]
b o) = (Bt B =01,

Finally, taking into account (2.11) and (2.49), (2.51) follows.



Chapter 3

Another extension of coherent pairs of
measures

3.1 Introduction

In the framework of the theory of orthogonal polynomials, the concept of coherent pair of measures
as well as its multiple generalizations have been a subject of increasing research interest along
the last decades. This concept was introduced by Iserles et al. [25] motivated by the theory of
polynomial approximation with respect to certain Sobolev inner products. In [27, 29], the notion
of (M,N)—coherent pair of order (m,k) were introduced as extensions of most of the concepts of
coherence up to that time. More precisely, given two monic OPS, (P,),>0 and (Qp),>0, We say
that ((Py)n>0,(Qn)n>0) is an (M,N)—coherent pair of order (m,k) if there exist two non-negative
integer numbers M and N, and sequences of complex numbers (a,,j)n>0 (j =0,1,...,M) and (b, j)»>0
(j=0,1,2,...,N) such that, under natural assumptions on the coefficients a, ; and b, ;, the structure

relation

< [m] al (k]
Zanrjpnfj(x): mean,j(x) (n:O,l,)
Jj=0 j=0

holds. We use the notation
1 dm

L -
P (x) T (”l+1)m dxm Pn-i—m(x)

(QLk] is defined in the same way), where for any positive real number a, (), denotes the Pochhammer
symbol defined by

(a)o:=1, ()p:=0(oe+1)---(ax+n—1) if neN.

Note that P,Em] is a normalization of the derivative of order m of P,.,, defined so that it becomes a
monic polynomial of degree n. Let u and v be the moment regular functionals with respect to which
(Py)n>0 and (Qy)n>0 are orthogonal. It follows from the results in [27-29, 58] that if m = k then u
and v are connected by a rational transformation (in the distributional sense), i.e., there exist nonzero
polynomials @ and ¥ such that ®u = Wv. Otherwise if m # k then u and v are still connected by a
rational transformation and, in addition, they are semiclassical functionals, i.e., there exist nonzero

33
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polynomials &, ¥, ®,, and ¥, such that
D(q)ﬂl) = ‘P]ll s D(CDQV) = ‘PzV .

In this chapter we modify the left-hand side of the above structure relation, and consider the

following one:
n+N

WA =Y col®) (=012, 3.1)

j=n—M

where M and N are fixed non-negative integer numbers, 7y iS a monic polynomial of degree N (hence
cnnen = 1 for each n), and we consider the convention Q; = 0 if j < 0. Further, we will assume that
the following condition holds:

Can-m#0 if n>M. (3.2)

Maroni and Sfaxi [45] considered the case (m,k) = (0,1) and called the pair ((P,)n>0,(Qn)n>0)
fulfilling the structure relation (3.1) whenever (m,k) = (0, 1) a my—coherent pair with index M. This
motivates the following.

Definition 3.1 Let M and N be non-negative integer numbers and let Ty be a monic polynomial of
degree N. If (P,)n>0 and (Qn)n>0 are two monic OPS such that their normalized derivatives of orders
m and k (respectively) satisfy (3.1)—(3.2), we call ((Py)n>0,(Qn)n>0), as well as the corresponding
pair (w,v) of regular functionals, a my—coherent pair with index M and order (m,k).

Besides [45], many other instances of the structure relation (3.1) were considered previously by
several authors. For instance, the case N =0 (i.e., my = 1 and M, m, and k being arbitrary) fits into
the theory of (M,0)—coherent pairs of order (m, k), described at the begin of this introduction. Also,
whenever (m,k) = (1,0) and (B,),>0 = (Qn)n>0, (3.1) becomes a characterization of semiclassical
OPS due to Maroni [44, 46]. Note that for N < 2 and M = 0, this reduces to the well known Al-
Salam-Chihara characterization of the classical OPS [3]. The case k = 0 (M, N and m being arbitrary)
was considered by Bonan et al. [8] in the framework of orthogonality in the positive-definite sense,
i.e., whenever the orthogonality of each of the involved OPS is considered with respect to positive
Borel measures. In the special case m = 1, a complementary approach to the case considered in [8]
was presented in [39], in the framework of the so-called regular (or formal) orthogonality. A relevant
reference concerning finite-type relations between OPS is Maroni’s article [40].

It is a remarkable fact that in all the previous works the involved OPS and their corresponding
regular moment linear functionals are semiclassical. Thus, a major question is to analyze whether
the OPS involved in a 7y —coherent pair with index M and order (m,k) are semiclassical, and in such
case to determine the relations between the corresponding regular moment linear functionals. This
will be treated in the next section. In Section 3.3 we analyze the case of a discrete variable obtained
from (3.1) by replacing the derivative operator by the discrete Hahn operator defined by (1.4). The
last section is devoted to applications where we present alternative approaches to some results due to
Griffin (see [21]), Datta and Griffin (see [14]) which fit into this notion of coherence pair of measures.
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3.2 my—coherent pairs with index M and order (m,k): the continuous
case

In this section we establish the semiclassical character of the OPS and their associated regular
functionals involved in a my—coherent pair with index M and order (m, k). As in the previous chapter,
our approach is based upon the algebraic theory of orthogonal polynomials developed by Maroni
[43, 46].

Lemma 3.2.1 Let ((P,)n>0,(On)n>0) be a Ty—coherent pair with index M and order (m.k), so that
(3.1)—(3.2) hold. Set

n+M (_l)m(]+1>m Cin

i Y v A @3
Jj=n— > mAj
—D*n+ 1S (k+N\ [ N—Z i
olind) :_w; (L)W wdw, e
' n+k =0

foralln=0,1,..,and j=0,1,2,... N, so that
degy(sn)=m+n+M, degd(in,j)=k+n+j.

Let u and v be the regular functionals with respect to which (Py)n>0 and (Qy)n>0 are orthogonal.
Then the following functional equations hold:

N
y(-in)u=D" kN <Z¢(~;n,j)Djv> if m>k+N, (3.5)
j=0
N .
DN (y(snpu) = Y ¢ (in, j)DIv if m<k+N, (3.6)
Jj=0
foralln=0,1,....

Proof Let (a,),>0, (bn)n>0, (aLm] )n>0, and (bLk])nZO be the dual basis corresponding to the simple

sets of polynomials (B,)n>0, (Qn)n>0, (P,Em})nzo and (Q,[qk])nzo, respectively. Then
oo k
avbl = Y (mbli YAl (n=0.1,2,...)
Jj=0
(in the sense of the weak dual topology in #?’). From (3.1), we have

J+N
(mvbi P") = (bl mP™) = ) csbn0F)

cjn if n—N<j<n+M

0 otherwise .
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Hence y
n+
anLk] = Z Cj,nag-m] (n=0, 1,2,...) . (3.7)
j=n—N

Considering the m-th derivative on both sides of this equation and taking into account that D" (ag"]) =

(=1)"(j+ 1)majrm, we obtain
D" (mby) = w(smu  (n=0,1,2,...), (3.8)
where y(-;n) is defined by (3.3). Notice that the condition (3.2) ensures that deg y/(-,n) =M +m+n

for each n =0,1,2,.... Using the Leibniz rule for the derivative of the left product of a functional by

a polynomial, and taking into account that nl(\,j )= 0if j> N, as well as

DA (b)) = (= 1) (n+ Dbyt = (=1 (n+ 1D (v. 020 ™ Quray,

we deduce
N
DFY (bl = (=Dt 1 Y k+N>7rN DY (Quiav)
< 7Qn+k Jj=0 J
(—Df(n+ 1) & J<k+N)< ) “ty
_ 0L
< 7Qn+k J';OZZO J h
(=D + 1) )n+1kNNk+N () =) pN—ty
_ by y (UM (V) avalin
<V n+k J=0{=j ‘]
(DR 1) Z<k+N>< '> o= pN~ty
< 7Qn+k fgoz J ”+k

7N

\4

KENY( N=J 1) v
)<N—v—j>nN]Qn+k DEAS

SIE
=0 <’Qn+k> J

Hence, by (3.4), we obtain

0

DN (b)) = i 0(3n, /)DIv . (3.9)
If m > k+ N, we rewrite (3.8) as
w(mu=D"* NV (b)) (n=0,1,2...), (3.10)
and (3.5) follows from (3.9) and (3.10). If m < k+ N, writing
DM (mybll) = DN D (b)) (n=0,1,2..),

we see that (3.6) follows from (3.8) and (3.9). This ends the proof.

Our problem will be separated into three cases depending on m, k and N.



3.2 my—coherent pairs with index M and order (m,k): the continuous case 37

321 Casem>k-+N

Theorem 3.2.2 Let ((P,)n>0,(On)n>0) be a Ty—coherent pair with index M and order (m,k), so
that (3.1)—(3.2) holds. Let u and v be the regular functionals with respect to which (P,),>0 and
(OQn)n>0 are orthogonal. Suppose m > k+ N. Assume further that m > k whenever N = 0. For each
i=0,...m—kandn=0,1,2,..., let

oxni)= Y (m _E_N> (¢ (xim, )" N0 3.11)

jl=i
0<j<N
0<t<M

0 (-;n, j) being the polynomial introduced in (3.4). Let <7 (x) be the polynomial matrix of order
m—k+ 1 defined by
~1m—k
,!Z{(X) = [(p(X;n’])]n,j:() ’

Let < (x) (resp., </5(x)) be the matrix obtained by replacing the first (resp., the second) column of
d(x) by [W(X;O)a W(X; 1)7 T W(X;m - k)]t’ and set

A(x):=dete/(x), Aj(x):=detes(x), Ax(x):=detash(x).
Assume that the polynomial A(x) does not vanishes identically. Then
Av=Au, ADv=Au, 3.12)

hence u and v are semiclassical functionals related by a rational transformation. Moreover, u and v

Sulfill the following equations:

D(AAu) = ((AA) +AAy)u, D(AAv) = (24'A| +AAy)v . (3.13)

Proof By (3.5) and the Leibniz rule, we have
N m—k—N
m—k—N A (m—k—N—0)
yimu=3% Y < ¢ >(¢(‘;”7J>)('" DIty
j=0 =0
This may be rewritten as

m—k

y(nu=Y o(ini)D'v (n=0,1,2--), (3.14)
i=0

where ¢(-;n,i) is the polynomial introduced in (3.11). Taking n =0,1,2...,m —k in (3.14) we obtain
a system with m — k+ 1 equations that can be written as
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Solving for v and Dv we obtain (3.12). Finally, (3.13) follows from (3.12).

Remark 3.2.1 Ifm =k and N =0, then u and v are still related by a rational transformation, but we

cannot ensure that they are semiclassical (see [27, 28]).

Now, we consider the second case.

322 Casem<k+N

Theorem 3.2.3 Let ((P,)n>0,(Qn)n>0) be a Ty—coherent pair with index M and order (m, k), so that
(3.1)—(3.2) holds. Let w and v be the regular functionals with respect to which (P,)n>0 and (Qpn)n>0
are orthogonal. Assume further that m < k+ N. For each j=0,....k—m+Nandn=0,1,..., set

E(xn, j) = (k_”;+N> (y(xm)) &V (3.15)

y(-:n) being the polynomial introduced in (3.3). Let B(x) := [b; ](x)]f;fg * be the polynomial
matrix of order k —m+ 2N + 1 defined by

" o(i,j) if 0<j<N,
b,;~x =
! “E(xi, j—N) if N+1<j<k—m+2N,

0 (31, j) being the polynomial given by (3.4). Let B (x) (resp., $2(x) and Bni2(x)) be the ma-
trix obtained by replacing the first (resp., the second and the (N + 2)-th) column of %B(x) by
[é(X;0,0),g(X;l,O),--. 7§(X;m_k+2N70>]t’ and set

B(x) :=det#(x), Bj(x):=detAB(x), je{l,2,N+2}.
Assume that the polynomial B(x) does not vanishes identically. Then
Bv=Bju, BDv=Bu, BDu=Byu, (3.16)

hence u and v are semiclassical functionals related by a rational transformation. Moreover, u and v
Sfulfill the following equations:

D(Bu) = (B'+By2)u, D(BB\v) = ((BB1)' +BB,)v. (3.17)

Proof By the Leibniz rule, we can rewrite (3.5) as

k—m+N ) N .
Y EGinj)Dlu=Y ¢(:in j)D'V (n=0,1,...).
j=0 j=0
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Takingn =0,1,2...,k—m+ 2N, we obtain the following system of k —m + 2N + 1 equations:

&(x;0,0)u v
E(x;1,0)u Dv
E(x;k—m+N,0)u = AB(x) DNv
E(x;k—m+N+1,0)u Du
5(x;k—m+2N,O)u Dk—m+Ny

The theorem follows by solving this system for v, Dv, and Du.

3.2.3 Casek=0

In this case, we may state a finer result.

Theorem 3.2.4 Let ((P,)n>0,(Qn)n>0) be a Ty—coherent pair with index M and order (m,0), so that

the structure relation

n+N

P ) = Y 60i(x) (n=0,1,2,...)
j=n—M

holds, where M and N are fixed non-negative integer numbers, Ty is a monic polynomial of degree
N, and cpp—m # 0 if n > M. Assume further that m > 1 if N = 0. Let u and v be the regular
functionals with respect to which (B,)n>0 and (Qn)n>0 are (respectively) orthogonal. Then w and v

are semiclassical functionals related by a rational transformation. More precisely, setting

. i—1 14
(v, Q) () - 5 (1) Q) W)
.y (m
J! ( j)
y(-; j) being the polynomial introduced in (3.3), then deg®(-;0) =M +m, deg®(-;j) <M +m+
foreach j=1,...,m, and the following holds:

D(x; ) == (j=0,1,2,...,m), (3.18)

D(®(;1)u) =P(-;0)u (3.19)
v =®(-;m)u (3.20)
D(®(sm)myv) = (P(m) +P(sm—1))Ayv . (3.21)

Moreover, s(w) <M+m—1and s(v) <N+M+2(m—1).

Proof Since k = 0 then b,[qk] = b,[?] =b, = (v,0>)"'Q,v for each n = 0,1,2,..., hence relation

(3.8) may be rewritten as

D" (Quanv) = (v, O y(sn)u (n=0,1,2,...), (3.22)
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where y(-;n) is defined by (3.3). Taking n = 0, we obtain
D" (myv) = ®(-;0)u. (3.23)
Taking n =1 in (3.22) and then applying the Leibniz rule, we deduce

(v.ODy( 1) u=D"(Qiayv) = mD™ ! (myv) + Q1 D" (nv) .

Hence, by (3.23), we have
D" N (myv) =®(;1)u. (3.24)

Thus (3.19) follows from (3.23) and (3.24). This proves that u is semiclassical of class s(u) <
M +m —1. We conclude pursuing with the described procedure, so that by taking successively
n=0,1,...,min (3.22), we conclude that the following relations hold:

D" () =@(5j)u (j=0,1,2,...,m). (3.25)

In particular, for j = m we obtain (3.20), hence u and v are related by a rational transformation. Next,
setting j = m — 1 in (3.25) we obtain

D(myv) =@(;m—1u. (3.26)

Since D(®(;m)myv) = ®(-;m) myv + P(-;m)D(7myv), we obtain (3.21) using (3.26) and (3.20).
Thus v is semiclassical of class s(v) < N+ M + 2m — 2, and the theorem is proved.

In the case m = 1, Theorem 3.2.4 was partially proved in [39]. Note that the functional equation
(3.21) (for m = 1) was not given therein. The results stated in [28] for the continuous (M, N )—coherent
pairs of order (m, k) were extended in [27] to the setting of discrete OPS. In a similar way, the results
proved in this section may be extended to the discrete OPS, replacing the derivative operator D by the
Hahn operator D, ¢, defined in (1.4). This is the objective of the next section.

3.3 nmy—coherent pairs with index M and order (m,k): the discrete case

In this section, we consider (3.1) redefining the derivatives as “discrete” derivatives,

sl o= Mt (3.27)
T npm]) Ceemmm ‘

where D, , is the Hahn operator defined in (1.4)—(1.5). This leads to the concept of discrete my-
(¢, w)-coherent pair with index M and order (m,k), defined as in Definition 3.1 with the obvious
modification; that is, replacing in (3.1) the standard derivatives by the discrete ones (3.27). Taking
into account the Leibniz formula (1.18), proves of our results in this section are similar to the ones on
the previous section for the continuous case and because of this, we present only the results with few
details in their proofs.
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Lemma 3.3.1 Let ((Py)n>0,(Qn)n>0) be a iy-(q, )-coherent pair with index M and order (m,k),
so that (3.1) and (3.2) hold. Set

W (=q)" ] +m]y!

y(x;n) = RN [j]q!<u7Pn21+j> CjnPnyj(x), (3.28)

W (MmN |k N—/¢
n,j) = , 3.29
P e B ¢, vt o

k+N—{ 14 j —j—t
x L17q7—w/4 (Dl/%*w/qn’v> (x) L{/qﬁw/q (D’;/cszw/qQ"*k) ),
foralln=0,1,2,...and j=0,1,...,N, so that
degy(sn) =m+n+M, degd(;n,j)=k+n+j.

Let w and v be the regular functionals with respect to which (Py)n>0 and (Qy)n>0 are orthogonal.
Then the following functional equations hold:

N .
y(mu =Dy kN ( Z‘a¢(-;n, L /qv) it m>k+N, (3.30)
J:
k+N - i
DY, s, (W(in)u) :;)qb(gn,])D{/qﬁw/qv if m<k+N, (3.31)

foralln=0,1,2,....

Proof Let (a,,),>0, (by)n>0, (a,Lm] )n>0, and (bLk])nzo be the dual basis corresponding to the simple

sets of polynomials (P,),>0, (On)n>0, (P,Em})nzo and (QLk])nzo, respectively. Then

X n+M
mbl = Y cieal, n=0,1,2,.... (3.32)
j=n—N
From (2.58) we get
rln/qﬁw/q(”NbLk]) =y(sn)u, n=0,1,2,.... (3.33)

By Leibniz’s formula (1.18), and since D{ / 4N = 0 for j > N, we deduce

qvfw/

) A (an,[lk])

l/qv_w/q
. (—q)"n+Kg! & |k+N k+N—j I N—j
S 5| g | e (Pl ™) Pl e (@ria)

N—j

Applying once again Leibniz’s formula (1.18) to D Ja—0/q

(Qnixv), after some straightforward
calculations, we find

N
k . i
D s (wbil) = Y 0 (im )D] V- (3.34)
j=0
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For m > k+ N, rewriting (3.33) as

Ay — Ty—k—N kN [K] —
y(inju=D7 0 DYV L (mvba'), n=0,1,...,

and using (3.34), (3.30) follows. For m < k+ N, writing

(mybil) =Dk D (awbl)) . n=0,1,..,

and using (3.33) and (3.34), we obtain (3.31) and the proof is complete.

331 Casem>k+N

Theorem 3.3.2 (Case m > k+N) Let ((Py)n=0,(Qn)n>0) be a iy-(q, ®)-coherent pair with index M
and order (m,k), so that (3.1) and (3.2) hold. Let u and v be the regular functionals with respect to
which (P,)n>0 and (Qn)n>0 are orthogonal. Suppose m > k+ N. Assume further that m > k whenever
N=0. Foreachi=0,... m—kandn=0,1,..., let

. m—k—N ; —k—N—i
o(x;n,i) = .;. ; ] L o o)g (Dl e a9 (5n.0) (x) (3.35)
0<j<n v
0<i<M

0 (-;n, j) being the polynomial introduced in (3.29). Let <7 (x) be the polynomial matrix of order
m—k+ 1 defined by
~Nm—k
o (x) = [plxn, )], 2, -

Let o7, (x) (resp., 25 (x)) be the matrix obtained by replacing the first (resp., the second) column of
o (x) by [w(x;0), w(x;1),...,y(x;m—k)]', and set

A(x):=detd/ (x), Aj(x):=detes(x), Az(x):=detaosh(x).
Assume that the polynomial A(x) does not vanishes identically. Then
Av=Au > ADl/q,fa)/qV =Asu y (3.36)

hence w and v are Dy o-semiclassical functionals related by a rational transformation. Moreover, u

and v fulfill the following equations:

Dy /g —w/q(A1Lg0(A)) = (qAI1Dy6(A) +A1D) /g —w/g(A) +A2L1 /g _w/q(A))u, (3.37)

D)y —w/q(Lyo(AA1)V) = (qDyu(AA)) +AAs)V . (3.38)

Proof Combining (3.30) and the Leibniz formula (1.18), we get

. B N mk=N |, _N Lj Dm_k_N_j nf Dj+€
y(sn)u= Z y ; l/q,—co/q( 1/g,~0/q 9o(Cam, )) 1g.~o/q"
4 q*l
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This may be rewritten as

m—k

y(snu=Y (p(-;n,E)Df/qﬁw/qv, n=0,1,..., (3.39)
(=0

where ¢(-;n,i) is the polynomial introduced in (3.35). Taking n =0, 1,...,m —k in (3.39) we obtain
a system with m — k+ 1 equations that can be written as

y(x;0)u \4
x;1)u Di/y_w/iv
v( . ) — 7 (x) 1/4,' 0/q
y(x;m—k)u D’l”/;fiw/qv

Solving for v and Dy, ¢/,v we obtain (3.36). Finally, one can remark that Dy, ¢ /4Lq.0 = qDg,0-
Hence (3.37) and (3.38) follow from (3.36).

Remark 3.3.1 Remark (3.2.1) is also valid in the present context. That is, if m = k and N = 0, then u

and v are connected by a rational transformation but they are not necessary D, o-semiclassical.

332 Casem<k-+N

Theorem 3.3.3 (Case m < k+ N) Let ((Pn)nEOa (Qn)nzo) be a nin-(q, ®)-coherent pair with index
M and order (m,k), so that (3.1) and (3.2) hold. Let w and v be the regular functionals with
respect to which (B,)n>0 and (Q,)n>0 are orthogonal. Assume further that m < k+ N. For each
j=0,....k—m+Nandn=0,1,..., set

LY jgr-0)g (P fg—ad W) (i) (3.40)

E(xn, j) = 1/g—-0/q ¥

k+N—m]
i,

k—m+2N

/=0 be the polynomial

y(-:n) being the polynomial introduced in (3.28). Let #(x) := [b; j(x)]
matrix of order k —m~+ 2N + 1 defined by

© o(x;i,j) if 0<j<N,
b j(x) =
v “E(wi,j—N) if N+1<j<k—m+2N,

0 (i, j) being the polynomial given by (3.29). Let B(x) (resp., %2(x) and PBni2(x)) be the
matrix obtained by replacing the first (resp., the second and the (N + 2)-th) column of %(x) by
[£(x:0,0),&(x;1,0),...,E(x;m —k+2N,0)), and set

B(x) :=det#(x), Bj(x):=det#B(x), je{l,2,N+2}.
Assume that the polynomial B(x) does not vanishes identically. Then

Bv = Bju > BDl/q,fa)/qV = Bou y BDl/%,w/qu = BN+211 y (3.41)



44 Another extension of coherent pairs of measures

hence w and v are D, o-semiclassical functionals related by a rational transformation. Moreover, u
and v fulfill the following equations:

D)y —w/q(Lgo(BB1)V) = (¢Dg,0(BB1) + BB;)v (3.42)
D1/ —w/q(LgoBu) = (qDgoB+Byi2)u . (3.43)

Proof Using the Leibniz formula (1.18) we can rewrite (3.30) as

k—m+N . N .
. N Y — . N/ —
0 S I)D] 1y = §¢("n’])D1/qy—w/qV7 n=01....
= j:

J

Taking n =0,1,...,k—m+ 2N, we obtain the following system of k —m+ 2N + 1 equations:

&(x;0,0)u v
E(x;1,0)u Dijg-a/qV
E(x;k—m—+N,0)u = #(x) Dllv/q,fa)/qv
E(xsk—m+N+1,0)u Di/y—w/qt
k— 2N70 k—m+N
SOk —m+ Ju Dl/qﬁw/qu

The theorem follows by solving this system for v, Dy, g /,V, and Dy /4 ¢/ 0.

3.3.3 Casek=0

Theorem 3.3.4 (Case k = 0) Let ((Pn)nzO, (Qn)nzo) be a my- (q, ®)-coherent pair with index M and
order (m,0), so that the structure relation

n+N

@R ) = Y c0i(x), (n=0,1,..),

j=n—M

holds, where M and N are fixed non-negative integer numbers, Ty is a monic polynomial of degree N,
and cppn—ym 7# 0 if n > M. Assume further that m > 1 if N = 0. Let w and v be the regular functionals
with respect to which (B,),>0 and (Qu)n>0 are orthogonal. Then w and v are D o-semiclassical

functionals related by a rational transformation. More precisely, setting

-1
(v, Q?W’(%J) - Z [7711] an/;f_w/q (Dll/qfa)/qu) (X)@(x;1)
g-!

[=0
! m

D(x; j) == (3.44)
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Jj=0,1,..., y(-; ) being the polynomial introduced in (3.28), then deg®(-;0) = M +m, deg®(-; j) <
M+ m+ j foreach j=1,...,m, and the following holds:

D))y —w/q(P(51)u) = D(;0)u, (3.45)
vV =P (smu, (3.46)
D1 /g -w/q(Lao®(:m))ayv) = (gD o®(-;m) + @(sm—1)) iy v . (3.47)

Moreover, s(u) <M+m—1and s(v) <N+M+2(m—1).

Proof Relation (3.33) in this case may be rewritten as

DY), /g (Qnmny) = (v, W(sn)u, n=0,1,..., (3.48)

where y(+;n) is defined by (3.28). Taking n = 0, we obtain

g —w/q (V) = @(:0)u.. (3.49)

Taking n =1 in (3.48) and then applying Leibniz’s formula (1.18), we deduce

(v,oDy(:u= Drln/q-,—w/q(anNV)
- [m]qle’I”/’qu/q (ENV) +Llln/q,—w/quDrln/q,—w/q(m\’v) :

Hence, by (3.49), we have

DY, (vy) = @(5 u. (3.50)

Thus (3.45) follows from (3.49) and (3.50). This proves that u is D, ,-semiclassical of class s(u) <
M +m —1. We conclude pursuing with the described procedure, so that by taking successively
n=0,1,...,min (3.48), the following relation holds:

DT/;{fw/q(an) :q)(';j)ll, jZO,l,...,m. (351)

In particular, for j = m we obtain (3.46), hence u and v are related by a rational transformation.
Setting j =m —1in (3.51), we obtain

D/ —w/q(mnv) =P(sm—1u. (3.52)

Since D/ —a/q (Lg.o(P(-:m))TnV) = qDg .o (P(:m)) Inv+DP(-:m)Dy /. _ o4 (Tn V), we obtain (3.47)
using (3.52) and (3.46). Thus v is D, ,-semiclassical of class §(v) < N+M +2m — 2, and the theorem
is proved.

Remark 3.3.2 Actually, as we just did for discrete OPS, similar results can be obtained for discrete
OPS on a nonuniform lattice involving the operators Dy and Sy defined in (1.42)—(1.43).
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3.4 Applications

3.4.1 Continuous variable

Let (P,)n>0 be a monic OPS with respect to a positive Borel measure. Suppose that (P,),>o satisfies
the differential-difference equation

T(x)Ph(x) = bpPy(x) + (cox+dy)Bio1(x) (n=0,1,2,...), (3.53)

where 7(x) is a monic polynomial of degree 1 and (b,,)n>0, (¢n)n>0, and (dy,)n>0 are sequences of real
numbers, with ¢, # 0 for eachn =1,2,3,.... We assume

m(x) =x.

OPS characterized by equation (3.53) have been studied recently in [21]. Here we give an alternative
approach based on the general results presented in the previous sections. (P,),>o is characterized by a
three-term recurrence relation (1.1) where (B,),>0 and (7;),>1 are sequences of real numbers such
that 7, > 0 for each n > 1. We set % := 0. Using (1.1), we rewrite (3.53) as

)CP}LI](X) :Pn+1(x)+rnPn(x)+snPn71(x) (nzovlaza"') ’ (3.54)
where By+d
Cn+1Pn + dn+1 Cnt17n
" nr1 0 T ey (=002

Notice that s,, = 0 for each n = 1,2,3,.... Comparing (3.54) with (3.1), we have
N=M=m=1, k=0, chpr1=1, con="n, Con-1=5n. (3.55)

Thus ((P,)n>0, (Py)n>0) is a 7 —coherent pair with index 1 and order (1,0), where 7 (x) = x. By
Theorem 3.2.4, the functional u with respect to which (P,),>o is orthogonal satisfies the relations

D(®(;1)u) = @(-;0)u (3.56)
= 1)u. (3.57)

Since u is regular, then (3.57) implies
P(x;1)=x. (3.58)

On the other hand, by (3.18) and using the relations (1.2), we have

P(x;0) := ——Pi(x) — —Pa(x) . (3.59)
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From (3.54) for n =0, 1,2, and taking into account (1.2), we deduce

ro=PB, ri=3PBo+P), rnn=3PBo+Pi+h),
si=N+5Bo(Bo—B1), Polsa—1)=(BoBi—1)(r2—B2), (3.60)
s2="3(Bg+B7— (Bo+B)B2+2(n+ 1)) -

Therefore, taking into account (3.58)—(3.60) and (1.2), (3.56) reduces to
D(xu) = (—2ax* +bx+c+1)u, (3.61)

where

st 27+ (Bo—Bi)Bo

o Ny 2Ny

b (21 + (Bo — B1)Bo) (Bo+ B1) — Boye
. ny '

o Bive — (271 + (Bo—Bi)Bo) (BB —11) |
. Ny '

Using (3.60), and assuming s; > 0, we deduce
Bo=ro, Bi=2ri—ro, n=s1—ro(ro—ri),

s1(3s2 —2s1) +2r; (s1 (2ro—r1) —rori(ro— rl)) (3.62)

n= 251+ rory
(Notice that 251 + ror; # 0; indeed, using y1 = s1 — ro(ro —r1), we have 2s; +ror; = Y1 + 51+ rg >0.)
Thus a, b, and ¢ may be written only in terms of ry, r1, 51, and s,. Hereafter we impose the
(integrability) conditions

a>0, c>-1. (3.63)

(Note that the condition a > 0 is equivalent to s; > 0 in equation (3.54), or to ¢, > 0 in equation
equation (3.53).) Let w be a solution of

aw'(x) = (—2ax* +bx+c)w(x), xR\ {0}. (3.64)

Solving this equation imposing (without loss of generality) w to be right-continuous at x = 0, we find

(3.65)

® Ki|x|fe "o if x<0,
X)) =
Kolx|e @ tbx if x>0,

K, and K, being real constants. Requiring, in addition, K; and K, to be non-negative and no
simultaneously equal to zero, w becomes a weight function, i.e., a non-negative and integrable
function which does not vanishes identically and having finite moments of all orders. Now, define a
functional w by

wfyi=r [ fawEds (fe ),
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where k is a normalization constant chosen so that (w, 1) = (u, 1). Using (3.64) and integration by
parts, together with the rules of the distributional calculus, we show that D (xw) = (—2ax* +bx+c+
1)w on &', hence w fulfills the same functional equation (3.61) as u. This is equivalent to saying that
the sequences of moments (u,),>0 and (w,),>0 of u and w (defined by u,, := (u,x") and w,, := (w,x"))
are solutions of the second order linear difference equation

—2avn+2—|—(n+b)vn+1 +(C+ I)Vn =0 (1’120,1,2,"') :

Now we show that we may choose K| and K5 so that u = w. Indeed, since by definition of w the

condition 1y = wg holds, we only need to show that we may choose K; and K so that u; = wy. Indeed,
1 0 21p Tl —ad+b
K w = / xw(x)dx:Kl/ x|x|Cem xdx—i—Kz/ xHlema b gy
R —oo 0

and making the change of variables x — —x on the first integral, we obtain

T et —al+b e —ad—b

w1:K<K2/ Xt e_“x+xdx—K1/ Xt e_“x_xdx) .
0 0

On the other hand, from Py (x) = x — By, we have u; = Boup = rowo, i.e.,

rf-o0

Foo 2 2
u; = Kro (Kz/ x‘e™ +b"d)c—i—Kl/ x‘e™ ™ _bxdx) .
0 0

Therefore, in order to have u; = wy, we need to impose

o0 o — 2 (o] a — 2_
. K2 f0+ xc+le ax +bxdx Kl fo-‘r xc-‘rle ax bxdx
0 {ore} (o] -~
K1f0+ XCe—a’—bxdy 4+ K2f0+ XCe— @ +bx dx

Assuming without loss of generality that K, > 0, and setting M = K /K3, this is achieved provided

that , ,
_ f0+°° xCHlp—ax*+bx gy ro f0+°° XCo—ax +bx 4y

- oo 2 oo 2 °
f0+ xct+le—ax 7bxdx_|_r0 f0+ xCe—ax 7bxdx

M (3.66)

Thus, up to a positive constant factor, u admits the integral representation

wf)i= [ fowwar (Fez).

We remark that w is a.e. on R the unique weight function with respect to which (P, ),>¢ is a monic OPS.
This is an immediate consequence of the fact that the moment problem associated to the distribution
function with weight w is determined, as we may see easily taking into account Riesz uniqueness
criterium (see e.g. [20, Theorem II-5.2]). Finally, set

aMe) . hu, 1:= b/va, (3.67)
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meaning that (uM*) x") := (u, (vax)") for each n =0,1,2,.... Note that making the change of
variables x — x/y/a in the integrals appearing in (3.66) we obtain

* (x — Jarg)xe* +H* dx
" a— yan)

= . 3.68
f0+°° (x + \/aro)xce—xz—txdx ( )
Since u fulfils (3.61) then uM9) gatisfies
D(xu™")) = (=22 +tx+ ¢+ 1uMo)
L (M t,c) . . (Mt.c) . .
et (P, )n>0 be the monic OPS with respect to u'*-><). Then (3.67) implies
1 (Mt.c)
P,(x) := P =0,1,2,...). 3.69
n(X) (\/a)n n (\/&X) (l’l 9y Ly &y ) ( )
Moreover, up to a constant factor, u-*) admits the integral representation
W, f) = [ fwtOmar (fe ),
R
where ,
(M tc) .: ac/z i _ M’x‘ﬂe—x e if .?C<O7
w (x): w 5 (3.70)
Ky " \\a |x|ce™ T if x>0.

In conclusion, we have the following results.

Theorem 3.4.1 Let (P,),>0 be a monic OPS with respect to a positive-definite linear functional and
fulfills (3.54), where (ry)n>0 and (s,)n>1 are sequences of real numbers such that s, # 0 for each
n=1,23,.... Then (B,)n>0 is given by (3.69) —(P,SM’Z’C)),ZZ() being the unique monic OPS with
respect to the weight function wM:) defined by the right-hand side of (3.70), provided that conditions
(3.63) hold for each choice of the (real) parameters ry, r1, s1, and s3.

Corollary 3.4.2 Under the assumption of the previous theorem, if ro =r; =0, s; = 1/2, and s, = 1,
then up to an affine change of the variable, (P,),>¢ is the Hermite monic OPS.

Proof
Sincerp=r; =0,51 =1/2and s, =1, we obtaina= 1, =c =0, and M = 1, hence w(l*o*o)(x) —

and the corollary follows.

Finally, we note that (3.70), (3.69), and (3.68) agree, respectively, with (2.27), (2.29), and (2.30) in
[21].
3.4.2 Discrete variable

The interest of the results presented in Section 3.3 will be illustrated by an exhaustive analysis of the
7n-(g,w)-coherent pairs of index M = 0 and order (m,k) = (1,0), considering N <2 and P, = O,
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for each n =0, 1,.... This means that we focus on the structure relation
n+N
N (X)Dg.oPur1(x) = [n+1]4 Y cajPi(x), n=0,1,..., (3.71)
j=n

where 7y is a monic polynomial of degree N € {0,1,2}. We assume that the ¢, ; are complex
parameters subject to the conditions ¢, , # 0 for each n = 0,1,2,.... Our aim is to describe all the
monic OPS (P,),>o fulfilling (3.71). We prove in a rather simple way that, up to affine changes of
variable depending of the pair (g, ®), the only monic OPS satisfying (3.71) are the monic g—classical
OPS given in Table 3.1. This is a (g, ®)—analogue of the well known characterization of classical
OPS (Hermite, Laguerre, Jacobi, and Bessel) due to Al-Salam and Chihara [3]. See also [32, 40].

Table 3.1 Monic g—classical OPS

Name \ Notation (P,) \ Restrictions \ Reference ‘
Al-Salam-Carlitz | U\ (|g) a#0 [34, (14.24.4)]
Big-g-Laguerre | L,(-;a,b|q) ab#0; a,bg A [34, (14.11.4)]
Little-g-Laguerre L,(-;alq) a#0; ag A [34, (14.20.4)]
(;alq) a#0 [51, Table 2]
Big-g-Jacobi P,(;a,b,clq) | ac#0; a,b,c,ab,abc™" ¢ A | [34, (14.5.4)]
Little-g-Jacobi | P,(-ia,b|q) a£0; a,babe A [34, (14.12.4)]
g-Bessel B, (-;a|q) a#£0; —ag A [34, (14.22.4)]
 — Jn(;a,b|q) ab#0; a¢ A [51, Table 2]

In Table 1 we have set A :={g™" : n=1,2,...}. We will show that the possible families (P,),>0
fulfilling (3.71) may be related (up to affine changes of the variable) to one of the following two OPS:

(I) The monic OPS (L, (x;a,b,c|q))n>0 given by (1.1), where

Bi=(a+b—c(d" " +4"—1))q",
Y1 =—(a—cd"™) (b—cg" ™) (1—¢"T)q"

foreachn =0,1,2,..., and a,b,c € C are parameters subject to the regularity conditions
a#cq', b#cq"

for each n = 1,2,.... Although there are three parameters in the definition of L,(x;a,b,c|q), we note
that, without loss of generality, if ¢ # O then, up to an affine change of variables, we may reduce to
the case ¢ = 1. Indeed, the relation

LH(X;a>bvc|CI) = ann(x/C;a/C?b/c> 1“1)

holds for each n =0, 1,2,.... Moreover, if ¢ = 0 (and so ab # 0, by the regularity conditions), then
up to the affine change of variable x — bx, we may reduce to the case b = 1, taking into account that
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the relation
Ln(x;a,b,0|q) = ann(X/b;Cl/b, 170|q)

holds for eachn =10,1,2,....
(IT) The monic OPS (J,(x;a,b,c,d|q)),>0 given by (1.1), where

b= la(b+d)+c(b+1)](1+dg* ™) —[c(b+d)+ad(b+1)](1+q)q"
n (1 —dg®) (1 —dg?+2) ’
q"(1—q"")(1=bg""")(1 —dg" ") (a—cq""")(b—dq""")(c — adg""")

Yor1 = — (1—dg>+)(1 —dg?+2)2(1 — dg2+3)

foreachn =0,1,2,..., where a,b,c,d € C fulfil the regularity conditions

b#q™, d#q ", a#cq", b#dq', cH#adq"
foreachn=1,2,....

Remark 3.4.1 Note that L,(-;a,b,c|q) is a special or limiting case of J,(-;a,b,c,d|q) for each
n=0,1,2,.... Indeed,
Ju(x;ab/c,c/b,b,0|q) if bc#0,
Ln(x§a7bac‘Q) =
Ju(x;ab/c,c/a,a,0|q) if ac#0,
L,(x;0,0,c|q) = ;in(l)Jn(x;O,c/b,b,O\q) it ¢#0,
—

L,(x;a,1,0|q) = ;ig(l)]n(x;a/b,b, 1,0|q) .

Remark 3.4.2 The g—classical OPS (see Table 3.1), up to affine transformations of the variable, can
be obtained from the monic OPS given in (I) and (I1). Indeed:

U (x) = Ly(x;a,1,0/q)
Ly(x;a,blq) = (abg)"Ly(x/(abq);1/a,1/b,1|q)
Ly(x;alq) = Ln(x;0,1,alq)
lu(x;alq) = L, (x;0,0,—alq)
q"J.(x/q;1,a,c,ab|q) , if b#£0
(xsa,b,clg) =
(acq)"Ly(x/(acq);1/a,1/c,1|q), if b=0
Jn(x;0,a,1,ab|q) , if b#0
) (x;a,blq) =
a'Ly(x/a;1/a,0,1]q), if b=0
n(xsalq) = Jy(x;0,0,1, a/q|q)

Jn(x a,blq) = ¢"J,(x/4:b,0,0,a/qlq) ,

where in each case the parameters are subject to the restrictions given in Table 3.1.

Remark 3.4.3 The converse of the statement in Remark 3.4.2 is also true, that is, the monic OPS in
(I) and (II) can be obtained from the g—classical OPS. Indeed:
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(1) If ¢ = 0 in the definition of L,(-;a,b,c|q) (and so ab # 0, by the regularity conditions), we
obtain (monic) Al-Salam-Carlitz polynomials:

Ly(x:a,b,0lq) = "Uy""" (x/blq) -
Consider now ¢ # 0. If ab # 0, we obtain Big g—Laguerre polynomials:

Lu(x:a,b,clq) = (ab/(cq))" Ly (cqx/(ab):c/asc/bq) ;
if ab =0 and |a| + |b| # 0, we obtain Little g—Laguerre polynomials:

b"L,(x/b;c/blq) if a=0andb+#0,
a'Ly(x/a;c/alq) if a#0andb=0;

L, (x;a,b, c|q) = {

and if a = b = 0, we obtain one of the monic OPS given by Medem and Alvarez-Nodarse in [51, Table
2]:
Ln(x;0,0,C|Q) = ln(x; *C|Q) .

(ii) If d = 0 in the definition of J,(-;a,b,c,d|q), the regularity conditions imply bc # 0, and we
obtain Little g—Laguerre polynomials if a = 0 and Big g—Laguerre polynomials if a # 0, according
to (1) and the relation

Ju(x;a,b,¢,0|q) = Ly (x;ab,c,bc|q) .

Consider now d # 0. If abc # 0, we obtain Big g-Jacobi polynomials:
Ju(x:a,b,c,d|q) = (a/q)"Fi(qx/a;b,d[b,c/alq) ;
if only one among a, b, and c is zero, then we obtain Little q-Jacobi polynomials:

c"Py(x/c;b,d /blq) if a=0andbc#0,
Ju(x:a,b,c,d|g) =& "Py(x/c;ad/c,c/alq) if b=0andac#0,
(ab)"P,(x/(ab);d/b,blq) if c¢=0andab+#0;

ifa=b=0 (and so c # 0, by regularity), we obtain g-Bessel polynomials:
Jy (x;0,0,c,d|q) = "By(x/c;—dqlq) ;

and if b= c =0 (and so a # 0, by regularity) we obtain the other monic OPS given by Medem and
Alvarez-Nodarse in [51, Table 2]:

Ju(x:a,0,0,d|q) = g " ju(qx;qd,alq) .

(There are no additional cases, since the condition d # 0 together with the regularity conditions for
(Jn(';avbvcadM))nZO lmply (a,c) 7& (070))
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Remark 3.4.4 Note that the g—classical OPS are (up to affine changes of the variable) special or
limiting cases of the polynomials J,,.

Theorem 3.4.3 A monic OPS (P,),>o satisfies (3.53) if and only if, up to an affine transformation of
the variable, it is a g—classical monic OPS.

Proof In the analysis of the structure relation (3.71) we consider the three possible cases, accord-
ing to the degree of the (monic) polynomial my, N € {0,1,2}.

CASE I: N =0. Then m(x) = 1 and so (3.71) becomes

Dy oPiri(x)=[n+1],P(x), n=0,1,....
From (3.45), (3.46), and (1.1), we see that u satisfies the functional equation
Di/g-w/q0 = _ﬁ(x —PBo)u.
k] ;yl
Let a and b be the two roots of the quadratic equation
2+ (@ —Bo)z+7/(g—1)=0.

Note that ab # 0, ¥, = ab(q— 1), and By = a+ b+ @y, where

()

a)():q

Using (2.20) and (2.21), the recurrence coefficients for the monic OPS (Pn) e

p0 Ar
Bi=wo+(a+b)g", Y1 =—ab(l1—q"""g", n=0,1,....
This means that
P,(x) =L, (x—mp;a,b,0|q) , n=0,1,....

(Thus, according to Remark 3.4.3, in this case, up to affine transformations of the variable, we obtain
Al-Salam-Carlitz polynomials.)

CASE II: N = 1. Writing 7 (x) =x— @y +c¢, ¢ € C, (3.71) becomes
(x—p+¢)Dy oPpi1(x) = [n+1]4Pup1(x) + [n+ 1]gcnpnPu(x), n=0,1,....

Setting n = 0 gives cg o = ¢+ o — @y, and so condition (3.2) implies ¢ + By # ay. By (3.45), (3.46),
and (1.1), we obtain the functional equation

—M(x—ﬁo)u.

Dl/qy_w/q<(x—(oo+c)u) = ”
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Setting & = —¢q(By — @y +¢) /1 (hence & # 0) and B = ot (wy — o), the above functional equation
becomes

D1/g.w/g (¥~ @+c)u) = (a(x— ) +B)u.
hence, using (2.20) and (2.21), we find

Bl—g)+(1+9)(1—¢")q"

n = - ) .
By = 20=a) (3.72)
¢ (1= ) (a1 —9)+ (g +B(1—0))g" — )
Tt+1 = 2(1—q) (3.73)
foreachn =0,1,.... Let a and b be the zeros of the polynomial

0:(2) :=—q '+ (1-B(1—g "))z+ac(1—q),

so that 6,(z) = —q¢ '(z—a)(z—b). Then a+b = g+ B(1—q) and ab = coq(1 — q). Therefore,
setting r:= 1/(at(qg— 1)), we have r # 0 and, from (3.72) and (3.73),

Bn:wo+rq”(a+b+l—q”—q"+l),
Yosl = _r2qn(1 _qn+1) (a_qn+l) (b_qn+l)
for eachn =0,1,.... This means that

P,(x) =r"L, (H)O;a,b,l
r

q> =L, (x— wy;ar,br,r

).

(Therefore, in this case, up to affine transformations of the variable, we obtain Big-g-Laguerre polyno-
mials if ab # 0, Little-g-Laguerre polynomials if ab = 0 and a and b do not vanish simultaneously,
and the OPS (/,),>0 ifa=b=0.)

CASE III: N = 2. Then we may write m(x) = (x — @y — r)(x — @p — s), with r;s € C, and (3.71)
becomes

()C — o — r) (X — Wy — S)Dq,a)Pn-‘rl ()C) = [n + l]q (Pn-‘rZ(x) + Cn,n+]Pn+l (x) + Cn,nPn(x)> s
foreachn =0,1,.... From (3.45) and (3.46), we deduce
D1 g —osq (6= @ —1)(x— oy —s)u) = (a(x— )+ )u,

where o := —¢ (i + m(Bo)) /¥ and B = —a(Bo — @y). The regularity of u implies & # 0. Since
(1—g Nd, =1+ (—1+a(l—g"))g™", then we will distinguish two sub-cases, depending whether
(dn)n>0 is a constant sequence or not.

CASE ILa) If « = 1/(1—g~ '), then d, = o for all n. Let ¢ := (¢— 1)B +q(r+5). By using
(2.20)—(2.21) we find
P,(x) =1L, (x— a)o;r,s,c|q*1) , n=0,1,....
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(Therefore, in this case, we obtain Al-Salam-Carlitz polynomials if ¢ = 0, i.e., By = @y + 7+,
Big-g-Laguerre polynomials if rs # 0, Little-g-Laguerre polynomials if rs = 0 and r and s do not
vanish simultaneously, and the OPS (/,,),>¢ if r=5=0.)

CASE 1Lb) If @ # 1 /(1 — g~ "), then (d,),>0 is not a constant sequence. Let

u=qlg+a(l—q)), A:=(r+s)g—p(1—q).

Note that u # 0 (since o # 1/(1 —g~')). Note also that d, = (1 —ug™"2)/(1 —g~") for each
n=20,1,... and so, since d, # 0, we obtain u # ¢" for each n =0, 1,.... Therefore, using (2.20)—
(2.21), we obtain

S A+r+s)(1+ug 2N — (1+¢ YA+ ru+su)g™

 — - 3.74
b=t (1= (1 =g >2) o
e (1-q ) Yol sl s r)
g "(0—g " )L —ug ™ )olg " srs)e(g " 35,1
] = — 3.75
Ynt1 (1 —ug=2=""Y(1 —ug=2"—2)2(1 — ug—2"=3) ( )
foreachn =0,1,..., where

0(zx,y) = xuz’ —Az+y.

If r=A =0 then @(z;r,5) = s and ¢(z;s,r) = suz?. Then, from (3.74)~(3.75) we obtain s # 0 and
Py(x) =J, (x— a)o;0,0,s,u|q_]) , n=0,1,....

(This means that, in this case, the P,’s are g-Bessel polynomials.) If » =0 and A # 0, definea = A /u
and b = us/A; and if r # 0 (A being zero or not), define @ = (A ++/A)/(2u) and b = (A —/A)/(2r),
where A := A2 — 4rsu alternatively, we may choose a = (A —\/A)/(2u) and b = (A +V/A)/(2r)).
These choices of a and b (in either cases r = 0 and A #£ 0, or r # 0) give s = ab and A = au+ br, and
)

¢(z:rs) = (rz—a)(uz—b), @(zs,r) = (auz—r)(bz—1).

Therefore, using (3.74)—(3.75), we obtain
P,(x)=J, (x— a)o;a,b,r,u|q71) , n=0,1,....

(In this case, if =0 (and so a # 0) we obtain Little-g-Jacobi polynomials if b # 0 and the OPS (j,),>0
if b = 0; and if r # 0, we obtain Big-g-Jacobi polynomials if a,b # 0, Little-g-Jacobi polynomials if
ab =0 and a and b do not vanish simultaneously, and g-Bessel polynomials if a =5 =0.)

Remark 3.4.5 In [? | the authors claim: “We show that the only orthogonal polynomials satisfying
a g—difference equation of the form m(x)DyP,(x) = (0ux + B) Py (x) + YnPa—1(x), where m(x) is a
polynomial of degree 2, are the Al-Salam Carlitz 1, little and big q—Laguerre, the little and big
q—Jacobi, and the q—Bessel polynomials. This is a g—analog of the work carried out in [1]."
However, according to Theorem 3.4.3 for ® = 0, there are two additional families of monic OPS
(given in Table 3.1) that also satisfy the above g—difference equation. Therefore, Theorem 3.4.3 for
o = 0 is the true g—analogue of the work by Al-Salam and Chihara [3].
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This section highlights that the concept of coherent pair of measures, besides its own theoretical
interest, is a useful tool to deal with specific algebraic problems in the theory of orthogonal polynomials.
It is worth mentioning that several problems and conjectures related with this type of structure relations
remain unsolved (see [26, Section 24.7.1]). Indeed it is in this direction that we pursue our investigation
(in the next chapters) in the framework of classical OPS with respect to the operator D, defined in
(1.42). These remarks will be helpful to solve Conjecture [26, 24.7.8], which fits into the theory of
self coherent pairs of measures (on nonuniform lattices).



Chapter 4

Classical orthogonal polynomials on
nonuniform lattices

4.1 Introduction
In this chapter we consider a nonuniform lattice given by (1.26), i.e.,

aq *+aqg+cea it g#1,
x(s) = (1.26)
c4s? +css+cg if g=1,

where g > 0 and ¢; (1 < j < 6) are constants in C, that may depend on g, such that (¢1,¢) # (0,0) if
g # 1, and (c4,¢s5,¢6) 7 (0,0,0) if g = 1. We consider the notations given in Section 1.3 of Chapter 1.
In particular, the numbers o, 3, o, By, ¥, and & introduced in (1.27)—(1.33) and (1.47)—(1.48), as
well as the operators D, and Sy (on &) and D, and S, (on &%) introduced in (1.42)—(1.44), together
with the polynomials U; and U, given by (1.45)—(1.46) (or (1.49)—(1.50)), will play a fundamental
role along this chapter. Our aim is primarily to obtain regularity results similar to the ones stated in
Chapter 2 for Hanh’s operator.

Definition 4.1 Ler x(s) be the NUL given by (1.26) and let uw € &?*. The functional u is called
x—classical if it is regular and there exist ¢ € &7, and y € &\, ¢ and ¥ not vanishing everywhere

simultaneously, such that
D, (¢u) =S,(yu) . 4.1)

An OPS with respect to a x—classical functional will be called a x—classical OPS (or a classical OPS
on the NUL x).

As far as we know, Definition 4.1 was introduced in [17]. It is an extension of the definition of (very)
classical functional for continuous OPS (i.e., Jacobi, Laguerre, Hermite, and Bessel functionals) deeply
studied by many authors, specially Maroni (see [42, 47, 48]). We will refer to the functional equation
(4.1) as x—Geronimus—Pearson functional equation on the NUL x, or, simply, x—GP functional
equation. The principal goal of this chapter is to state necessary and sufficient conditions, involving
only the polynomials ¢ and y (or, equivalently, their coefficients), such that a given functional u € &*

57
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satisfying the x—GP functional equation (4.1) becomes regular. This will extend to OPS on NUL
previous known results for continuous OPS (associated with the very classical OPS) and for OPS with
respect to Hahn’s operator (cf. Chapter 2 and [4, 38]).

The structure of the chapter is the following. In Section 4.2 we prove several preliminary results,
including a functional version on NUL of the Rodrigues-type formula. This formula holds for
functionals that are solutions of the x—GP equation, even without assuming regularity. Indeed, the
existence of such formula only requires the admissibility of the pair (¢, ) appearing in the x—GP
equation, in a sense to be defined later. In Section 4.3 we state our main results, presenting the
necessary and sufficient regularity conditions mentioned above, and giving explicit formulas (in a
closed form) for the recurrence coefficients appearing in the TTRR satisfied by the monic OPS with
respect to u. Finally, in order to illustrate the power of such formulas, in Section 4.4 we revisit the
Racah and the Askey-Wilson polynomials, computing in a simple way the corresponding coefficients
of the TTRR from the functional equation fulfilled by the associated regular functional.

4.2 Preliminaries

]

Along this chapter, we will denote by P,Ek the monic polynomial of degree n defined by

DkP, !
_ DRz _ v D'Poi(z) (k,n=0,1,2,...). (4.2)

K/ N
P (z): =
Hlle Yo+j Yotk

As usual we understood that D?f = f, the empty product is one and %! := 1, %o 1! := V... Ya Vs 1-

Definition 4.2 Let ¢ € P2 and y € . (¢, V) is called an x—admissible pair if
dii=3hm¢"+ W #0 (n=0,1,2,...).
This is an extension of the corresponding definition for the continuous case, as well as for the case

involving the Hahn operator (see Chapter 2, see also [4]).

4.2.1 Properties of higher order x-derivative

Following [17], givenu € &%, ¢ € &5, and y € |, we define recursively polynomials ¢V‘] )
and l//[k] e P, (foreachk=0,1,2,...) by

o:=¢, Y=y, (4.3)
o1l =5 0 4+ U,S v 4 quoD, Yl | (4.4)
y =Dl + as,yl 1 uDy (4.5)

and functionals u¥l € 27* by

u? =y , k= D, (Uzl//[k]u[k]) — Sx(¢)[k]u[k]) . (4.6)
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Note that ul¥l may be regarded as the higher order x—derivative of u. In the next result we give explicit
expressions for the polynomials ¢X and y!* defined by (4.3)—(4.5).

Proposition 4.2.1 Consider a g—quadratic NUL, i.e., x(s) :=c¢1q *+¢2¢° +¢3 (s€C; ¢>0; g #1).
Let ¢ € Py and y € &, and write

¢(z) =a* +bztc, y(z)=dzte,
where a,b,c,d,e € C. Then the polynomials ™ and w¥ defined by (4.3)~(4.5) are given by

Z (a’}’2k+d062k) Z—C3)+¢ (e3)%+ w(ces)oy 4.7)
¢ (z) = (d(a® — 1)y +aon) ((z— 3)* —2¢102) (4.8)
+ (¢ (e3) o+ w(ea) (@ — 1)%) (2 — ¢3) + 9 (¢3) + 2acica

foreachk=0,1,2....

Proof Set
(p[k] (z) = a2 4 plkl, 4 oK 7 W[k] (z) = dly 4 ek 4.9)

where al¥ plK ¢ gkl o[l ¢ C. Clearly, by (4.3),

O =g, b=p, V=¢c, dV=ag, e=¢.

a
In order to determine a[k], b[k], c[k}, d [k], and el¥l for each k = 1,2,3..., we proceed as follows. Firstly
we replace in (4.4) and in (4.5) the expressions of ¢ K], L) [k+11, 174 *, and 14 [k+1] given by (4.9); and then,
in the two resulting identities, using (1.65)—(1.66) together with (1.45) and (1.46), after identification
of the coefficients of the polynomials appearing in both sides of each of those identities, we obtain a
system with five difference equations, given by

a1 =202 = 1)a" + 20 (0> — 1)a¥ (4.10)
b = bl 4 (a? — DelM +282a +1)a® + B(a+ 1) (4a — 1)al¥ (4.11)
M = M 1 550K 1 Bl 4 B+ 1) + (B2 (ot + 1) + a§)d W (4.12)
dF = 20a + 20 — 1)d (4.13)
e = pld 1 el 1284 + B(200 4 1)a! (4.14)

for each k =0,1,2,.... The explicit solution of this system is

a"l = d(a® = 1)y + ac (4.15)

bl =y (e3) (0 — 1) %+ 0 (c3) 0% — 2¢3 (d (a® — 1)y + auy) (4.16)

M = ¢(c3) +2acica — e3 (W(e3) (0% — 1)+ 9 (c3) ot (4.17)
+ (5 —2c100) (d(0® — 1)y +auy)

d¥ = ayy +dony (4.18)

e = 9" (ca) v+ w(es) o — 3 (av +doy) (4.19)
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for each k =0,1,2,.... This can be easily proved by induction on k. Finally (4.7)—(4.8) is obtained by
replacing (4.15)—(4.19) in (4.9).

Lemma 4.2.2 in bellow is proved in [17]. We point out that the proof given in [17] assumes that u
is a regular functional. However, inspection of the proof given therein shows that the result remains

unchanged without such assumption.

Lemma 4.2.2 Letu € &7*. Suppose that there exist ¢ € P, and y € &y such that (4.1) holds. Then
ul¥ fulfills the functional equation

D, (oHul) =8, (y¥ul) (k=0,1,2,..). (4.20)

The next result gives some additional functional equations fulfilled by uldl,

Lemma 4.2.3 Let u € &2* be a functional satisfying (4.1) for some ¢ € P, and y € &). Then the

relations
D, (u [k+1]) = —aylull (4.21)
S, ( [k+1]) 06(05¢ "]+U1 q,[k}) W (4.22)
200 = 8, (o yWuld) — D, (1,9Hul) (4.23)

hold for each k =0,1,2,
Proof Using (1.63) and (4.20), we deduce

DJZC (U2 w[k]u[k]) = (Z(X — a_l )Si (ll/[k]u[k]) + a_lUleSX(w[k]u[k]) — aw[k]u[k]
— 20— a)S,D, (0¥ ul) + &0, D2 (¢ Hul) — aryu¥
— 0,8, (0¥ul) — |

where the last equality follows from (1.72) for n = 1 and taking into account that o, = 202 — 1 and
¥i = 1. Therefore, by the definition of u**!, we obtain

Dxu[kﬂ} — D)ZC (Uzl[/[k]ll[k]) _stx(q)[k] [k }) — _m,,[ Tultl
This proves (4.21). Next by (1.59) and (1.60), we may write

D, (U29"Mul¥) = (S0, — & 'u;D,U2) D (¢Mul) + o1 (D,U,) S, (¢ Hul])
S: (Uay™ul¥) = (8,0, — &'y D,U,) S, (yHul) + o~ (D,U2) D, (Vo yWuld) |

After subtracting these two equalities and taking into account (4.20), as well as the relation o~ 'D,U, =
2U; (cf. (1.52)), we get (4.23). To prove (4.22), note first that, by the definition of ulk+1

S = 0, 8,D, (Vo y W) — 0,82 (pHul¥) . (4.24)
Using again (1.72) for n = 1, we have

oS, D, (U2 I//[k]ll[k]) = aD,S, (Uz l[/[k}u[k]) — Uy D)% (Uz l,l/[k}ll[k])
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and by (1.63), we also have
azsi(q)[ﬂu[k]) — —UleSx(gb["]u["]) + o?pMuld g2 (U2¢[k]u[k]) .
Substituting these two expressions into the right-hand side of (4.24), we get
2a? - St = ab,S, (v y ) — aD? (V20 ul¥) —y; D - ?gMul . (4.25)
Next, by taking f = U; and replacing u by ul“1in (1.59), and then using (1.51) and (4.21), we derive
D, (U 1)) = —0, y b 1 (o — o 1ySul

Multiplying both sides of this equality by 2a and combining the resulting equality with the one
obtained by applying the operator D, to both sides of (4.23), we get

(20? —2)Sul ! = oD, S, (L yHu) — aD? (0,9 Mul) + 200, yHuld . (4.26)

Finally, subtracting (4.26) to (4.25), and taking into account (4.21), (4.22) follows.

4.2.2 Rodrigues-type formula on NUL

In the proposition in bellow we establish a functional version of the Rodrigues-type formula on NUL.

Proposition 4.2.4 (Rodrigues-type formula) Let x(s) be a g—quadratic NUL, i.e.
x(s):=cqg *+qg +c3 (s€C;qg>0;9#1).

Let u € &7* and suppose that there exists an x—admissible pair (¢, ) such that u fulfills the x — GP
functional equation (4.1). Set

dn = %¢//(C3)Yn + ‘l’l(c3)an y  €n = ¢/(C3)')/n + W(C3)an ’ (427)
foreachn=20,1,2,.... Then
R,u=D"u" (4.28)

for each n =0,1,---, where ul is the functional defined by (4.6) and (Ry)n>0 is a simple set of
polynomials given by the TTRR

Ry (Z) = (anz - Sn)Rn (Z) — 1R (Z) 4.29)
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for each n=0,1,..., with initial conditions R_; = 0 and Ry = 1, and (a,)n>0, ($n)n>0, and (ty)n>1
are sequences of complex numbers defined by

 Qdopdyn—y

an ‘= A (4.30)

Spi=ay (C3 + Z;n__; — yn;;:") , 4.31)

1= a, TE2 gl <c3 - an) , (4.32)
(j)[”*u being given by (4.8). (It is understood that ay := —od and so := e.)

Proof We apply mathematical induction on n. If n =0, (4.28) is trivial. If n = 1, (4.28)
follows from (4.21), since R; = —ay. Assume now (induction hypothesis) that (4.28) holds for two
consecutive nonnegative integer numbers, i.e., the relations

R,ju=D""u"1 ~ Ru=D"" (4.33)

hold for some fixed n € N. We need to prove that R, ju = D" *!ul"*1l, Notice first that, by (4.7) and
(4.27), we have
yl(2) = du(z—3) +ex, (4.34)

foreach k =0,1,.... By (4.21) and the Leibniz formula in Proposition 1.3.5, we may write

D£+lu[n+1] — D;leu[nJrl] — _aD;z(ll/[n]u[n])
= —aTn,oq/[”]Dﬁu[”} —oT,, 11//[”]Dﬁ_lsxu[”] .

From (1.82) we have T,,.; " = ds,%,/a,, and so, using also (4.33),

D' 'Sl = O <D

n+1. [n+1] [n]
e ul 4 (T, 0y )Rnu). (4.35)

X

Shifting n into n — 1, and using again the induction hypothesis (4.33), we obtain

Oh—1

Dn—ZSx [n—1] ___ Ynl
* " ad2n72’}/nfl

(Ro+@(Tur0W" )Ryt ). (4.36)
Next, using (4.21), (1.59), and (4.22), we deduce

Dt = oD (ylul) = —aD? ! (D, (y"ul")) (4.37)
=-pr! ((asxwﬂ — ;D) Dul 4 Dyl qu[n])

=D (&l

where &;(-;n) is a polynomial of degree 2, given by

éz(z;n) — aZ(W[’l_l]SXl’/[”] + (P[n_]]Dx‘//M) (Z) . (438)
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The following identities may be proved by a straightforward computation:
do1 — Oy = a" 1|

don—z(en —20c3day) + doy (b["_l] + oten—1) = 2dou—1 (Cte, — c3doy)

for each n =1,2,.... (The second one is achieved by using equation (4.14).) Using these relations,
together with (4.9), (4.34), (1.65), and (1.66), we deduce

Ey(zin) = 0Pdondyy12* 4203 dy, 1 (Qe, — c3day)z (4.39)
+ 02 (donc™ V4 (41 — c3dan—2) (€n — Ote3da) ) -

Since deg &> (+;n) = 2, using again Proposition 1.3.5, we may write

D} (&(smul ) =Ty 108 (sm)Dy e 4 T, (5D Sl (4.40)
+Tn—1,2§2(';n)D;—3s§u[n—1] _

Therefore, since, by (1.82), T,—12&(+;n) = azyn_lyn_zdzndzn_l/agfz, combining equations (4.40),
(4.37), (4.36), and (4.33), we obtain

2
n—3Q2 [n—1] _ ) n+1.[n+1] .
D" 382u i {Dx u (Ta 10&(:n)) Ry u (4.41)
anflTn71.1§2(';n) [n—1]
: R, T,— " R, _ .
QYp—1don—2 ( o (Turoy) 1)u}

On the other hand, by (4.22),

Sl = no ()™ ma(zn) = —a (o Ul () (4.42)

Therefore, once again by Leibniz’s formula and (4.33), and taking into account that 1m,(+;n) is a

polynomial of degree at most two, we may write

D" 'Sull = pr! (n2(~;n)u["71]) (4.43)
= (Tnfl,OnZ(';n))Rnflu+Tnfl,lnZ(';n)D;liszu[nil]
+ T 12M2(5n)D' 3821

Note that 1, (+;n) is given explicitly by

Mo(zin) = oy 1 —do)2 = o (@b (02 = 1)(en 1 —2d2) )z (444)

— OC((XC[nil] + B(OC + 1)(371—] - C3d2n_2)) .

Hence, using (1.82), T,—12M2(-;n) = 0Yp—1Yh—2(0don—1 —dzn)/a,ffz. Therefore, substituting (4.35),
(4.36), and (4.41) in (4.43), we obtain

Dl = (A(n)R, +B(5n)Ru—1)u, (4.45)
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where A(-;n) and B(-;n) are polynomials depending on n, given by

o (Thow!™)(2) Ot (Th—1,1Mm2) (z51) n Oy—1(0dry—1 —do)(Th=1,182)(zs1)

&A(z;n) = : (4.46)
wAzn) Yad2n OYn—1don—2 oYy 1dandrn—1don—2
and
1 (T 0w (2)(T;,— :
SnB(Z;l’l) — (Tn—1,0n2)(Z;n)_ n 1( n I’OII/ )(Z)( n l,an)(z n)
Ya—1don—2
4 (dZn - adZn—l)(Tn—l,O§2)(Z§n) (4.47)
odondn—1
1 (Cday—1 — dop)(Ty1.1E) (z30) (Tt 0 W) (2)
+ )
O Yn—1dondon—1don—2
where
& — dZn - ad2n71 _ (o _ dnfl
" Qdwdan-r QYdon O Yndandoan—1
Note that ¥,do, — (& + )dop—1 = —d,—1 for each n = 0,1,2,.... By straightforward computation using
(1.81)-(1.82) we arrive at
dondon— AYndondon—1€n— a dop—
Alzn) = —a 2nd2n 1(2—63)+ Yadondon—1€n—1  OYn+1d2n—1€n s, . (4.48)
dnfl d2n72dnfl dnfl
Similarly, B(z;n) reduces to the following constant:
dondo,— _
B(zn) = @2 B @=L 1] (C3—en ’ ) = —, (4.49)
dn_1 drp—2
for each n =0,1,2,..., where a,, s,, and #, are given by (4.30)—(4.32). Since their computations are rather

technical, we provide more details on the derivation of (4.48)—(4.49) in the Appendix A.2. Hence (4.45) reduces

to D" 'ul**1) = R, ju. This completes the proof.
The next result is virtually proved in [38, Theorem 2].

Lemma 4.2.5 Letu € 7" be regular. Suppose that there is (¢, y) € P, x 21\ {(0,0)} so that (4.1)
holds. Then neither ¢ nor  is the zero polynomial, and degy = 1.

The statement of the next lemma is given in [17, Proposition 4]. However the proof of the
x—admissibility condition given therein is incorrect. For sake of completeness, we present a proof
following the ideas presented in [4, 38].

Lemma 4.2.6 Letu € &7*. Suppose that u is regular and satisfies (4.1), where ¢ € P, y € P\ .
Then (¢, ) is a x—admissible pair and i is regular for each k € N. Moreover, if (P,),> is the
monic OPS with respect to u, then (P,Ek])po is the monic OPS with respect to uldl,

_Proof Suppose that u is regular. Set ¢(z) = az> + bz +c and y(z) = dz+e, with a,b,c,d,e € C.
If deg¢ € {0,1} then d, = da,, hence d,, # 0 for each n =0, 1,.. ., since d # 0 (see Lemma (4.2.5)).
Assume now that deg¢ = 2. Then d,, = ay, +da, and a # 0. To prove that d,, # 0, we start by
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showing that
(0, (U yD,P + 98PV Brya) = —(ul! (SiPra+ o' UIDR)RY)  (4.50)

foreachn=0,1,2,....

Indeed, we have

(u, (U2yDP + 9S.P) P
= <U21VU,Pn+2DxP;£1]> + <¢u7Pn+ZSxPr£l]>
= (U2, Dy ((ScPur2 — &' UID,Pi2)Bi')) — a7 'S (BDLPy 1))
+(0u,S,((S:Pur2 — &' UID,P2)P) — ' UaDy (B'D,Pu2) )
= —(ull), (SyPri2 — @ 'UID,P ) B
— a7 (S:(Tayu) — D(U>0u), P DR
where the second equality holds by (1.58) and (1.57). Therefore, using (4.23) for n = 0, we obtain

(4.50). Now, on the one hand, U, IIIDXP,EH + (prP,El] is a polynomial of degree at most n 4 2, being the
coefficient of 7'*2 equal to (> — 1)d¥, + ac,. Hence, since the relations

(o> = Ddy,+ao, =dy1 —ady, = ad, —d,y (n=1,2,...)

hold, we get
U, IIJDXP,P] + q)SxP,E” = (Ocdn —d,_ )z"+2 + (lower degree terms)
for each n = 1,2,.... Consequently,
U yD, P + ¢S PM B = (ad, —d P2 =1,2 4.51
<ll,( 2Y DIy ‘|’¢ xI'n ) n+2> (OC n n71)<u7 n+2> (n ) 7) ( . )
On the other hand, since S;P,.» + 0 Ui D P,yn = Z’}Zg Cn, ijm for some coefficients ¢, 0, ...,Chnt2 €

C, and taking the particular case where k = 1 in the following equation

k1]
(ul PPy — acg’/’<u, P8, (0<m<n;,n=0,1,..), (4.52)
n+1

(see [17, Proof of Theorem 5—step 1.1]) we obtain

nndn
<um,(SxPn+2+a_1U1DxPn+2)P,£1]>:a;’ wPL,) (n=1.2,...). (4.53)
n+1

Substituting (4.51) and (4.53) into (4.50), and since Cy, 4, = (u,PnzH)/(u,PnzH), we deduce

Cnn
al1+—"" NV =dyy (n=1,2,3,..).
( yn+1cn+2> " i ( )
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This implies that

[aj<1+cj7j>]dn:d0:d7é0.

el Yi+1Cjs2

Therefore d,, # 0 for each n = 0,1,2..., and consequently, by (4.52) for k = 1, (an)nZO is the
monic OPS with respect to ulll. This proves the last statement in the lemma for k = 1. Since
d¥ = aWy, + apdl¥l for n,k = 0,1,2, ..., itis easy to see, using (4.15)~(4.18), that d) = d, . for
n,k=0,1,2,.... Thus the desired result is obtained from (4.52).

4.3 Regularity conditions

In this section we state our main results: given the nonuniform lattice (1.26), we state necessary and
sufficient conditions for which a functional u € &7* satisfying (4.1) is regular and, in such a case, we
describe the associated monic OPS.

Theorem 4.3.1 Consider the NUL
x(s)=c1g *+ g +i (s€Cig>0;9#1).

Letu € &7* and suppose that there exist (¢,y) € P2 x Z1\{(0,0)} such that the functional equation
(4.1) holds, that is:

D.(gu) =S, (yu) . (4.1)
Set ¢(z) := az> + bz +c and W(z) := dz+ e (a,b,c,d,e € C). If u is regular then (§,y) is an
x—admissible pair and y! 1 01" for eachn=0,1,2,..., i.e., the conditions
dy £0, ¢l <c3—de"> £0, VYneN, (4.54)
2n

hold, where d, and e, are given by (4.27), and (b[”] and l//["] are given by (4.7)—(4.8).

Proof Suppose that u is regular. Then d,, # 0 for n = 0,1,2,.... Indeed u satisfies (4.1) and
Lemma 4.2.6 ensures that (¢, y) is a x—admissible pair. In addition (Pj[n])j>0 is the monic OPS with
respect to u and so the following TTRR holds.

Pl(2) = (z= BP (2) P (2) (j=0,1,2,..), (4.55)
where P[_n]] (z) =0, being BB."] € Cand Cﬁ.ﬂ] € C\ {0} foreach j=0,1,2,.... Let us compute an]. We
first show that (for n = 0) the coefficient C; = CEO], appearing in the TTRR for (P;) j>o, is given by

1 e 1 )
- )= 90 4.56
¢ da+a¢< d) d1¢<°3 d()) (4-56)

This may be proved taking n = 0 and n = 1 in the relation (D,(¢u),z") = (S,(yu),z"). Indeed,
setting u, := (u,z"), for n = 0 we obtain 0 = du; + eup, and for n = 1 we find aup + bu; + cup =
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—dauy — (ea+dp)u; — efug. Therefore,

e 1
=g, = da+a

[—(b%—ea)f—i—c} ug . (4.57)

d d

On the other hand, since Pj(z) =z — B([)O] = z—uy /up, we also have

C =

2
(WPy) _wouo—uj _ (“1) . (4.58)

ug u3 ug ug

Substituting u#; and u; given by (4.57) into (4.58) yields (4.56). Since equation (4.20) is of the same

type as (4.1), with polynomials ¢ and y replaced by ¢ Il and v ), respectively, we see that C En} may be

obtained replacing in (4.56) ¢ and y(z) = dz+e by ¢"l and y!")(z) = da,(z— ¢3) + ey, respectively.

Hence,
] _ L g ( n ) 1w < en >
Ci' =———— - )= -—— . 4.59
! dZna + a[n] (P 3 d2n d2n+l (P . d2n ( )
Since u is regular, then C En] # 0, hence ¢!"! (C3 — d%) = 0. Thus, (4.54) holds.

The converse of Theorem 4.3.1 is given by the following

Theorem 4.3.2 Consider the NUL
x(s) =g+ g +i (s€Cig>0;9g#1).

Letu € &7\ {0} and suppose that there exist (¢, y) € P> x P\ {(0,0)} such that the functional
equation (4.1) holds. Assume that conditions (4.54) hold. Then u is regular and the corresponding
monic OPS (P,),>o satisfies the TTRR

Pii1(z) = (z—Bp)Pu(z2) = CuPr—1(z) (n=0,1,2,...), (4.60)

with P_(z) = 0, being B, and C,,1; given by

Yuen—1  Ynti€n

B, :=c¢3+ , (461)
TR dan
Yrsr1dn—1 [n] ( €n )
Cop1i=—7——— 3 —— 4.62
. dan—1don+1 ¢ Ty (+:62)
foreachn=0,1,2.... Moreover, the Rodrigues-type formula
Pu = k,D"ul" (4.63)

holds for eachn=0,1,2..., where

S

k, == (_a)*"Hdnj:j_z , n=0,1,2,.... (4.64)
j=1
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_Proof Define a sequence of monic polynomials (B,),>o by setting P_;(z) := 0 and Py(z) := 1,
and satisfying the TTRR (4.60)—(4.62). By assumption, C,+| # 0 for each n =0, 1,2, .... Therefore
(Py)n>0 is @a monic OPS (by Favard’s theorem). Let’s show that it is the monic OPS with respect to
u. For this we only need to prove that up # 0 and (u,P,) =0 for every n =1,2,3,... (u, := (u,7")).
Firstly we show that ug # 0. Suppose that 1y = 0. Since (4.1) holds, then (Dy(¢u) — S, (yu),z") =0
forn=0,1,2,.... This implies that

n—2
dnltn1 + Spln + frln—1 + Zan,lul =0, n=0,1,2,... (4.65)
1=0
for some complex numbers s,, f, and a,;, [ =0,1,2,...,n—2. For n = 0in (4.65), we have dyu; =0

and since d,, # 0 for all n, we find u; = 0. For n = 2, with the same arguments we also find up =0
and proceeding in this way we have u, =0 forn =0, 1,2, ..., which is impossible since u # 0. This
shows that uy # 0. Secondly, note that, from Proposition 4.2.4, we may write P,(z) = k,R,(z) for each
n=0,1,2,..., where k, ' = (—0)" [T}, dny ;2. Therefore, using (4.28), we obtain

(0, P,) =k (0, Ry) = ki (Ryu, 1) = ki <D§;u[’4, 1> = (—1)"k, <u["],D; 1> -0

foreachn=1,2,.... Hence (P,),>0 is the monic OPS with respect to u. By Proposition 4.2.4, the

proof is concluded.

The following corollary gives the asymptotic behavior of the sequence (Bj,),>0 appearing in (4.61).

This result will be very helpful in the next chapter.

Corollary 4.3.3 Under the same assumptions of Theorem 4.3.2,

o= T - =B o, 460
= don—2

In addition, setting u := (q'/> — q~'/*)~1, the following holds:

a) For0 < g<1andd—2au#0, we have

lim (B, —¢3) = lim ¢ (B, —c3) =0, (4.67)
o a7 (wles) — 49/ (c3)

lim ¢g™"(B, —¢3) = — u(d = 2au) ; (4.68)

S = i(Bj—c3) _ le) ~2uf(es) (4.69)

= (g—1)(d —2au)
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b) For 1 < g <ooandd+2au # 0, we have

lim (B, —¢3) = lim ¢ (B, —c3) =0, (4.70)
o g2 (yles) — 4y () .
Pt (B —c3) = u(d + 2au) @71
S= Y (B o) = YT 2u0(0) 4.72)

= (g='=1)(d+2au)

Proof From Theorem 4.3.2, we have

Ynln—1  Yatién
B, —c3 = — =0,1,2,...
n 3 dzn_z dQn (l’l y Ly &y ) )

and so (4.66) holds. If 0 < ¢ < 1 and d — 2au # 0 then we see that

Yorien 0147+ 620" + 63 B
= , n=0,1,2,...,
don (d+2au)q™+ (d —2au)

where
0, := Mql/2(W(C3)+2M¢/(C3))a 6, := y(c3) —4au’9'(c3), 63:= _”qilﬁ(‘y(%) _2”¢/(c3)> ‘

Taking the limit as n — oo, equations (4.67)—(4.69) hold. Similarly we deduce (4.70)—(4.72).

We finish this section by considering the quadratic lattice x(s) = ¢45% + ¢55 4 ¢¢. Recall that, here
¢4 = 4. For this lattice, the system of equations (4.10)—(4.14) becomes

artl =gl gt = gl g gl bt = plnl 6B (7] 4 gl |
et = el 4 pll 4 B(2g") 3401y

2
= bl B (bl 420y 4 B2al) <B2 — 4B+ 15) (a[”] + d["]) .

By solving this system using the initial conditions alll =, pl0) = p, ¢l = ¢, dl% = g and €l = ¢, we

obtain
"' =a, b =b+6Bn(an+d), d" =2an+d,
el = bn+e+2dBn* + pn*(2an+d) ,
2
=0 (Br) + 2Bmp(Br) (4~ 5 ) (an-+a).
forn=0,1,2,.... Thus, by a limit process on the previous results, way may infer and then to prove

the following result for the quadratic lattice.

Theorem 4.3.4 Let x(s) be the (quadratic) NUL x(s) = 4Bs* + css+cs. Let u € 2%\ {0} and
suppose that there exist (¢, y) € P x 21\ {(0,0)} such that the functional equation (4.1) holds.
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Set ¢(z) := az’ +bz+c, Y(z) :=dz+e (a,b,c,d,e € C). Then u is regular if and only if
dy #0, ¢W<— nz—de")#o, Vi € No, 4.73)
2n
where d, := an+d, e, := bn+ e +2dBn* and

0" (2) = az? + (b+6Bnd,)z+ 9 (Bn?) +2Bny(Bn?) — 7 (16Bc6 —3) o,

forn=0,1,2,....
Moreover the monic OPS (P,),>0 with respect to u satisfies the TTRR (4.60) with

_nep-1 (n+1)e,

B, = —2fn(n—-1), 4.74

doy—> doy, pn( ) )
(I’l+ l)dnfl [ ] ( 2 (% )

Cppt = — =Ll (g2 n ) i —0,1,2,.... 475

H dry—1dopi1 P doy, (475)

In addition, the following Rodrigues-type formula holds

Pu=k&DN", k=14, (=012..). (4.76)
j=1

Remark 4.3.1 More generally, under the regularity conditions (4.54) and (4.73), the recurrence
coefficients for the TTRR satisfied by the sequence of x-derivatives (P,Ek} )n>0 are given by the following

relations
PY ()= =B ) —clPM () (mk=0,1,2,...),
with Pﬂki (z) = 0, being BY and C,[f]H given by

e for NUL lattices x(s) = ¢1q* + c2q° + ¢3 (with the notations of Theorem 4.3.2)

[K]

Ynlntk—1  Yat+1€n+k
By, =+ —

dopnsok—2  dontok

K _ Yot 1dni2k—1 [n+k] ( Cnik > _ ‘
Cop1=— i3— K ) (k=0,1,2,...);
nH dont2k—1d2n 1241 ’ 3 oo ( )

o for NUL lattices x(s) = 4B5s> + css + c (with the notations of Theorem 4.3.4)

- 1 1

dopy2k—2 don 2k
1 _
Cr[ﬂl — (n+1)dyyor—1 ¢[n+k] <[3(n+k)2 €n+k > (nk=0,1,2,...).
dopi2k—1d2n42k+1 donyok

These expressions are obtained using ideas presented in Chapter 2, Section 2.2.2.
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4.4 Applications

4.4.1 The very classical OPS

Consider the particular quadratic lattice x(s) = ¢¢. Thus 8 = ¢s = 0. From Theorem 4.3.4 we recover
[38, Lemma 2 and Theorem 2] stated in Theorem 2.1.1 for the very classical OPS.

4.4.2 The Racah polynomials

Consider the quadratic lattice x(s) = s(s+a+b+ 1). Let u € &2* satisfying (4.1) with

¢(z) =22 +[(a+b+2c+3)d+c(a—b+3)+2(a+b+ab+2)]z
+(1+a)(1+d)(a+b+1)(b+c+1),

v(z) =2(d+c+2)z+2(1+a)(1+d)(b+c+1).
Here a,b,c,d € C. The regularity conditions for u given by (4.73) read as
(n+a+1)(n+c+1)(n+d+1)(n+d+c)(n+b+c+1)(n+c+d—a+1)(n+d—b+1)#0

foreachn =0,1,2,.... Let (P,),>0 be the monic OPS with respect to u. Using Theorem 4.3.4, we
see that (P,),>0 satisfies the TTRR (4.60). Hence applying (4.74)—(4.75), we obtain
B — (tat)(n+d+1)(n+b+c+l)(ntd+c+1) nn+c)(n+td+c—a)(n+d—b)
" (2n+d+c+1)2n+d+c+2) (2n+d+c)2n+d+c+1)
(n+1)(n+a+1)(n+c+1)(n+d+1)(n+d+c+1)(n+b+c+1)(n+c+d—a+1)(n+d—-b+1)
2n+d+c+1)2n+d+c+2)?(2n+d+c+3)

Cn+l =
foreachn =0,1,2,.... Therefore,
P.(z) = R,(z:d,c,a,b), n=0,1,2,...,

where (R,(.;d,c,a,b)),>0 is the monic OPS of the Racah polynomial (see [34, p.190]).

4.4.3 The Askey-Wilson polynomials

Consider the g-quadratic lattice x(s) = ¢;q~* + ¢2¢° + ¢3 (¢ > 0; g # 1). Let u be a linear functional
on & satistying (4.1), where ¢ and y are given by

¢(z) = 2(1 +abcd)(z — ¢3)* —2y/cic2(a+ b+ c+d + abe + abd + acd + bed) (z — ¢3)
+4(ab+ac+ad + bc+bd + cd — abed — 1)¢; ¢y

4 1/2
= 1((dde—1)(Z—C3)+m(a+b+c+d—abc—abd—acd—bcd)),
q—

where a,b,c,d € C (with a # 0). Acccording to Theorem 4.3.1, u is regular if and only if

v(z)

(I —abcdq")(1 —abq")(1 —acq")(1 —adq")(1 —beq")(1 —bdq")(1 —cdq")cico #0
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for each n =0,1,2,.... Assuming that this conditions hold, by Theorem 4.3.2 the corresponding
monic OPS (P,),> satisfies the TTRR (4.60) , where (by (4.61)—(4.62)),

(1 —abg™)(1 —acq")(1 —adq")(1 — abcdq™")
a(1—abcdg® 1) (1 — abcdg*")
a(l—q")(1—beg" ")(1—bdg" ") (1 —cdg" ")
a (1 —abedg®—1)(1 —abcdg®—2)

1
B, =c¢3+2/cicn a—i—a—

(if a = 0, we define B,, by continuity, taking the limit as a — 0 in the preceding expression), and

o _ aca(l—abg")(1 —acq")(1 —adg")(1 — beq") (1 ~ bdg")(1 — cdq")(1 —g"*')(1 — abedg" ")
nt+l = (1 —abedg?=")(1 — abedg®)? (1 — abedg?™+!) )

forn=0,1,2,.... Hence

Z—¢C
Py(z) = 2"(c1¢2)"?0, <2\/£;a,bjc,dq>, n=0,1,2,...,

where (Q,(.;a,b,c,d|q))n>0 is the monic OPS of the Askey-Wilson polynomials (see [34, (14.1.5)]).



Chapter 5

On a characterization of continuous
g—Jacobi and Al-Salam Chihara
polynomials

The purpose of this chapter is to give a positive answer to a conjecture posed by M. E. H. Ismail
concerning a characterization of the continuous g—Jacobi and Al-Salam Chihara polynomials (see
[26, Conjecture 24.7.8]). The proof makes use of some results stated in the previous chapters.

5.1 The conjecture

Let 7 be a nonzero polynomial of degree at most 2 and consider three sequences of numbers (a,),>0,
(bn)n>0, and (cp)n>0. Al-Salam and Chihara [3] proved that the only OPS, say (P,),>0, that satisfy

7t(x) DP,(x) = (anx + by)By(x) + cpPy—1(x) , (5.1)

are those of Hermite, Laguerre, Jacobi, and Bessel (here D denotes the standard derivative with respect
to x). Consider now (5.1) with D replaced by the Askey—Wilson operator,

F(q"%2) = F(q~ %)
#(q'72) — é(q 17%)

where f(z) := f((z+1/z)/2) = f(cos ) for each polynomial f and e(x) := x. Here 0 < ¢ < 1 and
6 is not necessarily a real number (see [26, p. 300]).

(Zof)(x) == (z=¢"), (5.2)

Conjecture 5.1.1 [26, Conjecture 24.7.8] Let (P,),>0 be a monic OPS and & be a polynomial of
degree at most 2 which does not depend on n. If (P,),>0 satisfies

7(2) DyPa(2) = (anz+bn)Pu(2) + caPii1(2) (5.3)

then (P,),>0 are continuous q—Jacobi polynomials, Al-Salam-Chihara polynomials, or special or

limiting cases of them.

73
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M. E. H. Ismail himself proved that the continuous g—Jacobi polynomials indeed satisfy (5.3)
for suitable polynomial 7 and parameters a,, b,, and ¢, (cf. [26, Theorem 15.5.2]). On another hand,
Al-Salam [2] proved that the conjecture is true whenever 7(x) = 1, by characterizing the Rogers
g—Hermite polynomials, P,(x) := H,(x|g), as the only OPS that fulfill Z,P, = c,P,— for every
n=12,....
pla,b)

We recall that the monic continuous g—Jacobi polynomials, B,"" (x|¢), depend on two complex

parameters a and b, and they are characterized by the TTRR

B (xlg) = B () + @m“w+qQ“W“ﬂMmm—QWﬁD&MWM) 5
ANy T
(n=0,1,...), being
B e (1 _qn+u+l)(1 qn+a+b+1)(1 _|_qn+(a+b+l)/2)(1 +qn+(a+b+2)/2) 5 s
ynla,b) = ga+1)/4 (1 — g2ntathbtl)(] — g2ntatb+2) ’ (5-5)
(2a+1)/4(1 — _ n+b n+(a+b)/2 n-+(a+b+1)/2
w(ab) =2 (I=¢")(1—¢"")(1+¢ )(1+4 ) (5.6)

(1 _ q2n+a+b)(1 _ q2n+a+b+l) ’

and subject to the restrictions (1 —¢" ) (1 —¢"*?)(1 — ¢"+t%+?) £ 0 for each n = 0,1,2,.. ., while the
monic Al-Salam-Chihara polynomials, Q,(x;c,d|q), which also depend on two complex parameters ¢
and d, are characterized by

xOn(x;cdlq) = Ouri(xsc,dlq)+ 3 (c+d)q" Qu(x;c,dlq)

1 n—1 n (57)
+ 3 (I—cdq" ") (1—¢") Qn-1(x;¢,d|q)

/%ab (x|lq) = Q_1(x;c,d|q) = 0 (see e.g. [26]). Further, up to
normalization, the Rogers q—Hermlte polynomials are the special case ¢ = d = 0 of the Al-Salam-

(n=20,1,...), provided we define P
Chihara polynomials.

Taking ¢ = ¢*, 9, reads

I\)\'—'

)

m\~

, x(s)= %(qﬂ%—qs) . (5.8)

Fufx)) = LEL L) TG

)
x(s+3) —x(

)

Recently, Kenfack-Nangho and Jordaan [33] used (5.8) to answer another conjecture posed by M. E.

t\J\»—

H. Ismail [26, Conjecture 24.7.9] concerning a characterization of the Askey—Wilson polynomials.
We also mention the related work [30] by the same authors, where the Bochner-type equation is used.

Throughout this chapter we denote by x(s) the g-quadratic lattice defined by
x(s) =c1g "4 4¢3, (5.9)

where g € (0,+e0)\ {1} and c;, ¢z, and ¢3 are real constants so that (c;,c2) # (0,0). We will prove
Conjecture 5.1.1 for the general operator D, (note that Z, is obtained from D, by taking ¢3 = 0 and
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¢; = ¢ = 1/2). Henceforth, we assume that there exists a monic OPS (B,),>o satisfying
T(x)DyPy(2) = (anz+by)Pu(z) + cuPi—1(z) (n=0,1,2,...), (5.10)

where 7 is a nonzero polynomial of degree at most 2 and (ay),>0, (Pn)n>0, and (¢,),>0 are sequences
of complex numbers such that ¢, # 0 for all n = 1,2,3,.... Our aim is to determine all such OPS
(Py)n>0- In this chapter B, and C,, denote the coefficients of the TTRR fulfilled by (P,),>0, so that

ZPn(Z) = Pn+l(z) +BnPn(Z) +CnPn71(Z) (n = 07 1727 .. ) y (5'11)

with P_1(z) =0, being B, € C and C,, 4 # 0 foreachn =0,1,2,....

5.2 Preliminary results

We start by showing that all monic OPS satisfying (5.10) are x-classical and then we prove that the
coefficients of the associated TTRR satisfy a system of non linear equations. This system will be

solved (in the next section) considering three cases, according with the degree of the polynomial 7.

Theorem 5.2.1 Letu € &7* be a regular functional such that its corresponding monic OPS (B,)n>0
satisfies (5.10) subject to the condition ¢, # 0, for eachn=1,2,.... Then u is x-classical. Moreover
D.(¢u) = Sy(yu), with y and ¢ the polynomials given by

v(z) =z—Bo, ¢(z)=(az—b)(z—Bo) — (a+a)C, (5.12)
where
(a2Cr +¢2)C b1 +a 1By
= 2T =B —By+ (a+a)B — 2 5.13
a4 (a1C1 +C1)C2 ﬁ 0 (Cl ) ! c1+aC ! ( )

(Here, By, By, Cy, and C, are coefficients of the TTRR (5.11) satisfied by (P,),>0, and cy, ¢3, by, ay,
and ay are coefficients appearing in the structure relation (5.10).)

Proof Let (a,),>o be the dual basis associated to the monic OPS (B,),>o. We claim that

c
D.(mu) =Riu, Ri(z):= —aléim(z—Bo), with a\Cy+c1 £0 . (5.14)
1

Indeed let j € Np. Using (5.10) and (5.11), we deduce
(Du(mag), P) = — (a0, tD:P;) = —a;do,j+1 — (a;Bj+bj)d,; — (cj+a;C;)d1 ;-

Taking n = 0in (5.10), we find ag = by = 0, and since (u, P?)a, = Puand G, = (u, P2 ) / (u,P?),
we obtain _
Dx(ﬂ:a()) = Z <Dx(7rao),Pj>aj = —(Cl +a1C1)31 .
=0

If ¢; +a;C; = 0, then D, (u) = 0, hence 0 = (D,(mu), f) = — (wu,D.f), Vf € &. This implies
wu = 0. But this is impossible, since & # 0 and u is regular. So ¢; +a1C; # 0. Hence (5.14) holds.
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Applying D, to both sides of (5.11), and using (1.53), yields
SXP"(Z) = _(az+ ﬁ)DXPﬂ(Z) + Dy P (Z) +BanPn(Z) +GCyDy P,y (Z) .

Multiplying both sides of this equality by 7(z) and using (5.10) and (5.11), we obtain

1(2)SxPy(z) = " P2 (2) + PP 1 (2) + P B 2) 4 P 1 (2) + 1O P a(z)  (5.15)

foreachn =0,1,2,..., where

1 2
rL] =dap+1 —0ay, rr[z} = 8gn+1 _ag11+an(Bn - aBnJrl _ﬁ) y
r,[?] =Spr1 — oSy +gn((1—a)B, — B) +ap—1C, — ¢a,Cpy1

”'L‘” = (gnfl - Oan)Cn +Sn(Bn - B - aanl) s rl[15] = Cusp—1 — 0Cy_ 18y s
and g, = b, +a,B,, s, = ¢, + a,C,. For a fixed j € Ny, using (5.15) we obtain

(Sy(mag),Pj) = (ag, wS\P;) = rﬁ” Oo,j+2 + r5~2] o,j+1+ r?} 0o, + rﬁﬂ 0o j—1+ rgs] 0o, j—2 -

Therefore,
v N DBl 4] 5]
Si(mag) = Y (S(mag),Pj)a; =ry ag+r; a;+r;3 a;,
=0
and so
5, ry
Sx(TL'll) = Rou, Rz(Z) =r + apl (Z) + Xe PQ(Z) . (5.16)

Next, on the first hand, applying successively (5.16), (1.72) and (5.14), we obtain

2
D.(Rou) = DS, (zu) = 2% 1

S.D, (7u) + %Dﬁ(nu)

2021

S.(Riu)+ %Dx(Rlu) . (5.17)

On the other hand, using (1.59) with f = U;, we obtain

U U a’—
D, (U;Ru) = (qul - O;DXU1> D,(Riu) + ' DS (R u) = EIDX(Rlu) + S.(Ru) .
Hence the following relation holds:
Uy OC2 —1
EDx(Rlu) = Dx(UlRlll) - Sx(Rlu) . (5.18)

Thus, combining (5.17) and (5.18), we obtain

1))6((1?2 —U1R1)u> —S.(aRu).
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This leads us to define

&
OC(C] +a1C1)

Y(x):=2—Bo, 9():= (R0 -11(2)R1(2))

Clearly, degy = 1, deg ¢ <2 and D,(¢u) = S;(yu). Finally, since ay = 0 = by (this is achieved by
taking n = 0 in (5.10)), and setting (without lost of generality) co := 0 and Cp := 0, we have

[5]
r ., Ci r 5 c1+a C (c2+a,Cr)Cy
a:=— 0)=— +(a“—1 = -
2¢ ( ) oc(c1+a1C1) <C1C2 ( ) C (61+01C1)C2
Similarly, we also have
b1 +a1B
'(0) = —aBy— B + By — a)B+ ——-C
¢°(0) = —aBy— B + Bo (a+)l+c1+a1C11’
by +aiB;
0)=-— a)Ci—By | — By — a)Bi+—Cy ) .
0(0) = ~(a+ )1~ B B+ Bo (o + @)y + 2 T2 )

Hence the desired result is proved.

Theorem 5.2.2 Let (P,),>0 be a monic OPS satisfying (5.10). Then the coefficients B, and C, of the
TTRR (5.11) satisfied by (P,)n>0 fulfill the following system of difference equations:

Ant2 —20dn+1+an =0, (5.19)
fnis — 20ni) +1, =0, 1y:=cn/Co=k1q"* +kog ", (5.20)
rn+3(Bn+2_c3)_(rn+2+rn+1)(Bn+1_c3)+rn(Bn_c3):O; M =thi+a,—a_1, (521)

(Fn1 +71012) (Cugr — c162) = 2(1 + @)1 (G — c162) 4 (ru—1 +12—2) (Co1 — c1€2) (5.22)
=1y [(Ba—3)? —20(By — ¢3)(By—1 —3) + (Byo1 — ¢3)?] |
(2(1 — a)(anBn +bn) — 4ﬁan>3721 + (tn1 + an1 — ans2)Bpi1Co1 + (tn + @n—1 — an-2)By-1Cy
+ |:(2an —ap12—an1)Cp1 + (2ay — ap1 — an2)Cp + (1 —20)(cp +cpr1) —4Bby,
(B2 = 8)an | By +2 by — @buss — Ban+anr +101) ) G
2 (b= b1~ Blan1 +ay+1,) ) Co = b(8— B2),
(5.23)

where B = (1 —a)c3 and 8 = (a* — 1)(c —4cyc2). Equation (5.19) holds forn=0,1,2,...; (5.22)
holds forn =2,3,4,...; and (5.20), (5.21), and (5.23) hold forn =1,2,3,....
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In addition, the following relations hold forn =0,1,2,...:

Cn = Y,
bn =Y,
an = Yu,

Bn =+ (BO - C3) (Yn-i—l - %1)7

n
cn=(by—bp_1) } (Bj—c3)+m(c3)by,
Jj=0

b, = (anfanfl) (Bj*C3)+7[/(C3/2)an,

if degn=0; (5.24)
if degmn=1; (5.25)
if degm=2. (5.26)

Proof Applying the operator S, to both sides of (5.11) and using (1.54), we deduce

Uz (Z)DXPH(Z) + ((XZ+ B)Sxpn (Z) = SxPn+1 (Z) + BySyP, (Z) + CnSxPr—1 (Z) .

Multiplying both sides of this equality by 7(z) and then using successively (1.50), (5.10), (5.15), and
(5.11), we obtain a vanishing linear combination of the polynomials P, 3, P,+2,..., P,—3. Thus, setting

thi=cy/Cpy, n=1,23 ...,

(5.27)
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after straightforward computations we obtain (5.19)—(5.20) together with the following equations:

(an+l - an+2)Bn+1 + (an —dp—1 )Bn +bui2—20aby 1+ by

(5.28)
= 2ﬁ(an +an+l) )
(an-‘rl —dp42 — tn+2)Bn+l + (an —dp—1 +tn+l + tn)Bn (529)
—ty—1Bn—1 +bn+l - 206[),, +bn—l = z[))(tn—H +th+anti +an) )
(an+l - an+2)Bi+1 + 2(1 - a)anB,% + (an - anfl)Banqu
+(bn+1 +bn_2abn+l _Zﬁan_zﬁan+l)3n+l (5‘30)

+(bny1 + by —20ab, —4Bay)B, + (an — ani2)Coi1 + (an — an—2)Cy
tCnia =201 ¢ =an(8 — B?) +2B(by+bpyi1) ,
[2(1 — at)an + 1) B2+ (ty + an—1 — an—2)B2_,
+(an —ta—1 = tat1 — An1)BuBn-1
+(bp+bp—1 —2ab, — 2Bt, —4Pa,)B,
+(bp—1+ by —20b,—1 —2Pa,—1 —2Pt, —2Ba,)B,—1 (5.31)
+(@n — an2 =tz = tar1)Co1 + [2(1 4+ 00ty + ay — an—2] Gy
—(tn2+10-1)Ca1 +Cpp1 —20C, +Cp1
= (tu+an)(8 = B*) +2B(by+bu-1) ,
2(1 — a)a,B: + [2(1 — «)b, — 4B ay,)B>
+[(2an — apt2 — an—1)Cos1 + (2an — ans1 — an—2)Cy
+ Cpp1 — 206Cy + ¢y — 2041 — 4Bby + Bay, — Say] By
+(cnt1 + anr1Cor1 — n2Ch11)Buy (5.32)
+(cn+an-1Cy — an2C,) By
+2(bn — by — Pany1 — Ban)Cn-H
+2(by — 0tby 1 — Ban—1 — Ban)Co = 2B (cn+cny1) +ba(8 — B?).

(5.21) (respectively (5.22)) is obtained by shifting n to n+ 1 in (5.29) (respectively (5.31))) and
combine it with (5.28) (respectively (5.30)) and by using (5.19)—(5.20). (5.23) is obtained by using
(5.19), (5.20) and (5.28). Now suppose that degm = 2. Using (5.11), we may write

n—1
P(z)=2"—=2"" Y Bj+wad" P+
=0

for some complex sequence (wy),>0. Using (1.65), we compare the two first coefficients of higher

power of n in both side of (5.10) to deduce (5.26). Equations (5.24)—(5.25) are obtained in a similar
way. This completes the proof.

Remark 5.2.1 According to Theorem 5.2.2, the coefficients B, and C, of the TTRR (5.11) of any
monic OPS (B,)n>o fulfilling (5.10) must fulfill (5.19)—(5.23). However, for each concrete polynomial
7 appearing in (5.10), we need to take into account some initial conditions which will be specified in

the proof of the conjecture in all situations according to the degree of ©. Indeed, for instance, it is
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clear that
Bn=C3, Cn+1:C1C2 (n:0,1,2,...),

provide a solution of the system (5.19)—(5.23) if degm = 0. The corresponding monic OPS is

Py(x) = 2" (16220, | == =0,1,2,...
=200 (572) =012,

~

where (Uy),>0 is the monic Chebyschev polynomials of the second kind. However this sequence
(Py)n>0 does not provide a solution of (5.10) (see (5.38) below).

The system of equations (5.19)—(5.23) is non-linear and so, in general it is not easy to solve it.
Nevertheless, in view of Theorem 5.2.1, an OPS satisfying (5.10) is x-classical and so the results
presented in the previous chapter will be useful to find the explicit expressions for the coefficients of
the TTRR satisfied by the OPS under analysis (see Theorem 4.3.2 and Corollary 4.3.3). We will see
that some patterns appear associated with the system of equations (5.19)—(5.23) which will allow us
to solve the system for each possible case of the degree of the polynomial 7.

Recall that from (5.20), we have

tn:é—”:qu"/%kzq*"ﬂ (n=1,23,...), (5.33)
n
where k| and k, are two complex numbers. Since ¢, # 0, for n = 1,2,3,..., then k; and k, cannot

vanish simultaneously. Recall also that we defined ¢y = Cy = 0, and so we define
to:=k +k,

by compatibility with (5.33).

5.3 Proof of the conjecture

In this section, we prove that the only monic OPS (P,),>¢ satisfying (5.10), where degnm < 2 and
subject to the condition ¢, # 0, forn = 1,2,3,..., are, up to an affine transformation of the variable,
the continuous g—Jacobi polynomials and some special cases of the Al-Salam-Chihara polynomials.
The proof will be done by considering separately the cases degm = 0, degmw = 1 and degm = 2.

5.3.1 Casedegn =0

For this case (5.10) becomes
DyP,(z) = cnPy-1(z) (n=0,1,2,...). (5.34)

As we mentioned at the introduction of this chapter, this case was solved by Al-Salam in [2] for the
case where the lattice is given by x(s) = (¢~* +¢°)/2 (i.e where D, = Z,). Here we present a different
proof without any specialisation on the lattice. Indeed, we are going to use the results presented in the
previous chapter. The following proposition holds.
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Proposition 5.3.1 Up o an affine transformation of the variable, the only monic OPS (P,),>o satisfy-
ing (5.34) are the monic q-Hermite polynomials of Rogers.

Proof Let (P,),>0 be a monic OPS satisfying (5.34). Since (5.34) is obtained from (5.10) by
taking 7(z) = 1, then a, = 0 = b,,, forn =0,1,2,..., and so, equation (5.21) reads as

tn+3(Bn+2 - C3) - (tn+2 +tn+1)(Bn+1 - C3) +tn(Bn - C3) =0 (n = O, 1727 .. ) ’ (5-35)

where, taking into account (5.20) and (5.24),

. 14¢)C; —C 410 -C
T A TR s i - N R ML = (5.36)

C, T4 2(g- 101G 2= a2 g T -GG

Again from (5.24) we have By — ¢3 = (4> — 2 — 1)(By — ¢3) and By — ¢c3 = (20t — 1)(By — ¢3). This
satisfies (5.35) for n = 0 if and only if By = c3. This equivalence is straightforward taking into account
that #, # 0 for all n, and (5.20) holds. Hence (5.24) reduces to

B,=cs (n=0,12,..). (5.37)

In addition, from (4.61) in Theorem 4.3.2 we obtain

Yot1€n  Yn€n—1
don don—2

(n=0,1,2,...).

Since e, = ¢’ (¢3) %, + w(c3) 0, we find eg = 0 (because ¥ = 0, and from (5.12), y(c3) =3 — By =0)
and so ¢, =0, forn=0,1,2,..., and consequently ¢'(c3) = 0. Then, from (5.12) we obtain b = acs.
Taking n = 3 in (5.34) and using (1.65)—(1.68), we obtain

Cy =2(20% —1)(C) — ¢162) 4 2¢1 ¢ . (5.38)

Therefore, using (5.12), we have ¢(z) = a(z—¢3)> — (a+ a)C; and y(z) = z— c3, where

2aC 20(1 — a?)(Cy —¢102)
a= -0 = . 5.39
G (202 = 1)(C1 —c12) +c1c2 (5.39)

Taking into account (5.37), and since in this case a, = b, =0 (n =0,1,2,...), (5.22) reduces to
(tar1 +1n12)(Corr —c162) = 2(1 + @)ty (Co — c1€2) + (tn—1 +122)(Com1 —c12) =0.  (5.40)

Next, define 6, := 1, + f,11 = aq"/* +bg "%, where a := k; (1 +q1/2) and b := k(1 +q_1/2). By
setting K. := (OZ(CZ —ci¢2) — 6p(C1 —¢; cz)) /(1— qil/z), we see that (5.40) reads as

01+1(Cry1 —c162) — 041 (Cp— c1€2) = 0,(Cy — ¢1¢2) — B2 (Cpm1 — €102) .
By applying this relation successively, we obtain

9n+l(cn+l - CICZ) - enfl(cn - CICZ) = Kc(l _q—1/2) .
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Multiplying this equation by 6, and applying a telescoping process to the resulting equation, we obtain

1 n
Cor1=ci02+ 6001 (C1 —c1c2) + Ke(1—g /%) 291
6n+19n =1

for eachn =0,1,2,.... Therefore,

606, (Cy — clcz)q”/2 + K, (Eq” +(b— 561*1/2)61”/2 —Eq*1/2>

_ - (nt1)/2 5.41
(ag" +b)(aqg"' +b) 4 ( )

Cpi1=ci0+
foreachn =0,1,2,.... We claim that

(cz—(1+q)cl) (Cz—(l+q_l)C1> —0. (5.42)

Indeed, suppose that (5.42) does not hold. Then, by (5.36), we would have kjk; # 0, and we may
write
Yot1 u(qn+1 — 1)

Cpip = = g2 V2 (3=0,1,2,..). 5.43
+1 tn+1 qu"+1—|—k2’ u q q (I’l g by &y ) ( )

Assume without lost of generality that 0 < g < 1. Then taking successively limits as n — oo in the
expressions for C,, 1 and q*(”“)/Z(CnH —cjy¢p) given by (5.41) and (5.43), we obtain u +kycjcp =0
and K. = 0. Now, the equality between (5.41) and (5.43) implies

21+ o) (u—krere2)kig™ 2 -k (4(1 -+ @) (u— kiera)ka — 8061 (€1 — c162) ) "
o (201 + @)~ ki )k — 8081 (Cr — c162)) =0,

for each n =0,1,2,.... This implies u —k;c;c; = 0 and 6p0;(C; — cicp) = 0. (For the case where
1 < g < oo we proceed in a similar way, taking limits as n — oo on both expressions for C,
and gt/ 2(Cpy1 — c162), and we obtain the same result.) Consequently, C,,1 = c;¢o for each
n=0,1,2,..., which contradicts (5.38). Hence (5.42) holds and so k1k; = 0.

Suppose that k; =0, i.e., C; = (1 +¢)C. Then, from (5.38), we find C; = (1 — g)¢; ¢, and so,
from (5.39), we obtain a = —1/(2u). Since b = ac3 and By = ¢3, using (4.62) in Theorem 4.3.2 we
obtain

Cor1=(1—¢"Neica (n=0,1,2,...). (5.44)

Since a, = b, = 0 for all n, one easily see that the expressions for B, and C,, | given by (5.37) and
(5.44) satisfy (5.23) and so the system of equations (5.19)—(5.23) is satisfied.

Similarly, if k» = 0, i.e. C2 = (1+¢~!)cjc2, we obtain a = 1/(2u) and

Cor1=(1—q¢ " e (n=0,1,2,...), (5.45)
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which together with (5.37) also fulfill the system of equations (5.19)—(5.23). Thus

1

0(z) = iﬂ ((z— c3)% — cic2) and W(z)=z—c3.

Hence, taking into account the TTRR (5.7) for the Al-Salam Chihara polynomials, we conclude that

n n Z— ¢ n n Z—¢ _
o =20 00la) or R =20 (500l )

so that (P,),>0 is a special case of the monic Al-Salam Chihara polynomials. As a matter of fact,
in this case, (P,),>0 is the sequence of monic g-Hermite polynomials of Rogers. Thus the proof is
complete in the case degmw = 0.

5.3.2 Casedegmr =1

In this case (5.10) can be rewritten as
(z—¢3—1)DyPy(z2) = bpPy(2) +cnPr1(z) (n=0,1,2,...), (5.46)
where r € C. We start by stating a preliminary result.
Lemma 5.3.2 Let (P,),>0 be a monic OPS satisfying (5.46) and (5.11). Then
(CzC] - q*1/2c1c2> (CzC] —q'/ 2c1C2) ~0. (5.47)

Proof Since (PB,),>o satisfies (5.46), then a,, = 0 for each n =0, 1,2,.. ., hence (5.35) holds, and by
(5.20) and (5.25), we have

_ oG —q 216 G —q'%e1G

Cn _

c, (5.48)

Suppose that (5.47) does not hold. This means that k1k; # 0. Taking successively n =1 and n =2 in
(5.46), and using (5.11), (1.65)—(1.68), we have by = 1, b, =2 and

r+e¢a=By—ci,
cy = (206 — 1)(31 + By —263) —2ar,
(r+c¢3)(By +Byo—2B) = —c2By+2a(ByB; — Cy) .

Hence, the first equation, and the one obtained from the last one (using the two previous ones) give

c
ci=By—c3—r, 31:c3+(2a—1)(30—c3)+2a?:. (5.49)

We claim that

By— oy OVS) i w(e) 20 (n=0.1,2,..). (5.50)

Inln+1
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Indeed, writing (5.35) as #,43(Bn+2 — ¢3) — thi1(Bnt1 — €3) = tyi2(Bys1 — ¢3) — (B, — ¢3) and
proceeding in a recurrent way, we find by setting K}, := <t2 (By —¢3) —to(Bo — C3)) J(1—q1/2),

tni3(Bnia — €3) = ty1(Bugp1 —¢3) + Kp(1 — gV 2). Multiplying both sides of this equation by #,,>
and proceed again in a recurrent way, we obtain

B, =c¢3+

Iht1ln

<t0z1(30c3)+1<;,(1 —q %) sz> , n=0,1,2,....
j=1

Then

tot1 (Bo — ¢3)q"* + K, (k1q" + (ky —k1g~ 1) g"? —kzq_l/z)

(}’l+1)/2 5'51
(k1q" +ka) (k1g" ! + k) 1 ’ G0

B, =c+

forn=0,1,2,.... Without loss of generality, we assume 0 < g < 1. Since k; # 0, then we obtain
lim,, 0 g /2 (B, — ¢3) = —K} /ky and consequently we have K, = 0 by applying (4.67). This holds
because the condition d — 2au # 0 in (4.67) is fulfilled in the present situation. Indeed we have for
the present case d =1 anda=a. Sod —2au=1—-2au = 2q‘1/2k2/t1 #0. (For 1 < g < oo, we
proceed in a similar way using the fact that d 4+ 2au = 14 2au = 2¢"'/%k, /t1 # 0 and (4.70) to show
that K, = 0). This implies that B; — ¢3 = to(Bo — ¢3) /f2. If By = ¢3, then we find B; = ¢3 which is in
contradiction with the second equation in (5.49). Then (5.50) is proved.

Note that, from (5.13) and using (5.48), we obtain

C t k 1/2_k -1/2
0l o 5] o — 19 24

= — 5.52
a4 c1G 1 2uty ’ ( )
since a, =0, forn=0,1,2,... and u~' = ¢'/2 — g~1/2. Using (5.50), we obtain

n—1
t1(Bg—c¢3)V
S, =Y (Bj—c3):1<0t3)y (n=0,1,2,...) .
=0 n

Thus using (4.66) we have
151 l[/(t3)d2n,2 =1, (¢/(C3)}/n,1 + I[/(C3)O£n,1) (n =0,1,2,.. ) .
This gives the following equations:

(2auty +kag ' ?)y(c3) = 2ukig"/%¢' (c3) ,
(aut; —kig'?)w(c3) = 2ukag™"?¢'(c3) .

Taking into account that k&, # 0 and using (5.52), this implies that

W(ea) 200 ()| + |y(es) — 2u9'(e2)| = 0.

which is impossible because we proved in (5.50) that y/(c3) # 0. This concludes the proof.
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Proposition 5.3.3 Up to an affine transformation of the variable, the only OPS (P,),>o satisfying

(5.46) are the (special) monic Al-Salam Chihara polynomials (5.7) with parameters ¢ and d both

nonzero and satisfying c¢/d = g*/2.

Proof Note that (5.47) is equivalent to k1 k; = 0. Suppose that k; = 0. Then by (5.48), we have
th =kog "%, forn=0,1,2,..., where k, = ql/zcl/Cl. We claim that

B,=cc+(Bo—)g"=c+(r+ci)g", n=0,1,2,.... (5.53)
Indeed (5.21) reduces to

g (Buiz— )+ (1+¢"?)(Bus1 — 3) +q(By—3) =0, n=0,1,2,... .

1/2

Note that g and ¢g'/“ are the solutions of the associated characteristic equation (for the discrete variable

B, — ¢3), hence we find
Bn:c3+vq”+sq”/2, n=0,1,2,..., (5.54)

for some v,s € C. Moreover, since k; = 0, from (5.52) we have a = —1/(2u). Hence, by (5.12),

¢(z)=—i((w%u)(z—Bo>+2uq—1/zcl) and y(z)=z—Bo. (5.55)

Therefore, using (4.61) in Theorem 4.3.2, we obtain
By =c3+q D2 (Zau(b —ac3)(q" — 1) +¢"/*(Bo — Cg)) ,n=0,1,2,.... (5.56)

Comparing both expressions for B, given by (5.54) and (5.56), we find s =0, b = ac3z and v = By — ¢3.
Hence using the first equation in (5.49), (5.53) follows. As consequence, taking n =1 in (5.53) and
comparing the result with the expression for B; given by (5.49), we obtain

Ci=(q"*=1)(r+ci)er . (5.57)

Since C,, = ¢, /ty, from (5.25) and (5.53), we find

C r4cy
Cop1=—— (1—¢") (r— 14+4¢%0/2)) 0 n=0,1,2,.... 5.58
Taking into account that is a = —1/(2u) and b = ac3, using (4.62) in Theorem 4.3.2, we also have
n+1 n Cl n _
Cop1 = (1—¢"") clcz(l—q)—qu , n=0,1,2,.... (5.59)

If ¢; = rq'/? then (5.58) becomes C,, 1 = Ci (1 —¢"*1)¢q" /(1 — q) which is incompatible with (5.59),

1/2

since ¢j¢p # 0. Then ¢ # rq' /. Comparing the expressions for C,, given in (5.58) and (5.59) yields

(1+4'?)c

Cl :(l_q) cl—ql/zr

€1 . (5.60)
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Therefore combining this expression of C; with the one given by (5.57), we see that »+ ¢ is a solution
of one of the following quadratic equations

22— (14+q¢ ") e1Z=2(1+ a)erea =0 (5.61)
7 —(14+4¢"*)rZ+2(1+ a)g"*c1ca = 0. (5.62)

Suppose that r+ ¢y is a solution of (5.61). Let ¢ and d be two complex numbers defined by

(e.d) or (d.c) € a—vVA ¢ —vVA ci+VA o +VA
’ ’ 2\/C1C2 ’26]1/2\/C1C2 ’ 2\/C1C2 ’26]1/2\/C1C2 ’

where A = ¢ +44¢'/%¢;cy. Note that cd # 0. Set Z; := \/ciez(c+d) and Z := —/cica(¢™' +d~!). Then
Z, and Z, are solutions of (5.61). (If ¥+ ¢; is a solution of (5.62), in this case we define ¢ and d by

(e.d) or (d.c) € r=vA r—vA r+vVA  r+VA
c, or(d,c 2q_1/2m72m ’ zq—l/zmvzm )

where A =r? —4c¢ic,. Then cd # 0. We set Z; := Veaa(c+d)and Z == ql/z\/ﬁ(c’1 +d"). SoZ; and
Z, are solutions of (5.62).) Then without loss of generality we may set r+c¢; = Z; = /¢i¢2(c+d)
andso Z +2Z = (1+q "/?)cy (or r+c; = Z; and so Zy + 2, = (1 +¢'/?)r, if r+ ¢ is a solution of
(5.62)). This implies

14cdg='/? cd—1

=(crd)Vae o5 a=(crd)Van 0.
r (C+ )mcd(l_‘_qfl/Z)’ ‘1 (C+ )mcd(l—l-q*l/z)

Hence (5.60) (or (5.57)) becomes C; = (1 —q)(1 —cd)cqcp. As a consequence we obtain from (5.58)
(or (5.59)) and (5.53) the following

Bn:c3—|—vc1c2(c+d)q", Cn+1:CICQ(I_anrl)(l_qun)? I’l:O,172,... y (563)
together with k, = ql/z% = %. So, (5.55) becomes
1
0(z) = ~o ((z— )2 — Ve (c4d)(z—c3) +2(cd — l)clcz) . W(z)=z—a—/alc+d).

(For the choice r+ ¢ = Z,, when r+c is a solution of (5.61), we find C; = (1 —¢q)(1 —c~'d )cjco,
and we obtain B, = ¢3 — \/@(c_1 +d Ng" and Cpp = cic2(1 — g™ M) (1 —c~'d~'q"), for each
n=20,1,2,.... These coefficients B, and C,, | give essentially the same OPS as (5.63), but with the
parameters ¢ and d replaced by —1/c and —1/d, respectively. Similarly, for the choice r+¢; = Z,
when 7+ ¢y is a solution of (5.62), we find C; = (1 —¢q)(1 —c~'d~'q)cic, and therefore we obtain
B, =3+ erea(c ' +d g% and Cpyy = cre2(1 — ¢ ) (1 —c'd g, for n = 0,1,2,....
Again, this gives essentially the same OPS as (5.63), but with the parameters ¢ and d replaced by
ql/ 2/c and ql/ 2/d, respectively.) Using (5.63), equation (5.22) now reads as

g (14+¢"*)(Cuy1 — c162) = 2(1+ @) (Co — c162) +q(1+ ¢~ /2)(Cot — c102)
=2c1c0(a—1) 20+ 1)(c+d)* >, (5.64)
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for n =2,3,.... Noticing that c?+d?* =20cd, it is not hard to see that the obtained B, and C,, in
(5.63) satisfy (5.64). Equation (5.23) in this case (a, =0, forn =0,1,2,...) reads as

2(1 — Ot)bn(Bn — t3)2 + (1 - 20()(Cn +Cn+1)(Bn — C3) + Cn+1 (Bn+1 - C3) + Cn(Bn_1 — C3)
+(bp = bpy2) (Cog1 — €162) + (by — bp—2)(Cy —¢1¢2) =0, (5.65)

where ¢, = 1,C,, = kgq*"/ 2c,, forn = 1,2,.... Similarly one can check that (5.65) is also satisfied
and, therefore, the system of equations (5.19)—(5.23) is fulfilled.
In a similar way, if k, = 0, we obtain

1

:ﬂ((z—c3)2_\/@(c+d)(z—u)+2(cd—1)c1c2>, W(2) =z2— i —Vaalet+d),

#(z)
and since the condition ¢ + d? — 2a.cd = 0 holds, we obtain

Bn:C3+\/C1C2(C+d)q_n, Cn+1:C1C2(1—qu_n) (l—q_n_l), n=0,1,2,...,

as solution of the system of difference equations (5.19)—(5.23). Hence

e —c
P.(z) = 2”(c1cz)”/2Q,, (;\/%;c,d‘q> or P,(z) = 2”(c1cz)"/2Qn (ZZ\/%;c,d’q”) , (5.66)

forn=0,1,2,..., with > +d?> —2acd = 0, i.e. ¢/d = ¢*'/*. Thus the proof is concluded.

Remark 5.3.1 From the result obtained in (5.66) we have the following particular case. Let Y
be a complex number. Taking ¢ = ¢*"tV)/* and d = g213)/* (respectively ¢ = ¢*"+3)/* and d =
q(27+1)/4), we have c¢/d = q_l/2 (respectively ¢ /d = ql/z) and so we obtain the Continuous q-Laguerre
polynomials with the parameter y (see [34, p.514]).

5.3.3 Casedegn =2

In this case we rewrite (5.10) as
(z—ce3—r)(z—c3—5)DyPy(2) = (anz+bn)Pi(2) +cnPr-1(z) (n=0,1,2,...), (5.67)

where r,s € C and ¢,, # 0 forn =1,2,3,.... From (5.26), (5.20) and (5.21) we obtain

n—1
an="Yor bn=—="1) ) (B —3) = (r+s+3)%, (5.68)
k=0
Cn _ e2Cr—q V%e1C e2C1 —q'%c1C,
ty= 2 =kigd""? + kg "?, where ki = R B Sd e 5.69

Fn=th+Y%— Y1 = aq"? —{—Eq*"/z, where a = kj +u(l —qil/z), b=k — u(1 —ql/z) , (5.70)
forn=0,1,2,..., ul= q1/2 — qil/z. Recall that 7y = k; + k> and so, we also define by compatibility

ro =Ga+b.
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Lemma 5.3.4 Let (P,),>0 be a monic OPS satisfying (5.67). Then
ab(1—2au)(1+2au) £0, (5.71)

where a, b are defined in (5.70) and a is given in (5.13).

Proof Assume that (5.71) does not hold. Suppose, for instance, that @ = 0. Then (5.70) reduces
tor, = Zq_”/z foreachn =0,1,2,.... Then (5.21) becomes

g Buir—3)— (¢ +q ) (Buy1 —3) + (By—c3) =0, n=0,1,2,....

1/2

Noticing that ¢ and g'/~ are the solutions of the associated characteristic equation (for the variable

B, — ¢3), we may write
By=c3+ro(1—q"*)g"*+s0(1-q)q", n=0,1,2,..., (5.72)

for some complex numbers ry and sg. From (5.13), we also have

2aC,)C 1 1o
oo 2t200)G  M4n L, 1 (5.73)
(c1 +C1)Cy r 2u - pg1/2

From (5.72), we obtain S, = Y~ (B, — c3) = ro(1—¢"/?) +s0(1 —¢"), for n =0,1,2,.... We then
apply (4.66) to obtain

(roq”/z—l—soq"—ro—so)dzn: Yorien (n=1,23...). (5.74)
Taking into account that in the present context

2y = (14 2au)q" + (1 —2au)g™, 2, = <1//(C3) +2u¢'(C3))q”/2 + (W(Cg) — 2u¢’(c3)>q*"/2 ,

forn=0,1,2,.... Itis not hard to see that (5.74) implies rop = 0 = s as well as Y(c3) = 0= ¢'(c3).
Hence
By=c3 (n=0,1,2,...).

In addition, using (5.12), we obtain b = ac3. Next we apply (4.62) in Theorem 4.3.2 (with a given in
(5.73), b = ac3 and By = ¢3) to obtain

(=g (B=q") (162 (¢ +B(1= ") + (g +B)Ci — ge1c)q"
(B_q2n)(B_q2n+2) ’

Coir = (5.75)

forn=0,1,2,...,withB=g¢ +E(1 —¢q), while (5.22) reduces to the following equation

(@ +q ) (Cop1 —c1e2) = 2(1 4 &) (Co — c162) + (¢'* + ) (Comt —€162) =0,
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for n =2,3,.... Again we observe that ¢ and ¢'/2 are the solutions of the associated characteristic
equation (with the variable C, — ¢;¢y) and so we may write C, 1] = ¢¢ —|—?0q”/ 2 +50q", for n =
0,1,2,..., with 79,50 € C. This is incompatible with (5.75) and so a # 0. The case b =0 can be
treated similarly.

Assume now that 1 + 2au = 0. Then since

14m
a= —
ri

)

we obtain a = —uq_l/ 2 = 0. On the other hand, we use (4.61) in Theorem 4.3.2 to obtain

BO—C3)
)

1
B, = c3+fq"(1+q_l)<(2[m—i—t,3)(q”— 1)—1—21 p—

2
forn=0,1,2,.... This satisfies (5.21) if and only if b = acz and By = ¢3. So B,, = ¢3. Taking into

account this, (4.62) in Theorem 4.3.2 gives

C
Ca1 = (1 —an)((l —qn)tlchrﬁQ") (n=0,1,2,...).

This does not satisfy (5.22) since a # 0 and B,, = ¢3. Hence 1 + 2au # 0. The case 1 —2au = 0 can
be treated similarly. Hence the proof is concluded.

Proposition 5.3.5 Up to an affine transformation of the variable, the continuous monic Jacobi

polynomials are the only OPS satisfying (5.67).

Proof Taking successively n = 1 and n = 2 in (5.67) using (5.11) and (1.65)—(1.68) we obtain
the following:

By=bi+r+s+2cs3, C]Z(Bo—C3—I”)(Bo—C3—S), (5.76)
by =(2a—1)(Bop+B; —2¢3)—20(r+s+c3), (5.77)
(r+c3)(s+3) (21 = @)es = Bo — Br ) = —2Bo +ba(BoB1 — 1) (5.78)

Cy) = bz(B()-FB]) —2OC(B()B1 —Cl) — (r+s+2c3) <2(1 — OC)C3 — By —Bl) —|—20£(l"+ C3>(S—|—C3) .
(5.79)

Solving (5.21), with the same technique used to obtain (5.51), we find
ror1 (Bo— ¢3)¢"* + K, (67q" +(b—ag'?)q"? —Zq’l/z)

B,=c3+ gtz (5.80)

(aq" +b)(ag™' +b)

forn=0,1,2,..., where Ky := <r2(B1 —¢3)— ro(Bo — c3))/(1 —¢?). Since @b # 0 (see (5.71)),

assume that 0 < g < 1, then lim,, q_”/z(B,, —c3) = —I?b/g. Then using (4.67), we obtain K,=0
since 1 —2au # 0 (also given by (5.71)). If 1 < g < o, then we obtain the same result using (4.70)
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and the fact that 1 +2au # 0 (given in (5.71)). Hence (5.80) reduces to

ror1(Bo — ¢3)

B,=g3+——= (n=0,1,2,...). (5.81)
Tnln+1
It is not hard to see that
n—1
B —
Sn:Z(Bj—q):w (n=0,1,2,...) .

j=0 Tn
Comparing this with (4.66), we arrive at r; Y(¢3)da, = rpy1€,, forn=1,2,3,.... This implies

(2aury +bg )y (e3) = 2aug"?¢'(c3) (5.82)

(2aur, —ag"?)y(e3) = 2bug "¢/ (c3) . (5.83)
If ¢'(c3) = 0, then from (5.82)—(5.83) we obtain riy(c3) = 0. But from (5.14) we obtain 0 #
c1+aCy =rCy,ie. r; #0. Then we have y(c3) = 0. (Conversely, if y(c3) = 0, then taking into
account (5.71), we obtain ¢’(¢c3) = 0.) So By = ¢3 and b = ac3. With these informations we use
(4.61)—(4.62) in Theorem 4.3.2 to obtain
B, =cs, (5.84)
(1—4¢") (Zauf 1—(1 +2au)q"_1> {u(Z(aJr )Cy 74ac1c2)q” +cc <2au— 1+ (2au+ l)qzn)]

<2au —1-(1+ 2au)q2"*1> <2au —1-(1+ 2au)q2"+1>

Cn+l =

)

(5.85)

forn =0,1,2,.... Also taking into account (5.84), (5.22) reads as
(a1 + 1ng2) (Cog1 — c162) = 2(1+ 0) 1y (Cr — c162) + (rp—1 +14—2) (Ch1 —c1c2) = 0. (5.86)

This equation is of the same type as (5.40) (with #, replaced by r,,) and so from (5.41), we may write

~ o~

0061 (C —¢102)¢"> + K. (67q” +(b—ag~'?)g? —Zq‘l/z)

—— = g™t (5.87)
(ag" +b)(ag"+t' +b)

Cip1=cie0+

forn=0,1,2,..., for some complex numbers @0, 51 and K,.. Taking into account (5.71) one may see
that (5.85) and (5.87) are not compatible. Thus ¢’(c3) # 0. This implies that the following holds:

rl(Bo—c3)(aq1/2—Zq*1/2> £0. (5.88)
Hence solving (5.82)—(5.83) we obtain

L (ga/b)
1+ (ga/b)

_ 1+(qa/b)?
2u(1 _ (qa/Z)Z)

= . By =c3+2u¢’(c3) (5.89)

Indeed the expression of By is obtained by subtracting (5.82) to (5.83), and combining this with one
of equations (5.82)—(5.83) yields the expression of a. Considering a, b, By and C as free parameters,
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let us define without loss of generality two complex numbers a and b such that —g%/2 and ¢*/? are

solutions of the following quadratic equation

_ 1/4 a
2y nBoow)d , d (5.90)
b(1+4q'/%)\/c1cz b
Then we have the following
qa/Z_ b/2 _ I‘](B()—C3)ql/4 . (5.91)
b(l +q1/2\/C1C2)
glatt)2 = —% . (5.92)

On the other hand, re-writing (5.90) as

<Z+ rl(Bo—Q)‘Il/z_\/K)(ZJr rl(Bo—Cz)ql/er\/K) o
qu1/4(1+ql/2)m 2bq1/4(1+q1/2)m ’

where A = g(By — ¢3)*r7 — 4abq' 2 (1+¢"/?)2¢;ca, we find

(2 Py e ) (AL )g P VeaG - n(Bo—e)g!+ VA
7 ri(Bo—)g' 2 VA" 2b(1+¢/2)g' 4 /e, )

2&(1+q1/2)q1/4m ~ r](B()*C3)q1/27\/Z 59
rn(Bo—a)g!2=VA" 2b(1+¢'P)g A ean ) [ '

Hence

1_|_qa+b+2
Rl
Ve (l+4'%)q (g —4"?)
1 — gla+b+2)/2 )
(14 go++2)e; mq3/4(qa/2 _ qb/l)q(a+b+2)/2
2u(1 _ qa+b+2) u2(q1/2 _ 1)(1 _ qa+b+2)(1 _ q(a+b+2)/2) ’

By=c3+

b=

Indeed, the expression of a is obtained by putting (5.92) in the first equation appearing in (5.89), the
given expression of By is obtained by combining (5.92) and (5.91) and the given expression of b is

obtained by using (5.12) and the second equation appearing in (5.89).

Note that (5.70) can be written using (5.92) as
Tn = 79\(1 — q"+(“+b)/2)q_"/2 (n=0,1,2,...), (5.94)

and also since ¢, = r,, — a,, + a,,_1, we obtain

1
- 1 _|_q71/2

=

[1+q<2"—‘>/2—2(1+q—‘/2)(1—q"+<a+b>/2) g (n=0,1,2,...). (5.95)
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Therefore (5.81) becomes

_ (a+b)/2\(,a/2 _ b/2\ n
_ 1/4 12\ /—— (1—¢ )(q 9" )q
Bi=e+q " (1+q ") Vae (1 — qrratd)[2)(] — g@ntatbt2)/2)

= +Voo ( (Qat1)/4 | g=QatD)/a —yn(a,b)—zn(a,b)) : (5.96)
forn=0,1,2,..., where y,(-,-) and z,(-,-) are given in (5.4). Taking into account what is preceding,
(5.12) becomes

gt 2, 1/4 12 ("% —q"?)
¢(z) =— W( 3)°+q " (1+q 77 )Va szu(1+q(a+b+2>/2)(z—c3)
2(1 + a)q(a+b+4)/2(qa/2 _ qb/2)2 L/ 1 _qa+b+3
Tae b+2 bzzz_i/ 2 Cls
u(lfqa++)(liq(a++)/) 1 — gatb+
(¢**—¢"?)
v =z-0 —q1/4(1+q1/2)vclc2m '

Let u be the regular linear functional with respect to the monic OPS (P,),>o. Using Theorem 4.3.1,
the regularity conditions for u are given by

C]CZ(I _qn+a+1)<1 _qn+b+1)(1 _qn+a+b+l)cl 7£ 0 (l’l — 0, 172’) .

Also by applying (4.61)—(4.62) in Theorem 4.3.2, we obtain the same expression for B,, and

l/zucl( (u+h+3)/2)( q(u+h+2)/2)2(1 _qn+1)(1 _qn+a+h+1)(1 _qn+a+1)(1 _qn+b+1)
(1 _ a+1)(1 _ b+1)(1 +q(a+b+1)/2)(1 7q(2n+a+b+1)/2)(1 _ q(2n+a+b+2)/2)2(1 _ q(2n+a+b+3)/2) ’

Cn+1 =

forn=20,1,2,.... Using a computer system (Mathematica for example) it is not hard to see that this expression
of C,+1 together with (5.96) satisfy (5.22) if and only if

(1=q)(1 =g (1 =" ) (1 +4\0+D2)

Cr=cco (1 = glatb+3)/2) (] — glarb+2)/2y2

Alternatively, the given expression of C; is obtained by taking n = 2 in (5.22) using expressions of C, and C3
computed from the previous expression of C,1; and therefore we remark that (5.22) holds for eachn =2,3,....
Consequently we obtain

creo(l— qn+l)(1 _ qn+a+b+l)(1 —q"*”“)(] B qn+b+l)
(1 — gQntath+1)/2)(1 — gRrta+h+2)/2)2(] — g2nta+h+3)/2)

Cry1 = (5.97)

= 4clc2yn(a7b)zﬂ+l(aab) )
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forn=0,1,2,..., where y,(-,-) and z,(-,-) are given in (5.4). Taking into account that ¢, = 1,C,, we use
(5.76)—(5.79) to obtain the following system

bg~ 2 (1= g2\ Cy 4 (r+ 54 2¢3)By — (r+c3)(s+¢3) =B34+ C)
bg ' (1 — g /2)\ByCy — (r+ c3)(s+¢3)(Bo + By — 2B) +2a(BoB1 — C1)(r+ s+ 2¢3)

— (BoB; — 1) [2ac3 +(2a—1)(By+B) — 2@)} +(2a—1)ByC ;
bg ' (1— g9y —20(r+ ¢3) (s +¢3) + (r+5+2¢3 — By — B)) ((2a —1)(Bo+ By —2c3) +2aCs)

= 2(X(C1 —B()Bl) + (206— l)Cz .

Solving firstly the above system for b, r -+ s+ 2c3 and (r+ c3)(s -+ ¢3), and secondly the obtained result for r
and s, we obtain

E: uq]/2(1 +q—(a+b+2)/2) ’
and

(r,5) or (s,7) € {( /TCZ(CI(ZWH)/AL+q7(20+])/4)7 _ /TCZ(q(ZbH)M+q—(2b+l)/4))} _
S0 (5.94) and (5.95) become

= l/t(l +q7(a+b+2)/2)(1 _qn+(a+b)/2)q(lfn)/2

)

ty = M(l _~_q7(a+b+l)/2)(1 _qn+(a+h+l)/2)qfn/2 7

foreachn=0,1,2,.... Using (5.96), (5.68) becomes

(1+qn+a+b+l/2) B

by =/ CICZ(CIG/2 - qb/z)?’nmq (Qa+26+1)/4 _ 3% (5.98)
foreachn=0,1,2,.... Also, since ¢, = t,C,,, we obtain

(1 7qn+a)(1 7qn+b)(l 7qn+a+b)(1 +q—(a+b+1)/2)

(1 _ qn+(a+bfl)/2)(1 _ qn+(a+b)/2)2 ) (5.99)

Cp = —CC2VW

forn=0,1,2,.... Finally, using Mathematica for e.g., (5.96), (5.97), (5.98) and (5.99), we see that (5.23) is
also satisfied. Thus the system of equations (5.19)—(5.23) is satisfied.
Notice that (5.89) can be also written as

1—(q'b/a)
1+ (g 'b/a)

1+ (¢ 'b/a)>

= , Bo=c3—2u¢’
2u<1f(q—13/7i)2) PTam el

Proceeding similarly with the same parameters a and b as defined in (5.93) we obtain the same results with g
replaced by g~ '. Hence

ey 2B (E5 _ (eey) 2B (E |
Pn(x) 2 (C1C2) P, (zm 6]) or Pn(x) 2 (CICZ) P <2mq >,

where ﬁ,,(“’b) (+]g) is the monic continuous g-Jacobi polynomial defined in (5.4). This concludes the proof.






Chapter 6

Some future directions of research

In this short chapter we introduce some future directions of research problems.

I. Several authors have focused their interest on OPS with respect to Sobolev inner products. The
subject is interesting not only from a theoretical point of view, but also since this issue, for instance,
brings an important tool in the framework of Approximation Theory. Indeed, this was the main
motivation that lead Iserles, Koch, Norsett, and Sanz-Serna [25] to introduce the notion of coherent
pairs of measures about 30 years ago. Chapter 3 concerns to new extensions of the notion of coherence.
Nevertheless, no connections with Sobolev OPS is considered therein. The study of such connection
leads to a challenging research problem.

IL. In Chapters 2 and 4 we analyzed regularity conditions for moment linear functionals solutions of
a functional equation related with the D o —classical OPS and the x— classical OPS. Such functional

equations are of the form
D(¢u) = T(yu), (6.1)

where ¢ and v are nonzero polynomials such that deg¢ < 2 and degy = 1, D is an analogue of the
derivative operator, and T is another operator. The problem is to determine necessary and sufficient
conditions for the regularity of u, and to give explicit expressions for the coefficients of the TTRR
satisfied by the associated monic OPS. Under the regularity of u, it would be interesting to give the
classification of the solutions of the above functional equation, as well as of the associated OPS.
Notice that the problem deserves analysis even whenever D = D, and T = S;.

III. It would be interesting to consider the analogue of II in the framework of semiclassical OPS.

IV. In Chapter 5 we solved a conjecture that leads to a characterization of the continuous g—Jacobi
polynomials and of certain special cases of Al-Salam-Chihara poynomials as the only OPS that satisfy

an algebraic structure relation such as
7T (x)DyPy(x) = (anx+by)Py(x) + chPr—1(x) (n=0,1,2...),

where 7 is a polynomial of degree at most 2, and x = x(s) is a g—quadratic lattice. It would be

interesting to consider the analogous problem for a quadratic lattice.
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V. To seek more applications for the developed theory, as we made in Chapter 5. It is worth
mentioning that OPS come up in very attractive problems, for instance, in Physics, Operator Theory
(Jacobi operators), Random Matrices, PDEs, and Number Theory.



Appendix A

Rodrigues-type formulas

A.1 A Rodrigues-type formula for (¢, w)-classical OPS

Here we provide details on how to obtain (2.45) from (2.40) and (2.41). For this purpose the following
identities are useful

Ll
— 1 _|_ 2 1 — 2 4q = s Al
S 7 P T (A0
=1y [n+1]
2] 1 — = ) A2
(’I[ ]q [n]q71 [n]q ( )
— 1],
—[n— Z]qqu” + [Z]q—l [n— l]q—l — q’”w =1, (A.3)
[n](fl
Q[n_ l]qdn—l +dy1 = [n]qdn ) (A.4)
forn=0,1,2,.... So from (2.40), we may write
knd2n72A(X;n) =N (n)x+Y2(n) ) (A.5)

where, taking into account (A.1),
[n - 1]q*1 q "dawndon—1
[”]q*]

2-n = 1]g
=g~ "dudy—1 <—1 +2l 1 —qg T
1 [n}q‘l

Yl(n):—

+ [z]q" qz_ndananl - qz_”dgndgn,l

ql_nd2nd2n71

[n]tfl

)
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and by using also (A.2)—(A.3), we obtain

[l’l - 1] ~1 dondoy—

YZ(”) = <q[2]q1 — M?) endop_1— T21 1

q- n—
—-n —n [I’l— 1] —1[11}
Y R I .
n,

,dan—1€n dondan—

_ it lgdoien A,
[l dyp—>

Therefore, from (A.5) and using the first identity in (2.44), we arrive at

k! =1 ndon— 1 don—1en dondoy,
A(X;n) == 1 2 1x+ [n+ ]q 1€ — Wdopdrp—1 — #enfl
dry—> [n] 4 [n]y dry—>
-1
_ knJrld"*1 4 [n+ l]qen . [n]qe”*1 . (J)[n]q _
[n]qflen -2 dzn dgn_g

Hence the expression of A(x;n) in (2.45) follows taking into account that [n], = ¢"~'[n],-1. Now,
from (2.41) and using (2.34), (2.43), (2.35), and (2.42) (with n replaced by n — 1), it is not hard to see
that B(x;n) reduces to the following constant polynomial

kn—1Bn(x;n)

qd,] = (CdZn + qen(en—l - (1)(1 + q)qin[n - l]qun—l) + wquindanZn—l [n - l]q[n]qfl )dZn—Z
2n—2

_ €n— _
— (e,,_l — wa n[”l — 1]qd2n—2) ((1 +q>end2n—l —dopdon—1 dzn 12 — (D[l’l]qql ndzndzn_l) .
e
(A.6)

Taking into account (A.4), (2.33) and the identity [n], — [n— 1], = ¢ (forn=0,1,2,...), we obtain

successively

gk, =
B(x;n) = —— | cdondan—r — danen—1(en — 0drn_1) + dondrn—1——
don—2 don—2
gk, o
— Il (cdzndznz - dZnenfl (b + qenfl) + dz"dZ"*I " )
-2 Dn-2
1 2
gk, =
= Tt <cd2nd2nz — bdye, -1 +ady, " )
2n—2 2n—2
— €n—
2n—2

Hence using the second identity in (2.44), the expression of B(x;n) in (2.45) follows.



A.2 A Rodrigues-type formula for x-classical OPS 99

A.2 A Rodrigues-type formula for x-classical OPS

Here we give some key steps on how to obtain (4.48)—(4.49) from (4.46)—(4.47) and (1.81)—(1.82).
For this purpose we remark that, from (4.15) and (4.16), the following identities hold:

ad" VN =dy,  — ady, s, (A7)
il =e, — ae,_ i —2c3a" 1, (A.8)
don —20dyy 1 +doy2 =0, (A9)

for eachn =0,1,2,.... From (4.39), (4.44), and (4.34), and applying (1.81)—(1.82) and (A.8), we

obtain

don
(Taoy")(e) = (e = 3) +eu (A.10)
o1 [ aPdondon—1 (04— + L0y,
(Th—118)(zn) = yn11< = lc(xz 21 2)(z—c3)+2a3end2n,1 , (A.11)
o o(odry,—1 —doy) (01 + 00y, —
(Tn—l,lnz)(ZQrt)zg 2( (@doy-1 2()63( ! 2)(z—c3)+a(en1—ae,,)>. (A.12)
n— n—2

Similarly, the relation

o (otdpy—1 — dan) o(en—1 — Oey)

(z—)*+ (z—c3)+m(en)  (A13)

(Th—1,1m2)(zsn) =

Oy—10—2 Opn—1
4a(1 — a®) Y1 (adoy—1 — d
4 ( )}’n 1( 2n—1 2n)C1C2,
02
holds, as well as
3 3
o dy,_1d, 2007 e, doy—
(To11&) (zn) =—21220 (7 — )2+ =222 (o) 4+ & (easn) (A.14)
Op—10,—2 Op—1
402 (1 — a®)y,_1dop_1d
+ ( )Yn 142n—1 2nC1C2,
Op—2

foreachn =0,1,2,....

Now, firstly, we use (A.10), (A.11), and (A.12) together with the identity o, + @Y, = V41
(n=0,1,2,...) to see that from (4.46) we have

1 €n—1 e, 20y, — dop
A(zn)=—(z—c3)— +oe,———mmm
" ( ) Tn ( 3) d2n—2 yndZn ' d2nd2n—2
1 €n—1 Yat1€n
= —(Z—C¢)— s
Yn ( ) d2n72 '}/ndZn

for eachn =0,1,2,.... Hence (4.48) holds.



100 Rodrigues-type formulas

Secondly, from (A.10)—(A.14), it is straightforward to verify that (4.47) reduces to

(don — Otdpp—1)&a(c35n) n a(oe, —e,—1)e,—1
odrnday 1 dyn—2
2052(0“127171 - dZn)enenfl
dondon—2 '

&B(z;n) = M2(c33n) +

From the definition of & (.;n) and 1n>(.;n) given in (4.38) and (4.42), it is easy to verify that
§(C3;l’l) :az(enenfl+¢[n_l](c3)d2n)> 772(C3§”) :_a2¢[n—1](c3), n:07112>"' .

So, by using (A.7), we obtain

dﬂ* — n n—
£.B(zin) = —a 22 gl ”<c3>+aen1< e _ ¢ 1)
on—1 dy—1  dy

foreachn =0,1,2,.... Then by using successively (A.7) and (A.8), the following holds:

(Xz’}/ d2 d2 _2 62 €n—1
B : — nt2nt2n d B n—1 _ n [nfl]
(Z I’l) d, 2n ld%n,Z €n doy 2 +¢ (Q)
2Yudondin . -

= 706 Yr2n2n—2 ((l[nil] —|—Otd2n72) egil — (b[nil] + oe,— —I—ZC3a["71]) En1 +¢[”71](C3)
dp—1 a3, dan—

_ az}/ndanZn72¢[n71] (C’«} _ €n—1 )
dn_1 T odyea)

Hence, (4.49) follows.
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