

Kevin Martins Carvalho

PRIVACY AND LOCATION IN IOT

Dissertation in the context of the Master in Informatics
Engineering, Specialization in

Communications, Services and Infrastructures, advised by
Prof. Jorge Granjal and presented to

the Faculty of Sciences and Technology / Department of
Informatics Engineering.

June 2021

Acknowledgements

Firstly, I would extend my sincere gratitude to Dr Jorge Granjal for all the guidance
throughout every stage of this thesis. His relentless help and knowledge were key factors
in the elaboration of this work.

I would also like to thank my family and girlfriend for their support during all these months,
especially at this moment in human history that we are facing. I am grateful to all my
friends and university colleagues for all the direct and indirect support.

I sincerely appreciate all the work that the academic community performs to formulate
new ideas and solutions to improve our society.

Last but not least, a big salute to the open-source and blockchain community for all the
tremendous work they provide to society.

iii

Resumo

A privacidade dos dados e da localização em aplicações da Internet of Things (IoT) não
tem sido suficientemente abordada, visto que não acompanha o ritmo de desenvolvimento
desta indústria. O que resulta na falta de mecanismos de privacidade, tornando estas
aplicações vulneráveis a uma série de ataques. Portanto, as aplicações IoT devem imple-
mentar mecanismos de privacidade por omissão, dado que estas aplicações podem gerar
uma grande diversidade de dados, compreendida entre dados de telemetria e informação
sensível dos utilizadores. Como muitas destas aplicações lidam com informação sensível do
utilizador, devem ter em conta o Regulamento Geral sobre a Proteção de Dados (RGPD).

Nesta tese, é feito um estudo do estado da arte sobre privacidade na IoT, baseado em artigos
e inquéritos que investigam este tópico e propõem soluções inovadoras para mitigar esta
questão. Uma das soluções inovadoras identificadas foi o uso da tecnologia blockchain em
aplicações IoT para melhorar a sua privacidade e segurança. Além disso, estas propostas
foram analisadas com base nos seus mecanismos de privacidade e segurança, e com base
numa framework identificada num inquérito. Algumas limitações e riscos também foram
diagnosticas. Esta análise realizada serviu como base para a formulação da nossa proposta
de preservação de privacidade focada em aplicações IoT com mobilidade (e.g., veículos
inteligentes).

Para além de mecanismos de privacidade, um dos objetivos principais da nossa solução
é implementar mecanismos que permitam o utilizador ter um maior controlo sobre a ex-
posição dos seus dados. Além disso, várias tecnologias são implementadas com o fim de
tirar partido dos benefícios de cada uma e mitigar algumas das suas limitações. As quais
são: blockchain, armazenamento descentralizado e o Message Queue Telemetry Transport
(MQTT). Por fim, fazemos uma análise da nossa proposta através da validação dos requi-
sitos e através da comparação entre as propostas analisadas anteriormente.

Palavras-Chave

Privacidade, IoT, localização, segurança, blockchain, MQTT

v

Abstract

Privacy of data and location in IoT applications has not been addressed sufficiently since
it has not kept up with the pace of development of this industry. It results in a lack of
privacy mechanisms, making these applications vulnerable to various attacks and exploits.
Therefore, IoT applications must implement it by design due to the high diversity of
data generated, ranging from telemetry data to users’ sensitive data. Given that most of
these applications handle user sensitive information, General Data Protection Regulation
(GDPR) should be taken into consideration.

In this thesis, a state-of-the-art study on privacy in IoT is provided, based on papers and
surveys that research this topic and propose innovative solutions to mitigate this issue. One
of these innovative solutions is blockchain technology used in IoT applications to enhance
its privacy and security. These proposals were analysed based on their privacy and security
mechanisms and based on a framework identified in the survey. In addition, some of their
limitations and vulnerabilities were also detected. This analysis was used as a foundation
for formulating our privacy-preserving proposal focused on mobile IoT applications (e.g.,
smart vehicles).

Besides of privacy mechanisms, one of the main focus of our solution is also to providing
user-centricity, in which the user has more control over his data exposure. Furthermore,
it implements various technologies to take advantage of their benefits and mitigate some
of their limitations. Some of which are: blockchain, decentralised storage and Message
Queuing Telemetry Transport (MQTT). Lastly, we provide an analysis over our proposal,
by validating the formulated requirements and comparing it to the previously analysed
proposals.

Keywords

Privacy, IoT, location, security, blockchain, MQTT

vii

Contents

1 Introduction 1

2 Schedule and methodology 3
2.1 Planned schedule . 3
2.2 Accomplished schedule . 4
2.3 Methodology . 4

3 Background 7
3.1 Privacy in Internet of Things (IoT) . 7
3.2 Data Protection . 8
3.3 Data transmission protocols . 9
3.4 Message Queue Telemetry Transport protocol (MQTT) 11

3.4.1 MQTT architecture . 11
3.4.2 MQTT applications . 13
3.4.3 Security in MQTT . 15

3.5 Blockchain . 15
3.5.1 Blockchain architecture . 16
3.5.2 Blockchain in IoT . 20
3.5.3 Blockchain limitations and vulnerabilities 22

3.6 Conclusions . 24

4 State-of-the-art 25
4.1 Privacy solutions . 25

4.1.1 General privacy proposals . 27
4.1.2 Privacy proposals with Blockchain 28
4.1.3 Privacy proposals comparison . 31

4.2 Conclusions . 33

5 Privacy-Enhancing Proposal 35
5.1 Application and requirements . 35

5.1.1 Application . 35
5.1.2 Requirements . 36

5.2 Motivation . 39
5.3 Architecture . 41

5.3.1 Architecture components . 41
5.3.2 Functionalities . 45

5.4 Implementation strategy . 46
5.4.1 Implementation scenario . 46
5.4.2 Requirements implementation . 47
5.4.3 System’s processes . 49

5.5 Conclusions . 52

ix

Chapter 0

6 Experimental evaluation and analysis 53
6.1 Evaluation strategy . 53
6.2 Experimental scenario . 53

6.2.1 Technologies . 53
6.2.2 Experimental scenario components 57

6.3 Test conditions . 59
6.4 Metrics . 59
6.5 Analysis of results . 60

6.5.1 Comparison between MQTT and blockchain 60
6.5.2 Performance evaluation . 63
6.5.3 Blockchain size reduction evaluation 65
6.5.4 Flood prevention . 65

6.6 Requirements validation . 65
6.7 Privacy analysis . 67
6.8 Conclusions . 68

7 Conclusions and future work 71

Appendices 79
A Visual validation of certain requirements . 80

A.1 Intermediation between blockchains 80
A.2 Data management . 80
A.3 Access control . 81
A.4 Log information . 82
A.5 Request handler . 82
A.6 Data confidentiality . 82

x

Acronyms

ABE Attribute Based Encryption. 27, 32

ACL Access Control List. 27, 30, 32

AES Advanced Encryption Standard. 27, 57

AES-256 Advanced Encryption Standard 256-bit key. 56

AML Anti-Money Laundering. 21

AMQP Advanced Message Queuing Protocol. 7

CoAP Constrained Application Protocol. 7

DoS Denial-of-Service. 1, 21, 40, 47

DTLS Datagram Transport Layer Security. 10

ECC Elliptic-curve cryptography. 27, 32

ECDSA Elliptic Curve Digital Signature Algorithm. 17, 57

ECIES Elliptic Curve Integrated Encryption Scheme. 57

EU European Union. 1

GDPR General Data Protection Regulation. vii, 1

GPS Global Positioning System. 8

IoT Internet of Things. v, vii, 1, 2

IPFS Interplanetary File System. 2, 29, 30, 32, 33

kB Kilobyte. 60

kbps Kilobits per second. 60

KYC Know Your Costumer. 21

M2M Machine to Machine. 21

MQTT Message Queue Telemetry Transport. v, 7, 11, 24

ms Milliseconds. 27, 60

OS Operating System. 44, 57

OTP One-Time Password. 30, 32

PbD Privacy by Design. 25, 26

xi

Chapter 0

PBFT Practical Byzantine Fault Tolerance. 19

PBVU Private Blockchain of Vehicle Users. 39

PET Privacy-Enhancing Technology. 25, 26, 31, 33, 37, 39

PoB Proof of Burn. 18

PoS Proof of Stake. 18

PoW Proof of Work. 18, 19

QoS Quality of Service. 10, 12, 13, 24

RSA Rivest-Shamir-Adleman. 17

SASL Simple Authentication and Security Layer. 10

SIoV Social Internet of Vehicles. 22

SNMP Simple Network Management Protocol. 14

TCP Transmission Control Protocol. 9

TLS Transport Layer Security. 10, 15, 48

UDP User Datagram Protocol. 10

UI User Interface. 57

VM Virtual Machine. 5, 56, 57

XML Extensible Markup Language. 10

XMPP Extensible Messaging and Presence Protocol. 7

xii

List of Figures

2.1 Gantt chart with the planning and estimation of each thesis phase. 3
2.2 Gantt chart with the actual executed schedule. 4

3.1 Four-step handshake of MQTT’s QoS type 2 messages [70]. 12
3.2 Architecture of the MQTT publish/subscribe model [92]. 13
3.3 Architecture of blocks in the Blockchain [59]. 17

5.1 Architecture of the proposal solution. 41
5.2 Vehicle user’s ACL definition. 49
5.3 Symmetric key exchange process to authorised users. 50
5.4 Data published by a sensor controller to be stored in Storj and in the

blockchain system. 51
5.5 Data access request made by an authorised node of the public blockchain,

with access control in the PBVU’s smart contract. 51
5.6 Data erasure request. 52

6.1 Topology of the experimental scenario. 55
6.2 Web application interface. 58
6.3 Graphic with the resource consumption results of the sensor controller. . . . 61
6.4 Time overhead results of the sensor controller. 62
6.5 Time overhead results of the agent. 63
6.6 Resource consumption results of the smart contract proxy. 64
6.7 Resource consumption results of MQTT. 64

A.1 Request created by the MQTT broker to create a log event in the public
blockchain handled by the smart contract proxy. 80

A.2 Information about the log event transaction created in the Ropsten tesnet. . 80
A.3 Request to access all the vehicle users data. 81
A.4 Request to modify a specific data entry. 81
A.5 Request to delete a specific data entry. 81
A.6 Denied access request. 81
A.7 New data available log event captured by the agent node, which triggered a

data request. 82
A.8 Data response parsed by the agent, and consequent access to the Storj stor-

age and decryption of the data. 82
A.9 Publish data request handled by the MQTT broker. 82
A.10 Data encrypted when in transmission. 83
A.11 Data encrypted when received by the MQTT broker. 83
A.12 Data encrypted when stored in Storj. 83
A.13 Authentication failure in the MQTT broker. 83
A.14 Authorisation failure in the MQTT broker. 83

xiii

List of Tables

3.1 GDPR required characteristics identified in [74]. 9
3.2 Main characteristics of the identified protocols. 11

4.1 General privacy proposals identified. 27
4.2 Classification of the blockchain related privacy proposals identified. 30
4.3 Characteristics of the identified privacy proposals. 32

5.1 Blockchain functional requirements. 37
5.2 Blockchain privacy and security requirements. 37
5.3 Blockchain non-functional requirements. 37
5.4 MQTT functional requirements. 38
5.5 MQTT security requirements. 38
5.6 MQTT non-functional requirements. 38
5.7 Blockchain functional requirements implementation. 47
5.8 Blockchain non-functional requirements implementation. 47
5.9 Blockchain security requirements implementation. 48
5.10 MQTT functional requirements implementation. 48
5.11 MQTT security requirements implementation. 48
5.12 MQTT non-functional requirements implementation. 49

6.1 Functional requirements evaluation strategy. 54
6.2 Security requirements evaluation strategy. 54
6.3 Non-functional requirements evaluation strategy. 55
6.4 Metrics measurement strategy. 60
6.5 Resource consumption results in the sensor controller using two communi-

cation methods. 61
6.6 Mean transaction size of the various requests and events in Kb. 65
6.7 Functional requirements validation. 66
6.8 Non-functional requirements validation. 66
6.9 Security requirements validation. 67
6.10 Comparison of the classification of the blockchain related privacy proposals

identified with our proposal. 68

xv

Chapter 1

Introduction

Internet of Things (IoT), nowadays, is a concept that covers a broad spectrum of areas and
scenarios of applicability. Its primary purpose is to connect objects capable of collecting
data (e.g., temperature sensors) to the internet or a local network to automate specific
tasks or telemetry analysis. The applications can extend from simple networks (e.g., smart
homes) to complex and intricate networks (e.g., industrial agriculture and automotive
industries). This broad spectrum of applications has contributed to the exponential growth
of IoT devices connected to the network. According to the International Data Corporation
(IDC), it is estimated that 55.7 billion IoT devices will be connected worldwide, generating
73.1 zettabytes (ZB) of data in 2025 [44].

This growth in implementation means that the adoption of the technology is spreading
worldwide and is also starting to be used in complex applications, such as smart cars, smart
cities, and industry 4.0. However, this amount of diversified data collected and shared by
IoT devices brings up some concerns about privacy and the users’ awareness about how
their data is processed. Privacy of data is essential, whether it is sensitive information
about users or their devices. It is a matter of right and freedom to have privacy and control
our data. If it is not safeguarded, the users’ identity and personal information can be
threatened by a series of potential attacks, e.g., user profiling and user tracking. In recent
years, users data has been endangered and used by various corporations for user profiling
and user tracking. Such as the Cambridge Analytica case [60], which was a company
that used the private information of 87 million Facebook users without their consent to
gather information about their political preferences and other personal information. Some
speculations claim that this information was used to manipulate elections.

The General Data Protection Regulation (GDPR) [26], which was launched on May 25th
of 2018 by the European Union (EU), has the goal to give control to EU citizens over
their data. Since IoT applications have been extended to the users’ private daily life, a
high amount of private data is gathered. Thus, these applications must implement user-
controlled privacy and privacy solutions to comply with GDPR.

Current storage solutions (e.g., centralised cloud storage) used in some IoT applications
do not comply with the security and privacy requirements of these types of applications.
Since the privacy of the data is not guaranteed, the user cannot control who can access it,
and they are vulnerable to certain failures (single points of failure) and attacks (Denial-of-
Service (DoS)). However, blockchain is a solution that intends to solve the risks inherent
in centralised systems and provide privacy to users by design. It is a decentralised, dis-
tributed, and immutable ledger currently being adopted and developed to be integrated
into various applications. Some of these applications are: decentralised voting system to

1

Chapter 1

prevent election fraud [72], decentralised financial systems [27] or decentralised storage
[64]. Integrating blockchain with IoT applications can be used to enhance the security and
privacy of users and their data.

Some proposals present in the literature use blockchain to enhance the privacy and security
of telemetry data and sensitive data generated in IoT applications. However, the data is
stored in external systems that are centralised or do not guarantee the removal of data
(e.g., Interplanetary File System (IPFS)) or are publicly stored in the public blockchain.
Based on those proposals, this thesis proposes an architecture for IoT applications with
mobility (e.g., smart vehicles) since the collected data can contain geolocation information,
which is sensitive data since the user could be tracked if no privacy measures are guaranteed.
Additionally, the proposal intends to solve some limitations and privacy problems identified
in the state-of-the-art and provide a more GDPR-compliant system.

The main objectives of this thesis are to provide an in-depth study of the privacy of data
and location in IoT environments and formulate a privacy proposal based on the state-of-
the-art study. The objective of the thesis can be further divided into:

• Provide an overview of the transmission protocols used in IoT. One of the protocols
is elected to be further analysed and implemented in our proposal, based on its
characteristics.

• An overview of the blockchain technology, such as its functionalities, applicability in
IoT and major vulnerabilities.

• Provide a state-of-the-art on the concept of privacy-focused in IoT, where its main
characteristics and Privacy-Enhancing Technologies (PET) are identified and anal-
ysed. Our proposal is based on the identified proposals, although it will provide some
distinct features.

• Propose an IoT privacy-enhancing proposal architecture using blockchain and MQTT.
Its applicability is described, its requirements, architecture elements, implementation
and evaluation strategies, and all underlying technologies used to implement and test
this system.

• The proposed system will be implemented and tested in a controlled environment to
validate the formulated requirements, and assess its usability in a real environment
and identify further work to be done.

2

Chapter 2

Schedule and methodology

This chapter provides an overview of all the done tasks to accomplish this thesis and
their respective planned schedule. We will compare the actual executed and planned
schedule and identify mishaps encountered to reflect on the performed work. Finally, the
methodology used in the research phase of this document is presented.

2.1 Planned schedule

The Gantt chart of Figure 2.2 is represented the schedule and time estimation of each
phase of the thesis.

Figure 2.1: Gantt chart with the planning and estimation of each thesis phase.

• State-of-the-art (21/09/2020 to 30/10/2020), a study of the current state-of-the-
art of privacy in IoT. Analysis of papers and surveys related to privacy in IoT and
privacy-enhancing proposals.

• Architecture proposal (2/11/2020 to 12/11/2020), privacy-enhancing proposal,
focused on IoT, based on the state-of-the-art previously done.

• Midterm thesis conclusion (14/09/2020 until 18/01/2021), the conclusion of the
midterm thesis, which is composed of the contextualisation of the main technologies
being studied, state-of-the-art of privacy in IoT and the architecture of the privacy-
enhancing proposal of this thesis.

3

Chapter 2

• Implementation (28/01/2021 to 31/03/2021), implementation of the main compo-
nents of the proposal.

• Experiments and validation (01/04/2021 to 30/04/2021), tests to validate the
requirements of the proposal.

• Scientific article (03/05/2021 to 31/05/2021), writing of a scientific article related
to the proposal, identifying its purpose, implementation, and outcomes.

• Thesis conclusions (01/06/2021 to 30/06/2021), the conclusion of the thesis, which
consolidates all the work done throughout the academic year.

2.2 Accomplished schedule

Figure 2.2: Gantt chart with the actual executed schedule.

The first phase of this thesis was concluded within schedule, which was the state-of-the-art
architecture proposal and midterm thesis conclusion. However, some modifications were
implemented in the proposal during the second phase, which delayed its implementation.
These modifications were related to GDPR compliance since the initial version did not
address this subject. Therefore, more research was done to consider privacy aspects that
GDPR defines and integrate them in the architecture and validate them.

During the experiments and validation stage, some problems related to the synchronisation
of the blockchain nodes with public blockchain also affected this phase. The problems were
related to the hardware resources. Namely, the read/write speed of hard drive disks (HDD),
which was a significant bottleneck for this process. Thus, to speed up this process and start
testing the system as soon as possible, a solid-state drive (SSD) was used, accelerating the
process from 1 week to 1-2 days.

All these mishaps delayed some stages of this thesis. However, we managed to implement
and test our proposal as planned.

2.3 Methodology

In order to perform a relevant study of the state-of-the-art oriented to privacy in IoT, a
methodology was defined. A list of restrictions was defined to reduce the volume of work
to research and focus on more relevant work.

4

Schedule and methodology

The main factor was restricting the research to specific key terms, such as "Privacy in
IoT", "Privacy proposals for IoT", "Location and data privacy in IoT", and "User privacy
in IoT". In order to obtain more updated information, the analysed papers were at a
maximum of six years old, thus, from 2014 to 2020 (considering that this research was
initiated in 2020).

Initially, some research was performed to assess the privacy threats, challenges, and re-
quirements of IoT applications. Therefore, some surveys [74, 81] and papers [68, 86, 87]
were reviewed. Through this inquiry, some base ground was created for the following
research phases.

At first, MQTT was defined as the main technology to study due to our previous knowledge
and practical experience. Similarly to the previous approach, a set of surveys [53, 61,
85] were analysed to obtain more detailed information about the technology and how it
compares to other technologies. Afterwards, privacy proposals using MQTT [56, 65, 78, 84]
were examined. However, the paper [56] introduced the concept of integrating blockchain in
a system to provide more privacy and security to the user, which changed our technological
approach.

A set of surveys [34, 58, 66, 82] focused on blockchain were studied to gather information
about its security and privacy functionalities and possible integrations with IoT applica-
tions. Therefore, some privacy proposals that used blockchain were analysed [49, 62, 63,
76, 95]. These proposals and the previously identified MQTT based proposals were anal-
ysed and classified based on their privacy mechanisms, technologies and approaches, which
allowed to identify certain limitations and improvements. Our proposal was formulated
based on this analysis.

During the proposal’s development phase, several tests were performed to identify possi-
ble bugs and technical problems before implementing and performing experiments. The
system’s components were all integrated into the same host as Virtual Machine (VM) to
use the same hardware characteristics since using different machines could influence the
results. In addition, the hardware resources were distributed heterogeneously among the
VMs, considering that each component has a different computational requirement. In the
experiments, the VMs that did not participate in the specific scenarios or requests were
shut down to maximise the resources available to the remaining VMs.

In general, the whole process of this work was iterative. Its aspects were not all defined
a priori. The only predefined goal was to develop a privacy-enhancing proposal for IoT
applications.

5

Chapter 3

Background

In this chapter, privacy-related aspects and requirements of IoT applications will be in-
troduced, as well as some data transmission protocols used in IoT (Advanced Message
Queuing Protocol (AMQP), Constrained Application Protocol (CoAP), Message Queue
Telemetry Transport (MQTT) [61, 79], and Extensible Messaging and Presence Protocol
(XMPP)). Addressing these protocols explains why the MQTT was chosen to be imple-
mented in the privacy solution of this thesis, focused on IoT applications. Then, a more
detailed description of the MQTT protocol is made.

In addition, contextualisation of blockchain technology will also be provided. The main
characteristics will be addressed and the benefits it brings for IoT applications regarding
data privacy and security. Moreover, its main vulnerabilities and limitations are identified.

3.1 Privacy in Internet of Things (IoT)

The number of devices and IoT applications has increased exponentially in recent years.
However, IoT’s security and privacy area has not kept up with its growth pace, derived
from the implicit challenges to achieve a balance between security quality and performance.
One of the factors is the heterogeneous nature of its networks.

Despite being a key aspect in IoT applications and solutions, privacy is a topic that is
not addressed enough. Its implementation is critical for protecting some types of data,
e.g., sensitive user data, geolocation data, and telemetry data. Traffic analysis attacks,
such as eavesdropping, can analyse the data transmitted on the network and capture it.
Unauthorised access to MQTT topics could compromise the data being transmitted by
devices to the topics, threatening the integrity of the data.

By all means, it is essential to take into account privacy when designing an application
that handles sensitive data (Privacy by Design [81]). For example: in application-related
health care [87], mechanisms are needed to protect sensitive user data, such as location
and health history. Moreover, in applications related to Smart Parking ([68, 86]), it is
important to protect the location of the vehicles, their telemetry data, and their owners’
sensitive data.

The key aspects of privacy in IoT applications are:

• Data privacy, it consists of data generated (e.g., telemetry data). In the case of
Smart Homes [81], thieves can obtain information related to the periods of absence

7

Chapter 3

of users in their home through data generated by power switches or appliances (e.g.,
they stay in the "off" state at a certain time and reconnect after a few hours).

• Location privacy, the privacy of data related to the location of an object or person
(considered sensitive data). It can be Global Positioning System (GPS) data [86], or
the spatial location within a building or a certain area [68]. Therefore, it is important
to provide privacy for this type of data to prevent user tracking.

• User privacy, the sensitive user data that is transported over the network and
stored in an external facility (e.g. cloud storage), can disclose the identity of the user
if privacy-enhancing measures are not integrated. This exposure may result in user
tracking (e.g., obtaining a person’s daily activity history) and user profiling (data
can be used without the user’s consent by companies).

• User-controlled privacy, the user has the power to define his privacy preferences
and has more control over his data. In other words, the user can define the data’s
level of exposure, which data he wants to share and to whom, and also limit its usage.

The perfect privacy solution does not exist because many aspects restrict the quality of
the solution. Especially in IoT, the main constraints are computational power and energy
efficiency. Therefore, privacy solutions for these applications have to be well-balanced in
terms of computational resources and complexity, which also applies to security.

3.2 Data Protection

Some areas of the IoT industry work with personal data. Thus, these applications must
implement strategies to provide protection to the users’ data and comply with GDPR
[26]. GDPR is a regulation that provides fundamental directions in order to accomplish an
equitable treatment of the third parties and EU users [74]. In essence, it intends to give
the users control over their data to provide privacy rights to the user, such as the right to
be forgotten (delete data), informed, and restrict processing.

In the survey [74], the authors provide an analysis of GDPR focused on IoT. They anal-
ysed 29 papers that proposed IoT based privacy-preserving proposals, which were evalu-
ated according to the 19 formulated GDPR essential characteristics. These characteristics
were mapped to the four challenges proposed in [91], which are: "Profiling, inference and
discrimination" (prevent user profiling, data inferences and discrimination based on the
user’s data), "Control and context-sensitive sharing" (provide control to the users over
their data), "Consent and uncertainty" (user-controlled privacy) and "Honesty, trust, and
transparency" (trust relationship between devices, third parties and users). Through the
performed analysis, they verified that machine learning was the most used technique to
improve privacy, such as automating privacy preferences and computing risk probabilities.
However, characteristics such as data erasure, prevent excessive data collection and other
transparency-related characteristics were the least addressed features.

In the following table, the GDPR required characteristics identified in [74] are enumerated
and described. These characteristics are useful to evaluate privacy proposals in terms of
their compliance with GDPR.

8

Background

Table 3.1: GDPR required characteristics identified in [74].

GDPR characteristic Description

CR1-Prevent inference

Prevent the processing of personal data that can reveal more in-
formation about a person, such as ethnic origin, political opinions,
or even the possibility to uniquely identify a person (Article 9 of
GDPR [26]).

CR2-Provide data transfor-
mation

Techniques to provide privacy to users’ data, prevent data infer-
ence and profiling attacks (e.g., data anonymisation) (Recital 26).

CR3-Provide user awareness
on data collection Provide data collection awareness to the user (Article 12).

CR4-Provide control of per-
sonal data to users The user can specify his privacy preferences over his data.

CR5-Provide monitoring and
control of devices that collect
data

Users can control and monitor data collection, specifying who can
access it and what actions can be made.

CR6-Provide tools for data
management to users

Tools that allow the user to manage and control usage over their
data.

CR7-Provide ability for data
erasure Provide the ability to delete or rectify data (Article 17).

CR8-Provide transparency Offer awareness to the user about how their data is processed.
CR9-Provide balance of pri-
vacy between the user and
third parties

Inform the user about the possible risks of sharing his data to de-
cide whether to take these risks in exchange for potential benefits.

CR10-Provide enforcement of
user privacy preferences Enforce the user’s privacy policies.

CR11-Provide privacy by de-
sign or privacy by default

E.g., implement privacy throughout the whole process of develop-
ing a product or enforce privacy policies by default (without the
need for user intervention) (Article 25).

CR12-Provide ability to users
to make informed consent
choices

Inform the user about possible privacy risks when performing cer-
tain choices (Article 7).

CR13-Estimate privacy risks
of data collection/inference to
users

Compute the privacy risk level based on the user’s privacy prefer-
ences or other factors.

CR14-Communicate risks of
data collection/inference to
users

Inform the user about possible privacy risks,e.g., in scenarios where
he uses more vulnerable privacy preferences or provides data to an
organisation with a bad reputation.

CR15-Provide ability to users
to specify their privacy prefer-
ences

The user can impose policies to determine how his IoT devices and
data can be used.

CR16-Prevent excessive data
collection

Implement mechanisms to minimise data collection, which pro-
vides the required amount to complete a task successfully.

3.3 Data transmission protocols

Multiple data transmission protocols can be used in IoT applications, including AMQP,
CoAP, MQTT, and e XMPP. All of them have their advantages and disadvantages, which
differentiates their end application.

• AMQP is an open standard protocol that uses Transmission Control Protocol (TCP)
in its transport layer, which is a more reliable protocol to perform communications.
It allows interoperability between heterogeneous applications and systems (an im-
portant aspect for IoT) [61]. This protocol is quite complete (compared to other
protocols), some of its features are:

– It allows several approaches in the communication between the exchange (a
component that receives the messages from the publishers) and queues inside
the broker (AMQP server).

9

Chapter 3

– Two approaches can be implemented in the communication between queues and
customers: messages sent to customers subscribed to the queue (asynchronous),
or customers can get the messages on demand (synchronous).

– It has three levels of Quality of Service (QoS).

– Flow control that allows traffic shaping to be done if there is congestion on the
network.

– Security mechanisms, such as Transport Layer Security (TLS) and Simple Au-
thentication and Security Layer (SASL) (a framework used to implement au-
thentication mechanisms in application layer protocols).

Although it is a feature-rich protocol, it requires some computational power and
bandwidth. In [71], it is verified that AMQP has low reliability in networks with low
bandwidth, which is not desirable for constrained environments.

Initially, it was used for messaging in business environments. It was developed as
a non-proprietary solution that managed many message exchanges that could be
exchanged in a short period in the system. The protocol fits in environments with
no concern about resource usage (e.g., communication between servers in the cloud).

• CoAP has a synchronous communication model (request/response). It uses the
User Datagram Protocol (UDP) protocol for packet transportation, which makes it
a more lightweight protocol (smaller packets). However, it also reduces its reliability
on unstable communication channels, and some problems, such as packet loss and
packet disorder, can occur. To get around this reliability problem, CoAP has message
types that ensure the delivery of packets: Confirmable and Acknowledge.

It supports Representational state transfer (REST) type architectures by using Hy-
pertext Transfer Protocol (HTTP) methods (GET, POST, PUT and DELETE),
which allows devices to communicate directly with web servers. To ensure some level
of security, CoAP uses Datagram Transport Layer Security (DTLS), a TLS-based
protocol that provides integrity and confidentiality to UDP communication. How-
ever, DTLS is not designed for devices with limited resources because it requires
many computational resources.

Despite lacking adequate security mechanisms for IoT applications, this protocol can
be used for message transmission between devices with few resources.

• MQTT is an asynchronous message transmitting protocol with a publish/subscribe
model. It uses a broker (MQTT server) that manages the topics, where messages
are allocated, identified, and transmitted to MQTT subscribers of the topics. It uses
TCP to transport the messages, which offers greater reliability to the protocol. It
also provides resilience mechanisms (wills and durable connections - will be covered
in section 3.4) and QoS with three levels. It has some security mechanisms, such as
TLS, authentication and user identification. However, like the other protocols, these
security mechanisms were not developed to be used by constrained devices.

Compared to CoAP, MQTT is also a lightweight protocol, making it ideal for ap-
plications with limited resources. Due to its resilience mechanisms, it is feasible for
applications with unstable communication channels (applications with mobility) and
with low bandwidth (applications that use low-frequency channels to communicate
over long distances, such as LoRaWAN [41] and SigFox [46])

• XMPP is an open standard protocol, which supports synchronous (request/response)
and asynchronous (publish/subscribe) communications and uses TCP. Messages are
text-based using Extensible Markup Language (XML) format. It supports various

10

Background

types of connection technologies, for instance, multimedia sessions (voice chat, video
chat, and file transfer) and HTTP connections (synchronous communication). It has
an addressing mechanism for each device on the network, which other protocols do
not have implemented. It also supports TLS and SASL to introduce security into
the system’s architecture.

This protocol was initially designed for instant messaging between applications using
XML. Due to the size of the XML packets, it is not feasible for networks with limited
bandwidth. The absence of resiliency mechanisms and QoS is another factor that
makes this protocol unsuitable for applications with unstable connections and lim-
ited resources. This protocol is more suitable in real-time applications (multimedia
sessions, instant messaging) and some IoT applications without limited resources.

These application layer protocols offer beneficial features for IoT applications and other
applications. A summary of their characteristics is present in the following table. However,
due to the complexity of some of them, they are not feasible for certain applications where
computational resources and network infrastructure are scarce. MQTT has been growing in
use in IoT applications ([61]) due to its lightweight nature, resilience and QoS mechanisms.
However, it lacks adequate privacy and security mechanisms for IoT. These aspects make
MQTT an interesting protocol for research due to the applications that take advantage of
its features.

Table 3.2: Main characteristics of the identified protocols.

Protocol Architecture QoS Security
Resource

Requirements

AMQP
Publish/Subscribe

or
Request/Response

3 levels
TLS
and

SASL
High

CoAP Request/Response 1 level DTLS Low
MQTT Publish/Subscribe 3 levels TLS Low

XMPP
Peer-to-Peer

or
Publish/Subscribe

Not included
by default

TLS
and

SASL
High

Based on this discussion, MQTT will be addressed in greater detail in the following section.

3.4 Message Queue Telemetry Transport protocol (MQTT)

The MQTT [61, 79] is a messaging protocol that works at the application layer, developed
by Andy Stanford-Clark (IBM) and Arlen Nipper (Arcom, now Cirrus Link) in 1999. It is
currently widely used in the IoT industry due to its low computational requirements, due
to this industry being mostly composed of small devices with limited resources.

3.4.1 MQTT architecture

This protocol contains a hierarchy of topics to store received messages. In other words,
it is possible to organise the received data according to the type of information, such
as the temperature measured by a room sensor ("house/bedroom/temperature"). The
message transmission works through a publish/subscribe model, where communications
are asynchronous. There are two types of message:

11

Chapter 3

• Publish messages, are used to send data from a device to the destined topic.

• Subscribe messages, used by devices to subscribe to the desired topic/s. If they
have successfully subscribed, they receive the data whenever a publish message is sent
to the subscribed topic/s. Several devices can be subscribed to each topic, allowing
communication from 1 to "n" devices (similar to multicast).

MQTT clients can act as subscribers, publishers, or both.

One of the most important features of MQTT is the QoS, which can be configured according
to the application needs. It consists of three levels:

• QoS0, messages are sent in a best-effort approach and are sent only once. Therefore,
reception is not guaranteed or acknowledged.

• QoS1, uses the acknowledgement mechanism to verify that the recipient has received
the message by receiving a "PUBACK" message (sent by the recipient). It confirms
that the recipient has received the message. If it is not received, the message sender
sends the message again until the reception is confirmed. This scenario can increase
network congestion. If it is a network with many devices that communicate and low
bandwidth, it can also cause the receiver node to receive duplicate messages.

• QoS2, makes sure that the message is only received once by the receiver, thus avoid-
ing the duplication of messages in the reception. Although, it increases the overhead
in communications. This approach uses the four-step handshake mechanism, as il-
lustrated in Figure 3.1. Initially, the publisher sends the QoS2 type publish message.
If the receiver receives the message, he replies with a PUBREC (publish message
received), which confirms the reception of the message. Otherwise, the publisher re-
sends the publish message with a DUP (duplicate) flag until it receives the PUBREC
(response of the PUBREC packet) from the receiver end. Upon receiving the PUB-
REC, the publisher discards the initial PUBLISH message and stores the receiver’s
PUBREC message. The publisher then sends a PUBREL message. Receiving this
message, it discards all stored states and sends a PUBCOMP (response of the PUB-
REL packet) message to the publisher. The receiver stores a reference to the packet
identifier of the original PUBLISH packet to avoid processing the same message a
second time until the receiver device completes this process by sending a PUBCOMP
packet back to the sender. Finally, the sender also discards all stored states when it
receives the PUBCOMP message.

Figure 3.1: Four-step handshake of MQTT’s QoS type 2 messages [70].

Other features of the MQTT are:

• Retained messages, which consists of keeping the information on the topic even
after it has been sent to all subscribers. If there is a new subscription in the topic,
the message retained is sent to the subscriber.

12

Background

• Wills, if the device disconnects from the broker, a specific message is published to a
specific topic. For example, to specify that the device is currently offline.

• Bridges, it allows several brokers to connect. It aims to share information on com-
mon topics between brokers that are in different places.

• Clean session/Durable connections, in the case of clean sessions, when the device
disconnects from the broker, its subscriptions are removed. Contrary to durable
connections, its subscriptions are saved, and any QoS 1 or 2 messages are stored
until the device reconnects.

The MQTT broker manages all these functionalities mentioned. The broker is responsible
for managing the topics, like accepting messages from each topic and their distribution to
subscribers.

Figure 3.2: Architecture of the MQTT publish/subscribe model [92].

In Figure 3.2, it is possible to visualise a typical MQTT architecture. Where sensory
devices send information through publish messages to a topic in the broker. In this case,
it sends information about the temperature of the environment where it is located. The
broker stores this information in the target topic: "temperature", and then sends it to
the subscribers of that topic, which can be actuating devices (air conditioning) or more
complex devices that perform data analysis.

3.4.2 MQTT applications

The applicability of this protocol in IoT applications is due to some of its characteristics:

• Lightweight, i.e., it requires little bandwidth to transmit data and few computational
resources. It allows resource-constrained devices and networks to transmit data with
little delay and low energy consumption, maximising energy consumption efficiency.
Which is important for devices that are powered by battery systems.

• Message delivery assurance, through the use of QoS (QoS 1 or 2), it is possible to
guarantee the data delivery between an MQTT node and the broker. This feature
is important for unreliable networks with packet loss (e.g., long-range networks like
LoRa networks).

13

Chapter 3

• Interoperability allows heterogeneous devices to communicate with each other, re-
gardless of whether they are devices with limited resources or servers in the cloud
that host applications where the data is being used.

• Scalability, it is possible to expand the number of devices on the network. An impor-
tant factor in an IoT network where many devices are needed and need expansion.

These MQTT features make it a useful protocol for some types of IoT applications, such
as:

• Applications with mobility, such as the automotive industry [69], suffers from prob-
lems related to the reliability of the connection of nodes to the network. This prob-
lem is due to the mobile network (GSM, UMTS and LTE) locations with no coverage
(blind spots). The device’s connections to applications in the cloud can be inter-
rupted, which results in packets being lost or not transmitted. With its QoS1 and
2 mechanisms, MQTT allows solving this problem through reliability in data de-
livery. Additionally, Durable Connections can store the device’s subscription/s and
retransmit the data that was not received or sent.

These applications with mobility also require the privacy of their users, especially
their location and their data. In a scenario where a vehicle user provides information
about an event in his location, if the data is linked to him. and not stored or used
privately and securely, it can be used to track and profile the user.

• Applications with a large footprint that use long-range communication channels,
e.g., LoRaWAN and SigFox, are networks with very limited bandwidth. However,
since MQTT is a protocol that has small packets (in some cases, it can have only
2 bytes), compared to other protocols like HTTP (can have up to 8 kilobytes), the
communication delay is lower.

In the survey [85], an analysis of the MQTT protocol is made, and some applications
for which MQTT is suitable are identified. Some applications are included in the health
area (monitoring patients with chronic diseases outside the clinics through sensors), in the
electrical energy area (electricity meters that transmit data read by the network), and
social networks (for example, a lightweight approach for transporting messages between
people within a company). Finally, some problems of the MQTT are mentioned: lack
of a data expiry mechanism (currently implemented in version 5.0 [79]), lack of security
mechanisms, absence of message ordering mechanisms and lack of priority functionalities.

In [87], is proposed a health application, where devices that read telemetry data about
the health state of patients (e.g., blood pressure, scales and motion sensors) with chronic
diseases are placed in their homes. The data is sent to the cloud management application
through a middleware composed of an Simple Network Management Protocol (SNMP)
agent and a proxy, which obtains the data from the devices and routes it to the target
application. In the management application, the data is processed, and if there is any
problem with the patient, an alarm is generated so that healthcare professionals can react
accordingly. To ensure some level of privacy, they use access and authentication policies
for professionals to access patient data. For example, the healthcare professional can only
access the patient’s data when he/she is at the patient’s home and has an appointment.

In the article [86], a Smart Parking application is proposed for an airport. The user can
access the location of his vehicle in the car park through a web application that shows the
GPS location on a map. The administrator can only view the information of the user and

14

Background

his vehicle. However, there is not any proposed security mechanism. This approach does
not ensure the privacy of the user’s data due to being dependent on authentication. I.e.,
if it is poorly implemented (insecure credentials) and without proper security mechanisms
(TLS connections between the administrator or client and the web application), it becomes
vulnerable.

In this Smart Parking proposal [68], the authors use MQTT by implementing the Mosquitto
broker in order to transmit information related to car park occupation. An ultrasound
sensor is used to verify if the slot is occupied or not and transmit the information to a web
application, where a car park map with occupied and free spaces is shown. They argue
that when drivers look at the car park map and the location of free spaces, they emit
less CO 2 because they can outline a route, so they park faster and avoid driving extra
kilometres to park the vehicle.

3.4.3 Security in MQTT

The MQTT has some mechanisms that offer data security and authentication. It offers
identity through IDs for each MQTT client, which allows controlling access to topics.
However, if an attacker uses the ID of a legitimate MQTT client, he can access the topic
and prevent that same client from subscribing to that topic, causing an attack on the client.
Therefore, user authentication is provided by the protocol. However, the transport of the
credentials is made in clear text format if no encryption mechanism is implemented in
the transport. It supports TLS, which allows encrypting the communications between the
broker and MQTT clients through symmetric encryption (uses a secret key shared between
the sender and receiver in establishing the connection). This protocol offers confidentiality
and data integrity. Although, they require a high level of resources, which is not feasible
for devices with limited resources, and not all of these devices support it.

The MQTT lacks security and privacy mechanisms, which is unsuitable for applications
with resource-constrained devices where the confidentiality, privacy, and integrity of sensi-
tive data are fundamental. For example, applications where the privacy of users, location
and data is essential to prevent tracking and profiling attacks.

The article [53] focuses more on MQTT security problems, demonstrating some possible
attacks in the communications between the broker and the MQTT client. These attacks
take advantage of vulnerabilities in confidentiality, integrity, availability, authentication
and authorisation. They mention some proposals which implement security mechanisms
to mitigate some of the addressed MQTT problems. Finally, they propose some issues that
should be taken into account to make IoT architectures more secure, such as privacy and
data integrity, so that users’ sensitive data is secure and unchanged.

3.5 Blockchain

Blockchain [82] is a distributed database that has a continuously growing list of records
organised into entities called blocks. The blocks are "chained" together by connecting
each block to the previous block’s hash. The concept of blockchain was first studied in
1991 by Stuart Haber and W. Scott Stornetta. Although, an anonymous person defined
the first blockchain proposal by the pseudonym of Satoshi Nakamoto, who published a
paper in 2008 [77], talking about bitcoin, which later became an actual public blockchain.
This technology has much potential in various applications, especially in the IoT industry,

15

Chapter 3

mainly because of its decentralised, "trustless", privacy and security features, which could
improve applications’ reliability.

3.5.1 Blockchain architecture

Blockchain provides a decentralised, distributed, immutable, auditable, transparent, and
secure ledger. Its decentralised and distributed architecture does not use a single authority
(intermediary) to verify transactions, eliminating single points of failure and third-party
dependencies. The nodes of the network communicate with each other in a peer-to-peer
model. A consensus (agreement on the current state of the blockchain) is used to verify
the transactions made, so the network’s trust is distributed among the participating nodes.
The majority of participants validate the transactions, which removes the need for a central
authority to validate them and allows to automate the process.

Data stored in the blockchain is considered tamper-evident and resistant because it is
computationally hard to change the content of a block. An attacker, to be able to tamper
the block’s content (which alters the structure of the blockchain), needs to control 51% of
the resources (nodes) in the network [82], to agree and validate the changes made to the
state of the blockchain. It is considered computationally and monetarily expensive and
unfeasible to achieve.

Nowadays, most blockchains support smart contracts [82] that can be used to validate
transactions based on predefined conditions. This technology allows the integration of
decentralised applications into blockchains through functions and defined conditions. They
can be used to provide authentication and authorisation for certain transactions, store
information and trade assets or data between two participants in an automated and secure
manner. Both participants have to comply with the predefined clauses (similar to a real
contract) to be successful, e.g., transferring a certain amount of cryptocurrency as an
assurance to trade the assets. If something is wrong with the assets (invalid data or
incorrect amount of cryptocurrency), the contract request is revoked.

There exist various types of blockchains: permissionless (i.e., public blockchains) and per-
missioned (i.e., private blockchains) blockchains. Each one of them has its use cases and
functionalities (detailed further ahead). For example, permissionless blockchains can be
consulted and accessed openly and fully, which provides transparency. In contrast, per-
missioned blockchains are closed to the public, only a set of nodes can participate, and
restricting policies can be imposed inside it.

Composition

The blockchain comprises various blocks linked together, which store information about
them, transactions and other important data. Such blocks contain a unique hash produced
by hashing all its content (e.g., transactions and timestamp of creation), also known as a
digital fingerprint. This hash is used to chain the blocks together, as illustrated in Figure
3.3, the following blocks in the chain have a field parameter that identifies the hash of the
previous blocks. Suppose that the content of a block is modified, its hash changes, which
results in a broken chain. Thus, the state change is invalidated by the majority of the
participants of the blockchain. This block "chaining" by the hashes of the blocks is what
provides immutability to the blockchain.

Since the first block of the chain (genesis block) does not have a previous block to point
to, the previous hash value is hardcoded (e.g. zero).

16

Background

The transactions are typically stored as a Merkle Tree structure [59]. This structure helps
to verify the integrity of the data content by hashing the nodes with the hash of the child
node. In Figure 3.3, the transactions are hashed in a leaf node, which, consequently, are
paired together in a parent node. All hash transactions are combined in a single hash
stored in the Merkle Root, present in each block. It allows the nodes of the blockchain to
validate individual transactions without having to validate the entire block.

Figure 3.3: Architecture of blocks in the Blockchain [59].

Blockchain addressing system

In order to perform transactions, the blockchain participants need a blockchain address
and a key pair (public and private key). The private key (a unique 32-byte alphanumeric
string) is generated automatically by a blockchain wallet, which stores the users’ key pair
and manages their cryptocurrency. The private key is used to create the public key and
sign transactions (digital signature) to provide authenticity of the transaction sender. The
cryptographic algorithm used to generate public keys depends on the blockchain used, e.g.,
Bitcoin and Ethereum use Elliptic Curve Digital Signature Algorithm (ECDSA). ECDSA
is commonly used, because it’s faster and computationally less demanding than Rivest-
Shamir-Adleman (RSA) [6]. Multiple public keys can be derived from the private key.
However, the private key cannot be derived from the public keys due to the one-way
cryptography used.

With the keys generated, it is necessary to create a blockchain address to perform trans-
actions. The blockchain address is obtained from the public key using a one-way crypto-
graphic hash function, which is different in each blockchain. In Bitcoin, the algorithms
used to generate an address are the Secure Hash Algorithm 256 (SHA-256) and the RACE
Integrity Primitives Evaluation Message Digest 160 (RIPEMD-160). The format of the
address varies from blockchain to blockchain. In Bitcoin, the address is 25 bytes long with
a Base58 format. Ethereum addresses are 40 hexadecimal characters (20 bytes), prefixed
by an "0x" to identify that it is in hexadecimal format.

When the user has all keys and blockchain address created, the only requirement is to
have cryptocurrency of the specific blockchain to pay fees for the transaction creation.
Moreover, certain wallets can have multiple blockchain addresses, each one corresponding
to a different blockchain.

17

Chapter 3

Blockchain types

Two main blockchain types exist. Each one of them has different features, benefits, and
use cases. The types are:

• Permissionless Blockchains, also known as public blockchains. They are open,
and do not have any access control mechanism, since any node can participate in
them. The nodes can read, write, and participate in the consensus without requiring
permission or trust from other nodes in the network. Additionally, all transactions
are publicly accessible. The consensus used is more complex than in the other types
of blockchains to maintain the blockchain secure. The most used ones are Proof of
Work (PoW), Proof of Stake (PoS) and Proof of Burn (PoB) (detailed later in this
section).

• Permissioned Blockchains, are private blockchains governed by a single or multi-
ple entities, where nodes have to be authorised to be able to participate in it. Each
node knows and trusts every other node, and any new node added to the network
needs to be allowed by the majority of nodes in the network. The nodes have differ-
ent permission levels. Since this blockchain uses a trust model the consensus can be
simpler and personalised to fit the purpose of the blockchain. They provide granular
control of the nodes, are faster, more efficient, and more cost-effective than public
blockchains because of the reduced number of nodes and reduced chain size. Fees
are not imposed in creating transactions since it is not computationally expensive to
create new blocks, and its cryptocurrency does not have market value.

These blockchains could be used in the private sector where the enterprise controls
the resources, needs to know the identity of the nodes and control the access, such
as the military and government applications.

Types of nodes

Blockchain is composed of different types of nodes responsible for storing the chain blocks
(decentralised and distributed), creating transactions, adding new blocks, and validating
them. The nodes connected to the blockchain can be any device, e.g., a dedicated server,
personal computer, or a device with fewer resources (e.g., smartphone or Raspberry Pi).
As long as it supports the technology. The nodes ensure that the blockchain’s data is valid,
secure, and accessible to authorised parties. Moreover, the usual types of nodes are:

• Full node, it stores all blocks of the chain, which are verified, authenticated, and
stored by the full nodes in a network. When a new block is accepted into the
blockchain, the full nodes save and store it on top of the existing blocks. They
can also send new transactions and hold wallet balance information. This type of
node requires high storage capacity and network bandwidth because the blockchain
can reach enormous sizes after some months or years of usage. Bitcoin is currently
(10th of November 2020) at 309 GB in size and Ethereum at 179 GB [28].

• Light node, this type of nodes are similar to full nodes. However, they do not
store the entire blockchains, only the block header. Nevertheless, they can validate
transactions in the blocks as well. Light nodes require much fewer resources, which
are ideal for constrained devices.

• Mining node, are responsible for creating blocks. They create blocks by group-
ing valid transactions and by solving a computationally hard problem that allows

18

Background

consensus throughout the network (e.g., PoW in bitcoin). The creation of blocks is
called mining because the cryptocurrency rewards given to these nodes in this process
resemble discovering/mining raw materials. Mining nodes can work individually or
in a pool of nodes. These nodes require high computational resources and must be
energy efficient to be profitable.

Smart contract

The concept of smart contract was defined by Nick Szabo in 1993, who characterised it
as: "A computerised transaction protocol that executes the terms of a contract" [82].
Some blockchains, such as Ethereum, integrated this concept for transaction assurance
based on predefined assets, such as exchanging information. The smart contract assures
that both participants receive the correct amount of cryptocurrency or data from each
other. Essentially, it is a set of executable code that runs on top of the blockchain that
facilitates, executes, and enforces an agreement between untrusted parties, without the
need of a trusted third party [89]. The smart contract code is stored on the blockchain,
and a unique address identifies each contract. To operate with it, nodes of the blockchain
have to make a function call addressed to the smart contract. Depending on the function,
the node could pay a fee to the smart contract to be successfully executed.

When deployed in the blockchain, the smart contract cannot be modified by any entity,
even by its developer. As it is stored in the blockchain, its content is immutable. The
smart contract can provide enhanced Security and trust [36], since it remains immutable
on the blockchain. Thus, it is not possible to change the code inside a smart contract.
Furthermore, using them to exchange data or currency can prevent errors or malicious
actions, e.g., human errors or corruption among institutions.

Consensus protocol

For blockchains to work in a decentralised and self-regulating model, they need to define
a trust mechanism. The trust mechanism used is called consensus protocol, which is
how the participants in a distributed system agree on a common state of the system.
The consensus mechanism allows the participants to maintain an identical copy of the
blockchain. Otherwise, they would end up with conflicting information, undermining the
entire purpose of the distributed network.

Private blockchains require specific consensus protocols, which can be simpler since every
node is trusted and known. The Practical Byzantine Fault Tolerance (PBFT) consensus
algorithm is an example of a consensus mechanism used in some private blockchains. It
reaches a sufficient consensus despite malicious nodes in the network failing or sending out
incorrect information. The consensus consists of the majority of nodes agreeing on the
state of the blockchain, which is based on state machine replication and replicates voting
for consensus on state change. Proof of Authority (PoA) [15, 93] works with a trustful
model, which is based on reputation. The validator nodes do not stake coins. They stake
reputation. Other validator nodes arbitrarily select validator nodes. Thus, not every
participant can validate blocks. It is more oriented to private blockchains where a limited
number of validators are present. It is currently used in Microsoft Azure Blockchain Service
[1] and can be used to create a private blockchain with [14]. It offers high throughput and
scalability [15]. Although validators’ identity is publicly accessible, which threatens their
privacy and security, and is less decentralised.

19

Chapter 3

However, public blockchains require more complex consensus protocols, as anyone can join
the network anonymously. Some consensus protocols used in public blockchain are [67]:

• Proof of Work (PoW) [24, 82, 93], uses computational resources from miner
nodes. The miners have to solve a computationally demanding problem that is hard
to solve but very easy to verify to create a block. When a miner node solves the
problem, the new block is spread across the network to be verified and appended
to the blockchain by other nodes. The miners are rewarded in cryptocurrency of
the blockchain at hand. This consensus is used in well-known blockchains, such as
Bitcoin [77] and Ethereum [57]. In Bitcoin, the frequency of block creation with PoW
is 10 minutes. However, this consensus protocol is less scalable (low throughput),
requires more computational resources and is more prone to 51% attacks [82].

• Proof of Stake (PoS) [16, 82, 93], is based on the participants who own more
coins are more suitable to add blocks to the blockchain since they are more interested
in the survival and the correct functioning of the system. The consensus algorithm
chooses randomly the participants nodes that add the blocks to the network based on
the amount of stake they hold in the network. When a node gets chosen, it checks if
the transactions in the block are valid, signs the block and adds it to the blockchain.
As a reward, the node receives the transaction fees associated with the transactions in
the block. In this consensus, there is no concept of miner nodes. It does not take into
consideration external resources but, instead, internal resources (cryptocurrency). It
is currently used in a vast number of blockchains, such as Cardano [38] and Ethereum
2.0 [48] (Ethereum upgrade that will integrate PoS to enhance its performance and
reduce the cost of its transactions).

This protocol is more energy and resource-efficient than PoW since there is no need
for high-powered mining farms. Furthermore, it is less prone to 51% attacks due to
the economic infeasibility of buying 51% of the current circulating supply of a cryp-
tocurrency [16]. A common critique of this protocol is that it promotes enrichment
of the rich [82], and it requires incentives for the nodes to vote on the correct block
(e.g., slashing [19]).

The article [82] explores the concept of integrating Blockchain into IoT applications. This
integration aims to provide a distributed, immutable, transparent, secure, and auditable
ledger. It aims to solve problems related to the privacy, security, and reliability of IoT appli-
cations. The Ethereum blockchain was identified as one of the most prominent blockchains
to be implemented in IoT, mostly because of Smart Contracts that enable implementing
policies and measures. However, not every Blockchain is suitable to be used in a constrained
network due to some challenges related to legal issues, resource overhead, and being at-
tached to currency. The authors tested some blockchain platforms that are compatible
with the Raspberry Pi [21]. The results showed that they do not significantly increase the
overhead in terms of resources (except for the full node versions that are not suitable for
constrained devices). The authors conclude that this technology will revolutionise IoT,
although some challenges identified in this article must be considered before implementing
the two together.

3.5.2 Blockchain in IoT

The majority of IoT applications use a centralised architecture. However, this approach
leads to vulnerability, such as single points of failures, lack of reliability and resilience.

20

Background

Blockchains can solve these problems and enhance the reliability and resilience of IoT
applications. Furthermore, it enhances the privacy of the users. The main benefits of this
integration include [82]:

• Decentralisation and scalability, since blockchain uses a decentralised and dis-
tributed peer-to-peer architecture, there is no need for a central authority to validate
the transactions and audit the system, which eliminates single points of failure. Ad-
ditionally, it could enhance the scalability of IoT applications since it is distributed.
However, blockchains require higher throughputs to accommodate the number of
events generated by these applications.

• Authentication and authorisation, mechanisms of authentication and authorisa-
tion can be implemented with tamper resilient properties using smart contracts. They
can be used for authorisation to define who is allowed to access certain information
stored in them (specific service providers or other users). In addition, permissioned
blockchains can provide more granular access control rules on the participants of the
blockchain.

• Privacy, blockchains provide anonymity to the user, either by using a unique blockchain
address each time it makes a transaction [63] or by using a blockchain address that is
not associated with any personal information of the user [56]. However, this depends
on the implementation of the blockchain, e.g., some blockchains, such as Stellar
[13], implement Know Your Costumer (KYC) or Anti-Money Laundering (AML)
approaches for security reasons, which diminishes the user’s privacy.

• Security, information remains immutable on the blockchain, and the nodes can
check its integrity. Although, this feature can be a drawback to applications that
handle user sensitive data since it does not allow data erasure and modification, which
violates GDPR. Furthermore, each node uses his private key to sign his transactions,
providing authenticity to the transactions.

• Resilience against Denial-of-Service (DoS) attacks, since transactions require
a fee in cryptocurrency to be created, it is monetarily infeasible for the attacker to
congest a blockchain.

As mentioned before in 3.5.1, some blockchains can create decentralised applications through
smart contracts, which is useful for decentralised IoT applications. Some of them are:
Ethereum [57], and HyperLedger Fabric [52].

Ethereum can be used as a public or private blockchain, which provides flexibility for
applications. His consensus protocol is PoW (in the current version, before Ethereum
2.0), which supports smart contracts, enabling blockchains to move away from only being
used for cryptocurrency exchanges. It is one of the most popular platforms to develop
applications [82]. An example of an application is: ADEPT [90], developed by IBM, which
aims to enhance Machine to Machine (M2M) communications and device autonomy with
smart contracts. A possible use case, identified in [90]: allow washing machines to buy
automatically detergent from retailers when needed.

HyperLedger Fabric is a private and modular blockchain designed to be used by companies.
It provides identity control service and access control lists through private channels to
control and restrict access to their shared information in the network. It is used in IBM’s
blockchain platform [32], which could be used in food supply chains (Food trust [33]) to
improve traceability, with the intent to improve the safety and quality of food and efficiency
in the supply chain.

21

Chapter 3

Blockchains can be applied in IoT applications in the Automotive Industry [58, 66]. It
can protect sensitive data, such as vehicle owners information, location information, and
biotelemetry (e.g., heart rate, temperature, blood pressure) from sensors. Permissionless
blockchains can be used in Social Internet of Vehicles (SIoV) applications, where smart cars
are connected to share data (e.g., accidents, traffic data, or best routes) and communicate
with service providers (e.g. insurance companies). The users in these kinds of applica-
tions can remain anonymous. However, companies could use private blockchains, where
participants are known, for fleet management (monitor vehicle telemetry for maintenance
and consumption purposes), monitor the driver’s health and data traceability. Renting or
sharing smart car companies could benefit by building a sharing economy where each car
can be rented securely and quickly without the need for any authority. Moreover, KYC
mechanisms could be implemented to monitor and classify the clients’ behaviour while
driving.

Another suitable blockchain methodology for IoT applications that generate sensitive data
and large data is the off-chain blockchain. This type of blockchain, as the name suggests,
stores data outside the blockchain. Inside the blocks only resides pointers or anchors of
the data to verify the integrity and time stamps of the data [49]. It could improve the
performance, scalability and privacy of data in applications that work with highly sensitive
data in large amounts (e.g., healthcare) by ensuring that only authorised entities can access
it.

In [66], the authors address the feasibility of using blockchain in the automotive industry.
Challenges related to the financial sector, privacy and security in the automotive industry
are identified. The authors provide some guidance to assess whether blockchain is a suit-
able solution for specific applications. A list of blockchain-based applications is provided,
where blockchain can exchange trusted and cyber-resilient information in the automotive
industry. However, some blockchain weaknesses are identified related to its complexity,
lack of maturity in the industry, interoperability, lack of standardisation, regulatory and
legal aspects, governance and cultural acceptance.

The survey [58] focus on exploring privacy issues and possible solutions in the SIoV using
blockchain. SIoV has the intention to establish a social relationship between vehicles and
service providers to share telemetry data, traffic data, user data, or other types of useful
data. Despite the increased data availability, connectivity, and autonomy of vehicles in
SIoV pose a major threat to the privacy of its users. The authors identify seven dimensions
of privacy in the SIoV environment and the privacy threats in each layer of the application
(physical world layer, gateway layer, fog layer, and cloud layer). Finally, the authors
identify and discuss some SIoV blockchain-related privacy proposals.

3.5.3 Blockchain limitations and vulnerabilities

Despite the strengths and benefits of blockchain applications, it has some weaknesses that
need to be taken into consideration, which are:

• Does not make it easy to implement GDPR required mechanisms, due to
the immutable nature of blockchains, its users are not allowed to manage their data
or information present in it, such as modifying or deleting. This impairment violates
the GDPR, which, by default, is not a viable technology to work with users’ sensitive
data. Another parallel solution to store data is required to store or process this kind
of information to mitigate this limitation.

• Scalability and size growth, the increase of the blockchain size and network size

22

Background

results in the degradation of its scalability and increases its storage capacity require-
ments. New nodes require more time and storage resources to fully synchronise with
the current blockchain’s state [93]. Additionally, as the usage increases, the con-
gestion also increases. Permissioned blockchains attenuate this problem by having
a smaller network size and simpler consensus protocol. A possible solution for per-
missionless blockchains could be the use of an off-chain approach to improving the
scalability.

• Smart contract flaws [75], since smart contracts are composed of code, and hu-
mans code it, it is prone to flaws. These flaws can be exploited by malicious actors
to their advantage, either to obtain sensitive information or theft. As it is stan-
dard in software development procedures, smart contracts should be audited, tested,
and formally verified. Using well-established libraries can also help mitigate this risk.
Furthermore, data integrity at the smart contract level may be achieved by establish-
ing permissions to prevent unauthorised participants from accessing and modifying
information.

• Vulnerabilities, blockchains are vulnerable to certain attacks. Some of them are:

– The 51% attack [82] consists on the attacker having 51% of the mining power
(in PoW), or 51% of the stakes (in PoS). This attack can compromise the in-
tegrity and reliability of the blockchain. However, this attack is computationally
and financially hard to achieve, but not impossible. The blockchain should be
more decentralised and have many trustworthy nodes to maintain the blockchain
secure against this attack. Smaller permissionless blockchains can be more vul-
nerable to this attack since fewer resources are needed to accomplish it.
If an attacker performs this attack successfully, he can change the structure of
the blockchain by mining the blocks that he desires and publishing them, forking
the chain, thus discarding all previous transactions made. With this amount
of power, the attacker can select the blocks to be accepted into the blockchain,
putting at stake the security of the blockchain by disrupting its tamper resilient
properties.
Permissionless can mitigate this attack since non-cooperating nodes can be re-
moved from the pool of block validation nodes or the network.

– The double-spend attack [82] is an attack where the same cryptocurrency
is used twice. This attack is possible based on the fact that cryptocurrency
is digital. Thus, it can be copied and broadcasted multiple times. However,
the attacker needs to have 51% of the network power to perform this attack
to validate invalid transactions where cryptocurrency is used multiple times. If
this attack is successful, it will affect the reliability of the blockchain.

– Sybil attack [54] is another vulnerability where a single entity controls multiple
fake identities. It can influence the blockchain network by having more power,
influencing the information reaching other network nodes. This attack can be
mitigated by increasing the difficulty of accessing the blockchain network (invite
only) or creating new accounts (one computer per account) and having weighted
power based on reputation.

– Linking attack [95], is an attack where the attacker tries to identify the real
ID of an anonymous blockchain user by establishing a link between multiple
transactions with the same blockchain address. This attack violates the user’s
privacy. The attacker can trace data generated by the user and gather infor-
mation about him (user profiling). This attack can be mitigated by renewing
the blockchain address of the nodes frequently, which is associated with the

23

Chapter 3

transaction made by them. Alternatively, hiding the address of the actual user
could also safeguard its identity. Zero-knowledge proofs could also be used to
obfuscate the details of blockchain transactions [75].

– Private key compromise [75], blockchain users own a private key that works
as an identifier. Therefore, owning this private key is the same as owning the
user’s identity, which imposes a major threat to the users’ security. Thus, it is
essential to keep these keys secure. They can be compromised due to errors in
key generation, storage, human errors, or stolen by malicious actors. Therefore,
these keys should be used and stored securely. However, recovery mechanisms
should be implemented to enable a user to regain control of an identifier in loss
or theft cases.

– Quantum computation [75], computers with extreme amounts of computa-
tion (quantum computers) are currently being developed, which are foreseen to
disrupt the security of modern cryptography algorithms. Furthermore, it repre-
sents a threat to the security of blockchains since it is dependent on asymmetric
cryptography. Thus, the security of the users’ private keys could be at stake. A
possible solution for this future hypothetical problem is developing and standar-
dising quantum-resistant algorithms that may help alleviate the threats borne
by quantum computers.

3.6 Conclusions

This chapter introduced privacy in IoT. It can be divided into four areas: user privacy,
location privacy, data privacy and user-controlled privacy. User privacy consists of the
privacy of users’ sensitive data (e.g., biotelemetry data). If its privacy is violated, it can
endanger him by allowing external entities to perform user profiling and user tracking. Pri-
vacy of location, such as geospatial data from smart devices (e.g., smart cars), is important
to prevent tracking. Data privacy consists of the privacy of all remaining data generated
by IoT devices to prevent attacks that could gather sensitive information by linking the
data entries. Finally, user-controlled privacy allows the user to define privacy preferences
over his data and offers him more control over his data.

Various transmission protocols were addressed with some level of detail. However, MQTT
emphasised as the most appropriate for IoT applications that use location data, which is
more appropriate to the area of interest of this thesis. MQTT provides lightweight messag-
ing, resilience, and QoS features to improve the performance and resilience of constrained
IoT communications. However, it lacks adequate privacy and security features for con-
strained devices since its confidentiality mechanisms require some computational resources
to be effective.

Blockchain was identified as a possible solution to provide enhanced privacy and security to
IoT applications. Based on its decentralised and distributed architecture, data immutabil-
ity, the anonymity of users, and resiliency to single points of failure. Smart contracts are
one of its most interesting features since it allows creating decentralised applications, which
can be used based on the needs of the IoT application. As mentioned before, one possi-
ble use is to offer a decentralised authorisation and authentication mechanism for access
control.

In the next chapter, the concept of privacy in IoT will be addressed to instigate the need
to provide privacy in IoT applications. Privacy-enhancing proposals related to MQTT and
blockchain will be described, as well as their privacy and security mechanisms.

24

Chapter 4

State-of-the-art

In this chapter, the main subject of the thesis will be addressed: privacy and location
in IoT. Privacy proposals related to MQTT and Blockchain from the literature will be
identified and classified based on their privacy and security mechanisms. This chapter also
aims to identify the mechanisms and solution to be used in our proposal.

4.1 Privacy solutions

In the survey [81], the authors address privacy in IoT. Some applications are mentioned
where privacy is an important factor and the possible risks if privacy is compromised,
e.g., in eHealthcare, Smart Homes, Public Safety, and Stock Management. They discuss
four key aspects of privacy (user privacy, data mining, underlying technologies, and legal
standards), pointing out their problems and challenges. Based on the identified privacy
issues, the authors propose a privacy framework for IoT applications to be used as a guide-
line to classify the provided privacy. Some existing privacy solutions (Privacy-Enhancing
Technology (PET)s) are identified, addressing their strengths and weaknesses. Finally,
they conclude that the Privacy by Design (PbD) is a potential approach to privacy in
IoT. However, it is still underdeveloped and needs research and solutions in some aspects.
Which are: defining a general model for privacy, developing PETs based on PbD to allow
scalability and heterogeneity, integrating solutions with a perfect balance between policies,
location requirements and access control mechanisms for sensitive data.

As mentioned in [81], the authors propose a privacy framework for IoT where they identify
important technical characteristics, which are:

• Openness, transparency, and a specified purpose, clients should be aware of
the information collected in the applications, the purpose of collecting that informa-
tion, other parties who will have access to the information, and how that information
will be stored.

• Identity privacy, it should not be possible to profile or track users based on their
identities.

• Temporal and location privacy, it should not be possible to track or profile
consumers based on events or geolocation.

• Query privacy, it should not be possible to profile or identify users based on the
queries they make to service providers.

25

Chapter 4

• Access control, users should have control over the access control policies. They
should be able to tune the granularity of data access depending on the users and
queries.

• Interoperability, enabling cross-border support of privacy policies among different
technologies, standards, and legislation.

• Data minimisation, collect data in lawful and fairways and limit personal data
collection to data needed to perform a given service.

• Accountability, the consumer and service provider should agree about the con-
trollability and visibility of the service provider’s responsibility concerning the given
service or information.

• Security of data, provide security to sensitive data by preventing loss, unauthorised
access, data tampering, or disclosure.

In the literature, there exist various PETs in the area of IoT. However, MQTT and
blockchain will be the main subjects of this work, with the intent to propose a privacy-
enhancing solution. PETs present in the literature cover the areas of privacy mentioned
in 3.1, using distinct privacy mechanisms:

• Access control ([49, 62, 63, 76, 78, 95], which provides privacy by controlling the
access to the data stored. Despite this, if the data payload is not encrypted during
transmission, an attacker can eavesdrop it. This mechanism provides some level of
privacy in terms of data privacy and user privacy.

• User anonymity [63, 76, 95], most PETs that use blockchain use this mechanism
since the user’s ID is hidden with the use of public addresses obtained from its key
pair. Thus, this mechanism prevents user profiling and user tracking.

• Topic obfuscation [65], with this mechanism, the topic names of the MQTT system
are generated with a hashing function, which prevents topics analysis by their names.
As a result, the type of data published on the topics is very hard to be traced. For
this solution to be even more effective, the data must be encrypted. Nevertheless,
this mechanism can improve data privacy since the attacker does not know what kind
of data it is.

• Lightweight cryptography [62, 84], this approach provides confidentiality of the
data by using a lightweight cryptographic algorithm to be used in communications
between constrained devices. Some privacy is added to the data.

• Blockchain [49, 56, 62, 63, 76, 95], as mentioned in chapter 3.5.2, this technology
can be used to provide privacy of user’s identity and data. Smart contracts are also
used to improve the security of the data by providing access control.

The PbD is a methodology that has been increasingly addressed. It consists of a method-
ological engineering requirement in which privacy requirements are identified and consid-
ered as objectives of a project [81]. It consists of anticipating and preventing attacks
that compromise data privacy in the future, incorporating privacy into the project design.
This methodology is not a concrete privacy solution but can be used as a framework for
application development.

26

State-of-the-art

4.1.1 General privacy proposals

MQTT has an important role in our proposal since it is useful for IoT applications with
mobility. Ergo, this section presents privacy proposals that use existing mechanisms to
provide privacy of data implemented on MQTT communications. In Table 4.1, a summary
of the proposals and some of their characteristics are identified.

The article [78] proposes a security mechanism to protect the data generated by IoT de-
vices in order to preserve the users’ privacy. The authors have developed a solution using a
security toolkit called SecKit to enforce security policies. The solution has been integrated
into an MQTT broker, Eclipse Mosquitto, through a security plugin. This solution allows
controlling the access of MQTT message types: connect, publish and subscribe. Depending
on the condition defined in the Access Control List (ACL), an action can be allowed, de-
nied, modified, or delayed. Through experiments, the authors concluded that the solution
developed is feasible for environments with limited resources due to adding, on average, a
delay of only ten Milliseconds (ms).

In [84], it is proposed an adapted Attribute Based Encryption (ABE) based on Elliptic-
curve cryptography (ECC) integrated into the MQTT protocol to enhance its privacy and
security. This solution aims to improve the MQTT by providing lightweight cryptogra-
phy (ECC) and access control (ABE), which is ideal for IoT applications. The authors
tested the solution by comparing it to a similar one that uses Advanced Encryption Stan-
dard (AES) cryptography instead. The result has shown that ECC is faster than AES at
encrypting and decrypting data, making it more suitable for constrained systems.

In the article [65], some solutions are proposed to improve data privacy in MQTT com-
munications, with emphasis on hiding the topics to which messages are addressed and en-
crypting the payload. They performed some performance tests with one solution, namely,
Advanced One-Time Password (AOTP). This solution uses a technique to obfuscate the
topic names using a hashing function that creates a hash table for each topic. It defines
who can subscribe to the topic, in which they compute the hash with the hashing function,
thus being able to get the message sent by the sender. After each publish, the hash is
removed from the table, and the hashes are used only once. This solution allows offering
data privacy when public brokers are used. Tests have shown that this technique adds
little overhead to communications, adding an average delay of 10 to 15 ms.

Table 4.1: General privacy proposals identified.

Proposal Description Framework charac-
teristics Privacy area

Enforcement of secu-
rity policy rules for
the Internet of Things
[78]

It’s integrated SecKit (security toolkit)
with an MQTT broker (Mosquitto) to en-
force access control in connect, publish
and subscribe messages.

Access control; Inter-
operability; Security of
data.

Data privacy.

Secure mqtt for in-
ternet of things (IoT)
[84]

This solutions aims to improve privacy
and security of MQTT, by providing a
lightweight cryptography with ECC and
access control with ABE.

Access control; Inter-
operability; Security of
data.

Data privacy.

Towards improving
the Privacy in the
MQTT Protocol [65]

Implements a One-Time Password mech-
anism to obfuscate MQTT topics with
a hash function, only specific subscribers
can access the topics.

Access control; Iden-
tity privacy; Security
of data.

Data privacy.

27

Chapter 4

4.1.2 Privacy proposals with Blockchain

In this section, there are presented privacy proposals that use blockchain technology to
enhance the privacy of IoT applications.

The authors of [56] propose a privacy solution that uses One-Time Password (OTP) in
the MQTT Broker for authentication and authorisation of devices. The authentication
and authorisation of the devices are done in conjunction with the Ethereum Blockchain.
It is used as a parallel independent channel to improve the security of this solution. The
blockchain is used because it provides a distributed and tamper resilient database and
enhances users’ privacy. Smart contracts are used to assure the correct functioning of the
authentication and authorisation of in-chain mechanisms. The Ethereum users register the
MQTT client devices. The users’ privacy is preserved since the blockchain does not use
the private information of the user. In addition, the devices’ IPv6 addresses are obfuscated
using a secure hashing function (SHA-256).

In the privacy proposal [63], is proposed a solution to improve user privacy and security
in automotive applications using a blockchain-based architecture. The authors have devel-
oped an optimised blockchain for IoT applications, called Lightweight Scalable Blockchain
(LSB), and proposed an architecture based on it. The LSB allows blocks to be processed
faster compared to a bitcoin blockchain. Nodes in the network are clustered (cluster
heads (CHs)), which are responsible for managing and performing its core functions on
the blockchain, which constitute the Overlay Block Managers (OBM). Transactions are
broadcasted to and verified by the OBMs, thus eliminating the need for a third party.
This proposal provides authentication and authorisation of the nodes with their pair of
asymmetric keys. It provides data integrity with a hash, enabling them to check if the
data has been tampered. One interesting privacy feature of this solution is that it enables
users to decide the data they want to share with service providers. Accordingly, the users
are aware of the data being transferred. Furthermore, the authors identify some appli-
cations where their proposed architecture could be implemented, such as remote software
updates, insurance, electric vehicles and car-sharing services. In conclusion, this proposal
addresses a broad set of privacy and security aspects, making it a comprehensive proposal.

In [76], the authors propose a privacy solution based on an Ethereum blockchain for IoT ap-
plications. The solution consists of using a publish/subscriber architecture in a blockchain
to be used as a broker. It enables the publishers to control data access to the data sent to
the blockchain, which adds a layer of data privacy. The data is encrypted using the public
key encryption with equality test (PKEwET), and since data on blockchains remains im-
mutable, the data is protected against tampering attacks. The user’s identity also remains
immutable on the Ethereum blockchain. The authors did some performance tests that
showed that the solution is efficient at encrypting and decrypting data.

The authors in [95], propose a location privacy-preserving solution based on blockchain.
Its purpose is to hide the users’ location (workers). The workers complete tasks (pro-
vided by the requester/s), in their desired area, by going to the locations defined in the
tasks. In exchange, they receive cryptocurrency as rewards. This proposal uses both pri-
vate and public blockchains that trusted participants, named agents, connect. The private
blockchains are used to store in a distributed manner the transaction history of the workers
across multiple private blockchains, which grants enhanced privacy of the data by prevent-
ing reidentification attacks. Considering that only authorised participants can access the
private blockchains, the privacy is further improved. The worker’s ID is anonymous, and
the users’ precise location is obfuscated by using an area of X radius. Smarts contracts
are also used to assure that the transactions between requester and worker are valid, as-

28

State-of-the-art

suring that cryptocurrency is sent and received to validate the location of data provided
by the worker and to verify if the tasks are still valid. Compared to typical centralised
crowdsensing systems, this proposal proves to be resilient to reidentification attacks since
the transactions are distributed across multiple private blockchains, and the users are
anonymous. However, the latency introduced by the verification process of creating new
transactions could be a problem.

The proposal of [62] consists of using blockchain to offer security and privacy for smart
home applications. A public blockchain is used to connect various smart homes, known
as Cluster Heads, to allow smart devices from each home to communicate with each other
or with service providers that want to access the data. Inside the smart home, it is
used a private blockchain that stores the transactions made. Moreover, private and public
blockchain blocks contain a policy header to provide access control, providing more privacy
to the data. Lightweight symmetric encryption is used in communications to ensure the
security of data during transport. The authors identify two attacks that this proposal
is immune to: DDoS attacks and linking attacks. As the smart devices are not directly
accessible, an attacker cannot install malware on the devices. Even if he manages to infect
devices, the outgoing traffic is examined by the policy header, so using devices for DDoS
attacks is unlikely. Each device’s data is shared and stored by a unique key to protect the
system against linking attacks. Finally, the authors examined the solution’s performance
by doing some experiments and identified that the solution introduces a small delay in the
transactions. However, the security and privacy benefits are more relevant.

The concept of tiered blockchain architecture is also proposed in [49]. The system is
composed of a consortium blockchain network with multiple private blockchains (identified
as private "side-chains"). Both the consortium blockchain and the private "side-chains"
have a smart contract with a list of public addresses of authorised devices that can access
the IoT data. Contrary to the previous proposals, data is stored in an external decentralised
storage system, named Interplanetary File System (IPFS). The private "side-chains" store
encrypted IPFS file hashes of the IoT data, which authorised requesters of the consortium
blockchain can decrypt. To access the data, the requester sends an HTTP request with
the decrypted file hash to the IPFS distributed network, which responds with the data
requested.

29

C
hapter

4

Table 4.2: Classification of the blockchain related privacy proposals identified.

Proposal Description Framework characteristics Technologies Privacy area
Securing MQTT by
Blockchain-Based One-
Time Password (OTP)
Authentication [56]

Uses One-Time password generated on the MQTT
Broker for authentication and authorisation of de-
vices, done with smart contracts used in Ethereum
Blockchains

Identity privacy; Interoperabil-
ity; Query privacy; Security of
data.

- MQTT;
- Blockchain;
- Smart contract for authentication
and authorisation.

Data privacy and
User privacy.

BlockChain: A Distributed
Solution to Automotive Se-
curity and Privacy [63]

Proposes an architecture based on a Lightweight
Scalable Blockchain (LSB), an optimised
blockchain for IoT, to provide privacy and
security for automotive applications. It aims to
improve user privacy by anonymising the data
and letting the user choose which data will be
transmitted to service providers.

Access control; Openness,
transparency, and a specified
purpose; Temporal and loca-
tion privacy; Identity privacy;
Query privacy; Interoper-
ability; Data minimization;
Security of data.

- Blockchain.

Data privacy, User
privacy, Loca-
tion privacy and
user-controlled
privacy.

An IoT-Oriented
Privacy-Preserving Pub-
lish/Subscribe Model Over
Blockchains [76]

Proposes a privacy solution based on an Ethereum
blockchain using a publish/subscriber architecture
to function as a broker.

Access control; Identity pri-
vacy; Query privacy; Interoper-
ability; Security of data.

- MQTT;
- Blockchain

Data privacy and
User privacy.

A blockchain-based loca-
tion privacy-preserving
crowdsensing system [95]

Implements a tiered architecture with public and
private blockchains to enhance users’ privacy, lo-
cation, and transactions. Users data is distributed
across multiple private blockchains to prevent re-
identification attacks.

Openness, transparency, and a
specified purpose; Identity pri-
vacy; Temporal and location
privacy; Query privacy; Inter-
operability; Security of data.

- Tiered architecture with Public and
Private blockchains with an agent;
- Smart contracts for access control.

User privacy and
Location privacy.

Blockchain for IoT Secu-
rity and Privacy: The Case
Study of a Smart Home [62]

Uses a private blockchain to store transaction
made in the smart homes and for access control,
and uses public blockchains to control the access
to data in the smart home made by overlay devices
(service providers, other devices/users).

Access control; Openness,
transparency, and a specified
purpose; Identity privacy;
Query privacy; Interoperabil-
ity; Security of data.

- Tiered architecture with Public and
Private blockchains with the use of a
smart home miner node;
- Internal and external communica-
tions are control by the miner node,
which checks the ACL stored in a
block on both blockchains.

Data privacy and
User privacy.

IoT data privacy via
blockchains and IPFS
[49]

It is an interconnected consortium blockchain net-
work with multiple private blockchains (identified
as private side-chains). Both types of blockchain
have a smart contract that controls the access to
IoT data. The private side-chains store encrypted
IPFS file hashes of the IoT data that can be ob-
tained and decrypted by authorised nodes, which
obtain the data via an HTTP request.

Identity privacy; Temporal and
location privacy; Query pri-
vacy; Interoperability; Security
of data.

- Interconnected Public and Private
blockchains with a validator node;
- Smart contracts for access control;
- IPFS for decentralised storage.

User privacy and
data privacy.

30

State-of-the-art

In Table 4.2, is made an identification and classification of PETs that use blockchain
technology. The classification of their characteristics is based on the privacy framework
proposed in [81], the used technologies, and the private areas addressed, which were iden-
tified in section 3.1.

The presented proposals use blockchain to enhance the user’s privacy and security and
present data. Furthermore, based on the surveys ([50, 58, 66, 82]) the blockchain is iden-
tified as a promising solution to enhance the privacy and security of IoT applications,
and more specifically automotive application ([58, 66]). However, blockchain alone is not
private and secure enough without innovative solutions (e.g., smart contracts) and inte-
grations (e.g., external decentralised storage system).

In some proposals of Table 4.2 ([49, 56, 62, 95]), smart contracts are used to perform certain
tasks, such as accessing data and storing information. This solution can further improve
the privacy and security of data stored in the blockchains. Although this mechanism needs
to be implemented in private blockchains effective since public blockchains are open, any
participant can access the information stored. Another proposed solution is using a tiered
architecture with public and private blockchains, where both blockchains can transact
between them. They are connected by a node that is a participant of both types of
blockchains, which allows the interoperability of blockchains and improves the privacy and
security of data by storing it in the private blockchains ([49]). This approach is described
in [50] as the most promising solution for IoT data transfers.

4.1.3 Privacy proposals comparison

The identified privacy proposals use distinct mechanisms to provide privacy to users and
data (location and other data types). Table 4.3 identifies the characteristics of each pro-
posal, based on different aspects, with the purpose to summarise their functional charac-
teristics and differentiate them.

By analysing Table 4.3, it is possible to state that most of the proposals have distinct
characteristics. However, half of the blockchain-based proposals use a tiered blockchain
architecture since it is identified as a promising solution for data transfers and blockchain
interoperability [50]. Encryption of data is also integrated into some of the proposals.
Most of them use asymmetric encryption, except for [62], which uses symmetric encryp-
tion. Access control is differently implemented in all proposals to enhance the security of
the system, and therefore its privacy. User anonymity is a characteristic that is imple-
mented by all blockchain-based proposals. By nature, blockchains provide some level of
user anonymity since the identity of users is masked by blockchain addresses. Storage of
data is only addressed in the proposals that use blockchain, although most of them relying
on local or external storage solutions, except for in-chain storage in [95]. The storage is
done on both public and private blockchains, although storing data on public blockchains
is unsafe and does not provide privacy to data. Storing data in a private blockchain is
more private and secure due to the permission-based nature of these kinds of blockchains.
However, the immutability of blockchains prevent data management functionalities (e.g.,
delete or modify data).

31

C
hapter

4

Table 4.3: Characteristics of the identified privacy proposals.

Proposal Architecture Confidentiality Access control Data storage User anonymity Location pri-
vacy Validation strategy

Enforcement of security pol-
icy rules for the Internet of
Things [78]

MQTT broker
with an integrated
security toolkit
(SecKit)

None SecKit None

Define a policy to
obfuscate the user-
name of the data
owner

Obfuscate GPS
data with a policy

Real implementation
scenario

Secure mqtt for internet of
things (IoT) [84]

Integrated ABE
with MQTT

Asymmetric en-
cryption(with
ECC)

ABE None None None Real implementation
scenario

Towards improving the Pri-
vacy in the MQTT Protocol
[65]

OTP integrated in
MQTT messages None AOTP None None None Real implementation

scenario

Securing MQTT by
Blockchain-Based OTP
Authentication [56]

MQTT authen-
tication using
blockchain

None Smart contract None Blockchain pseudo-
anonymity None

Security analysis
without implementa-
tion

BlockChain: A Distributed
Solution to Automotive Se-
curity and Privacy [63]

Blockchain Asymmetric
encryption

Overlay block
managers Local and cloud Blockchain pseudo-

anonymity
User-controlled lo-
cation privacy

Security and privacy
analysis without im-
plementation

An IoT-Oriented
Privacy-Preserving Pub-
lish/Subscribe Model Over
Blockchains [76]

Blockchain with a
publish/subscribe
model

Asymmetric
encryption

Authentication
mechanism In-chain Blockchain pseudo-

anonymity None Real implementation
scenario

A blockchain-based loca-
tion privacy-preserving
crowdsensing system [95]

Tiered blockchain
architecture None In private

blockchains
In both types of
blockchains

Blockchain pseudo-
anonymity

Location ob-
fuscated by an
area

Emulation

Blockchain for IoT Secu-
rity and Privacy: The Case
Study of a Smart Home [62]

Tiered blockchain
architecture

Symmetric en-
cryption

ACL written on-
chain Local and cloud Blockchain pseudo-

anonymity None Simulation

IoT data privacy via
blockchains and IPFS
[49]

Tiered blockchain
architecture

Asymmetric
encryption Smart contract IPFS Blockchain pseudo-

anonymity None Real implementation
scenario

32

State-of-the-art

The proposal [62] uses symmetric encryption and the Diffie-Hellman key exchange to share
the secret key between nodes of the blockchain architecture. This approach is sufficient if
used for end-to-end communications. However, it is not adequate to share data to various
end nodes of the blockchain since many transactions and various individual secret keys
would be needed to share data with each of the end nodes. Ideally, one symmetric key
used by many nodes is preferable for this kind of scenarios to share data securely and
efficiently.

4.2 Conclusions

In this chapter, the concept of privacy-oriented IoT applications was addressed by identify-
ing their properties. A privacy framework is addressed in [81], it was used to distinguish the
privacy proposals identified in section 4.1. The proposals were divided into two sections.
One section is composed of proposals focused on improving the privacy and security of the
MQTT protocol, and the others use blockchain-based solutions. Blockchain integration
has been increasing, especially in privacy and security proposals for IoT, because of its
inherent privacy and security features. However, some proposals have taken a step forward
by connecting it to other blockchains and external entities (e.g., cloud and IPFS). Smart
contracts have also revolutionised blockchains, since it allows the use of blockchains as a
set of decentralised applications, and not only has a channel to exchange cryptocurrency.

Based on the identified PETs and their characteristics, our proposal will implement a
blockchain-based architecture. In addition, some different approaches will be implemented
further to improve the privacy of IoT applications with mobility. Our proposal is described
in the next chapter.

33

Chapter 5

Privacy-Enhancing Proposal

In this chapter, our proposal is addressed, which consists of a blockchain-based system
to enhance the privacy of automotive IoT applications. The proposal’s requirements will
be defined, as well as the architecture, the implementation strategy, and the evaluation
strategy.

5.1 Application and requirements

In this section, an example of a use case for our system is provided and its main require-
ments.

5.1.1 Application

The main goal of this proposal is to enhance the privacy and security of automotive appli-
cations by storing the data and exchanging it securely and privately. More specifically, ap-
plications where smart vehicles share location data and telemetry data to service providers
or other entities (e.g., crowdsensing). The in-vehicle sensor controller gathers this data
to process the information related to events (e.g., accidents), road conditions (e.g., traffic
jams, debris on the road), best routes and much more. Then, it sends the data to be stored
and later exchanged to authorised users.

We consider an application in the context in which smart vehicle owners (vehicle users)
wish to share data about accidents, traffic jams, or other events to GPS applications
to alert authorities or for research purposes. Each one of these kinds of data has its
priority, required privacy and end applications. The vehicle user has the right to define
who can access each one of these types of data by specifying the blockchain addresses of
the nodes in the public blockchain allowed to access the data by sending the command:
define "type of data" "ACL", to the MQTT broker. These blockchain addresses can be
obtained through an application deployed in-chain in a smart contract or another external
application. However, this mechanism will not be addressed or implemented in this version
of the system. Then, the broker executes the function defineACL(owner, dataInfo, acl) of
the PBVU’s smart contract to store the defined ACL for that specific vehicle user’s data
type. The smart contract stores this information in a dynamic array of structures, where
each cell of the array represents a vehicle user. Finally, a symmetric key is generated in
the sensor controller and exchanged securely, using events and encrypted with asymmetric
cryptography, to the public blockchain nodes of the ACL.

35

Chapter 5

When the sensors of the car detect an event, the smart vehicle’s sensor controller sends the
command publish "data type" "data about event" to the MQTT broker. The data is sent
encrypted with the symmetric key, previously exchanged with the authorised nodes. The
broker stores the data in Storj (decentralised storage system), and a reference to access the
data is generated. Then, the broker executes the smart contract addData(owner, dataInfo,
serial, ID) function, which stores the reference in the smart contract. Subsequently, the log
information of the data is transmitted by the smart contract to the smart contract proxy
to broadcast it as a log event by the smart contract of the public blockchain. The public
nodes can fetch the log information about the newly added data and make a decision.

Next, if the authorised nodes want to request the data, they execute the getPrivData(ID)
function of the public blockchain smart contract. The request is forwarded to the smart
contract proxy, which executes the smart contract of the PBVU to perform access control.
If the node is authorised, the serial is retrieved and broadcasted to the public blockchain
as an event. Even if other nodes try to parse it, they cannot decrypt the data without the
symmetric key.

With the data, the node can use it for their intended application or store in their systems
private blockchains (e.g., private blockchains, storage systems). These nodes can be owned
by GPS applications, authorities or research entities. For example, some end application
can be: display information on a GPS system (e.g., Google Maps or Waze), alert authorities
about an accident, or to be used for research purposes to improve roads.

This proposal assures vehicle user privacy by decoupling the data generated with infor-
mation about the owner, providing anonymity of the user with the blockchain addresses,
and preventing transactions’ traceability. The location and data remain private and secure
by using decentralised access control mechanisms and symmetric cryptography throughout
transport and when stored.

5.1.2 Requirements

Blockchain

To enhance the privacy and security of automotive applications, we propose using a tiered
architecture of blockchains, particularly a public blockchain connected to multiple private
blockchains. Only one public blockchain is used, where all parties of the system can
participate since the access to the public blockchains is permissionless. In terms of private
blockchains, the number of present blockchains of this type in the system is undefined. It
depends on the number of participating public blockchain nodes participating in private
blockchains (agents). However, at least one private blockchain is always present, the PBVU,
where their generated data is stored and controlled by a smart contract. This architecture
increases the privacy and security of data and the performance and scalability of the
blockchains by implementing various blockchains with distinct goals and functionalities.

In the following Tables 5.1, 5.2 and 5.3, the requirements related to the blockchain tech-
nology implemented in our proposal are going to be specified.

36

Privacy-Enhancing Proposal

Table 5.1: Blockchain functional requirements.

Name Description

Intermediation between
blockchains

Allow executing function calls between smart contracts from dif-
ferent blockchains to handle requests that require cross-blockchain
communications (e.g., data requests and key exchanges).

Decentralised storage
Provide off-chain data storage to the vehicle users generated data
in a decentralised system, which can be accessed in-chain via a
data reference (serial).

Data management
The vehicular users can manage their data. They can decide which
data is sent, who can access it, and access or delete/modify data
previously sent.

Access control
Provide access control to vehicle users generated data, which is
stored as a reference in the PBVU’s smart contract. The ACL of
each data type is also stored in the smart contract.

Accountability

The Smart contract generates log information (ID, data type and
timestamp) about new data added in the PBVU, which are broad-
casted as an event in the public blockchain. This log event informs
the public blockchain nodes that new data is available and identi-
fies it by its ID and data type.

Flood prevention

Blockchains, specifically public blockchains, use cryptocurrency as
a currency to be transferred between nodes but is also used as an
incentive to keep the blockchain secure (reward systems: staking
[55]). However, in this system, cryptocurrency is also intended to
be used as a flood prevention method by imposing fees on data
access requests made in the public blockchain. It has the goal
to prevent malicious nodes from flooding the blockchain with re-
quests.

Table 5.2: Blockchain privacy and security requirements.

Name Description

User controlled privacy The user can define which data is sent and which end nodes can
access it.

User anonymity

Blockchain accounts provide enhanced privacy to the users since
the address of each account is not associated with any personal
information. Therefore the system does not store sensitive infor-
mation about the user.

Location and data privacy Data sent to authorised nodes is completely anonymous, which
prevents user tracking and profiling attacks.

Data confidentiality Data, when it is stored and in transit, is always encrypted with a
symmetric key.

Table 5.3: Blockchain non-functional requirements.

Name Description

Performance

Improve the performance of the system by distributing the work-
load through multiple blockchains to prevent congestion. Each
blockchain has its functionalities and goals. Together they form a
complete system. A private blockchain will be used to store the
data, and the public blockchain to access it.

Blockchain size-reduction

Improve the scalability of the blockchains through the distribu-
tion of requests into different blockchains with different purposes.
Therefore, minimise the size growth of the blockchains to reduce
the amount of storage resources needed.

Our proposal has merged some aspects proposed in blockchain Privacy-Enhancing Tech-
nology (PET)s (chapter 4.1.2), such as blockchains to improve the security and privacy
of data, tiered architecture of blockchains, connected by the agent nodes for connectivity,
performance and scalability, and smart contracts for access control. However, it offers

37

Chapter 5

some distinctive approaches. The main one is connecting the blockchain of vehicle users
(where data is stored) and the public blockchain using a smart contract proxy, responsible
for handling requests made by smart contracts from different blockchains.

Furthermore, the data is encrypted using symmetric encryption instead of the classical
asymmetric encryption used in other systems. It intends to encrypt the data at the source
and offers the possibility to be decrypted by multiple authorised nodes, eliminating the
need to send the encrypted data multiple times.

MQTT

To improve the performance and the resilience of IoT applications with mobility, a lightweight
messaging broker (MQTT) is used in conjunction with his QoS and durable connection
features. Despite the security measures of MQTT not being ideal for constrained devices,
data confidentiality, authentication and authorisation will be implemented to provide more
security to MQTT communications.

The following tables contain the requirements related to MQTT in this system.

Table 5.4: MQTT functional requirements.

Name Description

Request processing
The MQTT broker is responsible for receiving messages from the
vehicle users, executing the smart contract of the PBVU, or per-
forming other action.

Table 5.5: MQTT security requirements.

Name Description

Authentication The sensor controllers need to authenticate themselves in order to
connect to the MQTT broker.

Authorisation

Provide permissions to sensor controllers to perform certain tasks
(e.g., subscribe and publish or neither one) in certain topics to
prevent eavesdropping or tampering data sent by other sensor con-
trollers.

Data confidentiality
The MQTT communications between the sensor controller and the
broker must be encrypted to prevent eavesdropping and man-in-
the-middle attacks.

Table 5.6: MQTT non-functional requirements.

Name Description

Interoperability Allow constrained devices that do not support blockchain technol-
ogy to communicate with this blockchain-based system.

Bandwidth consumption re-
duction

MQTT uses small packets, which improves the performance of the
communications by consuming less bandwidth.

The MQTT broker in this proposal allows the smart vehicles to transmit data with fewer
resource requirements and more resilience. However, the new concept implemented in this
proposal is that the MQTT broker is a member of the PBVU, which has the responsibility
to make function calls based on the commands of the messages sent by the sensor controller.
The sensor controller never communicates directly with the PBVU.

38

Privacy-Enhancing Proposal

5.2 Motivation

Our privacy-preserving proposal is based on the previously identified PETs (Table 4.3) and
other articles present in the literature. However, our proposal will provide some distinct
characteristics to improve certain limitations of the identified proposals.

In [69], MQTT is used to improve the communication quality between smart vehicles, as we
considered for our proposal. Applications with mobility, such as the connectivity of smart
vehicles to applications in the cloud, can be unreliable and unstable. MQTT can improve
the communication of these types of applications by using its QoS mechanisms, durable
connection feature and by providing a lightweight messaging broker. These features of
MQTT improve the resilience and performance of these IoT applications with mobility by
preventing the loss of messages and connection with MQTT and reduces the amount of
necessary computational and network resources.

An MQTT broker will be used as a communication middleware between the IoT device and
the blockchain in our proposal. It is similar to [56], although, in the proposal, blockchain
is used to improve the security of MQTT authentication and authorisation mechanisms.
It is used to provide a lightweight communication protocol and to provide resilience to
communications. The broker is also responsible for making transactions in the name of the
IoT device based on the messages published by it. Unlike in [62] where each IoT devices can
communicate directly with the public blockchain, and vice-versa, which could be a security
threat if the access control mechanism used in this proposal does not function as designed
or if the ACL is poorly configured. It is also expected to remove some computational
overhead from the IoT devices, which will be verified through experimental testing.

In the [95], [62] and [49] proposals are used two connected blockchains (tiered architecture
of blockchains). Each kind of blockchain has different goals and functionalities. They
are connected to take advantage of their benefits. The blockchains in these proposals are
connected by a blockchain node that responds to requests to access data or other types of
requests made by the nodes.

Our proposal uses a similar approach, but the Private Blockchain of Vehicle Users (PBVU)
communicates with the public blockchain with the use of a smart contract proxy. It is re-
sponsible for handling certain requests generated by smart contracts from both blockchains.
In contrast to other proposals, smart contracts are the only entities in the blockchain that
can make requests to the proxy. Moreover, other private blockchains or systems (owned
by enterprises or other kinds of entities) can be connected to the public blockchain by a
node, called agent (similar to [95]).

A tiered architecture with public and private blockchains will allow participants to make
transactions between different kinds of blockchains, enhancing the interoperability and
scalability of blockchains. Each blockchain has its purposes. Therefore, the workload
is distributed through multiple blockchains instead of only residing in one blockchain,
enhancing the system’s scalability.

Similarly to [49], data in our system is stored off-chain and is never stored in the public
blockchain for privacy reasons, unlike in [62]. Public blockchains are transparent. Thus,
every node can access the transactions of the blockchain. For this reason, it is only stored
log information of the data in the smart contracts.

Storj [40] is used as the off-chain storage solution, which allows eliminating data, unlike
IPFS that does not provide a confirmation that data was deleted [25]. It also provides
more security and reliability features than IPFS [49] or other cloud storage solutions [62].

39

Chapter 5

Similarly to [49], in the blockchain, it is only stored a reference (serialised access string) of
the data, which can be used to access the data.

In terms of data confidentiality, our proposal uses symmetric encryption, just like in [62],
to encrypt the transmitted data in order to be only decrypted by the authorised nodes.
However, in [62], the data is encrypted for end-to-end transmissions, which allows them to
use the Diffie-Hellman key exchange to share the key. This method can be quite cumber-
some to exchange keys between a high number of devices. In our system, the symmetric
key is securely exchanged using asymmetric cryptography before the vehicle user publishes
any data. The public and private keys used in asymmetric encryption are the ones created
to generate the wallets of each blockchain node. The encrypted key will be exchanged
through the public blockchain as an event addressed to the destined public node. The
public nodes can fetch this event. However, only the authorised nodes can use their pri-
vate key to decipher it. Only one secret key will be used to encrypt each data type of each
vehicle user, which reduces the number of transactions made to transfer data, therefore
improving the scalability of the blockchain by using it more efficiently.

The access control mechanism is similar to the one proposed in [49], which is performed
with a smart contract. It contains a list of the blockchain addresses of authorised nodes
from the public blockchain. Although, the vehicle users are responsible for the content of
the ACL. Similar to [63], our proposal offers user-controlled privacy by design since the
user has the right to choose who can access his data. This ACL is used per data type, and
the authorised nodes are the recipients of the exchanged symmetric keys.

User anonymity, much like in other blockchain-based proposals, is provided by default with
blockchain account creation. The blockchain addresses that represent each account do not
correlate with the users’ sensitive information.

Location privacy and data privacy are implemented in some proposals via mechanisms
of access policies, user-controlled privacy [63] and location obfuscation ([78, 95]). In our
proposal, this is achieved by implementing the first two mentioned mechanisms (access
policies and user-controlled privacy). Although, the data and location information are
further anonymised by removing any information associated with its owner (e.g., blockchain
address) when providing the data to the authorised public nodes. This mechanism provides
anonymity by design, which prevents any linking attack, consequently removing any chance
of location tracking to be performed.

In [95], the smart contract imposes a deposit of cryptocurrency from both ends (data
generator and service provider) as an assurance. If both parties comply with the predefined
clauses, the data generator receives the payment from the service provider, and the service
provider receives the data. Our proposal also imposes a payment in cryptocurrency (fee) by
the public blockchain smart contract when a node requests data access. This fee prevents
a flood of requests from being made by unauthorised nodes since it becomes expensive to
flood the system, which could prevent it from Denial-of-Service (DoS) attacks and could
save computational resources.

Beyond the identified solutions and modifications proposed to be implemented in our pro-
posal, one different solution will be implemented in the proposal. It uses a smart contract
proxy, which has a similar concept to a proxy server. However, it is used as an intermediary
for requests done by smart contracts of both blockchain types. Data requesters can use
this mechanism to request data from a private blockchain. They call a function from the
public blockchain’s smart contract, and it is forwarded to the private blockchain’s smart
contract.

40

Privacy-Enhancing Proposal

In sum, our proposal uses some features of the architecture of the proposals identified
in Table 4.2 that provide privacy and security to data but also proposes other distinct
approaches to improve the privacy and security of automotive applications.

5.3 Architecture

The system’s architecture allows the exchange of data privately through blockchains. As
illustrated in Figure 5.1, the system is composed of the tiered architecture of blockchains
connected by bridge devices. Data generated by smart vehicles is stored off-chain in Storj
and can be accessed through a serialised access stored in the private blockchain, wherein
the smart contracts manage access control.

Figure 5.1: Architecture of the proposal solution.

5.3.1 Architecture components

• Public Blockchain: Open and permissionless blockchain where every node can
participate. In this blockchain, it is only stored log information (ID, data type and
timestamp) of the data published by the vehicle users as events. It functions as a
public log ledger and access request relay. Any node of the public blockchain can
request access to data addressed to the public blockchain’s smart contract.

• Private Blockchains: Closed and permission-based blockchains where only in-
vited and authorised nodes can participate. The private blockchain can be of any
permission-based blockchain. However, it is managed by the participant entity. These
blockchains can be used by companies, government entities, or other entities to access

41

Chapter 5

the data produced by vehicle users. They can provide granular control of the nodes,
are faster, more efficient, and more cost-effective than public blockchains because of
the reduced number of nodes and reduced chain size.

• Private Blockchain of Vehicle Users (PBVU): In this private blockchain, only
MQTT brokers, the smart contract proxies, and miner nodes participate. Its smart
contract is used to store data’s serials and ACLs and exchange information to the
public blockchain. In this blockchain, cryptocurrency is not an aspect taken into
account since it is not computationally intensive to mine blocks in private blockchains,
and it is assumed that each node is trusted since it is a permission-based system.

• Storj [40]: Decentralised and S3-compatible storage platform (uses the Amazon S3
Application Programming Interface [39]). The files are encrypted using the AES-
256-GCM algorithm, by default, with a locally stored private key. The data is stored
as 80 fragments of data distributed through 80 servers in a globally decentralised
network, which offers enhanced security (prevents data breaches) and resilience to
data loss (only 29 pieces are needed to reconstruct the data). The vehicle users data
will be stored in this system. Moreover, to access the data, a serialised access string
is generated for each data entry and is stored in the PBVU’s smart contract.

• Agent: It is a trusted full node of the public blockchain. Its responsibility is to
bridge the blockchain and the private infrastructure of the entity (e.g., servers or
a private blockchain). They request data access to the public blockchain smart
contract, and if they are authorised by the owner of the data (vehicle user), they
receive it. Then, they use it for their intended purpose. The agents can also function
as validators of blocks in the public blockchain. These nodes should be devices with
some computational resources, especially storage capacity to store the state copies
of all blockchains they participate. In addition, these nodes are owned and managed
by the entities that request the data.

• Smart Contract Proxy: It is a node that is connected to the PBVU and the public
blockchain. It has software in execution that keeps listening for events made from
smart contracts addressed to him. It contains a list of the blockchain addresses of
the smart contracts from both blockchains, which allows it to only accept requests
made from these smart contracts. Similar to MQTT messages, the events also have
commands to instruct the proxy to execute certain tasks. They are sent as dictio-
naries with three keys: "command" (identifies the command), "dataInfo" (an array
of the data itself) and "destinationAddr" (optional: used to identify the destined
blockchain address). The commands are:

– createTransaction "data info" "destination", this commands the proxy node to
create a transaction on the public blockchain with the information provided,
and it could be addressed to a node or not (the destination address is optional).
Usually, it is used by the PBVU’s smart contract.

– createLog "data info", this commands the proxy node to call the function set-
Log(dataInfo) of the public blockchain’s smart contract, which generates an
event with the log information of the newly added data.

– getData "data info" "requester", this command is generated by the public blockchain’s
smart contracts to forward data requests from public nodes. The ID of the data
and the node requester’s blockchain address are sent for access control pur-
poses. When received, the proxy executes the function getData(ID, reqAddr) of
the PBVU’s smart contract.

42

Privacy-Enhancing Proposal

• Smart Contracts: They are deployed in the blockchains with a specific blockchain
address and are responsible for executing a certain number of programmed functions.
The functions available to be called by the blockchain nodes are:

1. defineACL, receives as a parameter the owner address, the type of data and the
list of blockchain address of the public blockchain nodes authorised to receive
this data type, which each vehicle user generates. When executed, it creates a
transaction and stores the list of authorised blockchain addresses in the PBVU.

2. exchangeKey , receives the symmetric key encrypted with a public key of an
authorised node as a parameter. This function is responsible to request the
creation of an event on the public blockchain addressed to the node allowed to
decrypt the symmetric key. A request is sent to the smart contract proxy to
create this event, which executes the setKey function to generate it in the public
blockchain.

3. addData , receives the data information (owner address, data type and ID)
and the serial of the data. Since the MQTT broker previously authenticated
the blockchain address of the owner, the smart contract does not need to check
that he is authorised to add data. Then, it proceeds to store the data, which
generates a transaction inside the PBVU and creates an event to request the
proxy node to generate log information about the data in the public blockchain.

4. setLog , receives the information about newly stored data, sent by the proxy
nodes, to create a log event. The public blockchain nodes use the logs events to
fetch the data’s information, including its ID, to make access requests.

5. setKey , is responsible for generating the event to broadcast the encrypted
symmetric key in the public blockchain to be parsed by the destined node. It
receives the address of the destined public node and the encrypted symmetric
key.

6. getPrivData , receives the ID of the data requested by the public blockchain
node as a parameter. This function also receives a specific amount of cryptocur-
rency as a fee to pay for the subsequent transaction needed to request the data
and prevent floods of requests from public nodes. Then, a request is made to
the proxy as an event to request the data to the PBVU’s smart contract.

7. getData , it is executed by the smart contract proxy, which receives the ID
of the data and the blockchain address of the requester as a parameter. Then,
suppose the node is authorised to receive the data. In that case, its serial is sent
back to the proxy, which forwards it to the public blockchain’s smart contract
by executing the setNewDataLog function.

8. setNewDataLog , it sends the get data request response as an event to the
public blockchain addressed to the data requester.

There are two types of smart contracts in this system: PBVU’s smart contract and
public blockchain smart contract. The first one is responsible for storing the serials
of the vehicle users’ data, exchanging secret keys, managing access control, and
responding to data requests from the public blockchain (it uses function number
1,2,3 and 7). The other receives access requests from public nodes (users and agents)
and requests to broadcast events (it uses function number 4, 5, 6 and 8).

• Vehicle Users: They communicate with the MQTT broker to send their requests.
Each user has an Ethereum account that posses a unique address. This address is
used for identification purposes in the PBVU and authentication in the broker. It
uses the sensor controller to publish messages, which sends commands to the MQTT

43

Chapter 5

broker. Each user has their MQTT topic to publish messages and cannot publish
or subscribe to other topics. These commands are sent as dictionaries with three
keys: "command" (identifies the command), "dataInfo" (an array used to identify
data types and blockchain address of a node or the owner) and "value" (used for
encrypted data or other information). The commands used are:

– defineACL "data type" ACL, this commands the MQTT broker to define the
list of authorised public nodes that can receive the type of data specified. It
orders the broker to execute the function defineACL(owner, dataInfo, acl) in
the PBVU’s smart contract.

– key "blockchain address of the authorised node" "encrypted key", this command
is used to exchange the secret key with an authorised public node. The MQTT
broker executes the function exchangeKey(destNode, encKey), which results in
the creation of an event in the public blockchain addressed to the authorised
node, with the encrypted symmetric key.

– publish "data info" "data", commands the MQTT broker to store the data in
Storj and execute the function addData(owner, dataInfo, serial, ID) of the smart
contract to store the data serialised access string on the PBVU.

– access, commands the MQTT broker to retrieve all the previously sent data. It
displays all information related to the data, including its ID and timestamps.

– delete "data ID list", orders the MQTT broker to delete a specific data entry.
The ID of the data is obtained by the access command.

– modify "data ID" "data", instructs the MQTT broker to modify a specific data
entry and replace it with the new data sent. The URL stored by the smart
contract does not need to be updated since the stored object is the same, only
the content has changed.

• Sensor controller: It is a device present on the smart vehicle that receives the data
from the car sensors and is responsible for transmitting it to the MQTT broker when
an event or other relevant information is identified. Various data types can be sent.
Each has different kinds of information, which has different application purposes and
different destination nodes to be sent. This device also hosts an application where the
user can define the access list for each data type he sends and manage his data. This
device does not need many computational resources, e.g., a Raspberry pi, but should
be a device capable of operating an Operating System (OS), and some applications
in parallel.

• Users: They are private or public blockchain nodes (full or light nodes). A unique
key pair is created when their blockchain user account is created. They can perform
the same actions as the agent nodes. Nevertheless, they do not necessarily represent
an entity. Thus, they can be users of an application.

• Miner: Their responsibility is creating blocks on the blockchain in which they par-
ticipate.

• MQTT Broker: Full node of the PBVU, it receives the publish messages from
vehicle users and, depending on the command, executes the corresponding function
of the blockchain’s smart contract or other action. It also authenticates vehicle users
and imposes restrictions on the topics that they can interact. Furthermore, the
communications are secured using confidentiality mechanisms.

44

Privacy-Enhancing Proposal

5.3.2 Functionalities

• Privacy and security:

– Data erasure, it is a GDPR requirement (Article 17), which allows the user to
erase or rectify his data. This feature is provided through the user application,
which relays the request from the sensor controller to the MQTT broker to make
changes or erase the specified data.

– User defined access control, the vehicle user has the right to choose, via
the sensor controller application, the public nodes that can receive his data
by data type using their blockchain address. This information is stored in the
PBVU’s smart contract. This smart contract is responsible for performing the
access control. This access control layer provides user-controlled privacy by
design, which increases the privacy and security of data. Moreover, since smart
contracts are tamper resilient (the code remains unchanged) and decentralised,
the ACLs cannot be modified by malicious nodes.

– User anonymity, blockchains, by default, create a blockchain address using
the account’s private key previously created. These addresses are not associated
with any information about the user. Therefore this system does not store any
user’s private information.

– Location and data privacy, location data and other types of data stored are
anonymous, which means they are not linked with any user. The events used to
notify and exchange the data does not contain any information about the user.
Only the data itself can contain sensitive information in specific data types that
require sensitive information about the vehicle user (e.g., the user was involved
in an accident and provides sensitive information to certified and authorised
insurance and authority nodes). This mechanism offers anonymity by design.

– Data confidentiality, data is always encrypted with symmetric cryptography,
which can only be decrypted by authorised nodes using the pre-shared sym-
metric key. The symmetric key is distributed to the authorised nodes with
asymmetric cryptography. Thus, an event has to be created for each authorised
nodes of each data type. This process can be slow in the first phase of key
exchange. However, it is more scalable for multiple end nodes in the long run
since the data is encrypted with a symmetric key.

– Access control immutability, by design, blocks on the blockchain cannot
be altered since the blocks are connected by their hash and stored on multiple
distributed and decentralised nodes. Therefore, the ACLs defined by the nodes
cannot be tampered by malicious nodes.

• Performance, scalability and interoperability:

– Interoperability between systems, different types of blockchains can com-
municate with each other, which allows the connection of blockchains with dif-
ferent purposes to work as a unified system. Additionally, other systems can also
be integrated into this architecture, such as IoT devices that support MQTT
and cloud computing.

– Less overhead in the public blockchain, by using private blockchains to
handle requests from the sensor controller and other devices, fewer requests are
made in the public blockchain, which reduces the congestion and the blockchain
growth. Therefore, integrating new nodes in the public blockchain takes less
time, and more bandwidth is available in the blockchain.

45

Chapter 5

– Flood requests prevention, the smart contract of the public blockchain im-
poses a fee to perform the getData function. This feature prevents unauthorised
nodes, or even authorised ones, from flooding the public smart contract, which
reduces the congestion of the system and can prevent DoS attacks. In the future,
the fees paid by these nodes can be used to pay the vehicle users for sharing
their data.

– Lightweight messaging system, MQTT offers a lightweight solution for mes-
sage exchanges made by constrained devices addressed to the blockchain system.

– Resilience in communications between constrained devices and the
system, MQTT’s QoS mechanisms assure that messages are received with more
reliability by checking if the data is received and resends it if necessary. Durable
connections ensure that when the device disconnects the MQTT broker, his sub-
scriptions are saved, and any QoS message is stored until the device reconnects.

5.4 Implementation strategy

The implementation of this architecture will be focused on the privacy, security, and scal-
ability (computational resource usage) aspects of the system. Thus, the application of
this system in a real scenario will not be implemented. It will only be addressed with
high-level exemplifications. How the data is handled and used in the end applications is
the responsibility of the participating entities.

The main components of this system to be implemented are:

• Tiered architecture of blockchains, it is the implementation of a communica-
tion link between different blockchains using a smart contract proxy, which allows
cross-blockchain communications between smart contracts. In this scenario, only one
PBVU and one public blockchain will be integrated.

• Smart contract proxy, device and software that is responsible for cross-blockchain
request handling.

• Smart contracts, blockchain entity containing all the previously mentioned func-
tions (section 5.3.1).

• Sensor controller application, responsible for publishing and encrypting data and
selecting the list of authorised users that can access the data.

• MQTT broker, device and software that handles the commands received by the
MQTT broker node, published by the sensor controller, which executes the smart
contract functions and manages the data stored in Storj based on the commands.

5.4.1 Implementation scenario

The whole system will be implemented on a physical device with the aid of a VMware
hypervisor. The nodes will be allocated in various Virtual Machines (VM) to represent the
various types of nodes of the system (smart contract proxy, agent and sensor controller).
The Ropsten Ethereum testnet [45] will be used as the public blockchain of the architecture,
an Ethereum private blockchain will be created to be used as the PBVU. One public
blockchain and one PBVU will be implemented.

46

Privacy-Enhancing Proposal

5.4.2 Requirements implementation

In this section, the implementation methodology of the requirements is described.

Blockchain

Tables 5.7,5.9 and 5.8, contain the requirements and their respective implementation strate-
gies.

Table 5.7: Blockchain functional requirements implementation.

Name Implementation

Intermediation between
blockchains

The node that links operations from smart contracts of both types
of blockchains is the smart contract proxy. The smart contracts
will handle function calls made by blockchain nodes, which, in
most cases, requires cross-chain operations. It is the job of the
proxy to exchange or handle these requests and responses between
blockchains.

Decentralised storage

Data generated by the vehicle users will be stored in the decen-
tralised storage system Storj by the MQTT broker. Then, the
smart contract of the PBVU will store the generated serial of the
stored data to be accessed by an authorised node of the public
blockchain.

Data management

In the sensor controller application, the user can specify the ACL
of each type of data, and he can also access, delete and modify his
data. These requests related to his data are sent as commands by
the sensor controller to the MQTT broker, responsible for handling
his requests.

Access control

The ACL defined by the user are sent to the PBVU’s smart con-
tract through the MQTT broker, which preserves this information
in-chain. Each user has a slot in the smart contract where all his
corresponding privacy preferences are stored. Then, when a data
request is performed, the ACLs are used to check who can receive
the data.

Accountability

When the smart contract receives new data, it requests the proxy
to generate an event in the public blockchain with log information
(ID and data type). An ID is generated by the MQTT broker
when it stores the data in Storj, which is used to identify the data
when a node desires to request it. However, the log information
does not identify the user that generated the data.

Flood prevention

The function call getPrivData(ID) will impose a fee to be paid.
The goal is to pay the subsequent transactions and to prevent
flood requests from any node (authorised or not authorised) with
malicious purposes (DoS or for exploit attempts of trying to get
data illegitimately).

Table 5.8: Blockchain non-functional requirements implementation.

Name Implementation

Performance
Using private blockchains to handle certain requests improves the
system’s performance since they are faster at validating transac-
tions due to their simpler consensus protocol.

Blockchain size-reduction

By storing the serials in PBVU and handling other requests, the
size of the public blockchain does not increase as much compared to
classical public blockchain approaches with only one chain. Thus,
the scalability of the system is improved.

47

Chapter 5

Table 5.9: Blockchain security requirements implementation.

Name Implementation

User controlled privacy

The user defines the ACL for each data type used to verify which
nodes are authorised to receive his data. This ACL will be sent as
a command to the MQTT broker to execute the smart contract to
store it and associate it to the user’s privacy preferences.

User anonymity

By default, blockchains calculate the blockchain address of
blockchain nodes using a one-way cryptographic hash (typically
SHA256) with the node’s pre-generated public key. The private
key is a random and unique 256-bit number generated for each
blockchain node used to sign transactions (authenticity purposes)
and generate the public key with a cryptographic algorithm. Us-
ing these blockchain addresses to identify users can improve the
anonymity of users in the blockchain transactions since they do
not correlate with the real identity of the users. Furthermore,
when data is sent to authorised public blockchain nodes (agents
or users), any link between the data provided and the vehicle user
that generated it is not included.

Location and data privacy

When the smart contract sends data to the public blockchain
nodes, only data is included. Other information is not provided
about the owner. However, the data itself can contain sensitive
information, but the user is responsible for selecting who is autho-
rised to access his data that contains personal information.

Data confidentiality

The vehicle user exchanges a symmetric key, previously generated
by him, to the authorised public blockchain users of his ACL. The
symmetric key, when in exchange, is encrypted with the authorised
users public key, which is sent as an event by the smart contract in
the public blockchain addressed to the public node. The allowed
nodes can decrypt it with their private key and store it to decrypt
future data.

MQTT

Similar to the previous section, Tables 5.10, 5.11 and 5.12, also contain the requirements
and their respective implementation strategies.

Table 5.10: MQTT functional requirements implementation.

Name Implementation

Request processing The MQTT broker is implemented as a member of PBVU to make
function calls addressed to its smart contract.

Table 5.11: MQTT security requirements implementation.

Name Implementation

Authentication

The plugin "File RBAC Extension" will be used on the HiveMQ
broker to authenticate users. This plugin uses an XML file that has
a list of usernames and passwords to authenticate. The usernames
will correspond to the vehicle users’ blockchain address to identify
the sender of the message. The list of users is pre-registered. How-
ever, the application to perform the account creation will not be
implemented since the core privacy-enhancing functionalities are
the main focus of this implementation phase.

Authorisation
"File RBAC Extension" plugin will also be used to provide fine-
grained access control on a topic-filter level. Each user will have
its own topics where they can publish data.

Data confidentiality

Transport Layer Security (TLS) will be implemented to provide a
secure communication channel between the sensor controller and
the broker, despite being considered resource-intensive for IoT de-
vices.

48

Privacy-Enhancing Proposal

Table 5.12: MQTT non-functional requirements implementation.

Name Implementation

Interoperability

Using the MQTT broker to handle the requests from the sensor
controllers offers interoperability with blockchains to devices that
do not support blockchain technology since the interaction with
the blockchain is decoupled from the device. The only restric-
tion is that they support MQTT communications. Nevertheless,
nowadays, it is supported by a wide range of constrained and non
constrained devices.

Bandwidth consumption re-
duction

By default, MQTT is a protocol that uses small headers (2 bytes)
to receive and transmit messages generated by devices. It receives
published data from the sensor controller (present in the smart
vehicle), which commands the MQTT to perform certain smart
contract functions or other data management related tasks.

5.4.3 System’s processes

In this section, the way the processes work will be explained by illustrating the interactions
between the architecture’s components.

Access control list definition

In Figure 5.2, it is illustrated how the vehicle user defines the list of users that can receive his
data. The sensor controller starts by publishing a message with the command: defineACL
"data type" "ACL". The data info contains the data type and that the ACL encompasses,
and the ACL is a list of public nodes addresses. This message commands the MQTT
broker to execute the function defineACL(owner, dataInfo, acl) of the smart contract of
the PBVU. Then, the function stores the list of addresses in the user’s privacy preferences.

Figure 5.2: Vehicle user’s ACL definition.

Key exchange

After the ACL is defined, a symmetric key is generated to encrypt the following data
exchanged by the sensor controller. It allows multiple authorised nodes to decrypt it with
the same key, preventing multiple data encryptions for each node. Therefore in Figure 5.3,
the sensor controller begins by generating a unique 256-bit symmetric key to be used on
specific data type transactions. Then, he encrypts it individually with the public keys of all
the authorised nodes present on the ACL of the specific data type, to be later decrypted
with their private keys. The public keys could be obtained from another application

49

Chapter 5

(not addressed in this proposal). It is the responsibility of the vehicle user to choose the
authorised nodes. The sensor controller proceeds to publish a message with the command:
key "blockchain address" "encryptedKey", it sends the blockchain address of the authorised
node and the key encrypted with his public key. This commands the MQTT broker to
execute the function exchangeKey(destNode, encKey). When executed, the smart contract
creates an event to request the proxy to create a transaction on the public blockchain
addressed to the authorised node. Additionally, this process is executed every time a new
ACL is defined by the vehicle user, with the purpose to renew the symmetric key when the
ACL is modified.

Figure 5.3: Symmetric key exchange process to authorised users.

Publishing and storing data

Figure 5.4 illustrates the data sharing process. The sensor controller begins by encrypting
the data with the symmetric key, which was previously distributed in 5.3 to the authorised
users. Then, it publishes a message with the command: publish "data type" "encrypted
data". This command instructs the MQTT broker to store the data in Storj and generate
the serialised access string. Next, the smart contract’s function addData(owner, dataInfo,
serial, ID) is executed by the broker with the respective parameters. The ID is a Uni-
versally unique identifier (UUID) generated by the broker for each data entry. When the
function is executed, the smart contract stores the serial and, consequently, generates an-
other event to request the proxy to execute the function setLog(dataInfo) of the public
blockchain’s smart contract to generate a log event.

Data access request

In this interaction (Figure 5.5), a public node (agent or user) of the public blockchain
requests access to data inside the PBVU, which was logged by the public blockchain smart
contract. To perform this request, it executes the getPrivData(ID) function of the smart
contract, where he specifies the ID of the data and sends the amount of cryptocurrency
needed for the action. Otherwise, the request is denied. Next, the smart contract generates
an event to request the data serial to the smart contract proxy. The proxy executes the
getData(reqAddr,ID) function of the smart contract in the PBVU, which performs access
control on the requester. If the node is authorised, the serial of the data is retrieved to
the proxy, which executes the setNewDataLog(requester, response) function of the public

50

Privacy-Enhancing Proposal

Figure 5.4: Data published by a sensor controller to be stored in Storj and in the
blockchain system.

blockchain’s smart contract. This function retrieves the serial to the requester node as an
event. Finally, the requester can decrypt by using the pre-shared symmetric key.

Figure 5.5: Data access request made by an authorised node of the public blockchain,
with access control in the PBVU’s smart contract.

Data management

In Figure 5.6, the vehicle user requests the MQTT broker to delete specific data that was
previously stored in Storj. The user sends the command: delete "data ID", which triggers
the MQTT to delete the data with the correspondent ID. In a scenario of data modification,
the process is similar. Although the command is: modify "data ID". The serial stored
in the smart contract does not need to be changed since the referenced object is deleted
(serial is invalidated) or modified (serial remains the same).

51

Chapter 5

Figure 5.6: Data erasure request.

5.5 Conclusions

In this section, the privacy-enhancing proposal of this thesis was detailed. The solution
consists of using MQTT as a more efficient messaging protocol to transfer IoT data gener-
ated by smart vehicles, which is stored in a decentralised storage solution and exchanged
in a tiered architecture of blockchains. Blockchain, by design, provides security to data
due to its decentralised and distributed architecture. However, to enhance the security and
privacy of data, access control is performed using smart contracts. The data is encrypted
using symmetric cryptography. The owners of the data (vehicle users) are responsible for
defining the ACLs of their data.

The data is securely and privately stored in Storj that functions as the off-chain storage
solution to prevent storing actual data in-chain due to the immutable nature of blockchains.
Then, to exchange the data securely and privately, a serialised access string is created for
each data entry and stored in-chain in the PBVU. Public blockchain nodes need to be
authorised to have access to the data. They need to execute one of the smart contract’s
functions (getPrivData()) to create a data access request. When executed, it relays the
request to the smart contract proxy. Additionally, when data is sent outside of the private
blockchain, any information about the owner of it is not included (blockchain address) to
preserve the privacy of the vehicle user. However, in certain data types, the user has to
share information about him in the data itself (e.g. the user has been involved in a crash).

In sum, this proposal intends to preserve the user’s privacy, location data, and other types
of data generated by him through various technologies that complement each other.

52

Chapter 6

Experimental evaluation and analysis

This chapter will discuss the experimental evaluation of the proposed architecture based
on the previously defined methodologies to infer if the defined requirements were met and
formulate future improvements.

6.1 Evaluation strategy

Some validations will be performed to verify if the requirements were accomplished and if
the system works as intended. Quantitative, observation and qualitative approaches will
be used, based on the type of requirement. The quantitative results will be evaluated by
comparing some of the results in scenarios with different test conditions. The observation
methodology will be used for more functional and security related requirements to infer
if they are implemented. Lastly, the qualitative evaluation will be analysed based on the
other proposals, classical systems, and other scenarios where they are can be helpful, which
will consist of identified possible limitations and vulnerabilities that these requirements can
mitigate.

Finally, the proposal will be compared with the GDPR’s required characteristics iden-
tified in [74], which will assess the GDPR requirements that were achieved, and future
implementations to provide more user-centricity and privacy to the proposal.

6.2 Experimental scenario

The experimental scenario (Figure 6.1 consisted of using one physical machine hosting 4
VMs, one local area network with a stable 1Gbps Ethernet connection between the router
and the host machine, and a 200Mbps uplink to the internet, to communicate with the
public blockchain and Storj.

6.2.1 Technologies

As mentioned in subsection 5.4.1, this system will be implemented in a real scenario since
simulators and emulators are limited in the number of available functionalities and develop-
ment options. A real implementation scenario provides more flexibility to accommodate all
the technologies and interactions of this architecture. The technologies and devices taken

53

Chapter 6

Table 6.1: Functional requirements evaluation strategy.

Requirement Type of
evaluation Methodology Objective

Intermediation
between
blockchains

Observation Log verification
Verify the logs created by the system components
to assess if the smart contract proxy is executing
cross-blockchain communications as designed.

Decentralised
storage Qualitative

Comparison with other
storage systems (e.g.,
IPFS based systems)

Compare the implemented storage solution with
other systems (e.g., centralised or decentralised stor-
age) and the previously identified proposals.

Data man-
agement

Observation
and Qualita-
tive

Verify the well-
functioning of the
user’s data requests.
Comparison with other
identified blockchain-
based proposals.

Verify if data can be accessed, delete and modified by
the owner. This requirement will be compared with
other blockchain-based proposals previously identi-
fied and verify their level of GDPR compliance.

Access con-
trol Observation Log verification

Verify the logs created by the system components
to assess the well functioning of this requirement in
cases where unauthorised and authorised nodes try
to request data.

Accountability Observation Smart contract request
execution

Verify if the log events are being generated when new
data is added to the system.

Flood preven-
tion Quantitative Metric measurement

Calculate the amount of cryptocurrency used to per-
form access data requests to validate the flood pre-
vention feature. The metric to be used will be the av-
erage fees per transaction (eth/transaction), which
will assess the cost of running a data request flood
attack (e.g., DoS) in the public blockchain.

Request pro-
cessing Observation Log verification

Check the logs generated by the MQTT broker to
verify if the requests are being served, and verify
the correct implementation of these requests (e.g., if
data is stored, modified or deleted correctly).

Table 6.2: Security requirements evaluation strategy.

Requirement Type of
evaluation Methodology Objective

User con-
trolled pri-
vacy

Qualitative

Analysis and evalua-
tion based on the com-
parison with other sys-
tems

Compare it with classic systems and the identified
proposals. It has the purpose of assessing the quality
and importance of this requirement since it is a step
forward to have a more GDPR compliant system.

User
anonymity Qualitative

Analysis and evalua-
tion based on the com-
parison with other sys-
tems

Compare it with classic systems that do not use
blockchain technology and identify the vulnerabil-
ities of not using this feature and how this require-
ment can mitigate those vulnerabilities.

Location and
data privacy Qualitative

Analysis and evalua-
tion based on the com-
parison with other sys-
tems

Compare this requirement with classic systems and
other proposals (e.g., centralised storage: databases
or cloud storage).

Data confi-
dentiality Observation Verify the communica-

tions

Verify if the data and communications between the
sensor controller and the MQTT broker are en-
crypted, and if data is encrypted when stored and
received by the authorised nodes.

Authentication Observation Log verification
Test connections to the MQTT broker with autho-
rised and unauthorised nodes and check the logs to
verify the well-functioning of this functionality.

Authorisation Observation Log verification
Test topic subscriptions and publishes in which the
user is unauthorised, and check the logs to verify the
well-functioning of this functionality.

54

Experimental evaluation and analysis

Table 6.3: Non-functional requirements evaluation strategy.

Requirement Type of
evaluation Methodology Objective

Performance Quantitative Time overhead mea-
surement

The time overhead metric will be measured in var-
ious system interactions to measure the system’s
performance. With this metric, we can infer the
overhead that this system, especially the Ethereum
blockchain, introduces to certain requests.

Blockchain
size-reduction Quantitative Transaction size mea-

surement

The transaction size of each request and event of
this system will be measured to assess if the tiered
architecture of blockchains allows reducing the size
of the public blockchain, and if this reduction is sig-
nificant. Thus, if the reduction is significative the
blockchains’ growth is not as pronounced with this
architecture.

Bandwidth
consumption
reduction

Quantitative Measurement of band-
width consumption

The network traffic overhead allows measuring the
traffic output generated by requests made by the
sensor controller. It provides a way to verify if using
MQTT as the middleware between the device and
the blockchain saves bandwidth, which is important
since some wireless mediums used by smart vehicles
can provide low bandwidth. This experiment will
be performed in two scenarios. In one scenario, the
sensor controller uses the default method MQTT to
publish data, and in the other, it uses a blockchain
method of communication.

Interoperability Observation Log analysis
Through the logs generated by the MQTT broker
and the sensor controller, it is possible to verify the
communications between these devices.

Figure 6.1: Topology of the experimental scenario.

55

Chapter 6

into account to implement this system are Ethereum, MQTT, cryptography, a machine
with plenty of computational resources, Virtual Machine (VM) technology and developed
software integrated into the devices.

Ethereum

In terms of blockchain, Ethereum will be used as the blockchain technology in this system
since it allows the deployment of smart contracts [43] and is considered a mature blockchain
(has been used publicly since 2015). The public blockchain and the PBVU are Ethereum
blockchains. The Ethereum smart contracts can be developed using various languages
(Solidity, Vyper, and Yul [47]). However, the language that offers more functionalities and
documentation is Solidity [42], which is the one going to be used. In this system, smart
contracts will be developed using this language and will be deployed in the blockchain using
Remix [23], which allows to compile and deploy smart contracts in a blockchain network.

The Ethereum private blockchain will be created using Go Ethereum (geth) [29], which
implements the Ethereum protocol, and executes a private blockchain. Furthermore, geth
allows implementing various types of nodes: full nodes, light nodes, and miner nodes. Each
node of the system will use geth, and in the case of nodes participating in two Ethereum
blockchains (e.g., smart contract proxy), they will run two instances of geth. The Ropsten
Ethereum testnet will be used as the public blockchain since it is the testnet that is the
most similar to the Ethereum mainnet, and the coin does not have a real monetary value.
Therefore, it is free to make transactions and implement smart contracts.

Furthermore, Ethereum has a fee system that has a measurement unit denominated as gas
[5]. This gas is charged to the blockchain user for each action that makes a state change,
such as transactions, smart contract deployment or smart contract execution. This gas
is collected and distributed to the miner nodes as a reward for their computational effort
(PoW), which helps secure the network by preventing floods. The higher the computational
requirements to do the operation, the higher is the cost. The gas cost is denoted as Gwei,
which is equal to 0.000000001 ETH (10−9 ETH).

MQTT

The MQTT broker will be implemented using HiveMQ [30], because it is open-source, al-
lows the deployment of plugins to extend its features and provides functionalities to improve
its scalability (e.g. Broker clustering [88]). An example of a plugin is: Role-Based Authen-
tication Control (RBAC) authentication plugin [31], which allows the authentication and
authorisation of users. Furthermore, it allows using TLS to encrypt the communications.
Therefore, it allows fulfilling the MQTT requirements defined.

Cryptography support

In order to provide confidentiality to the data, a symmetric cryptography algorithm will be
used. The elected algorithm is Advanced Encryption Standard 256-bit key (AES-256) since
it is considered a secure algorithm to encrypt data by certified entities, such as the National
Security Agency (NSA) [35]. It was developed by Vincent Rijmen and Joan Daemen and
was published in 2001 by the National Institute of Standards and Technology (NIST). The
purpose of its development was to replace the Data Encryption Standard (DES) algorithm,
which was considered insecure in the 1990s (the key was breakable in only 22 hours). In

56

Experimental evaluation and analysis

contrast, it is estimated that an Advanced Encryption Standard (AES) key takes billions
of years to be cracked.

AES is a block cypher algorithm, which uses 128-bit blocks. It encrypts data by performing
consecutive permutations and substitutions of bits of the data and adds additional security
by generating new keys in each modification stage. All the nodes need the same secret
key to decrypt the data. As it is a symmetric encryption algorithm, it is faster and more
efficient to execute.

The asymmetric cryptography algorithm that will be used to encrypt the symmetric key to
exchange it securely is the Elliptic Curve Integrated Encryption Scheme (ECIES) frame-
work with the secp256k1 algorithm [3]. Since the key pair of Ethereum accounts are created
using the Elliptic Curve Digital Signature Algorithm (ECDSA) with the secp256k1 algo-
rithm [2, 4], they can be leveraged to use ECIES. In this cryptographic scheme, a key
pair is used, the private and public key. The data is encrypted using the public key and
decrypted using the private key.

Virtualisation support

A machine with enough memory and storage capacity and processing power will be used
to consolidate a set of VMs, which will represent each one of the architecture’s devices.
The VMs will be deployed in a type 2 hypervisor (installed on top of an OS), such as the
VMWare workstation player. [37].

Software

The system’s application is composed of various pieces of software running on the various
nodes of the architecture. Each type of node has its application requirements. Hence,
they use and interact with different technologies. However, some common technologies are
going to be used, such as Web3.py [8].

To represent an end-user application, NodeJS [12] will be used to create a web application.
This application will be deployed in the sensor controller. It will provide an User Interface
(UI) where the user can submit the ACL for each data type that he desires, and perform
data management requests, such as access, modify and delete his data. It communicates
with the MQTT broker to process and send the user’s requests.

The request handling in the smart contract proxy and MQTT broker is performed by a
Python [22] application. It will use the Web3.py library to interact with the geth node/s
in execution in the device, either to perform smart contract calls or to await for events.
The agent node will also have a similar application to make data access requests and wait
for blockchain events.

As mentioned before, Solidity will be used to develop the smart contract.

6.2.2 Experimental scenario components

The host machine has an i7-7700HQ CPU 2.80GHz with eight logical cores and 16 GB
of ram. Since this machine does not provide optimal resources to do performance tests,
the VMs were not all turned on at the same time to maximise the resource distribution.
The OS of the VMs was Ubuntu 16.04 without a graphical interface to minimise resource

57

Chapter 6

consumption. The experimental architecture is composed of:

• Private blockchain: This blockchain was created and executed locally using geth on
the MQTT broker and the Smart contract proxy. The consensus protocol selected was
the PoA since it requires less computational resources to mine blocks. Furthermore, it
was configured to mine new blocks every 3 seconds, and the rest of the configurations
were default.

• Public blockchain: To achieve more realistic results, the public blockchain was
not implemented locally (via simulation of the Ethereum mainnet with geth nodes).
Instead, the Ropsten Ethereum testnet was used. It was selected because it is the
testnet that is the most similar to the Ethereum mainnet since it uses the same
consensus protocol (PoW) and configurations. Moreover, as it is a testnet, its coin is
used for test purposes. Hence, the transactions and interactions with smart contracts
do not have a monetary cost. On the other hand, the mainnet (Ethereum) was
not considered because it requires real ether, which could become very costly to
implement this system and perform tests.

• Sensor controller: This device uses a web application that was developed in Node.js
to communicate with the MQTT broker and process his requests. In this application,
the user can submit the ACL for each data type that he desires, and perform data
management requests, such as access, modify or delete his data. An "add data" op-
tion was added to the application to simulate the behaviour of a smart vehicle. It was
used to test the data publish requests into the system and for load testing. A direct
blockchain communication option was also implemented in this application, using
the web3js API in conjunction with a geth instance. This alternative communication
method aims to infer the differences between using a MQTT middleware to com-
municate with the blockchain or direct blockchain communication in a constrained
environment. This VM represents a constrained device. Thus, only one CPU core
and 2 GB of ram were allocated.

Figure 6.2: Web application interface.

• Access network emulation, a cellular network emulator was used [73] to provide
a more realistic environment. It consisted of using a NetEm (Network Emulator)
[11] profile to emulate a 4G network with roaming [9]. This profile imposed a delay
distribution on the network interface, which emulates the connectivity latency of
these cellular networks.

• MQTT broker: This VM is responsible for handling the sensor controller requests
by receiving them via the MQTT protocol. Thus, it is running a MQTT broker
server, HiveMQ, and a python script with the web3 API to use the geth instance

58

Experimental evaluation and analysis

to interact with the private blockchain. The python script, also used the libuplink-
python library [20] to communicate with the Storj storage system. Since it only
works at the private blockchain level it only runs one geth node instance. In terms
of resources, four CPU cores and 3 GB of ram were allocated.

• Smart contract proxy: As mentioned previously, it is the middleware between the
private blockchain and public blockchain. Hence, it is connected to both of them
through 2 geth instances. This node is also running a python script in conjunction
with the Request processing API, which allows interaction with geth nodes to handle
the requests from both blockchains simultaneously (listen to events and execute smart
contract functions). This VM does the most resource-intensive tasks. Therefore, four
CPU cores and 4 GB of ram were allocated.

• Agent: This VM works at the public blockchain layer. Thus, it runs only 1 geth
node instance. Similarly to the other two previous nodes, it also runs a python script
with the Request processing API to listen to events and makes data requests to smart
contracts. The resources allocated were four CPU cores and 3 GB of ram.

6.3 Test conditions

The tests were executed with a fixed duration time of 300 seconds and with various requests
rates (1, 10 and 50 seconds per second) to test the system’s performance in various load
scenarios. Each of these test conditions was executed five times to get a bigger result
sample. Thus, reducing the experimental error. The requests used for the performance
tests were the publish data, in the sensor controller, and the get data, in the agent node.
These requests resemble the submission of data by the smart vehicles (publish data) and
the request of data (get data) by public nodes (agents and users), which represent the
majority of requests that will be performed in this system. Therefore, they are the most
relevant ones to conduct performance tests.

In the sensor controller, two communication methods were used: MQTT and direct blockchain
communication. The NeTem profile used emulated 4G connectivity with a good quality
signal and roaming to simulate a moving device communicating with different antennas.
In [9] more profiles are present, such as profiles that emulate 3G connections and other
signal quality levels. Although, 4G is the most adopted cellular network technology.

6.4 Metrics

A set of metrics were obtained from each architecture node to analyse this system’s out-
comes. These metrics are identified in the following table.

59

Chapter 6

Table 6.4: Metrics measurement strategy.

Requirement Metric Measuring
unit

Measuring
tool Strategy

Flood preven-
tion

Transaction
cost

Gwei per
transaction

Web3.py
Python li-
brary [8]

Web3.py library [8] offers an API that
allows obtaining information related to
transactions created by the geth node,
which was used to obtain the transaction
costs of data requests generated by the
public blockchain nodes. The cost values
were obtained in Gwei since the base cur-
rency unit of Ethereum, ether (ETH), is
too large to be used to represent the costs
of each transaction. Gwei denotes a ninth
power of the fractional ETH. This calcu-
lation will be implemented in the software
application of the agent node.

Performance Time over-
head

Milliseconds
(ms)

Time Python
library

The time library offers methods that can
obtain the current time in milliseconds (e.g,
perf_counter() and time()). These meth-
ods were integrated into the devices’ appli-
cations to measure certain request’s com-
pletion time.

Blockchain
size-reduction

Transaction
size Kilobyte (kB)

Web3.py
Python li-
brary [8]

The size of each state-changing transaction
was measured using the Web3 API.

Bandwidth
consumption
reduction

Bandwidth
consumption

Kilobits per
second (kbps)

Nethogs
Linux tool
[10]

Nethogs [10] is a Linux tool that allows
tracking the amount of bandwidth that is
being used per process in the OS. It will be
implemented in the sensor controller appli-
cation to quantify the bandwidth consump-
tion of data publish requests. The metric
is going to be measured in two scenarios:
a scenario where the sensor controller com-
municates directly with the blockchain, us-
ing a geth node, and in another one, it will
communicate using the default procedure
of this system: MQTT.

-
CPU and
memory
usage

Usage in per-
centage (%)

psutil python
library [17]

The CPU and memory usage were mea-
sured using a python library named psutil
[17] which measured the resource consump-
tion in each of the system’s nodes when an
experiment was running or when a certain
task was ongoing.

6.5 Analysis of results

In this section, the results obtained in the experiments are going to be analysed. Firstly,
the publish data request results obtained in the sensor controller and MQTT broker will be
used to compare the two communication methods used in the sensor controller (MQTT and
blockchain). This result will help to infer if using MQTT is more beneficial for resource-
constrained environments. The remaining results will be examined to evaluate the system’s
performance, validate certain requirements and formulate possible improvements to this
system.

6.5.1 Comparison between MQTT and blockchain

Table 6.5 and Figure 6.3 display the results regarding the sensor controller tests performed
using the two communication scenarios. By analysing the results, it is clear that the
blockchain communication method is more resource-intensive, especially memory usage.

60

Experimental evaluation and analysis

Therefore, MQTT is a more lightweight approach for this system because the broker han-
dles the sensor controller requests. Thus, some computational effort is taken away from
it.

Table 6.5: Resource consumption results in the sensor controller using two communication
methods.

Rate
Communication

method

Bandwidth

consumption (Kbps)

/ standard deviation

Mean CPU usage (%)

/ standard deviation

Mean Memory Usage (%)

/ standard deviation

MQTT 0,667 / 0,148 5,367 / 1,629 14,456 / 0,063
1 req/s

Blockchain 4,073 / 1,965 10,252 / 7,268 69,191 / 2,440

MQTT 7,580 / 7,813 8,233 / 4,887 15,048 / 0,435
10 req/s

Blockchain 14,744 / 8,654 30,689 / 21,507 96,098 / 3,360

MQTT 13,217 / 10,198 12,853 / 6,120 15,817 / 0,444
50 req/s

Blockchain 64,100 / 28,767 29,997 / 20,302 98,261 / 2,032

Figure 6.3: Graphic with the resource consumption results of the sensor controller.

Although the mean results seem to demonstrate that the MQTT is a more lightweight
methodology to communicate in this system, statistical testing was done to compare the
variances of each group of results and to provide a more statistical foundation to our
conclusions.

Firstly, the results are tested to check if they comply with the parametric testing assump-
tions: homogeneity of variance (all comparison groups have the same variance) and normal

61

Chapter 6

distribution (normality). The tests used to verify the assumptions were: Shapiro-Wilk to
test normality and Barlett to test [80] the homogeneity of variance. By testing the sam-
ples, we can infer that neither of the assumptions is satisfied. Therefore, a non-parametric
hypothesis testing was applied. The chosen statistical test was a non-parametric two-way
ANOVA alternative, which was the randomisation test with unrestricted permutations
[51]. It allows statistical analysis using two-way ANOVA in samples that do not follow a
normal distribution. In addition, it analyses samples with various independent variables
(communication method and the request rate) and how they affect the dependent vari-
able (bandwidth consumption, CPU usage and memory usage). It also tests three null
hypotheses simultaneously. In our case, they are:

• No difference in means due to the communication method.

• No difference in means due to the request rate.

• No interaction of factors.

The statistical test was performed for each dependent variable (bandwidth consumption,
CPU usage and memory usage) with a significance level of 5%. As expected, all the null
hypotheses were rejected. The p-value is less than 5% in all hypotheses. Thus, the as-
sumption that the MQTT communication method is more lightweight than the blockchain
method is sustained.

Despite MQTT requiring less computational power, it adds more time overhead to publish
data requests, and the results have more variability as the frequency of the requests grow
(Figure 6.4). This behaviour occurs due to the extra layer of latency and queuing that
MQTT imposes, making the time overhead results more bursty.

Figure 6.4: Time overhead results of the sensor controller.

62

Experimental evaluation and analysis

6.5.2 Performance evaluation

Figure 6.5 and 6.6 illustrate the results of the data request load tests performed by a public
node. Since these requests are performed in the public blockchain, the time overhead of
each request depends on its performance. As the request frequency increases, the time
overhead becomes more unstable and gets higher, as displayed in Figure 6.5. The CPU
and memory utilisation of the smart contract proxy follows the same pattern as the time
overhead of the requests, bigger values and more variable values. At 50 requests per second,
the smart contract proxy goes beyond its throughput limit (in this scenario conditions)
since the mean response time becomes very high, as well as the resource consumption
variance. This behaviour occurs because many concurrent threads are in execution in the
system and because they are released and created with an irregular rhythm, the CPU usage
variability increases.

Figure 6.5: Time overhead results of the agent.

By comparing the results between Figure 6.4and 6.5, the public blockchain proves to add
more latency to the requests than the private blockchain. The mean results with 1 re-
quest per second in the private blockchain are 5,689s (using MQTT) and 6,997s (using
direct blockchain communication), and in the public blockchain is 35,085s. Despite the
fact that the get data request performed in the public blockchain requires two transactions
to be completely handled, the mean of each transaction is roughly 17,543s, which is ap-
proximately two times higher than in the private blockchain. This behaviour is justified
because of the consensus protocol and by the dimension of the blockchain itself.

The private blockchain uses the PoA, which is more scalable since the miners are considered
trustworthy. Thus, it requires less computational effort to mine blocks. Hence, it allows
more transactions to be mined per second. It also does not have concurrent transactions, in
this experimental scenario, from other nodes to be mined, which results in less congestion.
On the other hand, the public blockchain (Ropsten testnet) uses the same consensus as
the Ethereum mainnet, which is the PoW. This protocol is more resource-intensive and

63

Chapter 6

Figure 6.6: Resource consumption results of the smart contract proxy.

does not rely on trust. Therefore, to have more security and decentralisation, it provides a
smaller throughput. Moreover, this testnet does not have the saturation level of Ethereum,
but the concurrent transactions created by other nodes can also interfere with the latency
since the transactions can be queued.

Figure 6.7: Resource consumption results of MQTT.

The MQTT broker computational resources’ utilisation is displayed in Figure 6.7. Similarly

64

Experimental evaluation and analysis

to the previous results, the node utilises more resources as the request rate increases. The
same is observable in Figure 6.4 in its time overhead results, which follows a similar pattern
as the smart contract proxy (Figure 6.6).

6.5.3 Blockchain size reduction evaluation

In Table 6.6 is registered the transaction size of the requests and events that occur in
the blockchain system of this proposal. These requests and events are distributed in both
blockchains. The private blockchain produces the biggest transactions since this blockchain
is responsible for handling the vehicle users’ data (data produced by vehicles, ACLs, keys
and other requests). It also is responsible for storing information in the blockchain and
querying the smart contract proxy to advertise information in the public blockchain. There-
fore, if only one blockchain is used, its size would increase significantly as the number of
nodes of the system grows. It increments the blockchain size and the throughput needs,
resulting in more hardware to run this system. Hence, using a more distributed architec-
ture of multiple blockchains is more beneficial for the system’s scalability in the long run
compared to using a single blockchain.

Table 6.6: Mean transaction size of the various requests and events in Kb.

Private Blockchain Public blockchain
addData mean

and sd of
tx size (Kb)

defineACL exchangeKey createLog createTransaction dataRequest dataResponse

90,924 /
1,690

1,459 /
0,000

7,557 /
0,048

0,138 /
0,000

0,656 /
0,001

0,275 /
0,000

0,315 /
0,000

6.5.4 Flood prevention

The cost of each data request transaction is mostly fixed. Although it can have a slight
gas fees variability, it is not expressive enough. The cost in Gwei is 730,000039681, which
converted to ether is 0,000000730000039681 (around 0,0013€ at the time of writing –
20/04/2020). It seems like a small fee amount. However, it can become costly to run
brute force attacks or DoS attacks since thousands or millions of requests are performed.
Moreover, as the congestion of the network increases, the fee prices also increase.

6.6 Requirements validation

The experiments allowed to obtain statistical results related to performance and other
metrics. However, they were also used to validate functional, and privacy and security
related requirements. In the appendix A, screenshots of logs are present to provide visual
feedback of the well functioning of some of the defined requirements.

65

Chapter 6

Table 6.7: Functional requirements validation.

Requirement Methodology Interpretation of results
Intermediation
between
blockchains

Log verification
By verifying the logs generated in the various cross-chain requests
and responses of the system, the well functioning of this require-
ment is validated.

Decentralised
storage

Comparison with other
storage systems (e.g.,
IPFS based systems)

As mentioned before, the implemented decentralised storage solu-
tion was Storj. This solution provides enhanced security features
by default (e.g., encryption, data loss prevention and access con-
trol), making it more secure than centralised storage systems.
Considering other decentralised storage systems, such as IPFS
[49], it is more GDPR compliant since data can be effectively
deleted. Using the blockchain as storage [95] is even less GDPR
compliant since it is a transparent and tamper resilient system.
Therefore, between all the previously mentioned approaches, this
one seems to be the best at safeguarding the privacy and security
of the user’s data.

Data manage-
ment

Verify the well-
functioning of the
user’s data requests.
Comparison with other
identified blockchain-
based proposals.

The logs produced by these requests demonstrate the correct im-
plementation of this requirement, enhancing the level of GDPR
compliance of this system.

Access control Log verification
By performing authorised and unauthorised requests, it is observ-
able that the access control mechanism functioning in the smart
contract is observable through the logs.

Accountability Smart contract request
execution

The events containing the log information of newly added data
are observable and parsed by public nodes. Thus, the requirement
is validated.

Flood prevention Metric measurement
In section 6.5.4, the gas costs results of data requests were dis-
cussed, and it is possible to affirm that this functionality is work-
ing and can be beneficial to prevent high volumes of requests.

Request process-
ing Log verification By checking the logs, we can infer that the MQTT broker cor-

rectly handles the sensor controller requests.

Table 6.8: Non-functional requirements validation.

Requirement Methodology Interpretation of results

Performance Time overhead mea-
surement

The results associated with the time overhead of the get data and
publish data proved that using a private blockchain to handle
requests generated by the sensor controller offer less latency.

Blockchain size-
reduction

Transaction size mea-
surement

Through the obtained results, we can infer that using a more dis-
tributed system of blockchains is more beneficial since the sizes of
the blockchains do not grow as much as using only one blockchain,
and they are less congested.

Bandwidth con-
sumption reduc-
tion

Measurement of band-
width consumption

The statistical analysis concluded that MQTT communications
use less bandwidth than the blockchain protocol to interact with
the system. However, it increases the latency of the requests.

Interoperability Log analysis

This system provides MQTT communications, which are sup-
ported by many devices, to interact and use this system. There-
fore, this system is interoperable with devices that do not sup-
port blockchain technologies. Future, different device types can
be used for more in-depth and realistic tests (e.g., Raspberry pi).

66

Experimental evaluation and analysis

Table 6.9: Security requirements validation.

Requirement Methodology Interpretation of results

User controlled
privacy

Analysis and evalua-
tion based on the com-
parison with other sys-
tems

One of the GDPR policies dictates that the user should be able
to specify his privacy preferences over his data. However, in most
of the classical applications and some of the proposals identified
([49, 62, 76, 95]), the users cannot define their privacy preferences,
which could result in data being used by other entities without
their consent. In this system, the user has the freedom to specify
the list of public nodes that can access their data, which enhances
his data privacy.

User anonymity

Analysis and evalua-
tion based on the com-
parison with other sys-
tems

Usually, applications gather information about the user for Know
Your Customer (KYC) purposes or other goals. Even if this in-
formation is being used for legitimate purposes and has the user’s
consent, it is still prone to attacks. Therefore, implementing en-
hanced anonymity by design could mitigate these privacy threats,
which makes the anonymous nature of blockchains beneficial to
improve the overall privacy of users in this system. It is only
possible to know to whom the address belongs to if the owner
advertises it.

Location and
data privacy

Analysis and evalua-
tion based on the com-
parison with other sys-
tems

The proposal [95] stores data in the public blockchain, which
imposes a threat to the privacy of the data since it is publicly
available to the public nodes. Other solutions use other stor-
age systems that do not guarantee the safety of the data (e.g.,
centralised storage systems). In this system, data is stored out-
side the blockchain in a decentralised system, making it more
private and secure. Inherently from the user anonymity, the lo-
cation information and data generated by smart vehicles become
anonymous. Furthermore, when data is being logged in the pub-
lic blockchain, the blockchain address of the data owner is not
disclosed as well, which prevents profiling and tracking attacks.
Although, in some sporadic events, the user’s sensitive informa-
tion needs to be included in the data, e.g., accidents in which he
was involved. There should be a consensus between these certi-
fied authorities and the users in these cases, but it is out of the
scope of this proposal.

Data confiden-
tiality

Verify the communica-
tions

This requirement is implemented as intended since the data is
encrypted when in transit or stored in Storj and can only be
decrypted with the specific symmetric key.

Authentication Log verification
The tests performed to the authentication system of MQTT
proved to be working since users not included in the database
cannot authenticate.

Authorisation Log verification
Various roles were created to restrict the operations of each user.
For example, a user can only publish or subscribe to the topic
that corresponds to its blockchain address.

6.7 Privacy analysis

Table 6.10 provides an overall comparison between the previously analysed blockchain-
based proposals and ours. The characteristics used to classify are from the privacy frame-
work identified in [81] and from the GDPR survey [74].

By looking at the framework characteristics of Table 6.10, it is noticeable that our proposal
still lacks some privacy aspects. The proposal [63] manages to cover more aspects of privacy.
Nevertheless, it is safe to say that ours is more user-centred than the others since we offer
more data controllability to the user. For example, CR7 dictates that the user must be
able to erase or modify his data, which was implemented. Hence, our solution can be
considered to be more GDPR-compliant. However, it still needs further development, e.g.,
provide more transparency to the user over his data, how it is being used, and implement
a method to establish agreements between the user and the entities.

67

Chapter 6

Table 6.10: Comparison of the classification of the blockchain related privacy proposals
identified with our proposal.

Propos-
al

Openness,
trans-
parency,
and a
specified
purpose

Identity
pri-
vacy

Temporal
and lo-
cation
privacy

Query
pri-
vacy

Access
con-
trol

Interope-
rability

Data
minimi-
sation

Accounta-
bility

Security
of data

GDPR
[74]

[56]
CR1
CR11

[63]

CR1
CR2
CR4
CR11

[76]
CR1
CR11

[95]
CR1
CR2
CR11

[62]
CR1
CR11

[49]
CR1
CR2
CR11

Our
pro-
posal

CR1
CR2
CR4
CR7
C10
CR11

6.8 Conclusions

These experiments allowed us to evaluate the system’s current state, test and infer other
approaches, and formulate future improvements.

The current architecture offers high latency to certain requests, which is unsuitable for
applications with low latency requirements. However, as explained before, it is affected by
the underlying blockchain technology. Hence, the throughput and latency of this system are
bounded by its limits. Moreover, blockchain is still a technology in development. In analogy
with the internet, it did not provide a stable and high throughput at the embryonic stages
of the internet as nowadays, it kept evolving with time. The same applies to blockchain.
Ethereum has announced that it will launch an upgrade to its protocol called Ethereum
2.0 [48], which claims to enhance its throughput up to 100000 TPS [18]. Currently, there
exist other blockchains that offer more throughput. However, they are less mature, such
as Solana [94], which foresees up to 700000 TPS with a gigabit network connection [7].

Furthermore, the experiments were not performed in the most favourable scenario since
more nodes and more computational resources are needed to perform a more in-depth
analysis of this system’s performance. Thus, the limitations of our experimental setup
might have influenced the results. In addition, as concluded in [83], the performance of
Ethereum private blockchains augments as computing resources increase. The software
that handles the requests can also benefit from the increase of resources since it is multi-
threaded.

The system manages to deliver high privacy and security to the users and their data
by merging the benefits of various technologies. In this system, blockchain enhances, by
design, the privacy of the user’s identity and offers other security mechanisms that pro-
vide resilience to failures and data disruptions. The cryptography used in blockchains
to generate addresses allows the creation of public keys and then use them to exchange
private information, in this case, an asymmetric key to encrypt data, using asymmetric
cryptography. MQTT also allows the implementation of privacy and security measures by

68

Experimental evaluation and analysis

implementing authentication and authorisation and offers a more lightweight and interop-
erable communication approach for resource-constrained devices. Lastly, Storj enhances
the privacy and security of the users’ data and enables data management procedures to
enhance GDPR compliance.

In sum, it is noticeable that exists a compromise between privacy and performance, mostly
because blockchain is still a technology in development. Thus, it is not at the performance
level of matured solutions (e.g., databases). Since the main focus of this proposal is to
propose a privacy-preserving solution for IoT applications, this system manages to deliver
the defined requirements. However, this compromise is acceptable since the privacy and
security gains outweigh the performance.

69

Chapter 7

Conclusions and future work

In this thesis, we presented a state-of-the-art based on privacy-enhancing proposals oriented
to IoT applications, in which they are evaluated, and some limitations are identified. This
study was the basis for the formulation of our proposal since it builds on these proposals,
while addressing critical security and privacy-related requirements.

Our proposal offers privacy to its users and data, and resilience to certain attacks and
failures. It focuses on crowdsensing applications with mobility, such as smart vehicles,
wherein the location information is generated to provide geospatial data to a system.
Hence, these applications are prone to tracking attacks, in which the user movement can be
traced and mapped to infer sensitive information (e.g., home or work location). Therefore,
this proposal’s core technology is blockchain since it allows to enhance the anonymity of
users, by default, and the resilience to system’s failures. Moreover, other technologies and
mechanisms were integrated to enhance this system’s privacy further and mitigate some
of blockchain’s limitations. This symbiosis between technologies also offers user-controlled
privacy, in which the user can control the end nodes that can access his data and the
exposure level of different data types. The attacks and vulnerabilities that this system
mitigates are the following:

• User profiling. The user cannot be profiled since the blockchain address used
inside the system to identify him is not linked to sensitive information or needs any
of his information to be generated. In this experimental implementation, only a
password was needed to generate the users’ wallets using geth. Additionally, even in
a scenario where the user’s identity is disclosed, the owner’s blockchain address or
other information is not advertised when the data’s serial is exchanged in the public
blockchain. Therefore, it is highly unlikely that the data exchanged in this system
could be used for user profiling.

• User tracking. The previously identified defence mechanisms also apply to this
potential attack on the user’s privacy. Thus, the data that could represent the user’s
movements or routines are private.

• Linking attack. An attacker cannot infer the identity of a user by analysing the
previously exchanged data since the user’s identity is preserved in this proposal.

The system offers protection from the previous attacks unless the data content has descrip-
tive information that could reveal sensitive information about the user. However, it is out
of the scope of this proposal since this information should be concealed at the source.

71

Chapter 7

The experimental outcomes show that this architecture lacks performance due to bottle-
necks related to the environment where it was implemented, blockchain technology, and
developed software. Therefore, further studying and development need to be developed to
enhance its performance and robustness.

The proposed and implemented work is a foundation for various IoT and non-IoT appli-
cations. Hence, more privacy, security and functional features can be developed to fortify
this proposal. Therefore, we compiled a set of possible future improvements and imple-
mentations:

• Design a privacy-preserving solution that allows the public nodes to identify the
data they can access without disclosing the ACL of the data entry or other private
information.

• Implementation of a reputation system in which the misbehaved nodes (with the
lowest reputation score) have to pay a pricier fee to request data, and vice versa.
It could also be used to alert of possible risks when authorising nodes with a bad
reputation, which could improve the GDPR compliance of the system (Section 3.2):
CR9-Provide balance of privacy between the user and third parties; CR12-Provide
ability to users to make informed consent choices; CR14-Communicate risks of data
collection/inference to users.

• Use the transparent nature of blockchains to keep track of the nodes that request data
access and inform the data owners by producing logs (CR16 – Provide transparency).

• System to manage the public keys of the public nodes, which could identify the
nodes address (and other relevant information and their reputation. It could be
implemented in a smart contract to provide integrity.

• Implementation of high availability mechanisms, such as load balancing between bro-
kers, proxies and PBVU. Implementing this system in the cloud could also provide
more availability and performance due to the horizontal elasticity of these environ-
ments.

• Explore the implementation in other blockchains (e.g., Cardano [38] and Solana [94])
that offer more throughput and other beneficial functionalities for this system.

• Perform a more in-depth study of the system’s performance and scalability in a
non-resource restrained environment, such as in the cloud.

• Furthermore, the system’s current state could be optimised, specifically the developed
software and the configuration of the blockchains and nodes.

In sum, despite our solution not being a complete system, it manages to use various
technologies to offer a robust privacy-preserving architecture, not only for automotive
applications but also for other IoT applications that require user-centricity and privacy.

72

References

[1] Blockchain service | microsoft azure. https://azure.microsoft.com/en-gb/
services/blockchain-service/. (Accessed on 06/01/2021).

[2] Ecdsa: Elliptic curve signatures - practical cryptography for developers. https://
cryptobook.nakov.com/digital-signatures/ecdsa-sign-verify-messages. (Ac-
cessed on 05/25/2021).

[3] Ecies hybrid encryption scheme - practical cryptography for devel-
opers. https://cryptobook.nakov.com/asymmetric-key-ciphers/
ecies-public-key-encryption. (Accessed on 05/25/2021).

[4] Ethereum accounts | ethereum.org. https://ethereum.org/en/developers/docs/
accounts/. (Accessed on 05/25/2021).

[5] Gas and fees | ethereum.org. https://ethereum.org/en/developers/docs/gas/.
(Accessed on 05/25/2021).

[6] How to generate public and private keys for the blockchain |
by artiom baloian | medium. https://baloian.medium.com/
how-to-generate-public-and-private-keys-for-the-blockchain-db6d057432fb.
(Accessed on 12/26/2020).

[7] Introduction | solana docs. https://docs.solana.com/introduction. (Accessed on
05/25/2021).

[8] Introduction — web3.py 5.19.0 documentation. https://web3py.readthedocs.io/
en/stable/. (Accessed on 05/19/2021).

[9] marty90/mobile-latency-emulator: Emulate mobile network latency based
on large scale real-world measurements. https://github.com/marty90/
mobile-latency-emulator. (Accessed on 05/19/2021).

[10] nethogs(8) - linux man page. https://linux.die.net/man/8/nethogs. (Accessed on
05/24/2021).

[11] networking:netem [wiki]. https://wiki.linuxfoundation.org/networking/netem.
(Accessed on 05/20/2021).

[12] Node.js. https://nodejs.org/en/. (Accessed on 05/19/2021).

[13] Open source blockchain for currencies & payments - stellar. https://www.stellar.
org/learn/intro-to-stellar. (Accessed on 06/09/2021).

[14] Private networks | go ethereum. https://geth.ethereum.org/docs/interface/
private-network. (Accessed on 06/01/2021).

73

https://azure.microsoft.com/en-gb/services/blockchain-service/
https://azure.microsoft.com/en-gb/services/blockchain-service/
https://cryptobook.nakov.com/digital-signatures/ecdsa-sign-verify-messages
https://cryptobook.nakov.com/digital-signatures/ecdsa-sign-verify-messages
https://cryptobook.nakov.com/asymmetric-key-ciphers/ecies-public-key-encryption
https://cryptobook.nakov.com/asymmetric-key-ciphers/ecies-public-key-encryption
https://ethereum.org/en/developers/docs/accounts/
https://ethereum.org/en/developers/docs/accounts/
https://ethereum.org/en/developers/docs/gas/
https://baloian.medium.com/how-to-generate-public-and-private-keys-for-the-blockchain-db6d057432fb
https://baloian.medium.com/how-to-generate-public-and-private-keys-for-the-blockchain-db6d057432fb
https://docs.solana.com/introduction
https://web3py.readthedocs.io/en/stable/
https://web3py.readthedocs.io/en/stable/
https://github.com/marty90/mobile-latency-emulator
https://github.com/marty90/mobile-latency-emulator
https://linux.die.net/man/8/nethogs
https://wiki.linuxfoundation.org/networking/netem
https://nodejs.org/en/
https://www.stellar.org/learn/intro-to-stellar
https://www.stellar.org/learn/intro-to-stellar
https://geth.ethereum.org/docs/interface/private-network
https://geth.ethereum.org/docs/interface/private-network

Chapter 7

[15] Proof of authority explained | binance academy. https://academy.binance.com/en/
articles/proof-of-authority-explained. (Accessed on 06/01/2021).

[16] Proof of stake explained | binance academy. https://academy.binance.com/en/
articles/proof-of-stake-explained. (Accessed on 06/01/2021).

[17] psutil · pypi. https://pypi.org/project/psutil/. (Accessed on 05/24/2021).

[18] Shard chains | ethereum.org. https://ethereum.org/en/eth2/shard-chains/. (Ac-
cessed on 05/25/2021).

[19] Slashing — bison trails. https://bisontrails.co/slashing/. (Accessed on
06/01/2021).

[20] storj-thirdparty/uplink-python: Python bindings for libuplink. https://github.com/
storj-thirdparty/uplink-python. (Accessed on 05/20/2021).

[21] Teach, learn, and make with raspberry pi. https://www.raspberrypi.org/. (Ac-
cessed on 06/09/2021).

[22] Welcome to python.org. https://www.python.org/. (Accessed on 05/19/2021).

[23] Welcome to remix’s documentation! — remix - ethereum ide 1 documentation. https:
//remix-ide.readthedocs.io/en/latest/. (Accessed on 05/25/2021).

[24] What is proof of work (pow)? | binance academy. https://academy.binance.com/
en/articles/proof-of-work-explained. (Accessed on 06/01/2021).

[25] Can I delete my content from the network? - Help - discuss.ipfs.io. https://discuss.
ipfs.io/t/can-i-delete-my-content-from-the-network/301, May 2017. [Online;
accessed 12. Feb. 2021].

[26] General Data Protection Regulation (GDPR) – Official Legal Text. https://
gdpr-info.eu, Sep 2019. [Online; accessed 11. Feb. 2021].

[27] area2invest | Decentralised Finance - the End of the Traditional Financial Economy?
https://www.area2invest.com/decentralised-finance, May 2020. [Online; ac-
cessed 9. Jan. 2021].

[28] Bitcoin blockchain size chart — Blockchair. https://blockchair.com/bitcoin/
charts/blockchain-size?compare=ethereum, Nov 2020. [Online; accessed 10. Nov.
2020].

[29] Go Ethereum. https://geth.ethereum.org, Dec 2020. [Online; accessed 3. Jan.
2021].

[30] HiveMQ - Enterprise ready MQTT to move your IoT data. https://www.hivemq.com,
Dec 2020. [Online; accessed 3. Jan. 2021].

[31] HiveMQ Extension - File RBAC. https://www.hivemq.com/extension/
file-rbac-extension, Dec 2020. [Online; accessed 3. Jan. 2021].

[32] Hyperledger - Open source blockchain for business - IBM Blockchain. https://www.
ibm.com/blockchain/hyperledger, Oct 2020. [Online; accessed 13. Nov. 2020].

[33] IBM Food Trust - Blockchain for the world’s food supply. https://www.ibm.com/
blockchain/solutions/food-trust, Oct 2020. [Online; accessed 13. Nov. 2020].

74

https://academy.binance.com/en/articles/proof-of-authority-explained
https://academy.binance.com/en/articles/proof-of-authority-explained
https://academy.binance.com/en/articles/proof-of-stake-explained
https://academy.binance.com/en/articles/proof-of-stake-explained
https://pypi.org/project/psutil/
https://ethereum.org/en/eth2/shard-chains/
https://bisontrails.co/slashing/
https://github.com/storj-thirdparty/uplink-python
https://github.com/storj-thirdparty/uplink-python
https://www.raspberrypi.org/
https://www.python.org/
https://remix-ide.readthedocs.io/en/latest/
https://remix-ide.readthedocs.io/en/latest/
https://academy.binance.com/en/articles/proof-of-work-explained
https://academy.binance.com/en/articles/proof-of-work-explained
https://discuss.ipfs.io/t/can-i-delete-my-content-from-the-network/301
https://discuss.ipfs.io/t/can-i-delete-my-content-from-the-network/301
https://gdpr-info.eu
https://gdpr-info.eu
https://www.area2invest.com/decentralised-finance
https://blockchair.com/bitcoin/charts/blockchain-size?compare=ethereum
https://blockchair.com/bitcoin/charts/blockchain-size?compare=ethereum
https://geth.ethereum.org
https://www.hivemq.com
https://www.hivemq.com/extension/file-rbac-extension
https://www.hivemq.com/extension/file-rbac-extension
https://www.ibm.com/blockchain/hyperledger
https://www.ibm.com/blockchain/hyperledger
https://www.ibm.com/blockchain/solutions/food-trust
https://www.ibm.com/blockchain/solutions/food-trust

References

[34] The future of blockchain - Blockchain Pulse: IBM Blockchain Blog. https://www.
ibm.com/blogs/blockchain/2020/04/the-future-of-blockchain, Apr 2020. [On-
line; accessed 9. Jan. 2021].

[35] Understanding AES 256 Encryption. https://www.solarwindsmsp.com/blog/
aes-256-encryption-algorithm, Sep 2020. [Online; accessed 4. Jan. 2021].

[36] What are smart contracts on blockchain? - Blockchain Pulse: IBM
Blockchain Blog. https://www.ibm.com/blogs/blockchain/2018/07/
what-are-smart-contracts-on-blockchain, Feb 2020. [Online; accessed 17.
Dec. 2020].

[37] Workstation Player : Run a Second, Isolated Operating System on a Sin-
gle PC with VMware Workstation Player. https://www.vmware.com/products/
workstation-player.html, Dec 2020. [Online; accessed 3. Jan. 2021].

[38] Cardano. https://cardano.org, Jan 2021. [Online; accessed 14. Jan. 2021].

[39] Cloud Object Storage | Store & Retrieve Data Anywhere | Amazon Simple Storage
Service (S3). https://aws.amazon.com/s3, Feb 2021. [Online; accessed 12. Feb.
2021].

[40] Decentralized Cloud Storage — Storj. https://storj.io, Feb 2021. [Online; accessed
12. Feb. 2021].

[41] Home page | LoRa Alliance®. https://lora-alliance.org, Jan 2021. [Online;
accessed 14. Jan. 2021].

[42] Introduction to Smart Contracts — Solidity 0.8.1 documentation. https://docs.
soliditylang.org/en/develop/introduction-to-smart-contracts.html, Jan
2021. [Online; accessed 6. Jan. 2021].

[43] Introduction to smart contracts | ethereum.org. https://ethereum.org/en/
developers/docs/smart-contracts, Jan 2021. [Online; accessed 5. Jan. 2021].

[44] IoT Growth Demands Rethink of Long-Term Storage Strategies, says IDC. https://
www.idc.com/getdoc.jsp?containerId=prAP46737\220, Jan 2021. [Online; accessed
26. Jan. 2021].

[45] Networks | ethereum.org. https://ethereum.org/en/developers/docs/networks,
Jan 2021. [Online; accessed 3. Jan. 2021].

[46] SIGFOX.COM. https://www.sigfox.com/en, Jan 2021. [Online; accessed 14. Jan.
2021].

[47] Smart contract languages | ethereum.org. https://ethereum.org/en/developers/
docs/smart-contracts/languages, Jan 2021. [Online; accessed 5. Jan. 2021].

[48] The Eth2 upgrades | ethereum.org. https://ethereum.org/en/eth2, Jan 2021. [On-
line; accessed 14. Jan. 2021].

[49] Muhammad Salek Ali, Koustabh Dolui, and Fabio Antonelli. Iot data privacy via
blockchains and ipfs. pages 1–7, 2017.

[50] Muhammad Salek Ali, Massimo Vecchio, Miguel Pincheira, Koustabh Dolui, Fabio
Antonelli, and Mubashir Husain Rehmani. Applications of blockchains in the inter-
net of things: A comprehensive survey. IEEE Communications Surveys & Tutorials,
21(2):1676–1717, 2018.

75

https://www.ibm.com/blogs/blockchain/2020/04/the-future-of-blockchain
https://www.ibm.com/blogs/blockchain/2020/04/the-future-of-blockchain
https://www.solarwindsmsp.com/blog/aes-256-encryption-algorithm
https://www.solarwindsmsp.com/blog/aes-256-encryption-algorithm
https://www.ibm.com/blogs/blockchain/2018/07/what-are-smart-contracts-on-blockchain
https://www.ibm.com/blogs/blockchain/2018/07/what-are-smart-contracts-on-blockchain
https://www.vmware.com/products/workstation-player.html
https://www.vmware.com/products/workstation-player.html
https://cardano.org
https://aws.amazon.com/s3
https://storj.io
https://lora-alliance.org
https://docs.soliditylang.org/en/develop/introduction-to-smart-contracts.html
https://docs.soliditylang.org/en/develop/introduction-to-smart-contracts.html
https://ethereum.org/en/developers/docs/smart-contracts
https://ethereum.org/en/developers/docs/smart-contracts
https://www.idc.com/getdoc.jsp?containerId=prAP46737\220
https://www.idc.com/getdoc.jsp?containerId=prAP46737\220
https://ethereum.org/en/developers/docs/networks
https://www.sigfox.com/en
https://ethereum.org/en/developers/docs/smart-contracts/languages
https://ethereum.org/en/developers/docs/smart-contracts/languages
https://ethereum.org/en/eth2

Chapter 7

[51] Marti Anderson and Cajo Ter Braak. Permutation tests for multi-factorial analysis of
variance. Journal of statistical computation and simulation, 73(2):85–113, 2003.

[52] Elli Androulaki, Artem Barger, Vita Bortnikov, Christian Cachin, Konstantinos Chris-
tidis, Angelo De Caro, David Enyeart, Christopher Ferris, Gennady Laventman, Yacov
Manevich, Srinivasan Muralidharan, Chet Murthy, Binh Nguyen, Manish Sethi, Gari
Singh, Keith Smith, Alessandro Sorniotti, Chrysoula Stathakopoulou, Marko Vukolić,
Sharon Weed Cocco, and Jason Yellick. Hyperledger fabric: a distributed operating sys-
tem for permissioned blockchains. Association for Computing Machinery, New York,
NY, USA, Apr 2018.

[53] Joseph Jose Anthraper and Jaidip Kotak. Security, privacy and forensic concern of
mqtt protocol. In Proceedings of International Conference on Sustainable Computing
in Science, Technology and Management (SUSCOM), Amity University Rajasthan,
Jaipur-India, 2019.

[54] Binance Academy. Sybil Attacks Explained. Binance Academy, Nov 2020.

[55] Binance Academy. What Is Staking? Binance Academy, Dec 2020.

[56] Francesco Buccafurri, Vincenzo De Angelis, and Roberto Nardone. Securing mqtt by
blockchain-based otp authentication. Sensors, 20(7):2002, 2020.

[57] Vitalik Buterin et al. Ethereum white paper. GitHub repository, 1:22–23, 2013.

[58] Talal Ashraf Butt, Razi Iqbal, Khaled Salah, Moayad Aloqaily, and Yaser Jararweh.
Privacy management in social internet of vehicles: review, challenges and blockchain
based solutions. IEEE Access, 7:79694–79713, 2019.

[59] Yi-Cheng Chen, Yueh-Peng Chou, and Yung-Chen Chou. An image authentication
scheme using merkle tree mechanisms. Future Internet, 11:149, 07 2019.

[60] Nicholas Confessore. Cambridge Analytica and Facebook: The Scandal and the Fall-
out So Far. N.Y. Times, Nov 2018.

[61] Jasenka Dizdarević, Francisco Carpio, Admela Jukan, and Xavi Masip-Bruin. A Sur-
vey of Communication Protocols for Internet of Things and Related Challenges of Fog
and Cloud Computing Integration. ACM Comput. Surv., 51(6):1–29, Jan 2019.

[62] Ali Dorri, Salil S. Kanhere, Raja Jurdak, and Praveen Gauravaram. Blockchain for
IoT security and privacy: The case study of a smart home. IEEE, pages 13–17, 2020.

[63] Ali Dorri, Marco Steger, Salil S Kanhere, and Raja Jurdak. Blockchain: A dis-
tributed solution to automotive security and privacy. IEEE Communications Maga-
zine, 55(12):119–125, 2017.

[64] Filecoin. A decentralized storage network for humanity’s most important information
| filecoin, 2021.

[65] M. Fischer, D. Kümper, and R. Tönjes. Towards improving the privacy in the mqtt
protocol. In 2019 Global IoT Summit (GIoTS), pages 1–6, 2019.

[66] Paula Fraga-Lamas and Tiago M Fernández-Caramés. A review on blockchain tech-
nologies for an advanced and cyber-resilient automotive industry. IEEE Access,
7:17578–17598, 2019.

[67] Saptarshi Gan. An iot simulator in ns3 and a key-based authentication architecture
for iot devices using blockchain. Indian Institute of Technology Kanpur, 2017.

76

References

[68] K. Hantrakul, S. Sitti, and N. Tantitharanukul. Parking lot guidance software based
on mqtt protocol. In 2017 International Conference on Digital Arts, Media and Tech-
nology (ICDAMT), pages 75–78, 2017.

[69] HiveMQ. Enabling the connected car with hivemq. https://www.hivemq.com/
solutions/iot/enabling-the-connected-car/, October 2020.

[70] HiveMQ. Quality of service 0,1 2 - mqtt essentials: Part 6. https://www.
hivemq.com/blog/mqtt-essentials-part-6-mqtt-quality-of-service-levels/,
October 2020.

[71] Frank T Johnsen, Trude H Bloebaum, Morten Avlesen, Skage Spjelkavik, and Bjørn
Vik. Evaluation of transport protocols for web services. In 2013 Military Communi-
cations and Information Systems Conference, pages 1–6. IEEE, 2013.

[72] Michael Kapilkov. Future elections could be held on the Cardano blockchain, says
Hoskinson. Cointelegraph, Oct 2020.

[73] Ali Safari Khatouni, Martino Trevisan, and Danilo Giordano. Data-driven emulation
of mobile access networks. In 2019 15th International Conference on Network and
Service Management (CNSM), pages 1–6, 2019.

[74] Alexia Dini Kounoudes and Georgia M Kapitsaki. A mapping of iot user-centric
privacy preserving approaches to the gdpr. Internet of Things, 11:100179, 2020.

[75] Loic Lesavre, Priam Varin, Peter Mell, Michael Davidson, and James Shook. A taxo-
nomic approach to understanding emerging blockchain identity management systems.
arXiv preprint arXiv:1908.00929, 2019.

[76] Pin Lv, Licheng Wang, Huijun Zhu, Wenbo Deng, and Lize Gu. An iot-oriented
privacy-preserving publish/subscribe model over blockchains. IEEE Access, 7:41309–
41314, 2019.

[77] Satoshi Nakamoto. Bitcoin: A peer-to-peer electronic cash system. Decentralized
Business Review, page 21260, 2008.

[78] R. Neisse, G. Steri, and G. Baldini. Enforcement of security policy rules for the
internet of things. In 2014 IEEE 10th International Conference on Wireless and
Mobile Computing, Networking and Communications (WiMob), pages 165–172, 2014.

[79] OASIS. Mqtt version 5.0. https://docs.oasis-open.org/mqtt/mqtt/v5.0/
mqtt-v5.0.html, October 2020.

[80] Gary W Oehlert. A first course in design and analysis of experiments. 2010.

[81] P. Porambage, M. Ylianttila, C. Schmitt, P. Kumar, A. Gurtov, and A. V. Vasilakos.
The quest for privacy in the internet of things. IEEE Cloud Computing, 3(2):36–45,
2016.

[82] Ana Reyna, Cristian Martín, Jaime Chen, Enrique Soler, and Manuel Díaz. On
blockchain and its integration with iot. challenges and opportunities. Future generation
computer systems, 88:173–190, 2018.

[83] Markus Schäffer, Monika Di Angelo, and Gernot Salzer. Performance and Scalability
of Private Ethereum Blockchains, pages 103–118. 08 2019.

77

https://www.hivemq.com/solutions/iot/enabling-the-connected-car/
https://www.hivemq.com/solutions/iot/enabling-the-connected-car/
https://www.hivemq.com/blog/mqtt-essentials-part-6-mqtt-quality-of-service-levels/
https://www.hivemq.com/blog/mqtt-essentials-part-6-mqtt-quality-of-service-levels/
https://docs.oasis-open.org/mqtt/mqtt/v5.0/mqtt-v5.0.html
https://docs.oasis-open.org/mqtt/mqtt/v5.0/mqtt-v5.0.html

Chapter

[84] Meena Singh, MA Rajan, VL Shivraj, and P Balamuralidhar. Secure mqtt for internet
of things (iot). In 2015 Fifth International Conference on Communication Systems
and Network Technologies, pages 746–751. IEEE, 2015.

[85] Dipa Soni and Ashwin Makwana. A survey on mqtt: a protocol of internet of things
(iot). In International Conference On Telecommunication, Power Analysis And Com-
puting Techniques (ICTPACT-2017), 2017.

[86] M. Suresh, P. Saravana Kumar, and T. V. P. Sundararajan. Iot based airport parking
system. In 2015 International Conference on Innovations in Information, Embedded
and Communication Systems (ICIIECS), pages 1–5, 2015.

[87] L. M. R. Tarouco, L. M. Bertholdo, L. Z. Granville, L. M. R. Arbiza, F. Carbone,
M. Marotta, and J. J. C. de Santanna. Internet of things in healthcare: Interoperati-
bility and security issues. In 2012 IEEE International Conference on Communications
(ICC), pages 6121–6125, 2012.

[88] The HiveMQ Team. Creating highly available and ultra-scalable MQTT clus-
ters. https://www.hivemq.com/blog/clustering-mqtt-introduction-benefits,
Dec 2020. [Online; accessed 3. Jan. 2021].

[89] The Modex Team. A brief history of blockchain, smart contracts and their implemen-
tation. Medium, Jun 2018.

[90] Pureswaran Veena, Sanjay Panikkar, Sumabala Nair, and Paul Brody. Empowering
the edge-practical insights on a decentralized internet of things. IBM Institute for
Business Value, 17, 2015.

[91] Sandra Wachter. Normative challenges of identification in the internet of things:
Privacy, profiling, discrimination, and the gdpr. Computer law & security review,
34(3):436–449, 2018.

[92] Electronic Wings. Nodemcu mqtt client with esplorer ide. https://www.
electronicwings.com/nodemcu/nodemcu-mqtt-client-with-esplorer-ide, Octo-
ber 2020.

[93] Dylan Yaga, Peter Mell, Nik Roby, and Karen Scarfone. Blockchain technology
overview. arXiv preprint arXiv:1906.11078, 2019.

[94] A Yakovenko. Solana: A new architecture for a high performance blockchain, 2018.

[95] Mengmeng Yang, Tianqing Zhu, Kaitai Liang, Wanlei Zhou, and Robert H Deng. A
blockchain-based location privacy-preserving crowdsensing system. Future Generation
Computer Systems, 94:408–418, 2019.

78

https://www.hivemq.com/blog/clustering-mqtt-introduction-benefits
https://www.electronicwings.com/nodemcu/nodemcu-mqtt-client-with-esplorer-ide
https://www.electronicwings.com/nodemcu/nodemcu-mqtt-client-with-esplorer-ide

Appendices

79

Appendix

A Visual validation of certain requirements

A.1 Intermediation between blockchains

In Figure A.1, it has represented the createLog event parsed in the private blockchain by
the proxy and the consecutive log event created in the public blockchain. In the Ropsten
explorer, it is possible to confirm the creation of the log event and check the information
of its transaction by using the transaction hash, as displayed in Figure A.2. Thus, the
interaction between the two blockchains is done successfully through the proxy.

Figure A.1: Request created by the MQTT broker to create a log event in the public
blockchain handled by the smart contract proxy.

Figure A.2: Information about the log event transaction created in the Ropsten tesnet.

A.2 Data management

Since Storj allows deleting and modifying data, data management features were imple-
mented in the system, allowing the user to keep track of the stored data and make mod-
ifications or erasures on demand. The proposals in [49, 62, 76, 95] don’t offer any data
management features. The logs of three possible data management requests (access, mod-
ify and delete) are represented in the three flowing figures. It is visible the message sent
by the sensor controller to the MQTT broker containing the request and its information
in all of them. The succeeding information is the response received, which validate the

80

successful handling of the requests.

access:

Figure A.3: Request to access all the vehicle users data.

modify:

Figure A.4: Request to modify a specific data entry.

delete:

Figure A.5: Request to delete a specific data entry.

A.3 Access control

The following figure displays a denied data access request made by an agent node of the
public blockchain, which validates the access control mechanism in the smart contract of
the private blockchain. Figure X displays a successful data access request.

Figure A.6: Denied access request.

81

Appendix

A.4 Log information

The subsequent figures contain the logs of a new data log event created in the public
blockchain (Figure A.7), the synchronous request made by the agent which was triggered
by the log, and the obtained response (Figure A.8).

Figure A.7: New data available log event captured by the agent node, which triggered a
data request.

Figure A.8: Data response parsed by the agent, and consequent access to the Storj storage
and decryption of the data.

A.5 Request handler

Figure A.9 illustrates a data publish request sent by the sensor controller, which was
consequently handled. The data content was stored in Storj, and a serial number was
generated and stored in the smart contract to be previously used to access the data stored.

Figure A.9: Publish data request handled by the MQTT broker.

A.6 Data confidentiality

The following figures display the state of the data in various stages. Figure A.10 displays
encrypted data when in transmission between the sensor controller and the MQTT broker.
Figure A.11 shows the encrypted data when sent to the MQTT broker in the message, and
Figure A.12 displays the data encrypted when stored in the Storj storage system.

82

Figure A.10: Data encrypted when in transmission.

Figure A.11: Data encrypted when received by the MQTT broker.

Figure A.12: Data encrypted when stored in Storj.

Authentication The following figure contains a log of an authentication failure in the MQTT
broker, where the user is not registered in the RBAC configuration of the broker.

Figure A.13: Authentication failure in the MQTT broker.

Authorisation (Observation) The MQTT client is only authorised to publish and subscribe
to certain topics. In this case, the vehicle user tried to publish information on a topic that
belonged to another user (Figure A.14).

Figure A.14: Authorisation failure in the MQTT broker.

83

	Introduction
	Schedule and methodology
	Planned schedule
	Accomplished schedule
	Methodology

	Background
	Privacy in Internet of Things (IoT)
	Data Protection
	Data transmission protocols
	Message Queue Telemetry Transport protocol (MQTT)
	MQTT architecture
	MQTT applications
	Security in MQTT

	Blockchain
	Blockchain architecture
	Blockchain in IoT
	Blockchain limitations and vulnerabilities

	Conclusions

	State-of-the-art
	Privacy solutions
	General privacy proposals
	Privacy proposals with Blockchain
	Privacy proposals comparison

	Conclusions

	Privacy-Enhancing Proposal
	Application and requirements
	Application
	Requirements

	Motivation
	Architecture
	Architecture components
	Functionalities

	Implementation strategy
	Implementation scenario
	Requirements implementation
	System's processes

	Conclusions

	Experimental evaluation and analysis
	Evaluation strategy
	Experimental scenario
	Technologies
	Experimental scenario components

	Test conditions
	Metrics
	Analysis of results
	Comparison between MQTT and blockchain
	Performance evaluation
	Blockchain size reduction evaluation
	Flood prevention

	Requirements validation
	Privacy analysis
	Conclusions

	Conclusions and future work
	Appendices
	Visual validation of certain requirements
	Intermediation between blockchains
	Data management
	Access control
	Log information
	Request handler
	Data confidentiality

