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Abstract
Biped robots are inherently unstable because of their complex kinematics as well as dynamics. Despite many research 
efforts in developing biped locomotion, the performance of biped locomotion is still far from the expectations. This 
paper proposes a model-based framework to generate stable biped locomotion. The core of this framework is an abstract 
dynamics model which is composed of three masses to consider the dynamics of stance leg, torso, and swing leg for 
minimizing the tracking problems. According to this dynamics model, we propose a modular walking reference trajec-
tories planner which takes into account obstacles to plan all the references. Moreover, this dynamics model is used to 
formulate the controller as a Model Predictive Control (MPC) scheme which can consider some constraints in the states 
of the system, inputs, outputs, and also mixed input-output. The performance and the robustness of the proposed frame-
work are validated by performing several numerical simulations using MATLAB. Moreover, the framework is deployed 
on a simulated torque-controlled humanoid to verify its performance and robustness. The simulation results show that 
the proposed framework is capable of generating biped locomotion robustly.

Keywords  Robust biped locomotion · Model Predictive Control (MPC) · Dynamics model · Humanoid robots

1  Introduction

Humanoid robots are more adapted to our real environ-
ment for helping us to perform our daily-life tasks. Devel-
oping a robust walking framework for humanoid robots 
has been researched for decades, and it is still a challeng-
ing problem in the robotics community. The complexity 
of this problem derives from several different aspects like 
considering an accurate hybrid dynamics model, design-
ing appropriate controllers, and formulating suitable refer-
ence trajectory planners. The wide range of applications 
for these types of robots motivates researchers to tackle 
such a complex problem using different approaches which 

can be generally classified into two main classes: model-
free [24, 30] and model-based [4, 7, 16].

Model-free approaches try to generate walking pat-
terns by generating rhythmic patterns for each limb and 
without considering any dynamics model of the system. 
Some of them are inspired from neuro-physiological stud-
ies on humans and animals. These studies showed that 
periodic locomotion such as walking and running are gen-
erated by a set of oscillators at spinal cord which are con-
nected together in a specific arrangement. Each oscillator 
has a set of parameters that are generally tuned by some 
trail-intensive method like trials and error, machine learn-
ing (ML) algorithms or both of them [25, 33]. Some other 
approaches in this class are designed based on learning 
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from scratch and mostly are based on Reinforcement 
Learning (RL) algorithms [1, 19] which need many sam-
ples to be able to generate walking that takes a consider-
able amount of time. Unlike the model-free approaches, 
the fundamental core of the model-based approach is 
a dynamics model of the robot. The main idea of these 
approaches is modeling the overall behavior of the system 
in an abstract manner, then planners and controllers will 
be formulated according to this model. The first question 
in designing a model-based walking is how accurate should 
the model be?. To answer this question, two points of view 
exist: (1) using a whole-body dynamics model, (2) using an 
abstract model. We believe that for designing a dynamics 
model of a system, a trade-off between accuracy and sim-
plicity should be taken into account. Although the whole 
body dynamics model is more accurate than an abstract 
model, it is not only platform-dependent but also needs 
a high computational effort. The main idea behind using 
an abstract model is fading the complexity of the control 
system and organizing the control system as a hierarchy. 
In hierarchical control approaches, a simplified dynamics 
model is used to abstract the overall behaviors of the sys-
tem, and then these behaviors will be converted to indi-
vidual actuator inputs using a detailed full-body inverse 
dynamics [7]. In such approaches, the overall performance 
of the system depends on the matching between the 
abstract model and the exact model.

In this paper, we proposed a modular walking frame-
work capable of generating robust locomotion for human-
oid robots. This work follows our previous work on model-
based biped locomotion framework [14]. The present work 
aims to offer more details about this framework. In particu-
lar, we present the overall architecture of the proposed 
framework and describe each module in detail. Addition-
ally, we deploy the framework on a full-size simulated 
torque-controlled humanoid robot and conduct a set of 
simulations to validate its robustness, performance and 
portability. In this framework, the overall dynamics of the 
robot is modeled using a three-mass model which takes 
into account dynamics of the legs and the torso. According 
to this model, the problem of dynamics locomotion will be 
formulated as a linear MPC to predict the behavior of the 
system over a prediction horizon and to determine the 
optimum control inputs. Additionally, the process of gen-
erating walking reference trajectories will be decomposed 
into three levels including (1) path and footstep planning, 
(2) planning ZMP, hip and swing reference trajectories 
and (3) planning a set of reference trajectories for the 
controller. Moreover, the proposed framework has a hier-
archical structure which is composed of several reusable 
blocks. The designed architecture reduces the complexity 
of the framework and can be used to advancements in 
research and development. Besides, the results of several 

simulations will be presented to show the performance 
and the robustness of the proposed walking scheme.

Our contribution is twofold. First, the development of 
a modular framework that reduces the complexity and 
increases the flexibility of generating robust locomotion. 
Second, formulating the walking controller as a Linear 
MPC based on three-mass model. The remainder of this 
paper is structured as follows: Sect. 2 gives an overview 
of the related work. The overall architecture of the frame-
work will be presented in Sect. 3. Later, in Sect. 4, the ref-
erence trajectory planners will be presented. Afterwards, 
the three-mass dynamics model will be reviewed briefly 
in Sect. 5 and then we will explain how this model will 
be used to design a walking controller based on MPC 
scheme in Sect. 6. In Sect. 7, a set of simulation scenarios 
will be designed and performed to examine the tracking 
performance and robustness of the proposed controller. 
Afterwards, in Sect. 8, a baseline framework based on LIPM 
will be used to compare and highlight the effectiveness of 
the proposed framework. Finally, conclusions and future 
research will be presented in Sect. 9.

2 � Related work

Several simplified dynamics models have been proposed 
that abstract the overall dynamics of humanoid robots. In 
this section, some of these models will be reviewed briefly 
and then some recent works that used these models to 
generate robust locomotion or to develop push recovery 
strategies will be presented.

2.1 � Dynamics models

Linear Inverted Pendulum Model (LIPM) is one of the com-
mon dynamics models in the literature. The popularity of 
this model originates from its linearity and simplicity and 
from its ability to generate a feasible, fast, and efficient 
trajectory of the Center of Mass (COM) [13]. This model 
describes the dynamics of a humanoid robot just by con-
sidering a single mass that is connected to the ground via 
a mass-less rod (see Fig. 1a). In this model, the single mass 
is assumed to move along a horizontal plane and based on 
this assumption, the motion equations in sagittal and fron-
tal planes are decoupled and independent. Several stud-
ies used this model to develop an online walking genera-
tor based on optimal control [17] and also linear MPC [3, 
10, 22]. Several extensions of LIPM have been proposed 
to increase the accuracy of this model while keeping the 
simplicity level [7, 18, 21, 27]. The three-mass model is one 
of the extended versions of LIPM [26, 27, 29]. As it is shown 
in Fig. 1b, this model considers the masses of legs and the 
torso to increase the accuracy of the model. It should be 
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mentioned that to keep the model linear, the vertical 
motions of the masses are considered to be smooth and 
the vertical accelerations are neglected.

Kajita et al. [13] introduced the Three Dimensional Lin-
ear Inverted Pendulum Model (3D-LIPM) and explained 
how this model can be used to generate walking. After-
wards, in [12], they used the concept of ZMP to develop a 
control framework based on preview control to generate 
stable locomotion. The performance of their framework 
has been validated using several simulations.

Albert and Gerth [2] extended LIPM by considering the 
mass of the swing leg to improve gait stability and they 
named it Two Mass Inverted Pendulum Model (TMIPM). 
In their approach, the swing leg and the ZMP trajectories 
should be generated firstly, then the trajectory of the COM 
will be generated by solving a linear differential equation. 
They proposed an extended version of TMIPM which con-
siders the mass of the thigh, the shank, and the foot of 
the swinging leg which has been called Multiple Masses 
Inverted Pendulum Model (MMIPM). TMIPM and MMIPM 
are more accurate than LIPM, they need an iterative algo-
rithm to define the COM trajectory due to the dependency 
of masses’ motions on each other.

Shimmyo et al. [27] extended the LIPM by considering 
three masses to decrease the modeling error and improve 
the performance. In their model, the masses were located 
on the torso, the right leg, and the left leg. They made two 
assumptions to design a preview controller which were 
considering the constant vertical position for the masses 
and also constant mass distribution. The performance 
of their approach has been validated through several 
experiments.

Faraji and Ijspeert  [7] proposed a dynamics model 
which is composed of three linear pendulums to model 
the dynamics of the legs and the torso and they named it 

3LP. They argued that, due to the linearity of this model, it 
is fast and computationally similar to LIPM such that it can 
be used in modern control architectures from the com-
putational perspective. The performance of their model 
has been proven using a set of simulations. Simulation 
results showed that their framework was able to gener-
ate a robust walking with a wide range of speeds without 
requiring off-line optimization and tuning of parameters.

Several extended versions of LIPM have been proposed 
to consider the momentum around the COM [23] but they 
do not take into account the dynamics of the legs specifi-
cally. In these models, the legs are considered to be mass-
less and their motions do not have any effect in dynam-
ics. In our previous work [15], we extended the dynamics 
model presented in [23] by considering the mass of the 
stance leg, and we explained how this model can be rep-
resented by a differential equation which can be used to 
design a controller to plan and track the walking reference 
trajectories.

2.2 � Locomotion framework

Herdt et al.  [9] proposed an online walking generator 
with automatic footstep placement. They used LIPM to 
formulate the walking pattern generator as a Linear MPC. 
In their framework, instead of considering a set of pre-
defined footsteps, they introduce new control variables 
to generate footsteps automatically. The performance of 
their approach has been validated through a set of simula-
tions. The simulation results showed that the framework is 
able to track a given reference speed of COM that can be 
modified any time.

Brasseur et al. [3] designed a robust linear MPC to gen-
erate online 3D locomotion for humanoid robots in a sin-
gle computation with guaranteed kinematic and dynamic 

Fig. 1   Abstract dynamics 
models: a represents the 
Linear Inverted Pendulum 
Model (LIPM) which abstracts 
the overall dynamics of a 
humanoid robot into a single 
mass with restricted verti-
cal motion; b represents the 
three-mass model which takes 
into account the dynamics of 
the legs and the torso with 
restricted vertical motions
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feasibility. They used Newton and Euler equations of 
motion to model the dynamics of a humanoid robot. They 
considered some assumptions to reduce the complexity of 
the model which are almost the same as LIPM’s assump-
tions, but unlike LIPM, they take into account the vertical 
motion of the COM to generate more efficient locomotion 
in terms of energy and speed. The performance of their 
approach has been tested in two simulation scenarios 
including walking on a flat train and climbing stairs using 
a simulated HRP-2 robot. The simulation results validated 
the performance of their approach.

Jianwen Luo et al. [20] proposed a hierarchical control 
structure to generate robust biped locomotion. Their 
structure is composed of three independent control lev-
els. At the highest level, they used A∗ to plan a path to the 
destination, and then they designed a MPC based on LIPM 
to generate the COM trajectory. At the middle level, they 
designed a hybrid controller which is composed of two 
controllers to control the oscillation and to eliminate the 
chattering problem. At the lowest level, they used a whole 
body operational space (WBOS) controller to compute 
the joint torques analytically. The effectiveness of their 
approach has been validated through simulation.

Most of the aforementioned works use LIPM as their 
dynamics model and do not take into account the dynam-
ics of the swing leg and the torso. In this paper, we pro-
pose a modular framework to generate a robust biped 
locomotion which takes into account the dynamics of 
torso and swing leg. Particularly, we use the three-mass 
model as the core of this framework and based on that, we 
design a MPC controller to formulate walking as a set of 
quadratic functions and a set of time-varying constraints 
based on states, inputs, and outputs of the system. This 
controller is not only able to track the reference trajecto-
ries optimally even in presence of measurement noise but 
also it is robust against uncertainties such as external dis-
turbances. Furthermore, we will performed a set of simu-
lations to explore the impacts of the proposed controller 
and to validate the performance of the framework.

3 � Architecture

This section is focused on presenting the overall archi-
tecture of the proposed framework which is depicted in 
Fig. 2. This framework is composed of four main modules 
which are coupled together to generate robust biped 
locomotion. The first module is Walking State 
Machine which is responsible for controlling the over-
all process of the walking. According to the periodic 
nature of the walking, this state machine is composed 
of four main states such that state transitions are trig-
gered based on an associated timer and also state con-
ditions. In the Idle state, the robot stands and is waiting 
for a start walking command. Once a walking command 
is received, the state transits to the Initialize state and 
the robot shifts its COM to the first support foot to be 
ready for taking the first step. In the Single Support State 
and the Double Support State, the planners parameters 
(e.g., robot’s target position and orientation, max speed, 
etc. ) will be updated. These parameters along with a 2D 
map of the environment and the sensory information 
provided by the Simulator as well as the estimated 
states provided by the MPC Controller will be fed 
into the Dynamic Planner to generate a set of refer-
ence trajectories. Dynamic Planner starts by gen-
erating a collision-free path which will be used to plan 
a set of reference trajectories including footsteps, ZMP, 
swing, COM, and masses trajectories. Finally, these refer-
ences will be fed into the MPC Controller. These tra-
jectories along with the sensory information (e.g., joint 
encoders, IMU, robot’s position and orientation, etc.) pro-
vided by the Simulator will be used to estimate the 
robot’s states. The estimated states and a set of objec-
tives are used by the optimizer to specify the control 
inputs subject to a set of time-varying constraints for 
tracking the generated reference trajectories. The cor-
responding joint motions will be generated using the 
Inverse Kinematics which takes into account kinematic 

Fig. 2   Overall architecture of 
the proposed framework. This 
framework is composed of 
four main modules which are 
connected together to gener-
ate robust locomotion. The 
highlighted boxes represent 
the functional blocks and the 
exchanged information among 
the modules are represented 
by the white boxes
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feasibility constraints. The target joint setpoints will be 
fed into the Simulator which is responsible for simu-
lating the interaction of the robot with the environment 
and producing sensory information as well as the global 
position and orientation of the robot in the simulated 
environment to be used by Dynamic Planner. In 
the following sections, the details of each module will 
be explained separately, and then a set of simulation 
scenarios will be designed and conducted to valid the 
performance of the framework.

4 � Dynamic planners

Dynamic Planners module is responsible for planning of 
the reference trajectories according to the input param-
eters as well as the environment’s structure. To reduce 
the complexity of the planning, the planning process is 
divided into a set of sub-planners which are solved sepa-
rately and connected in a hierarchical manner (see Fig. 2). 
In the rest of this section, we will explain how the reference 
trajectories will be generated.

4.1 � A* footstep planning

Footstep planning is generally based on a graph search 
algorithm with a rich history [8, 11]. In our target frame-
work, the footstep planning is composed of two stages: (1) 
generating a collision-free 2D body path; (2) planning the 
footsteps based on the generated path. In the first stage, 
the environment is modeled as a 2D grid map consisting 
of cells that are marked as free or occupied. In this work, 
the size of the cell is considered to be 0.1 m 2 , the height 
of obstacles is not considered, and the robot can not step 
over them. In order to avoid collision with the obstacles, 
the size of the obstacles are considered larger than the real 
size (scale = 1.1). In this stage, after modeling the environ-
ment, the A* search method is applied to find an optimum 
path over the free cells from the current position of the 
robot to the goal. Euclidean distance to the goal is used to 
guide the search. In the second stage, the footsteps should 
be generated according to the generated path. To do so, 
a state variable is defined to describe the current state of 
the robot’s feet:

where xl , yl , �l , xr , yr , �r represent the current position 
and orientation of the left and the right feet, respectively. 
�l ,�r represent the state of each foot which is 1 if the 
foot is the swing foot, and −1 otherwise. According to the 
nature of walking which is generated by moving the right 

(1)s = (xl , yl , �l ,�l , xr , yr , �r ,�r)

and left legs, alternating, a step action is parameterized 
by a distance and an angle from the swing foot position 
at the beginning of step a = (R, �) . Based on the current 
state and the generated path, action should be taken. In 
this paper, we consider a constant step size ( R = 0.1 m) 
which is a kind of medium step size that has been deter-
mined based on the robot capability and � is determined 
according to the generated path and the current state of 
the feet. Figure 3 shows an example of planning footsteps 
after generating the collision-free path.

It is worth mentioning that in some scenarios like 
tele-operation tasks, an operator wants to determine the 
actions without any autonomous path planning. In such 
scenario, the step positions will be planned just according 
to the input command. It should be mentioned that the 
action is always passed through a first-order lag filter to 
ensure a smooth update. By applying the selected action, 
the state transits to a new state, s� = t(s, a) . It should be 
noted that after each transition, the current footstep will 
be saved ( fi i ∈ ℕ ), also �l and �r will be toggled. After 
generating the footsteps, the step time should be planned 
based on the robot’s target speed.

4.2 � ZMP, hip and swing reference trajectories

Studies on human locomotion showed that while 
a human is walking, ZMP moves from heel to the toe 
during the single support phase and it moves towards 
the COM during the double support phase [5, 6]. In this 
paper, we do not consider the ZMP movement during 
the single support, but instead, we keep it in the mid-
dle of the support foot to prevent it from approaching 
to the support polygon edge and to avoid the loss of 

Fig. 3   Example of planning footsteps. After generating a collision-
free path (thick dashed black line), two lines parallel to the path 
will be generated (dotted black lines) which are d  m away from 
the generated path where 2d is the distance between feet. Then, 
the left and right footsteps (red and blue rectangles) should be 
selected from these path so that R m away from its previous one. 
Afterwards, � will be determined based on the generated footsteps 
using inverse tangent function



Vol:.(1234567890)

Research Article	 SN Applied Sciences           (2021) 3:771  | https://doi.org/10.1007/s42452-021-04752-9

equilibrium of the robot in some situation like unex-
pected external disturbances. Thus, the ZMP reference 
trajectory planning can be formulated based on the gen-
erated footsteps as follows:

where pst = [px
st

p
y

st]
⊤ is the generated ZMP, t, Tss, Tds rep-

resent the time, duration of single and double support 
phases, respectively. SL = [SLx SLy] is a vector that rep-
resents the step length and step width which are deter-
mined based on (R, �) , fi = [f x

i
f
y

i
] represents the planned 

foot steps on a 2D surface. It should be noted that t will be 
reset at the end of each step (t ≥ Tss + Tds).

After generating the ZMP reference trajectory, the 
hip trajectory will be planed according to the generated 
ZMP. To do that, we assume that the COM of the robot 
is located at the middle of the hip, and, based on this 
assumption, the overall dynamics of the robot is firstly 
restricted into COM and then the reference trajectory for 
the hip will be generated using the analytical solution of 
the LIPM as follows:

where t0 and tf  represent the beginning and the ending 
times of a step, � =

√
g

lh
 is the natural frequency of LIPM 

and ph0 , phf  are the corresponding positions of COM at 
these times, respectively.

After generating the ZMP and the hip trajectory, the 
swing trajectory should be planned. To have a smooth 
trajectory during lifting and landing of the swing leg, a 
Bézier curve is used to generate this trajectory according 

(2)pst =

{
fi 0 ≤ t < Tss
fi +

SL×(t−Tss)

Tds
Tss ≤ t < Tss + Tds

,

(3)

ph(t) = pst +
(pst − phf ) sinh

(
(t − t0)�

)
+(ph0 − pst) sinh

(
(t − tf )�

)

sinh((t0 − tf )�)
,

to the generated footsteps and a predefined swing 
height.

4.3 � Masses reference trajectories

The trajectories of the masses can be easily generated 
based on the geometric relations between the generated 
hip, ZMP, and swing leg trajectories. According to Fig. 1b, 
the mass of the stance leg is located in the middle of the 
line between the ZMP and the hip. Similarly, the mass of 
the swing leg is located in the middle of the line between 
the swing foot and the hip. To show the performance of 
the planners presented in this section, an example path 
planning scenario has been set up, which is depicted in 
Fig. 4. In this scenario, the robot stands at the START​ point 
and wants to reach the GOAL point. The planning process 
is started by generating an optimum obstacle-free path 
(black-dashed line). As it is shown in Fig. 4, the generated 
path is far from the obstacles enough and, based on this 
path, the footsteps, corresponding ZMP and hip trajecto-
ries have been generated successfully.

5 � Dynamics model

This section will be started by a brief review of the Zero 
Momentum Point  (ZMP) concept which is one of the 
well-known criteria in developing stable dynamic walk-
ing. Afterwards, the ZMP concept will be used to define 
the overall dynamics of a biped robot as a state-space 
system.

5.1 � Zero momentum point and gait stability

Several criteria have been introduced to analyze the sta-
bility of a biped robot. ZMP is a well-known criterion to 

Fig. 4   An example walking 
references trajectories: the 
gray rectangles represent the 
occupied cells that robot can 
not step; the black-dashed 
line represents the output of 
the A* path planner; red and 
blue rectangles represent the 
footsteps which are generated 
based on the output of the A*; 
the magenta line is the ZMP 
which is generated based on 
the outputs of the footstep 
planner; the lime-dashed line 
is the hip reference trajectory
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develop dynamically stable locomotion and its popularity 
comes from its performance and ease of use. In fact, ZMP is 
the point on the ground plane where the ground reaction 
force (GRF) acts to cancel the inertia and gravity [32]. For 
a dynamics model which is composed of n parts, ZMP can 
be calculated using the following equation:

where g represents the acceleration of gravity, 
p = [px py]⊤ represents the position of ZMP, mk is the 
mass of each part, ck = [cx

k
c
y

k
]⊤ and c̈k denote the ground 

projection of the position and acceleration of each mass, 
zk , z̈k are vertical position and vertical acceleration of each 
mass, respectively.

5.2 � Three‑mass dynamics model

The three-mass model abstracts the dynamics model of 
a biped robot by considering three masses. As shown in 
Fig. 1b, the masses are placed at the legs and the torso of 
the robot. To simplify and linearize the model, each mass is 
restricted to move along a horizontal plane. According to 
this assumption, the ZMP equations are independent and 
equivalent in the frontal and sagittal planes. Thus, in the 
remainder of this paper, just the equations in the sagittal 
plane will be considered. Based on (4), a state-space sys-
tem can be defined to analyze the behavior of the system:

(4)p =

∑n

k=1
mkck(z̈k + g) −

∑n

k=1
mkzkc̈k∑n

k=1
mk(z̈k + g)

,

(5)

d

dt

⎡
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ċx
3

c̈x
3

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

���
X

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 1 0 0 0 0 0 0 0

0 0 1 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0

0 0 0 0 1 0 0 0 0

0 0 0 0 0 1 0 0 0

0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 0 1

0 0 0 0 0 0 0 0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

���������������������������������������������������������������
A

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

cx
1

ċx
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where c⃛x
1
, c⃛x

2
, c⃛x

3
 are the manipulated variables in jerk 

dimension, M is weight of the robot, m1,m2,m3 represent 
the mass of stance leg, torso and swing leg, respectively. 
Based on the output equation (y), the positions of stance 
leg, swing leg, and also ZMP are measured at each con-
trol cycle. In the next section, the defined system will be 
discretized to discrete-time implementation and we will 
explain what type of walking objectives and constraints 
should be considered to generate stable dynamic walking.

6 � Online walking controller based on MPC

In this section, the problem of the online walking control-
ler is formulated as a linear MPC which is not only robust 
to uncertainties but also able to consider some constraints 
in the states, inputs and outputs. To do that, firstly, the 
presented continuous system (5) should be discretized for 
implementation in discrete time. Afterward, the walking 
objective will be formulated as a set of quadratic func-
tions and finally, walking constraints will be formulated as 
linear functions of the states, inputs, and outputs.

6.1 � Discrete dynamics model

To discretize the system, we assume that c̈1, c̈2, c̈3 are lin-
ear and, based on this assumption, c⃛1, c⃛2, c⃛3 are constant 
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within a control cycle. Thus, the discretized system can 
be represented as follows:

where k represents the current sampling instance, 
Ad , Bd ,Cd are the discretized version of the A, B, C matri-
ces in (5), respectively. Based on this system, the state 
vector X(k) can be estimated at each control cycle. Thus, 
according to the estimated states, some objectives, 
and constraints, the problem of determining the con-
trol inputs can be formulated as an optimization prob-
lem  [a quadratic program  (QP)] at each control cycle. 
The optimization solution specifies the control inputs 
which are used until the next control cycle. This optimi-
zation just considers the current timeslot, to take into 
account the future timeslots, a finite time horizon is 
considered for the optimization process, but only the 
current timeslot will be applied and for each timeslot, 
this optimization will be repeated. Indeed, the optimi-
zation solution determines Nc (control horizon) future 
moves  (  ΔU = [Δu(k),Δu(k + 1),… ,Δu(k + Nc − 1)]⊤  ) 
based on the future behavior of the system 
( Y = [y(k + 1|k), y(k + 2|k),… , y(k + Np|k)]⊤ ) over a pre-
diction horizon of Np.

6.2 � Walking objective

Walking is a periodic locomotion which can be decom-
posed into two main phases: single support and double 
support. In the double support phase, the robot shifts its 
COM to the stance foot and during the single support, its 
swing leg moves towards the next step position. In order 
to develop stable locomotion, the robot should be able to 
track a set of reference trajectories while keeping its sta-
bility. As mentioned before, a popular approach to guar-
antee the stability of the robot is keeping the ZMP within 
the support polygon. According to (5), the position of the 
stance leg, swing leg, and ZMP are measured at each con-
trol cycle. Thus, the following objectives should be consid-
ered to keep the outputs at or near the references:

where pz , rz , pst , rst , psw , rsw are measured and reference 
ZMP, and the measure and reference positions of the 
stance and swing legs, respectively. Moreover, to gener-
ate a smooth trajectories which are compatible with the 
robot structure, the control inputs are considered into the 
objectives for smoothing all motions:

(6)
X (k + 1) = AdX (k) + Bdu(k)

y(k) = CdX(k)

(7)

d1 = ||pz − rz||2
d2 = ||pst − rst||2
d3 = ||psw − rsw||2,

According to the explained objective terms, the following 
cost function is defined to find an optimal set of control 
inputs:

w h e r e  k  i s  t h e  c u r r e n t  c o n t r o l  i n t e r v a l , 
z⊤
k
= {Δu(k|k)⊤ Δu(k + 1|k)⊤...Δu(k + Np − 1|k)⊤}  i s 

the QP decision and �j represents a positive gain that is 
assigned to each objective.

6.3 � Time‑varying constraints

To ensure the feasibility of the solution that is found by the 
MPC, a set of constraints should be considered to avoid 
generating infeasible solutions. For instance, the solution 
should be kinematically reachable by the robot and the 
ZMP should be kept inside the support polygon. Generally, 
a set of mixed input/output constraints can be specified 
in the following form:

where j from 0 to Np , k is current control cycle, E, F, G are 
time-variant matrices, where each row represents a linear 
constraint, u(k + j|k) and u(k + j|k) are vectors of manipu-
lated variables and output variables (stance leg, swing leg 
and ZMP), respectively, � is used to specify a constraint 
to be soft or hard. Additionally, using this equation, the 
inputs and outputs can be bounded to specified limita-
tions. It should be noted that the constraints in the sagittal 
plane are similar to those in the frontal plane. In our target 
framework, the constraints are time-varying and they will 
be determined at the beginning of each walking phase. 
Graphical representations of the constraints are depicted 
in Fig. 5. Figure 5a shows that the landing position of the 
swing leg should be restricted in a kinematically reachable 
area. This area can be approximated by a rectangle which 
is defined as follows:

where xmin, xmax are defined based on the current position 
of the support foot and the robot capability. In addition 

(8)

d4 = ||c⃛x
1
||2

d5 = ||c⃛x
2
||2

d6 = ||c⃛x
3
||2.

(9)J(zk) =

Np∑
i=1

6∑
j=1

�jdj(zk)

(10)Eu(k + j|k) + Fy(k + j|k) ≤ G + �

(11)

E =

[
0 0 0

0 0 0

]
, F =

[
0 1 0

0 − 1 0

]
,

G =

[
x
max

x
min

]
, � =

[
0

0

]
,
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to these constraints, to keep the ZMP within the support 
polygon, the following constraints are considered:

where zxmin
, zxmax

 are defined based on the walking phase 
and the size of the foot (please look at Fig. 5b, c). It should 
be mentioned that the foot size of the robot is considered 
a bit smaller (scale = 0.9) than the real foot size to prevent 
ZMP from being too close to the borders of the support 
polygon.

7 � Simulation

In this section, a set of simulation scenarios will be designed 
to validate the performance and examine the robustness of 
the proposed framework. We firstly performed three simu-
lations using MATLAB to evaluate the performance and 
robustness of the framework. Afterward, we will deploy our 
framework on a simulated COMAN (a passively compliant 
humanoid)  [28] humanoid robot to validate the perfor-
mance of the proposed framework on a full-size humanoid 
robot.

7.1 � Simulation using MATLAB

To perform the simulations using MATLAB, a humanoid 
robot has been simulated according to the dynamics model 

(12)

E =

[
0 0 0

0 0 0

]
, F =

[
0 0 1

0 0 − 1

]
,

G =

[
z
xmax

z
xmin

]
, � =

[
0

0

]
,

presented in Sect. 5. The most important parameters of the 
simulated robot and the controller are shown in Table 1.

7.1.1 � Tracking performance

To check the tracking performance of the controller, the sim-
ulated robot is commanded to perform a five-step forward 
walk (step size = 0.8 m and step time = 1 s). In this simula-
tion, the simulated robot is considered to be stopped and 
stands at the beginning of the simulation and the reference 
trajectories have been generated based on the presented 
methods in Sect. 4. The exemplary planned trajectories at 
the end of Sect. 4 are used as a the input references and the 
controller should track these trajectories while keeping the 
stability of the robot. The simulation results are depicted in 
Fig. 6. The results show that the controller is able to track the 
references and the ZMP is always inside the support polygon 
during walking. Another interesting point in the results is 
the actual trajectory of the torso (see Realpt in Fig. 6). We did 
not determine any references for the torso explicitly, but it 
moves as we expected. As it is shown in Fig. 6a, it is almost 
near the support foot during the single support phase, then 
by starting the double support phase, it moves towards the 
next support foot.

7.1.2 � Robustness w.r.t. measurement noise

In the real world, measurements are always affected by noise, 
therefore they are never perfect. Noise can arise because of 
many reasons like the simplification in the modeling, discre-
tizing and some mechanical uncertainties (e.g., backlash of 
gears), etc. A robust controller should be able to estimate the 

Fig. 5   Graphical representa-
tions of the constraints: a 
kinematically reachable area 
for the swing leg: red rectangle 
represents the position of the 
swing leg at the beginning of 
step, green rectangle repre-
sents the landing location of 
the swing leg; b ZMP con-
straint during double support 
phase: green area is considered 
as the support polygon to 
avoid ZMP from being close to 
the borders; c ZMP constraint 
during single support phase

(a) (b) (c)

Table 1   Parameters used in the 
simulations

m1 m2 m3 lst lt lsw Foot length Ts Np Nc �1,2,3 �4,5,6

15 kg 50 kg 15 kg 0.5 m 1.2 m 0.5 m 0.1 m 0.02 s 80 20 20 0.1
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correct state using noisy measurements and minimize the 
effect of noise. To examine the robustness of the proposed 
controller regarding measurement noise, the measurements 
are modeled as a stochastic process by adding Gaussian 
noise ( −0.05m ≤ v

i
≤ 0.05m i = 1, 2, 3 ) to the system out-

put and the previous scenario has been repeated. The simu-
lation results are shown in Fig. 7. As can be seen, the control-
ler is robust against the measurement noise and it can track 
the references even in the presence of noise.

7.1.3 � Robustness w.r.t. external disturbance

A robust controller should be able to reject an unwanted 
external disturbance that can occur in some situations 
like when a robot hits an obstacle or when it has been 
pushed by someone. In such situations, the controller 
cancels the effect of the impact and tries to keep ZMP 
inside the support polygon by applying a compensating 
torque. To examine the robustness of the controller w.r.t. 
external disturbances, an unpredictable external force 
is applied to the torso of the robot while it is perform-
ing the previous scenario. The impact has been applied 
at t = 1.6 s and the impact duration is Δt = 100 ms. This 

simulation was repeated multiple times with different 
amplitudes (−300 N ≤ F ≤ 300 N ). Moreover, to have real-
istic simulations, the measurements are confounded by 
measurement noise (−0.05m ≤ v

i
≤ 0.05m i = 1, 2, 3 ). The 

simulation results are shown in Fig. 8. Each plot represents 
the result of a single simulation. As these plots show, after 
applying an external force, the ZMP (fictitious ZMP [31]) 
goes out of the support polygon quickly whose distance 
from the support polygon edge proportionally relates to 
the intensity of the perturbation. The controller regains it 
back and keeps the stability of the robot. We increase the 
amplitude of the impact to find the maximum withstand-
ing of the controller. After performing these simulations, 
F = 435 N and F = −395 N were the maximum levels of 
withstanding of the controller. According to the simulation 
results, the proposed controller is robust against external 
disturbance.

7.1.4 � Checking the overall performance

To check the overall performance of the proposed frame-
work, the exemplary path planning scenario which has 
been presented at the end of Sect. 4, is used (see Fig. 4). 

(a) (b)

Fig. 6   The simulation results of analyzing tracking performance: a represents the positions of the masses while walking; b represents the 
reference ZMP and the real ZMP

Fig. 7   The simulation results of examining the robustness w.r.t. measurement noise: a represents the real and estimated position of the 
masses; b represents the real and estimated ZMP
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The simulation results are shown in Fig. 9. The results 
showed that the planner was able to generate walking ref-
erence trajectories and the controller was able to track the 
generated references successfully. A video of this simula-
tion is available online at https://​youtu.​be/​zyOmg​vaXyuA.

7.2 � Simulation using COMAN

To validate the portability and platform-independency 
of the proposed framework and to show the perfor-
mance of the framework in controlling a full humanoid 

robot, we performed a set of simulations using a simu-
lated COMAN humanoid in the Gazebo simulator which 
is an open-source simulation environment developed 
by the Open Source Robotics Foundation (OSRF). The 
simulated robot is 0.95 m tall, weighs 31 kg, and has 23 
DOF (6 per leg, 4 per arm, and 3 between the hip and 
torso). This robot is equipped with the usual joint posi-
tion and velocity sensors, an IMU on its hip, and torque/
force sensors at its ankles.

Fig. 8   The simulation results of examining the robustness w.r.t. 
external disturbance: each plot represents a single simulation 
result. As the results show, after applying external force, ZMP (ficti-

tious ZMP) goes out of support polygon for a moment whose dis-
tance from the support polygon edge proportionally relates to the 
intensity of the perturbation

https://youtu.be/zyOmgvaXyuA
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7.2.1 � Walking around a disk

This simulation is focused on testing the performance of 
the framework for combining turning and forward walk-
ing. In this simulation, the robot initially stays next to a 
large disk of radius 1.35 m so that the center of the disk 
is 1.8 m far from the robot. The robot is waiting to receive 
a start signal and once the signal is generated, the robot 
should walk around the disk and return to the initial point 
while trying to keep 2 m distance from the center of the 
disk during walking. In this simulation, we fixed the step 
size by 0.15 m and the turning angle will be determined 
based on the current position of the robot. The sequences 
of the experiment are shown in Fig. 10a. In this simulation, 
the positions of the feet and COM have been recorded and 
they are depicted in Fig. 10b. The results showed that the 
framework is able to combine steering and forward walk-
ing command to follow a specific path. A video of this 
simulation is available online at https://​youtu.​be/​E8PGY​
05WzIQ.

7.2.2 � Omnidirectional walking

This scenario is focused on validating the performance of 
the proposed framework for providing omnidirectional 
walking. In this scenario, the simulated robot should 
track deterministic setpoints including step length (X), 
step width (Y), and step angle (� ). At the beginning of the 
simulation, all the setpoints are zero and the robot is walk-
ing in place. At t = 2 s, the robot is commanded to walk 
forward (X = 0.1 m, Y = 0.0 m, � = 0.0 deg/s), At t = 10 s, 
the robot is commanded to walk diagonally (X = 0.10 m, 
Y = 0.05 m, � = 0.0 deg/s), at t = 20 s, while it is perform-
ing diagonal walking, it is commanded to turn right simul-
taneously (X = 0.2 m, Y = 0.05 m, � = 15 deg/s), finally at 
t = 32 s, all set points will be reset and the robot will walk-
ing in place. An overview of this scenario is depicted in 

Fig. 11a. During this simulation, the positions of the feet 
and COM have been recorded to examine the behavior 
of the COM while walking and it is depicted in Fig. 11b. 
According to the recorded data, the COM tends to the sup-
port foot during the single support phase and moves to 
the next support foot during the double support phase. It 
should be mentioned that we used a first-order lag filter 
to update the new setpoints to have a smooth updating. 
The results showed that the framework can combine all 
the input commands simultaneously to provide an omni-
directional walking. A video of this simulation is available 
online at https://​youtu.​be/​1R56m​4t6cHs.

7.2.3 � Push recovery

The goal of this simulation is to evaluate the withstanding 
of the framework in terms of external disturbance rejec-
tion. In this scenario, while the robot is walking in place 
( steptime = 0.4 s ), an impulsive external disturbance will 
be applied to the middle of its hip and the robot should 
reject the disturbance and keep its stability while contin-
uing walking in place. To validate the robustness of the 
framework and to characterize the maximum level of with-
standing of the robot, this simulation will be repeated with 
different amplitudes and a fixed duration of impact (100 
ms). The amplitude of the first impact is 80 N and it will be 
increased every 8 s by 20 N while the amplitude is less than 
120 N otherwise by 10 N until the robot falls. Figure 12a 
shows a snapshot of the simulation while the robot is 
subject to a severe push 130 N and capable of rejecting 
this disturbance and keeping its stability. The simulation 
results show that the framework is robust against exter-
nal disturbances and F = 150 N was the maximum level of 
withstanding of the robot. Figure 12b shows the velocity 
of COM in X direction during this simulation. In this figure, 
the pink rectangles represent the push duration and as it 
is shown in this figure, after applying a push, the COM’s 

Fig. 9   The simulation result 
of examining the overall 
performance of the proposed 
planner and controller. The 
simulated robot starts from 
START point and should walk 
towards the GOAL point while 
avoiding the obstacles

https://youtu.be/E8PGY05WzIQ
https://youtu.be/E8PGY05WzIQ
https://youtu.be/1R56m4t6cHs
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velocity increases impressively and the controller could 
able to keep the stability. A video of this simulation is avail-
able online at https://​youtu.​be/​os3De​x07Op0.

7.2.4 � Walking on uneven terrains

This scenario is designed to validate the performance of 
the framework for generating walking on uneven terrain. 
In this simulation, the robot is placed on an uneven terrain 
within a square area of side length 4 m.

The robot does not have any information about the ter-
rain and should walk forward to step out of this area. In this 
simulation, the uneven terrain is generated by placing a set 
of tiles with the same size but random height (from 25 to 
50 mm) next to each other. To have a clear representation 
of the generated terrain, the color of each tile is considered 
as a function of its height (see Fig. 13a). This simulation has 
been repeated using three different tile’s size (100 cm2 , 400 

cm2 and 625 cm2 ). The complexity of the terrain depends to 
the size and the height of the tiles, the terrain that is gener-
ated by the larger tile is more challenging than the others 
because of more ups and downs and more narrow edges 
which cause slipping the feet. The height variations of the 
COM has been recorded during the simulations and are pre-
sented in Fig. 13b. The simulation results showed that the 
framework is capable of providing stable walking on such 
terrains and handle such uncertainties. A video of this simu-
lation is available online at https://​youtu.​be/​e9MK6​Jy1KHg.

8 � Experiments

The simulation results showed that the framework was 
able to generate robust locomotion even in challenging 
situations. To explore the effectiveness of the proposed 

Fig. 10   Walking around a disk: 
the robot should walk around 
the disk while keeping 2 m 
distance from the center of 
the disk. a An overview of the 
scenario; b the feet and COM in 
the XY plane

https://youtu.be/os3Dex07Op0
https://youtu.be/e9MK6Jy1KHg
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framework regarding the dynamics model and the con-
troller, we developed a baseline framework based on 
LIPM and our proposed framework and conducted all 
the presented simulations in the previous section to 
compare the results. In Walking Around A Disk scenario, 
we increased the complexity of the scenario by increas-
ing the step’s lengths from 0.08 m to 0.25 m. The results 
showed that the baseline framework can successfully 
complete the simulation by maximum step length of 0.12 
m while the proposed framework is capable of complet-
ing the simulation by 0.22 m which is 83% better than the 
baseline. In Omnidirectional Walking scenario, although 
the current commands were challenging for the base-
line, both frameworks were able to complete the simula-
tion successfully. Therefore, we defined a scale factor to 
increase the complexity of the scenario by changing the 

input commands. The results showed that the scale fac-
tor can be increased up to 1.03 for the baseline and 1.16 
for the proposed framework. For both frameworks, the 
last command (X = 0.2 m, Y = 0.05 m, � = 0.26 rad/s) was 
the most challenging command in the simulation and 
the robot mostly lost its stability. Therefore, we selected 
this part of the simulation to compare the performance 
of both frameworks. The results showed that the pro-
posed framework is 13% better than the baseline. In the 
next simulation, to compare the maximum level of the 
withstanding, we performed the Push Recovery scenario 
using the baseline and F = 100 N was the maximum 
withstanding level which is 50% less than the proposed 
framework. In the last simulation, we examine the capa-
bility of baseline for walking on an uneven terrain. In 
the two first terrains (small and medium tiles), the robot 

Fig. 11   Omnidirectional walk-
ing scenario: a an overview of 
the omnidirectional walking 
scenario; b the feet and COM in 
the XY plane
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could pass almost half of the terrain and once it put its 
feet on a narrow edge, it lost it stability and fall down. In 
the third terrain, it lost its stability immediately. There-
fore, the baseline could not pass successfully the uneven 
terrains. A summary of the simulations results is given in 
the Table 2.

The simulation results validated the performance 
of the framework and showed that considering the 
dynamics of torso and legs extremely improved the 
performance in terms of stability and speed. Unlike [3, 
9] we have not used the current state of the system to 
adjust the planner parameters online, which improves 
the performance in terms of stability and speed. Also, 
unlike  [3], we did not take into account the vertical 
motion of masses to keep the linearity of our dynamics 

model. Taking into account these motions along with the 
arm motions can improve the performance impressively.

9 � Conclusion

In this paper, we have developed a model-based walk-
ing framework to generate robust biped locomotion. The 
core of this framework is a dynamics model that abstracts 
the overall dynamics of a robot into three masses. In par-
ticular, this dynamics model and the ZMP concept were 
used to represent the overall dynamics model of a human-
oid robot as a state-space system. Then, this state-space 
system was used to formulate the walking controller as 
a linear MPC which generates the control solution using 

Fig. 12   Push recovery scenario: 
while the robot is walking 
in place, an impulsive push 
will be applied. a A snapshot 
of push recovery scenario; b 
the blue line represents the 
velocity of COM in X direction 
during the simulation and the 
pink rectangles represent the 
push time and duration
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an online optimization subject to a set of objectives and 
constraints. Later, we have presented a hierarchical plan-
ning approach which was composed of three main layers 
to generate walking reference trajectories. To examine the 
performance of the proposed planner, a path planning 

simulation scenario has been designed to validate the 
performance of the planner. Afterward, according to the 
planned reference trajectories, a set of numerical simula-
tions has been performed using MATLAB to examine the 
performance and robustness of the controller. Besides, the 

Fig. 13   Walking on an uneven 
terrain: a a snapshot of the 
scenario; b the height variation 
of COM while robot is walking 
on the uneven terrain

Table 2   Summary of the 
simulation results

Simulation scenario Baseline framework Proposed framework Improve-
ment 
(%)

Walking around a disk Step length: 0.12 m Step length: 0.22 m 83
Omnidirectional walking Scale factor: 1.03 Scale factor: 1.16 13
Push recovery Withstanding: 100 N Withstanding: 150 N 50
Walking on uneven terrains Failed Success 100



Vol.:(0123456789)

SN Applied Sciences           (2021) 3:771  | https://doi.org/10.1007/s42452-021-04752-9	 Research Article

proposed framework has been deployed on a simulated 
COMAN humanoid robot to conduct a set of simulations 
using an ODE based simulator environment. The simula-
tion results validated the performance and robustness 
of the proposed framework. Additionally, the simulation 
results confirmed that considering the dynamics of torso 
and legs extremely improved the performance in terms of 
stability and speed.

In future work, we would like to extend this work to 
investigate the effect of vertical motion of the masses 
as well as the arm motions. Moreover, we would like to 
extend the framework capable of modifying online step 
position and duration to improve the gait stability. Addi-
tionally, we would like to develop a deep reinforcement 
learning module that combines with the proposed frame-
work to regulate the framework parameters adaptively 
and to generate residuals to adjust the robot’s target joint 
positions.
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