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A B S T R A C T   

Chlorophyll a induction curves, or Kautsky curves, have been extensively used to study physiological stress 
conditions in phototrophic organisms, with the analysis of several derived parameters. Nevertheless, these 
variables use only about 10 % of the information comprised in the complete Kautsky curve dataset, leaving 90 % 
of the photochemical data within an underutilized dark box, that is not translated into photochemically relevant 
variables. By observing the variable fluorescence profiles from marine diatoms exposed to a myriad of emerging 
and classical contaminants, several fluorescence profile alterations were detected, with significant deviations 
from the control conditions concomitant with the degree of growth inhibition imposed by the chemical stressor. 
The Linear Discriminant Analysis (LDA) analysis based on the normalized variable chlorophyll a fluorescence 
profiles revealed a high discriminatory efficiency of the type of contaminant to which the cultures were exposed, 
indicating that the exposure to different chemical stressors (contaminants) results in specific fluorescence profiles 
that can be used as descriptors of these exposure conditions. Analysing the individual contaminant LDA analysis, 
a very low overlap between samples exposed to different concentrations was observed, indicating a high 
discriminatory power of the variable fluorescence profiles. When evaluating the blind-test classification effi
ciencies, provided by this contaminant-specific LDA approach, it was possible to observe a high degree of effi
ciency in almost all contaminants tested, and for most of the concentrations applied. With this in mind, the 
produced linear discriminants and proportion of traces was used to compute an optical toxicity classification tool 
- the OPTOX index. The index revealed a high degree of correlation with the growth inhibition observed and/or 
with the exogenous dose of contaminant applied. The developed OPTOX index, a unifying tool enclosing all the 
fluorescence data provided by the chlorophyll a induction curve, proved to be an efficient tool to apply in 
ecotoxicological assays using marine model diatoms with a high degree of reliability for classifying the exposure 
of the cells to emerging contaminants. Additionally, the data analysis pipeline, as well as the index development 
methodology here proposed, can be easily transposed to other autotrophic organisms subjected to different 
ecotoxicological test conditions calibrated and validated against known biochemical or morphological de
scriptors of stress, integrating this way a large amount of data that was until know completely overlooked and 
left within an underutilized and undervalued dark box.   
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1. Introduction 

Since the industrial revolution, trace elements have been dumped 
into coastal areas as a result of increased anthropogenic activity, 
becoming a legacy for estuarine and coastal environments (Duarte et al., 
2013). Despite the industrial activity with lower environmental impact 
in the last decades, there is an evident increase in the development of 
uncontrolled human activities (Gavrilescu et al., 2015), and the rela
tionship between human population density and environmental changes 
in coastal regions is well known. The EU’s Task Group for the Marine 
Strategy Framework Directive implementation recommended that 
monitoring programs covering the concentration of chemical contami
nants should also integrate biological measurements of their effects on 
marine organisms (Law et al., 2010). The combination of conventional 
and newer effect-based methodologies, with the assessment of envi
ronmental contaminant concentrations, provides a powerful and 
comprehensive approach (Law et al., 2010). It is also striking that the 
pace of chemical discovery is growing rapidly, with the Chemicals Ab
stracts Service reporting in May 2011 the registration of the 60th million 
chemical substance, while the 50th million substance was registered in 
2009, highlighting the continued acceleration of synthetic chemical 
innovation (CAS, 2011). Allied to this rapid development in the dis
covery and production of new chemical compounds comes an emerging 
cost. A burst of organic chemical contaminants is now of major concern, 
not due to their high environmental concentrations but to their striking 
impact, even at low concentrations. Their rise is so evident, that these 
contaminants are now ubiquitous in marine waters, from large urban
ized estuaries (Reis-Santos et al., 2018) to remote oceanic locations, tens 
of thousands of km away from the nearest settled population (Duarte 
et al., 2021b). For example, pesticides continue to be detected in surface 
and ground waters (Duarte et al., 2021b), and pharmaceuticals, 
concentrated in wastewaters, are permanently discharged from medical 
facilities and households, ending up in coastal areas (Fonseca et al., 
2020; Reis-Santos et al., 2018), while personal care products with 
widespread use have been detected in phytoplankton cells in Antarctica 
(Duarte et al., 2021b). Moreover, these compounds are often designed to 
be resistant to biological degradation and to target specific biological or 
cellular agents, and thus not only do they persist in the environment 
roving through the system (Fonseca et al., 2020), but also have severe 
target effects in living organisms (Cruz de Carvalho et al., 2020b; Duarte 
et al., 2020; Feijão et al., 2020). Among the multitude of emerging 
contaminants, several have raised concerns due to their ecotoxicological 
effects and how to assess them efficiently. Acumen dictates a multidis
ciplinary approach, but often a truly comprehensive framework, from 
xenobiotic internalization, mode-of-action, triggered molecular path
ways, physiological responses, to the exploration of big data and inter
twined responses, is hard to grasp, but excitingly within reach. In this 
context, it is paramount that we develop new integrated ecotoxicologi
cal methodologies for the evaluation of the impacts of new emerging 
contaminants in marine organisms. 

Phototrophs are at the basis of all marine ecosystems, cycling solar 
energy and soaking carbon, fuelling the trophic web. Any disruption at 
this level has expected impacts on the whole marine ecosystem. Con
taminants toxicity are known to have negative and specific impacts on 
these organisms, especially at their photochemical apparatus level 
(Duarte et al., 2021c, 2021a; Feijão et al., 2020; Franzitta, 2020). With 
both biochemical and biophysical components, these organisms allow 
for the photosynthetic mechanisms to be addressed remotely (Anjum 
et al., 2016). Bio-optical techniques such as Pulse Amplitude Modulated 
(PAM) fluorometry emerge as potential non-invasive high-throughput 
screening (HTS) tools (Duarte et al., 2021c, 2021a). These tools use 
optical signatures as a proxy of the phototroph physiology, allowing for 
the detection of any disturbances at the primary productivity level 
(Cabrita et al., 2018), which have proved to efficiently evaluate con
taminants’ effects with a dose-related response (Santos et al., 2014) and 
be included in numerical indexes, easily conveyed to stakeholders (Cruz 

de Carvalho et al., 2020a; Duarte et al., 2021a). The integrated repeated 
measures over time without organism scarification is another key 
benefit of this approach. This is the cornerstone of the pioneering 
research field of toxicophenomics, merging plant phenomics, that aims 
to measure traits such as growth and performance of plants using non- 
invasive technologies, with ecotoxicology, shifting the use of these 
phenotyping tools to address contaminant induced stress in autotrophs. 
The application of optical techniques to disclose different groups of 
samples exposed to different degrees of contamination has already been 
applied in marine phototrophs with a high degree of efficiency, in eco
toxicological trials and under field conditions (Cruz de Carvalho et al., 
2020a; Duarte et al., 2021a), and using mixed organisms samples in 
opposition to single species, with also a high degree of efficiency in 
detecting responses to contaminants (Duarte et al., 2018). The appli
cation of these bio-optical technologies produces large datasets with 
physiological interest, depicting the effects of a given compound on an 
autotrophic organism, which can also be explored by multivariate sta
tistical approaches and machine learning techniques aiming to produce 
classifiers of the degree of toxicity to which organisms are exposed 
(Rodrigues et al., 2021). 

The so-called JIP test, resultant from the chlorophyll a fluorescence 
induction curves, produces a large amount of fluorescence data (more 
than 400 fluorescence data points) and depicting the Kautsky effects and 
reflecting the whole photochemical process from the moment a photon 
hits the Photosystem II (PSII) antennae to its conversion into electron 
potential, transport through the electron transport chain (ETC) until it 
reaches the Photosystem I (PSI) (Stirbet et al., 2018; Stirbet and 
Govindjee, 2011). Nevertheless, from these large datasets normally only 
a very low amount of fluorescence data points is used for calculating 
physiological relevant variables that reflect specific photochemical 
processes (Stirbet and Govindjee, 2011; Strasser et al., 2004, 2000), 
leaving out a high amount of data points, with potential as classifiers of 
the stress imposed, in a neglected dark box. In previous works, we have 
demonstrated that the application of the whole chlorophyll a fluores
cence induction curves can generate canonical groupings of samples 
under different types of stresses including contaminants (Cruz de Car
valho et al., 2020b; B. Duarte et al., 2020a; Duarte et al., 2021c, 2021a; 
Feijão et al., 2020; Silva et al., 2020). Although this provided a clear way 
to separate samples exposed to different doses, this canonical technique 
did not provide any means to integrate the whole fluorescence dataset 
into a single integrative value to classify the samples for ecotoxicological 
porpoises. 

Therefore, the present work aims to disclose the potential of this 
fluorescence dark box, by applying the whole chlorophyll a fluorescence 
induction curves dataset into a classifying tool (Optical Toxicity Clas
sification Index, OPTOX-index), applicable to ecotoxicological assess
ment using model marine diatoms (Phaeodactylum tricornutum) exposed 
to relevant emerging contaminants of concern. 

2. Material and methods 

2.1. Ecotoxicological trials 

Phaeodactylum tricornutum cells, obtained from axenic cultures, were 
grown in f/2 medium (Guillard and Ryther, 1962) under asexual 
reproduction at temperature-controlled conditions (18 ± 1 ◦C), constant 
aeration, and under a 14-h light/10-h dark cycle provided by a LED light 
source (FytoScope Chamber FS 130 (Photon Systems Instruments, Czech 
Republic), 80 μmol photons m− 2 s− 1). Light intensity was measured 
using the photosynthetic active radiation (PAR) sensor available in 
FluorPen FP100 (Photon System Instruments, Czech Republic). For 
contaminant exposure, the guidelines from the Organization for Eco
nomic Cooperation and Development (OECD) for algae bioassays were 
used (OECD, 2011). Relatively low initial cell density (4 × 10− 5 cell 
mL− 1) was used in these experiments, following the previously 
mentioned OECD guidelines (OECD, 2011), for microalgae cells with 
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similar size to P. tricornutum, and also to better reflect cell concentra
tions found in marine coastal areas. All exposure experiments were 
carried out in 500 mL Schott washing flasks under the abovementioned 
abiotic conditions in phytoclimatic chambers. Following inoculation, 
cells were left to grow for 48 h before being exposed to the contaminant 
for an additional 48 h period, allowing this way an exposure only during 
the exponential phase of cell growth. This methodology was previously 
employed proving effective to avoid possible artefacts due to culture 
ageing (Cruz de Carvalho et al., 2020b; Duarte et al., 2020a; Feijão et al., 
2020; Franzitta, 2020; Silva et al., 2020). Exposure compounds and 
doses (Table 1) used were chosen according to their environmental 
relevance and available literature regarding potential toxic effects in this 
or other related species (Cruz de Carvalho et al., 2020b; Duarte et al., 
2020a; Fabbri and Franzellitti, 2016; Feijão et al., 2020; Franzitta, 2020; 
Reis-Santos et al., 2018; Silva et al., 2020). Exposure was performed by 
diluting a suitable volume of the contaminant stock solution into the 
growth medium. Culture growth was monitored using PAM fluorometry 
and calibrated growth curves for this particular species (Feijão et al., 
2018). Growth inhibition was used as a toxicity proxy and was calcu
lated according to Eqs. (1) and (2) following the OECD guidelines 
(OECD, 2011): 

μi− j =
lnBj − lnBi

tj − ti
(1)  

where μi-j is the average specific growth rate from moment time i to j; ti is 
the moment time for the start of the period; tj is the moment time for end 

of the period; Bj and Bi is the cell density at time j and I respectively. 

Growth Inhibition(%) =
μC − μT

μC
(2)  

where μC is the average specific growth rate of the control and μT is the 
average specific growth rate of the treatment condition. 

2.2. Chlorophyll a fluorescence induction curves 

At the end of the 48-h exposure period, liquid samples were har
vested and transferred to 3 mL cuvettes (N = 30) and dark-adapted for 
15 min before PAM fluorometry measurements. Chlorophyll a fluores
cence induction curves or Kautsky effect were measured according to the 
pre-programmed FluorPen FP100 (Photon System Instruments, Czech 
Republic) OJIP protocol. Briefly, a dark-adapted sample is exposed to a 
modulated saturating light intensity of 3500 μmol photons m− 2 s− 1, 
generating a polyphasic rise in fluorescence known as Kautsky Effect or 
curve. The chlorophyll fast induction kinetics or Kautsky curve depicts 
the rate of reduction kinetics of various components of PS II. The 
resultant fluorometric analysis produces 456 fluorescence data points 
per fluorometric measurement. 

2.3. Data analysis 

To avoid potential artefacts from the impossibility of performing 
such a large number of incubations in a contemporaneous form, the 
fluorescence data of each incubation set was normalized by calculating 
the difference in relative variable fluorescence towards the respective 
and contemporaneous control fluorescence values, allowing for varia
tion towards the control to be represented as ΔV curves, using a previ
ously successfully employed normalization procedure (Eq. (3)): 

Vt =
Ft − Fo

FM − Ft
(3)  

where, Vt is the variable fluorescence measured in a sample replicate at 
the time t of the Kautsky curve, Ft is the fluorescence measured at the 
time t of the Kautsky curve, Fo and FMare respectively the basal (fluo
rescence at time 0) and maximum fluorescence (maximum attained 
fluorescence during the induction curve) of the same sample replicate. 
Subsequentially, the following Eq. (4) was used: 

ΔVt = Vt(treatment) − Vt(control) (4)  

where ΔVt is the normalized variable fluorescence at time referent to the 
values determined as above, for a specific time t of the Kautsky curve, 
Vt(treatment) is the variable fluorescence at the time t of the Kautsky 
curve calculated for a certain sample replicate exposed at a certain 
contaminant at a specific dose, and Vt(control) is the average variable 
fluorescence calculated for a time t of the Kautsky curve in the 
contemporaneous control samples. 

Linear discriminant analysis (LDA) was performed in R-Studio using 
the mass and caret packages for machine learning workflow. Linear 
discriminant analysis bidimensional plots were constructed using the 
tidyverse package for data manipulation and visualization. Normalized 
variable fluorescence variation (ΔVt) data was used for all LDA analyses. 
To setup, the training and test datasets for all discriminant analysis, the 
sample sets were divided into 40% of the samples data used for model 
training, and the remaining 60% of the samples data was used for the 
model test. The application of training and blind test phases allows for 
the calculation of the efficiency of the models in both LDA phases, by 
evaluating the number of samples classified in the correct group 
(contaminant treatment). The LDA model uses the training dataset to 
model a linear combination of features that characterizes or separates 
two or more classes of objects or events, while testing their correct 
attribution to the treatment groups defined. The test set is used to 

Table 1 
Tested contaminants and respective concentrations used in the Phaeodactylum 
tricornutum ecotoxicological trials.  

Contaminant Treatment Concentration 

A. Diclofenac C1 0.8 μg L− 1 

C2 3 μg L− 1 

C3 40 μg L− 1 

C4 100 μg L− 1 

C5 300 μg L− 1 

B. Ibuprofen C1 0.8 μg L− 1 

C2 3 μg L− 1 

C3 40 μg L− 1 

C4 100 μg L− 1 

C5 300 μg L− 1 

C. Propranolol C1 0.3 μg L− 1 

C2 8 μg L− 1 

C3 80 μg L− 1 

C4 150 μg L− 1 

C5 300 μg L− 1 

D. Fluoxetine C1 0.3 μg L− 1 

C2 0.6 μg L− 1 

C3 20 μg L− 1 

C4 40 μg L− 1 

C5 80 μg L− 1 

E. Glyphosate C1 10 μg L− 1 

C2 50 μg L− 1 

C3 100 μg L− 1 

C4 250 μg L− 1 

C5 500 μg L− 1 

F. Sodium dodecyl sulphate (SDS) C1 0.1 mg L− 1 

C2 1 mg L− 1 

C3 3 mg L− 1 

C4 10 mg L− 1 

G. Triclosan C1 0.1 μg L− 1 

C2 1 μg L− 1 

C3 10 μg L− 1 

C4 50 μg L− 1 

C5 100 μg L− 1 

H. Dissolved Cu C1 1 μg L− 1 

C2 5 μg L− 1 

C3 10 μg L− 1 

I. Cu nanoparticle (NP) C1 1 μg L− 1 

C2 5 μg L− 1 

C3 10 μg L− 1  
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perform a blind classification of the samples using the model produced 
in the training session, to evaluate the model efficiency in classifying 
blindly a totally independent dataset into the correct treatment 
categories. 

The Optical Toxicity classification index (OPTOX-Index, Eq. (3)) was 
built using the normalized variable fluorescence data and the attained 
linear discriminants (LDn) produced in the LDA analysis for each 
contaminant, weighted by the proportion of trace (percentage separa
tion achieved by each discriminant function, PTLDn ): 

OPTOX − Index =
∑

ΔVt × LD1(t) × PTLD1 +⋯+ΔVt × LDn(t) × PTLDn

(5)  

where LDn(t) is the linear discriminant n relative to the normalized 
variable fluorescence (ΔVt), measured at time t. The OPTOX-Index of 
certain sample results from the sum of the abovementioned formula 
results for all the fluorescence timesteps (variables, from t = 0 to t =
1991621 μs) of the analysed sample. 

Spearman correlation coefficients and statistical significance be
tween the index, exogenous concentration and growth inhibition values 
were computed using the corrplot package in R-Studio Version 1.4.1717. 
Violin plots Non-parametric Kruskal-Wallis with Bonferroni post-hoc 
were performed using the agricolae package in R-Studio Version 
1.4.1717. Violin plots with probability density of the data at different 
values smoothed by a kernel density estimator were computed and 
plotted using ggplot2 along with the classical boxplot package in R- 
Studio Version 1.4.1717. 

3. Results 

3.1. Growth inhibition 

The growth inhibition of the test cultures towards their respective 
control conditions (Fig. 1), shows that the application of the test sub
stances leads to substantial decreases in cell density at the highest 

concentrations applied. This was more evident in the cultures exposed to 
ibuprofen (Fig. 1B), propranolol (Fig. 1C), fluoxetine (Fig. 1D), glyph
osate (Fig. 1E) and SDS (Fig. 1F). In the cultures exposed to diclofenac, a 
biphasic response was detected, with intermediate concentrations of this 
pharmaceutical compound leading to more pronounced growth inhibi
tion than in the cells exposed to higher concentrations. Regarding the 
cultures exposed to triclosan and Cu (Fig. 1G, H and I) an increasing 
trend was observed, with the increasing number of measurements 
resulting in higher growth inhibitions with increasing concentrations. 

3.2. Normalized Kautsky plots (ΔVt) 

The normalized Kautsky plots (Fig. 1) revealed changes in the overall 
fluorescence profile with exposure to various contaminants. This was 
more pronounced in the initial to the middle phases of the fluorescence 
profiles (around 103 ms) and again in the final fluorescence phase (be
tween 105 and 106 ms). Moreover, changes were more evident in the 
curves corresponding to the highest tested concentrations, and specif
ically in the cultures exposed to ibuprofen (Fig. 2B), propranolol 
(Fig. 2C), fluoxetine (Fig. 2D), SDS (Fig. 2F) and both Cu forms (Fig. 2H 
and 2I). This normalization towards the control allows for the elimina
tion of experimental artefacts linked to the non-contemporary experi
mental setups. By normalizing each test setup towards its contemporary 
control condition, it reflects and eliminates environmental differences in 
the test environment among treatments, allowing for direct compari
sons. These differential normalized fluorescence profiles, with very 
different inflexion points at different points of the Vt curves, already 
point out significant differences between the photochemical echoes 
attained from the marine diatoms exposed to different emerging con
taminants and at different exogenous concentrations. 

3.3. Xenobiotic classification 

As a first approach, the potential of the normalized Vt curves for the 
separation of different samples exposed to different emerging 

Fig. 1. Violin plots of Phaeodactylum tricornutum growth inhibition when compared with the respective control condition (absence of xenobiotic) and under exposure 
to diclofenac (A), ibuprofen (B), propranolol (C), fluoxetine (D), glyphosate (E), SDS (F), triclosan (G), dissolved Cu (H) and Cu nanoparticle (I) (N = 30 per treatment 
and per exposure concentration, letters denote pairwise significant differences between treatments at p < 0.05). 
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contaminants was tested (Fig. 3). Although the apparent overlap in the 
LDA projection (Fig. 4A), generally high training and test efficiencies 
could be detected. Regarding the LDA dispersion, the first interesting 
aspect of notice is the clear separation of the fluorescence data from the 

samples exposed to dissolved Cu treatments. Also, the samples exposed 
to diclofenac presented a reduced spatial LDA projection overlap. Albeit 
the remaining test groups fluorescence data appear to overlap in the LDA 
plot, this results from a graphical projection artefact, as the classification 

Fig. 2. Normalized variable fluorescence curves (ΔVt), following chlorophyll a fluorescence induction curves of Phaeodactylum tricornutum cultures under exposure 
to diclofenac (A), ibuprofen (B), propranolol (C), fluoxetine (D), glyphosate (E), SDS (F), triclosan (G), dissolved Cu (H) and Cu nanoparticle (I) (N = 30 per treatment 
and per exposure concentration). 

Fig. 3. Linear Discriminant Analysis (LDA) plot based in the chlorophyll a fluorescence normalized variable fluorescence curves (ΔVt) datapoints grouped by 
xenobiotic type, of the Phaeodactylum tricornutum cultures exposed to diclofenac (A), ibuprofen (B), propranolol (C), fluoxetine (D), glyphosate (E), SDS (F), triclosan 
(G), dissolved Cu (H) and Cu nanoparticle (I) (N = 30 per treatment and per exposure concentration; see Table 1 for details). Statistically generated ellipses gather the 
datapoints within a 95% prediction range. 
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efficiency of the samples regarding the emerging contaminants to which 
they were subjected always presented values above 75% during LDA test 
trials indicating a high efficiency of the normalized variable fluores
cence curves data as descriptors of the cells physiological state under 

different exposures (Fig. 4A). 
When applying the same LDA approach with the samples grouped by 

the emerging contaminant and their respective concentration treatment 
(Fig. 5), higher discrimination of the sample groups was achieved. Once 

Fig. 4. Linear Discriminant Analysis (LDA) training and test classification efficiency having as input the normalized variable fluorescence curves (ΔVt) chlorophyll a 
fluorescence induction curves of the Phaeodactylum tricornutum cultures under the exposure to all xenobiotics with pooled (A) and individual (B) concentrations (N =
30 per treatment and per exposure concentration). 

Fig. 5. Linear Discriminant Analysis (LDA) plot based in the chlorophyll a fluorescence normalized variable fluorescence curves (ΔVt) datapoints of the Phaeo
dactylum tricornutum cultures exposed to all tested xenobiotics and concentrations tested individually (N = 30 per treatment and per exposure concentration; see table 
1 for details). Statistically generated ellipses gather the datapoints within a 95% prediction range. 
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again, the samples exposed to the highest concentrations of dissolved Cu 
appear in a distinct and separate group. Using this approach focusing not 
only on the xenobiotic type but also on the concentration applied some 
additional treatments also appear as separate groups. This is the case of 
the samples exposed to the highest glyphosate, fluoxetine, and diclofe
nac concentrations. Akin to what was observed in the first LDA analysis, 
where all the samples were pooled according to the contaminant to 
which they were exposed, there is an apparent overlap of several sample 
groups, likely resultant from a spatial projection graphical artefact as 
can be observed by the high classification efficiencies attained (Fig. 4B). 
In the LDA training session, all sample groups exhibited a high classi
fication efficiency, whilst in the test session, some sample groups 
exhibited lower classification efficiencies when their normalized fluo
rescence values were used as inputs. Nevertheless, most of the classifi
cation efficiencies in the LDA test sessions were above 50%, with 42% 
(17 out of 20) of the sample groups presenting test classification effi
ciencies above 75% (Fig. 4B). Notably, the lower test classification ef
ficiencies were observed in the lowest exposure concentrations. 

3.4. Exposure dose classification 

The LDA plots produced for each contaminant clearly shows the ef
fect of the individual doses tested (Fig. 6). In most exposure trials, the 
normalized variable fluorescence curves data results in LDA groups with 
a low degree of overlap in the LDA plots. Nevertheless, some overlap can 
be detected between some of the lower concentrations applied in the 
plots correspondent to the fluorescence data from cultures exposed to 
propranolol, glyphosate and triclosan (Fig. 6C, E and G), as well as in the 
cultures exposed to intermediate concentrations of fluoxetine and SDS 
(Fig. 6D and 6F respectively). Observing the training and test classifi
cation efficiencies of the produced LDAs (Fig. 7) it is possible to observe 
that all training sessions had very high classification efficiencies with 
100% classification efficiencies in almost all contaminants and con
centrations. Although with lower classification efficiencies, it is also 

possible to observe that in most of the emerging contaminants the pro
duced LDA models also presented a very high-test classification effi
ciency, with values in most of the cases above 75% of efficiency. The 
exceptions were in the groups representing cultures exposed to low 
doses of triclosan (Fig. 7G), and in the classification of the different 
doses of dissolved and nanoparticle Cu forms and concentrations 
(Fig. 7H). This was also detected in the LDAs produced from the 
normalized variable fluorescence curves data attained from the cultures 
exposed to intermediate doses of ibuprofen, glyphosate and SDS 
(Fig. 7B, E and F respectively). 

3.5. LDA-based index 

Using the linear discriminants produced from each of the LDA plots 
(Fig. 6), as well as the proportion of traces (the percentage separation 
achieved by each discriminant function), it was possible to calculate a 
weighting value for each variable (normalized variable fluorescence at 
each measurement time step) to be integrated into a unifying classifi
cation index value. The violin plots attained for the calculated index 
values (considering 30 replicates per treatment) show a clear and 
common increasing tendency of the index value along with the 
increasing exogenous dose applied of emerging contaminants (Fig. 8). 
Additionally, it is possible to notice that the overlap between some of the 
exposure groups in the LDA plots (indicative of similar fluorescence 
curve traits), is also well patent in the index values, resulting in very 
similar index values for overlapping groups. 

To validate the applicability and efficiency of the proposed index in 
reflecting the treatment to which the cultures were subjected, the 
calculated index values were compared with the exogenous dose con
centrations and with the verified growth inhibition percentage for each 
of the tested contaminants and concentrations (Fig. 9). In all cases the 
index value presented high correlation coefficients with the exogenous 
dose applied, being this highly significant in the case of the cultures 
exposed to fluoxetine, glyphosate, SDS and triclosan (Spearman tests). 

Fig. 6. Individual Linear Discriminant Analysis (LDA) plots based in the chlorophyll a fluorescence normalized variable fluorescence curves (ΔVt) datapoints of the 
Phaeodactylum tricornutum cultures exposed to diclofenac (A), ibuprofen (B), propranolol (C), fluoxetine (D), glyphosate (E), SDS (F), triclosan (G), dissolved and 
nanoparticle Cu (H) and corresponding tested concentrations (N = 30 per treatment and per exposure concentration). Statistically generated ellipses gather the 
datapoints within a 95% prediction range. 
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When comparing the index values with the growth inhibition values, it is 
possible to observe a clear inverse correlation pattern, due to the 
negative nature of the growth inhibition (highly negative values 

corresponding to severe growth inhibitions). This was particularly sig
nificant in the case of the cultures exposed to fluoxetine, propranolol, 
glyphosate and SDS. 

Fig. 7. Linear Discriminant Analysis (LDA) training and test classification efficiency based in the chlorophyll a fluorescence normalized variable fluorescence curves 
(ΔVt) datapoints of the Phaeodactylum tricornutum cultures to diclofenac (A), ibuprofen (B), propranolol (C), fluoxetine (D), glyphosate (E), SDS (F), triclosan (G), 
dissolved Cu (H) and Cu nanoparticle (I) (N = 30 per treatment and per exposure concentration). 

Fig. 8. Linear Discriminant based index (in arbitrary units, a.u.) values violin plots relative to the Phaeodactylum tricornutum cultures under the exposure to 
diclofenac (A), ibuprofen (B), propranolol (C), fluoxetine (D), glyphosate (E), SDS (F), triclosan (G), dissolved Cu (H) and Cu nanoparticle (I) and corresponding 
tested concentrations (N = 30 per treatment and per exposure concentration, letters denote pairwise significant differences between treatments at p < 0.05). 
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4. Discussion 

Chlorophyll a induction curves, also commonly known as Kautsky 
curves, have been widely studied for the assessment of physiological 
stress in autotrophic organisms, through the use of its derived parame
ters linked to specific photo-physiological mechanisms and traits (see e. 
g. Duarte et al., 2020a; Duarte et al., 2015; Kalaji et al., 2011; Tsimilli- 

Michael et al., 2000; Yan et al., 2012). The application of these Kautsky 
curves-derived variables for distinguishing among test groups subjected 
to different stress degrees has been proved in the past, and provided 
reliable and efficient descriptors and clear statistical separations (Duarte 
et al., 2021c). These variables present a high physiological value and 
provide key insights into the mode of action of the applied stress in the 
test organism. Nevertheless, these variables use only about 10% of the 
information comprised in the complete Kautsky curve dataset (Strasser 
et al., 2000). This leaves 90 % of the photochemical data unrealised in a 
dark box with potentially important information, that is not translated 
into photochemically relevant variables. Still, in the past, it was also 
demonstrated that the whole fluorescence profile (comprising the 
Kautsky curves complete fluorescence dataset) can be included in 
multivariate statistical approaches, providing very good classification 
efficiencies with the autotroph groups exposed to different degrees of 
stress, from either natural (e.g. Duarte et al., 2020b; Duarte et al., 2017; 
Feijão et al., 2018)) or anthropogenic origin (e.g. Duarte et al., 2020a; 
Duarte et al., 2021c; Feijão et al., 2020; Franzitta, 2020). Moreover, 
these datasets have been used in their full extension in artificial intel
ligence approaches, allowing for the discrimination of sample groups 
with high accuracy, including the autotroph genotype (Marques da Silva 
et al., 2020). In a more applied perspective, it is also important that 
these large photochemical datasets can be translated into unifying 
values or classification indexes, which can be easily applied, not only by 
less experienced photophysiologists, but also by other end-users, as 
diagnostic and monitoring tools. The integration of photochemical 
variables into unifying indexes has been successfully employed in the 
recent past, using JIP-derived variables as inputs providing very good 
classifications of the autotroph stress levels, in both field and experi
mental conditions (Cruz de Carvalho et al., 2020a; Duarte et al., 2021a, 
2017). This approach has been even highlighted by some of the world 
highly recognized photophysiologists (Stirbet et al., 2018). Neverthe
less, and to our knowledge, no index development approach was un
dertaken until today using the whole Kautsky curve fluorescence 
dataset. 

From an ecotoxicological perspective, the development of such an 
integrative fluorescence index would be an added value to ecotoxico
logical tests using autotrophic organisms. By the observation of the 
variable fluorescence profiles, attained from the marine diatom cultures 
exposed to a myriad of emerging contaminants, several fluorescence 
profile alterations were observed in the present study. Moreover, it is 
possible to observe that this profile deviation towards a control condi
tion is as severe as the growth inhibition observed in the cultures 
exposed to different contaminants and concentrations. This was ex
pected, as these contaminants are known to induce severe biochemical 
and photobiological damage in marine diatoms (Cruz de Carvalho et al., 
2020b; Duarte et al., 2020a; Duarte et al., 2019; Feijão et al., 2020; 
Franzitta, 2020; Silva et al., 2020). Beyond the physiological impacts 
mentioned, studied, and disclosed in the aforementioned references, this 
tendency opens a new door for the application of fluorescence datasets 
into a diagnostic/classification ecotoxicological tool. As a first approach, 
linear discriminant analysis was used to test the power and resolution of 
this technique for classification of the whole sample dataset regarding 
the type of exposure to which the diatoms were subjected. The LDA 
analysis allowed for a blind test classification of the samples in what 
concerns the contaminant to which samples were exposed, with effi
ciencies above 75% in all cases. This indicates that the exposure to 
different chemical stressors (contaminants) results in specific fluores
cence profiles that can be used as descriptors of these exposure condi
tions. This aligns with the different modes of action that these 
contaminants have in the diatom cells, already described in previous 
studies (Cruz de Carvalho et al., 2020b; Duarte et al., 2020a; Duarte 
et al., 2019; Feijão et al., 2020; Franzitta, 2020; Silva et al., 2020). 
Although with different degrees of inhibition all the tested contaminants 
resulted in an impairment of specific parts of the photochemical process, 
being this more evident in the cells exposed to glyphosate and fluoxetine 

Fig. 9. Spearman correlation coefficients correlograms between the linear 
discriminant-based index (in arbitrary units, a.u.)and the growth inhibition and 
exogenous xenobiotic concentration applied of the Phaeodactylum tricornutum 
cultures under the exposure to diclofenac (A), ibuprofen (B), propranolol (C), 
fluoxetine (D), glyphosate (E), SDS (F), triclosan (G), dissolved Cu (H) and Cu 
nanoparticle (I) and corresponding tested concentrations (N = 30 per treatment 
and per exposure concentration, asterisks denote significant correlations at * p 
< 0.05, ** p < 0.01, *** p < 0.001). Size and colour of the circles are pro
portional to the Spearman correlation coefficients. 
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and with less pronounced effects in the cells exposed to Cu and 
ibuprofen (Cruz de Carvalho et al., 2020b; Feijão et al., 2020; Franzitta, 
2020; Silva et al., 2020). It is also noticed that dissolved Cu exposure 
leads to a highly differentiated fluorescence profile that is readily 
highlighted when all contaminant exposure types are pooled together in 
an LDA analysis. These observations agree well with previously reported 
data, regarding biochemical and even photochemical data of diatom 
exposure to Cu when compared to other stressors, where a highly toxic 
effect of this element at certain concentrations was observed, even when 
compared with other metallic exposures (Cabrita et al., 2018, 2016; 
Duarte et al., 2021c). Having in mind the high discriminative resolution 
power of this approach, a similar LDA approach was undertaken for each 
of the contaminants tested individually, within the proposed range of 
concentrations. The individual contaminant LDA analysis, revealed very 
little overlap between samples exposed to different concentrations, 
indicating once again a high discriminatory power of the variable 
fluorescence profiles. Some overlap could be observed between some 
groups, but this was more evident in only two kinds of situations: i) very 
low concentrations, at which the tested contaminant led to very small or 
no effects on the diatom photophysiology; ii) high concentrations above 
the threshold, from which the cells cannot respond proportionally to the 
dose, either due to complete impairments at different metabolic levels or 
due to the limit to which the cells can respond has been surpassed. Once 
again and comparing these overlapping groups with the biochemical 
responses previously studied, aligns with the detected oxidative stress 
responses of the cells (Pires et al., 2021), as well as with other metabolic 
traits (Cruz de Carvalho et al., 2020b; Duarte et al., 2020a; Duarte et al., 
2019; Feijão et al., 2020; Franzitta, 2020; Silva et al., 2020). Although 
this overlap could be considered as a negative aspect of this approach, it 
reveals the same tendencies previously detected at the biochemical level 
and thus reinforces the discriminatory power of the whole variable 
fluorescence to detect exposure groups. Furthermore, it is possible to 
observe a high degree of efficiency in almost all contaminants tested and 
for most of the concentrations applied, observing the blind-test classi
fication efficiencies provided by the LDA approach. Thus, this supports 
the use of the discriminant coefficients provided by the LDA analysis as 
weighting values within an optical classification tool (OPTOX index), 
that can integrate the whole variable fluorescence profile. Within the 
framework of the international OECD guidelines for ecotoxicity bio
assays with microalgae (OECD, 2011), the most suitable endpoint to be 
evaluated in this type of tests is the culture growth inhibition and 
therefore this trait was used to evaluate the efficiency of the produced 
index in describing the ecotoxicity resulting for the cells’ exposure. 
Observing the behaviour of the indexes generated for each of the tested 
contaminants, an increasing index value along with the increasing dose 
applied was evident, with higher index values attained from the variable 
fluorescence values correspondent to cultures subjected to the highest 
exogenous concentrations of each contaminant. In the past, JIP- 
variables based indexes were already included in unifying numerical 
indexes revealing a high efficiency in discriminating the stress degree of 
the test organisms and have been associated with a variety of exogenous 
stressors ranging from natural (Duarte et al., 2017) to anthropogenic 
sources (Cruz de Carvalho et al., 2020a; Duarte et al., 2021a). Never
theless, this is the first time the whole fluorescence dataset profile is 
integrated into a single descriptor value. Comparing the index numerical 
value at each condition with the measured growth inhibition and with 
the effective exogenous dose applied, several strong correlations were 
evident. Given the negative nature of the growth inhibition variable, 
most of the correlations were found to be inverse with the calculated 
index value (higher index values in samples with negative growth 
values). The exception was observed in the cultures exposed to Cu, 
where a growth promotion (as observable in the growth inhibition 
values) occurred and thus a direct correlation was obtained. Neverthe
less, a highly positive correlation was found between the index value 
and the exogenous Cu concentration, indicating a dose–response effect 
on the photochemical index. 

5. Conclusions 

The demand for monitor coastal contamination supports the devel
opment of innovative tools to evaluate the impacts of contaminants 
correctly and efficiently in the marine biota, in fast, reliable, and effi
cient ways. Bio-optical assessments have proved to be an efficient high- 
throughput screening tool to evaluate marine autotrophs stress level, 
while providing noteworthy metabolic insights. In the present study, we 
developed a LDA-based toxicophenomic index, an unifying index 
enclosing all the fluorescence data provided by the chlorophyll a in
duction curve. The index proved to be an efficient tool for ecotoxico
logical assays with marine model diatoms and evidenced a high degree 
of reliability for classifying the exposure of the cells to emerging con
taminants. Beyond the obvious potential of the generated indexes for 
future ecotoxicological assessments, the present work, and the devel
oped methodology, also points to a possible application of similar ap
proaches in other stress physiology studies. The data analysis pipeline, 
as well as the index development methodology here proposed, can be 
easily transposed to other autotrophic organisms, subjected to different 
stress conditions, once calibrated, and validated against known 
biochemical or morphological descriptors of stress, integrating in this 
way a large amount of data that was until now completely overlooked 
and left unrealized in an undervalued dark box. 
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