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1. Introduction

In this paper we study smoothness function spaces built upon generalised Morrey spaces ./\/l%p(Rd),
0<p<oo p: (0,00 — [0,00). The generalised version of Morrey spaces M, ,(R%), 0 < p < u < oo,
was introduced by T. Mizuhara [16] and E. Nakai [17] in the beginning of the 1990s. The spaces were
applied successfully to PDEs, e.g. to nondivergence elliptic differential problems, cf. [3,11] or [29], to parabolic
differential equations [33] or Schrodinger equations [13]. We refer to [24] for further information about the
spaces and the historical remarks.
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Also smoothness function spaces built upon Morrey spaces M, , (R9), in particular Besov—Morrey spaces
Nipa
was the first who combined the Besov and Morrey norms cf. [19]. He considered function spaces on domains

(R?),0<p<u<oo,0<q<oo,scR, were investigated intensively in recent years. Yu.V. Netrusov

and proved some embedding theorem, but the further attention paid to the spaces was motivated first of all
by possible applications to PDEs. The Besov—Morrey spaces J\/j’p’ q(Rd) were introduced by H. Kozono and
M. Yamazaki in [12] and used by them to study Navier—-Stokes equations. Further applications of the spaces
to PDEs can be found e.g. in the papers written by A.L. Mazzucato [15], by L.C.F. Ferreira, M. Postigo [4]
or by M. Yang, Z. Fu, J. Sun, [31].

Here we study the Besov spaces N

¢.pq
introduced and studied by S. Nakamura, T. Noi and Y. Sawano [18], cf. also [1]. In particular they proved

(R?) built upon generalised Morrey spaces. The spaces were

the atomic decomposition theorem for the spaces. In the recent paper [10] M. Izuki and T. Noi investigated
the spaces on domains. The generalised Besov—Morrey spaces cover Besov—Morrey spaces and local Besov—
Morrey spaces considered by H. Triebel [28] as special cases. Our main aim here is to find the sufficient and
necessary conditions for the embeddings

N

¥1,P1,91

(RY) — N32

¥2,P2,92

(R).

Our main tools are the atomic decomposition and the wavelet characterisation. This approach allows us to
consider first embeddings on the level of sequence spaces, cf. Theorem 4.1, and afterwards to transfer the
result to function spaces, cf. Theorem 5.1. In particular we regain the characterisation of embeddings of
Besov-Morrey spaces N, ,(R?) proved in [7].

The paper is organised as follows. In Section 2 we present some preliminaries. We recall definitions and
facts needed later on. In Section 3 we obtain the wavelet characterisation of the generalised Besov—Morrey
S . that correspond to N2 (R?) via

©.pq ©.pq
the wavelet characterisation theorem. Theorem 4.1 contains the sufficient and necessary conditions for the

spaces, cf. Theorem 3.1. Section 4 deals with the sequence spaces n

embeddings. In the concluding Section 5 we transfer the results to the function spaces. We discuss several

concrete examples.

2. Preliminaries

First we fix some notation. By N we denote the set of natural numbers, by Ny the set NU{0}, and by Z¢ the
set of all lattice points in R? having integer components. Let N, where d € N, be the set of all multi-indices,
a = (ag,...,aq) with a; € Ny and |of = ijlaj. Ifz = (21,...,7q4) € R¥ and a = (ay,...,0q4) € N,
then we put z® = z{!---25%. For a € R, let |a] == max{k € Z : k < a}, [a] = min{k € Z: k > a},
and a4 = max(a,0). Given any u € (0, 00|, it will be denoted by w’ the number, possible oo, defined by the
expression % =(1- %)Jr; in particular when 1 < u < oo, ¢’ is the same as the conjugate exponent defined
through %—i— % = 1. All unimportant positive constants will be denoted by C, occasionally the same letter C'
is used to denote different constants in the same chain of inequalities. By the notation A < B, we mean that
there exists a positive constant ¢ such that A < ¢ B, whereas the symbol A ~ B stands for A < B < A. We
denote by | - | the Lebesgue measure when applied to measurable subsets of RY. For each cube Q C R% we
denote its side length by £(Q), and, for a € (0, 00), we denote by a@ the cube concentric with @ having the
side length a/(Q). For x € R? and r € (0,00) we denote by Q(x,) the compact cube centred at = with side
length r, whose sides are parallel to the axes of coordinates. We write simply Q(r) = Q(0,r) when z = 0. By
Q we denote the collection of all dyadic cubes in R%, namely, Q := {Q;x == 277([0, l)d—i—kj) :jEZ, keZ}.
Given two (quasi-)Banach spaces X and Y, we write X — Y if X C Y and the natural embedding of X

into Y is continuous.
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Recall first that the classical Morrey space M, ,(R%), 0 < p < u < oo, is defined to be the set of all
locally p-integrable functions f € L;OC(Rd) such that

1 | Mup(RE) = sup |Q| (/ |f(y)|”dy)p < 0.
Qe 0

In this paper we consider generalised Morrey spaces where the parameter u is replaced by a function ¢
according to the following definition.

Definition 2.1. Let 0 < p < co and ¢ : (0,00) — [0,00) be a function which does not satisfy ¢ = 0. Then
My, »(R?) is the set of all locally p-integrable functions f € Li*“(R%) for which

LN
11 My (BY)] 1= 510 () (Q| /Q o dy) < oo. (2.1)

Remark 2.2. The above definition goes back to [17]. When ¢(t) = ti fort >0 and 0 < p < u < 0o, then
M, »(RY) coincides with M., ,(R?), which in turn recovers the Lebesgue space L,(R?) when u = p. In the
definition of || | M, ,(R?)|| balls or all cubes with sides parallel to the axes of coordinates can be taken.
This change leads to equivalent quasi-norms. Note that for ¢y = 1 (which would correspond to u = c0) we
obtain

Mgy p(RY) = Lo (RY), 0 <p<oo, =1, (2.2)

due to Lebesgue’s differentiation theorem.

When o(t) = t~7x(0,1)(t) where —% < o < 0, then M, ,(R?) coincides with the local Morrey spaces
L5 (R?) introduced by H. Triebel in [27], cf. also [28, Section 1.3.4]. If o = —%, then the space is a uniform
Lebesgue space L,(R?).

For M¢7P(Rd) it is usually required that ¢ € G,, where G, is the set of all nondecreasing functions
@ : (0,00) — [0, 00) such that ¢(t)t~%? is a nonincreasing function, i.e.,

1<

plr) _ (7"

d/p
< f) , O<t<r<oo.
o(t)

t
A justification for the use of the class G, comes from the lemma below, cf. e.g. [18, Lemma 2.2]. One can
easily check that G,, C G,, if 0 < p; < py < o0.

Lemma 2.3 ([18,24)). Let 0 < p < 0o and ¢ : (0,00) — [0,00) be a function satisfying ¢(to) # 0 for some
to > 0.

(i) Then M, ,(R?) = {0} if and only if

Bl

sup o (t) min (¢t~
>0

1) < o0.

d
(ii) Assume iu}g e(t)min(t~?,1) < co. Then there exists p* € G, such that
>

M%p(Rd) = M@*,p(Rd)

in the sense of equivalent (quasi-)norms.
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Remark 2.4. In [5, Thm. 3.3] it is shown that for 1 < py < p; < 00, ¢; € Gp,, i = 1,2, then
Mo,y (RY) = M, 4, (RY)

if and only if there exists some C' > 0 such that for all ¢ > 0, ¢1(t) < Cypa(t). The argument can be
immediately extended to 0 < py < p; < 0.
In case of @;(t) = t%%, 0 < p; < u; < 00, i = 1,2, it is well-known that
My iy (RY) = Moy (RY) if and only if  p2 <p1 < uy = uy,
cf. [20] and [21].

We consider the following examples.

Example 2.5.

(i) The function

td/v it <1
P = =1L 2.3
@u,v( ) {td/v i t>1, (2.3)

gl

with 0 < u,v < oo belongs to G, with p = min(u, v). In particular, taking v = v, the function ¢(t) = ¢
belongs to G, whenever 0 < p < u < oo.

(ii) The function ¢(t) = max(t%?,1) belongs to G,,. It corresponds to (2.3) with u = occ.

(iii) The function ¢(t) = sup{s¥“x(o,1)(s) : s < t} = min(t¥/*,1) defines an equivalent (quasi)-norm in
£g(Rd), o= —%, p < u. The function ¢ belongs to G,, C G,. It corresponds to (2.3) with v = co.

(iv) The function @(t) = t¥*(log(L + t))*, with L being a sufficiently large constant, belongs to G, if

0<u<ooanda<O0.

Other examples can be found e.g. in [24, Ex. 3.15].

Let S(R?) be the set of all Schwartz functions on R?, endowed with the usual topology, and denote by
S’(R?) its topological dual, namely, the space of all bounded linear functionals on S(R?) endowed with the
weak #-topology. For all f € S(RY) or f € S'(R?), we use F f to denote its Fourier transform, and F~! f for
its inverse. Now let us define the generalised Besov—Morrey spaces introduced in [18].

Let 19,m € S(R%) be nonnegative compactly supported functions satisfying

no(z) >0 if z € Q(2),
0¢suppn and 7n(z)>0 if ze@(2)\Q().
For j € N, let n;(z) == n(277z), z € R

Definition 2.6. Let 0 < p < 00,0 < g < 00, s € R, and ¢ € G,. The generalised Besov-Morrey space

N& 4 (R?) is defined to be the set of all f € 8'(R?) such that
o 1/q
1718 = (21177 | M) <0
j=0

with the usual modification made in case of ¢ = co.
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Remark 2.7. The above spaces have been introduced in [18]. There the authors have proved that those
spaces are independent of the choice of the functions 7y and 7 considered in the definition, as different choices
lead to equivalent quasi-norms, cf. [18, Thm 1.4].
Whenap(t):t% fort >0 and 0 < p <u < oo, then
S dy __ S d
NG p.gRY) =N p 4 (RY)

Pq u,p,q

are the usual Besov—Morrey spaces, which are studied in [32] or in the survey papers by W. Sickel [25,26].
Of course, we can recover the classical Besov spaces B;)q(Rd) forany 0 < p < 00, 0 < ¢ < o0, and s € R,
since

B (RY) = N3

p,p,q

(RY).
When ¢(t) = min(t%, 1), then we recover the local Besov—Morrey spaces introduced by H. Triebel,

d
NE . (RY = B: (L5, RY), o=-—, P

®,P-.q

cf. [28, Section 1.3.4].
Besides the elementary embeddings

s+ d S d
N%Pih (R ) — th,p,qz (R )a >0,
and
S d S d
N@»F»Ql (RY) (—>th,p,q2 (RY), a1 < g2,

cf. [18, Prop. 3.3], we can also prove that
A0

@,p,min{pﬂ}(Rd) — MQO’P(Rd) — NO

O po®Y) i 1< p<oo,

when ¢ satisfies the additional condition

7 SD()
C() (), O< I‘<OO,

for some constants € > 0 and ¢ > 0. This is a consequence of Corollary 6.17 of [18].

The atomic decomposition

An important tool in our later considerations is the characterisation of the generalised Besov—Morrey
spaces by means of atomic decompositions. We follow [18] and start by defining the appropriate sequence
spaces and atoms.

Definition 2.8. Let 0 < p < 00,0 < ¢ < 00, s € R, and ¢ € G,. The generalised Besov-Morrey

sequence space n%,  (R%) is the set of all double-indexed sequences A := {\; ., } 74 C C for which the

w,P,q
o0
Il = (32
=0

is finite (with the usual modification if ¢ = c0).

j€Ng,me
quasi-norm

|5 Ny | Mes®) 2
mezd

Remark 2.9. When ¢(t) = t% for t > 0and 0 < p < u < oo, then

s dy _ s d
nw,p,q(R ) - nu%q(R )

are the usual Besov—Morrey sequence spaces. Moreover if u© = p, then the space n;p,q(Rd) coincides with a

classical Besov sequence space b5 (R?) since My, ,(R?) = L,(R?) in that case.

5
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Definition 2.10. Let L € NgU {-1}, K € Ny, and ¢ > 1. A CE¥-function a : R? — C is said to be a
(K, L, c)-atom centred at @, where j € Ny and m € Z%, if

291D ()] < veq, , (2) (2.5)

for all z € R? and for all o € N& with |a| < K, and when

/ 2Pa(z)dz =0, (2.6)
Rd

for all B € N& with |3| < L when L > 0. In the sequel we write a;, instead of a if the atom is located at
Qjm, i-€., SUPP ajm C cQjm.

‘We use the notation

1
=d| ——-1 0 <
in the sequel. The following result coincides with [18, Thm. 4.4], cf. also [18, Rmk. 4.3], see also
[14, Thm. 10.15].

Theorem 2.11. Let0 < p < 00,0 < g < 00,5 €R, andyp € Gy. Let alsoc > 1, L € NgU {—1} and
K € Ny be such that
K>[1+4+s]4+ and L >max(—1,|op,—s]).

(i) Let f € N2

(p’p’q(Rd), Then there exists a family {ajm};eng meza of (K, L,c)-atoms and a sequence
A= {Njm} jengmezd € N pq(R?) such that

f:i > Nmtjm i S'(RY

J=0mezd

and
A [ ng, (RY)]-

RIS I TN

(i) Let {ajm}jeny mezd be a family of (K, L,c)-atoms and X = {Xjm} jeny mezd € M p.q(RY). Then

f: Z Z )\j,maj,m

J=0mezd

Pq Pq

converges in 8'(R?) and belongs to N3 (R?). Furthermore

®,p,q

RO S 1A [ 1, 5 o RDI.

®,P,q

I1F T NG

sP,q

The next lemma will be useful in the sequel and shows that the sequence spaces ng, , . can be defined

through a more convenient equivalent norm, extending the result for ny, , . from [7, Prop. 3.1].

Lemma 2.12. Let0<p<oo,0<g<oo,sER, andp € §,. Then

nj’,,p,q(Rd) ={A={Nimbim N[ 15, 4II" < oo}

#>P-4
where
00 . g\ 14
I 75 gl* = (sz sup g2y Dre (3 |Aj,mp)”>
i—0 viv<jg d.
! kezd QanECZQ'V’k
w1t € usuat modazification 1 q = 0. LUrthermore, ||- | N 15 an equivatent quasi-norm in n .
ith th I modification i Furth Sl i valent ' i n, , (R

6
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Proof. For each j € Ny we calculate the quasi-norm

H Z AjmXQjm ‘Mw,p(Rd)H-

mezd

Let Q=Qur,veEZ k€ 7%, be a dyadic cube. If j > v, then

))<|22|/Q‘ > AimX@pn (@) dx)l/p_<p(211)2(vj)$< 3 |Aj7m|p>””' @7
mezd

mezd:
QjmCQy k

If j < v, there exists only one mq € Z< such that Q = Q, 1 C Qj,me» and, moreover, since ¢ is nondecreasing,

) » 1/p B _V 1 v p
>>(<Q|/;y;%%dALmXQLm<xﬂ ar) = l2 >(“Q|/Q|A$moldw)

< @(2ij)|)‘j7m0|' (2-8)

we obtain

From (2.7) and (2.8) we immediately have

1/p
y_jyd
| 3 Aoy | Mop®)] < sup o220 )

viv<j
meZad kezd mezd:
Qj,mCQu,k

The reverse inequality is clear, from the definition of ||- | M, ,(R?)|| and (2.7). Therefore

HZMM%WWPW=mwwM%% > MWY5 (29)

viv<j
mezd kezd mezd:
Q] mCQV k

The result follows from (2.9) taking into account (2.4). O

3. The wavelet characterisation

We assume that the reader is familiar with the basic notation and assertions of the wavelet theory. There is
a variety of excellent books that present general background material on wavelets, we can refer, in particular,
0 [2,9] and [30]. We will follow the approach presented in [6] and consider here the compactly supported
Daubechies wavelets.

Let L € N and let ¢p, 9 € CE(R) are real-valued compactly supported (L2?-normalised) functions with

/ Yp(t)dt = C > 0, / Y (t)tdt =0, (< L. (3.1)
R R

The function ¢ is called scaling function (or father wavelet) and 1, is called an associated function (mother
wavelet).

Let G = (Gy,...,Gq) € G* = {F, M}, where * indicates that at least one of the components of G must
be an M. Then we set

d d
G =2 [0 (@2 = my),  Um(z) = [[ ez —my), (3.2)
r=1 r=1
where j € No, m € Z%, G € G*. The family {¢n, 5, : j € No, m € Z%, G € G*} is called a (Daubechies)

wavelet system.
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We will need the following modified version 7 4) of n3 . (R?) spaces. The space 7%, , ,(R?) collects

LPPq( ®,P,q ®,pP,q

all sequences
A={An €C,)§,, €C: meZ jeNy, GeG"}
quasi-normed by
MNWWMWZMW’MWWZWAWWWW (33)

mezd

Theorem 3.1. Let0<p<o0,0<qg<o0,s€R, and ¢ € G,. For the wavelets defined in (3.2) we take

d
L >max{|1+s]|,— — s} (3.4)
p
Let f € S'(RY). Then f € N. o, q(Rd) if and only if it can be represented as
F=" Amthm + D> D D NG 2728 Nend, (RY),
mezd GeG* jeNg mezd

unconditional convergence being in S'(R?). The representation is unique with
Mim = X (F) =292 (f,05,)  and - A = An(f) = (f:90m)
and
L f = () 272 50m)}
o, q(Rd) onto i1, ,, q(Rd),

d . .
(RY)|| may be used as an equivalent quasi-norm in N3 , (R%).

is a linear isomorphism of N

Furthermore, |[I(f) |73, ,

Proof. Step 1. We prove that the theorem follows from Theorem 5.1 in [6]. The space N , (R 4) is an

(isotropic, inhomogeneous) quasi-Banach function space which satisfies

S(RY) < N

®,pP,q

(R?) — S'(R?).

Please note that the inequality L > 4 — s implies L > 0, — s, therefore N} q(Rd) can be characterised in
S pg(RY), cf. Theorem 2.11. So it is

R?) is a s-sequence space for some s, 0 < 3 < L,

terms of an L-atomic decomposition w1th L = K and coefficients in n
sufficient to prove that the sequence space n
cf. Definition 4.1 in [6], i.e., to prove that

<qu*n80pq(

(i) for any b > 1, C; > 0, and all p € n? any sequence A = {\;,,} with

.,
Nl <O Y 27l ST 9Dy | G € No, me 29, (3.5)
J€Ng Mer? (m)
where
Fi(m)={M € 2%: bQ;nm NC1Qjm # 0},
belongs to ng, , , and satisfies
ARG gl < Cllplng, 1 (3.6)
ii) for any cube @ there is a constant c¢g > 0 such that for all p € n?
Q ©.p,q
lwaarl < Co27%|ulns, , |l forall J €No, M € Z* with Q. C Q. (3.7)

Once these properties are verified, Theorem 5.1 in [6] will imply our Theorem 3.1.

8
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In the next steps we prove the above properties. The following notation and remarks will be useful. For
fixed b > 1, Cy > 0 we consider two sets of indices I7,(m), that were defined above, and IE(M) given by the
following formula

~

(M) ={meZ: bQsnNC1Qjm #0}, j.J €Ny, Me€Z
Please note that the cardinalities of #I%(m) and #I7 (M) satisfy

1, J <y, 1

j 77 ) .] S Ja
#15(0m) ~ {2‘1(”'), J > j, and #L,(M0) ~ {Qd(jJ),

3.8
j>J (8:8)
and that there is a constant n = 7(b,C1) € N such that if Q;,, C Qur and bQ; ., N C1Q nm # 0, then
Qsm C Qu_y, for some dyadic cube Q,—y ¢, £ = £(k), such that Q. C Qu—y .

Step 2. We prove the property (i) for 0 < p < 1. We decompose the sum in (3.5) into two parts for J < j
and for J > j. Let v € Z and k € Z? be fixed, with v < j. Then

J
S Nl Y 2 N S lusul? (3.9)

mGZd: J=0 mGZd: Me]j m
Qj,mCQu,k Qj,mCQu,k g (m)
oo
+ § ' 90— (se+d)(J—j)p E ' E ' g arl?
J=j+1 mezd: M [j
QjmCQy k € J(m)

J
<Cp Yy 277U N (M) ||
J=0 d.
Q.],]ycegufn,f

+Ch Z g~ (etd)(T=1)p Z #I5(M) |1 0"

J=j+1 Mezd:
QJ,]MCQV—W,Z

J
(=) (=
<C, Z 9= (e=5)G—=J)p Z e |?

J=0 Mezd:
QuMCQu_n,e

oS S

J=j+1 Mezd:
QuMCRuy—_ne

where the last inequality follows from (3.8) and the last but one follows from the definition of the set I ﬂ(M ).
If % <1, then

q J ) q
(X Wiml) sadX D000 3 ) (3.10)
mezd: J=0 Mezd:
Qj,mCQu,k QuMCQy—n.e
oo a
v Y wad)ufj)q( 3 IuJMl”)”.

J=j+1 Mezd:
QIMCQuy—_ny

If % > 1, then for any € > 0 we get, using the Holder inequality,

o\ . —(e—e=2)(j=T)q o\ P
( ) va|) <Ciy 2 ( > IuJ,M\) (3.11)
J=0

mezd: Mezd:
Qj,mCQu,k QIMCQy—_ny

9
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0o q
3 2—<u—a+d>u_j>q( 3 |MJM|>p

J=j+1 Mezd:
QuMCQu_ny

So in both cases we have

q
o7 T ) o1
e ezt
Q] 'mCka:
q
< 2”dPC 22 (e—e=2)(j—J)a sup S0(2—u+77)q2(u—77)d%( Z |MJ7M|p)p
=0 viv<j d.
rezd QJ,A];{CEC%V*UJ
- a
+27E0y Y 2 sup (2t (ST )
I=j+1 e ez

QJ,MCQu—n,Z
q

< 217de 22 (se—e—2)(j—J)q Su<p] S0(2_,,)(12wlg( Z |MJ,M|p)5
J=0 eend QJ%ECZZQL,,C
+ oMy Z 9~ (—e+d)(J—j)q sup. (2~ )qz”d%( > sl )%
J=j+1 pezd QJ’]\]/{{ECZZ;V,IQ

The first inequality follows from (3.10) and (3.11) and the fact that any k& appoints one £ = ¢(k), so the
supremum over k can be dominated by the supremum over £. The second inequality follows by rescaling.
In consequence,

[Alng

# b, all? (3.13)
q
<ec 2](5 )q 9= (3e— 5—7 —J)q S 9—v q2yd%( p)P
Z Z S e(27) M%Z:d a0
kezd QM CQuk
00 q
+CZ o9i(s=$)q Z 9—(se—e+d)(J=j)q Su<pJ o(27V) 2Vd%( Z |,UJ,M|p)p
=0 J=75+1 vy d,
! ! kezd QJ,JVIQGCZQu,k
S q
<eD0 D2l up o212 (S fugul”)
- viv<J
]=0 J=0 - d:
kezd QJ,A]/{IECZQy,k
a
+ CZ Z 2J(577)q2 (sx—e—op+s)(J—J)q sup 4/7(27”)(1 2ud% ( Z |,LLJ7M‘p) P
viv<J
=0 J=j+1 d.
j= J wezd QJAJ{/[ECZQV,IC
0o 4 . % oS
<c D270 sup )2 (N ()" Y 20
viv<J —
J=0 wezd QJ,A]\I/IGCZZ?:V,IC j=J
) 4 . q J—1
e 276D sup p(277)12v% ( > Iu.z,M\”) "N o lememopta)(Umi)e
viv<J —
J= rezd QJ,]\J/{/IGCZ%V,}C j=0
< dflulng p qll?

if we choose € > 0 such that »x—e—o0,+s > 0 and »r—e—s > 0. This is always possible if ¢ > max{o,—s, s}
that is, we need L > max{o,—s, s} here which is implied by (3.4). This finishes the proof of (i) for 0 < p < 1.

10
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Step 8. Now we prove the property (i) for p > 1. Applying the Holder inequality twice yields for some
e >0,

zj:Z_%(j_J) > |/~LJ,M|SCQ(EJ:T(”_E)U_‘DP > |N.],M|p)% (3.14)
J=0 Mer? (m) J=0 Mer (m)
and - 0o 1
IR EAID DAY EL (D DI DI VA1) KR CEL)
J=j+1 Mer (m) J=i+1 Mer)(m)

in view of (3.8). Now using (3.14) and (3.15) and a similar method as in (3.9) we can prove that

J
ey (i
Z INjml” < 0122 (re=e=p)a=Dp Z g, nr|” (3.16)

mezd: J=0 Mezd:
QjmCQy k QuMCRy_ne
o0
d .
—(—e4+ 4 (J—
+ Z 9—(—e+5)(T=i)p Z ‘MJ,M|p-
J=j+1 Mezd:

QJ,MCQu—n,Z

The rest of the proof goes similarly as in the case p < 1. Now we should choose ¢ > 0 such that
n—2e—0p+s=x—2c+s>0and »—2¢—s>0. In other words, we need s to satisfy L > s > |s|, but
this is again possible in view of (3.4).

Step 4. The proof of the property (ii) is straightforward. Let Q be some cube, J € Ny and M € Z? such
that Qs a C Q. Then we have

p 4 _ Y 5
MJ,M|p) ~27% sup p(279)20 J)”( Z |/U,M\p)p
kEZ

Il < sup ( Y. CQox
kezd

Mezd: Mezd:
QM Qr,MCQo,k
1
d_ _ _na P
<275 7927% sup p(277) 2" J)P( > IuJ,NI”)
viv<J Nezd
d :
kez QINCQy K

J(d_
< @G uin ol < 27 laln

So the estimate holds with the same constant for any cube () and s > (% —5)4. In view of (3.4) it is always
possible to find s such that L > s > (% — $)4. This concludes the proof. O

Remark 3.2. As in the paper [6] we do not claim the condition in (3.4) to be sharp, the assumption on L
is just taken for convenience, following the argument in [6]. Moreover, for our purposes, that is, to transfer
our sequence space results from Section 4 to the function space counterparts in Section 5, it is absolutely
sufficient to find some number L satisfying (3.4). But we did not care for minimal assumptions. The result
for the ‘classical’ case p(t) = t¥* t > 0,0 < p < u < oo, can be found in [22, Thm. 4.5, Cor. 4.17] and [23].

4. Embeddings of generalised Besov—Morrey sequence spaces

First we deal with the embeddings of generalised Besov-Morrey sequence spaces ng, ,, ., for the definitions

we refer to Section 2. These sequence spaces appear naturally when applying the wavelet decomposition
result Theorem 3.1 for generalised Besov—Morrey (function) spaces.

Theorem 4.1. Lets; € R, 0 <p; <00, 0<¢q <00, and p; € Gp,, fori=1,2. We assume without loss of
generality that ¢1(1) = @2(1) = 1. Let ¢ = min(1, 1) and a; = sup,; %, J € No.

11
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There is a continuous embedding

nfoll »P1,91 = n;9022:p27Q2 (41)
if and only if )
pa(27"
PRI -
and .
{2j(52—51)aj @1(23>9} c fq* where i — (1 _ 1) . (43)
¢1(277) J; ¢ \e a/,

The embedding (4.1) is never compact.

Proof. Step 1. First we consider the sufficiency of the conditions (4.2)—(4.3). Please note that it follows
from (4.2) that the supremum defining «; is finite, so the sequence («a;); is well defined.
We start by proving some inequalities for any fixed j € Ny. If py < pq, i.e., o = 1, then we have the
following inequality
1

_iyd P
swp @2 E (S ) (4.4
viv<j
rezd mezd:
Qj,mCQu,k
1
_yd I
< aj Sug @1(2—1/)2(11 n < Z )\j’m|p1)
kEz 0
Indeed, for any v < j we have
1
—7 i V)
902(2—1/)2(11 )5y ( Z )\j’m|;02)
mezd:
Qj»mCQV,k
1
< @2(2—v)2(u—j)%2(j—u)d(%—ﬁ) ( Z )\jm'pl) 1
mezd:
Qj,mCQy,k:
1
_iyd I
< Oljgol(Q*V)Q(V Doy < Z |)\j,m|P1) ’
mezd:
Qj,’mCQzl,k

where the first inequality follows by Holder’s inequality. Taking the supremum over v < j and k € Z% we
get (4.4).
If p1 < po,ie., 0 <1, then

1
v—7 a4 P2
sup o (27)2" ﬂ”( 2 |>\j,m|p2> (4.5)

viv<j
kezd mezd:
QjmCQy k

, 1
p1(277)° —rygr—i) p| "t
<a; m—— sup ¢1(277)2 Py [Ajml .
kEZ QG
It is sufficient to prove (4.5) for sequences (A )m satisfying the following assumption
1

. P
sup <ﬂ1(2”)2(u_j)pd1< > I/\j,m|p1> =1 (4.6)

viv<j
kGZ_d mezd:
QjmCQy k

12
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In this case p1(277)|\j | < 1 for any m. So

‘ ‘ . 9—7)\ P1
@ Y <@ Y gl <20 (“)) <,

1277
mezd: mezd: 1(277)
QjmCQy k QjmCQy k

and

1

iy d b2 27V . . )
@2(2—11)2( 7) by < Z |)\j7m|p2> < L_V)Qpl(gﬂ)gfl < 0%01(2*])9717 v <.
mezd: SDl(Z )Q
ijmCQ;,k

Taking the supremum we get (4.5).
Step 2. Now we prove sufficiency. The inequality (4.5) coincides with (4.4) if we take ¢ = 1, so we can

work with (4.5) and ¢ < 1.

From (4.5), for j € Ny we have

1
. _id P2
220 sup (27)2" ””2( > |>‘j,m|p2)

viv<j

kezd Qaneng:V .
1
. 2 y— iy P1
< 9i(s2=s1) 921((2))231] Su? 01(2” V)Q( J)p1< Z |)\j’m|l71> ) (4.7)
viv<j
kezd ij:lneczg;ﬁk
If g1 = oo, thus ¢* = g2, by (4.7) and (4.3) we clearly get
So—s 901(2 j)g
[ | nsaz,pz,qu S H{2J( 2 @1(2—3) }j [ q Sal’pl’oo”'

If g1 < oo and g2 > q1, then ¢* = oo, and (4.7) together with (4.3) yield

somsy) . P1(277)°
< {20 25} o 1A 10 -

M0 gl € 13192 S

Finally, in case of g3 < ¢1 < 00, by (4.7) and Hoélder’s inequality we obtain

(sg—s <)02 j)
M2l < [[ {20270 E2ES ) N ey ] Y=Y
(s2—51) e1(27 )Q}
= H{ & @1(2—j) j | 7171,(11H (4'8)
thanks to ¢* = 12 see (4.3).
Step 3. It remains to prove the necessity of the conditions. First we prove that the embedding (4.1) implies
(4.2).
Substep 3.1 We fix jo > 0, vy < jo and consider the sequence A\(70:*0) defined as follows
)\(JO,VO) @1(27110)71 if J=jo and Qjm C Quyo, (4.9)
J,m : :
0 otherwise.

13
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Then

1

.y v—7j)-L io,v0) (Pl P1
a2 (T ) (4.10)
mezd:
Qj,mCQVO,k

if ,7 = jO and Qu,k C QUO,Oa

if .] = jO and Quo,O C Ql/,lm
0 otherwise.

1
<91 )
p1(270)

A i
The function ¢; belongs to the class G, therefore @1(2_”)@1(2_”0)_12(V Orr < 1if Quy,0 C Qv and
©1(27")p1(2770) 7 < 1if Quk C Quy,0- In consequence
1

IOt g | = 270 sup pr(2)2 (3 o) pl) =g, (4.11)
keido Qjo’f,f?‘féy,k
In a similar way we prove that
1
XD, ] = 20 sup pa(27) 2% ( 2. AE?;?;:OH”) : (4.12)
vz Qg
- 2]’082@_
p1(270)
So if the embedding (4.1) holds, then
P2(27) _ giotsr—sa) (4.13)
p1(270)

Moreover the constant C' is independent of jy and vy. So if p1 > pg, i.e., 0 = 1, we can fix jo = 0. This
proves (4.2).
Substep 3.2. Let p1 < po, i.e., o= %. Once more we fix jg € Ny and vy € Z with vy < jo. Let N € N be

such that 1 < N < 200=%0)4 We define a sequence A(N) = (A;IQ) such that

(1) )\57];) =1 or )\5122 =0 forany (j,m), (4.14)
2 AN =0 if j#£j or Qjpm € Quoos (4.15)
(3) )\EONZn =1 exactly N times, (4.16)
4) if Quir CQuo, vo<v<jo, then @Q,) contains at most

210=Y)N 12 cubes Qj, ., such that )\goNzn =1 (4.17)

If N. = 200=%0)4 then we can simply take )\%Vzn = 1 for any cube Qj,,m C Quy,0. So let us assume
N < 200=0)d We put [2] = min{k € Z: k >z}, z € R.

Let My = [27ONT. If My = 1, iie., N < 2%, we put A"}
Quy+1,k C Quy,0 in such a way that we do not exceed the total number N and we finish the construction.

= 1 for at most one cube @, » in any cube

d
Let My > 1 and let Q0 = Ui2:1 Qug+1,k;- Now we represent N as the following sum

N =N 4N (4.18)
where
M, it My <N
NV =N = (i—1)M, if  (i—1)M; < N < iy, (4.19)
0 if  N=NY+o+ N

14
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We group the elements )\%Vzn of the sequence in such a way that exactly N,gil) elements related to the cube
Quy+1,k; are equal to 1.

Next we repeat the procedure for any cube Q41,1 We define M,gzz) = [2*dN,$)1. If M,f) = 1,
ie., M,S) < 24 we put )\%v?n = 1 for at most one cube @, » in any cube Q, 42,6 C Quy+1,k; in such

a way that we do not exceed the total number N,gl_l) and we finish the construction on the cube Q,+1.,-

)

d
If M,S) >1and Quyy1k; = U?:l Qup+2,k;» then we represent N,S as a sum

NP =ND 4+ N,f)kj ot N,Ei)kzd (4.20)
where the numbers N ,S)kj are defined in a similar way to (4.19) with N ,S) instead of N and M, ,g?) instead of
M.

In the next steps we define M, IS)kJ = f2‘dN;§f,)k].1 and so on. The procedure stops after at most 2(Jo~v0)
steps. One can easily see that for any v, vy < v =y + 1 < jo we have

n—1
) 1
Ny <40 St <ot L 42
i=0

Now we take jo = 0 and N = [20070)dy, (2770)=P1] < 260=0)d If ), 1 C @,y 0, then

1

Cna(v—jo) L NP1 PL
() (122)
m dZ
Qjo,nebéQ,j’k

1 yd 1
< 25@1(271/)2(1/—]0)5 maX(Q*d(ufuo)N’ 2)P1

1 27V 1 v—in) -4
S 2P1 max (W’2p1 901(2—1/)2( JO)p1> S C

¢1(2770)
since vy < v < 0, ¢y1 € Gp, and ¢1(1) = 1. The constant C is independent of 1. In consequence
||/\(N)|nf0117p17q1 || < C. So if the embedding (4.1) holds, then
P2(2770) - vo L —vo\—p1o—vod\ By
= LK 2 Yo 2 P2 2 vo p12 Yo P2
e < a2 )20 (127 )
< p(2710)2"075 N7z
N s
< INPInE pyall <€,

proving (4.2) when p; < ps.
©2(2710)

Step 4. We prove that the assumption (4.3) is necessary. If there exists vy < 0 such that ag = PRCRTINE

then also for j € N we can find v; < 0 such that a; = % If the supremum defining oy is not attained,
@
then there exist vy < 0, and in consequence v; < j, suclh that
p2(2777) p2(277)
22E ) g <2222 G N,. 4.23
pr(2)e =S T ame I 2

We used the modified version of the sequences constructed in Substep 3.2.
Substep 4.1 First we assume that p1 > po, i.e., 0 = 1. Let g1 < g2, Le., ¢" = 00, and 7 € Ng. We consider
the sequence A\ = ()\gzgn) defined by

(4.24)

o 27 qpp(27V) i j =i and Qim C Quo,
L 0 otherwise.

We prove that there is a positive C' > 0 such that ||)\(i)|nfol1 o1 |l < C for any .

15
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Let v; < v <14. Then

1

v—i)-L 2 : % — 27Y v—i i—v)-L —i
S01(2—11)2( )pl |)\§J)n|p1> P1 < 2 151 801(2 ) 2( )Pl 2( )pl g 278 (425)
mezd: (pl( )
Qi,mCQu,k

If v < v;, then

1

. Pl
p1(27)2" ””dl< > IAiffnlpl)l

mezd:
Qi,mCQu,k
1
27V v—i)-d p1
S s01(2—1)1‘) SOI( — ) 2( )pl < Z |)\() | > 1
¢1(27%) ’
meZ®:
Qi,mCQu;,0
1
)4 i p1 .
< (22 ( > |AE,3n|”1) < 2 (4.26)
mezd:
Qi,mCQui,O

where the last but one inequality follows from the inclusion 1 € Gp,. The inequalities (4.25) and (4.26) give
us [|A®|ns1 | < C. So if the embedding (4.1) holds, then

¥1,P1,91

1
. . g d [
2ils2=s) ;= 9120y (27 )2 B (N |A§.73n|”2> < CAD |

mezd:
Qi,m CQvi ,0

(4.27)

¥1,P1; QIH =<

Thus [|{2/¢2751) ;)00 || < C which is (4.3) in this case.
Now let g2 < q1, i.e., ¢* < oo. Let p= (p;); € £g, and ||p|q, || = 1. We consider the sequence A = (A; )
defined by the formula

I 277500 (27) iy i Qjn € Quj 0,
j,m .
0 otherwise.

In the same way as above we show that || A|nSL | < C|lpllq, |- So if the embedding (4.1) holds, then

¥1,P1,91

e8] 0o a2
Z2j(82_sl)q2a?2|ﬂj|q2 _ Z2jsgq2s02(2—ljj)q22Q2(Vj*j)% ( Z |>\j,m|p2>P2

j=0 =0 mezd:
Qj,mCQyj,O
= H>‘|ntp2$p2 q2||q2 = C”)‘|n<f>1 P1, ql”q2 <C
Any element of the sequence (2j (82*51)%)], is positive therefore
2727 D e[ = (272 )2} |
o0
— sup 97(s2—51)q2 92 »;
H%M */q2)/\| 155620 =0 J
0 .
< sup 21(32—51)q2a;12|uj|q2 <c,

llellq lI=1 550

iy

since (L)' = .

2
»

16
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Substep 4.2 We deal now with the case p1 < po,i.e., o = %. Let ¢1 < g9, i.e., ¢* = 00, and i € N. Consider
the construction explained in Substep 3.2, with jg and v replaced by i and v;, respectively, where v; satisfies
(4.23). Moreover, let N; = [207¥i)dp  (277)"P1p  (271)P1] and let A(Vi) be the sequence described in the

above mentioned Substep 3.2. Define the sequence 5 by

PO 27 (277) i (277 )Ppr (27) TN if j =i and Qi € Quy0
o 0 otherwise.

We prove that there is a positive C' > 0 such that ||3(") In% o g |l < C for any .
By using (4.23) and the fact that ¢; € G,,, we have, in case of v; < v <14, that

L

a2 (T )"

mEZd:
Qi,mCQu,k
1
p
< 92127 s g (yravpy 4 L )T
p1(277) 1 -2
<027,

and, in case of v < v;,

1

1
v—i)-d i 27 v—i)-& i
p1(27)2 )pd1< b ﬂi(fn|pl> 1 <2<p1((2 ))2 g IR NTT < g,
9 (p Z

mezd:
Qi,mCQuk
The above inequalities show that || 3¢ )|n@1 p1.q |l £ C. So, if the embedding (4.1) holds, then
1
so1 —v; vi—i)-L i) P2\ P2
C 2 18 ol 2 202 R (S 07
mezd:
Qi mCQu ,0

o270

> gls2=s)igi— 55 N”2 > glsa—s1)ig, PUE )
L p1(279)

Thus || {20251, 220 ?f} || < C.

(4.28)

Now let g2 < g1, 1 . , ¢" < oo. Let p=(p;); € £y, and consider the sequence 8 = (8;,,) defined by

, U . 1 (N .

Bjm = 2770 a2 (2779) T pa (2719) P01 (279) 1/\5',75)/%‘ it Qjm CQujo

=
’ 0 otherwise.

In the same way as above we show that ||3|n5}

©1,P1,01
a2
223(82 51)a2 (92 ‘101((22 jj iq; |j|% = 22182112 j)Q22q2(Vj—j)% < Z |ﬁj,m|p2) P2
Jj=0 mezd:
Qj,mCQuj,O

< BInE, pp.00 1™ < C-

Thus

2-7)eq2
{2](82 1202 i;ll(@))qzuj@} el forall () € 4y,
j

which is equivalent to

) 2-7)eq2
{2j(sgsl)q2a?2 901((2_]))(1277]} & 61 fOI' 3,11 (7]])3 € grl
$1 J

17
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with r; = %‘ But this implies that

9i(s2—51)q2 2 301(2_])@(12 el
T py(279)a2 i "1

which means that

{Qj(sz_sl)aj<p1(2_J.)g} qu*.
¢1(277) J;

Step 5. It remains to prove the non-compactness of (4.1). This follows by the same method as in [7,
Thm. 3.2], i.e., we can take a sequence \(#) = {)\gfﬁl}j,m, uweN,

() 1, if j=0and m=(y0,0,...,0),
Ajom = :
0, otherwise.

Then [|A®)] | =1 and [[A(#1) — \(K#2)|ps2 | > 1if pg # po. O

S1
n‘PlvPlv‘Il $2,P2,92

i 51 52 i if 51
Remark 4.2. Following the above proof one observes, that ng}, , . —ng , . ifandonlyifng , . <

T2, py.qy» Where the latter spaces have been introduced in Section 3. The first term in (3.3) can just be

treated as the term with j = 0 in the argument above.

Example 4.3. We explicate Theorem 4.1 for a few settings as mentioned in Example 2.5.
d
(a) In the particular case of p;(t) = t%, 0 < p; < u; < 00, i = 1,2, condition (4.2) means u% <
1

2y min(1, EL) that is equivalent to

2

uy < usg and b2 1 (4.29)

U2 U1

Moreover, since ‘
{2j(8281) 802(27j) } — {2j(52751+%7%)} )
1(277) j i’
we recover exactly the conditions for classical Besov—Morrey sequence spaces in Theorem 3.2 of [7].
(b) Besides the ‘classical’ example given above, we consider the functions ¢, ,, defined by (2.3), 0 <
V1

u;, v; < 00, ¢ = 1,2. Now one can easily calculate that condition (4.2) is equivalent to w <o and
the condition (4.3) is equivalent to

_ 1 1 1 1 i
¥>max{0,a—u§a%(*_ )}7 it a1 > q,

d pL P2 (4.30)
a0 g -8 (F-F)) f o<e

Please note that (4.30) coincides with the conditions formulated in [8] for embeddings of Besov—Morrey
spaces defined on bounded domains.
(c) Finally we return to the setting in Example 2.5(iii),

d

tvi, 0<t<l1
1t: ? b
vi(t) {L o1

where u; > p;, ¢ = 0,1. Formally this can be seen as an extension of the previous example to v; = oo,
i = 1, 2. Please note that the sequence spaces correspond via Theorem 3.1 to the local Besov—Morrey
spaces, cf. Remark 2.7. Since sup,s; w2(t)/¢1(t)? = 1, (4.2) is satisfied, thus it remains to deal with
the condition (4.3), which leads to (4.30) again.

18
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Next we collect a number of interesting and useful implications of Theorem 4.1.

Corollary 4.4. Lets; € R, 0 < p; < 00,0 < ¢; <00, and p; € G, fori =1,2. Let p1(1) = po(1) =1
and o = min(1, %). We assume that the sequence a; = sup, < % converges to some o > 1 and that
(4.2) is satisfied.

(1) If p1 > pa, then the embedding (4.1) is continuous if and only if s1 > s2 or s1 = s3 and ¢1 < ga.
(ii) If p1 < pa, then the embedding (4.1) is continuous if and only if

. . Py 1 1 1
{23(32—51)@1(2—3);;; } € Ly where — = ( - ) . (4.31)
J q q2 q1 +

We recall that b, ,, s € R, 0 < p,q < oo, denote the classical Besov sequence spaces, cf. Remark 2.9.

Now we extend the above definition to the case p = co.
We have the following observation from Lemma 2.12.

Corollary 4.5. Let0 <p <oo,0<g<o0,s€eR, and p € G,.

(1) If infisop(t) >0, then ng, , , = b3 4

(ii) If sup,~q@(t) < oo, then boog = Moopg-

S

In particular, if 0 <infiso@(t) < supso(t) < oo, then ng, ,

= b5, , (in the sense of equivalent norms).
Remark 4.6. This can be seen as some sequence space counterpart of Remark 2.2.

Corollary 4.7. Lets; €R, 0 <p; <00, 0<q; <00, and @; € Gp,, fori=1,2. Then

N o = e paao (in the sense of equivalent norms) (4.32)
if and only if
s1=s2 and @ = qo, (4.33)
and one of the two conditions
0 <inf @;(t) <sup ¢;(t) <oco, i=1,2, (4.34)
t>0 t>0
or
P1 = Po and p1(t) ~ @a(t), t>0, (4.35)
holds.

Proof. Step 1. Clearly (4.33) and (4.35) imply (4.32), but also (4.33) and (4.34) lead to (4.32) which can
be seen as follows: either one checks directly the conditions (4.2) and (4.3), or one uses Corollary 4.5 and
observes that (4.34) leads to ngl , . =03 ~and n2 . =32 . Hence (4.33) completes the proof of
the sufficiency for (4.32).

Step 2. Now we deal with the necessity. Here we apply Theorem 4.1 twice, that is, for ns1 —n

52
©1,01,41 ©2,02,42
S92 S1 ]
and ng2 . < ngl .- Thus (4.2) in both cases leads to

—v —pymin(1 p—l) ’ y min(p
2(277) S epr(27Y) TR S dpp(277) TP w <0,

—min P1 P2 . . .
such that @o(27)" (52'P1) < ¢ 1 < 0. This requires either p; = py and thus w1(t) ~ @a(t), t > 1, or

Sup,~o @i(t) < oo, i=1,2.
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Cp1(27Y)
e (27V)”

If p1 = py and @1(t) ~ p2(t), t > 1, then a; ~ max,—q, ; %:Zg, likewise c; ~ max,—o,.
Thus (4.3) leads, in particular, to

—v —v
max LZ(Q )§02j(81_82)< min 7902(2 )

v=0,...,7 @1(2711)  v=0,....j @1(271/)
for all j € Ny, i.e., ¢1(t) ~ pa2(t), 0 <t <1, 57 = so, which finally implies ¢; = g2, as desired.
Assume now sup,( ¢i(t) < oo, where we may restrict ourselves to the case p1 # po. It is sufficient to
show that there appears a contradiction if (4.34) is not satisfied, as then — again in view of Corollary 4.5—

(4.34) and (4.32) yield b3L , = b32 ., which is known to imply (4.33) finally. So let us assume p; < pa,
hence min(1,£L) = T min(1,22) = 1. Let € > 0, then there exists some jo = jo(¢) € N such that

L PL_ P
cpl(Z’J)Pé ' > (infiso @1 (t) + €) ol > ¢ > 0for j > jo. If (4.34) is not satisfied, then at least one of
the sequences (a;); or (&;); diverges,

27V - 27v
a; = sup 2l ,)01 . 00 or &, = sup £127") 7}/) — 0.
v<i oy (2-v)Pz 17 v<j P2(277) oo

Let us assume that () — 0 for ¢ — 0. Then a; > 1, j € Ny, and &; — oo for j — oo. Consequently
(4.3) applied to N prar < b pa,qe l€2dS t0 51 > sa, but the second embedding requires sy > s;. This is
a contradiction. [J

Next we study the special situation when ¢1 = @2 = .

Corollary 4.8. Lets; €R, 0 <p; <00, 0<¢q; <00 fori=1,2, ¥ € Guax(p;.py), and q% = (é — i).ﬁr

(i) Let p1 > pa. Then

Nopra ~ Mpa.a (4.36)
if and only if
s1> 82, if q1 > qo, (4.37)
s12 52, ifqi < g
(ii) Let p1 < p2. Then
NGprar ™ Mopa.as (4.38)
if and only if )
. . 1
sup ¢(t) < oo and {2“52751)@(27])571}_ € lgx . (4.39)

t>0 J

Proof. If p; > p,, then (using the notation of Theorem 4.1) o =1 and «; = 1, and (4.2) is automatically
satisfied. Moreover, (4.3) reduces to the question whether {2j(32_51)}j € g+, ie., (4.37), which completes
the proof of (i).

In case of p; < p2, 0 = % < 1 and (4.2) is obviously equivalent to the first condition in (4.39), that is,
sup;~o @(t) < oo. Moreover, in that case o; ~ 1, such that (4.3) can be rewritten as the second part of
(4.39). O

Remark 4.9. Note that a sufficient condition for ¢ in (ii) is — in addition to sup,~o ¢(t) < oo — that

31—52>p1(1_1>
d P2 \ D1 D2

using the properties of ¢ € Guax(py,po) = Ipo-
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Example 4.10. We explicate Corollary 4.8 for some function ¢. We restrict ourselves to the situation
p1 < D2, i.e., Corollary 4.8(ii). Let

d
olt) = trz (14 |logt))*, 0<t<1,
1 t>1,

)

where a € R. Since sup,. ¢(t) < 0o, we deal with the second condition in (4.39), which leads to

81—82 p1 (1 1
= > A - = r
a - P2 (Pl P2> ’ or,
s1—s2 _ P1 1 1 .
=P (L __ 1 n > if < r
d Do (pl p2> and a >0, q1 =~ q2, Or,
S$1—82 __ p1 1 1 1 p2 :
=2 =521~ = ol == if .
D2 (m pz) and a> q* p2—p1’ @ > g2

We used that in this case

{Qj(52*51)(p(2*j)%*1} — {2j(52*51*d%(ﬁ*%))(1 +j)a(%fl)} .
J J
Now we focus on embeddings where either the target or the source space is a Besov sequence space, for
what we recall that
bpg =Nppg 0<p<oo, 0<g<oo, seER.
Corollary 4.11. Lets; € R, 0 < p; < 00,0 < ¢; < o0 fori = 1,2, and o1 € Gp,. Denote again

L =(L —L), Then

T ‘g2 @1 . .
n¢11,P17q1 = b}?g,tu (4'40)
if and only if
a . . b1
D1 S D2, ®1 (t) ~ 1P ) t 2 17 and {2J(S2_51)g01(2_])p2 1}] € gq’“ (441)

d
Proof. We apply Theorem 4.1 (and its notation) with @o(t) = ¢P2, t > 0. Thus (4.2) is equivalent to

a

p1(t) > ctr2ze, t>1.

V]
(S

da da
On the other hand, 1 € G, implies ¢1(t) < tPr, ¢t > 1, hence this results in p1 < py and ¢ (t) ~tP1, ¢t > 1,

which is the first part of (4.41). We concentrate on (4.3) and observe that a; is bounded, since
o _PL__,d o _PL__,d pd _,d
1<aq;=supp1(27”) 7227 P2 ~ max 1(277) P22 "P2 < max 2 P22 P2 =1,
v<j v=0,...,7 v=0,...,7

d
where we used again o1 € G, , this time leading to ¢1(27%) > 2”71, v € Ny. Thus (4.3) corresponds to the

second part in (4.41). O

Example 4.12. We illustrate Corollary 4.11 for ¢ given by

(t) = e i <,
ATV i s,

with p; < u < oo, a special case of (2.3). It turns out that in such a case (4.40) holds if and only if p; < py

and —
— 1 1 1 q
u>%1 (T_ 2)’ if q1 > qa, or,
51—S82 D1 1 _ 1 i
S51—S52 2 (—1 2) 9 lf q1 S q2.

When u = p; this is the sequence space counterpart of [7, Cor. 3.7].
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Corollary 4.13. Lets; € R, 0 < p; < 00,0 < ¢; < o0 fori = 1,2, and p2 € Gp,. Denote again
1 _ (1 1

q* 47(Q2 Q1)+'

(i) Let p1 < py. Then

S1 S2
boloar = s p2.aa

if and only if
{2j@2*81+ﬁ%)¢2(27j)}E;gq*_ (4.42)
(ii) Let p1 > py. Then
bl = n2

P1,91 ¥$2,P2,92

if and only if

d
supt P1pg(t) < oo, (4.43)
>1

and

. d
{2J@2Sﬂ sup 2”p1¢&(2“)} € Lyr. (4.44)
0<v<y

J

d
Proof. Part (ii) exactly corresponds to Theorem 4.1 with ¢1(¢t) = tP1, ¢t > 0, and p = 1. As for part (i),
P1

now with o = (4.2) reads as

p2’

d
sup2”P2 p(277) < ¢,
vr<0

but this is always true in view of o € G,,. By the same argument,
va —v —J ji
aj ~ max 2772 pp(277) = ¢a(277)2°72,
v=0,...,5

which leads to
‘ , ; d o id (P , d _
2;(52751)%901(2—;)971 — 2](S2*S1+5)¢2(2ﬂ)Q*Jﬁ(éfl) _ 2](52*51+ﬁ)902(2*3)’
such that (4.3) coincides with (4.42). O

Example 4.14. We consider a model function for part (ii), i.e., when p; > ps. Recall that in this case there
is no continuous embedding for classical Besov-(Morrey) spaces on R9. Let

d
e, t> 1,
pa(t) =4 a
ti, 0<t<1,

where u; > p; and ug > po. We may even admit u; = oo with the understanding that ¢o(t) = 1 for ¢ > 1.
Then ¢y € G,,, (4.43) is satisfied, and (4.44) leads to

— 1 1 .
%Z<f—u§)+ if g1 < g,

P1
182 1 _ 1 ;
T > (Pl u2)+ if q1 > qo.

d
In particular, u; = ug = p; is admitted, such that ¢;(t) = p2(t) = tP1 then and we recover our result from
Corollary 4.8(i) for this case.
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5. Embeddings of generalised Besov—Morrey function spaces

Now we deal with embeddings of the function spaces. We benefit from our sequence space result
Theorem 4.1 and the wavelet characterisation of the function spaces, cf. Theorem 3.1. The following
statement is the immediate consequence of the just mentioned theorems, recall also Remark 4.2.

Theorem 5.1. Lets; € R, 0 <p; <00, 0<¢q <00, and p; € Gp,, fori=1,2. We assume without loss of
generality that ¢1(1) = @a(1) = 1.
There is a continuous embedding

N2 (RT) — N32 (R (5.1)

¥1,P1,91 $2,P2,92

if and only if (4.2) and (4.3) are satisfied, using the notation of Theorem 4.1.
The embedding (5.1) is never compact.

d
Remark 5.2. If ¢;(t) =t%i, i = 1,2, then Theorem 5.1 coincides with [7, Theorem 3.3].

Corollary 5.3. Lets€R,0<p < o0, 0<gq< o0, andwegr,r:§.1f0<p1 < p, then

s+2
Np,pﬁq(Rd) — N, (Rd)~

®.p,q

d
Proof. The statement follows directly from Theorem 5.1 with ¢1(t) =t? and po(t) = p(t). O
Now we collect further consequences of Theorem 5.1 parallel to our approach in Section 4.

Corollary 5.4. Lets; €R, 0 <p; <o0,0<gq; <00, and ; € Gp,, fori=1,2. Then

N

ol i (RY) = N32 (R (in the sense of equivalent norms) (5.2)

¥$2,02,92

if and only if we have the equalities (4.33) and one of the two conditions (4.34) or (4.35) holds.

Proof. This is the function space version of Corollary 4.7. O

Corollary 5.5. Lets; € R, 0<p; <00,0<¢q <00 fori=1,2, 0 € Grax(p,,py) and q% = (é — i)+.
Then
S d S d
Nt RY) = NZ%, 4 (RY) (5.3)

if and only if p1 > pe and (4.37) holds or p1 < pa and (4.39) holds.
Proof. This is the counterpart for function spaces of Corollary 4.8. [

Corollary 5.6. Lets; € R, 0 < p; < 00, 0 < ¢; < o0 fori = 1,2, and o1 € G,,. Denote again
L =(L —~L), Then

q q2 q1

N

¥1,P1,91

(RY) = B2 . (RY)

P2,92

if and only if the conditions (4.41) hold.

Proof. This corresponds to Corollary 4.11. [
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In combination with the well-known embedding BY; (R?) < L,(R%), 1 < r < oo, we thus obtain from
Corollary 5.6 the following result.

Corollary 5.7. Lets€ R, 0<p<o0,0<¢q<o00,pecq,, withp(t) ~ t%, t>1. Assume 1 < r < oo with
r > p, and let % =(1- %)+. Then
NE o (RY) < L.(RY)

®.P,q

if {Q—jsw(z—j)g—l}l cly.
J
Finally we return to the situation studied in Corollary 4.13.

Corollary 5.8. Lets; € R, 0 < p; < 00,0 < ¢ < o0 fori = 1,2, and p2 € Gp,,. Denote again
L =(L —~L), Then
q @2 a1

B! (RY) — N2

P1,91 ¥2,P2,92

(R7)
if and only if

(1) p1 < p2 and the condition (4.42) holds
or
(i) p1 > p2 and the conditions (4.43)—(4.44) hold.

Remark 5.9. Obviously one can also explicate Theorem 5.1 for the example functions, similar to
Examples 4.3, 4.10 etc. For instance, we can prove that the formula (4.30) gives sufficient and necessary
conditions for the embedding of two local Besov—Morrey spaces.

In the end we study some endpoint situations in Corollaries 5.6-5.8, recall also the sequence space
counterpart in Corollary 4.5. We begin with an extension of Corollary 5.7 to r = oco. Recall our notation
%:(1—%)+ for 0 < ¢ < o0.

Corollary 5.10. Lets € R, 0 <p < o0, 0< g <00, and ¢ € G,. Assume that
{27727} ey, €l - (5.4)

Then
NS

®,P-.q

(R?) < Lo (RY).

Proof. We apply Theorem 5.1 with @1 = ¢, oo =1, 81 =8, 50 =0, p1 =p2 =p, 1 = ¢, g2 = 1 and hence
q* = ¢'. Thus, in view of (2.2),
N3 p.aRY) = BY 1 (RY) = Loo(RY),

®,P,q

where the latter embedding is well-known. [

Remark 5.11. In case of p(t) =tuv, 0 < p < u < 00, (5.4) reads as

and this is even known to be also necessary for the embedding N , . (R?) < Lo (R?), cf. [8, Prop. 5.5].
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Next we return to Sawano’s observation that for inf;~op(t) > 0, then M, ,(RY) — L (R?), while
sup;sq p(t) < oo implies Lo (R?) — M., ,(R?), leading as a special case to (2.2), cf. [24]. For convenience,
let us denote these conditions by

() t1r>1£ o(t) >0, and

(8)  supp(t) < oo

t>0

Corollary 5.12. Letsc R, 0<p<o0,0<g< o0, andp € G,.

(1) If ¢ satisfies (I), then
NG poRY) = B (R).

P.0.4
(il) If ¢ satisfies (S), then
BS, J(RY) <= NG, (RY).
Hence if ¢ satisfies (I) and (S), i.e., p ~ 1, then

N p.q(RY) = B3, ,(RY)

»P»q(

(in the sense of equivalent norms).

Proof. The first statement is also a consequence of Theorem 5.1 with ;1 (¢) = ¢(t) and pa(t) = @o(t) = 1,
since Mo »(RY) = Loo(R?), recall (2.2). Moreover if sup,  ¢(t) < 0o, then Loo(RY) < M, ,(R?). This
implies the second embedding. [J

We conclude our paper with a closer look on the consequences of (I) and (S) for the standard embedding

N N2

©1,P1 ql( ) ¥2:P2,92

(R%). (5.5)

Corollary 5.13. Lets; € R, 0 <p; < 00,0 < ¢ <00, and p; € Gp,, fori = 1,2. We assume without loss
of generality that v1(1) = @o(1) = 1.

(i) Assume that ¢y satisfies (I). Then (5.5) holds if and only if (4.2) is satisfied and {27275}, € £,».
(i) Assume that o satisfies (I) while @1 does not. Then (5.5) holds if and only if (4.2) is satisfied and
{2j(52*51)<p1(2*j)*1}j € lyr.
(iii) Assume that o satisfies (S) while p1 does not satisfy (I). Then (5.5) holds if and only if (4.3) holds.
In particular (5.5) holds if {27271 (279) 71}, € £,
(iv) Assume that p1 satisfies (S). Then (5.5) holds if and only if also w2 satisfies (S) and (4.3) holds.

Proof. We begin with (i). In view of Theorem 5.1 it remains to verify that (I) for ¢; together with
{2j(52_51)}j € l,+ is equivalent to (4.3). However, since o is nondecreasing and ¢; satisfies (I), we get
that 1 < a; < c ap and ¢1(277)27! < ¢’ such that (4.3) follows.

Next we deal with (ii). This time we need to show that the assumptions on @o and {27(2=51) ¢, (277) =1},
€ L4+ is equivalent to (4.3). But using the boundedness of ¢o and the monotonicity of ¢ we obtain
cp1(279)7¢ < aj < p1(277)7¢ for sufficiently large j since ¢ does not satisfy (I). But this together with
our assumption leads to (4.3).

First observe that the assumed boundedness of ¢y from above in (iii) together with the boundedness of
1 from below already imply (4.2). The boundedness of a; < 1(277)7¢ follows in the same way as in (ii).

It remains to deal with (iv). If o satisfies (S), then (4.2) is a consequence of ¢1(27%) > (1) = 1 for
v < 0. The rest follows by Theorem 5.1. [
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