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Abstract

The pelvis is consistently regarded as the most sexually dimorphic region of the human skeleton,
and methods for sex estimation with the pelvic bones are usually very accurate. In this
investigation, population-specific osteometric models for the assessment of sex with the pelvis
were designed using a dataset provided by J.A. Serra (1938) that included 256 individuals (131
females and 125 males) from the Coimbra Identified Skeletal Collection and 38 metric variables.
The models for sex estimation were operationalized through an online application and decision
support system, CADOES. Different classification algorithms generated high accuracy models,
ranging from 85% to 92%, with only three variables; and from 85.33% to 97.33%, with all 38
variables. CADOES conveys a probabilistic prediction of skeletal sex, as well as a suite of
attributes with educational applicability in the fields of human skeletal anatomy and statistics. This
study upholds the value of the pelvis for the estimation of skeletal sex and provides models for
that can be applied with high accuracy and low bias.
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Introduction

Sex diagnosis is a fundamental step for establishing the biological profile, and thus is of critical
importance in the forensic task of identifying human skeletal remains [1]. In forensic anthropology
and bioarcheology, most methods for sex estimation rely on statistical models generated through
osteometric data collected from identified populations [2]. Among all the regions of the human
skeleton, the pelvis has for long been consensually regarded as the most sexual dimorphic [3-5]
and, as such, it is the most appropriate for the creation of such predictive models. Pelvic sexual



dimorphism is strongly connected with the opposing selective pressures of bipedalism and
parturition. Adaptative dissimilarities between sexes in the pelvis are likewise an outcome of
sexual selection [6,7]. Furthermore, pelvic anatomy is contingent to developmental plasticity (as
a consequence of ecological, climate and nutritional factors) and neutral demographic processes
[6,8,9].

Sexual dimorphism in the pelvic region has been studied and documented for long [10-15] but,
before the influential work by Phenice (1969), the methods for the estimation of sex based on
pelvic morphology were scarce and subjective. Phenice’s [5] technique involves the visual
evaluation of three pelvic elements, namely the ischiopubic ramus, the subpubic concavity, and
the ventral arc. The method is straightforward and precise, with published accuracy rates ranging
from 83% to 96% [16—19]. Notwithstanding, accuracy rates are observer-dependent [17]. Other
morphoscopic methods include, e.g., those by Brizek [20] and Klales et al. [21]. Metric data from
the pelvis has also been commonly used for sex assessment [2,22—28]. Comparably to the
studies addressing pelvic morphology in the estimation of sex, metric studies also yield
exceedingly high accuracy rates [29-32].

The manuscript A Pelve nos Portugueses: Morfologia da Pelve no Homem [4] is a classic
anthropological description of the pelvic complex in a late 19" — early 20" centuries sample of
Portuguese skeletal remains [33,34]. Unfortunately, A Pelve nos Portugueses is merely
descriptive in a statistical sense, as it was typical for contemporary anthropometry works. Instead,
our purpose is to use the raw data provided in the manuscript to create new approaches for sex
estimation based on morphometric features of the pelvic bone complex. As such, the web
application and decision support system CADOES [35] is presented. The acronym stands for
Classificagdo Automatizada de Dados Osteométricos para Estimar o Sexo, or sex estimation
through automated classification of osteometric data. CADOES is available at
http://osteomics.com/CADOES and features a sex estimation framework that allows greater
flexibility to the user enabling the selection of metric variables, as well as the statistical learning
algorithms and cross-validation parameters, thus empowering users to iterate through available
variables and statistical parameters until achieving a suitable model for any given samples or
individuals.

Materials and Methods

The original paper by Serra [4] provided a dataset (Appendix, pp. 143 — 172, available at
https://impactum.uc.pt/pt-pt/artigo/pelve _nos portugueses morfologia da pelve no _homem;
also obtainable at http://osteomics.com/CADOES/Dados-Serra-1938.zip) comprising a total of
256 individuals (131 females and 125 males) and 40 variables. All individuals were Portuguese
nationals from the Coimbra Identified Skeletal Collection [CISC, 34]. The first two variables
encompass ID and Sex, while the remaining 38 are osteometric variables, more precisely 32
Euclidean distances between anatomic landmarks and six angles of the pelvis (Table 1; Figure
1). The original measurements followed the operational definitions by Frassetto [36] and Martin
[37]. Some data cleaning procedures had to be performed in order to prepare the dataset for a
suitable statistical analysis [38].

Probably due to transcription errors, there were some repeated ID’s in the original publication,
with three ID’s appearing twice in the original spreadsheet (individuals 76, 233 and 235). Since
the original ID’s from the incorrectly marked individuals could not be determined, an ‘A’ was added
to the label of the second individual appearing by row order. So, to correct these inaccuracies,
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these individuals were labeled as 76A, 233A and 235A. Another necessary data cleaning step
involved the variable Altura Maxima da Bacia (maximum pelvic height). It appears as a sole
variable from page 143 to 157, but from page 158 until the end it is divided into two variables, by
left and right side: Altura Maxima da Bacia (esquerda) and Altura Maxima da Bacia (direita). An
option for the most parsimonious solution was made, and the arithmetic mean from the left and
right measurements was calculated in order to keep only one variable that represents the
maximum pelvic height. All individuals (ID’s 11, 33, 34, 40 and 108) containing missing values
were removed. A reduction of less than 2% of the original dataset row-wise avoids adding error
to the training set associated with the estimation of missing values. Thus, for generating models
for sex estimation, a final dataset containing a total of 251 individuals was used (130 females and
121 males).

All data analyses were performed with R, and a web app was developed with the Shiny package
for R [39,40]. Different modelling techniques can be applied to the same binary classification task,
but error rates vary in distinct datasets, particularly those composed by real data. As such, users
can select and test the results for the following classification models: k-Nearest neighbors, naive
Bayes, partial least squares, linear discriminant analysis, flexible discriminant analysis,
generalized additive model using splines, boosted logistic regression, penalized logistic
regression, decision trees, random forests, stochastic gradient boosting and a simple
classification neural network. The K-nearest neighbor is an instance-based learning classifier that
stores the training data set and classifies new uncategorized records by comparing them to similar
records in the training set. Naive Bayes algorithms are probabilistic classifiers grounded on
Bayesian statistics featuring conditional independence assumptions. Partial least squares (for
classification) is a supervised dimension reduction technique that was originally developed for
regression problems. Linear discriminant analysis recognizes a linear combination of predictor
variables that optimally splits mutually exclusive groups, and then creates a discriminant function
that typifies the differences between groups and classifies new individuals with unspecified group
membership. Flexible discriminant analysis is a nonparametric extension of the former method.
Boosted logistic regression is an ensemble method that sequentially uses a generalized additive
model and then applies the cost function of logistic regression. Penalized logistic regression
enforces a penalty to the size of the L2 norm of the coefficients, decreasing the coefficients of
less contributory variables towards zero. Decision trees are classification methods in the form of
IF-THEN logical rules. Random forests are, fundamentally, an ensemble of multiple decision
trees. Generalized additive models using splines are flexible methods used to identify and
characterize nonlinear regression effects. Gradient boosting builds additive regression models by
serially fitting a parameterized function to pseudo-residuals by least squares at each iteration and
including randomization in the process. Finally, neural networks are adaptative models that imitate
the nonlinear learning occurring in the neuronal networks found in animal brains [41-45]. These
twelve machine learning algorithms were implemented using the caret package for R [46].
CADOES depends on caret to perform all calculations. While all algorithms available operate with
different tuning parameters (automatically optimized during cross-validation), that information is
indicated for each classification model in the app at Sex estimation > Predict > Model Information
& Accuracy, after selecting and running a model (Figure 2). Hence, the web app allows end-users
to perform different kinds of data exploration and analyses. CADOES requires at least two
variables to generate a sex estimation model. The proficiency of the models was evaluated
through the overall accuracy (a measure of total agreement between the real and the estimated
sex) with corresponding 95% confidence intervals, Cohen's Kappa (an evaluation of the
performance of a specified classifier as related to chance only), sensitivity (the ratio of females
correctly classified), and specificity (the ratio of males properly classified), and the area under the
curve (AUC) [42].



Results

Descriptive statistics, including group means, standard deviations, medians, and minimum and
maximum values, are summarized in Table 2.

CADOES can generate a virtually endless number of models; as such, in order to present results
concisely many of the parameters were fixed, as follow: data was split into training and testing
samples containing respectively 70 and 30% of all individuals, and, as a preprocessing step, all
variables were centered and scaled. The repeated k-fold cross-validation parameters were also
kept fixed, as folds = 10 and repeats = 10. The use of a robust cross-validation strategy can
mitigate overfitting. In order to enhance results reproducibility, the seed was set at 19920804 (first
author’s birth date) for pseudorandom number generators during cross-validation and model
fitting. Results for all classification methods currently available in CADOES are presented. For
each classification algorithm, two types of models were created, containing either three or all
variables of our dataset. AMB (maximum pelvic height) + LB (bispiniatic width) + ASP (subpubic
angle) were selected for the three-variable models, since these are highly dimorphic. All results
presented are from confusion matrices of trained prediction scores against the testing dataset.
Despite only using three measurements, six of the twelve models obtained overall accuracies
superior to 90% on the holdout (testing) dataset. Among these, the best models were the partial
least squares, LDA, and neural networks (Table 3). Parenthetically, if three more variables were
added, for example PFle + AAId + LAE, while keeping all the parameters just mentioned, the
same neural network architecture would present an overall accuracy of 94.67% under the robust
cross-validation scheme aforementioned.

When using all the 38 variables, overall accuracies ranged from 85.33 to 97.33%. In this case,
the best models were a partial least squares model (AUC = 97.04%), a logistic regression with a
guadratic penalization (AUC = 96.90%), and again a neural network (AUC = 96.73%). These three
models had an overall accuracy of 97.33%, a sensitivity of 94.87%, a specificity of 100% and a
kappa of 94.67%. Despite having the best results (Table 4), users might avoid using such models,
since similar performance metrics can be obtained by just measuring three to six variables, as
shown above. The expert ought to consider the time it takes to record measurements before
starting its own protocol.

Discussion

The assessment of sex represents a key research task in the forensic and bioarcheological
examination of unknown human skeletal remains [1]. Sex estimation methods have focused in
different bones [3,47,48] but the pelvis prevails as the most sexually dimorphic skeletal region
[3,5,8]. As such, the conception of new methods or the enhancement of preexisting techniques
for sex estimation with the pelvis is justified.

CADOES stems from the recommendation of population specific standards for sex estimation and
makes available novel features for the investigation of sexual dimorphism in the pelvic
morphological complex, including (1) exploratory analyses of the original dataset through density
plots, boxplots, scatterplots and correlation matrices; (2) the generation of virtually unlimited
classification models based on the variables of the dataset selected by the user/expert, plus the
implemented machine learning algorithms and their validation parameters; (3) the use of robust



methods of cross-validation and partitioned testing in order to access accuracy (with 95%
confidence intervals), no information rate, kappa, specificity and sensitivity, positive and negative
predictive values, prevalence, detection rate, detection prevalence, balanced accuracy, area
under the curve, precision, recall, F-1 value, and variable importance of the generated models;
and (4) the prediction of sex with pelvic bones using the models generated and data inputted by
the users. The web implementation of CADOES (http://osteomics.com/CADOES/) generates
models for sex estimation based on different classical and machine-learning classifiers, as
selected by the user, and offers a probabilistic determination of sex according to the Daubert
guidelines [47].

Coinciding with other hip-based techniques for the assessment of sex in skeletal remains,
CADOES exhibits high accuracy rates and low bias. A model using only three variables (maximum
pelvic height, bispiniatic width and subpubic angle) achieves an accuracy of 92% under cross-
validation, with a six-variable model attaining an overall accuracy of 95%, comparable to the
results obtained with other pelvic methods in different populations [22,24,27,49-52]. Although
morphoscopic methods are the most readily applied, metric techniques are acknowledged as less
observer-dependent and more reliable [22,50,53], and depict the overall pattern of variability
within dissimilar populations [2].

In agreement with previous studies, pelvic height [e.g. 22,54,55] and the subpubic angle [e.g.
14,50,56,57] appear as some of the most dimorphic variables in the models enacted by CADOES.
Pelvic height is larger in males and suggests that size enacts an essential role in the dimorphic
condition of the pelvic region. The broadest subpubic angles observed in female individuals are
probably related with obstetrics [58], as obstetric problems, such as labor duration and risk of
obstetric intervention due to poor progression, are inversely associated with the breadth of the
subpubic angle [59]. llium blade length, bispiniatic width and the iliac fossa depth are also among
the pelvic variables showing more sexual dimorphism. Illium blade length, although defined
differently from the iliac length or direct iliac length, shows the same pattern of sexual dimorphism,
with males showing a longer ilium [e.g. 13,60,61]. Sexual dimorphism in ilium length starts at 15—
16 years of age and is mainly a function of differences in size [60]. Bispiniatic width (also known
as midpelvic breadth) is larger in female individuals. Similar results were observed by Torimitsu
et al. [57] in a sample of contemporary Japanese. In fact, dimensions that are larger in females
are usually related with the pelvic inlet [61,62]. Bispiniatic width, being an obstetric dimension,
has rarely been measured in skeletal remains; notwithstanding, it is particularly dimorphic and
easy to measure [57]. Finally, the iliac fossa depth is greater in males. The iliac fossa is the large
concave surface on the ventral surface of the ilium, and it is the origin site for the iliacus muscle
[63]. If variable selection is possible, e.g., in the case of a well-preserved pelvis, these five most
dimorphic variables should be used to estimate sex with CADOES.

There are some limitations to CADOES. First, many measurements chosen by Serra [4] require
the complete set of pelvic bones, including the sacrum, in order to be measured, and these
measurements are not easy to perform. Unfortunately, this is an aspect of the original dataset
that cannot be bypassed. To mitigate such problem, pelvis fragments and single bone
measurements can be used for sex estimation, since the model generator can produce estimates
with as few as two variables. In fact, univariable models are to be avoided as they usually are less
accurate and more biased [22,50,64,65] and the number of variables required to yield the most
accurate models generally range from two to eleven variables [54]. Another limitation is that metric
methods are apparently population specific and tend to perform better within populations of similar
height or general body proportions, since size in itself correlates more to these features than to
sexual dimorphism [55,66,67]. Hence, methods to estimate sex from a skeletal remains ought to



use fitting regional data [68]. However, additional research has suggested that population-specific
methods may not be essential for pelvic data [29,69].

Several of the CADOES advantages stem from its - at first glance - limitations. The web app is
intended to bring not just a functional sex estimation tool that provides quality metrics, but also a
didactic implement. In a classroom context, it can work as an interactive and stimulating tool for
students, simplifying the study of classic anthropometrics and pelvic anatomy while giving some
insight into modern statistical thinking, data visualization and processing as well as predictive
modelling under the machine learning paradigm. CADOES expands the set of available web
applications designed to simplify forensic and bioarcheological procedures, such as age at death
and sex estimation [64,70-73].

Conclusions

CADOES upgrades the descriptive nature of J.A. Serra [4] work and generates user-tailored
models for the estimation of sex that can be used with high accuracy and low bias in Portuguese
populations. It can be used in fragmented pelvic bones and conveys a probabilistic estimate of
sex. Additionally, the web app provides a set of features with pedagogic relevance in the fields of
human pelvic anatomy and statistics. CADOES must endure further verification in skeletal
remains of different geographical origins to evaluate its generalization to independent datasets
and to validate its reliability in both forensic and bioarcheological contexts.
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Figures captions:

Figure 1 — A selection of metric variables that can be measured and used for sex estimation with
CADOES. For a complete list see Table 1. For visual description of landmarks see help tabs in
the web app (http://osteomics.com/CADOES/).

Figure 2 — CADOES (http://osteomics.com/CADOES/) allows for the generation of different
models for sex estimation with metric features of the pelvis.
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Table 1: Variables available on CADOES that users can measure in order to create or test models, and to estimate sex of skeletal
individuals.

Euclidean distances

Codename Portuguese English Definition
(original)
CE Conjugata externa External conjugate Diameter between the superior point of the pubic symphysis and
the top of the spinous process of the 5" lumbar vertebra
CA Conjugata Anatomical Distance between the sacral promontory and the anterosuperior
anatémica conjugate margin of the pubic symphysis
co Conjugata obstétrica  Obstetric conjugate Diameter from the sacral promontory to the posterosuperior point
of the pubic symphysis
CD Conjugata diagonalis  Diagonal conjugate Diameter from the sacral promontory to the posteroinferior point
of the pubic symphysis
DIK Diametro inter- Inter-koilons Distance between the koilons (i.e., the deepest points) of the pubic
koilons diameter symphysis (posterior symphysis koilon) and the anterior face of
the sacrum (sacral koilon)
DSSB Diametro sagital da Inferior sacropubic Diameter from the sacral apex to the inferior point of the pubic
saida da bacia diameter symphysis
DVPS Diametro External sagittal Distance from the most anterior point on the symphyseal surface
venterpubes-sacral diameter to the median sacral crest (sacral spine)
LMP Largura maxima da Maximum pelvic Maximum distance between the lateral margins of the iliac crests
pelve width
LBAS Largura bispiniliaca Macrospina width Distance between the anterior superior iliac spines (left and right)
antero-superior
LBAI Largura bispiniliaca Microspina width Distance between the anterior inferior iliac spines (left and right)
antero-inferior
LBPS Largura bispiniliaca Cryptospina width Distance between the posterior superior iliac spines (left and right)
postero-superior
LBPI Largura bispiniliaca Metauricular width Distance between the apex of the posterior inferior iliac spines (left
postero-inferior and right)
LB Largura Ischiatic spine width ~ Distance between the ischiatic spines (left and right)
bispinisquiatica
DIEn Diametro inter- Inter-endoischions Distance between the endoischions; the endoischion is the point
endoischions diameter on the medial margin of the ischial tuberosity where it meets the
sacrotuberous ligament
DIEk Diametro inter- Inter-ektoischions Distance between the ektoischions; the ektoischion is the point on
ektoischions diameter the lateral margin of the ischial tuberosity most distant to the
sagittal/median plan of the pelvis.
DIKt Diametro inter- Inter-kotylions Distance between the kotylions; the kotylion is the mid-point in the
kotilions diameter acetabulum where the ilium, ischium and pubis bones converge.
DIKI Diametro inter- Inter-koilon diameter ~ Minimum distance between the acetabular fossae. Measured by
koilons da incisura locating the deepest point (koilon) in the acetabulum.
DIP Diametro inter- Inter-obturator Distance between the most superior points in the obturator

proobturatores

diameter

foramen (proobturatum)



Ele

Eld

LME

LAE

DO1E

DO2E

AAle

AAld

PFle

PFId

LS

AMB

ALPB

AAPB

Angles

Codename

ASP

AlPe

AlPd

ADA

Espessura iliaca
(esquerda)

Espessura iliaca
(direita)

Largura méaxima do
estreito

Largura anterior do
estreito

Diametro obliquo |

do estreito

Diametro obliquo II
do estreito

Altura da asa iliaca
(esquerda)

Altura da asa iliaca
(direita)

Profundidade da
fossa iliaca
(esquerda)

Profundidade da
fossa iliaca (direita)

Largura da saida

Altura maxima da
bacia

Altura lateral da
pequena bacia

Altura anterior da
pequena bacia

Portuguese
(original)

Angulo sub-pubico

Angulo de inclinagéo
da pelve (esquerda)

Angulo de inclinagdo
da pelve (direita)

Angulo de
divergéncia das
asas

lliac thickness (left)

lliac thickness (right)

Transverse diameter

Inter-pecten
diameter

Diagonal inlet |

Diagonal inlet Il

lliac blade height
(left)

lliac blade height
(right)

lliac fossa depth
(left)

lliac fossa depth
(right)

Outlet diameter

Os coxa height
Lateral height of the
lesser pelvis

Anterior height of the

lesser pelvis

English

Subpubic angle

Pelvic angle (left)

Pelvic angle (right)

lliac blades
divergence angle

Distance between the left posterior superior iliac spine
(cryptospina) and the superior point of the pubic symphysis
(propubes)

Distance between the right posterior superior iliac spine
(cryptospina) and the superior point of the pubic symphysis
(propubes)

Greatest mediolateral distance between the right and left arcuate
lines

Inter-pecten distance, pecten is defined as the point where the
arcuate line meets with the iliopubic eminence

Distance between the right ilio-auricular point (proauricula) and
the point where the iliopectinal eminence meets the arcuate line
on the left (pecten).

Distance between the left ilio-auricular point (proauricula) and the
point where the iliopectinal eminence meets the arcuate line on
the right (pecten).

Distance from the mid-point of the arcuate line (arcuale) to the
most elevated point of the iliac (epicrista) on the left iliac

Distance from the mid-point of the arcuate line (arcuale) to the
most elevated point of the iliac (epicrista) on the right iliac

Distance from the most elevated point of the iliac (epicrista) to the
point in the arcuate line between the arcuale (arcuate line
midpoint) and the proauricula (point where the arcuate line meets
the sacrum)

Greatest distance of the points located between the infero-
posterior obturator foramen and the ischial spine, measured in the
medial side of the hip bone.

Distance from the most inferior point in the ischial tuberosity
(ischion) to the most superior point in the iliac (epicrista).

Distance from the most inferior point in the ischial tuberosity
(ischion) to the ilio-auricular point (proauricula)

Distance from the most inferior point in the ischial tuberosity

(ischion) to the point (pecten) where the iliopectinal eminence
meets the iliopectinal line

Definition

Angular distance between the lines tangent to the inferior edge of
the ischiopubic rami; vertex on the most inferior point where the
pubic symphyses meet (metapubes).

Avoid using this measurement.

Avoid using this measurement.

Angular distances between the left and right lines formed by the
most lateral point of the iliac crest (exocrista) to the mid-point of
the arcuate line (arcuale)



ACCEPTED MANUSCRIPT

ASaP Angulo sacro-pélvico  Sacropelvic angle Angle from the tangent of the ventral facet of the 1 sacral vertebra
to the line defined by the anatomical conjugate.



Table 2: Descriptive statistics, including mean, standard deviation (SD), median, and minimum and maximum values, for pelvic
measurements in both sexes; Coimbra Identified Skeletal Collection (CISC). All measurements in millimeters.

Females Males
Measurement Mean SD Median Min Max Mean SD Median Min Max
CE 177.4 12.6 178.0 146 217 176.4 10.2 176.0 148.0 201.0
CA 112.6 10.0 113.0 87 139 105.6 9.6 105.0 83.0 136.0
CcO 107.7 9.7 108.0 84 130 99.6 10.0 99.0 73.0 134.0
CD 122.9 9.8 122.5 100 145 117.9 10.3 117.0 92.0 150.0
DIK 127.9 9.3 128.0 103 150 121.1 7.6 121.0 101.5 145.0
DSSB 116.1 9.0 116.0 90 137 109.1 8.2 110.0 84.0 129.0
DVPS 162.5 11.7 162.5 133 195 159.9 9.4 160.0 140.0 189.0
LMP 262.5 17.3 261.5 220 306 261.8 134 261.0 232.0 299.0
LBAS 226.2 17.3 225.0 185 267 226.0 14.2 224.0 184.0 260.0
LBAI 186.6 12.0 187.5 137 213 186.8 12.2 188.0 130.0 220.0
LBPS 73.2 9.3 72.5 52 101 67.9 7.0 68.0 50.0 85.0
LBPI 88.2 6.42 88.0 72 109 87.5 5.2 87.0 75.0 102.0
LB 103.8 9.4 103.0 83 129 89.2 7.0 88.0 74.0 108.0
DIEn 122.9 12.2 122.0 102 159 1104 10.6 110.0 85.0 134.0
DIEk 148.2 11.8 147.0 122 180 139.7 10.2 139.0 115.0 168.0
DIKt 138.7 10.2 139.5 113 164 136.0 10.2 137.0 107.0 161.0
DIKI 114.6 8.0 114.0 96 135 109.4 6.4 109.0 96.0 127.0
DIP 56.0 7.1 55.5 41 73 50.1 5.8 50.0 38.0 63.5
Ele 161.8 11.0 162.0 134 196 159.9 8.5 160.0 138.0 184.0
Eld 163.6 115 163.0 135 199 161.3 8.2 161.0 136.0 182.0
LME 130.3 8.4 130.0 114 155 123.2 6.0 123.0 110.0 138.0
LAE 124.4 8.4 125.0 100 145 116.0 7.0 116.0 92.0 134.0
DO1E 124.6 7.4 124.0 108 145 118.3 6.0 118.0 106.0 131.0
DO2E 122.8 7.3 123.0 104 143 117.7 5.7 118.0 106.0 133.0
AAle 99.8 6.1 100.0 80 114 106.2 6.1 106.0 92.0 119.0
AAld 98.6 6.0 99.0 78 113 104.9 5.6 104.0 92.0 118.0
PFle 4.8 2.4 5.0 0 11 8.3 2.4 8.0 3.5 14.5
PFId 4.9 2.3 5.0 0 12 8.2 2.3 8.0 3.0 14.5
LS 111.6 9.3 112.0 88 134 99.5 7.3 99.0 86.0 116.0
AMB 190.7 9.5 191.0 167 211 206.5 9.9 207.0 181.0 229.0
ALPB 116.7 6.5 116.0 102 132 122.6 7.7 121.5 107.0 140.0
AAPB 110.9 7.8 111.0 88 129 1151 5.8 115.0 101.0 128.0
ASP 79.3 8.6 80.0 52 97 66.5 8.7 67.0 43.0 90.0
AlPe 6.5 5.3 6.0 -8 25 6.2 5.9 6.0 -10.0 20.0
AlPd 5.1 5.3 5.0 -8 21 5.4 5.7 4.0 -8.0 19.0
ADA 98.9 10.1 100.0 7 126 98.6 9.3 98.0 78.0 123.0
ASaP 98.4 12.3 98.0 70 127 100. 14.3 101.0 67.0 138.0

ASalL 218.5 7.9 218.0 189 240 215.5 13.9 217.0 119.0 236.0
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Table 3: The same three variables (AMB + LB + ASP) were selected in all models for sex estimation. Model accuracy for the training
and testing (containing 30% of the data) samples. All other goodness-of-fit metrics were obtained from the testing set. All models
generated using 19920804 as seed; 10 repeats of 10-fold cross-validation on a 70% data partition for training.

Model Accuracy (Training) Accuracy (Testing)  95%Cl.lower  95%Cl.upper Kappa Sensitivity Specificity AUC
kernelpls 0.9230 0.9200 0.8340 0.9701 0.8408 0.8462 1 0.9609
knn 0.9207 0.9067 0.8171 0.9616 0.8144 0.8205 1 0.5427
nb 0.9203 0.8667 0.7684 0.9342 0.7352 0.7692 0.9722 0.9467
Ida 0.9218 0.9200 0.8340 0.9701 0.8408 0.8462 1 0.9610
fda 0.9060 0.8533 0.7527 0.9244 | 0.7084 0.7692 0.9444 0.9573
gamSpline 0.9275 0.9067 0.8171 0.9616 0.8140 0.8462 0.9722  0.9611
LogitBoost 0.8842 0.8533 0.7527 0.9244  0.7090 0.7436 0.9722  0.8971
plr 0.9207 0.9067 0.8171 0.9616 0.8144 0.8462 0.9722  0.9562
CART 0.8180 0.8533 0.7071 0.9244 0.7071 0.8205 0.8889  0.7803
rf 0.8784 0.8667 0.7684 0.9342 0.7357 0.7436 1 0.8055
gbm 0.9039 0.8667 0.7684 0.9342 0.7352 0.7692 0.9722  0.9507
nnet 0.9219 0.9200 0.8340 0.9701 0.8408 0.8462 1 0.9554

Partial Least Squares = kernelpls, k-Nearest Neighbors = knn, Naive Bayes = nb, Linear Discriminant Analysis = Ida, Flexible
Discriminant Analysis = fda, Generalized Additive Model using Splines = gamSpline, Boosted Logistic Regression = LogitBoost,
Penalized Logistic Regression = plr, Decision Tree = CART, Random Forest = rf, Stochastic Gradient Boosting = gbm, Neural Network
= nnet.



Table 4: Goodness-of-fit of the models when all 38 variables were used to estimate sex. Model accuracy for the training and testing
(containing 30% of the data) samples. The other metrics were obtained from the testing set. All models generated using 19920804 as
seed; 10 repeats of 10-fold cross-validation on a 70% data partition for training.

Model Accuracy (Training) Accuracy (Testing) 95%Cl.lower  95%Cl.upper Kappa Sensitivity Specificity AUC
kernelpls 0.9618 0.9733 0.9070 0.9968  0.9467 0.9487 1 0.9704
knn 0.9368 0.9600 0.8875 0.9917 0.9201 0.9231 1 0.7199
nb 0.9170 0.9200 0.8340 0.9701 0.8408 0.8462 1 0.9106
Ida 0.9386 0.9467 0.8690 0.9853 0.8932 0.9487 0.9444 0.9642
fda 0.9128 0.9467 0.8690 0.9853 0.8932 0.9487 0.9444  0.9634
gamSpline 0.8989 0.9467 0.8690 0.9853 0.8932 0.9487 0.9444 0.2214
LogitBoost 0.8947 0.9067 0.8171 0.9616 0.8136 0.8718 0.9444 0.9017
pir 0.9108 0.9733 0.9070 0.9968 0.9467 0.9487 1 0.9690
CART 0.8019 0.8533 0.7527 0.9244 0.7071 0.8205 0.8889 0.7803
rf 0.9300 0.9600 0.8875 0.9917 0.9201 0.9231 1 0.9662
gbm 0.9131 0.9600 0.8875 0.9917 0.9200 0.9487 0.9722  0.9618
nnet 0.9630 0.9733 0.9070 0.9968 0.9467 0.9487 1 09673

Partial Least Squares = kernelpls, k-Nearest Neighbors = knn, Naive Bayes = nb, Linear Discriminant Analysis = Ida, Flexible
Discriminant Analysis = fda, Generalized Additive Model using Splines = gamSpline, Boosted Logistic Regression = LogitBoost,
Penalized Logistic Regression = plr, Decision Tree = CART, Random Forest = rf, Stochastic Gradient Boosting = gbm, Neural Network
= nnet.



